WorldWideScience

Sample records for maximum temperature difference

  1. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  2. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  3. Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece

    Science.gov (United States)

    Panagoulia, Dionysia; Vlahogianni, Eleni I.

    2018-06-01

    A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to

  4. Comparison of the Spatiotemporal Variability of Temperature, Precipitation, and Maximum Daily Spring Flows in Two Watersheds in Quebec Characterized by Different Land Use

    Directory of Open Access Journals (Sweden)

    Ali A. Assani

    2016-01-01

    Full Text Available We compared the spatiotemporal variability of temperatures and precipitation with that of the magnitude and timing of maximum daily spring flows in the geographically adjacent L’Assomption River (agricultural and Matawin River (forested watersheds during the period from 1932 to 2013. With regard to spatial variability, fall, winter, and spring temperatures as well as total precipitation are higher in the agricultural watershed than in the forested one. The magnitude of maximum daily spring flows is also higher in the first watershed as compared with the second, owing to substantial runoff, given that the amount of snow that gives rise to these flows is not significantly different in the two watersheds. These flows occur early in the season in the agricultural watershed because of the relatively high temperatures. With regard to temporal variability, minimum temperatures increased over time in both watersheds. Maximum temperatures in the fall only increased in the agricultural watershed. The amount of spring rain increased over time in both watersheds, whereas total precipitation increased significantly in the agricultural watershed only. However, the amount of snow decreased in the forested watershed. The magnitude of maximum daily spring flows increased over time in the forested watershed.

  5. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    Science.gov (United States)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  6. Future changes over the Himalayas: Maximum and minimum temperature

    Science.gov (United States)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of minimum and maximum air temperature over the Indian Himalayan region (IHR) from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out under two different Representative Concentration Pathway (RCP) scenarios. The major aim of this study is to assess the probable future changes in the minimum and maximum climatology and its long-term trend under different RCPs along with the elevation dependent warming over the IHR. A number of statistical analysis such as changes in mean climatology, long-term spatial trend and probability distribution function are carried out to detect the signals of changes in climate. The study also tries to quantify the uncertainties associated with different model experiments and their ensemble in space, time and for different seasons. The model experiments and their ensemble show prominent cold bias over Himalayas for present climate. However, statistically significant higher warming rate (0.23-0.52 °C/decade) for both minimum and maximum air temperature (Tmin and Tmax) is observed for all the seasons under both RCPs. The rate of warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios starting from RCP4.5 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the magnitude of trend between different models describes the uncertainty associated with the model projections and scenarios. The projected rate of increase of Tmin may destabilize the snow formation at the higher altitudes in the northern and western parts of Himalayan region, while rising trend of Tmax over southern flank may effectively melt more snow cover. Such combined effect of rising trend of Tmin and Tmax may pose a potential threat to the glacial deposits. The overall trend of Diurnal temperature range (DTR) portrays increasing trend across entire area with

  7. Maximum Smoke Temperature in Non-Smoke Model Evacuation Region for Semi-Transverse Tunnel Fire

    OpenAIRE

    B. Lou; Y. Qiu; X. Long

    2017-01-01

    Smoke temperature distribution in non-smoke evacuation under different mechanical smoke exhaust rates of semi-transverse tunnel fire were studied by FDS numerical simulation in this paper. The effect of fire heat release rate (10MW 20MW and 30MW) and exhaust rate (from 0 to 160m3/s) on the maximum smoke temperature in non-smoke evacuation region was discussed. Results show that the maximum smoke temperature in non-smoke evacuation region decreased with smoke exhaust rate. Plug-holing was obse...

  8. Mid-depth temperature maximum in an estuarine lake

    Science.gov (United States)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  9. Maximum Temperature Detection System for Integrated Circuits

    Science.gov (United States)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  10. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    Science.gov (United States)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  11. Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985-2014

    Science.gov (United States)

    Raggad, Bechir

    2018-05-01

    In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985-2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.

  12. Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China

    Science.gov (United States)

    Zhou, Zhiyong; Xu, Meili; Kang, Fengfeng; Jianxin Sun, Osbert

    2015-01-01

    It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10 cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On monthly scale, soil respiration significantly correlated with maximum, minimum, mean and accumulated effective soil temperatures. Annual soil respiration varied from 409 g C m−2 in coniferous forest to 570 g C m−2 in mixed forest and to 692 g C m−2 in broadleaved forest, and was markedly explained by mean soil temperatures of the warmest day, July and summer, separately. These three soil temperatures reflected the maximum values on diurnal, monthly and annual scales. In accordance with their higher temperatures, summer soil respiration accounted for 51% of annual soil respiration across forest types, and broadleaved forest also had higher soil organic carbon content (SOC) and soil microbial biomass carbon content (SMBC), but a lower contribution of SMBC to SOC. This added proof to the findings that maximum soil temperature may accelerate the transformation of SOC to CO2-C via stimulating activities of soil microorganisms. PMID:26179467

  13. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection

    Science.gov (United States)

    DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation

  14. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.

    Science.gov (United States)

    DeWeber, Jefferson T; Wagner, Tyler

    2018-06-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our

  15. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  16. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  17. Operational forecasting of daily temperatures in the Valencia Region. Part I: maximum temperatures in summer.

    Science.gov (United States)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  18. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  19. Influence of aliphatic amides on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Torres, Andrés Felipe; Romero, Carmen M.

    2017-01-01

    Highlights: • The addition of amides decreases the temperature of maximum density of water suggesting a disruptive effect on water structure. • The amides in aqueous solution do not follow the Despretz equation in the concentration range considered. • The temperature shift Δθ as a function of molality is represented by a second order equation. • The Despretz constants were determined considering the dilute concentration region for each amide solution. • Solute disrupting effect of amides becomes smaller as its hydrophobic character increases. - Abstract: The influence of dissolved substances on the temperature of the maximum density of water has been studied in relation to their effect on water structure as they can change the equilibrium between structured and unstructured species of water. However, most work has been performed using salts and the studies with small organic solutes such as amides are scarce. In this work, the effect of acetamide, propionamide and butyramide on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65–278.65) K at intervals of 0.50 K in the concentration range between (0.10000 and 0.80000) mol·kg −1 . The temperature of maximum density was determined from the experimental results. The effect of the three amides is to decrease the temperature of maximum density of water and the change does not follow the Despretz equation. The results are discussed in terms of solute-water interactions and the disrupting effect of amides on water structure.

  20. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    Science.gov (United States)

    Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.

    2016-03-01

    Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG

  1. Device for determining the maximum temperature of an environment

    International Nuclear Information System (INIS)

    Cartier, Louis.

    1976-01-01

    This invention concerns a device for determining the maximum temperature of an environment. Its main characteristic is a central cylindrical rod on which can slide two identical tubes, the facing ends of which are placed end to end and the far ends are shaped to provide a sliding friction along the rod. The rod and tubes are fabricated in materials of which the linear expansion factors are different in value. The far ends are composed of tongs of which the fingers, fitted with claws, bear on the central rod. Because of this arrangement of the device the two tubes, placed end to end on being fitted, can expand under the effect of a rise in the temperature of the environment into which the device is introduced, with the result that there occurs an increase in the distance between the two far ends. This distance is maximal when the device is raised to its highest temperature. The far ends are shaped to allow the tubes to slide under the effect of expansion but to prevent sliding in the opposite direction when the device is taken back into the open air and the temperature drops to within ambient temperature. It follows that the tubes tend to return to their initial length and the ends that were placed end to end when fitted now have a gap between them. The measurement of this gap makes it possible to know the maximal temperature sought [fr

  2. PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM PHOTOVOLTAIC POWER TRACTIOQG UNDER DIFFERENT CONDITIONS

    Directory of Open Access Journals (Sweden)

    Y. Labbi

    2015-08-01

    Full Text Available Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency.In this work, a Particle Swarm Optimization (PSO is proposed for maximum power point tracker for photovoltaic panel, are used to generate the optimal MPP, such that solar panel maximum power is generated under different operating conditions. A photovoltaic system including a solar panel and PSO MPP tracker is modelled and simulated, it has been has been carried out which has shown the effectiveness of PSO to draw much energy and fast response against change in working conditions.

  3. Simulation of the maximum yield of sugar cane at different altitudes: effect of temperature on the conversion of radiation into biomass

    International Nuclear Information System (INIS)

    Martine, J.F.; Siband, P.; Bonhomme, R.

    1999-01-01

    To minimize the production costs of sugar cane, for the diverse sites of production found in La Réunion, an improved understanding of the influence of temperature on the dry matter radiation quotient is required. Existing models simulate poorly the temperature-radiation interaction. A model of sugar cane growth has been fitted to the results from two contrasting sites (mean temperatures: 14-30 °C; total radiation: 10-25 MJ·m -2 ·d -1 ), on a ratoon crop of cv R570, under conditions of non-limiting resources. Radiation interception, aerial biomass, the fraction of millable stems, and their moisture content, were measured. The time-courses of the efficiency of radiation interception differed between sites. As a function of the sum of day-degrees, they were similar. The dry matter radiation quotient was related to temperature. The moisture content of millable stems depended on the day-degree sum. On the other hand, the leaf/stem ratio was independent of temperature. The relationships established enabled the construction of a simple model of yield potential. Applied to a set of sites representing the sugar cane growing area of La Réunion, it gave a good prediction of maximum yields. (author) [fr

  4. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    Science.gov (United States)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  5. Comparative Study of Regional Estimation Methods for Daily Maximum Temperature (A Case Study of the Isfahan Province

    Directory of Open Access Journals (Sweden)

    Ghamar Fadavi

    2016-02-01

    Full Text Available Introduction: As the statistical time series are in short period and the meteorological station are not distributed well in mountainous area determining of climatic criteria are complex. Therefore, in recent years interpolation methods for establishment of continuous climatic data have been considered. Continuous daily maximum temperature data are a key factor for climate-crop modeling which is fundamental for water resources management, drought, and optimal use from climatic potentials of different regions. The main objective of this study is to evaluate different interpolation methods for estimation of regional maximum temperature in the Isfahan province. Materials and Methods: Isfahan province has about 937,105 square kilometers, between 30 degree and 43 minutes to 34 degree and 27 minutes North latitude equator line and 49 degree and 36 minutes to 55 degree and 31 minutes east longitude Greenwich. It is located in the center of Iran and it's western part extend to eastern footage of the Zagros mountain range. It should be mentioned that elevation range of meteorological stations are between 845 to 2490 in the study area. This study was done using daily maximum temperature data of 1992 and 2007 years of synoptic and climatology stations of I.R. of Iran meteorological organization (IRIMO. In order to interpolate temperature data, two years including 1992 and 2007 with different number of meteorological stations have been selected the temperature data of thirty meteorological stations (17 synoptic and 13 climatologically stations for 1992 year and fifty four meteorological stations (31 synoptic and 23 climatologically stations for 2007 year were used from Isfahan province and neighboring provinces. In order to regionalize the point data of daily maximum temperature, the interpolation methods, including inverse distance weighted (IDW, Kriging, Co-Kriging, Kriging-Regression, multiple regression and Spline were used. Therefore, for this allocated

  6. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    Science.gov (United States)

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  7. Verification of surface minimum, mean, and maximum temperature forecasts in Calabria for summer 2008

    Directory of Open Access Journals (Sweden)

    S. Federico

    2011-02-01

    Full Text Available Since 2005, one-hour temperature forecasts for the Calabria region (southern Italy, modelled by the Regional Atmospheric Modeling System (RAMS, have been issued by CRATI/ISAC-CNR (Consortium for Research and Application of Innovative Technologies/Institute for Atmospheric and Climate Sciences of the National Research Council and are available online at http://meteo.crati.it/previsioni.html (every six hours. Beginning in June 2008, the horizontal resolution was enhanced to 2.5 km. In the present paper, forecast skill and accuracy are evaluated out to four days for the 2008 summer season (from 6 June to 30 September, 112 runs. For this purpose, gridded high horizontal resolution forecasts of minimum, mean, and maximum temperatures are evaluated against gridded analyses at the same horizontal resolution (2.5 km.

    Gridded analysis is based on Optimal Interpolation (OI and uses the RAMS first-day temperature forecast as the background field. Observations from 87 thermometers are used in the analysis system. The analysis error is introduced to quantify the effect of using the RAMS first-day forecast as the background field in the OI analyses and to define the forecast error unambiguously, while spatial interpolation (SI analysis is considered to quantify the statistics' sensitivity to the verifying analysis and to show the quality of the OI analyses for different background fields.

