#### Sample records for maximum weight polygon

1. Sequential and Parallel Algorithms for Finding a Maximum Convex Polygon

DEFF Research Database (Denmark)

Fischer, Paul

1997-01-01

This paper investigates the problem where one is given a finite set of n points in the plane each of which is labeled either ?positive? or ?negative?. We consider bounded convex polygons, the vertices of which are positive points and which do not contain any negative point. It is shown how...... such a polygon which is maximal with respect to area can be found in time O(n³ log n). With the same running time one can also find such a polygon which contains a maximum number of positive points. If, in addition, the number of vertices of the polygon is restricted to be at most M, then the running time...... becomes O(M n³ log n). It is also shown how to find a maximum convex polygon which contains a given point in time O(n³ log n). Two parallel algorithms for the basic problem are also presented. The first one runs in time O(n log n) using O(n²) processors, the second one has polylogarithmic time but needs O...

2. A simple algorithm for computing positively weighted straight skeletons of monotone polygons.

Science.gov (United States)

Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

2015-02-01

We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in [Formula: see text] time and [Formula: see text] space, where n denotes the number of vertices of the polygon.

3. Convex lattice polygons of fixed area with perimeter-dependent weights.

Science.gov (United States)

Rajesh, R; Dhar, Deepak

2005-01-01

We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal lattices. We attach a weight tm to a convex polygon of perimeter m and show that the sum of weights of all polygons with a fixed area s varies as s(-theta(conv))eK(t)square root(s) for large s and t less than a critical threshold tc, where K(t) is a t-dependent constant, and theta(conv) is a critical exponent which does not change with t. Using heuristic arguments, we find that theta(conv) is 1/4 for the square lattice, but -1/4 for the hexagonal lattice. The reason for this unexpected nonuniversality of theta(conv) is traced to existence of sharp corners in the asymptotic shape of these polygons.

4. Vehicle Maximum Weight Limitation Based on Intelligent Weight Sensor

Science.gov (United States)

Raihan, W.; Tessar, R. M.; Ernest, C. O. S.; E Byan, W. R.; Winda, A.

2017-03-01

Vehicle weight is an important factor to be maintained for transportation safety. A weight limitation system is proposed to make sure the vehicle weight is always below its designation prior the vehicle is being used by the driver. The proposed system is divided into two systems, namely vehicle weight confirmation system and weight warning system. In vehicle weight confirmation system, the weight sensor work for the first time after the ignition switch is turned on. When the weight is under the weight limit, the starter engine can be switched on to start the engine system, otherwise it will be locked. The seconds system, will operated after checking all the door at close position, once the door of the car is closed, the weight warning system will check once again the weight during runing engine condition. The results of these two systems, vehicle weight confirmation system and weight warning system have 100 % accuracy, respectively. These show that the proposed vehicle weight limitation system operate well.

5. Weighted Maximum-Clique Transversal Sets of Graphs

OpenAIRE

Chuan-Min Lee

2011-01-01

A maximum-clique transversal set of a graph G is a subset of vertices intersecting all maximum cliques of G. The maximum-clique transversal set problem is to find a maximum-clique transversal set of G of minimum cardinality. Motivated by the placement of transmitters for cellular telephones, Chang, Kloks, and Lee introduced the concept of maximum-clique transversal sets on graphs in 2001. In this paper, we study the weighted version of the maximum-clique transversal set problem for split grap...

6. Selective effects of weight and inertia on maximum lifting.

Science.gov (United States)

Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S

2013-03-01

A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.

7. APPLYING THIESSEN POLYGON CATCHMENT AREAS AND GRIDDED POPULATION WEIGHTS TO ESTIMATE CONFLICT-DRIVEN POPULATION CHANGES IN SOUTH SUDAN

Directory of Open Access Journals (Sweden)

L. Jordan

2017-10-01

Full Text Available Recent violence in South Sudan produced significant levels of conflict-driven migration undermining the accuracy and utility of both national and local level population forecasts commonly used in demographic estimates, public health metrics and food security proxies. This article explores the use of Thiessen Polygons and population grids (Gridded Population of the World, WorldPop and LandScan as weights for estimating the catchment areas for settlement locations that serve large populations of internally displaced persons (IDP, in order to estimate the county-level in- and out-migration attributable to conflict-driven displacement between 2014-2015. Acknowledging IDP totals improves internal population estimates presented by global population databases. Unlike other forecasts, which produce spatially uniform increases in population, accounting for displaced population reveals that 15 percent of counties (n = 12 increased in population over 20 percent, and 30 percent of counties (n = 24 experienced zero or declining population growth, due to internal displacement and refugee out-migration. Adopting Thiessen Polygon catchment zones for internal migration estimation can be applied to other areas with United Nations IDP settlement data, such as Yemen, Somalia, and Nigeria.

8. Applying Thiessen Polygon Catchment Areas and Gridded Population Weights to Estimate Conflict-Driven Population Changes in South Sudan

Science.gov (United States)

Jordan, L.

2017-10-01

Recent violence in South Sudan produced significant levels of conflict-driven migration undermining the accuracy and utility of both national and local level population forecasts commonly used in demographic estimates, public health metrics and food security proxies. This article explores the use of Thiessen Polygons and population grids (Gridded Population of the World, WorldPop and LandScan) as weights for estimating the catchment areas for settlement locations that serve large populations of internally displaced persons (IDP), in order to estimate the county-level in- and out-migration attributable to conflict-driven displacement between 2014-2015. Acknowledging IDP totals improves internal population estimates presented by global population databases. Unlike other forecasts, which produce spatially uniform increases in population, accounting for displaced population reveals that 15 percent of counties (n = 12) increased in population over 20 percent, and 30 percent of counties (n = 24) experienced zero or declining population growth, due to internal displacement and refugee out-migration. Adopting Thiessen Polygon catchment zones for internal migration estimation can be applied to other areas with United Nations IDP settlement data, such as Yemen, Somalia, and Nigeria.

9. Frosty Polygons

Science.gov (United States)

2004-01-01

16 January 2004 Looking somewhat like a roadmap, this 3 km (1.9 mi) wide view of a cratered plain in the martian south polar region shows a plethora of cracks that form polygonal patterns. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is located near 78.9oS, 357.3oW. Polygons such as these, where they are found on Earth, would be indicators of the presence of subsurface ice. Whether the same is true for Mars is uncertain. What is certain is that modern, seasonal frost on the surface enhances the appearance of the polygons as the frost persists longer in the cracks than on adjacent plains. This southern springtime image is illuminated by sunlight from the upper left.

10. Polar Polygons

Science.gov (United States)

2005-01-01

18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

11. Generalized polygons

CERN Document Server

Maldeghem, Hendrik

1998-01-01

This book is intended to be an introduction to the fascinating theory ofgeneralized polygons for both the graduate student and the specialized researcher in the field. It gathers together a lot of basic properties (some of which are usually referred to in research papers as belonging to folklore) and very recent and sometimes deep results. I have chosen a fairly strict geometrical approach, which requires some knowledge of basic projective geometry. Yet, it enables one to prove some typically group-theoretical results such as the determination of the automorphism groups of certain Moufang polygons. As such, some basic group-theoretical knowledge is required of the reader. The notion of a generalized polygon is a relatively recent one. But it is one of the most important concepts in incidence geometry. Generalized polygons are the building bricks of Tits buildings. They are the prototypes and precursors of more general geometries such as partial geometries, partial quadrangles, semi-partial ge­ ometries, near...

12. Generalized polygons

CERN Document Server

Van Maldeghem, Hendrik

1998-01-01

Generalized Polygons is the first book to cover, in a coherent manner, the theory of polygons from scratch. In particular, it fills elementary gaps in the literature and gives an up-to-date account of current research in this area, including most proofs, which are often unified and streamlined in comparison to the versions generally known. Generalized Polygons will be welcomed both by the student seeking an introduction to the subject as well as the researcher who will value the work as a reference. In particular, it will be of great value for specialists working in the field of generalized polygons (which are, incidentally, the rank 2 Tits-buildings) or in fields directly related to Tits-buildings, incidence geometry and finite geometry. The approach taken in the book is of geometric nature, but algebraic results are included and proven (in a geometric way!). A noteworthy feature is that the book unifies and generalizes notions, definitions and results that exist for quadrangles, hexagons, octagons - in the ...

13. Maximum weight of greenhouse effect to global temperature variation

International Nuclear Information System (INIS)

Sun, Xian; Jiang, Chuangye

2007-01-01

Full text: The global average temperature has risen by 0.74 0 C since the late 19th century. Many studies have concluded that the observed warming in the last 50 years may be attributed to increasing concentrations of anthropogenic greenhouse gases. But some scientists have a different point of view. Global climate change is affected not only by anthropogenic activities, but also constraints in climate system natural factors. How much is the influencing weight of C02's greenhouse effects to the global temperature variation? Does global climate continue warming or decreasing in the next 20 years? They are two hot spots in global climate change. The multi-timescales analysis method - Empirical mode decomposition (EMD) is used to diagnose global annual mean air temperature dataset for land surface provided by IPCC and atmospheric content of C02 provided by the Carbon Dioxide Information Analysis Center (CDIAC) during 1881-2002. The results show that: Global temperature variation contains quasi-periodic oscillations on four timescales (3 yr, 6 yr, 20 yr and 60 yr, respectively) and a century-scale warming trend. The variance contribution of IMF1-IMF4 and trend is 17.55%, 11.34%, 6.77%, 24.15% and 40.19%, respectively. The trend and quasi-60 yr oscillation of temperature variation are the most prominent; C02's greenhouse effect on global temperature variation is mainly century-scale trend. The contribution of C02 concentration to global temperature variability is not more than 40.19%, whereas 59.81% contribution to global temperature variation is non-greenhouse effect. Therefore, it is necessary to re-study the dominant factors that induce the global climate change; It has been noticed that on the periods of 20 yr and 60 yr oscillation, the global temperature is beginning to decreased in the next 20 years. If the present C02 concentration is maintained, the greenhouse effect will be too small to countercheck the natural variation in global climate cooling in the next 20

14. The Polygon

International Nuclear Information System (INIS)

2000-01-01

In Russian, ''The Polygon'' stands for a nuclear test site of 19.000 square kilometers in Kazakhstan, used by the former Soviet Union for hundreds of nuclear tests from 1947 to 1991. This film looks at the legacy of what was once a top secret area, now abandoned, but still sparsely populated, and at the work to be done to detect and map the areas of elevated radiation levels

15. Approximating maximum weight cycle covers in directed graphs with weights zero and one

NARCIS (Netherlands)

Bläser, Markus; Manthey, Bodo

2005-01-01

A cycle cover of a graph is a spanning subgraph each node of which is part of exactly one simple cycle. A $k$-cycle cover is a cycle cover where each cycle has length at least $k$. Given a complete directed graph with edge weights zero and one, Max-$k$-DCC(0, 1) is the problem of finding a k-cycle

16. of polygons

KAUST Repository

Lu, Yanyan; Lien, Jyh-Ming; Ghosh, Mukulika; Amato, Nancy M.

2012-01-01

Decomposing a shape into visually meaningful parts comes naturally to humans, but recreating this fundamental operation in computers has been shown to be difficult. Similar challenges have puzzled researchers in shape reconstruction for decades. In this paper, we recognize the strong connection between shape reconstruction and shape decomposition at a fundamental level and propose a method called α-decomposition. The α-decomposition generates a space of decompositions parameterized by α, the diameter of a circle convolved with the input polygon. As we vary the value of α, some structural features appear and disappear quickly while others persist. Therefore, by analyzing the persistence of the features, we can determine better decompositions that are more robust to both geometrical and topological noises. © 2012 Elsevier Ltd. All rights reserved.

17. of polygons

KAUST Repository

Lu, Yanyan

2012-08-01

Decomposing a shape into visually meaningful parts comes naturally to humans, but recreating this fundamental operation in computers has been shown to be difficult. Similar challenges have puzzled researchers in shape reconstruction for decades. In this paper, we recognize the strong connection between shape reconstruction and shape decomposition at a fundamental level and propose a method called α-decomposition. The α-decomposition generates a space of decompositions parameterized by α, the diameter of a circle convolved with the input polygon. As we vary the value of α, some structural features appear and disappear quickly while others persist. Therefore, by analyzing the persistence of the features, we can determine better decompositions that are more robust to both geometrical and topological noises. © 2012 Elsevier Ltd. All rights reserved.

18. Convex Lattice Polygons

Science.gov (United States)

Scott, Paul

2006-01-01

A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.

19. Polygons and Their Circles

Science.gov (United States)

Stephenson, Paul

2009-01-01

In order to find its circumference, Archimedes famously boxed the circle between two polygons. Ending the first of a series of articles (MT179) with an aside, Francis Lopez-Real reverses the situation to ask: Which polygons can be boxed between two circles? (The official term for such polygons is "bicentric".) The sides of these polygons are…

20. Metric inequalities for polygons

Directory of Open Access Journals (Sweden)

2013-07-01

Full Text Available Let A1,A2,…,An be the vertices of a polygon with unit perimeter, that is Σi |Ai Ai+1|=1. We derive various tight estimates on the minimum and maximum values of the sum of pairwise distances, and respectively sum of pairwise squared distances among its vertices. In most cases such estimates on these sums in the literature were known only for convex polygons.In the second part, we turn to a problem of Braß  regarding the maximum perimeter of a simplen-gon (n odd contained in a disk of unit radius. The problem was recently solved by Audet et al. 2009, who gave an exact formula. Here we present an alternative simpler proof of this formula. We then examine what happens if the simplicity condition is dropped, and obtain an exact formula for the maximum perimeter in this case as well.

1. Applying a Weighted Maximum Likelihood Latent Trait Estimator to the Generalized Partial Credit Model

Science.gov (United States)

Penfield, Randall D.; Bergeron, Jennifer M.

2005-01-01

This article applies a weighted maximum likelihood (WML) latent trait estimator to the generalized partial credit model (GPCM). The relevant equations required to obtain the WML estimator using the Newton-Raphson algorithm are presented, and a simulation study is described that compared the properties of the WML estimator to those of the maximum…

2. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

Science.gov (United States)

Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

2008-12-01

How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

3. Floating polygon soup

OpenAIRE

Colleu , Thomas; Morin , Luce; Pateux , Stéphane; Labit , Claude

2011-01-01

International audience; This paper presents a new representation called floating polygon soup for applications like 3DTV and FTV (Free Viewpoint Television). This representation is based on 3D polygons and takes as input MVD data. It extends the previously proposed polygon soup representation which is appropriate for both compression, transmission and rendering stages. The floating polygon soup conserves these advantages while also taking into account misalignments at the view synthesis stage...

4. Area of Lattice Polygons

Science.gov (United States)

Scott, Paul

2006-01-01

A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…

5. Two-convex polygons

OpenAIRE

Aichholzer, Oswin; Aurenhammer, Franz; Hurtado Díaz, Fernando Alfredo; Ramos, Pedro A.; Urrutia, J.

2009-01-01

We introduce a notion of k-convexity and explore some properties of polygons that have this property. In particular, 2-convex polygons can be recognized in O(n log n) time, and k-convex polygons can be triangulated in O(kn) time.

6. WMAXC: a weighted maximum clique method for identifying condition-specific sub-network.

Directory of Open Access Journals (Sweden)

Bayarbaatar Amgalan

Full Text Available Sub-networks can expose complex patterns in an entire bio-molecular network by extracting interactions that depend on temporal or condition-specific contexts. When genes interact with each other during cellular processes, they may form differential co-expression patterns with other genes across different cell states. The identification of condition-specific sub-networks is of great importance in investigating how a living cell adapts to environmental changes. In this work, we propose the weighted MAXimum clique (WMAXC method to identify a condition-specific sub-network. WMAXC first proposes scoring functions that jointly measure condition-specific changes to both individual genes and gene-gene co-expressions. It then employs a weaker formula of a general maximum clique problem and relates the maximum scored clique of a weighted graph to the optimization of a quadratic objective function under sparsity constraints. We combine a continuous genetic algorithm and a projection procedure to obtain a single optimal sub-network that maximizes the objective function (scoring function over the standard simplex (sparsity constraints. We applied the WMAXC method to both simulated data and real data sets of ovarian and prostate cancer. Compared with previous methods, WMAXC selected a large fraction of cancer-related genes, which were enriched in cancer-related pathways. The results demonstrated that our method efficiently captured a subset of genes relevant under the investigated condition.

7. Ergodicity of polygonal slap maps

International Nuclear Information System (INIS)

Del Magno, Gianluigi; Pedro Gaivão, José; Lopes Dias, João; Duarte, Pedro

2014-01-01

Polygonal slap maps are piecewise affine expanding maps of the interval obtained by projecting the sides of a polygon along their normals onto the perimeter of the polygon. These maps arise in the study of polygonal billiards with non-specular reflection laws. We study the absolutely continuous invariant probabilities (acips) of the slap maps for several polygons, including regular polygons and triangles. We also present a general method for constructing polygons with slap maps with more than one ergodic acip. (paper)

8. Supervised maximum-likelihood weighting of composite protein networks for complex prediction

Directory of Open Access Journals (Sweden)

Yong Chern Han

2012-12-01

Full Text Available Abstract Background Protein complexes participate in many important cellular functions, so finding the set of existent complexes is essential for understanding the organization and regulation of processes in the cell. With the availability of large amounts of high-throughput protein-protein interaction (PPI data, many algorithms have been proposed to discover protein complexes from PPI networks. However, such approaches are hindered by the high rate of noise in high-throughput PPI data, including spurious and missing interactions. Furthermore, many transient interactions are detected between proteins that are not from the same complex, while not all proteins from the same complex may actually interact. As a result, predicted complexes often do not match true complexes well, and many true complexes go undetected. Results We address these challenges by integrating PPI data with other heterogeneous data sources to construct a composite protein network, and using a supervised maximum-likelihood approach to weight each edge based on its posterior probability of belonging to a complex. We then use six different clustering algorithms, and an aggregative clustering strategy, to discover complexes in the weighted network. We test our method on Saccharomyces cerevisiae and Homo sapiens, and show that complex discovery is improved: compared to previously proposed supervised and unsupervised weighting approaches, our method recalls more known complexes, achieves higher precision at all recall levels, and generates novel complexes of greater functional similarity. Furthermore, our maximum-likelihood approach allows learned parameters to be used to visualize and evaluate the evidence of novel predictions, aiding human judgment of their credibility. Conclusions Our approach integrates multiple data sources with supervised learning to create a weighted composite protein network, and uses six clustering algorithms with an aggregative clustering strategy to

9. Knotting in stretched polygons

International Nuclear Information System (INIS)

Rensburg, E J Janse van; Orlandini, E; Tesi, M C; Whittington, S G

2008-01-01

The knotting in a lattice polygon model of ring polymers is examined when a stretching force is applied to the polygon. By examining the incidence of cut-planes in the polygon, we prove a pattern theorem in the stretching regime for large applied forces. This theorem can be used to examine the incidence of entanglements such as knotting and writhing. In particular, we prove that for arbitrarily large positive, but finite, values of the stretching force, the probability that a stretched polygon is knotted approaches 1 as the length of the polygon increases. In the case of writhing, we prove that for stretched polygons of length n, and for every function f(n)=o(√n), the probability that the absolute value of the mean writhe is less than f(n) approaches 0 as n → ∞, for sufficiently large values of the applied stretching force

10. MAXIMUM NUMBER OF REPETITIONS, TOTAL WEIGHT LIFTED AND NEUROMUSCULAR FATIGUE IN INDIVIDUALS WITH DIFFERENT TRAINING BACKGROUNDS

Directory of Open Access Journals (Sweden)

Valeria Panissa

2013-04-01

Full Text Available The aim of this study was to evaluate the performance, as well as neuromuscular activity, in a strength task in subjects with different training backgrounds. Participants (n = 26 were divided into three groups according to their training backgrounds (aerobic, strength or mixed and submitted to three sessions: (1 determination of the maximum oxygen uptake during the incremental treadmill test to exhaustion and familiarization of the evaluation of maximum strength (1RM for the half squat; (2 1RM determination; and (3 strength exercise, four sets at 80�0of the 1RM, in which the maximum number of repetitions (MNR, the total weight lifted (TWL, the root mean square (RMS and median frequency (MF of the electromyographic (EMG activity for the second and last repetition were computed. There was an effect of group for MNR, with the aerobic group performing a higher MNR compared to the strength group (P = 0.045, and an effect on MF with a higher value in the second repetition than in the last repetition (P = 0.016. These results demonstrated that individuals with better aerobic fitness were more fatigue resistant than strength trained individuals. The absence of differences in EMG signals indicates that individuals with different training backgrounds have a similar pattern of motor unit recruitment during a resistance exercise performed until failure, and that the greater capacity to perform the MNR probably can be explained by peripheral adaptations.

11. Central Hemodynamics Measured During 5 Repetition Maximum Free Weight Resistance Exercise.

Science.gov (United States)

Howard, Jonathan S; McLester, Cherilyn N; Evans, Thomas W; McLester, John R; Calloway, Jimmy P

2018-01-01

The PhysioFlow™ is a piece of equipment that uses bioimpedance cardiography to measure central hemodynamics. The purpose of this research was to explore the novel approach of monitoring central hemodynamics during free weight resistance exercise using bioimpedance cardiography throughout a 5 repetition maximum (5RM). Thirty participants ranging from beginner to advanced lifters (16 males and 14 females) completed a 5RM for back squat, seated push press, and bicep curl while connected to the PhysioFlow™ to assess the response of heart rate (HR), stroke volume (SV), cardiac output (Q), and ejection fraction (EF). Participants were cued for form and to breathe normally throughout the lifts. The PhysioFlow™ detected an increase in HR and Q for all lifts between rest and each repetition ( p 0.05) and no changes in EF or SV were detected when all repetitions were compared to each other for all lifts ( p > 0.05). In conclusion, the PhysioFlow™ was able to detect changes in HR and Q during dynamic free weight resistance exercise. This novel approach may provide a mechanism for monitoring central hemodynamics during free weight resistance training. However, more research needs to be conducted as the exercise protocol for this investigation did not allow for a comparison to a reference method.

12. Atmospheres of polygons and knotted polygons

International Nuclear Information System (INIS)

Janse Rensburg, E J Janse; Rechnitzer, A

2008-01-01

In this paper we define two statistics a + (ω) and a - (ω), the positive and negative atmospheres of a lattice polygon ω of fixed length n. These statistics have the property that (a + (ω))/(a - (ω)) = p n+2 /p n , where p n is the number of polygons of length n, counted modulo translations. We use the pivot algorithm to sample polygons and to compute the corresponding average atmospheres. Using these data, we directly estimate the growth constants of polygons in two and three dimensions. We find that μ=2.63805±0.00012 in two dimensions and μ=4.683980±0.000042±0.000067 in three dimensions, where the error bars are 67% confidence intervals, and the second error bar in the three-dimensional estimate of μ is an estimated systematic error. We also compute atmospheres of polygons of fixed knot type K sampled by the BFACF algorithm. We discuss the implications of our results and show that different knot types have atmospheres which behave dramatically differently at small values of n

13. Effect of background music on maximum acceptable weight of manual lifting tasks.

Science.gov (United States)

Yu, Ruifeng

2014-01-01

This study used the psychophysical approach to investigate the impact of tempo and volume of background music on the maximum acceptable weight of lift (MAWL), heart rate (HR) and rating of perceived exertion (RPE) of participants engaged in lifting. Ten male college students participated in this study. They lifted a box from the floor, walked 1-2 steps as required, placed the box on a table and walked back twice per minute. The results showed that the tempo of music had a significant effect on both MAWL and HR. Fast tempo background music resulted in higher MAWL and HR values than those resulting from slow tempo music. The effects of both the tempo and volume on the RPE were insignificant. The results of this study suggest fast tempo background music may be used in manual materials handling tasks to increase performance without increasing perceived exertion because of its ergogenic effect on human psychology and physiology.

14. Homotopic Polygonal Line Simplification

DEFF Research Database (Denmark)

Deleuran, Lasse Kosetski

This thesis presents three contributions to the area of polygonal line simplification, or simply line simplification. A polygonal path, or simply a path is a list of points with line segments between the points. A path can be simplified by morphing it in order to minimize some objective function...

15. Polygons on Crater Floor

Science.gov (United States)

2003-01-01

MGS MOC Release No. MOC2-357, 11 May 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a pattern of polygons on the floor of a northern plains impact crater. These landforms are common on crater floors at high latitudes on Mars. Similar polygons occur in the arctic and antarctic regions of Earth, where they indicate the presence and freeze-thaw cycling of ground ice. Whether the polygons on Mars also indicate water ice in the ground is uncertain. The image is located in a crater at 64.8oN, 292.7oW. Sunlight illuminates the scene from the lower left.

16. Polygons near Lyot Crater

Science.gov (United States)

2003-01-01

MGS MOC Release No. MOC2-564, 4 December 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows patterned ground, arranged in the form of polygons, on the undulating plains associated with ejecta from the Lyot impact crater on the martian northern plains. This picture was acquired in October 2003 and shows that the polygon margins are ridges with large boulders--shown here as dark dots--on them. On Earth, polygon patterns like this are created in arctic and antarctic regions where there is ice in the ground. The seasonal and longer-term cycles of freezing and thawing of the ice-rich ground cause these features to form over time. Whether the same is true for Mars is unknown. The polygons are located near 54.6oN, 326.6oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

17. High Latitude Polygons

Science.gov (United States)

2005-01-01

26 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygonal patterned ground on a south high-latitude plain. The outlines of the polygons, like the craters and hills in this region, are somewhat enhanced by the presence of bright frost left over from the previous winter. On Earth, polygons at high latitudes would usually be attributed to the seasonal freezing and thawing cycles of ground ice. The origin of similar polygons on Mars is less certain, but might also be an indicator of ground ice. Location near: 75.3oS, 113.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

18. Determining Changes in Electromyography Indices when Measuring Maximum Acceptable Weight of Lift in Iranian Male Students.

Science.gov (United States)

Salehi Sahl Abadi, A; Mazloumi, A; Nasl Saraji, G; Zeraati, H; Hadian, M R; Jafari, A H

2018-03-01

In spite of the increasing degree of automation in industry, manual material handling (MMH) is still performed in many occupational settings. The aim of the current study was to determine the maximum acceptable weight of lift using psychophysical and electromyography indices. This experimental study was conducted among 15 male students recruited from Tehran University of Medical Sciences. Each participant performed 18 different lifting tasks which involved three lifting frequencies, three lifting heights and two box sizes. Each set of experiments was conducted during the 20 min work period using free-style lifting technique and subjective as well as objective assessment methodologies. SPSS version 18 software was used for descriptive and analytical analyses by Friedman, Wilcoxon and Spearman correlation techniques. The results demonstrated that muscle activity increased with increasing frequency, height of lift and box size (P<0.05). Meanwhile, MAWLs obtained in this study are lower than those in Snook table (P<0.05). In this study, the level of muscle activity in percent MVC in relation to the erector spine muscles in L3 and T9 regions as well as left and right abdominal external oblique muscles were at 38.89%, 27.78%, 11.11% and 5.55% in terms of muscle activity is more than 70% MVC, respectively. The results of Wilcoxon test revealed that for both small and large boxes under all conditions, significant differences were detected between the beginning and end of the test values for MPF of erector spine in L3 and T9 regions, and left and right abdominal external oblique muscles (P<0.05). The results of Spearman correlation test showed that there was a significant relation between the MAWL, RMS and MPF of the muscles in all test conditions (P<0.05). Based on the results of this study, it was concluded if muscle activity is more than 70% of MVC, the values of Snook tables should be revisited. Furthermore, the biomechanical perspective should receive special attention

19. On the Performance of Maximum Likelihood versus Means and Variance Adjusted Weighted Least Squares Estimation in CFA

Science.gov (United States)

Beauducel, Andre; Herzberg, Philipp Yorck

2006-01-01

This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…

20. FEMA DFIRM Panel Scheme Polygons

Data.gov (United States)

Minnesota Department of Natural Resources — This layer contains information about the Flood Insurance Rate Map (FIRM) panel areas. The spatial entities representing FIRM panels are polygons. The polygon for...

1. Near polygons and Fischer spaces

NARCIS (Netherlands)

Brouwer, A.E.; Cohen, A.M.; Hall, J.I.; Wilbrink, H.A.

1994-01-01

In this paper we exploit the relations between near polygons with lines of size 3 and Fischer spaces to classify near hexagons with quads and with lines of size three. We also construct some infinite families of near polygons.

2. Polygons and Craters

Science.gov (United States)

2005-01-01

3 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygons enhanced by subliming seasonal frost in the martian south polar region. Polygons similar to these occur in frozen ground at high latitudes on Earth, suggesting that perhaps their presence on Mars is also a sign that there is or once was ice in the shallow subsurface. The circular features are degraded meteor impact craters. Location near: 72.2oS, 310.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

3. Nanopatterning by molecular polygons.

Science.gov (United States)

Jester, Stefan-S; Sigmund, Eva; Höger, Sigurd

2011-07-27

Molecular polygons with three to six sides and binary mixtures thereof form long-range ordered patterns at the TCB/HOPG interface. This includes also the 2D crystallization of pentagons. The results provide an insight into how the symmetry of molecules is translated into periodic structures.

4. Ares Vallis Polygons

Science.gov (United States)

2002-01-01

[figure removed for brevity, see original site] This jumble of eroded ridges and mesas occurs within Ares Vallis, one of the largest catastrophic outflow channels on the planet. Floods raged through this channel, portions of which are up to 25 km wide, pouring out into the Chryse Basin to the north. Close inspection of the THEMIS image reveals polygonal shapes on the floor of the channel system. Polygonal terrain on Mars is fairly common although the variety of forms and scales of the polygons suggests multiple modes of origin. Those in Ares Vallis resemble giant desiccation polygons that form in soils on Earth when a moist layer at depth drys out. While polygons can form in icy soils (permafrost) and even lava flows, their presence in a channel thought to have been carved by flowing water is at least consistent with a mode of origin that involved liquid water.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

5. Polygon on Mars

Science.gov (United States)

2008-01-01

This image shows a small-scale polygonal pattern in the ground near NASA's Phoenix Mars Lander. This pattern is similar in appearance to polygonal structures in icy ground in the arctic regions of Earth. Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis, at 68 degrees north latitude, 234 degrees east longitude. This image was acquired by the Surface Stereo Imager shortly after landing. On the Phoenix mission calendar, landing day is known as Sol 0, the first Martian day of the mission. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

6. Polygons in Utopia

Science.gov (United States)

2005-01-01

14 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view of polygon-cracked and pitted surfaces unique to western Utopia Planitia. No other place on Mars has this appearance. Some Mars scientists have speculated that ground ice may be responsible for these landforms. Location near: 42.3oN, 275.6oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

7. Utopia Cracks and Polygons

Science.gov (United States)

2003-01-01

MGS MOC Release No. MOC2-339, 23 April 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.

8. Origin of giant Martian polygons

Science.gov (United States)

Mcgill, George E.; Hills, L. S.

1992-01-01

Extensive areas of the Martian northern plains in Utopia and Acidalia planitiae are characterized by 'polygonal terrane'. Polygonal terrane consists of material cut by complex troughs defining a pattern resembling mudcracks, columnar joints, or frost-wedge polygons on earth. However, the Martian polygons are orders of magnitude larger than these potential earth analogues, leading to severe mechanical difficulties for genetic models based on simple analogy arguments. Plate-bending and finite element models indicate that shrinkage of desiccating sediment or cooling volcanics accompanied by differential compaction over buried topography can account for the stresses responsible for polygon troughs as well as the large size of the polygons. Although trough widths and depths relate primarily to shrinkage, the large scale of the polygonl pattern relates to the spacing between topographic elevations on the surface buried beneath polygonal terrane material. Geological relationships favor a sedimentary origin for polygonal terrane material, but our model is not dependent on the specific genesis. Our analysis also suggests that the polygons must have formed at a geologically rapid rate.

9. Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women.

Science.gov (United States)

Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N

2014-06-01

Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

10. Polygons in Martian Frost

Science.gov (United States)

2003-01-01

MGS MOC Release No. MOC2-428, 21 July 2003This June 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polygonal pattern developed in seasonal carbon dioxide frost in the martian southern hemisphere. The frost accumulated during the recent southern winter; it is now spring, and the carbon dioxide frost is subliming away. This image is located near 80.4oS, 200.2oW; it is illuminated by sunlight from the upper left, and covers an area 3 km (1.9 mi) across.

11. Control of grinding polygonal surfaces

Directory of Open Access Journals (Sweden)

Юрій Володимирович Петраков

2017-12-01

Full Text Available Grinding of non-round surfaces, in particular polygonal surfaces of dies, is characterized by substantial non stationary. At different sections of the profile, the change in the main characteristic (Material Removal Rate – MRR process reaches tens of times. To stabilize the grinding process, it is recommended to control the spindle speed of the workpiece CNC grinding machine. Created software that allows to design the control program on the basis of mathematical model of the system. The determination of MRR is realized automatically in the simulation of the grinding process which uses the algorithm developed for solving problems in geometric interaction of the workpiece and the wheel. In forming the control program is possible takes into account the limitations on the maximum circumferential force of cutting, and the maximum allowable acceleration of the machine spindle. Practice has shown that full stabilization is not obtained, even though the performance is increased more than 2 times, while ensuring the quality of the surface. The developed block diagram of the grinding process can serve as a basis for further improvement in the solution of dynamic problems.

12. Casimir effect in hyperbolic polygons

International Nuclear Information System (INIS)

Ahmedov, H

2007-01-01

Using the point splitting regularization method and the trace formula for the spectra of quantum-mechanical systems in hyperbolic polygons which are the fundamental domains of discrete isometry groups acting in the two-dimensional hyperboloid we calculate the Casimir energy for massless scalar fields in hyperbolic polygons. The dependence of the vacuum energy on the number of vertices is established

13. The effects of combined elastic- and free-weight tension vs. free-weight tension on one-repetition maximum strength in the bench press.

Science.gov (United States)

Bellar, David M; Muller, Matthew D; Barkley, Jacob E; Kim, Chul-Ho; Ida, Keisuke; Ryan, Edward J; Bliss, Mathew V; Glickman, Ellen L

2011-02-01

The present study investigated the effects of training combining elastic tension, free weights, and the bench press. Eleven college-aged men (untrained) in the bench press participated in the 13-week study. The participants were first given instructions and then practiced the bench press, followed by a one-repetition maximum (1RM) test of baseline strength. Subjects were then trained in the bench press for 3 weeks to allow for the beginning of neural adaptation. After another 1RM test, participants were assigned to 1 of 2 conditions for the next 3 weeks of training: 85% Free-Weight Tension, 15% Elastic Tension (BAND), or 100% Free-Weight Tension (STAND). After 3 weeks of training and a third 1RM max test, participants switched treatments, under which they completed the final 3 weeks of training and the fourth 1RM test. Analysis via analysis of covariance revealed a significant (p ≤ 0.05) main effect for time and interaction effect for Treatment (BAND vs. STAND). Subsequent analysis via paired-samples t-test revealed the BAND condition was significantly better (p = 0.05) at producing raw gains in 1RM strength. (BAND 9.95 ± 3.7 kg vs. STAND 7.56 ± 2.8 kg). These results suggest that the addition of elastic tension to the bench press may be an effective method of increasing strength.

14. Polygons in Seasonal Frost

Science.gov (United States)

2004-01-01

8 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime scene in the south polar region of the red planet. A patch of bright frost--possibly water ice--is seen in the lower third of the image. Polygon patterns that have developed in the ice as it sublimes away can be seen; these are not evident in the defrosted surfaces, so they are thought to have formed in the frost. This image is located near 82.6oS, 352.5oW. Sunlight illuminates this scene from the upper left; the image covers an area 3 km (1.9 mi) wide.

15. Predicting a 10 repetition maximum for the free weight parallel squat using the 45 degrees angled leg press.

Science.gov (United States)

2004-08-01

The purpose of this research was to devise prediction equations whereby a 10 repetition maximum (10RM) for the free weight parallel squat could be predicted using the following predictor variables: 10RM for the 45 degrees angled leg press, body mass, and limb length. Sixty men were tested over a 3-week period, with 1 testing session each week. During each testing session, subjects performed a 10RM for the free weight parallel squat and 45 degrees angled leg press. Stepwise multiple regression analysis showed leg press mass lifted to be a significant predictor of squat mass lifted for both the advanced and the novice groups (p squat mass lifted for the novice group and 55% of the variance in squat mass lifted for the advanced group. Limb length and body mass were not significant predictors of squat mass lifted for either group. The following prediction equations were devised: (a) novice group squat mass = leg press mass (0.210) + 36.244 kg, (b) advanced group squat mass = leg press mass (0.310) + 19.438 kg, and (c) subject pool squat mass = leg press mass (0.354) + 2.235 kg. These prediction equations may save time and reduce the risk of injury when switching from the leg press to the squat exercise.

16. MR tractography; Visualization of structure of nerve fiber system from diffusion weighted images with maximum intensity projection method

Energy Technology Data Exchange (ETDEWEB)

Kinosada, Yasutomi; Okuda, Yasuyuki (Mie Univ., Tsu (Japan). School of Medicine); Ono, Mototsugu (and others)

1993-02-01

We developed a new noninvasive technique to visualize the anatomical structure of the nerve fiber system in vivo, and named this technique magnetic resonance (MR) tractography and the acquired image an MR tractogram. MR tractography has two steps. One is to obtain diffusion-weighted images sensitized along axes appropriate for depicting the intended nerve fibers with anisotropic water diffusion MR imaging. The other is to extract the anatomical structure of the nerve fiber system from a series of diffusion-weighted images by the maximum intensity projection method. To examine the clinical usefulness of the proposed technique, many contiguous, thin (3 mm) coronal two-dimensional sections of the brain were acquired sequentially in normal volunteers and selected patients with paralyses, on a 1.5 Tesla MR system (Signa, GE) with an ECG-gated Stejskal-Tanner pulse sequence. The structure of the nerve fiber system of normal volunteers was almost the same as the anatomy. The tractograms of patients with paralyses clearly showed the degeneration of nerve fibers and were correlated with clinical symptoms. MR tractography showed great promise for the study of neuroanatomy and neuroradiology. (author).

17. Lake Basin Fetch and Maximum Length/Width

Data.gov (United States)

Minnesota Department of Natural Resources — Linear features representing the Fetch, Maximum Length and Maximum Width of a lake basin. Fetch, maximum length and average width are calcuated from the lake polygon...

18. System and method for the adaptive mapping of matrix data to sets of polygons

Science.gov (United States)

Burdon, David (Inventor)

2003-01-01

A system and method for converting bitmapped data, for example, weather data or thermal imaging data, to polygons is disclosed. The conversion of the data into polygons creates smaller data files. The invention is adaptive in that it allows for a variable degree of fidelity of the polygons. Matrix data is obtained. A color value is obtained. The color value is a variable used in the creation of the polygons. A list of cells to check is determined based on the color value. The list of cells to check is examined in order to determine a boundary list. The boundary list is then examined to determine vertices. The determination of the vertices is based on a prescribed maximum distance. When drawn, the ordered list of vertices create polygons which depict the cell data. The data files which include the vertices for the polygons are much smaller than the corresponding cell data files. The fidelity of the polygon representation can be adjusted by repeating the logic with varying fidelity values to achieve a given maximum file size or a maximum number of vertices per polygon.

19. Alabama ESI: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and freshwater fish species in Alabama. Vector polygons in this data set represent...

20. Maryland ESI: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in Maryland. Vector polygons in this data...

1. Hawaii ESI: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for reef, marine, estuarine, and native stream fish species in coastal Hawaii. Vector polygons in this data...

2. Hawaii ESI: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of the U.S. Geological Survey 1:24,000 topographic maps and other map and digital data boundaries...

3. Alabama ESI: REPTILES (Reptile Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for threatened/endangered and rare reptiles in Alabama. Vector polygons in this data set represent the rare...

4. Alabama ESI: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species in Alabama. Vector polygons in this data set represent...

5. Virginia ESI: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and rare invertebrate species in Virginia. Vector polygons in this data set...

6. Control Point Generated PLS - polygons

Data.gov (United States)

Minnesota Department of Natural Resources — The Control Point Generated PLS layer contains line and polygon features to the 1/4 of 1/4 PLS section (approximately 40 acres) and government lot level. The layer...

7. Virginia ESI: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all hardcopy cartographic products produced as part of the Environmental Sensitivity Index...

8. Louisiana ESI: BIRDS (Bird Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for waterfowl species and shorebirds in coastal Louisiana. Vector polygons in this data set represent...

9. Model for polygonal hydraulic jumps

DEFF Research Database (Denmark)

Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas

2012-01-01

We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy...... nonhydrostatic pressure contributions from surface tension in light of recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal...... states. A truncated but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a polygon with N corners...

10. Virginia ESI: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and brackishwater fish species in Virginia. Vector polygons in this data...

11. Louisiana ESI: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for freshwater (inland) fish species in coastal Louisiana. Vector polygons represent water-bodies and other...

12. Soils - Volusia County Soils (Polygons)

Data.gov (United States)

NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

13. Inscribed polygons and Heron polynomials

International Nuclear Information System (INIS)

Varfolomeev, V V

2003-01-01

Heron's well-known formula expressing the area of a triangle in terms of the lengths of its sides is generalized in the following sense to polygons inscribed in a circle: it is proved that the area is an algebraic function of the lengths of the edges of the polygon. Similar results are proved for the diagonals and the radius of the circumscribed circle. The resulting algebraic equations are studied and elementary geometric applications of the algebraic results obtained are presented

14. Zernike-like systems in polygons and polygonal facets.

Science.gov (United States)

Ferreira, Chelo; López, José L; Navarro, Rafael; Sinusía, Ester Pérez

2015-07-20

Zernike polynomials are commonly used to represent the wavefront phase on circular optical apertures, since they form a complete and orthonormal basis on the unit disk. In [Opt. Lett.32, 74 (2007)10.1364/OL.32.000074OPLEDP0146-9592] we introduced a new Zernike basis for elliptic and annular optical apertures based on an appropriate diffeomorphism between the unit disk and the ellipse and the annulus. Here, we present a generalization of this Zernike basis for a variety of important optical apertures, paying special attention to polygons and the polygonal facets present in segmented mirror telescopes. On the contrary to ad hoc solutions, most of them based on the Gram-Smith orthonormalization method, here we consider a piecewise diffeomorphism that transforms the unit disk into the polygon under consideration. We use this mapping to define a Zernike-like orthonormal system over the polygon. We also consider ensembles of polygonal facets that are essential in the design of segmented mirror telescopes. This generalization, based on in-plane warping of the basis functions, provides a unique solution, and what is more important, it guarantees a reasonable level of invariance of the mathematical properties and the physical meaning of the initial basis functions. Both the general form and the explicit expressions for a typical example of telescope optical aperture are provided.

15. Tessellating the Sphere with Regular Polygons

Science.gov (United States)

Soto-Johnson, Hortensia; Bechthold, Dawn

2004-01-01

Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.

16. Fat polygonal partitions with applications to visualization and embeddings

Directory of Open Access Journals (Sweden)

Mark de Berg

2013-12-01

Full Text Available Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high.We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes.We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in ℝd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space:  we give a polylog(Δ-approximation algorithm for embedding n-point ultrametrics into ℝd with minimum distortion, where Δ denotes the spread of the metric. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

17. Tensor Product of Polygonal Cell Complexes

OpenAIRE

Chien, Yu-Yen

2017-01-01

We introduce the tensor product of polygonal cell complexes, which interacts nicely with the tensor product of link graphs of complexes. We also develop the unique factorization property of polygonal cell complexes with respect to the tensor product, and study the symmetries of tensor products of polygonal cell complexes.

18. Approximation algorithms for guarding holey polygons ...

African Journals Online (AJOL)

Guarding edges of polygons is a version of art gallery problem.The goal is finding the minimum number of guards to cover the edges of a polygon. This problem is NP-hard, and to our knowledge there are approximation algorithms just for simple polygons. In this paper we present two approximation algorithms for guarding ...

19. PET image reconstruction with rotationally symmetric polygonal pixel grid based highly compressible system matrix

International Nuclear Information System (INIS)

Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu

2013-01-01

To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)

20. Maximum Acceptable Weight of Lift reflects peak lumbosacral extension moments in a Functional Capacity Evaluation test using free style, stoop, and squat lifting

NARCIS (Netherlands)

Kuijer, P.P.F.M.; van Oostrom, S.H.; Duijzer, K.; van Dieen, J.H.

2012-01-01

It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques - free style, stoop and squat lifting

1. Maximum acceptable weight of lift reflects peak lumbosacral extension moments in a functional capacity evaluation test using free style, stoop and squat lifting

NARCIS (Netherlands)

Kuijer, P. P. F. M.; van Oostrom, S. H.; Duijzer, K.; van Dieën, J. H.

2012-01-01

It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques - free style, stoop and squat lifting

2. Triangulating and guarding realistic polygons

NARCIS (Netherlands)

Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.

2008-01-01

We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards in the interior of the object. In this abstract, we describe a simple algorithm for triangulating k-guardable polygons. Our algorithm, which is easily implementable, takes

3. Triangulating and guarding realistic polygons

NARCIS (Netherlands)

Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.

2014-01-01

We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards. We show that k-guardable polygons generalize two previously identified classes of realistic input. Following this, we give two simple algorithms for triangulating

4. Rotating Polygons on a Fluid Surface

DEFF Research Database (Denmark)

Bohr, Tomas; Jansson, Thomas; Haspang, Martin

spontaneously and the surface can take the shape of a rigidly rotating polygon. With water we have observed polygons with up to 6 corners. The rotation speed of the polygons does not coincide with that of the plate, but it is often mode-locked, such that the polygon rotates by one corner for each complete...... and R. Miraghaie, ”Symmetry breaking in free-surface cylinder flows”, J. Fluid Mech., 502, 99 (2004)). The polygons occur at much larger Reynolds numbers, for water around 500.000. Correspondingly, the dependence on viscosity is rather small....

5. A Polygon Model for Wireless Sensor Network Deployment with Directional Sensing Areas

Science.gov (United States)

Wu, Chun-Hsien; Chung, Yeh-Ching

2009-01-01

The modeling of the sensing area of a sensor node is essential for the deployment algorithm of wireless sensor networks (WSNs). In this paper, a polygon model is proposed for the sensor node with directional sensing area. In addition, a WSN deployment algorithm is presented with topology control and scoring mechanisms to maintain network connectivity and improve sensing coverage rate. To evaluate the proposed polygon model and WSN deployment algorithm, a simulation is conducted. The simulation results show that the proposed polygon model outperforms the existed disk model and circular sector model in terms of the maximum sensing coverage rate. PMID:22303159

6. Generating realistic roofs over a rectilinear polygon

KAUST Repository

Ahn, Heekap

2011-01-01

Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs, and show a connection with the straight skeleton of P. We show that the maximum possible number of distinct realistic roofs over P is ( ⌊(n-4)/4⌋ (n-4)/2) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n 4) preprocessing time. We also present an O(n 5)-time algorithm for computing a realistic roof with minimum height or volume. © 2011 Springer-Verlag.

7. Polygons, Stars, and Clusters; an Investigation of Polygon Displays

Science.gov (United States)

1988-01-01

variables were chosen, nine in each case , to give reasonably complex polygons without being too complex. I have seen no reported studies of the relation...Pont. Catalina C Datsun 210, Toyota Corolla, Dodge Colt, Honda Civic, Mazda GLC, Subaru, Ford Fiesta, Plym. Champ Figure 6. Clusters on the basis of...Merc. Marquis, Pont. Catalina, Pont. Grand Prix C Datsun 210, Toyota Corolla, Dodge Colt, Honda Civic, Mazda GLC, Subaru, Ford Fiesta, Plym. Champ

8. Maximum Acceptable Weight of Lift reflects peak lumbosacral extension moments in a Functional Capacity Evaluation test using free style, stoop, and squat lifting

OpenAIRE

Kuijer, P.P.F.M.; van Oostrom, S.H.; Duijzer, K.; van Dieen, J.H.

2012-01-01

It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques - free style, stoop and squat lifting from knee to waist level - using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic para...

9. The maximum temperature of a thermodynamic cycle effect on weight-dimensional characteristics of the NPP energy blocks with air cooling

International Nuclear Information System (INIS)

Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

1982-01-01

The cycle maximum temperature effect on the properties of individual apparatuses and total NPP energy blocks characteristics has been investigated. Air, nitrogen, helium and chemically reacting system N 2 O 4 +2NO+O 2 have been considered as coolants. The conducted investigations have shown that maximum temperature of thermodynamical cycle affects considerably both the weight-dimensional characteristics of individual elements of NPP and total characteristics of NPP energy block. Energy blocks of NPP with air cooling wherein dissociating nitrogen tetroxide is used as working body, have better indexes on the majority of characteristics in comparison with blocks with air, nitrogen and helium cooling. If technical restrictions are to be taken into account (thermal resistance of metals, coolant decomposition under high temperatures, etc.) then dissociating nitrogen tetroxide should be recommended as working body and maximum cycle temperature in the range from 500 up to 600 deg C

10. Random walks and polygons in tight confinement

International Nuclear Information System (INIS)

Diao, Y; Ernst, C; Ziegler, U

2014-01-01

We discuss the effect of confinement on the topology and geometry of tightly confined random walks and polygons. Here the walks and polygons are confined in a sphere of radius R ≥ 1/2 and the polygons are equilateral with n edges of unit length. We illustrate numerically that for a fixed length of random polygons the knotting probability increases to one as the radius decreases to 1/2. We also demonstrate that for random polygons (walks) the curvature increases to πn (π(n – 1)) as the radius approaches 1/2 and that the torsion decreases to ≈ πn/3 (≈ π(n – 1)/3). In addition we show the effect of length and confinement on the average crossing number of a random polygon

11. Small-scale polygons on Mars

Science.gov (United States)

Lucchitta, B. K.

1984-01-01

Polygonal-fracture patterns on the martian surface were discovered on Viking Orbiter images. The polygons are 2-20 km in diameter, much larger than those of known patterned ground on Earth. New observations show, however, that polygons exist on Mars that have diameters similar to those of ice-wedge polygons on Earth (generally a few meters to more than 100 m). Various explanations for the origin of these crustal features are examined; seasonal desiccation and thermal-contraction cracking in ice-rich ground. It is difficult to ascertain whether the polygons are forming today or are relics from the past. The crispness of some crack suggests a recent origin. On the other hand the absence of upturned edges (indicating actively forming ice wedges), the locally disintegrating ground, and a few possible superposed rayed craters indicate that the polygons are not forming at the present.

12. Effects of squat lift training and free weight muscle training on maximum lifting load and isolinetic peak torque of young adults without impairments.

Science.gov (United States)

Yeung, S S; Ng, G Y

2000-06-01

Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.

13. Analysis and research on Maximum Power Point Tracking of Photovoltaic Array with Fuzzy Logic Control and Three-point Weight Comparison Method

Institute of Scientific and Technical Information of China (English)

LIN; Kuang-Jang; LIN; Chii-Ruey

2010-01-01

The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by the change of environment and load.Due to the constant changes in these conditions,it has become very difficult to locate the optimal operating point by following a mathematical model.Therefore,this study will focus mostly on the application of Fuzzy Logic Control theory and Three-point Weight Comparison Method in effort to locate the optimal operating point of solar panel and achieve maximum efficiency in power generation. The Three-point Weight Comparison Method is the comparison between the characteristic curves of the voltage of photovoltaic array and output power;it is a rather simple way to track the maximum power.The Fuzzy Logic Control,on the other hand,can be used to solve problems that cannot be effectively dealt with by calculation rules,such as concepts,contemplation, deductive reasoning,and identification.Therefore,this paper uses these two kinds of methods to make simulation successively. The simulation results show that,the Three-point Comparison Method is more effective under the environment with more frequent change of solar radiation;however,the Fuzzy Logic Control has better tacking efficiency under the environment with violent change of solar radiation.

14. Selection of industrial robots using the Polygons area method

Directory of Open Access Journals (Sweden)

Mortaza Honarmande Azimi

2014-08-01

Full Text Available Selection of robots from the several proposed alternatives is a very important and tedious task. Decision makers are not limited to one method and several methods have been proposed for solving this problem. This study presents Polygons Area Method (PAM as a multi attribute decision making method for robot selection problem. In this method, the maximum polygons area obtained from the attributes of an alternative robot on the radar chart is introduced as a decision-making criterion. The results of this method are compared with other typical multiple attribute decision-making methods (SAW, WPM, TOPSIS, and VIKOR by giving two examples. To find similarity in ranking given by different methods, Spearman’s rank correlation coefficients are obtained for different pairs of MADM methods. It was observed that the introduced method is in good agreement with other well-known MADM methods in the robot selection problem.

15. Realistic roofs over a rectilinear polygon

KAUST Repository

Ahn, Heekap

2013-11-01

Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces isolated from the boundary of P or even local minima, which are undesirable for several practical reasons. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs and show that the straight skeleton induces a realistic roof with maximum height and volume. We also show that the maximum possible number of distinct realistic roofs over P is ((n-4)(n-4)/4 /2⌋) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n4) preprocessing time. We also present an O(n5)-time algorithm for computing a realistic roof with minimum height or volume. © 2013 Elsevier B.V.

16. Parcels and Land Ownership - Volusia County Parcels (Polygons)

Data.gov (United States)

NSGIC Local Govt | GIS Inventory — Parcel Ownership Polygon Layer: Polygons showing property ownership created from the "master" subdivision base map for Volusia County. Multiple lots and parcels...

17. Entanglement complexity of semiflexible lattice polygons

International Nuclear Information System (INIS)

Orlandini, E; Tesi, M C; Whittington, S G

2005-01-01

We use Monte Carlo methods to study knotting in polygons on the simple cubic lattice with a stiffness fugacity. We investigate how the knot probability depends on stiffness and how the relative frequency of trefoils and figure eight knots changes as the stiffness changes. In addition, we examine the effect of stiffness on the writhe of the polygons. (letter to the editor)

18. Computing nonsimple polygons of minimum perimeter

NARCIS (Netherlands)

Fekete, S.P.; Haas, A.; Hemmer, M.; Hoffmann, M.; Kostitsyna, I.; Krupke, D.; Maurer, F.; Mitchell, J.S.B.; Schmidt, A.; Schmidt, C.; Troegel, J.

2018-01-01

We consider the Minimum Perimeter Polygon Problem (MP3): for a given set V of points in the plane, find a polygon P with holes that has vertex set V , such that the total boundary length is smallest possible. The MP3 can be considered a natural geometric generalization of the Traveling Salesman

19. Kink-free deformations of polygons

NARCIS (Netherlands)

Vegter, Gert

1989-01-01

We consider a discrete version of the Whitney-Graustein theorem concerning regular equivalence of closed curves. Two regular polygons P and P’, i.e. polygons without overlapping adjacent edges, are called regularly equivalent if there is a continuous one-parameter family Ps, 0 ≤ s ≤ 1, of regular

20. Accelerating Generalized Polygon Beams and Their Propagation

International Nuclear Information System (INIS)

Zhang Yun-Tian; Zhang Zhi-Gang; Cheng Teng; Zhang Qing-Chuan; Wu Xiao-Ping

2015-01-01

Accelerating beams with intensity cusps and exotic topological properties are drawing increasing attention as they have extensive uses in many intriguing fields. We investigate the structural features of accelerating polygon beams, show their generalized mathematical form theoretically, and discuss the even-numbered polygon beams. Furthermore, we also carry out the experiment and observe the intensity evolution during their propagation

1. Perceptually stable regions for arbitrary polygons.

Science.gov (United States)

Rocha, J

2003-01-01

Zou and Yan have recently developed a skeletonization algorithm of digital shapes based on a regularity/singularity analysis; they use the polygon whose vertices are the boundary pixels of the image to compute a constrained Delaunay triangulation (CDT) in order to find local symmetries and stable regions. Their method has produced good results but it is slow since its complexity depends on the number of contour pixels. This paper presents an extension of their technique to handle arbitrary polygons, not only polygons of short edges. Consequently, not only can we achieve results as good as theirs for digital images, but we can also compute skeletons of polygons of any number of edges. Since we can handle polygonal approximations of figures, the skeletons are more resilient to noise and faster to process.

2. Does a point lie inside a polygon

International Nuclear Information System (INIS)

Milgram, M.S.

1988-01-01

A superficially simple problem in computational geometry is that of determining whether a query point P lies in the interior of a polygon if it lies in the polygon's plane. Answering this question is often required when tracking particles in a Monte Carlo program; it is asked frequently and an efficient algorithm is crucial. Littlefield has recently rediscovered Shimrat's algorithm, while in separate works, Wooff, Preparata and Shamos and Mehlhorn, as well as Yamaguchi, give other algorithms. A practical algorithm answering this question when the polygon's plane is skewed in space is not immediately evident from most of these methods. Additionally, all but one fails when two sides extend to infinity (open polygons). In this paper the author review the above methods and present a new, efficient algorithm, valid for all convex polygons, open or closed, and topologically connected in n-dimensional space (n ≥ 2)

3. Stretched polygons in a lattice tube

Energy Technology Data Exchange (ETDEWEB)

Atapour, M [Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3 (Canada); Soteros, C E [Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N 5E6 (Canada); Whittington, S G [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada)], E-mail: atapour@mathstat.yorku.ca, E-mail: soteros@math.usask.ca, E-mail: swhittin@chem.utoronto.ca

2009-08-14

We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n {yields} {infinity}. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n {yields} {infinity}. Thus as n {yields} {infinity} when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)

4. Stretched polygons in a lattice tube

International Nuclear Information System (INIS)

Atapour, M; Soteros, C E; Whittington, S G

2009-01-01

We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n → ∞. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n → ∞. Thus as n → ∞ when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)

5. Fast incorporation of optical flow into active polygons.

Science.gov (United States)

Unal, Gozde; Krim, Hamid; Yezzi, Anthony

2005-06-01

In this paper, we first reconsider, in a different light, the addition of a prediction step to active contour-based visual tracking using an optical flow and clarify the local computation of the latter along the boundaries of continuous active contours with appropriate regularizers. We subsequently detail our contribution of computing an optical flow-based prediction step directly from the parameters of an active polygon, and of exploiting it in object tracking. This is in contrast to an explicitly separate computation of the optical flow and its ad hoc application. It also provides an inherent regularization effect resulting from integrating measurements along polygon edges. As a result, we completely avoid the need of adding ad hoc regularizing terms to the optical flow computations, and the inevitably arbitrary associated weighting parameters. This direct integration of optical flow into the active polygon framework distinguishes this technique from most previous contour-based approaches, where regularization terms are theoretically, as well as practically, essential. The greater robustness and speed due to a reduced number of parameters of this technique are additional and appealing features.

6. Probing convex polygons with X-rays

International Nuclear Information System (INIS)

Edelsbrunner, H.; Skiena, S.S.

1988-01-01

An X-ray probe through a polygon measures the length of intersection between a line and the polygon. This paper considers the properties of various classes of X-ray probes, and shows how they interact to give finite strategies for completely describing convex n-gons. It is shown that (3n/2)+6 probes are sufficient to verify a specified n-gon, while for determining convex polygons (3n-1)/2 X-ray probes are necessary and 5n+O(1) sufficient, with 3n+O(1) sufficient given that a lower bound on the size of the smallest edge of P is known

7. Polygons on a rotating fluid surface

DEFF Research Database (Denmark)

Jansson, Thomas R.N.; Haspang, Martin P.; Jensen, Kåre H.

2006-01-01

We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon...... rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating...

8. BLM National Surface Management Agency: Area Polygons, Withdrawal Area Polygons, and Special Public Purpose Withdrawal Area Polygons

Data.gov (United States)

Federal Geographic Data Committee — The SMA implementation is comprised of one feature dataset, with several polygon feature classes, rather than a single feature class. SurfaceManagementAgency: The...

9. Maximum acceptable weight of lift reflects peak lumbosacral extension moments in a functional capacity evaluation test using free style, stoop and squat lifting.

Science.gov (United States)

Kuijer, P P F M; van Oostrom, S H; Duijzer, K; van Dieën, J H

2012-01-01

It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques--free style, stoop and squat lifting from knee to waist level--using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic parameters increased with the load mass lifted, and whether the magnitudes of the kinetic parameters were consistent across techniques when lifting MAWL. MAWL was significantly different between techniques (p = 0.03). The peak lumbosacral extension moment met both criteria: it had the highest association with the load masses lifted (r > 0.9) and was most consistent between the three techniques when lifting MAWL (ICC = 0.87). In conclusion, MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. Tests of maximum acceptable weight of lift (MAWL) from knee to waist height are used to assess work capacity of individuals with low-back disorders. This article shows that the MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. This suggests that standardisation of lifting technique used in tests of the MAWL would be indicated if the aim is to assess the capacity of the low back.

10. Columbia River ESI: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for clams, oysters, crabs, and other invertebrate species in Columbia River. Vector polygons in this data...

11. Louisiana ESI: REPTILES (Reptile and Amphibian Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for reptiles and amphibians in coastal Louisiana. Vector polygons represent reptile and amphibian habitats,...

12. Western Alaska ESI: BIOINDEX (Biological Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of the 1:250,000 map boundaries used in the creation of the Environmental Sensitivity Index (ESI)...

13. Comic image understanding based on polygon detection

Science.gov (United States)

Li, Luyuan; Wang, Yongtao; Tang, Zhi; Liu, Dong

2013-01-01

Comic image understanding aims to automatically decompose scanned comic page images into storyboards and then identify the reading order of them, which is the key technique to produce digital comic documents that are suitable for reading on mobile devices. In this paper, we propose a novel comic image understanding method based on polygon detection. First, we segment a comic page images into storyboards by finding the polygonal enclosing box of each storyboard. Then, each storyboard can be represented by a polygon, and the reading order of them is determined by analyzing the relative geometric relationship between each pair of polygons. The proposed method is tested on 2000 comic images from ten printed comic series, and the experimental results demonstrate that it works well on different types of comic images.

14. Western Alaska ESI: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all the hardcopy cartographic products produced as part of the Environmental Sensitivity Index...

15. Columbia River ESI: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in Columbia River. Vector polygons in this...

16. Infinite genus surfaces and irrational polygonal billiards

OpenAIRE

Valdez, Ferrán

2009-01-01

We prove that the natural invariant surface associated with the billiard game on an irrational polygonal table is homeomorphic to the Loch Ness monster, that is, the only orientable infinite genus topological real surface with exactly one end.

17. Western Alaska ESI: LAKES (Lake Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing lakes and land masses used in the creation of the Environmental Sensitivity Index (ESI) for Western Alaska. The...

18. Western Alaska ESI: HYDRO (Land Mass Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing coastal hydrography that defines the primary land masses used in the creation of the Environmental Sensitivity...

19. Southeast Alaska ESI: BIRDS (Bird Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for waterfowl in Southeast Alaska. Vector polygons in this data set represent locations of foraging and rafting...