    Two case studies, the first one with a low (less than the 10th percentile root mean square error (RMSE in the OI analysis, the second with the largest RMSE of the whole period in the OI analysis, are discussed to show the forecast performance under two different conditions. Cumulative statistics are used to quantify forecast errors out to four days. Results show that maximum temperature has the largest RMSE, while minimum and mean temperature errors are similar. For the period considered

  8. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  9. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  10. Probing Ionic Liquid Aqueous Solutions Using Temperature of Maximum Density Isotope Effects

    Directory of Open Access Journals (Sweden)

    Mohammad Tariq

    2013-03-01

    Full Text Available This work is a new development of an extensive research program that is investigating for the first time shifts in the temperature of maximum density (TMD of aqueous solutions caused by ionic liquid solutes. In the present case we have compared the shifts caused by three ionic liquid solutes with a common cation—1-ethyl-3-methylimidazolium coupled with acetate, ethylsulfate and tetracyanoborate anions—in normal and deuterated water solutions. The observed differences are discussed in terms of the nature of the corresponding anion-water interactions.

  11. Impact of soil moisture on extreme maximum temperatures in Europe

    Directory of Open Access Journals (Sweden)

    Kirien Whan

    2015-09-01

    Full Text Available Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM on summer monthly maximum temperatures (TXx using water balance model-based SM estimates (driven with observations and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD, where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  12. EXTREME MAXIMUM AND MINIMUM AIR TEMPERATURE IN MEDİTERRANEAN COASTS IN TURKEY

    Directory of Open Access Journals (Sweden)

    Barbaros Gönençgil

    2016-01-01

    Full Text Available In this study, we determined extreme maximum and minimum temperatures in both summer and winter seasons at the stations in the Mediterranean coastal areas of Turkey.In the study, the data of 24 meteorological stations for the daily maximum and minimumtemperatures of the period from 1970–2010 were used. From this database, a set of four extreme temperature indices applied warm (TX90 and cold (TN10 days and warm spells (WSDI and cold spell duration (CSDI. The threshold values were calculated for each station to determine the temperatures that were above and below the seasonal norms in winter and summer. The TX90 index displays a positive statistically significant trend, while TN10 display negative nonsignificant trend. The occurrence of warm spells shows statistically significant increasing trend while the cold spells shows significantly decreasing trend over the Mediterranean coastline in Turkey.

  13. Maximum And Minimum Temperature Trends In Mexico For The Last 31 Years

    Science.gov (United States)

    Romero-Centeno, R.; Zavala-Hidalgo, J.; Allende Arandia, M. E.; Carrasco-Mijarez, N.; Calderon-Bustamante, O.

    2013-05-01

    Based on high-resolution (1') daily maps of the maximum and minimum temperatures in Mexico, an analysis of the last 31-year trends is performed. The maps were generated using all the available information from more than 5,000 stations of the Mexican Weather Service (Servicio Meteorológico Nacional, SMN) for the period 1979-2009, along with data from the North American Regional Reanalysis (NARR). The data processing procedure includes a quality control step, in order to eliminate erroneous daily data, and make use of a high-resolution digital elevation model (from GEBCO), the relationship between air temperature and elevation by means of the average environmental lapse rate, and interpolation algorithms (linear and inverse-distance weighting). Based on the monthly gridded maps for the mentioned period, the maximum and minimum temperature trends calculated by least-squares linear regression and their statistical significance are obtained and discussed.

  14. Trends in mean maximum temperature, mean minimum temperature and mean relative humidity for Lautoka, Fiji during 2003 – 2013

    Directory of Open Access Journals (Sweden)

    Syed S. Ghani

    2017-12-01

    Full Text Available The current work observes the trends in Lautoka’s temperature and relative humidity during the period 2003 – 2013, which were analyzed using the recently updated data obtained from Fiji Meteorological Services (FMS. Four elements, mean maximum temperature, mean minimum temperature along with diurnal temperature range (DTR and mean relative humidity are investigated. From 2003–2013, the annual mean temperature has been enhanced between 0.02 and 0.080C. The heating is more in minimum temperature than in maximum temperature, resulting in a decrease of diurnal temperature range. The statistically significant increase was mostly seen during the summer months of December and January. Mean Relative Humidity has also increased from 3% to 8%. The bases of abnormal climate conditions are also studied. These bases were defined with temperature or humidity anomalies in their appropriate time sequences. These established the observed findings and exhibited that climate has been becoming gradually damper and heater throughout Lautoka during this period. While we are only at an initial phase in the probable inclinations of temperature changes, ecological reactions to recent climate change are already evidently noticeable. So it is proposed that it would be easier to identify climate alteration in a small island nation like Fiji.

  15. New England observed and predicted growing season maximum stream/river temperature points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted growing season maximum stream/river temperatures in New England based on a spatial statistical...

  16. Effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Torres, Andres Felipe

    2015-01-01

    Highlights: • Effect of α-amino acids on the temperature of maximum density of water is presented. • The addition of α-amino acids decreases the temperature of maximum density of water. • Despretz constants suggest that the amino acids behave as water structure breakers. • Despretz constants decrease as the number of CH 2 groups of the amino acid increase. • Solute disrupting effect becomes smaller as its hydrophobic character increases. - Abstract: The effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65 to 278.65) K at intervals of T = 0.50 K over the concentration range between (0.0300 and 0.1000) mol · kg −1 . A linear relationship between density and concentration was obtained for all the systems in the temperature range considered. The temperature of maximum density was determined from the experimental results. The effect of the three amino acids is to decrease the temperature of maximum density of water and the decrease is proportional to molality according to Despretz equation. The effect of the amino acids on the temperature of maximum density decreases as the number of methylene groups of the alkyl chain becomes larger. The results are discussed in terms of (solute + water) interactions and the effect of amino acids on water structure

  17. Measurement of the temperature of density maximum of water solutions using a convective flow technique

    OpenAIRE

    Cawley, M.F.; McGlynn, D.; Mooney, P.A.

    2006-01-01

    A technique is described which yields an accurate measurement of the temperature of density maximum of fluids which exhibit such anomalous behaviour. The method relies on the detection of changes in convective flow in a rectangular cavity containing the test fluid.The normal single-cell convection which occurs in the presence of a horizontal temperature gradient changes to a double cell configuration in the vicinity of the density maximum, and this transition manifests itself in changes in th...

  18. Determination of Cardinal Temperatures and Germination Respond to Different Temperature for Five Lawns Cultivars

    Directory of Open Access Journals (Sweden)

    hadi khavari

    2017-08-01

    Full Text Available Introduction: Germination of every plant species respond to temperature variation in particular way. Germination is critical stage in plant life cycle. Seed germination is a complex biological process that is influenced by various environmental and genetic factors. The effects of temperature on plant development are the basis for models used to predict the timing of germination. Estimation of the cardinal temperatures, including base, optimum, and maximum, is essential because rate of development increases between base and optimum, decreases between optimum and maximum, and ceases above the maximum and below the base temperatures. Usually, a linear increase in germination rate is associated with an increase in temperature from base temperature (Tb to an optimum. An increase of temperature from the optimum will reduce the germination rate to zero. To determine the best planting date for plants, it is necessary to find the base (Tb, optimum (To and maximum temperatures (Tc for seed germination. These are known as cardinal temperatures. Modelling of seed germination is considered an effective approach to determining cardinal temperatures for most plant species, although these methods have some limitations due to unpredictable biological changes. The results of fitting mechanical models are useful for evaluating seed quality, germination rate, germination percentage, germination uniformity and seed performance under different environmental stresses such as salinity, drought, and freezing. Regression models incorporating more parameters can produce more precise estimates. Cardinal temperature was determined using segmented and logistic models in millet varieties and seedling emergence of wheat. In the dent-like model at lower-than-optimum temperature, a linear relationship holds between temperature and germination rate. This relationship remains linear at higher-than-optimum temperatures, but with a reducing trend. With increasing temperature

  19. A Hybrid Maximum Power Point Search Method Using Temperature Measurements in Partial Shading Conditions

    Directory of Open Access Journals (Sweden)

    Mroczka Janusz

    2014-12-01

    Full Text Available Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading.

  20. Extended Kalman Filtering to estimate temperature and irradiation for maximum power point tracking of a photovoltaic module

    International Nuclear Information System (INIS)

    Docimo, D.J.; Ghanaatpishe, M.; Mamun, A.

    2017-01-01

    This paper develops an algorithm for estimating photovoltaic (PV) module temperature and effective irradiation level. The power output of a PV system depends directly on both of these states. Estimating the temperature and irradiation allows for improved state-based control methods while eliminating the need of additional sensors. Thermal models and irradiation estimators have been developed in the literature, but none incorporate feedback for estimation. This paper outlines an Extended Kalman Filter for temperature and irradiation estimation. These estimates are, in turn, used within a novel state-based controller that tracks the maximum power point of the PV system. Simulation results indicate this state-based controller provides up to an 8.5% increase in energy produced per day as compared to an impedance matching controller. A sensitivity analysis is provided to examine the impact state estimate errors have on the ability to find the optimal operating point of the PV system. - Highlights: • Developed a temperature and irradiation estimator for photovoltaic systems. • Designed an Extended Kalman Filter to handle model and measurement uncertainty. • Developed a state-based controller for maximum power point tracking (MPPT). • Validated combined estimator/controller algorithm for different weather conditions. • Algorithm increases energy captured up to 8.5% over traditional MPPT algorithms.

  1. Trends in Mean Annual Minimum and Maximum Near Surface Temperature in Nairobi City, Kenya

    Directory of Open Access Journals (Sweden)

    George Lukoye Makokha

    2010-01-01

    Full Text Available This paper examines the long-term urban modification of mean annual conditions of near surface temperature in Nairobi City. Data from four weather stations situated in Nairobi were collected from the Kenya Meteorological Department for the period from 1966 to 1999 inclusive. The data included mean annual maximum and minimum temperatures, and was first subjected to homogeneity test before analysis. Both linear regression and Mann-Kendall rank test were used to discern the mean annual trends. Results show that the change of temperature over the thirty-four years study period is higher for minimum temperature than maximum temperature. The warming trends began earlier and are more significant at the urban stations than is the case at the sub-urban stations, an indication of the spread of urbanisation from the built-up Central Business District (CBD to the suburbs. The established significant warming trends in minimum temperature, which are likely to reach higher proportions in future, pose serious challenges on climate and urban planning of the city. In particular the effect of increased minimum temperature on human physiological comfort, building and urban design, wind circulation and air pollution needs to be incorporated in future urban planning programmes of the city.

  2. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    Science.gov (United States)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1990-01-01

    The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.

  3. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data

    Science.gov (United States)

    Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.

    2018-03-01

    Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.

  4. Modelling the occurrence of heat waves in maximum and minimum temperatures over Spain and projections for the period 2031-60

    Science.gov (United States)

    Abaurrea, J.; Asín, J.; Cebrián, A. C.

    2018-02-01

    The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.

  5. Evaluation of parameters effect on the maximum fuel temperature in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Maruyama, Soh; Sudo, Yukio; Fujii, Sadao; Niguma, Yoshinori.

    1988-10-01

    This report presents the results of quantitative evaluation on the effects of the dominant parameters on the maximum fuel temperature in the core thermal hydraulic design of the High Temperature Engineering Test Reactor(HTTR) of 30 MW in thermal power, 950 deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in coolant pressure. The dominant parameters investigated are 1) Gap conductance. 2) Effect of eccertricity of fuel compacts in graphite sleeve. 3) Effect of spacer ribs on heat transfer coefficients. 4) Contact probability of fuel compact and graphite sleeve. 5) Validity of uniform radial power density in the fuel compacts. 6) Effect of impurity gas on gap conductance. 7) Effect of FP gas on gap conductance. The effects of these items on the maximum fuel temperature were quantitalively identified as hot spot factors. A probability of the appearance of the maximum fuel temperature was also evaluated in this report. (author)

  6. Large temperature variability in the southern African tropics since the Last Glacial Maximum

    NARCIS (Netherlands)

    Powers, L.A.; Johnson, T.C.; Werne, J.P.; Castañeda, I.S.; Hopmans, E.; Sinninghe Damsté, J.S.; Schouten, S.

    2005-01-01

    The role of the tropics in global climate change is actively debated, particularly in regard to the timing and magnitude of thermal and hydrological response. Continuous, high-resolution temperature records through the Last Glacial Maximum (LGM) from tropical oceans have provided much insight

  7. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia

    Science.gov (United States)

    Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van

    2018-01-01

    Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.

  8. A new global reconstruction of temperature changes at the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    J. D. Annan

    2013-02-01

    Full Text Available Some recent compilations of proxy data both on land and ocean (MARGO Project Members, 2009; Bartlein et al., 2011; Shakun et al., 2012, have provided a new opportunity for an improved assessment of the overall climatic state of the Last Glacial Maximum. In this paper, we combine these proxy data with the ensemble of structurally diverse state of the art climate models which participated in the PMIP2 project (Braconnot et al., 2007 to generate a spatially complete reconstruction of surface air (and sea surface temperatures. We test a variety of approaches, and show that multiple linear regression performs well for this application. Our reconstruction is significantly different to and more accurate than previous approaches and we obtain an estimated global mean cooling of 4.0 ± 0.8 °C (95% CI.

  9. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Science.gov (United States)

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  10. Urban-Rural Temperature Differences in Lagos

    Directory of Open Access Journals (Sweden)

    Vincent N. Ojeh

    2016-05-01

    Full Text Available In this study, the hourly air temperature differences between City hall (urban and Okoafo (rural in Lagos, Nigeria, were calculated using one year of meteorological observations, from June 2014 to May 2015. The two sites considered for this work were carefully selected to represent their climate zones. The city core, City hall, is within the Local Climate Zone (LCZ 2 (Compact midrise while the rural location, Okoafo, falls within LCZ B (Scattered Trees in the south-western part on the outskirt of the city. This study is one of very few to investigate urban temperature conditions in Lagos, the largest city in Africa and one of the most rapidly urbanizing megacities in the world; findings show that maximum nocturnal UHI magnitudes in Lagos can exceed 7 °C during the dry season, and during the rainy season, wet soils in the rural environment supersede regional wind speed as the dominant control over UHI magnitude.

  11. Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies

    Energy Technology Data Exchange (ETDEWEB)

    Enrique, J.M.; Duran, E.; Andujar, J.M. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain); Sidrach-de-Cardona, M. [Departamento de Fisica Aplicada, II, Universidad de Malaga (Spain)

    2007-01-15

    The operating point of a photovoltaic generator that is connected to a load is determined by the intersection point of its characteristic curves. In general, this point is not the same as the generator's maximum power point. This difference means losses in the system performance. DC/DC converters together with maximum power point tracking systems (MPPT) are used to avoid these losses. Different algorithms have been proposed for maximum power point tracking. Nevertheless, the choice of the configuration of the right converter has not been studied so widely, although this choice, as demonstrated in this work, has an important influence in the optimum performance of the photovoltaic system. In this article, we conduct a study of the three basic topologies of DC/DC converters with resistive load connected to photovoltaic modules. This article demonstrates that there is a limitation in the system's performance according to the type of converter used. Two fundamental conclusions are derived from this study: (1) the buck-boost DC/DC converter topology is the only one which allows the follow-up of the PV module maximum power point regardless of temperature, irradiance and connected load and (2) the connection of a buck-boost DC/DC converter in a photovoltaic facility to the panel output could be a good practice to improve performance. (author)

  12. Performance of fuel system at different diesel temperature

    Science.gov (United States)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  13. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol

    Energy Technology Data Exchange (ETDEWEB)

    González-Salgado, D.; Zemánková, K. [Departamento de Física Aplicada, Universidad de Vigo, Campus del Agua, Edificio Manuel Martínez-Risco, E-32004 Ourense (Spain); Noya, E. G.; Lomba, E. [Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid (Spain)

    2016-05-14

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.

  14. New England observed and predicted August stream/river temperature maximum daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum negative rate of change in New England based on a...

  15. The Impacts of Maximum Temperature and Climate Change to Current and Future Pollen Distribution in Skopje, Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vladimir Kendrovski

    2012-02-01

    Full Text Available BACKGROUND. The goal of the present paper was to assess the impact of current and future burden of the ambient temperature to pollen distributions in Skopje. METHODS. In the study we have evaluated a correlation between the concentration of pollen grains in the atmosphere of Skopje and maximum temperature, during the vegetation period of 1996, 2003, 2007 and 2009 as a current burden in context of climate change. For our analysis we have selected 9 representative of each phytoallergen group (trees, grasses, weeds. The concentration of pollen grains has been monitored by a Lanzoni volumetric pollen trap. The correlation between the concentration of pollen grains in the atmosphere and selected meteorological variable from weekly monitoring has been studied with the help of linear regression and correlation coefficients. RESULTS. The prevalence of the sensibilization of standard pollen allergens in Skopje during the some period shows increasing from 16,9% in 1996 to 19,8% in 2009. We detect differences in onset of flowering, maximum and end of the length of seasons for pollen. The pollen distributions and risk increases in 3 main periods: early spring, spring and summer which are the main cause of allergies during these seasons. The largest increase of air temperature due to climate change in Skopje is expected in the summer season. CONCLUSION. The impacts of climate change by increasing of the temperature in the next decades very likely will include impacts on pollen production and differences in current pollen season. [TAF Prev Med Bull 2012; 11(1.000: 35-40

  16. New England observed and predicted Julian day of maximum growing season stream/river temperature points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted Julian day of maximum growing season stream/river temperatures in New England based on a spatial...

  17. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    International Nuclear Information System (INIS)

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-01-01

    The Markov chain’s first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%

  18. The Hengill geothermal area, Iceland: Variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G. R.

    1995-04-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area S. Iceland, a dominantly basaltic area. The likely strain rate calculated from thermal and tectonic considerations is 10 -15 s -1, and temperature measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up to 150 °C km -1 throughout the upper 2 km. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ± 50 °C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes located highly accurately by performing a simultaneous inversion for three-dimensional structure and hypocentral parameters. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. Beneath the high-temperature part of the geothermal area, the maximum depth of earthquakes may be as shallow as 4 km. The geothermal gradient below drilling depths in various parts of the area ranges from 84 ± 9 °Ckm -1 within the low-temperature geothermal area of the transform zone to 138 ± 15 °Ckm -1 below the centre of the high-temperature geothermal area. Shallow maximum depths of earthquakes and therefore high average geothermal gradients tend to correlate with the intensity of the geothermal area and not with the location of the currently active spreading axis.

  19. Low-temperature deuteron irradiation of differently reacted Nb3Sn superconductors

    International Nuclear Information System (INIS)

    Maier, P.; Seibt, E.

    1978-01-01

    Irradiation measurements with 50 MeV deuterons at 18 K and subsequent annealing measurements were performed on Nb 3 Sn single and multifilamentary superconductors at the Helium-Bath Irradiation Facility of the Karlsruhe Cyclotron. The critical current densities jsub(c) of Nb 3 Sn bronze-reacted wire samples at various reaction temperatures (Tsub(R)=650,700,750,800 and 850 0 C) with equal layer thickness were measured for integral deuteron fluxes up to PHIsub(t)=0.7x10 18 cm -2 . After a decrease in jsub(c) of 85% at maximum dose a relatively small annealing effect (4 to 10%) was observed at ambient temperatures. The maximum value of the normalized critical current density, jsub(c)/jsub(c0), at PHIsub(t)approximately=10 17 cm -2 increases with increasing reaction temperature. The difference in volume pinning forces before and after irradiation increases less than linear (approximately√PHIsub(t)) with the irradiation dose. An almost linear dependence between the inverse grain diameter (dsub(K) -1 )) and volume pinning force is obtained both before and after irradiation. (Auth.)

  20. On the maximum Q in feedback controlled subignited plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1990-01-01

    High Q operation in feedback controlled subignited fusion plasma requires the operating temperature to be close to the ignition temperature. In the present work we discuss technological and physical effects which may restrict this temperature difference. The investigation is based on a simplified, but still accurate, 0=D analytical analysis of the maximum Q of a subignited system. Particular emphasis is given to sawtooth ocsillations which complicate the interpretation of diagnostic neutron emission data into plasma temperatures and may imply an inherent lower bound on the temperature deviation from the ignition point. The estimated maximum Q is found to be marginal (Q = 10-20) from the point of view of a fusion reactor. (authors)

  1. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    Science.gov (United States)

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  2. Detection of Variations in Air Temperature at Different Time Scales During the Period 1889-1998 at Firenze, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.V. [Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad, Hyderabad, 500059, Andhra Pradesh (India); Bindi, M. [DISAT-UNIFI, P.le delle Cascine 18, 50144, Firenze (Italy); Crisci, A. [LaMMA-Laboratorio per la Meteorologia, Climatologia e la Modellistica Ambientale, Campi Bisenzio (Italy); Maracchi, G. [IATA-CNR, P.le delle Cascine 18, 50144 Firenze (Italy)

    2005-09-01

    In an attempt to contribute to studies on global climatic change, 110 years of temperature data for Firenze, Italy, were analysed. Means and trends of annual and monthly temperatures (minimum, maximum and average) were analysed at three different time scales: short (20 years), medium (36-38 years) and long (55 years). Comparative changes in extreme events viz. frosts in the first and second parts of the 20th century were also analysed. At short time scales, climatic change was found in minimum and average temperatures but not in maximum temperatures. At all three time scales, the annual means of minimum, maximum and average temperatures were significantly warmer in the last part than in the early part of the 20th century. The monthly mean temperatures showed significant warming of winter months. Over the last four decades, minimum, maximum and average temperatures had warmed by 0.4, 0.43 and 0.4C per decade, respectively, and if this trend continues, they will be warmer by 4C by the end of the 21st century. The significant decline in days with subzero temperatures and frosts in the last half of the 20th century, further substantiated the occurrence of climate change at this site.

  3. The maximum temperature of a thermodynamic cycle effect on weight-dimensional characteristics of the NPP energy blocks with air cooling

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1982-01-01

    The cycle maximum temperature effect on the properties of individual apparatuses and total NPP energy blocks characteristics has been investigated. Air, nitrogen, helium and chemically reacting system N 2 O 4 +2NO+O 2 have been considered as coolants. The conducted investigations have shown that maximum temperature of thermodynamical cycle affects considerably both the weight-dimensional characteristics of individual elements of NPP and total characteristics of NPP energy block. Energy blocks of NPP with air cooling wherein dissociating nitrogen tetroxide is used as working body, have better indexes on the majority of characteristics in comparison with blocks with air, nitrogen and helium cooling. If technical restrictions are to be taken into account (thermal resistance of metals, coolant decomposition under high temperatures, etc.) then dissociating nitrogen tetroxide should be recommended as working body and maximum cycle temperature in the range from 500 up to 600 deg C

  4. Differences between true mean temperatures and means calculated with four different approaches: a case study from three Croatian stations

    Science.gov (United States)

    Bonacci, Ognjen; Željković, Ivana

    2018-01-01

    Different countries use varied methods for daily mean temperature calculation. None of them assesses precisely the true daily mean temperature, which is defined as the integral of continuous temperature measurements in a day. Of special scientific as well as practical importance is to find out how temperatures calculated by different methods and approaches deviate from the true daily mean temperature. Five mean daily temperatures were calculated (T0, T1, T2, T3, T4) using five different equations. The mean of 24-h temperature observations during the calendar day is accepted to represent the true, daily mean T0. The differences Δ i between T0 and four other mean daily temperatures T1, T2, T3, and T4 were calculated and analysed. In the paper, analyses were done with hourly data measured in a period from 1 January 1999 to 31 December 2014 (149,016 h, 192 months and 16 years) at three Croatian meteorological stations. The stations are situated in distinct climatological areas: Zagreb Grič in a mild climate, Zavižan in the cold mountain region and Dubrovnik in the hot Mediterranean. Influence of fog on the temperature is analysed. Special attention is given to analyses of extreme (maximum and minimum) daily differences occurred at three analysed stations. Selection of the fixed local hours, which is in use for calculation of mean daily temperature, plays a crucial role in diminishing of bias from the true daily temperature.

  5. New England observed and predicted August stream/river temperature maximum positive daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum positive daily rate of change in New England based on a...

  6. New England observed and predicted July stream/river temperature maximum positive daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature maximum positive daily rate of change in New England based on a...

  7. New England observed and predicted July maximum negative stream/river temperature daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature maximum negative daily rate of change in New England based on a...

  8. Maximum surface level and temperature histories for Hanford waste tanks

    International Nuclear Information System (INIS)

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-01-01

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data

  9. Beat the Deviations in Estimating Maximum Power of Thermoelectric Modules

    DEFF Research Database (Denmark)

    Gao, Junling; Chen, Min

    2013-01-01

    Under a certain temperature difference, the maximum power of a thermoelectric module can be estimated by the open-circuit voltage and the short-circuit current. In practical measurement, there exist two switch modes, either from open to short or from short to open, but the two modes can give...... different estimations on the maximum power. Using TEG-127-2.8-3.5-250 and TEG-127-1.4-1.6-250 as two examples, the difference is about 10%, leading to some deviations with the temperature change. This paper analyzes such differences by means of a nonlinear numerical model of thermoelectricity, and finds out...... that the main cause is the influence of various currents on the produced electromotive potential. A simple and effective calibration method is proposed to minimize the deviations in specifying the maximum power. Experimental results validate the method with improved estimation accuracy....