20. Southeast Alaska ESI: MGT (Management Area Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for National Parks, Wildlife Refuges, and areas designated as Critical Habitat in Southeast Alaska. Vector polygons in...

1. Western Alaska ESI: MGT (Management Area Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for Designated Critical Habitats, Wildlife Refuges, Wild and Scenic Rivers, and State Parks. Vector polygons in this data...

2. From Newton's bucket to rotating polygons

DEFF Research Database (Denmark)

Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard

2014-01-01

We present an experimental study of 'polygons' forming on the free surface of a swirling water flow in a partially filled cylindrical container. In our set-up, we rotate the bottom plate and the cylinder wall with separate motors. We thereby vary rotation rate and shear strength independently...... and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...... the phase diagram spanned by the two rotational frequencies at a given water filling height and find polygons in a regime, where the two frequencies are sufficiently different and, predominantly, when they have opposite signs. In addition to the extension of the family of polygons found with the stationary...

3. Hawaii ESI: REPTILES (Reptile and Amphibian Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for threatened/endangered sea turtles in coastal Hawaii. Vector polygons in this data set represent sea...

4. Virginia ESI: MGT (Management Area Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains boundaries for management areas, national parks, state and local parks, and wildlife refuges in Virginia. Vector polygons in this data set...

5. Western Alaska ESI: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and anadromous fish species in Western Alaska. Vector polygons in this data set...

6. Columbia River ESI: MGT (Management Area Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive human-use data for Wildlife Refuges, National Forests, and State Parks for the Columbia River area. Vector polygons in this data set...

7. Louisiana ESI: MGT (Management Area Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains boundaries for managed lands in coastal Louisiana. Vector polygons in this data set represent the management areas. Location-specific type and...

8. Louisiana ESI: PARISH (Parish Management Area Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains boundaries for parishes in coastal Louisiana. Vector polygons in this data set represent parish management areas. Location-specific type and...

9. Virginia ESI: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Virginia. The...

10. Southeast Alaska ESI: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for estuarine, benthic, and pelagic fish in Southeast Alaska. Vector polygons in this data set represent locations of...

11. Anisotropic rectangular metric for polygonal surface remeshing

KAUST Repository

Pellenard, Bertrand

2013-06-18

We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

12. Anisotropic rectangular metric for polygonal surface remeshing

KAUST Repository

Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre

2013-01-01

We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

13. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men.

Science.gov (United States)

Shimano, Tomoko; Kraemer, William J; Spiering, Barry A; Volek, Jeff S; Hatfield, Disa L; Silvestre, Ricardo; Vingren, Jakob L; Fragala, Maren S; Maresh, Carl M; Fleck, Steven J; Newton, Robert U; Spreuwenberg, Luuk P B; Häkkinen, Keijo

2006-11-01

Resistance exercise intensity is commonly prescribed as a percent of 1 repetition maximum (1RM). However, the relationship between percent 1RM and the number of repetitions allowed remains poorly studied, especially using free weight exercises. The purpose of this study was to determine the maximal number of repetitions that trained (T) and untrained (UT) men can perform during free weight exercises at various percentages of 1RM. Eight T and 8 UT men were tested for 1RM strength. Then, subjects performed 1 set to failure at 60, 80, and 90% of 1RM in the back squat, bench press, and arm curl in a randomized, balanced design. There was a significant (p squat than the bench press or arm curl at 60% 1RM for T and UT. At 80 and 90% 1RM, there were significant differences between the back squat and other exercises; however, differences were much less pronounced. No differences in number of repetitions performed at a given exercise intensity were noted between T and UT (except during bench press at 90% 1RM). In conclusion, the number of repetitions performed at a given percent of 1RM is influenced by the amount of muscle mass used during the exercise, as more repetitions can be performed during the back squat than either the bench press or arm curl. Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity.

14. Generating equilateral random polygons in confinement II

International Nuclear Information System (INIS)

Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

2012-01-01

In this paper we continue an earlier study (Diao et al 2011 J. Phys. A: Math. Theor. 44 405202) on the generation algorithms of random equilateral polygons confined in a sphere. Here, the equilateral random polygons are rooted at the center of the confining sphere and the confining sphere behaves like an absorbing boundary. One way to generate such a random polygon is the accept/reject method in which an unconditioned equilateral random polygon rooted at origin is generated. The polygon is accepted if it is within the confining sphere, otherwise it is rejected and the process is repeated. The algorithm proposed in this paper offers an alternative to the accept/reject method, yielding a faster generation process when the confining sphere is small. In order to use this algorithm effectively, a large, reusable data set needs to be pre-computed only once. We derive the theoretical distribution of the given random polygon model and demonstrate, with strong numerical evidence, that our implementation of the algorithm follows this distribution. A run time analysis and a numerical error estimate are given at the end of the paper. (paper)

15. Disease Human - MDC_LowBirthWeight

Data.gov (United States)

NSGIC Local Govt | GIS Inventory — Polygon feature class based on Zip Code boundaries showing the percentage of babies born in Miami-Dade County in 2006 with low birth weights. Low birth weight is...

16. High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations

Science.gov (United States)

Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek

2018-04-01

This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.

17. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

International Nuclear Information System (INIS)

Speetjens, M F M; Meleshko, V V; Van Heijst, G J F

2014-01-01

The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N⩽7. Confinement in a circular domain tightens the stability conditions to N⩽6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. (ss 1)

18. Generating equilateral random polygons in confinement

International Nuclear Information System (INIS)

Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

2011-01-01

One challenging problem in biology is to understand the mechanism of DNA packing in a confined volume such as a cell. It is known that confined circular DNA is often knotted and hence the topology of the extracted (and relaxed) circular DNA can be used as a probe of the DNA packing mechanism. However, in order to properly estimate the topological properties of the confined circular DNA structures using mathematical models, it is necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths that are confined in a volume such as a sphere of certain fixed radius. Finding efficient algorithms that properly sample the space of such confined equilateral random polygons is a difficult problem. In this paper, we propose a method that generates confined equilateral random polygons based on their probability distribution. This method requires the creation of a large database initially. However, once the database has been created, a confined equilateral random polygon of length n can be generated in linear time in terms of n. The errors introduced by the method can be controlled and reduced by the refinement of the database. Furthermore, our numerical simulations indicate that these errors are unbiased and tend to cancel each other in a long polygon. (paper)

19. Minimal knotted polygons in cubic lattices

International Nuclear Information System (INIS)

Van Rensburg, E J Janse; Rechnitzer, A

2011-01-01

In this paper we examine numerically the properties of minimal length knotted lattice polygons in the simple cubic, face-centered cubic, and body-centered cubic lattices by sieving minimal length polygons from a data stream of a Monte Carlo algorithm, implemented as described in Aragão de Carvalho and Caracciolo (1983 Phys. Rev. B 27 1635), Aragão de Carvalho et al (1983 Nucl. Phys. B 215 209) and Berg and Foester (1981 Phys. Lett. B 106 323). The entropy, mean writhe, and mean curvature of minimal length polygons are computed (in some cases exactly). While the minimal length and mean curvature are found to be lattice dependent, the mean writhe is found to be only weakly dependent on the lattice type. Comparison of our results to numerical results for the writhe obtained elsewhere (see Janse van Rensburg et al 1999 Contributed to Ideal Knots (Series on Knots and Everything vol 19) ed Stasiak, Katritch and Kauffman (Singapore: World Scientific), Portillo et al 2011 J. Phys. A: Math. Theor. 44 275004) shows that the mean writhe is also insensitive to the length of a knotted polygon. Thus, while these results for the mean writhe and mean absolute writhe at minimal length are not universal, our results demonstrate that these values are quite close the those of long polygons regardless of the underlying lattice and length

20. Two generalizations of column-convex polygons

International Nuclear Information System (INIS)

Feretic, Svjetlan; Guttmann, Anthony J

2009-01-01

Column-convex polygons were first counted by area several decades ago, and the result was found to be a simple, rational, generating function. In this work we generalize that result. Let a p-column polyomino be a polyomino whose columns can have 1, 2, ..., p connected components. Then column-convex polygons are equivalent to 1-convex polyominoes. The area generating function of even the simplest generalization, namely 2-column polyominoes, is unlikely to be solvable. We therefore define two classes of polyominoes which interpolate between column-convex polygons and 2-column polyominoes. We derive the area generating functions of those two classes, using extensions of existing algorithms. The growth constants of both classes are greater than the growth constant of column-convex polyominoes. Rather tight lower bounds on the growth constants complement a comprehensive asymptotic analysis.

1. Steady state of tapped granular polygons

International Nuclear Information System (INIS)

Carlevaro, Carlos M; Pugnaloni, Luis A

2011-01-01

The steady state packing fraction of a tapped granular bed is studied for different grain shapes via a discrete element method. Grains are monosized regular polygons, from triangles to icosagons. Comparisons with disc packings show that the steady state packing fraction as a function of the tapping intensity presents the same general trends in polygon packings. However, better packing fractions are obtained, as expected, for shapes that can tessellate the plane (triangles, squares and hexagons). In addition, we find a sharp transition for packings of polygons with more than 13 vertices signaled by a discontinuity in the packing fraction at a particular tapping intensity. Density fluctuations for most shapes are consistent with recent experimental findings in disc packing; however, a peculiar behavior is found for triangles and squares

2. Polygons on a rotating fluid surface.

Science.gov (United States)

Jansson, Thomas R N; Haspang, Martin P; Jensen, Kåre H; Hersen, Pascal; Bohr, Tomas

2006-05-05

We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.

3. Exact generating function for 2-convex polygons

International Nuclear Information System (INIS)

James, W R G; Jensen, I; Guttmann, A J

2008-01-01

Polygons are described as almost-convex if their perimeter differs from the perimeter of their minimum bounding rectangle by twice their 'concavity index', m. Such polygons are called m-convex polygons and are characterized by having up to m indentations in their perimeter. We first describe how we conjectured the (isotropic) generating function for the case m = 2 using a numerical procedure based on series expansions. We then proceed to prove this result for the more general case of the full anisotropic generating function, in which steps in the x and y directions are distinguished. In doing so, we develop tools that would allow for the case m > 2 to be studied

4. A simple algorithm for computing positively weighted straight skeletons of monotone polygons☆

Science.gov (United States)

Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

2015-01-01

We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlog⁡n) time and O(n) space, where n denotes the number of vertices of the polygon. PMID:25648376

5. Generating equilateral random polygons in confinement III

International Nuclear Information System (INIS)

Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

2012-01-01

In this paper we continue our earlier studies (Diao et al 2011 J. Phys. A: Math. Theor. 44 405202, Diao et al J. Phys. A: Math. Theor. 45 275203) on the generation methods of random equilateral polygons confined in a sphere. The first half of this paper is concerned with the generation of confined equilateral random walks. We show that if the selection of a vertex is uniform subject to the position of its previous vertex and the confining condition, then the distributions of the vertices are not uniform, although there exists a distribution such that if the initial vertex is selected following this distribution, then all vertices of the random walk follow this same distribution. Thus in order to generate a confined equilateral random walk, the selection of a vertex cannot be uniform subject to the position of its previous vertex and the confining condition. We provide a simple algorithm capable of generating confined equilateral random walks whose vertex distribution is almost uniform in the confinement sphere. In the second half of this paper we show that any process generating confined equilateral random walks can be turned into a process generating confined equilateral random polygons with the property that the vertex distribution of the polygons approaches the vertex distribution of the walks as the polygons get longer and longer. In our earlier studies, the starting point of the confined polygon is fixed at the center of the sphere. The new approach here allows us to move the starting point of the confined polygon off the center of the sphere. (paper)

6. Equipartitioning and balancing points of polygons

Directory of Open Access Journals (Sweden)

Shunmugam Pillay

2010-07-01

Full Text Available The centre of mass G of a triangle has the property that the rays to the vertices from G sweep out triangles having equal areas. We show that such points, termed equipartitioning points in this paper, need not exist in other polygons. A necessary and sufficient condition for a quadrilateral to have an equipartitioning point is that one of its diagonals bisects the other. The general theorem, namely, necessary and sufficient conditions for equipartitioning points for arbitrary polygons to exist, is also stated and proved. When this happens, they are in general, distinct from the centre of mass. In parallelograms, and only in them, do the two points coincide.

7. Slow relaxation in weakly open rational polygons.

Science.gov (United States)

Kokshenev, Valery B; Vicentini, Eduardo

2003-07-01

The interplay between the regular (piecewise-linear) and irregular (vertex-angle) boundary effects in nonintegrable rational polygonal billiards (of m equal sides) is discussed. Decay dynamics in polygons (of perimeter P(m) and small opening Delta) is analyzed through the late-time survival probability S(m) approximately equal t(-delta). Two distinct slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding orbits, with delta=1. The secondary channel is given by delta>1 and becomes open when m>P(m)/Delta. It originates from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.

8. Approximate Shortest Homotopic Paths in Weighted Regions

KAUST Repository

Cheng, Siu-Wing

2010-01-01

Let P be a path between two points s and t in a polygonal subdivision T with obstacles and weighted regions. Given a relative error tolerance ε ∈(0,1), we present the first algorithm to compute a path between s and t that can be deformed to P without passing over any obstacle and the path cost is within a factor 1 + ε of the optimum. The running time is O(h 3/ε2 kn polylog(k, n, 1/ε)), where k is the number of segments in P and h and n are the numbers of obstacles and vertices in T, respectively. The constant in the running time of our algorithm depends on some geometric parameters and the ratio of the maximum region weight to the minimum region weight. © 2010 Springer-Verlag.

9. Approximate shortest homotopic paths in weighted regions

KAUST Repository

Cheng, Siuwing

2012-02-01

A path P between two points s and t in a polygonal subdivision T with obstacles and weighted regions defines a class of paths that can be deformed to P without passing over any obstacle. We present the first algorithm that, given P and a relative error tolerance ε (0, 1), computes a path from this class with cost at most 1 + ε times the optimum. The running time is O(h 3/ε 2kn polylog (k,n,1/ε)), where k is the number of segments in P and h and n are the numbers of obstacles and vertices in T, respectively. The constant in the running time of our algorithm depends on some geometric parameters and the ratio of the maximum region weight to the minimum region weight. © 2012 World Scientific Publishing Company.

10. Random packing of regular polygons and star polygons on a flat two-dimensional surface.

Science.gov (United States)

Cieśla, Michał; Barbasz, Jakub

2014-08-01

Random packing of unoriented regular polygons and star polygons on a two-dimensional flat continuous surface is studied numerically using random sequential adsorption algorithm. Obtained results are analyzed to determine the saturated random packing ratio as well as its density autocorrelation function. Additionally, the kinetics of packing growth and available surface function are measured. In general, stars give lower packing ratios than polygons, but when the number of vertexes is large enough, both shapes approach disks and, therefore, properties of their packing reproduce already known results for disks.

11. FDG-PET/CT and diffusion-weighted imaging for resected lung cancer: correlation of maximum standardized uptake value and apparent diffusion coefficient value with prognostic factors.

Science.gov (United States)

Usuda, Katsuo; Funasaki, Aika; Sekimura, Atsushi; Motono, Nozomu; Matoba, Munetaka; Doai, Mariko; Yamada, Sohsuke; Ueda, Yoshimichi; Uramoto, Hidetaka

2018-04-09

Diffusion-weighted magnetic resonance imaging (DWI) is useful for detecting malignant tumors and the assessment of lymph nodes, as FDG-PET/CT is. But it is not clear how DWI influences the prognosis of lung cancer patients. The focus of this study is to evaluate the correlations between maximum standardized uptake value (SUVmax) of FDG-PET/CT and apparent diffusion coefficient (ADC) value of DWI with known prognostic factors in resected lung cancer. A total of 227 patients with resected lung cancers were enrolled in this study. FEG-PET/CT and DWI were performed in each patient before surgery. There were 168 patients with adenocarcinoma, 44 patients with squamous cell carcinoma, and 15 patients with other cell types. SUVmax was a factor that was correlated to T factor, N factor, or cell differentiation. ADC of lung cancer was a factor that was not correlated to T factor, or N factor. There was a significantly weak inverse relationship between SUVmax and ADC (Correlation coefficient r = - 0.227). In analysis of survival, there were significant differences between the categories of sex, age, pT factor, pN factor, cell differentiation, cell type, and SUVmax. Univariate analysis revealed that SUVmax, pN factor, age, cell differentiation, cell type, sex, and pT factor were significant factors. Multivariate analysis revealed that SUVmax and pN factor were independent significant prognostic factors. SUVmax was a significant prognostic factor that is correlated to T factor, N factor, or cell differentiation, but ADC was not. SUVmax may be more useful for predicting the prognosis of lung cancer than ADC values.

12. Dilation-optimal edge deletion in polygonal cycles

NARCIS (Netherlands)

Ahn, H.K.; Farshi, M.; Knauer, C.; Smid, M.H.M.; Wang, Y.; Tokuyama, T.

2007-01-01

Let C be a polygonal cycle on n vertices in the plane. A randomized algorithm is presented which computes in O(n log3 n) expected time, the edge of C whose removal results in a polygonal path of smallest possible dilation. It is also shown that the edge whose removal gives a polygonal path of

13. Calculating the Areas of Polygons with a Smartphone Light Sensor

Science.gov (United States)

Kapucu, Serkan; Simsek, Mertkan; Öçal, Mehmet Fatih

2017-01-01

This study explores finding the areas of polygons with a smartphone light sensor. A square and an irregular pentagon were chosen as our polygons. During the activity, the LED light was placed at the vertices of our polygons, and the illuminance values of this LED light were detected by the smartphone light sensor. The smartphone was placed on a…

14. Automatically repairing invalid polygons with a constrained triangulation

NARCIS (Netherlands)

Ledoux, H.; Arroyo Ohori, K.; Meijers, M.

2012-01-01

Although the validation of single polygons has received considerable attention, the automatic repair of invalid polygons has not. Automated repair methods can be considered as interpreting ambiguous or ill-defined polygons and giving a coherent and clearly defined output. At this moment, automatic

15. Realistic roofs over a rectilinear polygon

KAUST Repository

Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.

2013-01-01

Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces

16. Exploring Nonconvex, Crossed and Degenerate Polygons

Science.gov (United States)

Contreras, Jose N.

2004-01-01

An exploration of nonconvex, crossed, and degenerate polygons (NCCDPs) are described with the help of examples with pedagogical tips and recommendations that are found useful when teaching the mathematical process of extending geometric patterns to NCCDPs. The study concludes that investigating such extensions with interactive geometry software…

17. Generating realistic roofs over a rectilinear polygon

KAUST Repository

Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.

2011-01-01

Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing

18. The structure of near polygons with quads

NARCIS (Netherlands)

Brouwer, A.E.; Wilbrink, H.A.

1983-01-01

We develop a structure theory for near polygons with quads. Main results are the existence of sub 2j-gons for 2jd and the nonexistence of regular sporadic 2d-gons for d4 with s>1 and t 2>1 and t 3t 2(t 2+1).

19. Fair partitions of polygons: An elementary introduction

In this paper we discuss only convex polygonal regions with finite number of sides. But we think this property holds ... trivial interest and have updated [9] into the present paper. 2. Proof of the conjecture N = .... surface have a proper intersection if they cut through each other either at a point or after being coincident in a finite ...

20. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

International Nuclear Information System (INIS)

Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

2016-01-01

This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials. (paper)

1. Some solvable, and as yet unsolvable, polygon and walk models

International Nuclear Information System (INIS)

Guttmann, Anthony J

2006-01-01

One partly solvable and two solvable models of polygons are discussed. Using a simple transfer matrix approach Iwan Jensen has derived very long series expansions for the perimeter generating function of both three-choice polygons and punctured staircase polygons. In both cases it is found that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of order 8. We report on an analysis of the properties of the differential equations. Recently Enrica Duchi has discussed the problem of so-called prudent self-avoiding walks. We discuss the polygon analogue of this problem, and argue that the generating function for prudent polygons is unlikely to be differentiably finite, though a restricted version of the problem, called prudent polygons of the second type, is likely to be differentiably finite. The exact generating function for prudent polygons of the first type is also found

2. PATTERN CLASSIFICATION APPROACHES TO MATCHING BUILDING POLYGONS AT MULTIPLE SCALES

Directory of Open Access Journals (Sweden)

X. Zhang

2012-07-01

Full Text Available Matching of building polygons with different levels of detail is crucial in the maintenance and quality assessment of multi-representation databases. Two general problems need to be addressed in the matching process: (1 Which criteria are suitable? (2 How to effectively combine different criteria to make decisions? This paper mainly focuses on the second issue and views data matching as a supervised pattern classification. Several classifiers (i.e. decision trees, Naive Bayes and support vector machines are evaluated for the matching task. Four criteria (i.e. position, size, shape and orientation are used to extract information for these classifiers. Evidence shows that these classifiers outperformed the weighted average approach.

3. Self-assembly of chiral molecular polygons.

Science.gov (United States)

Jiang, Hua; Lin, Wenbin

2003-07-09

Treatment of 2,2'-diacetyl-1,1'-binaphthyl-6,6'-bis(ethyne), L-H2, with 1 equiv of trans-Pt(PEt3)2Cl2 led to a mixture of different sizes of chiral metallocycles [trans-(PEt3)2Pt(L)]n (n = 3-8, 1-6). Each of the chiral molecular polygons 1-6 was purified by silica gel column chromatography and characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, MS, IR, UV-vis, and circular dichroism spectroscopies, and microanalysis. The presence of tunable cavities (1.4-4.3 nm) and chiral functionalities in these molecular polygons promises to make them excellent receptors for a variety of guests.

4. Simulating 3D deformation using connected polygons

Science.gov (United States)

Tarigan, J. T.; Jaya, I.; Hardi, S. M.; Zamzami, E. M.

2018-03-01

In modern 3D application, interaction between user and the virtual world is one of an important factor to increase the realism. This interaction can be visualized in many forms; one of them is object deformation. There are many ways to simulate object deformation in virtual 3D world; each comes with different level of realism and performance. Our objective is to present a new method to simulate object deformation by using a graph-connected polygon. In this solution, each object contains multiple level of polygons in different level of volume. The proposed solution focusses on performance rather while maintaining the acceptable level of realism. In this paper, we present the design and implementation of our solution and show that this solution is usable in performance sensitive 3D application such as games and virtual reality.

5. Counting convex polygons in planar point sets

NARCIS (Netherlands)

Mitchell, J.S.B.; Rote, G.; Sundaram, Gopalakrishnan; Woeginger, G.J.

1995-01-01

Given a set S of n points in the plane, we compute in time O(n3) the total number of convex polygons whose vertices are a subset of S. We give an O(m · n3) algorithm for computing the number of convex k-gons with vertices in S, for all values k = 3,…, m; previously known bounds were exponential

6. Non-convex polygons clustering algorithm

Directory of Open Access Journals (Sweden)

Kruglikov Alexey

2016-01-01

Full Text Available A clustering algorithm is proposed, to be used as a preliminary step in motion planning. It is tightly coupled to the applied problem statement, i.e. uses parameters meaningful only with respect to it. Use of geometrical properties for polygons clustering allows for a better calculation time as opposed to general-purpose algorithms. A special form of map optimized for quick motion planning is constructed as a result.

7. 137Cs in Research Polygon 'Sumbar'

International Nuclear Information System (INIS)

Skoko, B.; Marovic, G.; Babic, D.; Vickovic, I.

2011-01-01

In 2009, Radiation Protection Unit of the Institute for Medical Reseach and Occupational Health started a radioactivity measurement programme in research polygon ''Sumbar''. The purpose of these investigations is to collect as many data as possible about the contamination of the polygon that is mainly covered by a forest of English oak (Quercus robur) and hornbeam (Carpinus betulus). Once contaminated, forests represent long-term sources of radiation exposure to specific population groups which are using them as a source of foodstuffs. After the Chernobyl accident, researchers have shown that there has been more variability in radionuclide activity concentration in forests than in agricultural ecosystems. In order to carry out a radioactivity screening of the polygon, we randomly chosed three sampling sites for collecting soil, grass and moss samples. Different species of mushrooms were collected over the whole polygon area. The average activity concentration of 137Cs in soil for two sampling sites is (123 @ 9) Bq kg -1 , while the result for the third site is lower by an order of magnitude ((16.1@0.5) Bq kg -1 ). The activity concentration of 137Cs in grass samples ranges from (0.43 @ 0.03) Bq kg -1 to (13.2 @ 0.1) Bq kg -1 , and in moss samples from (8.7 @ 0.2) Bq kg -1 to (57.8 @ 0.3) Bq kg - 1. In five collected mushroom species, the activity of 137Cs is in the range between (4.1 @ 0.5) Bq kg -1 and (610 @ 5) Bq kg -1 , the lowest and the highest values referreing to Clitocybe nebularis and Gymnopus dryophilus, respectively. Parasitic mushrooms exhibit activity below the minimum detection level. Our preliminary results show and confirm variability of the activity concentration of 137Cs in different parts of this ecosystem. (author)

8. Closed almost-periodic orbits in semiclassical quantization of generic polygons

Science.gov (United States)

Biswas

2000-05-01

Periodic orbits are the central ingredients of modern semiclassical theories and corrections to these are generally nonclassical in origin. We show here that, for the class of generic polygonal billiards, the corrections are predominantly classical in origin owing to the contributions from closed almost-periodic (CAP) orbit families. Furthermore, CAP orbit families outnumber periodic families but have comparable weights. They are hence indispensable for semiclassical quantization.

9. Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra

Science.gov (United States)

Zheng, J.

2016-12-01

Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.

10. Knotting probabilities after a local strand passage in unknotted self-avoiding polygons

International Nuclear Information System (INIS)

Szafron, M L; Soteros, C E

2011-01-01

We investigate, both theoretically and numerically, the knotting probabilities after a local strand passage is performed in an unknotted self-avoiding polygon (SAP) on the simple cubic lattice. In the polygons studied, it is assumed that two polygon segments have already been brought close together for the purpose of performing a strand passage. This restricts the polygons considered to those that contain a specific pattern called Θ at a fixed location; an unknotted polygon containing Θ is called a Θ-SAP. It is proved that the number of n-edge Θ-SAPs grows exponentially (with n) at the same rate as the total number of n-edge unknotted SAPs (those with no prespecified strand passage structure). Furthermore, it is proved that the same holds for subsets of n-edge Θ-SAPs that yield a specific after-strand-passage knot-type. Thus, the probability of a given after-strand-passage knot-type does not grow (or decay) exponentially with n. Instead, it is conjectured that these after-strand-passage knot probabilities approach, as n goes to infinity, knot-type dependent amplitude ratios lying strictly between 0 and 1. This conjecture is supported by numerical evidence from Monte Carlo data generated using a composite (aka multiple) Markov chain Monte Carlo BFACF algorithm developed to study Θ-SAPs. A new maximum likelihood method is used to estimate the critical exponents relevant to this conjecture. We also obtain strong numerical evidence that the after-strand-passage knotting probability depends on the local structure around the strand-passage site. If the local structure and the crossing sign at the strand-passage site are considered, then we observe that the more 'compact' the local structure, the less likely the after-strand-passage polygon is to be knotted. This trend for compactness versus knotting probability is consistent with results obtained for other strand-passage models; however, we are the first to note the influence of the crossing-sign information. We

11. Generating random walks and polygons with stiffness in confinement

International Nuclear Information System (INIS)

Diao, Y; Ernst, C; Saarinen, S; Ziegler, U

2015-01-01

The purpose of this paper is to explore ways to generate random walks and polygons in confinement with a bias toward stiffness. Here the stiffness refers to the curvature angle between two consecutive edges along the random walk or polygon. The stiffer the walk (polygon), the smaller this angle on average. Thus random walks and polygons with an elevated stiffness have lower than expected curvatures. The authors introduced and studied several generation algorithms with a stiffness parameter s>0 that regulates the expected curvature angle at a given vertex in which the random walks and polygons are generated one edge at a time using conditional probability density functions. Our generating algorithms also allow the generation of unconfined random walks and polygons with any desired mean curvature angle. In the case of random walks and polygons confined in a sphere of fixed radius, we observe that, as expected, stiff random walks or polygons are more likely to be close to the confinement boundary. The methods developed here require that the random walks and random polygons be rooted at the center of the confinement sphere. (paper)

12. The magnetic field generated by a rotating charged polygon

International Nuclear Information System (INIS)

Wan, Songlin; Chen, Xiangyu; Teng, Baohua; Fu, Hao; Li, Yefeng; Wu, Minghe; Wu, Shaoyi; Balfour, E A

2014-01-01

The magnetic field along the symmetry axis of a regular polygon carrying a uniform electric charge on its edges is calculated systematically when the polygon is rotated about this axis of symmetry. A group of circular current-carrying coils arranged concentrically about the axis of the polygon has been designed to simulate the magnetic field characteristics of the rotating charged polygon. The magnetic field of the simulated coils is measured using the PASCO magnetic field sensor. The results show that the theoretical calculation agrees well with the experimental results. (paper)

13. Polygonal-path approximations on the path spaces of quantum-mechanical systems: properties of the polygonal paths

International Nuclear Information System (INIS)

Exner, P.; Kolerov, G.I.

1981-01-01

Properties of the subset of polygonal paths in the Hilbert space H of paths referring to a d-dimensional quantum-mechanical system are examined. Using the reproduction kernel technique we prove that each element of H is approximated by polygonal paths uniformly with respect to the ''norm'' of time-interval partitions. This result will be applied in the second part of the present paper to prove consistency of the uniform polygonal-path extension of the Feynman maps [ru

14. Multifrequency Piezoelectric Energy Harvester Based on Polygon-Shaped Cantilever Array

Directory of Open Access Journals (Sweden)

Dalius Mažeika

2018-01-01

Full Text Available This paper focuses on numerical and experimental investigations of a novel design piezoelectric energy harvester. Investigated harvester is based on polygon-shaped cantilever array and employs multifrequency operating principle. It consists of eight cantilevers with irregular design of cross-sectional area. Cantilevers are connected to each other by specific angle to form polygon-shaped structure. Moreover, seven seismic masses with additional lever arms are added in order to create additional rotation moment. Numerical investigation showed that piezoelectric polygon-shaped energy harvester has five natural frequencies in the frequency range from 10 Hz to 240 Hz, where the first and the second bending modes of the cantilevers are dominating. Maximum output voltage density and energy density equal to 50.03 mV/mm3 and 604 μJ/mm3, respectively, were obtained during numerical simulation. Prototype of piezoelectric harvester was made and experimental investigation was performed. Experimental measurements of the electrical characteristics showed that maximum output voltage density, energy density, and output power are 37.5 mV/mm3, 815.16 μJ/mm3, and 65.24 μW, respectively.

15. Actively Q-switched laser with novel Nd:YAG/YAG polygonal active-mirror

Science.gov (United States)

Lang, Ye; Chen, Yanzhong; Ge, Wenqi; He, Jianguo; Zhang, Hongbo; Liao, Lifen; Xin, Jianguo; Zhang, Jian; Fan, Zhongwei

2018-03-01

In this work, we demonstrate an efficient actively Q-switched laser based on a novel crystal Nd:YAG/YAG polygonal active mirror. A passively cooled crystal Nd:YAG/YAG polygonal active mirror with an end pump scheme was used as the gain medium. For the overlap between the TEM00 laser mode and large gain profile, a cavity was carefully designed with a large fundamental mode volume. With a maximum absorbed power of 3.1 W, a 685 mW average output power with a pulse repetition of 5 kHz was attained, and the corresponding optical-optical and slope efficiency were 22.1% and 27.7%, respectively. The pulse width was 133.9 ns. The beam quality (M 2) was 1.561 in the horizontal direction and 1.261 in the vertical direction.

16. Weighted straight skeletons in the plane.

Science.gov (United States)

Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

2015-02-01

We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights.

17. Finding the Maximal Area of Bounded Polygons in a Circle

Science.gov (United States)

Rokach, Arie

2005-01-01

The article deals with the area of polygons that are inscribed in a given circle. Naturally, the following question arises: Among all n-polygons that are inscribed in a given circle, which one has the biggest area? Intuitively, it may be guessed that is suitable for secondary students, and without any use id calculus, but only using very…

18. Beam envelope profile of non-centrosymmetric polygonal phase space

International Nuclear Information System (INIS)

Chen Yinbao; Xie Xi

1984-01-01

The general theory of beam envelope profile of non-centrosymmetric polygonal phase space is developed. By means of this theory the beam envelope profile of non-centrosymmetric polygonal phase space can be calculated directly. An example is carried out in detail to show the practical application of the theory

19. Hamiltonian evolutions of twisted polygons in RPn

International Nuclear Information System (INIS)

Beffa, Gloria Marì; Wang, Jing Ping

2013-01-01

In this paper we find a discrete moving frame and their associated invariants along projective polygons in RP n , and we use them to describe invariant evolutions of projective N-gons. We then apply a reduction process to obtain a natural Hamiltonian structure on the space of projective invariants for polygons, establishing a close relationship between the projective N-gon invariant evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that any Hamiltonian evolution is induced on invariants by an invariant evolution of N-gons—what we call a projective realization—and both evolutions are connected explicitly in a very simple way. Finally, we provide a completely integrable evolution (the Boussinesq lattice related to the lattice W 3 -algebra), its projective realization in RP 2 and its Hamiltonian pencil. We generalize both structures to n-dimensions and we prove that they are Poisson, defining explicitly the n-dimensional generalization of the planar evolution (a discretization of the W n -algebra). We prove that the generalization is completely integrable, and we also give its projective realization, which turns out to be very simple. (paper)

20. Linking of uniform random polygons in confined spaces

Science.gov (United States)

Arsuaga, J.; Blackstone, T.; Diao, Y.; Karadayi, E.; Saito, M.

2007-03-01

In this paper, we study the topological entanglement of uniform random polygons in a confined space. We derive the formula for the mean squared linking number of such polygons. For a fixed simple closed curve in the confined space, we rigorously show that the linking probability between this curve and a uniform random polygon of n vertices is at least 1-O\\big(\\frac{1}{\\sqrt{n}}\\big) . Our numerical study also indicates that the linking probability between two uniform random polygons (in a confined space), of m and n vertices respectively, is bounded below by 1-O\\big(\\frac{1}{\\sqrt{mn}}\\big) . In particular, the linking probability between two uniform random polygons, both of n vertices, is bounded below by 1-O\\big(\\frac{1}{n}\\big) .

1. Linking of uniform random polygons in confined spaces

International Nuclear Information System (INIS)

Arsuaga, J; Blackstone, T; Diao, Y; Karadayi, E; Saito, M

2007-01-01

In this paper, we study the topological entanglement of uniform random polygons in a confined space. We derive the formula for the mean squared linking number of such polygons. For a fixed simple closed curve in the confined space, we rigorously show that the linking probability between this curve and a uniform random polygon of n vertices is at least 1-O(1/√n). Our numerical study also indicates that the linking probability between two uniform random polygons (in a confined space), of m and n vertices respectively, is bounded below by 1-O(1/√(mn)). In particular, the linking probability between two uniform random polygons, both of n vertices, is bounded below by 1-O(1/n)

2. Effects of Unsaturated Microtopography on Nitrate Concentrations in Tundra Ecosystems: Examples from Polygonal Terrain and Degraded Peat Plateaus

Science.gov (United States)

Heikoop, J. M.; Arendt, C. A.; Newman, B. D.; Charsley-Groffman, L.; Perkins, G.; Wilson, C. J.; Wullschleger, S.

2017-12-01

Under the auspices of the Next Generation Ecosystem Experiment - Arctic, we have been studying hydrogeochemical signals in Alaskan tundra ecosystems underlain by continuous permafrost (Barrow Environmental Observatory (BEO)) and discontinuous permafrost (Seward Peninsula). The Barrow site comprises largely saturated tundra associated with the low gradient Arctic Coastal Plain. Polygonal microtopography, however, can result in slightly raised areas that are unsaturated. In these areas we have previously demonstrated production and accumulation of nitrate, which, based on nitrate isotopic analysis, derives from microbial degradation. Our Seward Peninsula site is located in a much steeper and generally well-drained watershed. In lower-gradient areas at the top and bottom of the watershed, however, the tundra is generally saturated, likely because of the presence of underlying discontinuous permafrost inhibiting infiltration. These settings also contain microtopographic features, though in the form of degraded peat plateaus surrounded by wet graminoid sag ponds. Despite being very different microtopographic features in a very different setting with distinct vegetation, qualitatively similar nitrate accumulation patterns as seen in polygonal terrain were observed. The highest nitrate pore water concentration observed in an unsaturated peat plateau was approximately 5 mg/L, whereas subsurface pore water concentrations in surrounding sag ponds were generally below the limit of detection. Nitrate isotopes indicate this nitrate results from microbial mineralization and nitrification based on comparison to the nitrate isotopic composition of reduced nitrogen sources in the environment and the oxygen isotope composition of site pore water. Nitrate concentrations were most similar to those found in low-center polygon rims and flat-centered polygon centers at the BEO, but were significantly lower than the maximum concentrations seen in the highest and driest polygonal features

3. A formational model for the polygonal terrains of Mars: Taking a crack at the genesis of the Martian polygons

Science.gov (United States)

Wenrich, M. L.; Christensen, P. R.

1993-01-01

The mechanism for the genesis of the polygonal terrains in Acidalia and Utopia Planitia has long been sought: however, no completely satisfying model was put forth that characterizes the evolution of these complexly patterned terrains. The polygons are roughly hexagonal but some are not entirely enclosed by fractures. These polygonal features range in widths from approximately 5 to 20 km. Several origins were proposed that describe the polygon borders as desiccation cracks, columnar jointing in a cooled lava, or frost-wedge features. These tension-induced cracking hypotheses were addressed by Pechmann, who convincingly disputes these mechanisms of formation based on scale magnitude difficulties and morphology. Pechmann suggests instead that the cracks delineating the 5-20-km-wide polygons on the northern plains of Mars are graben resulting from deep-seated, uniform, horizontal tension. The difficulty with this hypothesis is that no analogous polygonal forms are known to have originated by tectonism on Earth. McGill and Hills propose that the polygonal terrains on Mars resulted from either rapid desiccation of sediments or cooling of volcanics coupled with differential compaction of the material over a buried irregular topographic surface. They suggest that fracturing was enhanced over the areas of positive relief and was suppressed above the topographic lows. McGill and Hills suggest that the spacing of the topographic highs primarily controls the size of the Martian polygons and the physics of the shrinkage process is a secondary concern. Ray et. al. conducted a terrestrial study of patterned ground in periglacial areas of the U.S. to determine the process responsible for polygonal ground formation. They developed a model for polygon formation in which convection of seasonal melt water above a permafrost layer, driven by an unstable density stratification, differentially melts the permafrost interface, causing it to become undulatory.

4. Scaling behavior of knotted random polygons and self-avoiding polygons: Topological swelling with enhanced exponent.

Science.gov (United States)

Uehara, Erica; Deguchi, Tetsuo

2017-12-07

We show that the average size of self-avoiding polygons (SAPs) with a fixed knot is much larger than that of no topological constraint if the excluded volume is small and the number of segments is large. We call it topological swelling. We argue an "enhancement" of the scaling exponent for random polygons with a fixed knot. We study them systematically through SAP consisting of hard cylindrical segments with various different values of the radius of segments. Here we mean by the average size the mean-square radius of gyration. Furthermore, we show numerically that the topological balance length of a composite knot is given by the sum of those of all constituent prime knots. Here we define the topological balance length of a knot by such a number of segments that topological entropic repulsions are balanced with the knot complexity in the average size. The additivity suggests the local knot picture.

5. Rotational Fourier tracking of diffusing polygons.

Science.gov (United States)

Mayoral, Kenny; Kennair, Terry P; Zhu, Xiaoming; Milazzo, James; Ngo, Kathy; Fryd, Michael M; Mason, Thomas G

2011-11-01

We use optical microscopy to measure the rotational Brownian motion of polygonal platelets that are dispersed in a liquid and confined by depletion attractions near a wall. The depletion attraction inhibits out-of-plane translational and rotational Brownian fluctuations, thereby facilitating in-plane imaging and video analysis. By taking fast Fourier transforms (FFTs) of the images and analyzing the angular position of rays in the FFTs, we determine an isolated particle's rotational trajectory, independent of its position. The measured in-plane rotational diffusion coefficients are significantly smaller than estimates for the bulk; this difference is likely due to the close proximity of the particles to the wall arising from the depletion attraction.

6. High speed printing with polygon scan heads

Science.gov (United States)

Stutz, Glenn

2016-03-01

To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

7. Self-avoiding polygons and walks in slits

International Nuclear Information System (INIS)

Alvarez, J; Whittington, S G; Rensburg, E J Janse van; Soteros, C E

2008-01-01

A polymer in a confined geometry may be modeled by a self-avoiding walk or a self-avoiding polygon confined between two parallel walls. In two dimensions, this model involves self-avoiding walks or self-avoiding polygons in the square lattice between two parallel confining lines. Interactions of the polymer with the confining walls are introduced by energy terms associated with edges in the walk or polygon which are at or near the confining lines. We use transfer-matrix methods to investigate the forces between the walk or polygon and the confining lines, as well as to investigate the effects of the confining slit's width and of the energy terms on the thermodynamic properties of the walks or polygons in several models. The phase diagram found for the self-avoiding walk models is qualitatively similar to the phase diagram of a directed walk model confined between two parallel lines, as was previously conjectured. However, the phase diagram of one of our polygon models is found to be significantly different and we present numerical data to support this. For that particular model we prove that, for any finite values of the energy terms, there are an infinite number of slit widths where a polygon will induce a steric repulsion between the confining lines

8. Conformal array design on arbitrary polygon surface with transformation optics

Energy Technology Data Exchange (ETDEWEB)

Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng; Peng, Biao; Li, Shufang [Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China); Wu, Yongle, E-mail: wuyongle138@gmail.com [Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China)

2016-06-15

A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

9. Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons.

Science.gov (United States)

Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

2013-08-01

In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π.

10. Conformal array design on arbitrary polygon surface with transformation optics

International Nuclear Information System (INIS)

Deng, Li; Hong, Weijun; Zhu, Jianfeng; Peng, Biao; Li, Shufang; Wu, Yongle

2016-01-01

A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

11. Alabama ESI: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphins and manatees in Alabama. Vector polygons in this data set represent marine mammal distribution...

12. Western Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, dolphins, walruses, and Steller sea lions in Western Alaska. Vector polygons in this...

13. American Samoa ESI: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for whales and dolphins in American Samoa. Vector polygons in this data set represent marine mammal...

14. Columbia River ESI: NWI (National Wetlands Inventory - Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the wetlands of Columbia River classified according to the Environmental Sensitivity Index (ESI) classification...

15. Coastal Resources Atlas: Long Island: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species for Long Island, New York. Vector polygons...

16. Coastal Resources Atlas: Long Island: REPTILES (Reptile and Amphibian Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles, estuarine turtles, and amphibians for Long Island, New York. Vector polygons in this data...

17. Louisiana ESI: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for terrestrial mammals in Louisiana. Vector polygons in this data set represent terrestrial mammal...

18. North Slope, Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for brown bears, caribou, and muskoxen for the North Slope, Alaska. Vector polygons in this data set...

19. Virginia ESI: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphin, seals, whales, and porpoise in Virginia. Vector polygons in this data set represent marine...

20. North Slope, Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for whales, seals, walruses, and polar bears for the North Slope of Alaska. Vector polygons in this data...

1. Shinarump Channel Polygons, North Central AUM Region, 1964, USDOE

Data.gov (United States)

U.S. Environmental Protection Agency — This is a polygon shapefile that provides Shinarump channels compiled and mapped by Young and Malan (1964) in the Monument Valley District, San Juan County, Utah,...

2. Cook Inlet and Kenai Peninsula, Alaska ESI: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries used in the creation of the Environmental Sensitivity Index (ESI) for Cook Inlet and Kenai...

3. Southeast Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for brown bears in Southeast Alaska. Vector polygons in this data set represent locations of bear concentrations....

4. American Samoa ESI: REPTILES (Reptile and Amphibian Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles in American Samoa. Vector polygons in this data set represent sea turtle nesting and...

5. Columbia River ESI: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for Steller sea lions, harbor seals, and California sea lions in Columbia River. Vector polygons in this...

6. Coastal Resources Atlas: Long Island: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for coastal, estuarine, and marine invertebrate species for Long Island, New York. Vector polygons in this...

7. Cook Inlet and Kenai Peninsula, Alaska ESI: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for razor clams in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...

8. Columbia River ESI: REPTILES (Reptile and Amphibian Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for western pond turtles and western painted turtles in Columbia River. Vector polygons in this data set...

9. Cook Inlet and Kenai Peninsula, Alaska ESI: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for herring spawning areas in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent...

10. PNW River Reach Files -- 1:100k Waterbodies (polygons)

Data.gov (United States)

Pacific States Marine Fisheries Commission — This feature class includes the POLYGON waterbody features from the 2001 version of the PNW River Reach files Arc/INFO coverage. Separate, companion feature classes...

11. North Slope, Alaska ESI: BIOINDEX (Biological Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the quad boundaries of the 1:250,000 USGS topographic quadrangles. These boundaries represent the extent of the...

12. Louisiana ESI: LG_INDEX (Large Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all the hardcopy cartographic products produced as part of the Environmental Sensitivity Index...

13. Structural characterization of the packings of granular regular polygons.

Science.gov (United States)

Wang, Chuncheng; Dong, Kejun; Yu, Aibing

2015-12-01

By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.

14. Polygon formation and surface flow on a rotating fluid surface

DEFF Research Database (Denmark)

Bergmann, Raymond; Tophøj, Laust Emil Hjerrild; Homan, T. A. M.

2011-01-01

We present a study of polygons forming on the free surface of a water flow confined to a stationary cylinder and driven by a rotating bottom plate as described by Jansson et al. (Phys. Rev. Lett., vol. 96, 2006, 174502). In particular, we study the case of a triangular structure, either completely...... there the symmetry breaking proceeds like a low-dimensional linear instability. We show that the circular state and the unstable manifold connecting it with the polygon solution are universal in the sense that very different initial conditions lead to the same circular state and unstable manifold. For a wet triangle......, we measure the surface flows by particle image velocimetry (PIV) and show that there are three vortices present, but that the strength of these vortices is far too weak to account for the rotation velocity of the polygon. We show that partial blocking of the surface flow destroys the polygons and re...

15. The unusual asymptotics of three-sided prudent polygons

International Nuclear Information System (INIS)

Beaton, Nicholas R; Guttmann, Anthony J; Flajolet, Philippe

2010-01-01

We have studied the area-generating function of prudent polygons on the square lattice. Exact solutions are obtained for the generating function of two-sided and three-sided prudent polygons, and a functional equation is found for four-sided prudent polygons. This is used to generate series coefficients in polynomial time, and these are analysed to determine the asymptotics numerically. A careful asymptotic analysis of the three-sided polygons produces a most surprising result. A transcendental critical exponent is found, and the leading amplitude is not quite a constant, but is a constant plus a small oscillatory component with an amplitude approximately 10 -8 times that of the leading amplitude. This effect cannot be seen by any standard numerical analysis, but it may be present in other models. If so, it changes our whole view of the asymptotic behaviour of lattice models. (fast track communication)

16. Average size of random polygons with fixed knot topology.

Science.gov (United States)

Matsuda, Hiroshi; Yao, Akihisa; Tsukahara, Hiroshi; Deguchi, Tetsuo; Furuta, Ko; Inami, Takeo

2003-07-01

We have evaluated by numerical simulation the average size R(K) of random polygons of fixed knot topology K=,3(1),3(1) musical sharp 4(1), and we have confirmed the scaling law R(2)(K) approximately N(2nu(K)) for the number N of polygonal nodes in a wide range; N=100-2200. The best fit gives 2nu(K) approximately 1.11-1.16 with good fitting curves in the whole range of N. The estimate of 2nu(K) is consistent with the exponent of self-avoiding polygons. In a limited range of N (N greater, similar 600), however, we have another fit with 2nu(K) approximately 1.01-1.07, which is close to the exponent of random polygons.

17. Bristol Bay, Alaska Subarea ESI: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all the hardcopy cartographic products produced as part of the Environmental Sensitivity Index...

18. Maryland ESI: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, porpoise, and dolphin in Maryland. Vector polygons in this data set represent marine...

19. Alabama ESI: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for Alabama and Perdido Key beach mice in Alabama. Vector polygons in this data set represent the rare...

20. Morphometric analysis of the arteries of Willis Polygon

Directory of Open Access Journals (Sweden)

Canaz Huseyin

2018-03-01

Full Text Available Objective: Willis polygon forms the basis of the arterial circulation of the cerebrum. Willis polygon is a vascular structure whom variations are not rare. Knowledge of the anatomy and preservation of its integrity is crucial for performing neurovascular surgery and intracranial tumour surgery. Because of the important vascular and neurological structures, approaches to this region are considered extremely risky. One of the main variations in-person basis is the diameter differences of the arteries, which forms Willis polygon, between the left and right hemispheres. About structure and variations, studies of Rhoton and Yasargil had formed the touchstone. Our aim is to contribute to the literature and clinical studies, to be done in the future, by comparing our results with previous studies about variations and morphometric features of Willis polygon.

1. Coastal Resources Atlas: Long Island: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Long Island,...

2. North Slope, Alaska ESI: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for the North...

3. Columbia River ESI: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Columbia...

4. Bristol Bay, Alaska Subarea ESI: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for the Bristol...

5. Spectral segmentation of polygonized images with normalized cuts

Energy Technology Data Exchange (ETDEWEB)

Matsekh, Anna [Los Alamos National Laboratory; Skurikhin, Alexei [Los Alamos National Laboratory; Rosten, Edward [UNIV OF CAMBRIDGE

2009-01-01

We analyze numerical behavior of the eigenvectors corresponding to the lowest eigenvalues of the generalized graph Laplacians arising in the Normalized Cuts formulations of the image segmentation problem on coarse polygonal grids.

6. Rotating polygon instability of a swirling free surface flow

DEFF Research Database (Denmark)

Tophøj, Laust Emil Hjerrild; Bohr, Tomas; Mougel, J.

2013-01-01

We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990)JFLSA70022-1120 and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)PRLTAO0031-9007] in terms of resonant interactions between gravity waves on the outer part of the surface...... behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container....

7. Geophysical Features - SILURIAN_REEF_POLYGONS_MM54_IN: Silurian Reef Locations in Indiana (Indiana Geological Survey, 1:500,000, Polygon Shapefile)

Data.gov (United States)

NSGIC State | GIS Inventory — SILURIAN_REEF_POLYGONS_MM54_IN is a polygon shapefile that shows the general locations of Silurian rock reef bank formations in Indiana. These data include two major...

8. Image segmentation by hierarchial agglomeration of polygons using ecological statistics

Science.gov (United States)

2013-04-23

A method for rapid hierarchical image segmentation based on perceptually driven contour completion and scene statistics is disclosed. The method begins with an initial fine-scale segmentation of an image, such as obtained by perceptual completion of partial contours into polygonal regions using region-contour correspondences established by Delaunay triangulation of edge pixels as implemented in VISTA. The resulting polygons are analyzed with respect to their size and color/intensity distributions and the structural properties of their boundaries. Statistical estimates of granularity of size, similarity of color, texture, and saliency of intervening boundaries are computed and formulated into logical (Boolean) predicates. The combined satisfiability of these Boolean predicates by a pair of adjacent polygons at a given segmentation level qualifies them for merging into a larger polygon representing a coarser, larger-scale feature of the pixel image and collectively obtains the next level of polygonal segments in a hierarchy of fine-to-coarse segmentations. The iterative application of this process precipitates textured regions as polygons with highly convolved boundaries and helps distinguish them from objects which typically have more regular boundaries. The method yields a multiscale decomposition of an image into constituent features that enjoy a hierarchical relationship with features at finer and coarser scales. This provides a traversable graph structure from which feature content and context in terms of other features can be derived, aiding in automated image understanding tasks. The method disclosed is highly efficient and can be used to decompose and analyze large images.

9. Aberdeen polygons: computer displays of physiological profiles for intensive care.

Science.gov (United States)

Green, C A; Logie, R H; Gilhooly, K J; Ross, D G; Ronald, A

1996-03-01

The clinician in an intensive therapy unit is presented regularly with a range of information about the current physiological state of the patients under care. This information typically comes from a variety of sources and in a variety of formats. A more integrated form of display incorporating several physiological parameters may be helpful therefore. Three experiments are reported that explored the potential use of analogue, polygon diagrams to display physiological data from patients undergoing intensive therapy. Experiment 1 demonstrated that information can be extracted readily from such diagrams comprising 8- or 10-sided polygons, but with an advantage for simpler polygons and for information displayed at the top of the diagram. Experiment 2 showed that colour coding removed these biases for simpler polygons and the top of the diagram, together with speeding the processing time. Experiment 3 used polygons displaying patterns of physiological data that were consistent with typical conditions observed in the intensive care unit. It was found that physicians can readily learn to recognize these patterns and to diagnose both the nature and severity of the patient's physiological state. These polygon diagrams appear to have some considerable potential for use in providing on-line summary information of a patient's physiological state.

10. Water polygons in high-resolution protein crystal structures.

Science.gov (United States)

Lee, Jonas; Kim, Sung-Hou

2009-07-01

We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 A resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of "stable" water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.

11. Vigorous convection as the explanation for Pluto's polygonal terrain.

Science.gov (United States)

Trowbridge, A J; Melosh, H J; Steckloff, J K; Freed, A M

2016-06-02

Pluto's surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum's polygons and the dimensions of the 'floating mountains' (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years.

12. A new convexity measure for polygons.

Science.gov (United States)

Zunic, Jovisa; Rosin, Paul L

2004-07-01

Abstract-Convexity estimators are commonly used in the analysis of shape. In this paper, we define and evaluate a new convexity measure for planar regions bounded by polygons. The new convexity measure can be understood as a "boundary-based" measure and in accordance with this it is more sensitive to measured boundary defects than the so called "area-based" convexity measures. When compared with the convexity measure defined as the ratio between the Euclidean perimeter of the convex hull of the measured shape and the Euclidean perimeter of the measured shape then the new convexity measure also shows some advantages-particularly for shapes with holes. The new convexity measure has the following desirable properties: 1) the estimated convexity is always a number from (0, 1], 2) the estimated convexity is 1 if and only if the measured shape is convex, 3) there are shapes whose estimated convexity is arbitrarily close to 0, 4) the new convexity measure is invariant under similarity transformations, and 5) there is a simple and fast procedure for computing the new convexity measure.

13. Bifurcation of self-folded polygonal bilayers

Science.gov (United States)

Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy

2017-09-01

Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.

14. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

Science.gov (United States)

Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

2016-03-01

In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

15. A QUALITY ASSESSMENT METHOD FOR 3D ROAD POLYGON OBJECTS

Directory of Open Access Journals (Sweden)

L. Gao

2015-08-01

Full Text Available With the development of the economy, the fast and accurate extraction of the city road is significant for GIS data collection and update, remote sensing images interpretation, mapping and spatial database updating etc. 3D GIS has attracted more and more attentions from academics, industries and governments with the increase of requirements for interoperability and integration of different sources of data. The quality of 3D geographic objects is very important for spatial analysis and decision-making. This paper presents a method for the quality assessment of the 3D road polygon objects which is created by integrating 2D Road Polygon data with LiDAR point cloud and other height information such as Spot Height data in Hong Kong Island. The quality of the created 3D road polygon data set is evaluated by the vertical accuracy, geometric and attribute accuracy, connectivity error, undulation error and completeness error and the final results are presented.

16. Long-term repetition priming with symmetrical polygons and words.

Science.gov (United States)

Kersteen-Tucker, Z

1991-01-01

In two different tasks, subjects were asked to make lexical decisions (word or nonword) and symmetry judgments (symmetrical or nonsymmetrical) about two-dimensional polygons. In both tasks, every stimulus was repeated at one of four lags (0, 1, 4, or 8 items interposed between the first and second stimulus presentations). This paradigm, known as repetition priming, revealed comparable short-term priming (Lag 0) and long-term priming (Lags 1, 4, and 8) both for symmetrical polygons and for words. A shorter term component (Lags 0 and 1) of priming was observed for nonwords, and only very short-term priming (Lag 0) was observed for nonsymmetrical polygons. These results indicate that response facilitation accruing from repeated exposure can be observed for stimuli that have no preexisting memory representations and suggest that perceptual factors contribute to repetition-priming effects.

17. Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996

Data.gov (United States)

National Aeronautics and Space Administration — The Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996 consists of 2042 polygons for selected hazardous waste sites...

18. United States National Grid for New Mexico, UTM 12, (1000m X 1000m polygons )

Data.gov (United States)

Earth Data Analysis Center, University of New Mexico — This is a polygon feature data layer of United States National Grid (1000m x 1000m polygons ) constructed by the Center for Interdisciplinary Geospatial Information...

19. United States National Grid for New Mexico, UTM 13, (1000m X 1000m polygons )

Data.gov (United States)

Earth Data Analysis Center, University of New Mexico — This is a polygon feature data layer of United States National Grid (1000m x 1000m polygons ) constructed by the Center for Interdisciplinary Geospatial Information...

20. A fast direct sampling algorithm for equilateral closed polygons

International Nuclear Information System (INIS)

Cantarella, Jason; Duplantier, Bertrand; Shonkwiler, Clayton; Uehara, Erica

2016-01-01

Sampling equilateral closed polygons is of interest in the statistical study of ring polymers. Over the past 30 years, previous authors have proposed a variety of simple Markov chain algorithms (but have not been able to show that they converge to the correct probability distribution) and complicated direct samplers (which require extended-precision arithmetic to evaluate numerically unstable polynomials). We present a simple direct sampler which is fast and numerically stable, and analyze its runtime using a new formula for the volume of equilateral polygon space as a Dirichlet-type integral. (paper)

1. Polygons of global undersea features for geographic searches

Science.gov (United States)

Hartwell, Stephen R.; Wingfield, Dana K.; Allwardt, Alan O.; Lightsom, Frances L.; Wong, Florence L.

2018-01-01

A shapefile of 311 undersea features from all major oceans and seas has been created as an aid for retrieving georeferenced information resources. Geospatial information systems with the capability to search user-defined, polygonal geographic areas will be able to utilize this shapefile or secondary products derived from it, such as linked data based on well-known text representations of the individual polygons within the shapefile. Version 1.1 of this report also includes a linked data representation of 299 of these features and their spatial extents.

2. Avaliação de três cultivares de Panicum maximum Jacq. sob pastejo: composição da dieta, consumo de matéria seca e ganho de peso animal Evaluation of three varieties of Panicum maximum Jacq. under grazing: diet composition, dry matter intake and animal weight gain

Directory of Open Access Journals (Sweden)

Patrícia Amarante Brâncio

2003-10-01

Full Text Available Três cultivares de Panicum maximum Jacq. submetidos a pastejo rotativo foram avaliados ao longo do ano, antes e após o período de pastejo, quanto à composição botânica e química da dieta, consumo de matéria seca e ganho de peso animal. Os tratamentos constituíram em: 1 cv. Tanzânia + 50 kg/ha de N, 2 cv. Tanzânia + 100 kg/ha de N, 3 cv. Mombaça + 50 kg/ha de N, e 4 cv. Massai + 50 kg/ha de N. As dietas selecionadas pelos animais na cv. Massai tenderam a apresentar os menores valores de digestibilidade e proteína bruta e os maiores de fibra em detergente neutro, enquanto na cv. Mombaça as dietas continham, em geral, maiores teores de sílica. Os animais selecionaram, em média, 92,4% de folhas verdes, independentemente do tratamento e da época de amostragem. Os animais consumiram semelhantes quantidades de forragem nos diversos tratamentos, apresentando, em média, consumos de 1,9; 2,8; 3,4; e 2,3 kgMS/100kgPV, respectivamente, em junho, setembro e novembro de 1998 e março de 1999. Os piores resultados quanto ao ganho de peso por animal foram verificados na cv. Massai, mas, devido a sua alta capacidade de suporte na época chuvosa, superou a cv. Mombaça e cv. Tanzânia + 50 kg/ha de N, em termos de ganho de peso por área. A participação de folhas, a altura do pasto, o teor de proteína bruta da dieta selecionada pelos animais e o tamanho de bocado foram os fatores que mais influenciaram positivamente o ganho de peso animal.Three varieties of Panicum maximum Jacq. were evaluated by measuring the botanical and chemical composition of the diet, and the dry matter intake and weight gain of the animal under rotational grazing, before and after a period of grazing. The treatments were: 1 v. Tanzânia + 50 kg N/ha, 2 v. Tanzânia + 100 kg N/ha, 3 v. Mombaça + 50 kg N/ha, and 4 v. Massai + 50 kg N/ha. Of the diets selected by the animals, v. Massai tended to show lower values for digestibility and crude protein, and higher values

3. Decomposition of orthogonal polygons in a set of rectanglеs

OpenAIRE

Shestakov, E.; Voronov, A.

2009-01-01

Algorithm for covering orthogonal integrated circuit layout objects is considered. Objects of the research are special single-connected orthogonal polygons which are generated during decomposition of any multiply connected polygon in a set of single-connected orthogonal polygons. Developed algorithm for covering polygons based on the mathematical techinque of logic matrix transformation. Results described in this paper, can be applied in computer geometry and image analysis.

4. Spectral analysis of point-vortex dynamics : first application to vortex polygons in a circular domain

NARCIS (Netherlands)

Speetjens, M.F.M.; Meleshko, V.V.; Heijst, van G.J.F.

2014-01-01

The present study addresses the classical problem of the dynamics and stability of a cluster of N point vortices of equal strength arranged in a polygonal configuration ("N-vortex polygons"). In unbounded domains, such N-vortex polygons are unconditionally stable for N

5. Irradiation and contamination owed to nuclear weapons experimentations on the Kazakhstan Semipalatinsk polygon

International Nuclear Information System (INIS)

Chenal, C.

1996-01-01

Semipalatinsk in Kazakhstan was one of the nuclear weapons polygon for atmospheric, excavation and underground tests. After a description of the actual state of the polygon, a dosimetric approach inside and outside the polygon is presented from 1949 to 1989. (A.B.). 5 refs., 3 figs., 5 tabs

6. Knotting probability of self-avoiding polygons under a topological constraint

Science.gov (United States)

Uehara, Erica; Deguchi, Tetsuo

2017-09-01

We define the knotting probability of a knot K by the probability for a random polygon or self-avoiding polygon (SAP) of N segments having the knot type K. We show fundamental and generic properties of the knotting probability particularly its dependence on the excluded volume. We investigate them for the SAP consisting of hard cylindrical segments of unit length and radius rex. For various prime and composite knots, we numerically show that a compact formula describes the knotting probabilities for the cylindrical SAP as a function of segment number N and radius rex. It connects the small-N to the large-N behavior and even to lattice knots in the case of large values of radius. As the excluded volume increases, the maximum of the knotting probability decreases for prime knots except for the trefoil knot. If it is large, the trefoil knot and its descendants are dominant among the nontrivial knots in the SAP. From the factorization property of the knotting probability, we derive a sum rule among the estimates of a fitting parameter for all prime knots, which suggests the local knot picture and the dominance of the trefoil knot in the case of large excluded volumes. Here we remark that the cylindrical SAP gives a model of circular DNA which is negatively charged and semiflexible, where radius rex corresponds to the screening length.