  10. Global view of F-region electron density and temperature at solar maximum

    International Nuclear Information System (INIS)

    Brace, L.H.; Theis, R.F.; Hoegy, W.R.

    1982-01-01

    Dynamics Explorer-2 is permitting the first measurements of the global structure of the F-regions at very high levels of solar activity (S>200). Selected full orbits of Langmuir probe measurements of electron temperature, T/sub e/, and density, N/sub e/, are shown to illustrate this global structure and some of the ionospheric features that are the topic of other papers in this issue. The ionospheric thermal structure is of particular interest because T/sub e/ is a sensitive indicator of the coupling of magnetospheric energy into the upper atmosphere. A comparison of these heating effects with those observed at solar minimum shows that the magnetospheric sources are more important at solar maximum, as might have been expected. Heating at the cusp, the auroral oval and the plasma-pause is generally both greater and more variable. Electron cooling rate calculations employing low latitude measurements indicate that solar extreme ultraviolet heating of the F region at solar maximum is enhanced by a factor that is greater than the increase in solar flux. Some of this enhanced electron heating arises from the increase in electron heating efficiency at the higher N/sub e/ of solar maximum, but this appears insufficient to completely resolve the discrepancy

  11. Clostridium tyrobutyricum strains show wide variation in growth at different NaCl, pH, and temperature conditions.

    Science.gov (United States)

    Ruusunen, Marjo; Surakka, Anu; Korkeala, Hannu; Lindström, Miia

    2012-10-01

    Outgrowth from Clostridium tyrobutyricum spores in milk can lead to butyric acid fermentation in cheeses, causing spoilage and economical loss to the dairy industry. The aim of this study was to investigate the growth of 10 C. tyrobutyricum strains at different NaCl, pH, and temperature conditions. Up to 7.5-fold differences among the maximum growth rates of different strains in the presence of 2.0% NaCl were observed. Five of 10 strains were able to grow in the presence of 3.0% NaCl, while a NaCl concentration of 3.5% was completely inhibitory to all strains. Seven of 10 strains were able to grow at pH 5.0, and up to 4- and 12.5-fold differences were observed among the maximum growth rates of different strains at pH 5.5 and 7.5, respectively. The maximum growth temperatures varied from 40.2 to 43.3°C. The temperature of 10°C inhibited the growth of all strains, while 8 of 10 strains grew at 12 and 15°C. Despite showing no growth, all strains were able to survive at 10°C. In conclusion, wide variation was observed among different C. tyrobutyricum strains in their ability to grow at different stressful conditions. Understanding the physiological diversity among the strains is important when designing food control measures and predictive models for the growth of spoilage organisms in cheese.

  12. Little Cross-Feeding of the Mycorrhizal Networks Shared Between C3-Panicum bisulcatum and C4-Panicum maximum Under Different Temperature Regimes

    Directory of Open Access Journals (Sweden)

    Veronika Řezáčová

    2018-04-01

    Full Text Available Common mycorrhizal networks (CMNs formed by arbuscular mycorrhizal fungi (AMF interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp. with different photosynthetic metabolism types (C3 or C4. The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible zone added with 15N-labeled plant (clover residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night or ambient temperature (25/21°C day/night applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5 in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp. in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as

  13. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    Directory of Open Access Journals (Sweden)

    Eppelbaum L. V.

    2009-07-01

    Full Text Available Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method makes possible to estimate the maximum effect of deep lakes (here the term "deep lake" means that long term mean annual temperature of bottom sediments can beconsidered as a constant value on the borehole temperature profiles. This method also allows one to estimate an accuracy of the determination of the geothermal gradient.

  14. MOnthly TEmperature DAtabase of Spain 1951-2010: MOTEDAS (2): The Correlation Decay Distance (CDD) and the spatial variability of maximum and minimum monthly temperature in Spain during (1981-2010).

    Science.gov (United States)

    Cortesi, Nicola; Peña-Angulo, Dhais; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; Gonzalez-Hidalgo, José Carlos

    2014-05-01

    One of the key point in the develop of the MOTEDAS dataset (see Poster 1 MOTEDAS) in the framework of the HIDROCAES Project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is the reference series for which no generalized metadata exist. In this poster we present an analysis of spatial variability of monthly minimum and maximum temperatures in the conterminous land of Spain (Iberian Peninsula, IP), by using the Correlation Decay Distance function (CDD), with the aim of evaluating, at sub-regional level, the optimal threshold distance between neighbouring stations for producing the set of reference series used in the quality control (see MOTEDAS Poster 1) and the reconstruction (see MOREDAS Poster 3). The CDD analysis for Tmax and Tmin was performed calculating a correlation matrix at monthly scale between 1981-2010 among monthly mean values of maximum (Tmax) and minimum (Tmin) temperature series (with at least 90% of data), free of anomalous data and homogenized (see MOTEDAS Poster 1), obtained from AEMEt archives (National Spanish Meteorological Agency). Monthly anomalies (difference between data and mean 1981-2010) were used to prevent the dominant effect of annual cycle in the CDD annual estimation. For each station, and time scale, the common variance r2 (using the square of Pearson's correlation coefficient) was calculated between all neighbouring temperature series and the relation between r2 and distance was modelled according to the following equation (1): Log (r2ij) = b*°dij (1) being Log(rij2) the common variance between target (i) and neighbouring series (j), dij the distance between them and b the slope of the ordinary least-squares linear regression model applied taking into account only the surrounding stations within a starting radius of 50 km and with a minimum of 5 stations required. Finally, monthly, seasonal and annual CDD values were interpolated using the Ordinary Kriging with a

  15. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  16. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    M. Ruiz-Ramos

    2011-12-01

    Full Text Available Crops growing in the Iberian Peninsula may be subjected to damagingly high temperatures during the sensitive development periods of flowering and grain filling. Such episodes are considered important hazards and farmers may take insurance to offset their impact. Increases in value and frequency of maximum temperature have been observed in the Iberian Peninsula during the 20th century, and studies on climate change indicate the possibility of further increase by the end of the 21st century. Here, impacts of current and future high temperatures on cereal cropping systems of the Iberian Peninsula are evaluated, focusing on vulnerable development periods of winter and summer crops. Climate change scenarios obtained from an ensemble of ten Regional Climate Models (multimodel ensemble combined with crop simulation models were used for this purpose and related uncertainty was estimated. Results reveal that higher extremes of maximum temperature represent a threat to summer-grown but not to winter-grown crops in the Iberian Peninsula. The study highlights the different vulnerability of crops in the two growing seasons and the need to account for changes in extreme temperatures in developing adaptations in cereal cropping systems. Finally, this work contributes to clarifying the causes of high-uncertainty impact projections from previous studies.

  17. Evaluation of daily maximum and minimum 2-m temperatures as simulated with the Regional Climate Model COSMO-CLM over Africa

    Directory of Open Access Journals (Sweden)

    Stefan Krähenmann

    2013-07-01

    Full Text Available The representation of the diurnal 2-m temperature cycle is challenging because of the many processes involved, particularly land-atmosphere interactions. This study examines the ability of the regional climate model COSMO-CLM (version 4.8 to capture the statistics of daily maximum and minimum 2-m temperatures (Tmin/Tmax over Africa. The simulations are carried out at two different horizontal grid-spacings (0.22° and 0.44°, and are driven by ECMWF ERA-Interim reanalyses as near-perfect lateral boundary conditions. As evaluation reference, a high-resolution gridded dataset of daily maximum and minimum temperatures (Tmin/Tmax for Africa (covering the period 2008–2010 is created using the regression-kriging-regression-kriging (RKRK algorithm. RKRK applies, among other predictors, the remotely sensed predictors land surface temperature and cloud cover to compensate for the missing information about the temperature pattern due to the low station density over Africa. This dataset allows the evaluation of temperature characteristics like the frequencies of Tmin/Tmax, the diurnal temperature range, and the 90th percentile of Tmax. Although the large-scale patterns of temperature are reproduced well, COSMO-CLM shows significant under- and overestimation of temperature at regional scales. The hemispheric summers are generally too warm and the day-to-day temperature variability is overestimated over northern and southern extra-tropical Africa. The average diurnal temperature range is underestimated by about 2°C across arid areas, yet overestimated by around 2°C over the African tropics. An evaluation based on frequency distributions shows good model performance for simulated Tmin (the simulated frequency distributions capture more than 80% of the observed ones, but less well performance for Tmax (capture below 70%. Further, over wide parts of Africa a too large fraction of daily Tmax values exceeds the observed 90th percentile of Tmax, particularly

  18. Evaluation of daily maximum and minimum 2-m temperatures as simulated with the regional climate model COSMO-CLM over Africa

    Energy Technology Data Exchange (ETDEWEB)

    Kraehenmann, Stefan; Kothe, Steffen; Ahrens, Bodo [Frankfurt Univ. (Germany). Inst. for Atmospheric and Environmental Sciences; Panitz, Hans-Juergen [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2013-10-15

    The representation of the diurnal 2-m temperature cycle is challenging because of the many processes involved, particularly land-atmosphere interactions. This study examines the ability of the regional climate model COSMO-CLM (version 4.8) to capture the statistics of daily maximum and minimum 2-m temperatures (Tmin/Tmax) over Africa. The simulations are carried out at two different horizontal grid-spacings (0.22 and 0.44 ), and are driven by ECMWF ERA-Interim reanalyses as near-perfect lateral boundary conditions. As evaluation reference, a high-resolution gridded dataset of daily maximum and minimum temperatures (Tmin/Tmax) for Africa (covering the period 2008-2010) is created using the regression-kriging-regression-kriging (RKRK) algorithm. RKRK applies, among other predictors, the remotely sensed predictors land surface temperature and cloud cover to compensate for the missing information about the temperature pattern due to the low station density over Africa. This dataset allows the evaluation of temperature characteristics like the frequencies of Tmin/Tmax, the diurnal temperature range, and the 90{sup th} percentile of Tmax. Although the large-scale patterns of temperature are reproduced well, COSMO-CLM shows significant under- and overestimation of temperature at regional scales. The hemispheric summers are generally too warm and the day-to-day temperature variability is overestimated over northern and southern extra-tropical Africa. The average diurnal temperature range is underestimated by about 2 C across arid areas, yet overestimated by around 2 C over the African tropics. An evaluation based on frequency distributions shows good model performance for simulated Tmin (the simulated frequency distributions capture more than 80% of the observed ones), but less well performance for Tmax (capture below 70%). Further, over wide parts of Africa a too large fraction of daily Tmax values exceeds the observed 90{sup th} percentile of Tmax, particularly across

  19. Statistical modeling of urban air temperature distributions under different synoptic conditions

    Science.gov (United States)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    situations, cloudy and windy situations). Based on hourly air temperature data from our measurements in the urban area of Augsburg distinct temperature differences between locations with different urban land use characteristics are revealed. Under clear and calm weather conditions differences between mean hourly air temperatures reach values around 8°C. Whereas during cloudy and windy weather maximum differences in mean hourly air temperatures do not exceed 5°C. Differences appear usually slightly more pronounced in summer than in winter. First results from the application of statistical modeling approaches reveal promising skill of the models in terms of explained variances reaching up to 60% in leave-one-out cross-validation experiments. The contribution depicts the methodology of our approach and presents and discusses first results.

  20. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  1. Reconstructing temperatures in the Maritime Alps, Italy, since the Last Glacial Maximum using cosmogenic noble gas paleothermometry

    Science.gov (United States)

    Tremblay, Marissa; Spagnolo, Matteo; Ribolini, Adriano; Shuster, David

    2016-04-01

    The Gesso Valley, located in the southwestern-most, Maritime portion of the European Alps, contains an exceptionally well-preserved record of glacial advances during the late Pleistocene and Holocene. Detailed geomorphic mapping, geochronology of glacial deposits, and glacier reconstructions indicate that glaciers in this Mediterranean region responded to millennial scale climate variability differently than glaciers in the interior of the European Alps. This suggests that the Mediterranean Sea somehow modulated the climate of this region. However, since glaciers respond to changes in temperature and precipitation, both variables were potentially influenced by proximity to the Sea. To disentangle the competing effects of temperature and precipitation changes on glacier size, we are constraining past temperature variations in the Gesso Valley since the Last Glacial Maximum (LGM) using cosmogenic noble gas paleothermometry. The cosmogenic noble gases 3He and 21Ne experience diffusive loss from common minerals like quartz and feldspars at Earth surface temperatures. Cosmogenic noble gas paleothermometry utilizes this open-system behavior to quantitatively constrain thermal histories of rocks during exposure to cosmic ray particles at the Earth's surface. We will present measurements of cosmogenic 3He in quartz sampled from moraines in the Gesso Valley with LGM, Bühl stadial, and Younger Dryas ages. With these 3He measurements and experimental data quantifying the diffusion kinetics of 3He in quartz, we will provide a preliminary temperature reconstruction for the Gesso Valley since the LGM. Future work on samples from younger moraines in the valley system will be used to fill in details of the more recent temperature history.

  2. Maximum total organic carbon limits at different DWPF melter feed maters (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1996-01-01

    The document presents information on the maximum total organic carbon (TOC) limits that are allowable in the DWPF melter feed without forming a potentially flammable vapor in the off-gas system were determined at feed rates varying from 0.7 to 1.5 GPM. At the maximum TOC levels predicted, the peak concentration of combustible gases in the quenched off-gas will not exceed 60 percent of the lower flammable limit during a 3X off-gas surge, provided that the indicated melter vapor space temperature and the total air supply to the melter are maintained. All the necessary calculations for this study were made using the 4-stage cold cap model and the melter off-gas dynamics model. A high-degree of conservatism was included in the calculational bases and assumptions. As a result, the proposed correlations are believed to by conservative enough to be used for the melter off-gas flammability control purposes

  3. County-Level Climate Uncertainty for Risk Assessments: Volume 4 Appendix C - Historical Maximum Near-Surface Air Temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  4. New results on the mid-latitude midnight temperature maximum

    Science.gov (United States)

    Mesquita, Rafael L. A.; Meriwether, John W.; Makela, Jonathan J.; Fisher, Daniel J.; Harding, Brian J.; Sanders, Samuel C.; Tesema, Fasil; Ridley, Aaron J.

    2018-04-01

    Fabry-Perot interferometer (FPI) measurements of thermospheric temperatures and winds show the detection and successful determination of the latitudinal distribution of the midnight temperature maximum (MTM) in the continental mid-eastern United States. These results were obtained through the operation of the five FPI observatories in the North American Thermosphere Ionosphere Observing Network (NATION) located at the Pisgah Astronomic Research Institute (PAR) (35.2° N, 82.8° W), Virginia Tech (VTI) (37.2° N, 80.4° W), Eastern Kentucky University (EKU) (37.8° N, 84.3° W), Urbana-Champaign (UAO) (40.2° N, 88.2° W), and Ann Arbor (ANN) (42.3° N, 83.8° W). A new approach for analyzing the MTM phenomenon is developed, which features the combination of a method of harmonic thermal background removal followed by a 2-D inversion algorithm to generate sequential 2-D temperature residual maps at 30 min intervals. The simultaneous study of the temperature data from these FPI stations represents a novel analysis of the MTM and its large-scale latitudinal and longitudinal structure. The major finding in examining these maps is the frequent detection of a secondary MTM peak occurring during the early evening hours, nearly 4.5 h prior to the timing of the primary MTM peak that generally appears after midnight. The analysis of these observations shows a strong night-to-night variability for this double-peaked MTM structure. A statistical study of the behavior of the MTM events was carried out to determine the extent of this variability with regard to the seasonal and latitudinal dependence. The results show the presence of the MTM peak(s) in 106 out of the 472 determinable nights (when the MTM presence, or lack thereof, can be determined with certainty in the data set) selected for analysis (22 %) out of the total of 846 nights available. The MTM feature is seen to appear slightly more often during the summer (27 %), followed by fall (22 %), winter (20 %), and spring

  5. Optimization analysis of convective–radiative longitudinal fins with temperature-dependent properties and different section shapes and materials

    International Nuclear Information System (INIS)

    Mosayebidorcheh, S.; Hatami, M.; Mosayebidorcheh, T.; Ganji, D.D.

    2015-01-01

    Graphical abstract: Temperature distribution along the fins obtained for different material and section shapes. - Highlights: • The steady state thermal analysis of longitudinal fins is presented. • The properties of fins are assumed as a function of temperature. • The rectangular, convex, triangular and concave profiles are considered for fin shape. • Least Square Method (LSM) is used for solving the governing equation. • Thermal optimization of fin geometry is presented based on maximum value of heat transfer. - Abstract: The main aim of this study is to obtain an optimum design point for fin geometry, so that heat transfer rate reaches to a maximum value in a constant fin volume. Effect of fin thicknesses ratio (τ), convection coefficient power index (m), profile power parameter (n), base thickness (δ) and fin material are evaluated in the fin optimization point for heat transfer rate, effectiveness and efficiency. It’s assumed that the thickness of longitudinal fins varies with length in a special profile, so four different shapes (rectangular, convex, triangular and concave) are considered. In present study, temperature-dependent heat generation, convection and radiation are considered and an analytical technique based on the least square method is proposed for the solution methodology. Results show that by increasing the fin thicknesses ratio, maximum heat transfer rate decreases and Copper among the other materials has the most heat transfer rate in a constant volume.

  6. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    Science.gov (United States)

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation

  7. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    Science.gov (United States)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  8. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting.

    Science.gov (United States)

    Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru

    2018-06-01

    This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.

  9. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    Science.gov (United States)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  10. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    Science.gov (United States)

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  11. The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study.

    Science.gov (United States)

    Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.

    1999-05-01

    Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.

  12. Using maximum topology matching to explore differences in species distribution models

    Science.gov (United States)

    Poco, Jorge; Doraiswamy, Harish; Talbert, Marian; Morisette, Jeffrey; Silva, Claudio

    2015-01-01

    Species distribution models (SDM) are used to help understand what drives the distribution of various plant and animal species. These models are typically high dimensional scalar functions, where the dimensions of the domain correspond to predictor variables of the model algorithm. Understanding and exploring the differences between models help ecologists understand areas where their data or understanding of the system is incomplete and will help guide further investigation in these regions. These differences can also indicate an important source of model to model uncertainty. However, it is cumbersome and often impractical to perform this analysis using existing tools, which allows for manual exploration of the models usually as 1-dimensional curves. In this paper, we propose a topology-based framework to help ecologists explore the differences in various SDMs directly in the high dimensional domain. In order to accomplish this, we introduce the concept of maximum topology matching that computes a locality-aware correspondence between similar extrema of two scalar functions. The matching is then used to compute the similarity between two functions. We also design a visualization interface that allows ecologists to explore SDMs using their topological features and to study the differences between pairs of models found using maximum topological matching. We demonstrate the utility of the proposed framework through several use cases using different data sets and report the feedback obtained from ecologists.

  13. Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ben Salah, Chokri; Ouali, Mohamed [Research Unit on Intelligent Control, Optimization, Design and Optimization of Complex Systems (ICOS), Department of Electrical Engineering, National School of Engineers of Sfax, BP. W, 3038, Sfax (Tunisia)

    2011-01-15

    This paper proposes two methods of maximum power point tracking using a fuzzy logic and a neural network controllers for photovoltaic systems. The two maximum power point tracking controllers receive solar radiation and photovoltaic cell temperature as inputs, and estimated the optimum duty cycle corresponding to maximum power as output. The approach is validated on a 100 Wp PVP (two parallels SM50-H panel) connected to a 24 V dc load. The new method gives a good maximum power operation of any photovoltaic array under different conditions such as changing solar radiation and PV cell temperature. From the simulation and experimental results, the fuzzy logic controller can deliver more power than the neural network controller and can give more power than other different methods in literature. (author)

  14. Maximum weight of greenhouse effect to global temperature variation

    International Nuclear Information System (INIS)

    Sun, Xian; Jiang, Chuangye

    2007-01-01

    Full text: The global average temperature has risen by 0.74 0 C since the late 19th century. Many studies have concluded that the observed warming in the last 50 years may be attributed to increasing concentrations of anthropogenic greenhouse gases. But some scientists have a different point of view. Global climate change is affected not only by anthropogenic activities, but also constraints in climate system natural factors. How much is the influencing weight of C02's greenhouse effects to the global temperature variation? Does global climate continue warming or decreasing in the next 20 years? They are two hot spots in global climate change. The multi-timescales analysis method - Empirical mode decomposition (EMD) is used to diagnose global annual mean air temperature dataset for land surface provided by IPCC and atmospheric content of C02 provided by the Carbon Dioxide Information Analysis Center (CDIAC) during 1881-2002. The results show that: Global temperature variation contains quasi-periodic oscillations on four timescales (3 yr, 6 yr, 20 yr and 60 yr, respectively) and a century-scale warming trend. The variance contribution of IMF1-IMF4 and trend is 17.55%, 11.34%, 6.77%, 24.15% and 40.19%, respectively. The trend and quasi-60 yr oscillation of temperature variation are the most prominent; C02's greenhouse effect on global temperature variation is mainly century-scale trend. The contribution of C02 concentration to global temperature variability is not more than 40.19%, whereas 59.81% contribution to global temperature variation is non-greenhouse effect. Therefore, it is necessary to re-study the dominant factors that induce the global climate change; It has been noticed that on the periods of 20 yr and 60 yr oscillation, the global temperature is beginning to decreased in the next 20 years. If the present C02 concentration is maintained, the greenhouse effect will be too small to countercheck the natural variation in global climate cooling in the next 20

  15. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    Science.gov (United States)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2018-04-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  16. Maximum Power Point Tracking Based on Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Nimrod Vázquez

    2015-01-01

    Full Text Available Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.

  17. Solvated electrons at elevated temperatures in different alcohols: Temperature and molecular structure effects

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yu [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Lin, Mingzhang [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.j [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Fu, Haiying; Muroya, Yusa [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)

    2010-12-15

    The absorption spectra of solvated electrons in pentanol, hexanol and octanol are measured from 22 to 200, 22 to 175 and 50 to150 {sup o}C, respectively, at a fixed pressure of 15 MPa, using nanosecond pulse radiolysis technique. The results show that the peak positions of the absorption spectra have a red-shift (shift to longer wavelengths) as temperature increases, similar to water and other alcohols. Including the above mentioned data, a compilation of currently available experimental data on the energy of absorption maximum (E{sub max}) of solvated electrons changed with temperature in monohydric alcohols, diols and triol is presented. E{sub max} of solvated electron is larger in those alcohols that have more OH groups at all the temperatures. The molecular structure effect, including OH numbers, OH position and carbon chain length, is investigated. For the primary alcohols with same OH group number and position, the temperature coefficient increases with increase in chain length. For the alcohols with same chain length and OH numbers, temperature coefficient is larger for the symmetric alcohols than the asymmetric ones.

  18. Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method

    Directory of Open Access Journals (Sweden)

    Xiaokang Kou

    2016-01-01

    Full Text Available Land surface temperature (LST plays a major role in the study of surface energy balances. Remote sensing techniques provide ways to monitor LST at large scales. However, due to atmospheric influences, significant missing data exist in LST products retrieved from satellite thermal infrared (TIR remotely sensed data. Although passive microwaves (PMWs are able to overcome these atmospheric influences while estimating LST, the data are constrained by low spatial resolution. In this study, to obtain complete and high-quality LST data, the Bayesian Maximum Entropy (BME method was introduced to merge 0.01° and 0.25° LSTs inversed from MODIS and AMSR-E data, respectively. The result showed that the missing LSTs in cloudy pixels were filled completely, and the availability of merged LSTs reaches 100%. Because the depths of LST and soil temperature measurements are different, before validating the merged LST, the station measurements were calibrated with an empirical equation between MODIS LST and 0~5 cm soil temperatures. The results showed that the accuracy of merged LSTs increased with the increasing quantity of utilized data, and as the availability of utilized data increased from 25.2% to 91.4%, the RMSEs of the merged data decreased from 4.53 °C to 2.31 °C. In addition, compared with the filling gap method in which MODIS LST gaps were filled with AMSR-E LST directly, the merged LSTs from the BME method showed better spatial continuity. The different penetration depths of TIR and PMWs may influence fusion performance and still require further studies.

  19. Performance analysis of the lineal model for estimating the maximum power of a HCPV module in different climate conditions

    Science.gov (United States)

    Fernández, Eduardo F.; Almonacid, Florencia; Sarmah, Nabin; Mallick, Tapas; Sanchez, Iñigo; Cuadra, Juan M.; Soria-Moya, Alberto; Pérez-Higueras, Pedro

    2014-09-01

    A model based on easily obtained atmospheric parameters and on a simple lineal mathematical expression has been developed at the Centre of Advanced Studies in Energy and Environment in southern Spain. The model predicts the maximum power of a HCPV module as a function of direct normal irradiance, air temperature and air mass. Presently, the proposed model has only been validated in southern Spain and its performance in locations with different atmospheric conditions still remains unknown. In order to address this issue, several HCPV modules have been measured in two different locations with different climate conditions than the south of Spain: the Environment and Sustainability Institute in southern UK and the National Renewable Energy Center in northern Spain. Results show that the model has an adequate match between actual and estimated data with a RMSE lower than 3.9% at locations with different climate conditions.