7. Knotting probability of self-avoiding polygons under a topological constraint.

Science.gov (United States)

Uehara, Erica; Deguchi, Tetsuo

2017-09-07

We define the knotting probability of a knot K by the probability for a random polygon or self-avoiding polygon (SAP) of N segments having the knot type K. We show fundamental and generic properties of the knotting probability particularly its dependence on the excluded volume. We investigate them for the SAP consisting of hard cylindrical segments of unit length and radius r ex . For various prime and composite knots, we numerically show that a compact formula describes the knotting probabilities for the cylindrical SAP as a function of segment number N and radius r ex . It connects the small-N to the large-N behavior and even to lattice knots in the case of large values of radius. As the excluded volume increases, the maximum of the knotting probability decreases for prime knots except for the trefoil knot. If it is large, the trefoil knot and its descendants are dominant among the nontrivial knots in the SAP. From the factorization property of the knotting probability, we derive a sum rule among the estimates of a fitting parameter for all prime knots, which suggests the local knot picture and the dominance of the trefoil knot in the case of large excluded volumes. Here we remark that the cylindrical SAP gives a model of circular DNA which is negatively charged and semiflexible, where radius r ex corresponds to the screening length.

8. PolyFit: Polygonal Surface Reconstruction from Point Clouds

KAUST Repository

Nan, Liangliang; Wonka, Peter

2017-01-01

We propose a novel framework for reconstructing lightweight polygonal surfaces from point clouds. Unlike traditional methods that focus on either extracting good geometric primitives or obtaining proper arrangements of primitives, the emphasis of this work lies in intersecting the primitives (planes only) and seeking for an appropriate combination of them to obtain a manifold polygonal surface model without boundary.,We show that reconstruction from point clouds can be cast as a binary labeling problem. Our method is based on a hypothesizing and selection strategy. We first generate a reasonably large set of face candidates by intersecting the extracted planar primitives. Then an optimal subset of the candidate faces is selected through optimization. Our optimization is based on a binary linear programming formulation under hard constraints that enforce the final polygonal surface model to be manifold and watertight. Experiments on point clouds from various sources demonstrate that our method can generate lightweight polygonal surface models of arbitrary piecewise planar objects. Besides, our method is capable of recovering sharp features and is robust to noise, outliers, and missing data.

9. Determination of wave direction from linear and polygonal arrays

Digital Repository Service at National Institute of Oceanography (India)

Fernandes, A.A; Gouveia, A; Nagarajan, R.

documentation of Borgman (1974) in case of linear arrays; and the second issue being the failure of Esteva (1976, 1977) to correctly determine wave directions over the design range 25 to 7 sec of his polygonal array. This paper presents requisite documentation...

10. Vibrational resonances of nonrigid vehicles: Polygonization and ripple patterns

NARCIS (Netherlands)

Dekker, H.

2009-01-01

The well-known phenomenon of ripples on roads has its modern counterpart in ripple patterns on railroads and polygonization of wheels on state-of-the-art lightrail streetcars. Here we study an idealized mechanical suspension model for the vibrational frequency response of a buggy with a nonrigid

11. design chart procedures for polygonal concrete-filled steel columns

African Journals Online (AJOL)

hexagonal and octagonal steel-concrete composite columns subjected to ... This paper also outlines procedures that will enable preparation of ... buildings and in a variety of large-span building ... Likewise, hot-rolled steel tubes are used while ... small moderate large. Fig. 2. Possible arrangement of composite polygonal ...

12. A Teaching Polygon Makes Learning a Community Enterprise

Science.gov (United States)

Colgan, Mark; DeLong, Matt

2015-01-01

In order to strengthen departmental collegiality and improve teaching, our mathematics department instituted a Teaching Polygon. Building on the faculty development idea of Teaching Squares, each member of our department visited one class taught by every other department member in a round-robin fashion during the school year. The visits were…

13. Sub-wavelength resonances in polygonal metamaterial cylinders

DEFF Research Database (Denmark)

Arslanagic, Samel; Breinbjerg, Olav

2008-01-01

It has been shown that the sub-wavelength resonances of circular MTM cylinders also occur for polygonal MTM cylinders. This is the case for lossless and non-dispersive cylinders as well as lossy and dispersive cylinders. The sub-wavelength resonances are thus not limited to structures of canonical...

14. Polygons, Pillars and Pavilions: Discovering Connections between Geometry and Architecture

Science.gov (United States)

2017-01-01

Crowning the second semester of geometry, taught within a Catholic middle school, the author's students explored connections between the geometry of regular polygons and architecture of local buildings. They went on to explore how these principles apply famous buildings around the world such as the monuments of Washington, D.C. and the elliptical…

15. Computing the Fréchet distance between folded polygons

NARCIS (Netherlands)

Cook IV, A.F.; Driemel, A.; Sherette, J.; Wenk, C.

2015-01-01

Computing the Fréchet distance for surfaces is a surprisingly hard problem and the only known polynomial-time algorithm is limited to computing it between flat surfaces. We study the problem of computing the Fréchet distance for a class of non-flat surfaces called folded polygons. We present a

16. PolyFit: Polygonal Surface Reconstruction from Point Clouds

KAUST Repository

Nan, Liangliang

2017-12-25

We propose a novel framework for reconstructing lightweight polygonal surfaces from point clouds. Unlike traditional methods that focus on either extracting good geometric primitives or obtaining proper arrangements of primitives, the emphasis of this work lies in intersecting the primitives (planes only) and seeking for an appropriate combination of them to obtain a manifold polygonal surface model without boundary.,We show that reconstruction from point clouds can be cast as a binary labeling problem. Our method is based on a hypothesizing and selection strategy. We first generate a reasonably large set of face candidates by intersecting the extracted planar primitives. Then an optimal subset of the candidate faces is selected through optimization. Our optimization is based on a binary linear programming formulation under hard constraints that enforce the final polygonal surface model to be manifold and watertight. Experiments on point clouds from various sources demonstrate that our method can generate lightweight polygonal surface models of arbitrary piecewise planar objects. Besides, our method is capable of recovering sharp features and is robust to noise, outliers, and missing data.

17. Null-polygonal minimal surfaces in AdS4 from perturbed W minimal models

International Nuclear Information System (INIS)

Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji

2012-11-01

We study the null-polygonal minimal surfaces in AdS 4 , which correspond to the gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling. The area of the minimal surfaces with n cusps is characterized by the thermodynamic Bethe ansatz (TBA) integral equations or the Y-system of the homogeneous sine-Gordon model, which is regarded as the SU(n-4) 4 /U(1) n-5 generalized parafermion theory perturbed by the weight-zero adjoint operators. Based on the relation to the TBA systems of the perturbed W minimal models, we solve the TBA equations by using the conformal perturbation theory, and obtain the analytic expansion of the remainder function around the UV/regular-polygonal limit for n = 6 and 7. We compare the rescaled remainder function for n=6 with the two-loop one, to observe that they are close to each other similarly to the AdS 3 case.

18. Null-polygonal minimal surfaces in AdS{sub 4} from perturbed W minimal models

Energy Technology Data Exchange (ETDEWEB)

Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ito, Katsushi [Tokyo Institute of Technology (Japan). Dept. of Physics; Satoh, Yuji [Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Physics

2012-11-15

We study the null-polygonal minimal surfaces in AdS{sub 4}, which correspond to the gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling. The area of the minimal surfaces with n cusps is characterized by the thermodynamic Bethe ansatz (TBA) integral equations or the Y-system of the homogeneous sine-Gordon model, which is regarded as the SU(n-4){sub 4}/U(1){sup n-5} generalized parafermion theory perturbed by the weight-zero adjoint operators. Based on the relation to the TBA systems of the perturbed W minimal models, we solve the TBA equations by using the conformal perturbation theory, and obtain the analytic expansion of the remainder function around the UV/regular-polygonal limit for n = 6 and 7. We compare the rescaled remainder function for n=6 with the two-loop one, to observe that they are close to each other similarly to the AdS{sub 3} case.

19. Maximum stellar iron core mass

60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

20. Modeling of chromosome intermingling by partially overlapping uniform random polygons.

Science.gov (United States)

Blackstone, T; Scharein, R; Borgo, B; Varela, R; Diao, Y; Arsuaga, J

2011-03-01

During the early phase of the cell cycle the eukaryotic genome is organized into chromosome territories. The geometry of the interface between any two chromosomes remains a matter of debate and may have important functional consequences. The Interchromosomal Network model (introduced by Branco and Pombo) proposes that territories intermingle along their periphery. In order to partially quantify this concept we here investigate the probability that two chromosomes form an unsplittable link. We use the uniform random polygon as a crude model for chromosome territories and we model the interchromosomal network as the common spatial region of two overlapping uniform random polygons. This simple model allows us to derive some rigorous mathematical results as well as to perform computer simulations easily. We find that the probability that one uniform random polygon of length n that partially overlaps a fixed polygon is bounded below by 1 − O(1/√n). We use numerical simulations to estimate the dependence of the linking probability of two uniform random polygons (of lengths n and m, respectively) on the amount of overlapping. The degree of overlapping is parametrized by a parameter [Formula: see text] such that [Formula: see text] indicates no overlapping and [Formula: see text] indicates total overlapping. We propose that this dependence relation may be modeled as f (ε, m, n) = [Formula: see text]. Numerical evidence shows that this model works well when [Formula: see text] is relatively large (ε ≥ 0.5). We then use these results to model the data published by Branco and Pombo and observe that for the amount of overlapping observed experimentally the URPs have a non-zero probability of forming an unsplittable link.

1. Approximate Shortest Homotopic Paths in Weighted Regions

KAUST Repository

Cheng, Siu-Wing; Jin, Jiongxin; Vigneron, Antoine; Wang, Yajun

2010-01-01

Let P be a path between two points s and t in a polygonal subdivision T with obstacles and weighted regions. Given a relative error tolerance ε ∈(0,1), we present the first algorithm to compute a path between s and t that can be deformed to P

2. Approximate shortest homotopic paths in weighted regions

KAUST Repository

Cheng, Siuwing; Jin, Jiongxin; Vigneron, Antoine E.; Wang, Yajun

2012-01-01

A path P between two points s and t in a polygonal subdivision T with obstacles and weighted regions defines a class of paths that can be deformed to P without passing over any obstacle. We present the first algorithm that, given P and a relative

3. Logarithmic solution to the line-polygon intersection problem. 127

International Nuclear Information System (INIS)

Siddon, R.L.; Barth, N.H.

1987-01-01

Algorithmic solution for a special case of the line - polygon intersection problem has been developed. The special case involves repeated solution to the problem where one point on the line is held fixed and the other allowed to vary. In addition, the fixed point on the line must lie outside the rectangle defined by the extrema of the polygon and varying point. In radiotherapy applications, the fixed point corresponds to the source of radiation, whereas the varying points refer to the grid of multiple calculation points. For smooth contours of 100-200 vertices, it is found that the new algorithm results in a CPU savings of approximately a factor of 3-5. 3 refs.; 4 figs

4. Exact moduli space metrics for hyperbolic vortex polygons

International Nuclear Information System (INIS)

Krusch, S.; Speight, J. M.

2010-01-01

Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as Σ n,m , are spaces of C n -invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of Σ n,m are investigated, and it is found that Σ n,n-1 is isometric to the hyperbolic plane of curvature -(3πn) -1 . The geodesic flow on Σ n,m and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ['The dynamics of Chern-Simons vortices', Phys. Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail.

5. Electron localization and optical absorption of polygonal quantum rings

Science.gov (United States)

Sitek, Anna; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

2015-06-01

We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.

6. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

Science.gov (United States)

Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

2014-01-01

We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

7. Invariant polygons in systems with grazing-sliding.

Science.gov (United States)

Szalai, R; Osinga, H M

2008-06-01

The paper investigates generic three-dimensional nonsmooth systems with a periodic orbit near grazing-sliding. We assume that the periodic orbit is unstable with complex multipliers so that two dominant frequencies are present in the system. Because grazing-sliding induces a dimension loss and the instability drives every trajectory into sliding, the system has an attractor that consists of forward sliding orbits. We analyze this attractor in a suitably chosen Poincare section using a three-parameter generalized map that can be viewed as a normal form. We show that in this normal form the attractor must be contained in a finite number of lines that intersect in the vertices of a polygon. However the attractor is typically larger than the associated polygon. We classify the number of lines involved in forming the attractor as a function of the parameters. Furthermore, for fixed values of parameters we investigate the one-dimensional dynamics on the attractor.

8. Extending backward polygon beam tracing to glossy scattering surfaces

CSIR Research Space (South Africa)

Duvenhage, B

2011-05-01

Full Text Available to render caustics that could not otherwise be sim- ulated efficiently using the high fidelity forward raytracing and radiosity rendering techniques of the time. Similar to what Heckbert and Hanrahan proposed, Watt [Wat90] used backward polygon beam....: Adaptive radiosity textures for bidi- rectional ray tracing. In SIGGRAPH ?90: Proceedings of the 17th Annual Conference on Computer graphics and Interactive Techniques (New York, NY, USA, 1990), ACM Press, New York, pp. 145?154. [HH84] HECKBERT P. S...

9. Measured Hydrologic Storage Characteristics of Three Major Ice Wedge Polygon Types, Barrow, Alaska

Science.gov (United States)

Chamberlain, A. J.; Liljedahl, A.; Wilson, C. J.; Cable, W.; Romanovsky, V. E.

2014-12-01

Model simulations have suggested that the hydrologic fluxes and stores of Arctic wetlands are constrained by the micro-topographical features of ice wedge polygons, which are abundant in lowland tundra landscapes. Recently observed changes in ice wedge polygon landscapes - in particular, ice wedge degradation and trough formation - emphasize the need to better understand how differing ice wedge polygon morphologies affect the larger hydrologic system. Here we present three seasons of measured end-of-winter snow accumulation, continuous soil moisture and water table elevations, and repeated frost table mapping. Together, these describe the hydrologic characteristics of three main ice wedge polygon types: low centered polygons with limited trough development (representative of a ~500 year old vegetated drained thaw lake basin), and low- and high-centered polygons with well-defined troughs. Dramatic spatiotemporal variability exists both between polygon types and between the features of an individual polygon (e.g. troughs, centers, rims). Landscape-scale end-of-winter snow water equivalent is similar between polygon types, while the sub-polygon scale distribution of the surface water differs, both as snow and as ponded water. Some sub-polygon features appear buffered against large variations in water levels, while others display periods of prolonged recessions and large responses to rain events. Frost table elevations in general mimic the ground surface topography, but with spatiotemporal variability in thaw rate. The studied thaw seasons represented above long-term average rainfall, and in 2014, record high June precipitation. Differing ice wedge polygon types express dramatically different local hydrology, despite nearly identical climate forcing and landscape-scale snow accumulation, making ice wedge polygons an important component when describing the Arctic water, nutrient and energy system.

10. A Novel Polygonal Finite Element Method: Virtual Node Method

Science.gov (United States)

Tang, X. H.; Zheng, C.; Zhang, J. H.

2010-05-01

Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.

11. Properties of regular polygons of coupled microring resonators.

Science.gov (United States)

Chremmos, Ioannis; Uzunoglu, Nikolaos

2007-11-01

The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.

12. PolyRES: A polygon-based Richards equation solver

International Nuclear Information System (INIS)

Hills, R.G.

1995-12-01

This document describes the theory, implementation, and use of a software package designed to solve the transient, two-dimensional, Richards equation for water flow in unsaturated-saturated soils. This package was specifically designed to model complex geometries with minimal input from the user and to simulate groundwater flow related to assessment of low-level radioactive waste disposal sites and engineered facilities. The spatial variation of the hydraulic properties can be defined across individual polygon-shaped subdomains, called objects. These objects combine to form a polygon-shaped model domain. Each object can have its own distribution of hydraulic parameters. The resulting model domain and polygon-shaped internal objects are mapped onto a rectangular, finite-volume, computational grid by a preprocessor. This allows the user to specify model geometry independently of the underlying grid and greatly simplifies user input for complex geometries. In addition, this approach significantly reduces the computational requirements since complex geometries are actually modeled on a rectangular grid. This results in well-structured, finite difference-like systems of equations that require minimal storage and are very efficient to solve. The documentation for this software package includes a user's manual, a detailed description of the underlying theory, and a detailed discussion of program flow. Several example problems are presented that show the use and features of the software package. The water flow predictions for several of these example problems are compared to those of another algorithm to test for prediction equivalency

13. A model of anelastic relaxation associated with polygonization boundary

International Nuclear Information System (INIS)

Yan, S.C.

1990-01-01

A model of anelastic relaxation associated with polygonization boundary is proposed in order to explain internal friction peaks and other experimental phenomena observed recently. The model, which is referred to as vacancy-thermal jog model, shows that under conditions of high temperature and low applied stress with lower frequencies of vibration, thermal jog pairs are generated on dislocation segments of the boundaries. These jogs are in saturation with vacancies in the vicinity of them, and the vacancy current due to the concentration gradient of vacancy drifts among the boundaries. As a result, a diffusional creep is produced and a part of energy is dissipated. For vacancy drift, it is required that the thermal jogs emit (absorb) vacancies, which brings climbing bow of segments into operation, and another part of energy is dissipated so that there are two parts of energy dissipated in the strain process connected with polygonization boundary. Based on this point of view, the mathematical expressions of internal friction and modulus defect associated with polygonization boundary were subsequently derived and found to be in satisfactory agreement with experiments. (author). 13 refs, 6 figs

14. Curvature of random walks and random polygons in confinement

International Nuclear Information System (INIS)

Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

2013-01-01

The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from π/2 to π. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons. (paper)

15. Electronic properties of carbon nanotubes with polygonized cross sections

International Nuclear Information System (INIS)

Charlier, J.; Lambin, P.; Ebbesen, T.

1996-01-01

The electronic properties of carbon nanotubes having polygonized cross sections instead of purely circular ones, such as recently observed using transmission electron microscopy, are investigated with plane-wave ab initio pseudopotential local-density-functional calculations and simple tight-binding models. Strong σ * -π * hybridization effects occur in zigzag nanotubes due to the high curvature located near the edges of the polygonal cross-section prism. These effects, combined with a lowering of symmetry, dramatically affect the electronic properties of the nanotubes. It is found that modified low-lying conduction-band states are introduced either into the bandgap of insulating nanotubes, or below the degenerate states that form the top of the valence band of metallic nanotubes, leading the corresponding nanostructures to be metals, semimetals, or at least very-small-gap semiconductors. The degree of the polygon representing the cross section of the tube, and the sharpness of the edge angles, are found to be major factors in the hybridization effect, and consequently govern the electronic behavior at the Fermi level. copyright 1996 The American Physical Society

16. The average crossing number of equilateral random polygons

International Nuclear Information System (INIS)

Diao, Y; Dobay, A; Kusner, R B; Millett, K; Stasiak, A

2003-01-01

In this paper, we study the average crossing number of equilateral random walks and polygons. We show that the mean average crossing number ACN of all equilateral random walks of length n is of the form (3/16)n ln n + O(n). A similar result holds for equilateral random polygons. These results are confirmed by our numerical studies. Furthermore, our numerical studies indicate that when random polygons of length n are divided into individual knot types, the for each knot type K can be described by a function of the form = a(n-n 0 )ln(n-n 0 ) + b(n-n 0 ) + c where a, b and c are constants depending on K and n 0 is the minimal number of segments required to form K. The profiles diverge from each other, with more complex knots showing higher than less complex knots. Moreover, the profiles intersect with the profile of all closed walks. These points of intersection define the equilibrium length of K, i.e., the chain length n e (K) at which a statistical ensemble of configurations with given knot type K-upon cutting, equilibration and reclosure to a new knot type K'-does not show a tendency to increase or decrease . This concept of equilibrium length seems to be universal, and applies also to other length-dependent observables for random knots, such as the mean radius of gyration g >

17. Approximate maximum parsimony and ancestral maximum likelihood.

Science.gov (United States)

Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

2010-01-01

We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

18. Maximum permissible dose

International Nuclear Information System (INIS)

Anon.

1979-01-01

This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

19. Small-Scale Polygons and the History of Ground Ice on Mars

Science.gov (United States)

Mellon, Michael T.

2000-01-01

This research has laid a foundation for continued study of permafrost polygons on Mars using the models and understanding discussed here. Further study of polygonal patterns on Mars is proceeding (under new funding) which is expected to reveal more results about the origin of observed martian polygons and what information they contain regarding the recent history of tile martian climate and of water ice on Mars.

20. Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak

International Nuclear Information System (INIS)

Wu Qun; Zhang Kuang; Meng Fanyi; Li Lewei

2009-01-01

Arbitrary N-sided regular polygonal cylindrical cloaks are proposed and designed based on the coordinate transformation theory. First, the general expressions of constitutive tensors of the N-sided regular polygonal cylindrical cloaks are derived, then there are some full-wave simulations of the cloaks that are composed of inhomogeneous and anisotropic metamaterials, which will bend incoming electromagnetic waves and guide them to propagate around the inner region; such electromagnetic waves will return to their original propagation directions without distorting the waves outside the polygonal cloak. The results of full-wave simulations validate the general expressions of constitutive tensors of the N-sided regular polygonal cylindrical cloaks we derived.

1. A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders

DEFF Research Database (Denmark)

Arslanagic, Samel; Breinbjerg, Olav

2009-01-01

The sub-wavelength resonances, known to exist in metamaterial radiators and scatterers of circular cylindrical shape, are investigated with the aim of determining if these resonances also exist for polygonal cylinders and, if so, how they are affected by the shape of the polygon. To this end, a set...... of polygonal cylinders excited by a nearby electric line current is analyzed numerically and it is shown, through detailed analysis of the near-field distribution and radiation resistance, that these polygonal cylinders do indeed support sub-wavelength resonances similar to those of the circular cylinders...

2. Engaging student expeditionary units to land work at aerospace polygons

Directory of Open Access Journals (Sweden)

Ирина Жемерова

2016-10-01

Full Text Available To organize the aerospace polygon it is necessary to conduct a large number of measurement and descriptive works. First and foremost is working with the fund and cartographic material. The map of the landfill shows the most important objects and phenomena: quarries, sinkholes, deep ravines, industrial, residential and protected areas. Organization of the aerospace polygon operation involves large labour costs. To train professionals on the ground research of the earth’s cover remote sensing, we have organized a permanent student expedition. Prior to the start of work, students listen to a series of introductory lectures on remote sensing, principles of ground work, methods of statistical evaluation, basic methods of data collection and processing. This article covers one direction of work - collecting and processing of phytometric data of crops and steppe vegetation in the Streletskaya steppe in the Central Chernozem nature reserve. The work is carried out on the test area of Kursk aerospace polygon, organized on the basis of Kursk biospheric station of the Institute of Geography RAS. A generally accepted method of test platforms is used on the routes. The results of measurements and observations are recorded in a field book. Species diversity, plant height, projective cover and crops density are determined on the sample area by the instrumental and visual methods. The rest phytometric indexes are calculated in laboratory conditions. The students can use the resulting material when writing articles, course and degree works. At the site, students acquire skills of working in field conditions with natural objects, collecting and processing of information by various methods, expanding understanding of the need and importance of the earth surface study by remote sensing methods.

3. The Knot Spectrum of Confined Random Equilateral Polygons

Directory of Open Access Journals (Sweden)

Diao Y.

2014-01-01

Full Text Available It is well known that genomic materials (long DNA chains of living organisms are often packed compactly under extreme confining conditions using macromolecular self-assembly processes but the general DNA packing mechanism remains an unsolved problem. It has been proposed that the topology of the packed DNA may be used to study the DNA packing mechanism. For example, in the case of (mutant bacteriophage P4, DNA molecules packed inside the bacteriophage head are considered to be circular since the two sticky ends of the DNA are close to each other. The DNAs extracted from the capsid without separating the two ends can thus preserve the topology of the (circular DNAs. It turns out that the circular DNAs extracted from bacteriophage P4 are non-trivially knotted with very high probability and with a bias toward chiral knots. In order to study this problem using a systematic approach based on mathematical modeling, one needs to introduce a DNA packing model under extreme volume confinement condition and test whether such a model can produce the kind of knot spectrum observed in the experiments. In this paper we introduce and study a model of equilateral random polygons con_ned in a sphere. This model is not meant to generate polygons that model DNA packed in a virus head directly. Instead, the average topological characteristics of this model may serve as benchmark data for totally randomly packed circular DNAs. The difference between the biologically observed topological characteristics and our benchmark data might reveal the bias of DNA packed in the viral capsids and possibly lead to a better understanding of the DNA packing mechanism, at least for the bacteriophage DNA. The purpose of this paper is to provide information about the knot spectrum of equilateral random polygons under such a spherical confinement with length and confinement ratios in a range comparable to circular DNAs packed inside bacteriophage heads.

4. Giant polygons and mounds in the lowlands of Mars: signatures of an ancient ocean?

Science.gov (United States)

Oehler, Dorothy Z; Allen, Carlton C

2012-06-01

This paper presents the hypothesis that the well-known giant polygons and bright mounds of the martian lowlands may be related to a common process-a process of fluid expulsion that results from burial of fine-grained sediments beneath a body of water. Specifically, we hypothesize that giant polygons and mounds in Chryse and Acidalia Planitiae are analogous to kilometer-scale polygons and mud volcanoes in terrestrial, marine basins and that the co-occurrence of masses of these features in Chryse and Acidalia may be the signature of sedimentary processes in an ancient martian ocean. We base this hypothesis on recent data from both Earth and Mars. On Earth, 3-D seismic data illustrate kilometer-scale polygons that may be analogous to the giant polygons on Mars. The terrestrial polygons form in fine-grained sediments that have been deposited and buried in passive-margin, marine settings. These polygons are thought to result from compaction/dewatering, and they are commonly associated with fluid expulsion features, such as mud volcanoes. On Mars, in Chryse and Acidalia Planitiae, orbital data demonstrate that giant polygons and mounds have overlapping spatial distributions. There, each set of features occurs within a geological setting that is seemingly analogous to that of the terrestrial, kilometer-scale polygons (broad basin of deposition, predicted fine-grained sediments, and lack of significant horizontal stress). Regionally, the martian polygons and mounds both show a correlation to elevation, as if their formation were related to past water levels. Although these observations are based on older data with incomplete coverage, a similar correlation to elevation has been established in one local area studied in detail with newer higher-resolution data. Further mapping with the latest data sets should more clearly elucidate the relationship(s) of the polygons and mounds to elevation over the entire Chryse-Acidalia region and thereby provide more insight into this

5. A fast ergodic algorithm for generating ensembles of equilateral random polygons

Science.gov (United States)

Varela, R.; Hinson, K.; Arsuaga, J.; Diao, Y.

2009-03-01

Knotted structures are commonly found in circular DNA and along the backbone of certain proteins. In order to properly estimate properties of these three-dimensional structures it is often necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths (such polygons are called equilateral random polygons). However finding efficient algorithms that properly sample the space of equilateral random polygons is a difficult problem. Currently there are no proven algorithms that generate equilateral random polygons with its theoretical distribution. In this paper we propose a method that generates equilateral random polygons in a 'step-wise uniform' way. We prove that this method is ergodic in the sense that any given equilateral random polygon can be generated by this method and we show that the time needed to generate an equilateral random polygon of length n is linear in terms of n. These two properties make this algorithm a big improvement over the existing generating methods. Detailed numerical comparisons of our algorithm with other widely used algorithms are provided.

6. Development of polygon elements based on the scaled boundary finite element method

International Nuclear Information System (INIS)

Chiong, Irene; Song Chongmin

2010-01-01

We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.

7. Decompositions, partitions, and coverings with convex polygons and pseudo-triangles

NARCIS (Netherlands)

Aichholzer, O.; Huemer, C.; Kappes, S.; Speckmann, B.; Tóth, Cs.D.

2007-01-01

We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex

8. Origin of the Polygons and Underground Structures in Western Utopia Planitia on Mars

Science.gov (United States)

Yoshikawa, K.

2002-01-01

The area of lower albedo (Hvm) has a higher density of polygonal patterns. These patterns potentially suggest that 1) the polygonal pattern is caused primarily by ground heaving and collapsing, 2) lower albedo materials had higher tensile strength. Additional information is contained in the original extended abstract.

9. Analysis of the Misconceptions of 7th Grade Students on Polygons and Specific Quadrilaterals

Science.gov (United States)

Ozkan, Mustafa; Bal, Ayten Pinar

2017-01-01

Purpose: This study will find out student misconceptions about geometrical figures, particularly polygons and quadrilaterals. Thus, it will offer insights into teaching these concepts. The objective of this study, the question of "What are the misconceptions of seventh grade students on polygons and quadrilaterals?" constitutes the…

10. Origami tubes with reconfigurable polygonal cross-sections.

Science.gov (United States)

Filipov, E T; Paulino, G H; Tachi, T

2016-01-01

Thin sheets can be assembled into origami tubes to create a variety of deployable, reconfigurable and mechanistically unique three-dimensional structures. We introduce and explore origami tubes with polygonal, translational symmetric cross-sections that can reconfigure into numerous geometries. The tubular structures satisfy the mathematical definitions for flat and rigid foldability, meaning that they can fully unfold from a flattened state with deformations occurring only at the fold lines. The tubes do not need to be straight and can be constructed to follow a non-linear curved line when deployed. The cross-section and kinematics of the tubular structures can be reprogrammed by changing the direction of folding at some folds. We discuss the variety of tubular structures that can be conceived and we show limitations that govern the geometric design. We quantify the global stiffness of the origami tubes through eigenvalue and structural analyses and highlight the mechanical characteristics of these systems. The two-scale nature of this work indicates that, from a local viewpoint, the cross-sections of the polygonal tubes are reconfigurable while, from a global viewpoint, deployable tubes of desired shapes are achieved. This class of tubes has potential applications ranging from pipes and micro-robotics to deployable architecture in buildings.

11. Origami tubes with reconfigurable polygonal cross-sections

Science.gov (United States)

Filipov, E. T.; Paulino, G. H.; Tachi, T.

2016-01-01

Thin sheets can be assembled into origami tubes to create a variety of deployable, reconfigurable and mechanistically unique three-dimensional structures. We introduce and explore origami tubes with polygonal, translational symmetric cross-sections that can reconfigure into numerous geometries. The tubular structures satisfy the mathematical definitions for flat and rigid foldability, meaning that they can fully unfold from a flattened state with deformations occurring only at the fold lines. The tubes do not need to be straight and can be constructed to follow a non-linear curved line when deployed. The cross-section and kinematics of the tubular structures can be reprogrammed by changing the direction of folding at some folds. We discuss the variety of tubular structures that can be conceived and we show limitations that govern the geometric design. We quantify the global stiffness of the origami tubes through eigenvalue and structural analyses and highlight the mechanical characteristics of these systems. The two-scale nature of this work indicates that, from a local viewpoint, the cross-sections of the polygonal tubes are reconfigurable while, from a global viewpoint, deployable tubes of desired shapes are achieved. This class of tubes has potential applications ranging from pipes and micro-robotics to deployable architecture in buildings. PMID:26997894

12. Transit Traffic Analysis Zone Delineating Method Based on Thiessen Polygon

Directory of Open Access Journals (Sweden)

Shuwei Wang

2014-04-01

Full Text Available A green transportation system composed of transit, busses and bicycles could be a significant in alleviating traffic congestion. However, the inaccuracy of current transit ridership forecasting methods is imposing a negative impact on the development of urban transit systems. Traffic Analysis Zone (TAZ delineating is a fundamental and essential step in ridership forecasting, existing delineating method in four-step models have some problems in reflecting the travel characteristics of urban transit. This paper aims to come up with a Transit Traffic Analysis Zone delineation method as supplement of traditional TAZs in transit service analysis. The deficiencies of current TAZ delineating methods were analyzed, and the requirements of Transit Traffic Analysis Zone (TTAZ were summarized. Considering these requirements, Thiessen Polygon was introduced into TTAZ delineating. In order to validate its feasibility, Beijing was then taken as an example to delineate TTAZs, followed by a spatial analysis of office buildings within a TTAZ and transit station departure passengers. Analysis result shows that the TTAZs based on Thiessen polygon could reflect the transit travel characteristic and is of in-depth research value.