  20. Effect of in-pile degradation of the meat thermal conductivity on the maximum temperature of the plate-type U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Medvedev, Pavel G.

    2009-01-01

    Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20 C temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermal conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.

  1. Temperature differences within the detector of the Robertson-Berger sunburn meter, model 500, compared to global radiation

    Science.gov (United States)

    Kjeldstad, Berit; Grandum, Oddbjorn

    1993-11-01

    The Robertson-Berger sunburn meter, model 500, has no temperature compensation, and the effect of temperature on the instrument response has been investigated and discussed in several reports. It is recommended to control the temperature of the detector or at least measure it. The temperature sensor is recommended to be positioned within the detector unit. We have measured the temperature at three different positions in the detector: At the edge of the green filter where the phosphor layer is placed; at the glass tube covering the cathode; and, finally, the air temperature inside the instrument. These measurements have been performed outdoors since July 1991, with corresponding measurements of the global and direct solar radiation. There was no difference between the temperature of the glasstube covering the cathode and the air inside the instrument, at any radiation level. However, there was a difference between the green filter and the two others. The difference is linearly dependent on the amount of global radiation. The temperature difference, (Delta) T (temperature between the green filter and the air inside the sensor), increased 0.8 degree(s)C when the global irradiation increased by 100 W/m2. At maximum global radiation in Trondheim (latitude 63.4 degree(s)N) (Delta) T was approximately 5 - 6 K when the global radiation was about 700 W/m2. This was valid for temperatures between 7 degree(s)C and 30 degree(s)C. Only clear days were evaluated.

  2. Shelf-life of almond pastry cookies with different types of packaging and levels of temperature.

    Science.gov (United States)

    Romeo, F V; De Luca, S; Piscopo, A; Santisi, V; Poiana, M

    2010-06-01

    Almond pastries are typical cookies of the south of Italy. Introduction of new packaging for this kind of cookies requires shelf-life assessments. This study, related to different types of packaging under various storage conditions of time and temperature, identifies critical parameters, as color and texture, to track during storage studies and to extend the shelf-life. The cookies were packed in three different ways and stored at two different temperatures. The pastries were separately stored: (1) in polyvinylchloride film; (2) in aluminum foil (ALL); (3) with modified atmosphere (MAP) in plastic vessels sealed into a polyamide/ polyethylene film; and (4) in vessels without any polymeric film. The storage temperatures were 20 and 30 °C. Evolution of texture, water activity, dry matter and color was assessed. Texture was evaluated by a texture analyzer with a puncturing test. Indices for hardening were the area under the curve (N × mm) up to 10 mm of distance, and the maximum force (N) corresponding to the crust fracture. The best results were obtained with ALL packaging and MAP condition, and above all, in all the trials a temperature of 30 °C reduced the crust hardness.

  3. Temperature of the Icelandic crust: Inferred from electrical conductivity, temperature surface gradient, and maximum depth of earthquakes

    Science.gov (United States)

    Björnsson, Axel

    2008-02-01

    Two different models of the structure of the Icelandic crust have been presented. One is the thin-crust model with a 10-15 km thick crust beneath the axial rift zones, with an intermediate layer of partially molten basalt at the base of the crust and on the top of an up-domed asthenosphere. The thick-crust model assumes a 40 km thick and relatively cold crust beneath central Iceland. The most important and crucial parameter to distinguish between these different models is the temperature distribution with depth. Three methods are used to estimate the temperature distribution with depth. First, the surface temperature gradient measured in shallow wells drilled outside geothermal areas. Second, the thickness of the seismogenic zone which is associated with a 750 °C isothermal surface. Third, the depth to a layer with high electrical conductivity which is associated with partially molten basalt with temperature around 1100 °C at the base of the crust. Combination of these data shows that the temperature gradient can be assumed to be nearly linear from the surface down to the base of the crust. These results are strongly in favour of the thin-crust model. The scattered deep seismic reflectors interpreted as Moho in the thick-crust model could be caused by phase transitions or reflections from melt pockets in the mantle.

  4. Temperature reconstruction and volcanic eruption signal from tree-ring width and maximum latewood density over the past 304 years in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Li, Mingqi; Huang, Lei; Yin, Zhi-Yong; Shao, Xuemei

    2017-11-01

    This study presents a 304-year mean July-October maximum temperature reconstruction for the southeastern Tibetan Plateau based on both tree-ring width and maximum latewood density data. The reconstruction explained 58% of the variance in July-October maximum temperature during the calibration period (1958-2005). On the decadal scale, we identified two prominent cold periods during AD 1801-1833 and 1961-2003 and two prominent warm periods during AD 1730-1800 and 1928-1960, which are consistent with other reconstructions from the nearby region. Based on the reconstructed temperature series and volcanic eruption chronology, we found that most extreme cold years were in good agreement with major volcanic eruptions, such as 1816 after the Tambora eruption in 1815. Also, clusters of volcanic eruptions probably made the 1810s the coldest decade in the past 300 years. Our results indicated that fingerprints of major volcanic eruptions can be found in the reconstructed temperature records, while the responses of regional climate to these eruption events varied in space and time in the southeastern Tibetan Plateau.

  5. Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Hoa, C.J.

    2008-01-01

    Natural convection of water near its density maximum in the presence of magnetic field in a cavity with temperature dependent properties is studied numerically. The viscosity and thermal conductivity of the water is varied with reference temperature and calculated by cubic polynomial. The finite volume method is used to solve the governing equations. The results are presented graphically in the form of streamlines, isotherms and velocity vectors and are discussed for various combinations of reference temperature parameter, Rayleigh number, density inversion parameter and Hartmann number. It is observed that flow and temperature field are affected significantly by changing the reference temperature parameter for temperature dependent thermal conductivity and both temperature dependent viscosity and thermal conductivity cases. There is no significant effect on fluid flow and temperature distributions for temperature dependent viscosity case when changing the values of reference temperature parameter. The average heat transfer rate considering temperature-dependent viscosity are higher than considering temperature-dependent thermal conductivity and both temperature-dependent viscosity and thermal conductivity. The average Nusselt number decreases with an increase of Hartmann number. It is observed that the density inversion of water leaves strong effects on fluid flow and heat transfer due to the formation of bi-cellular structure. The heat transfer rate behaves non-linearly with density inversion parameter. The direction of external magnetic field also affect the fluid flow and heat transfer. (authors)

  6. Different annealing temperature suitable for different Mg doped P-GaN

    Science.gov (United States)

    Liu, S. T.; Yang, J.; Zhao, D. G.; Jiang, D. S.; Liang, F.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Li, X.; Liu, W.; Zhang, L. Q.; Long, H.; Li, M.

    2017-04-01

    In this work, epitaxial GaN with different Mg doping concentration annealed at different temperature is investigated. Through Hall and PL spectra measurement we found that when Mg doping concentration is different, different annealing temperature is needed for obtaining the best p-type conduction of GaN, and this difference comes from the different influence of annealing on compensated donors. For ultra-heavily Mg doped sample, the process of Mg related donors transferring to non-radiative recombination centers is dominated, so the performance of P-GaN deteriorates with temperature increase. But for low Mg doped sample, the process of Mg related donors transfer to non-raditive recombination is weak compare to the Mg acceptor activation, so along the annealing temperature increase the performance GaN gets better.

  7. Temperature effect on the inter-micellar collision and maximum packaging volume fraction in water/AOT/isooctane micro-emulsions

    International Nuclear Information System (INIS)

    Guettari, Moez; Ben Naceur, Imen; Kassab, Ghazi; Tajouri, Tahar

    2016-01-01

    We have studied the viscosity behaviour of water/AOT/isooctane micro-emulsions as a function of the volume fraction of the dispersed phase over a temperature range from the (298.15 to 328.15) K. For all the studied temperature range, a sharp increase of the viscosities is observed when the droplets concentration was varied. Several equations based on hard sphere model were examined to explain the behaviours of micro-emulsions under temperature and concentration effects. According to these equations, the shape factor and the inter-particle interaction parameters were found to be dependent on temperature which is in contradiction with experimental results reported in the literature. A modified Vand equation, taking into account the inter-particle collision time, is used to interpret the results obtained. This deviation is attributed to the aggregation of the droplets which becomes important by increasing temperature. The maximum packaging volume fraction of particles Φ_d_m and the intrinsic viscosity [η] were determined according to the Krieger and Dougherty equation through the temperature range studied. These two parameters were shown to be dependent on temperature but their product was found to be constant and close to 2 as reported in theory.

  8. New results on equatorial thermospheric winds and the midnight temperature maximum

    Directory of Open Access Journals (Sweden)

    J. Meriwether

    2008-03-01

    Full Text Available Optical observations of thermospheric winds and temperatures determined with high resolution measurements of Doppler shifts and Doppler widths of the OI 630-nm equatorial nightglow emission have been made with improved accuracy at Arequipa, Peru (16.4° S, 71.4° W with an imaging Fabry-Perot interferometer. An observing procedure previously used at Arecibo Observatory was applied to achieve increased spatial and temporal sampling of the thermospheric wind and temperature with the selection of eight azimuthal directions, equally spaced from 0 to 360°, at a zenith angle of 60°. By assuming the equivalence of longitude and local time, the data obtained using this technique is analyzed to determine the mean neutral wind speeds and mean horizontal gradients of the wind field in the zonal and meridional directions. The new temperature measurements obtained with the improved instrumental accuracy clearly show the midnight temperature maximum (MTM peak with amplitudes of 25 to 200 K in all directions observed for most nights. The horizontal wind field maps calculated from the mean winds and gradients show the MTM peak is always preceded by an equatorward wind surge lasting 1–2 h. The results also show for winter events a meridional wind abatement seen after the MTM peak. On one occasion, near the September equinox, a reversal was observed during the poleward transit of the MTM over Arequipa. Analysis inferring vertical winds from the observed convergence yielded inconsistent results, calling into question the validity of this calculation for the MTM structure at equatorial latitudes during solar minimum. Comparison of the observations with the predictions of the NCAR general circulation model indicates that the model fails to reproduce the observed amplitude by a factor of 5 or more. This is attributed in part to the lack of adequate spatial resolution in the model as the MTM phenomenon takes place within a scale of 300–500 km and ~45 min in

  9. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica; Dreano, Denis; Agusti, Susana; Duarte, Carlos M.; Hoteit, Ibrahim

    2017-01-01

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  10. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  11. Decadal trends in Red Sea maximum surface temperature.

    Science.gov (United States)

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  12. Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri; Ust, Yasin; Parlak, Adnan

    2015-01-01

    This paper presents comprehensive performance analyses and comparisons for air-standard irreversible thermodynamic cycle engines (TCE) based on the power output, power density, thermal efficiency, maximum dimensionless power output (MP), maximum dimensionless power density (MPD) and maximum thermal efficiency (MEF) criteria. Internal irreversibility of the cycles occurred during the irreversible-adiabatic processes is considered by using isentropic efficiencies of compression and expansion processes. The performances of the cycles are obtained by using engine design parameters such as isentropic temperature ratio of the compression process, pressure ratio, stroke ratio, cut-off ratio, Miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio. The effects of engine design parameters on the maximum and optimal performances are investigated. - Highlights: • Performance analyses are conducted for irreversible thermodynamic cycle engines. • Comprehensive computations are performed. • Maximum and optimum performances of the engines are shown. • The effects of design parameters on performance and power density are examined. • The results obtained may be guidelines to the engine designers

  13. Acute Exercise-Associated Skin Surface Temperature Changes after Resistance Training with Different Exercise Intensities

    Directory of Open Access Journals (Sweden)

    Martin Weigert

    2018-01-01

    Full Text Available Background: Studies showed, that changes in muscular metabolic-associated heat production and blood circulation during and after muscular work affect skin temperature (T but the results are inconsistent and the effect of exercise intensity is unclear. Objective: This study investigated the intensity-dependent reaction of T on resistance training. Methods: Ten male students participated. After acclimatization (15 min, the participants completed 3x10 repetitions of unilateral biceps curl with 30, 50 or 70% of their one-repetition-maximum (1RM in a randomized order. Skin temperature of the loaded and unloaded biceps was measured at rest (Trest, immediately following set 1, 2 and 3 (TS1,TS2,TS3 and 30 minutes post exercise (T1 - T30 with an infrared camera. Results: Two-way ANOVA detected a significant effect of the measuring time point on T (Trest to T30 of the loaded arm for 30% (Eta²=0.85, 50% (Eta²=0.88 and 70% 1RM (Eta²=0.85 and of the unloaded arm only for 30% 1RM (Eta²=0.41 (p0.05. The T values at the different measuring time points (Trest - T30 did not differ between the intensities at any time point. The loaded arm showed a mean maximum T rise to Trest of 1.8°C and on average, maximum T was reached approximately 5 minutes after the third set.  Conclusion: This study indicate a rise of T, which could be independent of the exercise intensity. Infrared thermography seems to be applicable to identify the primary used functional muscles in resistance training but this method seems not suitable to differentiate between exercise intensity from 30 to 70% 1RM.

  14. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  15. Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures

    International Nuclear Information System (INIS)

    Naeem, M.A.; Khalid, M.; Arshad, M.; Ahmad, R.

    2014-01-01

    Variation in pyrolytic temperatures and feedstocks affects the yield and nutrient composition of biochar. Selection of suitable feedstock and optimum pyrolytic temperature is crucial before using it for agricultural purposes. We compared biochars produced from two feedstocks (wheat straw and rice) at three temperatures (300, 400 and 500 degree C). Biochar yield decreased significantly (p<0.05) with increasing pyrolysis temperature, while ash contents were increased. The cation exchange capacity was significantly higher (119 cmolc kg/sup -1/) at temperature 400 degree C. The pH, electrical conductivity (EC) and carbon content of biochars increased significantly with increasing temperature and maximum pH (10.4) and EC (3.35 dS m/sup -1/) were observed in rice straw biochar (WSB) at 500 degree C and carbon content (662 g kg/sup -1/) in wheat straw biochar (RSB) at 500 degree C. Concentration of phosphorus (P) and potassium (K) increased significantly with increasing temperature, while of nitrogen (N) decreased. Overall, the maximum N (13.8 g kg/sup -1/at 300 degree C) and P (3.4 g kg/sup -1/at 500 degree C) concentrations were observed in WSB while, maximum K (48 g kg/sup -1/ at 500 degree C)in RSB. High pyrolysis temperature reduced AB-DTPA extractable nutrients (expect Mn). The highest AB-DTPA extractable nutrients such as P (113 mg kg/sup -1/) and Ca (1.07 g kg/sup -1/) were observed in WSB at 300 degree C while, K (18 g kg/sup -1/) and magnesium (Mg) (1.55 g kg/sup -1/) in RSB at 300 degree C. Selected feedstock and use of low pyrolysis temperature may produce nutrient-rich biochar, with high CEC and low pH and these could have positive effects on calcareous soils. (author)

  16. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F.L., E-mail: fernanda.werner@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Alves, A.S.M., E-mail: asergi@eletronuclear.gov.br [Eletrobras Termonuclear (Eletronuclear), Rio de Janeiro, RJ (Brazil); Frutuoso e Melo, P.F., E-mail: frutuoso@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  17. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    International Nuclear Information System (INIS)

    Werner, F.L.; Frutuoso e Melo, P.F.

    2017-01-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  18. On the differences between Last Glacial Maximum and Mid-Holocene climates in southern South America simulated by PMIP3 models

    Science.gov (United States)

    Berman, Ana Laura; Silvestri, Gabriel E.; Tonello, Marcela S.

    2018-04-01

    Differences between climate conditions during the Last Glacial Maximum (LGM) and the Mid-Holocene (MH) in southern South America inferred from the state-of-the-art PMIP3 paleoclimatic simulations are described for the first time in this paper. The aim is to expose characteristics of past climate changes occurred without human influence. In this context, numerical simulations are an indispensable tool for inferring changes in near-surface air temperature and precipitation in regions where proxy information is scarce or absent. The analyzed PMIP3 models describe MH temperatures significantly warmer than those of LGM with magnitudes of change depending on the season and the specific geographic region. In addition, models indicate that seasonal mean precipitation during MH increased with respect to LGM values in wide southern continental areas to the east of the Andes Cordillera whereas seasonal precipitation developed in areas to the west of Patagonian Andes reduced from LGM to MH.

  19. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  20. Influence of maximum water temperature on occurrence of Lahontan cutthroat trout within streams

    Science.gov (United States)

    J. Dunham; R. Schroeter; B. Rieman

    2003-01-01

    We measured water temperature at 87 sites in six streams in two different years (1998 and 1999) to test for association with the occurrence of Lahontan cutthroat trout Oncorhynchus clarki henshawi. Because laboratory studies suggest that Lahontan cutthroat trout begin to show signs of acute stress at warm (>22°C) temperatures, we focused on the...

  1. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  2. See laser testing at different temperatures

    Directory of Open Access Journals (Sweden)

    Alexander Anatolievich Novikov

    2016-10-01

    Full Text Available The main problem for laser SEE testing at different temperatures is to determine correlation between laser pulse energy and LET. In the first approximation, LET values with the same laser pulse energy and different temperatures are directly proportional to the absorption coefficient of laser light in a semiconductor. Use of tabulated values could lead to errors and absorption coefficient should be determined for each sensitive volume of device under test (DUT. Temperature dependence of absorption coefficient could be determined using ionization response of DUT in power supply circuit under local laser irradiation. Using this approach a satisfactory correlation of ion and laser SEE test result was observed.

  3. Relationship between plants in Europe and surface temperatures of the Atlantic Ocean during the glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Van Campo, M

    1984-01-01

    In Europe and North America, the deciduous forest, whether or not mixed with conifers, prevails within boundaries which coincide with the 12 and 18/sup 0/C isotherms of Ocean surface temperatures in August; within Europe this forest points to the limit of the Atlantic influence and bevels out as it is squeezed between coniferous forest to the NE (thermic boundary) and steppe to the SE (hydric boundary). During the glacial age this forest disappeared from its main European area and remained only in mountain refuges. Thus, the temperature of the eastern Atlantic surface waters, off Europe, control the nature of its vegetation. Variations in the pollen curve of pines, birches, Artemisia, Chenopodiaceae and Ephedra are accounted for by the climatic variations in southern Europe before 13,000 yr BP. It is seen that a very arid climate culminated at about 15,000 yr BP. It corresponds to the most active iceberg calving which considerably lowered the Ocean surface temperature far to the south. In spite of the increasing summer temperatures, this temperature remained as cold as it was during the glacial maximum. The result is the lowest evaporation from the Ocean hence a minimum of clouds and a minimum of rain. The end of the first phase of the deglaciation at +/- 13,000 yr BP corresponds to a warming up of the Ocean surface bringing about increased evaporation, hence rains over the continent. The evolution of the vegetation in Europe at the end of the glacial times from south of the ice sheet down to the Mediterranean, depends as much, if not more, on rains than on temperatures.

  4. Detection of Temperature Difference in Neuronal Cells.

    Science.gov (United States)

    Tanimoto, Ryuichi; Hiraiwa, Takumi; Nakai, Yuichiro; Shindo, Yutaka; Oka, Kotaro; Hiroi, Noriko; Funahashi, Akira

    2016-03-01

    For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source.

  5. Thermoelectric cooler concepts and the limit for maximum cooling

    International Nuclear Information System (INIS)

    Seifert, W; Hinsche, N F; Pluschke, V

    2014-01-01

    The conventional analysis of a Peltier cooler approximates the material properties as independent of temperature using a constant properties model (CPM). Alternative concepts have been published by Bian and Shakouri (2006 Appl. Phys. Lett. 89 212101), Bian (et al 2007 Phys. Rev. B 75 245208) and Snyder et al (2012 Phys. Rev. B 86 045202). While Snyder's Thomson cooler concept results from a consideration of compatibility, the method of Bian et al focuses on the redistribution of heat. Thus, both approaches are based on different principles. In this paper we compare the new concepts to CPM and we reconsider the limit for maximum cooling. The results provide a new perspective on maximum cooling. (paper)

  6. Temperature Distribution in a Displacement Ventilated Room

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The vertical temperature gradient is normally given as a linear temperature distribution between a minimum temperature close to the floor and a maximum temperature close to the ceiling. The minimum temperature can either be a constant fraction of a load dependent difference or it can be connected...

  7. Design and Implementation of Photovoltaic Maximum Power Point Tracking Controller

    Directory of Open Access Journals (Sweden)

    Fawaz S. Abdullah

    2018-03-01

    Full Text Available  The power supplied by any solar array depends upon the environmental conditions as weather conditions (temperature and radiation intensity and the incident angle of the radiant source. The work aims to study the maximum power tracking schemes that used to compare the system performance without and with different types of controllers. The maximum power points of the solar panel under test studied and compared with two controller's types.  The first controller is the proportional- integral - derivative controller type and the second is the perturbation and observation algorithm controller. The associated converter system is a microcontroller based type, whereas the results studied and compared of greatest power point of the Photovoltaic panels under the different two controllers. The experimental tests results compared with simulation results to verify accurate performance.

  8. Simulation model of ANN based maximum power point tracking controller for solar PV system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Anil K.; Singh, Bhupal [Department of Electrical and Electronics Engineering, Ajay Kumar Garg Engineering College, Ghaziabad 201009 (India); Kaushika, N.D.; Agarwal, Niti [School of Research and Development, Bharati Vidyapeeth College of Engineering, A-4 Paschim Vihar, New Delhi 110063 (India)

    2011-02-15

    In this paper the simulation model of an artificial neural network (ANN) based maximum power point tracking controller has been developed. The controller consists of an ANN tracker and the optimal control unit. The ANN tracker estimates the voltages and currents corresponding to a maximum power delivered by solar PV (photovoltaic) array for variable cell temperature and solar radiation. The cell temperature is considered as a function of ambient air temperature, wind speed and solar radiation. The tracker is trained employing a set of 124 patterns using the back propagation algorithm. The mean square error of tracker output and target values is set to be of the order of 10{sup -5} and the successful convergent of learning process takes 1281 epochs. The accuracy of the ANN tracker has been validated by employing different test data sets. The control unit uses the estimates of the ANN tracker to adjust the duty cycle of the chopper to optimum value needed for maximum power transfer to the specified load. (author)

  9. Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures

    International Nuclear Information System (INIS)

    Ortuño, Nuria; Moltó, Julia; Conesa, Juan A.; Font, Rafael

    2014-01-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant worldwide. A detailed examination of the degradation products emitted during thermal decomposition of TBBPA is presented in the study. Runs were performed in a laboratory furnace at different temperatures (650 and 800 °C) and in different atmospheres (nitrogen and air). More than one hundred semivolatile compounds have been identified by GC/MS, with special interest in brominated ones. Presence of HBr and brominated light hydrocarbons increased with temperature and in the presence of oxygen. Maximum formation of PAHs is observed at pyrolytic condition at the higher temperature. High levels of 2,4-, 2,6- and 2,4,6- bromophenols were found. The levels of polybrominated dibenzo-p-dioxins and furans have been detected in the ppm range. The most abundant isomers are 2,4,6,8-TeBDF in pyrolysis and 1,2,3,7,8-PeBDF in combustion. These results should be considered in the assessment of thermal treatment of materials containing brominated flame retardants. - Highlights: • Decomposition of a brominated flame retardant is performed in a laboratory furnace. • Both pyrolysis and combustion at two different temperatures are studied. • Brominated organic compounds such as Br-dioxins and furans are analysed. • Main product of decomposition is HBr, accounting for ca. 50%. • Very high and dangerous levels of PBDD/Fs and precursors (bromophenols) are detected. - TBBPA mainly decomposes to give HBr and brominated hydrocarbons at high temperature, but high levels of bromophenols and polybrominated dibenzo-p-dioxins and furans are also produced

  10. Comparative study of maximum isometric grip strength in different sports

    Directory of Open Access Journals (Sweden)

    Noé Gomes Borges Junior

    2009-06-01

    Full Text Available The objective of this study was to compare maximum isometric grip strength (Fmaxbetween different sports and between the dominant (FmaxD and non-dominant (FmaxND hand. Twenty-nine male aikido (AI, jiujitsu (JJ, judo (JU and rowing (RO athletes and 21non-athletes (NA participated in the study. The hand strength test consisted of maintainingmaximum isometric grip strength for 10 seconds using a hand dynamometer. The position of the subjects was that suggested by the American Society of Hand Therapy. Factorial 2X5 ANOVA with Bonferroni correction, followed by a paired t test and Tukey test, was used for statistical analysis. The highest Fmax values were observed for the JJ group when using the dominant hand,followed by the JU, RO, AI and NA groups. Variation in Fmax could be attributed to handdominance (30.9%, sports modality (39.9% and the interaction between hand dominance andsport (21.3%. The present results demonstrated significant differences in Fmax between the JJ and AI groups and between the JJ and NA groups for both the dominant and non-dominant hand. Significant differences in Fmax between the dominant and non-dominant hand were only observed in the AI and NA groups. The results indicate that Fmax can be used for comparisonbetween different sports modalities, and to identify differences between the dominant and nondominanthand. Studies involving a larger number of subjects will permit the identification of differences between other modalities.