13. Polygonal patterned peatlands of the White Sea islands

Science.gov (United States)

Kutenkov, S. A.; Kozhin, M. N.; Golovina, E. O.; Kopeina, E. I.; Stoikina, N. V.

2018-03-01

The summits and slopes of some islands along the northeastern and northern coasts of the White Sea are covered with dried out peatlands. The thickness of the peat deposit is 30–80 cm and it is separated by troughs into gently sloping polygonal peat blocks up to 20 m2 in size. On some northern islands the peat blocks have permafrost cores. The main components of the dried out peatlands vegetation are dwarf shrubs and lichens. The peat stratigraphy reveals two stages of peatland development. On the first stage, the islands were covered with wet cottongrass carpets, which repeated the convex relief shape. On the second stage, they were occupied by the xeromorphic vegetation. We suggest that these polygonal patterned peatlands are the remnants of blanket bogs, the formation of which assumes the conditions of a much more humid climate in the historical past. The time of their active development was calculated according to the White Sea level changes and radiocarbon dates from 1000–4000 BP.

14. Clastic polygonal networks around Lyot crater, Mars: Possible formation mechanisms from morphometric analysis

Science.gov (United States)

Brooker, L. M.; Balme, M. R.; Conway, S. J.; Hagermann, A.; Barrett, A. M.; Collins, G. S.; Soare, R. J.

2018-03-01

Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (>100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became

15. A Polygon and Point-Based Approach to Matching Geospatial Features

Directory of Open Access Journals (Sweden)

Juan J. Ruiz-Lendínez

2017-12-01

Full Text Available A methodology for matching bidimensional entities is presented in this paper. The matching is proposed for both area and point features extracted from geographical databases. The procedure used to obtain homologous entities is achieved in a two-step process: The first matching, polygon to polygon matching (inter-element matching, is obtained by means of a genetic algorithm that allows the classifying of area features from two geographical databases. After this, we apply a point to point matching (intra-element matching based on the comparison of changes in their turning functions. This study shows that genetic algorithms are suitable for matching polygon features even if these features are quite different. Our results show up to 40% of matched polygons with differences in geometrical attributes. With regards to point matching, the vertex from homologous polygons, the function and threshold values proposed in this paper show a useful method for obtaining precise vertex matching.

16. Maximum Gene-Support Tree

Directory of Open Access Journals (Sweden)

Yunfeng Shan

2008-01-01

Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the ﬁnding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reﬂects the phylogenetic relationship among species in comparison.

17. The average inter-crossing number of equilateral random walks and polygons

International Nuclear Information System (INIS)

Diao, Y; Dobay, A; Stasiak, A

2005-01-01

In this paper, we study the average inter-crossing number between two random walks and two random polygons in the three-dimensional space. The random walks and polygons in this paper are the so-called equilateral random walks and polygons in which each segment of the walk or polygon is of unit length. We show that the mean average inter-crossing number ICN between two equilateral random walks of the same length n is approximately linear in terms of n and we were able to determine the prefactor of the linear term, which is a = 3ln2/8 ∼ 0.2599. In the case of two random polygons of length n, the mean average inter-crossing number ICN is also linear, but the prefactor of the linear term is different from that of the random walks. These approximations apply when the starting points of the random walks and polygons are of a distance ρ apart and ρ is small compared to n. We propose a fitting model that would capture the theoretical asymptotic behaviour of the mean average ICN for large values of ρ. Our simulation result shows that the model in fact works very well for the entire range of ρ. We also study the mean ICN between two equilateral random walks and polygons of different lengths. An interesting result is that even if one random walk (polygon) has a fixed length, the mean average ICN between the two random walks (polygons) would still approach infinity if the length of the other random walk (polygon) approached infinity. The data provided by our simulations match our theoretical predictions very well

18. Maximum Acceleration Recording Circuit

Science.gov (United States)

Bozeman, Richard J., Jr.

1995-01-01

Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

19. Maximum Quantum Entropy Method

OpenAIRE

Sim, Jae-Hoon; Han, Myung Joon

2018-01-01

Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

20. Maximum power demand cost

International Nuclear Information System (INIS)

Biondi, L.

1998-01-01

The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it

1. Deformations of polyhedra and polygons by the unitary group

Energy Technology Data Exchange (ETDEWEB)

Livine, Etera R. [Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d' Italie, Lyon 69007, France and Perimeter Institute, 31 Caroline St N, Waterloo, Ontario N2L 2Y5 (Canada)

2013-12-15

We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient C{sup 2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in C{sup 2} satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N−2)). We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in

Science.gov (United States)

Colleu, T.; Pateux, S.; Morin, L.; Labit, C.

2010-02-01

This paper presents a polygon soup representation for multiview data. Starting from a sequence of multi-view video plus depth (MVD) data, the proposed representation takes into account, in a unified manner, different issues such as compactness, compression, and intermediate view synthesis. The representation is built in two steps. First, a set of 3D quads is extracted using a quadtree decomposition of the depth maps. Second, a selective elimination of the quads is performed in order to reduce inter-view redundancies and thus provide a compact representation. Moreover, the proposed methodology for extracting the representation allows to reduce ghosting artifacts. Finally, an adapted compression technique is proposed that limits coding artifacts. The results presented on two real sequences show that the proposed representation provides a good trade-off between rendering quality and data compactness.

3. Treks into intuitive geometry the world of polygons and polyhedra

CERN Document Server

Akiyama, Jin

2015-01-01

This book is written in a style that uncovers the mathematical theories buried in our everyday lives such as examples from patterns that appear in nature, art, and traditional crafts, and in mathematical mechanisms in techniques used by architects. The authors believe that through dialogues between students and mathematicians, readers may discover the processes by which the founders of the theories came to their various conclusions―their trials, errors, tribulations, and triumphs. The goal is for readers to refine their mathematical sense of how to find good questions and how to grapple with these problems. Another aim is to provide enjoyment in the process of applying mathematical rules to beautiful art and design by examples that highlight the wonders and mysteries from our daily lives. To fulfill these aims, this book deals with the latest unique and beautiful results in polygons and polyhedra and the dynamism of geometrical research history that can be found around us. The term "intuitive geometry" was ...

4. Reachability by paths of bounded curvature in a convex polygon

KAUST Repository

Ahn, Heekap; Cheong, Otfried; Matoušek, Jiřǐ; Vigneron, Antoine E.

2012-01-01

Let B be a point robot moving in the plane, whose path is constrained to forward motions with curvature at most 1, and let P be a convex polygon with n vertices. Given a starting configuration (a location and a direction of travel) for B inside P, we characterize the region of all points of P that can be reached by B, and show that it has complexity O(n). We give an O(n2) time algorithm to compute this region. We show that a point is reachable only if it can be reached by a path of type CCSCS, where C denotes a unit circle arc and S denotes a line segment. © 2011 Elsevier B.V.

5. Vortex breakdown in closed containers with polygonal cross sections

International Nuclear Information System (INIS)

Naumov, I. V.; Dvoynishnikov, S. V.; Kabardin, I. K.; Tsoy, M. A.

2015-01-01

The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position on the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results

6. Convergence of Wachspress coordinates: from polygons to curved domains

KAUST Repository

Kosinka, Jiří

2014-08-08

Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences of Wachspress interpolants and mappings converge as 𝓞(h2) for a sampling step size h of the boundary curve of the domain as h → 0. Several examples are shown to numerically validate the results and to visualise the behaviour of discrete interpolants and mappings as they converge to their smooth counterparts. Empirically, the same convergence order is observed also for mean value coordinates. Moreover, our numerical tests suggest that the convergence of interpolants and mappings is uniform both in the Wachspress and mean value cases. © 2014 Springer Science+Business Media New York.

7. Polygons of differential equations for finding exact solutions

International Nuclear Information System (INIS)

Kudryashov, Nikolai A.; Demina, Maria V.

2007-01-01

A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given

8. Convergence of Wachspress coordinates: from polygons to curved domains

KAUST Repository

Kosinka, Jiří ; Barton, Michael

2014-01-01

Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences of Wachspress interpolants and mappings converge as 𝓞(h2) for a sampling step size h of the boundary curve of the domain as h → 0. Several examples are shown to numerically validate the results and to visualise the behaviour of discrete interpolants and mappings as they converge to their smooth counterparts. Empirically, the same convergence order is observed also for mean value coordinates. Moreover, our numerical tests suggest that the convergence of interpolants and mappings is uniform both in the Wachspress and mean value cases. © 2014 Springer Science+Business Media New York.

9. Generalized Swept Mid-structure for Polygonal Models

KAUST Repository

Martin, Tobias; Chen, Guoning; Musuvathy, Suraj; Cohen, Elaine; Hansen, Charles

2012-01-01

We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced. The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid-structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.

10. Generalized Swept Mid-structure for Polygonal Models

KAUST Repository

Martin, Tobias

2012-05-01

We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced. The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid-structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.

11. An electrophysiological study of the mental rotation of polygons.

Science.gov (United States)

Pierret, A; Peronnet, F; Thevenet, M

1994-05-09

Reaction times and event-related potentials (ERPs) were recorded during a task requiring subjects to decide whether two sequentially presented polygons had the same shape regardless of differences in orientation. Reaction times increased approximately linearly with angular departure from upright orientation, which suggests that mental rotation was involved in the comparison process. The ERPs showed, between 665 and 1055 ms, a late posterior negativity also increasing with angular disparity from upright, which we assumed to reflect mental rotation. Two other activities were exhibited, from 265 to 665 ms, which may be related either to an evaluation of the stimulus or a predetermination of its orientation, and from 1055 to 1600 ms attributed to the decision process.

12. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels

Science.gov (United States)

Tao, Gongquan; Wang, Linfeng; Wen, Zefeng; Guan, Qinghua; Jin, Xuesong

2018-06-01

Experiments were conducted at field sites to investigate the mechanism of the polygonal wear of electric locomotive wheels. The polygonal wear rule of electric locomotive wheels was obtained. Moreover, two on-track tests have been carried out to investigate the vibration characteristics of the electric locomotive's key components. The measurement results of wheels out-of-round show that most electric locomotive wheels exhibit polygonal wear. The main centre wavelength in the 1/3 octave bands is 200 mm and/or 160 mm. The test results of vibration characteristics indicate that the dominating frequency of the vertical acceleration measured on the axle box is approximately equal to the passing frequency of a polygonal wheel, and does not vary with the locomotive speed during the acceleration course. The wheelset modal analysis using the finite element method (FEM) indicates that the first bending resonant frequency of the wheelset is quite close to the main vibration frequency of the axle box. The FEM results are verified by the experimental modal analysis of the wheelset. Moreover, different plans were designed to verify whether the braking system and the locomotive's adhesion control have significant influence on the wheel polygon or not. The test results indicate that they are not responsible for the initiation of the wheel polygon. The first bending resonance of the wheelset is easy to be excited in the locomotive operation and it is the root cause of wheel polygon with centre wavelength of 200 mm in the 1/3 octave bands.

13. A polygonal double-layer coil design for high-efficiency wireless power transfer

Science.gov (United States)

Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

2018-05-01

In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.

14. On reconstruction of an unknown polygonal cavity in a linearized elasticity with one measurement

International Nuclear Information System (INIS)

Ikehata, M; Itou, H

2011-01-01

In this paper we consider a reconstruction problem of an unknown polygonal cavity in a linearized elastic body. For this problem, an extraction formula of the convex hull of the unknown polygonal cavity is established by means of the enclosure method introduced by Ikehata. The advantages of our method are that it needs only a single set of boundary data and we do not require any a priori assumptions for the unknown polygonal cavity and any constraints on boundary data. The theoretical formula may have possibility of application in nondestructive evaluation.

15. The generation algorithm of arbitrary polygon animation based on dynamic correction

Directory of Open Access Journals (Sweden)

Hou Ya Wei

2016-01-01

Full Text Available This paper, based on the key-frame polygon sequence, proposes a method that makes use of dynamic correction to develop continuous animation. Firstly we use quadratic Bezier curve to interpolate the corresponding sides vector of polygon sequence consecutive frame and realize the continuity of animation sequences. And then, according to Bezier curve characteristic, we conduct dynamic regulation to interpolation parameters and implement the changing smoothness. Meanwhile, we take use of Lagrange Multiplier Method to correct the polygon and close it. Finally, we provide the concrete algorithm flow and present numerical experiment results. The experiment results show that the algorithm acquires excellent effect.

16. Maximum likely scale estimation

DEFF Research Database (Denmark)

Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

2005-01-01

A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

17. Robust Maximum Association Estimators

NARCIS (Netherlands)

A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)

2017-01-01

textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation

18. Programmable Nucleic Acid Based Polygons with Controlled Neuroimmunomodulatory Properties for Predictive QSAR Modeling.

Science.gov (United States)

Johnson, Morgan Brittany; Halman, Justin R; Satterwhite, Emily; Zakharov, Alexey V; Bui, My N; Benkato, Kheiria; Goldsworthy, Victoria; Kim, Taejin; Hong, Enping; Dobrovolskaia, Marina A; Khisamutdinov, Emil F; Marriott, Ian; Afonin, Kirill A

2017-11-01

In the past few years, the study of therapeutic RNA nanotechnology has expanded tremendously to encompass a large group of interdisciplinary sciences. It is now evident that rationally designed programmable RNA nanostructures offer unique advantages in addressing contemporary therapeutic challenges such as distinguishing target cell types and ameliorating disease. However, to maximize the therapeutic benefit of these nanostructures, it is essential to understand the immunostimulatory aptitude of such tools and identify potential complications. This paper presents a set of 16 nanoparticle platforms that are highly configurable. These novel nucleic acid based polygonal platforms are programmed for controllable self-assembly from RNA and/or DNA strands via canonical Watson-Crick interactions. It is demonstrated that the immunostimulatory properties of these particular designs can be tuned to elicit the desired immune response or lack thereof. To advance the current understanding of the nanoparticle properties that contribute to the observed immunomodulatory activity and establish corresponding designing principles, quantitative structure-activity relationship modeling is conducted. The results demonstrate that molecular weight, together with melting temperature and half-life, strongly predicts the observed immunomodulatory activity. This framework provides the fundamental guidelines necessary for the development of a new library of nanoparticles with predictable immunomodulatory activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

19. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all hardcopy cartographic products produced as part of the Environmental Sensitivity Index...

20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and anadromous fish species in Central California. Vector polygons in this data set...

1. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in the Hudson River. Vector polygons in this...

2. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: REPTILES (Reptile and Amphibian Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for amphibians and reptiles in Central California. Vector polygons in this data set represent sea turtle...

3. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: MGT (Management Area Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for National Wildlife Refuges in the Aleutian Islands, Alaska. Vector polygons in this data set represent management...

4. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Mississippi: REPTILES (Reptile Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles, estuarine turtles, and gopher tortoise in Mississippi. Vector polygons in this data set...

5. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all hardcopy cartographic products produced as part of the Environmental Sensitivity Index...

6. Abandoned Uranium Mine (AUM) Region Polygons, Navajo Nation, 2016, US EPA Region 9

Data.gov (United States)

U.S. Environmental Protection Agency — This GIS dataset contains polygon features representing the boundaries of the six Abandoned Uranium Mines (AUM) Regions, including the: Central, Eastern, Northern,...

7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northwest Arctic, Alaska: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, freshwater, and anadromous fish species in Northwest Arctic, Alaska. Vector polygons...

8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Mississippi: WETLANDS (Wetland Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing coastal wetlands classified according to the Environmental Sensitivity Index (ESI) classification system for...

9. Cook Inlet and Kenai Peninsula, Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for marine mammals in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...

10. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species for the Hudson River. Vector polygons in this data set...

11. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Mississippi: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphin and manatees in Mississippi. Vector polygons in this data set represent marine mammal...

12. National Coastal Condition Assessment (NCCA) Sampling Areas Polygons, Hawaiian Islands Shoreline, 2015, US EPA Region 9

Data.gov (United States)

U.S. Environmental Protection Agency — This is a polygon feature dataset with areas along the shoreline of the Hawaiian islands. The National Coastal Condition Assessment (NCCA) is a national coastal...

13. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all hardcopy cartographic products produced as part of the Environmental Sensitivity Index...

14. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: HABITATS (Habitat Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for endangered plants for the Upper Coast of Texas. Vector polygons in this data set represent occurrence...

15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine fish species in South Florida. Vector polygons in this data set represent fish...

16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all hardcopy cartographic products produced as part of the Environmental Sensitivity Index...

17. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for South...

18. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: BENTHIC (Benthic Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains benthic habitats, including coral reef and hardbottom, seagrass, algae, and others in [for] South Florida. Vector polygons in the data set...

19. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: ESIP (ESI Shoreline Types - Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — The ESIP data set contains vector polygons representing the shoreline and coastal habitats of South Florida classified according to the Environmental Sensitivity...

20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northern California: REPTILES (Reptile and Amphibian Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles and estuarine frogs and turtles in Northern California. Vector polygons in this data set...

1. National Priorities List (NPL) Site Polygons, Region 9, 2012, US EPA Region 9

Data.gov (United States)

U.S. Environmental Protection Agency — NPL site POLYGON locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

2. National Priorities List (NPL) Site Polygons, Region 9, 2010, US EPA Region 9

Data.gov (United States)

U.S. Environmental Protection Agency — NPL site POLYGON locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

3. AMCO Off-Site Air Monitoring Polygons, Oakland CA, 2017, US EPA Region 9

Data.gov (United States)

U.S. Environmental Protection Agency — This feature class was developed to support the AMCO Chemical Superfund Site air monitoring process and depicts a single polygon layer, Off-Site Air Monitors,...

4. National Priorities List (NPL) Site Polygons, Region 9, 2014, US EPA Region 9

Data.gov (United States)

U.S. Environmental Protection Agency — NPL site POLYGON locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

5. National Priorities List (NPL) Site Polygons, Region 9, 2013, US EPA Region 9

Data.gov (United States)

U.S. Environmental Protection Agency — NPL site POLYGON locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

6. National Priorities List (NPL) Site Polygons, Region 9, 2015, US EPA Region 9

Data.gov (United States)

U.S. Environmental Protection Agency — NPL site POLYGON locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

7. Guam and the Northern Mariana Islands ESI: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphins in Guam and the Northern Mariana Islands. Vector polygons in this data set represent marine...

8. Coastal Resources Atlas: Long Island: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for northern river otter, mink, muskrat, and beaver for Long Island, New York. Vector polygons in this data...

9. National Priorities List (NPL) Site Polygons, Region 9, 2017, US EPA Region 9

Data.gov (United States)

U.S. Environmental Protection Agency — NPL site POLYGON locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

10. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northwest Arctic, Alaska: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species in Northwest Arctic, Alaska. Vector polygons in this data set...

11. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Mississippi: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and brackish water invertebrate species in Mississippi. Vector polygons in this data...

12. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: REPTILES (Reptile Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles and select estuarine/freshwater reptiles for the Florida Panhandle. Vector polygons in this...

13. Rhode Island, Connecticut, New York, and New Jersey ESI: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of the U.S. Geological Survey 1:24,000 topographic maps and other map and digital data boundaries...

14. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: New Hampshire: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, and estuarine invertebrate species in New Hampshire. Vector polygons in this data set represent...

15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species for the Upper Coast of Texas. Vector polygons in this data...

16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and freshwater fish species for the Upper Coast of Texas. Vector polygons in this...

17. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species in South Florida. Vector polygons in this data set represent...

18. Coastal Resources Atlas: Long Island: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, and porpoises for Long Island, New York. Vector polygons in this data set represent...

19. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: North Carolina: INVERT (Invertebrate Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species in North Carolina. Vector polygons in this data set represent...

20. Quasi regular polygons and their duals with Coxeter symmetries Dn represented by complex numbers

International Nuclear Information System (INIS)

Koca, M; Koca, N O

2011-01-01

This paper deals with tiling of the plane by quasi regular polygons and their duals. The problem is motivated from the fact that the graphene, infinite number of carbon molecules forming a honeycomb lattice, may have states with two bond lengths and equal bond angles or one bond length and different bond angles. We prove that the Euclidean plane can be tiled with two tiles consisting of quasi regular hexagons with two different lengths (isogonal hexagons) and regular hexagons. The dual lattice is constructed with the isotoxal hexagons (equal edges but two different interior angles) and regular hexagons. We also give similar tilings of the plane with the quasi regular polygons along with the regular polygons possessing the Coxeter symmetries D n , n=2,3,4,5. The group elements as well as the vertices of the polygons are represented by the complex numbers.

1. The packing of two species of polygons on the square lattice

International Nuclear Information System (INIS)

Dei Cont, David; Nienhuis, Bernard

2004-01-01

We decorate the square lattice with two species of polygons under the constraint that every lattice edge is covered by only one polygon and every vertex is visited by both types of polygons. We end up with a 24-vertex model which is known in the literature as the fully packed double loop model (FPL 2 ). In the particular case in which the fugacities of the polygons are the same, the model admits an exact solution. The solution is obtained using coordinate Bethe ansatz and provides a closed expression for the free energy. In particular, we find the free energy of the four-colouring model and the double Hamiltonian walk and recover the known entropy of the Ice model. When both fugacities are set equal to 2 the model undergoes an infinite-order phase transition

2. Measuring Historical Coastal Change using GIS and the Change Polygon Approach

Science.gov (United States)

Smith, M.J.; Cromley, R.G.

2012-01-01

This study compares two automated approaches, the transect-from-baseline technique and a new change polygon method, for quantifying historical coastal change over time. The study shows that the transect-from-baseline technique is complicated by choice of a proper baseline as well as generating transects that intersect with each other rather than with the nearest shoreline. The change polygon method captures the full spatial difference between the positions of the two shorelines and average coastal change is the defined as the ratio of the net area divided by the shoreline length. Although then change polygon method is sensitive to the definition and measurement of shoreline length, the results are more invariant to parameter changes than the transect-from-baseline method, suggesting that the change polygon technique may be a more robust coastal change method. ?? 2012 Blackwell Publishing Ltd.

3. Supramolecule-to-supramolecule transformations of coordination-driven self-assembled polygons.

Science.gov (United States)

Zhao, Liang; Northrop, Brian H; Stang, Peter J

2008-09-10

Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6 + 6] hexagon is transformed into two [3 + 3] hexagons, and a triangle-square mixture is converted into [2 + 2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons.

4. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: INDEX (Index Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all hardcopy cartographic products produced as part of the Environmental Sensitivity Index...

5. Virginia ESI: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for Virginia, classified according to the Environmental Sensitivity...

6. Maryland ESI: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for Maryland, classified according to the Environmental Sensitivity...

7. Rhode Island, Connecticut, New York, and New Jersey ESI: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for small mammal species in coastal Rhode Island, Connecticut, New York, and New Jersey. Vector polygons in...

8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: North Carolina: FISH (Fish Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and brackish/freshwater fish species in North Carolina. Vector polygons...

9. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Southern California: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Southern...

10. Guam and the Northern Mariana Islands ESI: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Guam and the...

11. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Central...

12. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northwest Arctic, Alaska: MGT (Management Area Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing management area data for Designated Critical Habitats, National Park Service properties, Wildlife Refuges, and...

13. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northern California: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Northern...

14. Rhode Island, Connecticut, New York, and New Jersey ESI: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Rhode Island,...

15. Cook Inlet and Kenai Peninsula, Alaska ESI: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Cook Inlet...

16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: New Hampshire: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for New...

17. EPA Pacific Southwest Enforcement Division Inspected Tax Map Key Polygons, Hawaii, 2017, US EPA Region 9

Data.gov (United States)

U.S. Environmental Protection Agency — This feature class contains the 64 tax map key polygons across the state of Hawaii that have been inspected by US EPA Pacific Southwest Enforcement Division as of...

18. Cook Inlet and Kenai Peninsula, Alaska ESI: ESI (Environmental Sensitivity Index Shoreline Types - Polygons and Lines)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Cook Inlet and Kenai Peninsula, Alaska, classified according to...

19. Maximum power point tracking

International Nuclear Information System (INIS)

Enslin, J.H.R.

1990-01-01

A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

20. Model of Random Polygon Particles for Concrete and Mesh Automatic Subdivision

Institute of Scientific and Technical Information of China (English)

2001-01-01

In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Based on computational geometry, we carry out the automatic generation of the triangle finite element mesh for the model of random polygon particles of concrete. The finite element mesh generated in this paper is also applicable to many other numerical methods.

1. In-gap corner states in core-shell polygonal quantum rings.

Science.gov (United States)

Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

2017-01-10

We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

2. In-gap corner states in core-shell polygonal quantum rings

Science.gov (United States)

Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

2017-01-01

We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

3. On the mean and variance of the writhe of random polygons

International Nuclear Information System (INIS)

Portillo, J; Scharein, R; Arsuaga, J; Vazquez, M; Diao, Y

2011-01-01

We here address two problems concerning the writhe of random polygons. First, we study the behavior of the mean writhe as a function length. Second, we study the variance of the writhe. Suppose that we are dealing with a set of random polygons with the same length and knot type, which could be the model of some circular DNA with the same topological property. In general, a simple way of detecting chirality of this knot type is to compute the mean writhe of the polygons; if the mean writhe is non-zero then the knot is chiral. How accurate is this method? For example, if for a specific knot type K the mean writhe decreased to zero as the length of the polygons increased, then this method would be limited in the case of long polygons. Furthermore, we conjecture that the sign of the mean writhe is a topological invariant of chiral knots. This sign appears to be the same as that of an 'ideal' conformation of the knot. We provide numerical evidence to support these claims, and we propose a new nomenclature of knots based on the sign of their expected writhes. This nomenclature can be of particular interest to applied scientists. The second part of our study focuses on the variance of the writhe, a problem that has not received much attention in the past. In this case, we focused on the equilateral random polygons. We give numerical as well as analytical evidence to show that the variance of the writhe of equilateral random polygons (of length n) behaves as a linear function of the length of the equilateral random polygon.

4. On the mean and variance of the writhe of random polygons.

Science.gov (United States)

Portillo, J; Diao, Y; Scharein, R; Arsuaga, J; Vazquez, M

We here address two problems concerning the writhe of random polygons. First, we study the behavior of the mean writhe as a function length. Second, we study the variance of the writhe. Suppose that we are dealing with a set of random polygons with the same length and knot type, which could be the model of some circular DNA with the same topological property. In general, a simple way of detecting chirality of this knot type is to compute the mean writhe of the polygons; if the mean writhe is non-zero then the knot is chiral. How accurate is this method? For example, if for a specific knot type K the mean writhe decreased to zero as the length of the polygons increased, then this method would be limited in the case of long polygons. Furthermore, we conjecture that the sign of the mean writhe is a topological invariant of chiral knots. This sign appears to be the same as that of an "ideal" conformation of the knot. We provide numerical evidence to support these claims, and we propose a new nomenclature of knots based on the sign of their expected writhes. This nomenclature can be of particular interest to applied scientists. The second part of our study focuses on the variance of the writhe, a problem that has not received much attention in the past. In this case, we focused on the equilateral random polygons. We give numerical as well as analytical evidence to show that the variance of the writhe of equilateral random polygons (of length n ) behaves as a linear function of the length of the equilateral random polygon.

5. Geometrical bucklings for two-dimensional regular polygonal regions using the finite Fourier transformation

International Nuclear Information System (INIS)

Mori, N.; Kobayashi, K.

1996-01-01

A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)

6. Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems

Science.gov (United States)

Fry, C.; Dix, J.

2017-12-01

Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are

7. Co-evolution of polygonal and scalloped terrains, southwestern Utopia Planitia, Mars

Science.gov (United States)

Haltigin, T. W.; Pollard, W. H.; Dutilleul, P.; Osinski, G. R.; Koponen, L.

2014-02-01

Thermal contraction crack polygons and scalloped depressions, two of the most common landforms found in Utopia Planitia, Mars, have previously been linked to the presence of ice-rich deposits in the subsurface. Although the formation and evolution of these features individually are relatively well understood, little to no effort has been directed towards elucidating possible interactions that occur between them during their development. Thus, the overarching goal of this research was to investigate if there is an evolutionary link between polygonal and scalloped terrains by correlating metrics representing polygon and scallop maturity. A variety of statistical analyses were performed using HiRISE and MOLA datasets to quantify interactions between four sets of polygonal and scalloped terrains. Our results demonstrate the existence of a negative relationship between polygonal subdivision and surface elevation, indicating that polygon networks become more ‘evolved’ as the surface subsides. These results suggest that the permafrost landscape in Utopia Planitia may once have been extremely ice-rich, and that multiple geomorphic processes may be responsible for its evolution. Ultimately, this work demonstrates that landscape reconstruction is more complete when a system approach is followed, quantifying interactions between landforms as opposed to examining an individual landform in isolation.

8. The linking number and the writhe of uniform random walks and polygons in confined spaces

International Nuclear Information System (INIS)

Panagiotou, E; Lambropoulou, S; Millett, K C

2010-01-01

Random walks and polygons are used to model polymers. In this paper we consider the extension of the writhe, self-linking number and linking number to open chains. We then study the average writhe, self-linking and linking number of random walks and polygons over the space of configurations as a function of their length. We show that the mean squared linking number, the mean squared writhe and the mean squared self-linking number of oriented uniform random walks or polygons of length n, in a convex confined space, are of the form O(n 2 ). Moreover, for a fixed simple closed curve in a convex confined space, we prove that the mean absolute value of the linking number between this curve and a uniform random walk or polygon of n edges is of the form O(√n). Our numerical studies confirm those results. They also indicate that the mean absolute linking number between any two oriented uniform random walks or polygons, of n edges each, is of the form O(n). Equilateral random walks and polygons are used to model polymers in θ-conditions. We use numerical simulations to investigate how the self-linking and linking number of equilateral random walks scale with their length.

9. Maximum entropy methods

International Nuclear Information System (INIS)

Ponman, T.J.

1984-01-01

For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

10. Visual feature discrimination versus compression ratio for polygonal shape descriptors

Science.gov (United States)

Heuer, Joerg; Sanahuja, Francesc; Kaup, Andre

2000-10-01

In the last decade several methods for low level indexing of visual features appeared. Most often these were evaluated with respect to their discrimination power using measures like precision and recall. Accordingly, the targeted application was indexing of visual data within databases. During the standardization process of MPEG-7 the view on indexing of visual data changed, taking also communication aspects into account where coding efficiency is important. Even if the descriptors used for indexing are small compared to the size of images, it is recognized that there can be several descriptors linked to an image, characterizing different features and regions. Beside the importance of a small memory footprint for the transmission of the descriptor and the memory footprint in a database, eventually the search and filtering can be sped up by reducing the dimensionality of the descriptor if the metric of the matching can be adjusted. Based on a polygon shape descriptor presented for MPEG-7 this paper compares the discrimination power versus memory consumption of the descriptor. Different methods based on quantization are presented and their effect on the retrieval performance are measured. Finally an optimized computation of the descriptor is presented.

11. Two-loop polygon Wilson loops in N = 4 SYM

International Nuclear Information System (INIS)

Anastasiou, C.; Brandhuber, A.; Heslop, P.; Spence, B.; Travaglini, G.; Khoze, V.V.

2009-01-01

We compute for the first time the two-loop corrections to arbitrary n-gon lightlike Wilson loops in N = 4 supersymmetric Yang-Mills theory, using efficient numerical methods. The calculation is motivated by the remarkable agreement between the finite part of planar six-point MHV amplitudes and hexagon Wilson loops which has been observed at two loops. At n = 6 we confirm that the ABDK/BDS ansatz must be corrected by adding a remainder function, which depends only on conformally invariant ratios of kinematic variables. We numerically compute remainder functions for n = 7,8 and verify dual conformal invariance. Furthermore, we study simple and multiple collinear limits of the Wilson loop remainder functions and demonstrate that they have precisely the form required by the collinear factorisation of the corresponding two-loop n-point amplitudes. The number of distinct diagram topologies contributing to the n-gon Wilson loops does not increase with n, and there is a fixed number of 'master integrals', which we have computed. Thus we have essentially computed general polygon Wilson loops, and if the correspondence with amplitudes continues to hold, all planar n-point two-loop MHV amplitudes in the N = 4 theory.

12. Conical twist fields and null polygonal Wilson loops

Science.gov (United States)

Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide

2018-06-01

Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.

13. The last glacial maximum

Science.gov (United States)

Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

2009-01-01

We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

14. Maximum Entropy Fundamentals

Directory of Open Access Journals (Sweden)

F. TopsÃƒÂ¸e

2001-09-01

Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

15. Probable maximum flood control

International Nuclear Information System (INIS)

DeGabriele, C.E.; Wu, C.L.

1991-11-01

This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

16. Introduction to maximum entropy

International Nuclear Information System (INIS)

Sivia, D.S.

1988-01-01

The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

17. Solar maximum observatory

International Nuclear Information System (INIS)

Rust, D.M.

1984-01-01

The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

18. Introduction to maximum entropy

International Nuclear Information System (INIS)

Sivia, D.S.

1989-01-01

The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. The author reviews the need for such methods in data analysis and shows, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. He concludes with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

19. Functional Maximum Autocorrelation Factors

DEFF Research Database (Denmark)

Larsen, Rasmus; Nielsen, Allan Aasbjerg

2005-01-01

MAF outperforms the functional PCA in concentrating the interesting' spectra/shape variation in one end of the eigenvalue spectrum and allows for easier interpretation of effects. Conclusions. Functional MAF analysis is a useful methods for extracting low dimensional models of temporally or spatially......Purpose. We aim at data where samples of an underlying function are observed in a spatial or temporal layout. Examples of underlying functions are reflectance spectra and biological shapes. We apply functional models based on smoothing splines and generalize the functional PCA in......\\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

20. Regularized maximum correntropy machine

KAUST Repository

Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

2015-01-01

In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

1. Regularized maximum correntropy machine

KAUST Repository

Wang, Jim Jing-Yan

2015-02-12

In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

2. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning

International Nuclear Information System (INIS)

Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.

2006-01-01

We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique

3. Location memory for dots in polygons versus cities in regions: evaluating the category adjustment model.

Science.gov (United States)

Friedman, Alinda; Montello, Daniel R; Burte, Heather

2012-09-01

4. Definition of a Twelve-Point Polygonal SAA Boundary for the GLAST Mission

International Nuclear Information System (INIS)

Djomehri, Sabra I.; UC, Santa Cruz; SLAC

2007-01-01

The Gamma-Ray Large Area Space Telescope (GLAST), set to launch in early 2008, detects gamma rays within a huge energy range of 100 MeV - 300 GeV. Background cosmic radiation interferes with such detection resulting in confusion over distinguishing cosmic from gamma rays encountered. This quandary is resolved by encasing GLAST's Large Area Telescope (LAT) with an Anti-Coincidence Detector (ACD), a device which identifies and vetoes charged particles. The ACD accomplishes this through plastic scintillator tiles; when cosmic rays strike, photons produced induce currents in Photomultiplier Tubes (PMTs) attached to these tiles. However, as GLAST orbits Earth at altitudes ∼550km and latitudes between -26 degree and 26 degree, it will confront the South Atlantic Anomaly (SAA), a region of high particle flux caused by trapped radiation in the geomagnetic field. Since the SAA flux would degrade the sensitivity of the ACD's PMTs over time, a determined boundary enclosing this region need be attained, signaling when to lower the voltage on the PMTs as a protective measure. The operational constraints on such a boundary require a convex SAA polygon with twelve edges, whose area is minimal ensuring GLAST has maximum observation time. The AP8 and PSB97 models describing the behavior of trapped radiation were used in analyzing the SAA and defining a convex SAA boundary of twelve sides. The smallest possible boundary was found to cover 14.58% of GLAST's observation time. Further analysis of defining a boundary safety margin to account for inaccuracies in the models reveals if the total SAA hull area is increased by ∼20%, the loss of total observational area is < 5%. These twelve coordinates defining the SAA flux region are ready for implementation by the GLAST satellite

5. Gulf-Wide Information System, Environmental Sensitivity Index Polygons, Geographic NAD83, LDWF (2001) [esip_LDWF_2001

Data.gov (United States)

Louisiana Geographic Information Center — This data set contains polygons representing the Environmental Sensitivity Index (ESI) classification of coastal Louisiana. The ESI is a classification and ranking...

6. Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones?

Science.gov (United States)

Heil, Martin; Jansen-Osmann, Petra

2008-05-01

Sex differences in mental rotation were investigated as a function of stimulus complexity with a sample size of N = 72. Replicating earlier findings with polygons, mental rotation was faster for males than for females, and reaction time increased with more complex polygons. Additionally, sex differences increased for complex polygons. Most importantly, however, mental rotation speed decreased with increasing complexity for women but did not change for men. Thus, the sex effects reflect a difference in strategy, with women mentally rotating the polygons in an analytic, piecemeal fashion and men using a holistic mode of mental rotation.

7. Solar maximum mission

International Nuclear Information System (INIS)

Ryan, J.

1981-01-01

By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

8. Structural control of polygonal cracks in La Pedriza del Manzanares (Madrid)

International Nuclear Information System (INIS)

Garcia-Rodriguez, M.; Aroztegui, J.; Lopez Portillo, H.

2015-01-01

Polygonal cracks represent a common way of modeling granite whose origin and evolution continues under study not even existing a systematization of these diverse structures. Some authors explain their origin by internal geo dynamic processes relating to movements of fracture planes in later stages of magmatic consolidation. Other authors attribute their formation and development to external factors related to climate regime. The great variety of polygonal cracks requires the use of a greater number of variables to define their different origins, the possible interrelations between external and internal factors, to explain the evolution of these structures and advance the classification of specific patterns. This work aims to contribute to systematize the mechanisms involved in the development of polygonal cracks. For that only polygonal cracks formed on flat vertical or sub vertical fractures are studied. In particular relations are established between the presence of polygonal cracks with: the fracturing network, height of appearance, angle and tilt of the wall, plaque morphology and depth of incision of the perimeter cracks. Moreover it establishes relationships between internal geo dynamic processes and external weathering processes. (Author)

9. Global regularizing flows with topology preservation for active contours and polygons.

Science.gov (United States)

Sundaramoorthi, Ganesh; Yezzi, Anthony

2007-03-01

Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.

10. Effects of Rashba spin–orbit coupling and a magnetic field on a polygonal quantum ring

International Nuclear Information System (INIS)

Tang, Han-Zhao; Zhai, Li-Xue; Shen, Man; Liu, Jian-Jun

2014-01-01

Using standard quantum network method, we analytically investigate the effect of Rashba spin–orbit coupling (RSOC) and a magnetic field on the spin transport properties of a polygonal quantum ring. Using Landauer–Büttiker formula, we have found that the polarization direction and phase of transmitted electrons can be controlled by both the magnetic field and RSOC. A device to generate a spin-polarized conductance in a polygon with an arbitrary number of sides is discussed. This device would permit precise control of spin and selectively provide spin filtering for either spin up or spin down simply by interchanging the source and drain. - Highlights: • Spin conductance of polygon with RSOC and magnetic field is calculated analytically. • We show how the RSOC and a magnetic field control the phase of electron in polygon. • The AB oscillation and shape-dependent conductance are studied in a polygonal ring. • Our model can provide spin filtering simply by interchanging the source and drain

11. Direct Monte Carlo dose calculation using polygon-surface computational human model

International Nuclear Information System (INIS)

Jeong, Jong Hwi; Kim, Chan Hyeong; Yeom, Yeon Su; Cho, Sungkoo; Chung, Min Suk; Cho, Kun-Woo

2011-01-01

In the present study, a voxel-type computational human model was converted to a polygon-surface model, after which it was imported directly to the Geant4 code without using a voxelization process, that is, without converting back to a voxel model. The original voxel model was also imported to the Geant4 code, in order to compare the calculated dose values and the computational speed. The average polygon size of the polygon-surface model was ∼0.5 cm 2 , whereas the voxel resolution of the voxel model was 1.981 × 1.981 × 2.0854 mm 3 . The results showed a good agreement between the calculated dose values of the two models. The polygon-surface model was, however, slower than the voxel model by a factor of 6–9 for the photon energies and irradiation geometries considered in the present study, which nonetheless is considered acceptable, considering that direct use of the polygon-surface model does not require a separate voxelization process. (author)

12. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

Directory of Open Access Journals (Sweden)

G. Bisht

2018-01-01

Full Text Available Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0. Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively. The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ∼ 10 cm shallower and  ∼ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ∼ 3 cm. Our integration of three-dimensional subsurface hydrologic and

13. Uma proposta de solução para o problema da construção de escalas de motoristas e cobradores de ônibus por meio do algoritmo do matching de peso máximo A proposed solution for bus driver and fare collector scheduling problems using the maximum weight matching algorithm

Directory of Open Access Journals (Sweden)

Paulo Henrique Siqueira

2004-08-01

14. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

Science.gov (United States)

Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Wainwright, H. M.; Graham, D.; Torn, M. S.

2017-12-01

Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. In this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snow and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.

15. Analytical approach of laser beam propagation in the hollow polygonal light pipe.

Science.gov (United States)

Zhu, Guangzhi; Zhu, Xiao; Zhu, Changhong

2013-08-10

An analytical method of researching the light distribution properties on the output end of a hollow n-sided polygonal light pipe and a light source with a Gaussian distribution is developed. The mirror transformation matrices and a special algorithm of removing void virtual images are created to acquire the location and direction vector of each effective virtual image on the entrance plane. The analytical method is demonstrated by Monte Carlo ray tracing. At the same time, four typical cases are discussed. The analytical results indicate that the uniformity of light distribution varies with the structural and optical parameters of the hollow n-sided polygonal light pipe and light source with a Gaussian distribution. The analytical approach will be useful to design and choose the hollow n-sided polygonal light pipe, especially for high-power laser beam homogenization techniques.

16. Finding the Most Uniform Changes in Vowel Polygon Caused by Psychological Stress

Directory of Open Access Journals (Sweden)

M. Stanek

2015-06-01

Full Text Available Using vowel polygons, exactly their parameters, is chosen as the criterion for achievement of differences between normal state of speaker and relevant speech under real psychological stress. All results were experimentally obtained by created software for vowel polygon analysis applied on ExamStress database. Selected 6 methods based on cross-correlation of different features were classified by the coefficient of variation and for each individual vowel polygon, the efficiency coefficient marking the most significant and uniform differences between stressed and normal speech were calculated. As the best method for observing generated differences resulted method considered mean of cross correlation values received for difference area value with vector length and angle parameter couples. Generally, best results for stress detection are achieved by vowel triangles created by /i/-/o/-/u/ and /a/-/i/-/o/ vowel triangles in formant planes containing the fifth formant F5 combined with other formants.

17. Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space

International Nuclear Information System (INIS)

Alday, Luis F.; Maldacena, Juan

2009-01-01

We consider minimal surfaces in three dimensional anti-de-Sitter space that end at the AdS boundary on a polygon given by a sequence of null segments. The problem can be reduced to a certain generalized Sinh-Gordon equation and to SU(2) Hitchin equations. We describe in detail the mathematical problem that needs to be solved. This problem is mathematically the same as the one studied by Gaiotto, Moore and Neitzke in the context of the moduli space of certain supersymmetric theories. Using their results we can find the explicit answer for the area of a surface that ends on an eight-sided polygon. Via the gauge/gravity duality this can also be interpreted as a certain eight-gluon scattering amplitude at strong coupling. In addition, we give fairly explicit solutions for regular polygons.

18. On the areas of various bodies in the Euclidean space: The case of irregular convex polygons

International Nuclear Information System (INIS)

Ozoemena, P.C.

1988-11-01

A theorem is proposed for the areas of n-sided irregular convex polygons, of given length of sides. The theorem is illustrated as a simple but powerful one in estimating the areas of irregular polygons, being dependent only on the number of sides n (and not on any of the explicit angles) of the irregular polygon. Finally, because of the global symmetry shown by equilateral triangles, squares and circles under group (gauge) theory, the relationships governing their areas, when they are inscribed or escribed in one another are discussed as riders, and some areas of their applications in graph theory, ratios and maxima and minima problems of differential calculus briefly mentioned. (author). 11 refs, 6 figs, 1 tab

19. Generation of oculomotor images during tasks requiring visual recognition of polygons.

Science.gov (United States)

Olivier, G; de Mendoza, J L

2001-06-01

This paper concerns the contribution of mentally simulated ocular exploration to generation of a visual mental image. In Exp. 1, repeated exploration of the outlines of an irregular decagon allowed an incidental learning of the shape. Analyses showed subjects memorized their ocular movements rather than the polygon. In Exp. 2, exploration of a reversible figure such as a Necker cube varied in opposite directions. Then, both perspective possibilities are presented. The perspective the subjects recognized depended on the way they explored the ambiguous figure. In both experiments, during recognition the subjects recalled a visual mental image of the polygon they compared with the different polygons proposed for recognition. To interpret the data, hypotheses concerning common processes underlying both motor intention of ocular movements and generation of a visual image are suggested.

20. Images from the Mind: BCI image reconstruction based on Rapid Serial Visual Presentations of polygon primitives

Directory of Open Access Journals (Sweden)

Luís F Seoane

2015-04-01

Full Text Available We provide a proof of concept for an EEG-based reconstruction of a visual image which is on a user's mind. Our approach is based on the Rapid Serial Visual Presentation (RSVP of polygon primitives and Brain-Computer Interface (BCI technology. In an experimental setup, subjects were presented bursts of polygons: some of them contributed to building a target image (because they matched the shape and/or color of the target while some of them did not. The presentation of the contributing polygons triggered attention-related EEG patterns. These Event Related Potentials (ERPs could be determined using BCI classification and could be matched to the stimuli that elicited them. These stimuli (i.e. the ERP-correlated polygons were accumulated in the display until a satisfactory reconstruction of the target image was reached. As more polygons were accumulated, finer visual details were attained resulting in more challenging classification tasks. In our experiments, we observe an average classification accuracy of around 75%. An in-depth investigation suggests that many of the misclassifications were not misinterpretations of the BCI concerning the users' intent, but rather caused by ambiguous polygons that could contribute to reconstruct several different images. When we put our BCI-image reconstruction in perspective with other RSVP BCI paradigms, there is large room for improvement both in speed and accuracy. These results invite us to be optimistic. They open a plethora of possibilities to explore non-invasive BCIs for image reconstruction both in healthy and impaired subjects and, accordingly, suggest interesting recreational and clinical applications.

1. The polygonal model: A simple representation of biomolecules as a tool for teaching metabolism.

Science.gov (United States)

Bonafe, Carlos Francisco Sampaio; Bispo, Jose Ailton Conceição; de Jesus, Marcelo Bispo

2018-01-01

Metabolism involves numerous reactions and organic compounds that the student must master to understand adequately the processes involved. Part of biochemical learning should include some knowledge of the structure of biomolecules, although the acquisition of such knowledge can be time-consuming and may require significant effort from the student. In this report, we describe the "polygonal model" as a new means of graphically representing biomolecules. This model is based on the use of geometric figures such as open triangles, squares, and circles to represent hydroxyl, carbonyl, and carboxyl groups, respectively. The usefulness of the polygonal model was assessed by undergraduate students in a classroom activity that consisted of "transforming" molecules from Fischer models to polygonal models and vice and versa. The survey was applied to 135 undergraduate Biology and Nursing students. Students found the model easy to use and we noted that it allowed identification of students' misconceptions in basic concepts of organic chemistry, such as in stereochemistry and organic groups that could then be corrected. The students considered the polygonal model easier and faster for representing molecules than Fischer representations, without loss of information. These findings indicate that the polygonal model can facilitate the teaching of metabolism when the structures of biomolecules are discussed. Overall, the polygonal model promoted contact with chemical structures, e.g. through drawing activities, and encouraged student-student dialog, thereby facilitating biochemical learning. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):66-75, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

2. Development of polygonal surface version of ICRP reference phantoms: Preliminary study for posture change

International Nuclear Information System (INIS)

Nguyen, Tat Thang; Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong

2013-01-01

Even though International Commission on Radiological Protection (ICRP) officially adopted a set of adult male and female voxel phantoms as the ICRP reference phantoms, there are several critical limitations due to the nature of voxel geometry and their low voxel resolutions. In order to overcome these limitations of the ICRP phantoms, we are currently developing polygonal surface version of ICRP reference phantoms by directly converting the ICRP voxel phantoms to polygonal surface geometries. Among the many advantages of the ICRP polygonal surface phantom, especially, it is flexible and deformable. In principle, it is, therefore, possible to make the posture-changed ICRP phantoms which can provide more accurate dose values for exposure situations strongly relevant to worker's postures. As a preliminary study for developing the posture-changed ICRP phantoms, in this work we changed the posture of the preliminary version of ICRP male polygon-surface phantom constructed in the previous study. Organ doses were then compared between original and posture-changed phantoms. In the present study, we successfully changed a posture of the preliminary version of ICRP male polygon-surface phantom to the walking posture. From this results, it was explicitly shown that the polygon-surface version of the ICRP phantoms can be sufficiently modified to be various postures with the posture-changing method used in this study. In addition, it was demonstrated that phantom's posture must be considered in certain exposure situations, which can differ dose values from the conventional standing-posture phantom

3. Microtopographic control on the ground thermal regime in ice wedge polygons

Science.gov (United States)

Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.

2018-06-01

The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.

4. The Effect of Inquiry-Based Explorations in a Dynamic Geometry Environment on Sixth Grade Students' Achievements in Polygons

Science.gov (United States)

Erbas, Ayhan Kursat; Yenmez, Arzu Aydogan

2011-01-01

The purpose of this study was to investigate the effects of using a dynamic geometry environment (DGE) together with inquiry-based explorations on the sixth grade students' achievements in polygons and congruency and similarity of polygons. Two groups of sixth grade students were selected for this study: an experimental group composed of 66…

5. Self-assembly of a constitutional dynamic library of Cu(II) coordination polygons and reversible sorting by crystallization.

Science.gov (United States)

Rancan, Marzio; Tessarolo, Jacopo; Zanonato, Pier Luigi; Seraglia, Roberta; Quici, Silvio; Armelao, Lidia

2013-06-07

A small coordination constitutional dynamic library (CDL) is self-assembled from Cu(2+) ions and the ortho bis-(3-acetylacetone)benzene ligand. Two coordination polygons, a rhomboid and a triangle, establish a dynamic equilibrium. Quantitative sorting of the rhomboidal polygon is reversibly obtained by crystallization. Thermodynamic and kinetic aspects ruling the CDL system have been elucidated.

6. Polygonal approximation and scale-space analysis of closed digital curves

CERN Document Server

Ray, Kumar S

2013-01-01

This book covers the most important topics in the area of pattern recognition, object recognition, computer vision, robot vision, medical computing, computational geometry, and bioinformatics systems. Students and researchers will find a comprehensive treatment of polygonal approximation and its real life applications. The book not only explains the theoretical aspects but also presents applications with detailed design parameters. The systematic development of the concept of polygonal approximation of digital curves and its scale-space analysis are useful and attractive to scholars in many fi

7. Influence of macroscopic shear deformation on polygonization and recrystallization of molybdenum crystals

International Nuclear Information System (INIS)

Larikov, L.N.; Belyakova, M.N.; Maksimenko, E.A.; Mudruk, P.V.

1984-01-01

The effect of shear bands on polygonization and recrystallization is studied on molybdenum monocrystals deformed by compression. A sharp bend of the lattice is shown to be a structural condition necessary for arising the shear step. Internal stress relaxation strongly changes kinetics of softening processes in compressed molybdenum crystals: it slows down polygonization under low-temperature heating (below 700 deg C) and accelerates it under high-temperature heating (higher 1000 deg C). Under the effect of relaxation of internal streses recrystallization in the investigated crystals is similar to dynamical: recrystallized grains are distorted and they have a developed substructure

8. Mixed FEM for Second Order Elliptic Problems on Polygonal Meshes with BEM-Based Spaces

KAUST Repository

Efendiev, Yalchin

2014-01-01

We present a Boundary Element Method (BEM)-based FEM for mixed formulations of second order elliptic problems in two dimensions. The challenge, we would like to address, is a proper construction of H(div)-conforming vector valued trial functions on arbitrary polygonal partitions of the domain. The proposed construction generates trial functions on polygonal elements which inherit some of the properties of the unknown solution. In the numerical realization, the relevant local problems are treated by means of boundary integral formulations. We test the accuracy of the method on two model problems. © 2014 Springer-Verlag.

9. Carbon accumulation in a permafrost polygon peatland: steady long-term rates in spite of shifts between dry and wet conditions.

Science.gov (United States)

Gao, Yang; Couwenberg, John

2015-02-01

Ice-wedge polygon peatlands contain a substantial part of the carbon stored in permafrost soils. However, little is known about their long-term carbon accumulation rates (CAR) in relation to shifts in vegetation and climate. We collected four peat profiles from one single polygon in NE Yakutia and cut them into contiguous 0.5 cm slices. Pollen density interpolation between AMS (14)C dated levels provided the time span contained in each of the sample slices, which--in combination with the volumetric carbon content--allowed for the reconstruction of CAR over decadal and centennial timescales. Vegetation representing dry palaeo-ridges and wet depressions was reconstructed with detailed micro- and macrofossil analysis. We found repeated shifts between wet and dry conditions during the past millennium. Dry ridges with associated permafrost growth originated during phases of (relatively) warm summer temperature and collapsed during relatively cold phases, illustrating the important role of vegetation and peat as intermediaries between ambient air temperature and the permafrost. The average long-term CAR across the four profiles was 10.6 ± 5.5 g C m(-2) yr(-1). Time-weighted mean CAR did not differ significantly between wet depression and dry ridge/hummock phases (10.6 ± 5.2 g C m(-2) yr(-1) and 10.3 ± 5.7 g C m(-2) yr(-1), respectively). Although we observed increased CAR in relation to warm shifts, we also found changes in the opposite direction and the highest CAR actually occurred during the Little Ice Age. In fact, CAR rather seems to be governed by strong internal feedback mechanisms and has roughly remained stable on centennial time scales. The absence of significant differences in CAR between dry ridge and wet depression phases suggests that recent warming and associated expansion of shrubs will not affect long-term rates of carbon burial in ice-wedge polygon peatlands. © 2014 John Wiley & Sons Ltd.

10. BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

Energy Technology Data Exchange (ETDEWEB)

Janse van Rensburg, E J [Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3 (Canada); Rechnitzer, A, E-mail: rensburg@yorku.ca, E-mail: andrewr@math.ubc.ca [Department of Mathematics, The University of British Columbia, Vancouver V6T 1Z2, British Columbia (Canada)

2011-04-22

In this paper, the elementary moves of the BFACF-algorithm (Aragao de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragao de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.

11. BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

Science.gov (United States)

Janse van Rensburg, E. J.; Rechnitzer, A.

2011-04-01

In this paper, the elementary moves of the BFACF-algorithm (Aragão de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragão de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.

12. BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

International Nuclear Information System (INIS)

Janse van Rensburg, E J; Rechnitzer, A

2011-01-01

In this paper, the elementary moves of the BFACF-algorithm (Aragao de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragao de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.

13. Encoding Strategy for Maximum Noise Tolerance Bidirectional Associative Memory

National Research Council Canada - National Science Library

Shen, Dan

2003-01-01

In this paper, the Basic Bidirectional Associative Memory (BAM) is extended by choosing weights in the correlation matrix, for a given set of training pairs, which result in a maximum noise tolerance set for BAM...

14. Merging polygons on two-layer printed circuit board

Directory of Open Access Journals (Sweden)

Murov S. Yu.

2011-12-01

Full Text Available A method is proposed for solving the problem of connection of maximum number of isolated islands of metallized areas of the same chain, located on different layers of the printed circuit board. The method can be used in the automatic tracing of the boards.

15. Perimeter generating functions for the mean-squared radius of gyration of convex polygons

International Nuclear Information System (INIS)

Jensen, Iwan

2005-01-01

We have derived long series expansions for the perimeter generating functions of the radius of gyration of various polygons with a convexity constraint. Using the series we numerically find simple (algebraic) exact solutions for the generating functions. In all cases the size exponent ν 1. (letter to the editor)

16. Effect of climate on morphology and development of sorted circles and polygons

Czech Academy of Sciences Publication Activity Database

Uxa, Tomáš; Mida, P.; Křížek, M.

2017-01-01

Roč. 28, č. 4 (2017), s. 663-674 ISSN 1045-6740 Institutional support: RVO:67985530 Keywords : patterned ground * sorted circles and polygons * morphology * active layer * Svalbard * high Arctic Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 2.815, year: 2016

17. 3D Polygon Mesh Compression with Multi Layer Feed Forward Neural Networks

Directory of Open Access Journals (Sweden)

Emmanouil Piperakis

2003-06-01

Full Text Available In this paper, an experiment is conducted which proves that multi layer feed forward neural networks are capable of compressing 3D polygon meshes. Our compression method not only preserves the initial accuracy of the represented object but also enhances it. The neural network employed includes the vertex coordinates, the connectivity and normal information in one compact form, converting the discrete and surface polygon representation into an analytic, solid colloquial. Furthermore, the 3D object in its compressed neural form can be directly - without decompression - used for rendering. The neural compression - representation is viable to 3D transformations without the need of any anti-aliasing techniques - transformations do not disrupt the accuracy of the geometry. Our method does not su.er any scaling problem and was tested with objects of 300 to 107 polygons - such as the David of Michelangelo - achieving in all cases an order of O(b3 less bits for the representation than any other commonly known compression method. The simplicity of our algorithm and the established mathematical background of neural networks combined with their aptness for hardware implementation can establish this method as a good solution for polygon compression and if further investigated, a novel approach for 3D collision, animation and morphing.

18. Hydrobiological investigations of Kytalyk Wildlife Reserve polygonal ponds (North-Eastern Yakutia)

Science.gov (United States)

Nigamatzyanova, G.; Frolova, L.; Pestryakova, L.

2018-01-01

In the following article there are introduced the first researching results of 27 water bodies of polygonal tundra in Kytalyk Wildlife Reserve in the summer 2011. The evaluation of physic-hydrochemical indexes of water bodies is given. The basic structure-forming characteristics of zooplankton communities are analyzed. The ecological state of the lakes is estimated.

19. POLYGON - A NEW FUNDAMENTAL MOVEMENT SKILLS TEST FOR 8 YEAR OLD CHILDREN: CONSTRUCTION AND VALIDATION

Directory of Open Access Journals (Sweden)

Frane Zuvela

2011-03-01

Full Text Available Inadequately adopted fundamental movement skills (FMS in early childhood may have a negative impact on the motor performance in later life (Gallahue and Ozmun, 2005. The need for an efficient FMS testing in Physical Education was recognized. The aim of this paper was to construct and validate a new FMS test for 8 year old children. Ninety-five 8 year old children were used for the testing. A total of 24 new FMS tasks were constructed and only the best representatives of movement areas entered into the final test product - FMS-POLYGON. The ICC showed high values for all 24 tasks (0.83-0.97 and the factorial analysis revealed the best representatives of each movement area that entered the FMS-POLYGON: tossing and catching the volleyball against a wall, running across obstacles, carrying the medicine balls, and straight running. The ICC for the FMS-POLYGON showed a very high result (0.98 and, therefore, confirmed the test's intra-rater reliability. Concurrent validity was tested with the use of the "Test of Gross Motor Development" (TGMD-2. Correlation analysis between the newly constructed FMS-POLYGON and the TGMD-2 revealed the coefficient of -0.82 which indicates a high correlation. In conclusion, the new test for FMS assessment proved to be a reliable and valid instrument for 8 year old children. Application of this test in schools is justified and could play an important factor in physical education and sport practice.

20. Subsatellite polygon for studying hydrophysical processes in the Black Sea shelf-slope zone

Science.gov (United States)

Zatsepin, A. G.; Ostrovskii, A. G.; Kremenetskiy, V. V.; Nizov, S. S.; Piotukh, V. B.; Soloviev, V. A.; Shvoev, D. A.; Tsibul'sky, A. L.; Kuklev, S. B.; Kukleva, O. N.; Moskalenko, L. V.; Podymov, O. I.; Baranov, V. I.; Kondrashov, A. A.; Korzh, A. O.; Kubryakov, A. A.; Soloviev, D. M.; Stanichny, S. V.

2014-01-01

The first data on the creation of the subsatellite polygon on the Black Sea shelf and continental slope in the Gelendzhik area (designed in order to permanently monitor the state of the aquatic environment and biota) and the plans for maintaining and developing this polygon are presented. The autonomous measuring systems of the polygon in the composition of bottom stations with acoustic Doppler current profilers (ADCP), Aqualog robotic profilers, and thermo-chains on moored buoy stations should make it possible to regularly obtain hydrophysical, hydrochemical, and bio-optical data with a high spatial-time resolution and transmit these data to the coastal center on a real-time basis. These field data should be used to study the characteristics and formation mechanisms of the marine environment and biota variability, as well as the water-exchange processes in the shelf-deep basin system, ocean-atmosphere coupling, and many other processes. These data are used to calibrate the satellite measurements and verify the water circulation numerical simulation. It is assumed to use these data in order to warn about the hazardous natural phenomena and control the marine environment state and its variation under the action of anthropogenic and natural factors, including climatic trends. It is planned to use the polygon subsatellite monitoring methods and equipment in other coastal areas, including other Black Sea sectors, in order to create a unified system for monitoring the Black Sea shelf-slope zone.

1. The growth of the mean average crossing number of equilateral polygons in confinement

International Nuclear Information System (INIS)

Arsuaga, J; Borgo, B; Scharein, R; Diao, Y

2009-01-01

The physical and biological properties of collapsed long polymer chains as well as of highly condensed biopolymers (such as DNA in all organisms) are known to be determined, at least in part, by their topological and geometrical properties. With this purpose of characterizing the topological properties of such condensed systems equilateral random polygons restricted to confined volumes are often used. However, very few analytical results are known. In this paper, we investigate the effect of volume confinement on the mean average crossing number (ACN) of equilateral random polygons. The mean ACN of knots and links under confinement provides a simple alternative measurement for the topological complexity of knots and links in the statistical sense. For an equilateral random polygon of n segments without any volume confinement constrain, it is known that its mean ACN (ACN) is of the order 3/16 n log n + O(n). Here we model the confining volume as a simple sphere of radius R. We provide an analytical argument which shows that (ACN) of an equilateral random polygon of n segments under extreme confinement (meaning R 2 ). We propose to model the growth of (ACN) as a(R)n 2 + b(R)nln(n) under a less-extreme confinement condition, where a(R) and b(R) are functions of R with R being the radius of the confining sphere. Computer simulations performed show a fairly good fit using this model.

2. Polygon construction to investigate melting in two-dimensional strongly coupled dusty plasma

International Nuclear Information System (INIS)

Ruhunusiri, W. D. Suranga; Goree, J.; Feng Yan; Liu Bin

2011-01-01

The polygon construction method of Glaser and Clark is used to characterize melting and crystallization in a two-dimensional (2D) strongly coupled dusty plasma. Using particle positions measured by video microscopy, bonds are identified by triangulation, and unusually long bonds are deleted. The resulting polygons have three or more sides. Geometrical defects, which are polygons with more than three sides, are found to proliferate during melting. Pentagons are found in liquids, where they tend to cluster with other pentagons. Quadrilaterals are a less severe defect, so that disorder can be characterized by the ratio of quadrilaterals to pentagons. This ratio is found to be less in a liquid than in a solid or a superheated solid. Another measure of disorder is the abundance of different kinds of vertices, according to the type of polygons that adjoin there. Unexpectedly, spikes are observed in the abundance of certain vertex types during rapid temperature changes. Hysteresis, revealed by a plot of a disorder parameter vs temperature, is examined to study sudden heating. The hysteresis diagram also reveals features suggesting a possibility of latent heat in the melting and rapid cooling processes.

3. Knot probability of polygons subjected to a force: a Monte Carlo study

International Nuclear Information System (INIS)

Rensburg, E J Janse van; Orlandini, E; Tesi, M C; Whittington, S G

2008-01-01

We use Monte Carlo methods to study the knot probability of lattice polygons on the cubic lattice in the presence of an external force f. The force is coupled to the span of the polygons along a lattice direction, say the z-direction. If the force is negative polygons are squeezed (the compressive regime), while positive forces tend to stretch the polygons along the z-direction (the tensile regime). For sufficiently large positive forces we verify that the Pincus scaling law in the force-extension curve holds. At a fixed number of edges n the knot probability is a decreasing function of the force. For a fixed force the knot probability approaches unity as 1 - exp(-α 0 (f)n + o(n)), where α 0 (f) is positive and a decreasing function of f. We also examine the average of the absolute value of the writhe and we verify the square root growth law (known for f = 0) for all values of f

4. Complete coverage path planning of a random polygon - A FroboMind component

DEFF Research Database (Denmark)

Aslund, Sebastian; Jensen, Kjeld; Jørgensen, Rasmus Nyholm

solution where all the steps in the process is included: Segmentation of a data set, creation of a configuration space, decomposition of a polygon, global and local path planning. To achieve this, a series of known algorithms are used including some tweaks and improvements to create a solid foundation...

5. On the Berry-Esséen bound of frequency polygons for ϕ-mixing samples.

Science.gov (United States)

Huang, Gan-Ji; Xing, Guodong

2017-01-01

Under some mild assumptions, the Berry-Esséen bound of frequency polygons for ϕ -mixing samples is presented. By the bound derived, we obtain the corresponding convergence rate of uniformly asymptotic normality, which is nearly [Formula: see text] under the given conditions.

6. Behavior of the polygonal HEPA filter exposed to water droplets carried by the offgas flow

International Nuclear Information System (INIS)

Jannakos, K.; Potgeter, G.; Legner, W.

1991-01-01

A polygonal high-efficiency particulate air (HEPA) filter element has been developed and tested with a view to cleaning the dissolver offgas from reprocessing plants. It is likewise suited to filter process offgases generated in other plants. Due to its high dew point (about 30 degree C) the dissolver offgas, before being directed into the HEPA filter, is heated with a gas heater to approx. 100 degree C so that condensation in the pipework upstream of the filter and in the filter proper is avoided. In case of failure of the heater the offgas may undergo condensation upstream of the HEPA filter until it is bypassed to a standby heater or a standby filter system. Consequently, the filter may be loaded with water droplets. therefore, experiments have been performed with a view to estimating the behavior of the polygonal filter element when exposed to condensate droplets in a real plant. According to the experiments performed so far it can be anticipated that in case of failure of the heater the amount of condensate produced until bypassing to a standby system will not damage a new or little loaded polygonal filter element. The experiments will be carried on with the goal of investigating the behavior of a heavily loaded polygonal filter element exposed to water droplets

7. Higher order equivalent edge currents for fringe wave radar scattering by perfectly conducting polygonal plates

DEFF Research Database (Denmark)

Breinbjerg, Olav

1992-01-01

An approach for including higher order edge diffraction in the equivalent edge current (EEC) method is proposed. This approach, which applies to monostatic as well as bistatic radar configurations with perfectly conducting polygonal plates, involves three distinct sets of EECs. All of these sets...

8. Pizza Again? On the Division of Polygons into Sections with a Common Origin

Science.gov (United States)

Sinitsky, Ilya; Stupel, Moshe; Sinitsky, Marina

2018-01-01

The paper explores the division of a polygon into equal-area pieces using line segments originating at a common point. The mathematical background of the proposed method is very simple and belongs to secondary school geometry. Simple examples dividing a square into two, four or eight congruent pieces provide a starting point to discovering how to…

9. Range-efficient consistent sampling and locality-sensitive hashing for polygons

DEFF Research Database (Denmark)

Gudmundsson, Joachim; Pagh, Rasmus

2017-01-01

Locality-sensitive hashing (LSH) is a fundamental technique for similarity search and similarity estimation in high-dimensional spaces. The basic idea is that similar objects should produce hash collisions with probability significantly larger than objects with low similarity. We consider LSH for...... or union of a set of preprocessed polygons. Curiously, our consistent sampling method uses transformation to a geometric problem....

10. Total curvature and total torsion of knotted random polygons in confinement

Science.gov (United States)

Diao, Yuanan; Ernst, Claus; Rawdon, Eric J.; Ziegler, Uta

2018-04-01

Knots in nature are typically confined spatially. The confinement affects the possible configurations, which in turn affects the spectrum of possible knot types as well as the geometry of the configurations within each knot type. The goal of this paper is to determine how confinement, length, and knotting affect the total curvature and total torsion of random polygons. Previously published papers have investigated these effects in the unconstrained case. In particular, we analyze how the total curvature and total torsion are affected by (1) varying the length of polygons within a fixed confinement radius and (2) varying the confinement radius of polygons with a fixed length. We also compare the total curvature and total torsion of groups of knots with similar complexity (measured as crossing number). While some of our results fall in line with what has been observed in the studies of the unconfined random polygons, a few surprising results emerge from our study, showing some properties that are unique due to the effect of knotting in confinement.

11. Double level selection in a constitutional dynamic library of coordination driven supramolecular polygons.

Science.gov (United States)

Rancan, Marzio; Tessarolo, Jacopo; Casarin, Maurizio; Zanonato, Pier Luigi; Quici, Silvio; Armelao, Lidia

2014-07-21

A constitutional dynamic library (CDL) of Cu(II) metallo-supramolecular polygons has been studied as a bench test to examine an interesting selection case based on molecular recognition. Sorting of the CDL polygons is achieved through a proper guest that is hosted into the triangular metallo-macrocycle constituent. Two selection mechanisms are observed, a guest induced path and a guest templated self-assembly (virtual library approach). Remarkably, the triangular host can accommodate several guests with a degree of selectivity ranging from ∼1 to ∼10(4) for all possible guest pairs. A double level selection operates: guests drive the CDL toward the triangular polygon, and, at the same time, this is able to pick a specific guest from a set of competitive molecules, according to a selectivity-affinity correlation. Association constants of the host-guest systems have been determined. Guest competition and exchange studies have been analyzed through variable temperature UV-Vis absorption spectroscopy and single crystal X-ray diffraction studies. Molecular structures and electronic properties of the triangular polygon and of the host-guest systems also have been studied by means of all electrons density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations including dispersive contributions. DFT outcomes ultimately indicate the dispersive nature of the host-guest interactions, while TDDFT results allow a thorough assignment of the host and host-guests spectral features.

12. Pixels, Blocks of Pixels, and Polygons: Choosing a Spatial Unit for Thematic Accuracy Assessment

Science.gov (United States)

Pixels, polygons, and blocks of pixels are all potentially viable spatial assessment units for conducting an accuracy assessment. We develop a statistical population-based framework to examine how the spatial unit chosen affects the outcome of an accuracy assessment. The populati...

13. An Investigation of K-8 Preservice Teachers' Concept Images and Mathematical Definitions of Polygons

Science.gov (United States)

Ward, Robin A.

2004-01-01

In this paper, the author presents a study which explored K-8 preservice teachers' concept images and mathematical definitions of polygons. This study was carried out in which K-8 teacher candidates enrolled in an elementary mathematics content course were asked to sort, identify, and provide definitions of such shapes including triangles,…

14. Self-Assembly of Flux-Closure Polygons from Magnetite Nanocubes.

Science.gov (United States)

Szyndler, Megan W; Corn, Robert M

2012-09-06

Well-defined nanoscale flux-closure polygons (nanogons) have been fabricated on hydrophilic surfaces from the face-to-face self-assembly of magnetite nanocubes. Uniform ferrimagnetic magnetite nanocubes (∼86 nm) were synthesized and characterized with a combination of electron microscopy, diffraction, and magnetization measurements. The nanocubes were subsequently cast onto hydrophilic substrates, wherein the cubes lined up face-to-face and formed a variety of polygons due to magnetostatic and hydrophobic interactions. The generated surfaces consist primarily of three- and four-sided nanogons; polygons ranging from two to six sides were also observed. Further examination of the nanogons showed that the constraints of the face-to-face assembly of nanocubes often led to bowed sides, strained cube geometries, and mismatches at the acute angle vertices. Additionally, extra nanocubes were often present at the vertices, suggesting the presence of external magnetostatic fields at the polygon corners. These nanogons are inimitable nanoscale magnetic structures with potential applications in the areas of magnetic memory storage and high-frequency magnetics.

15. (2+1) gravity for higher genus in the polygon model

NARCIS (Netherlands)

Kádár, Zoltán; Loll, R.

2004-01-01

We construct explicitly a (12g − 12)-dimensional space P of unconstrained and independent initial data for ’t Hooft’s polygon model of (2+1) gravity for vacuum spacetimes with compact genus-g spacelike slices, for any g ≥ 2. Our method relies on interpreting the boost parameters of the gluing

16. Matching soil grid unit resolutions with polygon unit scales for DNDC modelling of regional SOC pool

Science.gov (United States)

Zhang, H. D.; Yu, D. S.; Ni, Y. L.; Zhang, L. M.; Shi, X. Z.

2015-03-01

Matching soil grid unit resolution with polygon unit map scale is important to minimize uncertainty of regional soil organic carbon (SOC) pool simulation as their strong influences on the uncertainty. A series of soil grid units at varying cell sizes were derived from soil polygon units at the six map scales of 1:50 000 (C5), 1:200 000 (D2), 1:500 000 (P5), 1:1 000 000 (N1), 1:4 000 000 (N4) and 1:14 000 000 (N14), respectively, in the Tai lake region of China. Both format soil units were used for regional SOC pool simulation with DeNitrification-DeComposition (DNDC) process-based model, which runs span the time period 1982 to 2000 at the six map scales, respectively. Four indices, soil type number (STN) and area (AREA), average SOC density (ASOCD) and total SOC stocks (SOCS) of surface paddy soils simulated with the DNDC, were attributed from all these soil polygon and grid units, respectively. Subjecting to the four index values (IV) from the parent polygon units, the variation of an index value (VIV, %) from the grid units was used to assess its dataset accuracy and redundancy, which reflects uncertainty in the simulation of SOC. Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pool, matching with soil polygon units map scales, respectively. With the optimal raster resolution the soil grid units dataset can hold the same accuracy as its parent polygon units dataset without any redundancy, when VIV indices was assumed as criteria to the assessment. An quadratic curve regression model y = -8.0 × 10-6x2 + 0.228x + 0.211 (R2 = 0.9994, p < 0.05) was revealed, which describes the relationship between optimal soil grid unit resolution (y, km) and soil polygon unit map scale (1:x). The knowledge may serve for grid partitioning of regions focused on the investigation and simulation of SOC pool dynamics at certain map scale.

17. The Latemar: A Middle Triassic polygonal fault-block platform controlled by synsedimentary tectonics

Science.gov (United States)

Preto, Nereo; Franceschi, Marco; Gattolin, Giovanni; Massironi, Matteo; Riva, Alberto; Gramigna, Pierparide; Bertoldi, Luca; Nardon, Sergio

2011-03-01

Detailed field mapping of a Middle Triassic carbonate buildup, the Latemar in the western Dolomites, northern Italy, has been carried out. The Latemar is an isolated carbonate buildup that nucleates on a fault-bounded structural high (horst) cut into the underlying late Anisian carbonate bank of the Contrin Fm. This study demonstrates that extensional synsedimentary tectonics is the main factor controlling its geometry and provides an age for this tectonic phase. In an early phase, slopes were mostly composed of well bedded, clinostratified grainstones and rudstones. In a later stage, the deposition of grainstones was accompanied by the emplacement of clinostratified megabreccias. The upper portion of slopes is a microbial boundstone with abundant Tubiphytes and patches or lenses of grainstone. Boundstones may occasionally expand into the platform interior and downward to the base of the slope. The depositional profile was that of a mounded platform. The buildup is dissected by a dense framework of high angle fractures and faults, and by magmatic and sedimentary dikes, exhibiting two principal directions trending NNW-SSE and ENE-WSW. Faults trending WNW-ESE were also observed. Magmatic dikes are related to the emplacement of the nearby Predazzo intrusion and are thus upper Ladinian. Kinematic indicators of strike-slip activity were observed on fault planes trending NNE-SSW and NNW-SSE, that can be attributed to Cenozoic Alpine tectonics. Faults, magmatic dikes and sedimentary dikes show systematic cross-cutting relationships, with strike-slip faults cutting magmatic dikes, and magmatic dikes cutting sedimentary (neptunian) dikes. ENE-WSW and WNW-ESE faults are cut by all other structures, and record the oldest tectonic activity in the region. Structural analysis attributes this tectonic phase to an extensional stress field, with a direction of maximum extension oriented ca. N-S. Several lines of evidence, including sealed faults and growth wedge geometries allow us

18. Conversion of ICRP male reference phantom to polygon-surface phantom

Science.gov (United States)

Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

2013-10-01

The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating

19. HIERARCHICAL REGULARIZATION OF POLYGONS FOR PHOTOGRAMMETRIC POINT CLOUDS OF OBLIQUE IMAGES

Directory of Open Access Journals (Sweden)

L. Xie

2017-05-01

Full Text Available Despite the success of multi-view stereo (MVS reconstruction from massive oblique images in city scale, only point clouds and triangulated meshes are available from existing MVS pipelines, which are topologically defect laden, free of semantical information and hard to edit and manipulate interactively in further applications. On the other hand, 2D polygons and polygonal models are still the industrial standard. However, extraction of the 2D polygons from MVS point clouds is still a non-trivial task, given the fact that the boundaries of the detected planes are zigzagged and regularities, such as parallel and orthogonal, cannot preserve. Aiming to solve these issues, this paper proposes a hierarchical polygon regularization method for the photogrammetric point clouds from existing MVS pipelines, which comprises of local and global levels. After boundary points extraction, e.g. using alpha shapes, the local level is used to consolidate the original points, by refining the orientation and position of the points using linear priors. The points are then grouped into local segments by forward searching. In the global level, regularities are enforced through a labeling process, which encourage the segments share the same label and the same label represents segments are parallel or orthogonal. This is formulated as Markov Random Field and solved efficiently. Preliminary results are made with point clouds from aerial oblique images and compared with two classical regularization methods, which have revealed that the proposed method are more powerful in abstracting a single building and is promising for further 3D polygonal model reconstruction and GIS applications.

20. Nonobtuse local tetrahedral refinements towards a polygonal face/interface

Czech Academy of Sciences Publication Activity Database

Korotov, S.; Křížek, Michal

2011-01-01

Roč. 24, č. 6 (2011), s. 817-821 ISSN 0893-9659 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : finite element method * nonobtuse tetrahedron * local refinement * discrete maximum principle * boundary and interior layers * interface problem Subject RIV: BA - General Mathematics Impact factor: 1.371, year: 2011 http://www.sciencedirect.com/science/article/pii/S0893965910004726

1. Credal Networks under Maximum Entropy

OpenAIRE

Lukasiewicz, Thomas

2013-01-01

We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

2. Weight Management

Science.gov (United States)

... Health Information Weight Management English English Español Weight Management Obesity is a chronic condition that affects more ... Liver (NASH) Heart Disease & Stroke Sleep Apnea Weight Management Topics About Food Portions Bariatric Surgery for Severe ...

3. Meter-scale thermal contraction crack polygons on the nucleus of comet 67P/Churyumov-Gerasimenko

Science.gov (United States)

Auger, A.-T.; Groussin, O.; Jorda, L.; El-Maarry, M. R.; Bouley, S.; Séjourné, A.; Gaskell, R.; Capanna, C.; Davidsson, B.; Marchi, S.; Höfner, S.; Lamy, P. L.; Sierks, H.; Barbieri, C.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Hviid, S.; Ip, W.-H.; Knollenberg, J.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Massironi, M.; Michalik, H.; Naletto, G.; Oklay, N.; Pommerol, A.; Sabau, L.; Thomas, N.; Tubiana, C.; Vincent, J.-B.; Wenzel, K.-P.

2018-02-01

We report on the detection and characterization of more than 6300 polygons on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, using images acquired by the OSIRIS camera onboard Rosetta between August 2014 and March 2015. They are found in consolidated terrains and grouped in localized networks. They are present at all latitudes (from North to South) and longitudes (head, neck, and body), sometimes on pit walls or following lineaments. About 1.5% of the observed surface is covered by polygons. Polygons have an homogeneous size across the nucleus, with 90% of them in the size range 1 - 5 m and a mean size of 3.0 ± 1.4 m. They show different morphologies, depending on the width and depth of their trough. They are found in networks with 3- or 4-crack intersection nodes. The polygons observed on 67P are consistent with thermal contraction crack polygons formed by the diurnal or seasonal temperature variations in a hard (MPa) and consolidated sintered layer of water ice, located a few centimeters below the surface. Our thermal analysis shows an evolution of thermal contraction crack polygons according to the local thermal environment, with more evolved polygons (i.e. deeper and larger troughs) where the temperature and the diurnal and seasonal temperature range are the highest. Thermal contraction crack polygons are young surface morphologies that probably formed after the injection of 67P in the inner solar system, typically 100,000 years ago, and could be as young as a few orbital periods, following the decreasing of its perihelion distance in 1959 from 2.7 to 1.3 a.u. Meter scale thermal contraction crack polygons should be common features on the nucleus of Jupiter family comets.

4. POLYGON - A New Fundamental Movement Skills Test for 8 Year Old Children: Construction and Validation.

Science.gov (United States)

Zuvela, Frane; Bozanic, Ana; Miletic, Durdica

2011-01-01

Inadequately adopted fundamental movement skills (FMS) in early childhood may have a negative impact on the motor performance in later life (Gallahue and Ozmun, 2005). The need for an efficient FMS testing in Physical Education was recognized. The aim of this paper was to construct and validate a new FMS test for 8 year old children. Ninety-five 8 year old children were used for the testing. A total of 24 new FMS tasks were constructed and only the best representatives of movement areas entered into the final test product - FMS-POLYGON. The ICC showed high values for all 24 tasks (0.83-0.97) and the factorial analysis revealed the best representatives of each movement area that entered the FMS-POLYGON: tossing and catching the volleyball against a wall, running across obstacles, carrying the medicine balls, and straight running. The ICC for the FMS-POLYGON showed a very high result (0.98) and, therefore, confirmed the test's intra-rater reliability. Concurrent validity was tested with the use of the "Test of Gross Motor Development" (TGMD-2). Correlation analysis between the newly constructed FMS-POLYGON and the TGMD-2 revealed the coefficient of -0.82 which indicates a high correlation. In conclusion, the new test for FMS assessment proved to be a reliable and valid instrument for 8 year old children. Application of this test in schools is justified and could play an important factor in physical education and sport practice. Key pointsAll 21 newly constructed tasks demonstrated high intra-rater reliability (0.83-0.97) in FMS assessment. High reliability was also noted in the FMS-POLYGON test (0.98).A high correlation was found between the FMS-POLYGON and TGMD-2 which is a confirmation of the new test's concurrent validity.The research resolved the problem of long and detailed FMS assessment by adding a new dimension using quick and effective norm-referenced approach but also covering all the most important movement areas.New and validated test can be of great use

5. Polygons and adhesion plaques and the disassembly and assembly of myofibrils in cardiac myocytes.

Science.gov (United States)

Lin, Z X; Holtzer, S; Schultheiss, T; Murray, J; Masaki, T; Fischman, D A; Holtzer, H

1989-06-01

Successive stages in the disassembly of myofibrils and the subsequent assembly of new myofibrils have been studied in cultures of dissociated chick cardiac myocytes. The myofibrils in trypsinized and dispersed myocytes are sequentially disassembled during the first 3 d of culture. They split longitudinally and then assemble into transitory polygons. Multiples of single sarcomeres, the cardiac polygons, are analogous to the transitory polygonal configurations assumed by stress fibers in spreading fibroblasts. They differ from their counterparts in fibroblasts in that they consist of muscle alpha-actinin vertices and muscle myosin heavy chain struts, rather than of the nonmuscle contractile protein isoforms of stress fiber polygons. EM sections reveal the vertices and struts in cardiac polygons to be typical Z and A bands. Most cardiac polygons are eliminated by day 5 of culture. Concurrent with the disassembly and elimination of the original myofibrils new myofibrils are rapidly assembled elsewhere in the same myocyte. Without exception both distal tips of each nascent myofibril terminate in adhesion plaques. The morphology and composition of the adhesion plaques capping each end of each myofibril are similar to those of the termini of stress fibers in fibroblasts. However, whereas the adhesion complexes involving stress fibers in fibroblasts consist of vinculin/nonmuscle alpha-actinin/beta- and gamma-actins, the analogous structures in myocytes involving myofibrils consist of vinculin/muscle alpha-actinin/alpha-actin. The addition of 1.7-2.0 microns sarcomeres to the distal tips of an elongating myofibril, irrespective of whether the myofibril consists of 1, 10, or several hundred tandem sarcomeres, occurs while the myofibril appears to remain linked to its respective adhesion plaques. The adhesion plaques in vitro are the equivalent of the in vivo intercalated discs, both in terms of their molecular composition and with respect to their functioning as initiating

6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: North Carolina: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for whales, porpoises, dolphins, manatees, and pinnipeds in North Carolina. Vector polygons in this data...

7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: New Hampshire: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, porpoise, and whales in New Hampshire. Vector polygons in this data set represent marine mammal...

8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphins, porpoises, whales, seals, sea lions, and sea otters in Central California. Vector polygons in...

9. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for beach mice, red wolf, and Florida black bear for the Florida Panhandle. Vector polygons in this data...

10. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine mammals (seals) in the Hudson River. Vector polygons in this data set represent marine mammal...

11. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northern California: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, dolphins, porpoises, sea otters, and sea lions in Northern California. Vector polygons...

12. Landfills - LANDFILL_BOUNDARIES_IDEM_IN: Waste Site Boundaries in Indiana (Indiana Department of Environmental Management, Polygon Shapefile)

Data.gov (United States)

NSGIC State | GIS Inventory — LANDFILL_BOUNDARIES_IDEM_IN.SHP is a polygon shapefile that contains boundaries for open dump sites, approved landfills, and permitted landfills in Indiana, provided...

13. linear time algorithm for finding the convex ropes between two vertices of a simple polygon without triangulation

International Nuclear Information System (INIS)

Phan Thanh An

2008-06-01

The convex rope problem, posed by Peshkin and Sanderson in IEEE J. Robotics Automat, 2 (1986) pp. 53-58, is to find the counterclockwise and clockwise convex ropes starting at the vertex a and ending at the vertex b of a simple polygon, where a is on the boundary of the convex hull of the polygon and b is visible from infinity. In this paper, we present a linear time algorithm for solving this problem without resorting to a linear-time triangulation algorithm and without resorting to a convex hull algorithm for the polygon. The counterclockwise (clockwise, respectively) convex rope consists of two polylines obtained in a basic incremental strategy described in convex hull algorithms for the polylines forming the polygon from a to b. (author)

14. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for terrestrial mammals for the Upper Coast of Texas. Vector polygons in this data set represent...

15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: ESIP (ESI Shoreline Types - Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — The ESIP data set contains polygons representing the shoreline and coastal habitats of the Upper Coast of Texas, classified according to the Environmental...

16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: MGT_FISH (Fishery Management Area Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains commercial fisheries in South Florida. Vector polygons in this data set represent statistical reporting grids used to aggregate commercial...

17. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: HYDRO (Hydrography Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for the Upper...

18. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphins and manatees in for the Florida Panhandle. Vector polygons in this data set represent dolphins...

19. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: New Hampshire: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for northern river otters, beavers, and muskrats in New Hampshire. Vector polygons in this data set...

20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for the Hudson River, classified according to the Environmental...

1. Coverage hab108_0201 -- Habitat polygons for HMPR-108-2002-01 survey in Olympic Coast national marine sanctuary.

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat polygon coverages are being created for the Olympic Coast national marine sanctuary (OCNMS).ROV, towed camera sled, bathymetry data, sedimentary...

2. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphins and manatees for the Upper Coast of Texas. Vector polygons in this data set represent marine...

3. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for manatees and bottlenose dolphins in [for] South Florida. Vector polygons in this data set represent...

4. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for rare/sensitive species occurrences of terrestrial mammals in Central California. Vector polygons in...

5. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for small terrestrial mammals (woodrats, myotis, muskrat, mink) for the Hudson River. Vector polygons in...

6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Southern California: T_MAMMAL (Terrestrial Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for rare and threatened/endangered terrestrial mammals in Southern California. Vector polygons in this data...

7. Olympic Coast National Marine Sanctuary - hab110_0204c - Habitat polygons for survey area 110_0204c

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat polygon coverages are being created for the Olympic Coast National Marine Sanctuary (OCNMS). OCNMS has collected multibeam backscatter, multibeam...

8. Olympic Coast National Marine Sanctuary - hab122_0702 - Habitat polygons for HMPR-122-2007-02 survey

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat polygon coverages are being created for the Olympic Coast National Marine Sanctuary (OCNMS). OCNMS has collected side scan sonar, multibeam...

9. Olympic Coast National Marine Sanctuary - hab110_0204b - Habitat polygons for survey area 0204b

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat polygon coverages are being created for the Olympic Coast National Marine Sanctuary (OCNMS). OCNMS has collected multibeam backscatter, multibeam...

10. Olympic Coast National Marine Sanctuary - hab110_0204a - Habitat polygons for area 110_0204a

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat polygon coverages are being created for the Olympic Coast National Marine Sanctuary (OCNMS). OCNMS has collected multibeam backscatter, multibeam...

11. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Southern California: M_MAMMAL (Marine Mammal Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, sea lions, whales, dolphins, porpoises, and sea otters in Southern California. Vector polygons...

12. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northern California: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Northern California, classified according to the Environmental...

13. Hydrogeology - HYDROGEOL_SETTINGS_IN: Hydrogeologic Terrains and Settings of Indiana (Indiana Geological Survey, 1:100,000, Polygon Shapefile)

Data.gov (United States)

NSGIC State | GIS Inventory — HYDROGEOL_SETTINGS_IN is a polygon shapefile that shows hydrogeologic terrains and settings of Indiana. The methodology of the investigation and definitions of terms...

14. 40 CFR 1045.140 - What is my engine's maximum engine power?

Science.gov (United States)

2010-07-01

...) Maximum engine power for an engine family is generally the weighted average value of maximum engine power... engine family's maximum engine power apply in the following circumstances: (1) For outboard or personal... value for maximum engine power from all the different configurations within the engine family to...

15. Stoichiometric control of multiple different tectons in coordination-driven self-assembly: preparation of fused metallacyclic polygons.

Science.gov (United States)

Lee, Junseong; Ghosh, Koushik; Stang, Peter J

2009-09-02

We present a general strategy for the synthesis of stable, multicomponent fused polygon complexes in which coordination-driven self-assembly allows for single supramolecular species to be formed from multicomponent self-assembly and the shape of the obtained polygons can be controlled simply by changing the ratio of individual components. The compounds have been characterized by multinuclear NMR spectroscopy and electrospray ionization mass spectrometry.

16. A Novel Shape-Free Plane Quadratic Polygonal Hybrid Stress-Function Element

Directory of Open Access Journals (Sweden)

Pei-Lei Zhou

2015-01-01

Full Text Available A novel plane quadratic shape-free hybrid stress-function (HS-F polygonal element is developed by employing the principle of minimum complementary energy and the fundamental analytical solutions of the Airy stress function. Without construction of displacement interpolation function, the formulations of the new model are much simpler than those of the displacement-based polygonal elements and can be degenerated into triangular or quadrilateral elements directly. In particular, it is quite insensitive to various mesh distortions and even can keep precision when element shape is concave. Furthermore, the element does not show any spurious zero energy modes. Numerical examples show the excellent performance of the new element, denoted by HSF-AP-19β, in both displacement and stress solutions.

17. Nonimaging polygonal mirrors achieving uniform irradiance distributions on concentrating photovoltaic cells.

Science.gov (United States)

Schmitz, Max; Dähler, Fabian; Elvinger, François; Pedretti, Andrea; Steinfeld, Aldo

2017-04-10

We introduce a design methodology for nonimaging, single-reflection mirrors with polygonal inlet apertures that generate a uniform irradiance distribution on a polygonal outlet aperture, enabling a multitude of applications within the domain of concentrated photovoltaics. Notably, we present single-mirror concentrators of square and hexagonal perimeter that achieve very high irradiance uniformity on a square receiver at concentrations ranging from 100 to 1000 suns. These optical designs can be assembled in compound concentrators with maximized active area fraction by leveraging tessellation. More advanced multi-mirror concentrators, where each mirror individually illuminates the whole area of the receiver, allow for improved performance while permitting greater flexibility for the concentrator shape and robustness against partial shading of the inlet aperture.

18. Explicitly represented polygon wall boundary model for the explicit MPS method

Science.gov (United States)

Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori

2015-05-01

This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.

19. Multi-scale Clustering of Points Synthetically Considering Lines and Polygons Distribution

Directory of Open Access Journals (Sweden)

YU Li

2015-10-01

Full Text Available Considering the complexity and discontinuity of spatial data distribution, a clustering algorithm of points was proposed. To accurately identify and express the spatial correlation among points,lines and polygons, a Voronoi diagram that is generated by all spatial features is introduced. According to the distribution characteristics of point's position, an area threshold used to control clustering granularity was calculated. Meanwhile, judging scale convergence by constant area threshold, the algorithm classifies spatial features based on multi-scale, with an O(n log n running time.Results indicate that spatial scale converges self-adaptively according with distribution of points.Without the custom parameters, the algorithm capable to discover arbitrary shape clusters which be bound by lines and polygons, and is robust for outliers.

20. hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes

CERN Document Server

Cangiani, Andrea; Georgoulis, Emmanuil H; Houston, Paul

2017-01-01

Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and elemen...