  11. Charging conditions research to increase the initial projected velocity at different initial charge temperatures

    Science.gov (United States)

    Ishchenko, Aleksandr; Burkin, Viktor; Kasimov, Vladimir; Samorokova, Nina; Zykova, Angelica; Diachkovskii, Alexei

    2017-11-01

    The problems of the defense industry occupy the most important place in the constantly developing modern world. The daily development of defense technology does not stop, nor do studies on internal ballistics. The scientists of the whole world are faced with the task of managing the main characteristics of a ballistic experiment. The main characteristics of the ballistic experiment are the maximum pressure in the combustion chamber Pmax and the projected velocity at the time of barrel leaving UM. During the work the combustion law of the new high-energy fuel was determined in a ballistic experiment for different initial temperatures. This combustion law was used for a parametric study of depending Pmax and UM from a powder charge mass and a traveling charge was carried out. The optimal conditions for loading were obtained for improving the initial velocity at pressures up to 600 MPa for different initial temperatures. In this paper, one of the most promising schemes of throwing is considered, as well as a method for increasing the muzzle velocity of a projected element to 3317 m/s.

  12. Determination of hot spot factors for calculation of the maximum fuel temperatures in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Maruyama, Soh; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Shindo, Ryuichi; Sudo, Yukio

    1988-12-01

    The Japan Atomic Energy Research Institute (JAERI) has been designing the High Temperature Engineering Test Reactor (HTTR), which is 30 MW in thermal power, 950deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in primary coolant pressure. This report summarizes the hot spot factors and their estimated values used in the evaluation of the maximum fuel temperature which is one of the major items in the core thermal and hydraulic design of the HTTR. The hot spot factors consist of systematic factors and random factors. They were identified and their values adopted in the thermal and hydraulic design were determined considering the features of the HTTR. (author)

  13. Extending the temperature range of the HTR

    International Nuclear Information System (INIS)

    Balcomb, J.D.; Wagner, P.

    1975-01-01

    The operating temperature of the high temperature helium-cooled reactor can be increased in a number of ways in order to provide higher temperature nuclear heat for various industrial processes. Modifications are of two types: 1) decrease in the temperature difference between the maximum coated particle fuel temperature and the mean exit gas temperature, and 2) increased maximum coated particle temperature. Gains in the latter category are limited by fission product diffusion into the gas steam and increases greater than 100 0 K are not forseen. Increases in the former category, however, are readily made and a variety of modifications are proposed as follows: incorporation of coated particles in the fuel matrix; use of a more finely-divided fuel coolant hole geometry to increase heat transfer coefficients and reduce conduction temperature differences; large increases in the fuel matrix graphite thermal conductivity (to about 50 W/m 0 K) to reduce conduction temperature differences; and modifications to the core distribution, both radially and axially. By such means the exit gas temperature can be increased to the range of 1200 0 K to 1600 0 K. (author)

  14. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    Science.gov (United States)

    Aktaa, J.; Lerch, M.

    2006-07-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 °C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 ( R is the load ratio with R = Fmin/ Fmax where Fmin and Fmax are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature.

  15. Age-Related Differences of Maximum Phonation Time in Patients after Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Kazuhiro P. Izawa

    2017-12-01

    Full Text Available Background and aims: Maximum phonation time (MPT, which is related to respiratory function, is widely used to evaluate maximum vocal capabilities, because its use is non-invasive, quick, and inexpensive. We aimed to examine differences in MPT by age, following recovery phase II cardiac rehabilitation (CR. Methods: This longitudinal observational study assessed 50 consecutive cardiac patients who were divided into the middle-aged group (<65 years, n = 29 and older-aged group (≥65 years, n = 21. MPTs were measured at 1 and 3 months after cardiac surgery, and were compared. Results: The duration of MPT increased more significantly from month 1 to month 3 in the middle-aged group (19.2 ± 7.8 to 27.1 ± 11.6 s, p < 0.001 than in the older-aged group (12.6 ± 3.5 to 17.9 ± 6.0 s, p < 0.001. However, no statistically significant difference occurred in the % change of MPT from 1 month to 3 months after cardiac surgery between the middle-aged group and older-aged group, respectively (41.1% vs. 42.1%. In addition, there were no significant interactions of MPT in the two groups for 1 versus 3 months (F = 1.65, p = 0.20. Conclusion: Following phase II, CR improved MPT for all cardiac surgery patients.

  16. Age-Related Differences of Maximum Phonation Time in Patients after Cardiac Surgery.

    Science.gov (United States)

    Izawa, Kazuhiro P; Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi

    2017-12-21

    Background and aims: Maximum phonation time (MPT), which is related to respiratory function, is widely used to evaluate maximum vocal capabilities, because its use is non-invasive, quick, and inexpensive. We aimed to examine differences in MPT by age, following recovery phase II cardiac rehabilitation (CR). Methods: This longitudinal observational study assessed 50 consecutive cardiac patients who were divided into the middle-aged group (<65 years, n = 29) and older-aged group (≥65 years, n = 21). MPTs were measured at 1 and 3 months after cardiac surgery, and were compared. Results: The duration of MPT increased more significantly from month 1 to month 3 in the middle-aged group (19.2 ± 7.8 to 27.1 ± 11.6 s, p < 0.001) than in the older-aged group (12.6 ± 3.5 to 17.9 ± 6.0 s, p < 0.001). However, no statistically significant difference occurred in the % change of MPT from 1 month to 3 months after cardiac surgery between the middle-aged group and older-aged group, respectively (41.1% vs. 42.1%). In addition, there were no significant interactions of MPT in the two groups for 1 versus 3 months (F = 1.65, p = 0.20). Conclusion: Following phase II, CR improved MPT for all cardiac surgery patients.

  17. Task 08/41, Low temperature loop at the RA reactor, Review IV - Maximum temperature values in the samples without forced cooling; Zadatak 08/41, Niskotemperaturna petlja u reaktoru 'RA', Pregled IV - Maksimalne temperature u uzorcima bez prinudnog hladjenja

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, Z [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The quantity of heat generated in the sample was calculated in the Review III. In stationary regime the heat is transferred through the air layer between the sample and the wall of the channel to the heavy water of graphite. Certain value of maximum temperature t{sub 0} is achieved in the sample. The objective of this review is determination of this temperature. [Serbo-Croat] Kolicina toplote generisana u uzorku, izracunata u pregledu III, u ravnoteznom stanju odvodi se kroz vazdusni sloj izmedju uzorka i zida kanala na tesku vodu odnosno grafit, pri cemu se u uzorku dostize izvesna maksimalna temperatura t{sub 0}. Odredjivanje ove temperature je predmet ovog pregleda.

  18. Further studies of the stability of LiF:Mg,Cu,P (GR-200) at maximum readout temperatures between 240oC and 280oC

    International Nuclear Information System (INIS)

    Oster, L.; Horowitz, Y.S.; Horowitz, A.

    1996-01-01

    It has recently been shown that LiF:Mg,Cu,P (GR-200) can be read out to temperatures as high as 270 o C for 12 s with negligible loss in sensitivity. In the present work the long-term sensitivity of GR-200 was studied at readout temperatures between 240 o C and 280 o C. The idea was that the readout temperatures above 240 o C might initiate reaction processes which influence the sensitivity only after long-term storage. No difference was found in the behaviour of GR-200 chips with 80 accumulated readouts to 240 o C or 270 o C and after storage of up to four months. Slight losses in sensitivity of 4% for 240 o C and 10% for 270 o C are observed after 80 readouts during four months storage. However, at a maximum readout temperature of 280 o C, a 33% loss in sensitivity after 80 cycles is observed. In conclusion it is found that GR-200 can be read out at temperatures as high as 270 o C with negligible loss in sensitivity (less than 0.1% per readout following an initialisation procedure of 1 readout) and acceptable residual signal (0.6%). (author)

  19. Bilateral differences in peak force, power, and maximum plie depth during multiple grande jetes

    NARCIS (Netherlands)

    Wyon, M.; Harris, J.; Brown, D.D.; Clark, F.

    2013-01-01

    A lateral bias has been previously reported in dance training. The aim of this study was to investigate whether there are any bilateral differences in peak forces, power, and maximum knee flexion during a sequence of three grand jetes and how they relate to leg dominance. A randomised observational

  20. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  1. Computation of temperature elevation in rabbit eye irradiated by 2.45-GHz microwaves with different field configurations.

    Science.gov (United States)

    Hirata, Akimasa; Watanabe, Soichi; Taki, Masao; Fujiwara, Osamu; Kojima, Masami; Sasaki, Kazuyuki

    2008-02-01

    This study calculated the temperature elevation in the rabbit eye caused by 2.45-GHz near-field exposure systems. First, we calculated specific absorption rate distributions in the eye for different antennas and then compared them with those observed in previous studies. Next, we re-examined the temperature elevation in the rabbit eye due to a horizontally-polarized dipole antenna with a C-shaped director, which was used in a previous study. For our computational results, we found that decisive factors of the SAR distribution in the rabbit eye were the polarization of the electromagnetic wave and antenna aperture. Next, we quantified the eye average specific absorption rate as 67 W kg(-1) for the dipole antenna with an input power density at the eye surface of 150 mW cm(-2), which was specified in the previous work as the minimum cataractogenic power density. The effect of administrating anesthesia on the temperature elevation was 30% or so in the above case. Additionally, the position where maximum temperature in the lens appears is discussed due to different 2.45-GHz microwave systems. That position was found to appear around the posterior of the lens regardless of the exposure condition, which indicates that the original temperature distribution in the eye was the dominant factor.

  2. Comparative study of maximum isometric grip strength in different sports

    Directory of Open Access Journals (Sweden)

    Noé Gomes Borges Junior

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n3p292   The objective of this study was to compare maximum isometric grip strength (Fmaxbetween different sports and between the dominant (FmaxD and non-dominant (FmaxND hand. Twenty-nine male aikido (AI, jiujitsu (JJ, judo (JU and rowing (RO athletes and 21non-athletes (NA participated in the study. The hand strength test consisted of maintainingmaximum isometric grip strength for 10 seconds using a hand dynamometer. The position of the subjects was that suggested by the American Society of Hand Therapy. Factorial 2X5 ANOVA with Bonferroni correction, followed by a paired t test and Tukey test, was used for statistical analysis. The highest Fmax values were observed for the JJ group when using the dominant hand,followed by the JU, RO, AI and NA groups. Variation in Fmax could be attributed to handdominance (30.9%, sports modality (39.9% and the interaction between hand dominance andsport (21.3%. The present results demonstrated significant differences in Fmax between the JJ and AI groups and between the JJ and NA groups for both the dominant and non-dominant hand. Significant differences in Fmax between the dominant and non-dominant hand were only observed in the AI and NA groups. The results indicate that Fmax can be used for comparisonbetween different sports modalities, and to identify differences between the dominant and nondominanthand. Studies involving a larger number of subjects will permit the identification of differences between other modalities.

  3. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  4. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  5. Particle Swarm Optimization Based of the Maximum Photovoltaic ...

    African Journals Online (AJOL)

    Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency. In this work, a Particle Swarm ...

  6. Investigation on maximum transition temperature of phonon mediated superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Fusui, L; Yi, S; Yinlong, S [Physics Department, Beijing University (CN)

    1989-05-01

    Three model effective phonon spectra are proposed to get plots of {ital T}{sub {ital c}}-{omega} adn {lambda}-{omega}. It can be concluded that there is no maximum limit of {ital T}{sub {ital c}} in phonon mediated superconductivity for reasonable values of {lambda}. The importance of high frequency LO phonon is also emphasized. Some discussions on high {ital T}{sub {ital c}} are given.

  7. The Ultrachopper tip: a wound temperature study.

    Science.gov (United States)

    Barlow, William R; Pettey, Jeff; Olson, Randall J

    2013-12-01

    To determine the thermal characteristics of the Ultrachopper and its thermal properties in varied viscosurgical substances. Experimental study. Not applicable. The Ultrachopper (Alcon, Inc) tip with the Infiniti (Alcon, Inc) handpiece was attached to a thermistor and placed in a test chamber filled with either an ophthalmic viscosurgical device (OVD) or balanced salt solution (BSS). The thermistor allowed for continuous monitoring of temperature from baseline and the change that occurred over 60 seconds of continuous run time. Mean maximum temperature in each OVD exceeded 50°C over the first 25 seconds of continuous run time. The mean maximum temperature was statistically significantly higher with all OVDs (p < 0.0001) when compared with BSS. A small but statistically significant difference in mean maximum temperature was shown between Healon 5 (AMO, Inc) and Viscoat (Alcon, Inc) (p < 0.05). The linear increase in temperature was statistically significantly different with all OVDs compared with BSS (p < 0.0001). The thermal properties of the Ultrachopper tip demonstrate a heat-generating capacity that achieves published thresholds for risk for wound burn. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  8. Individual Module Maximum Power Point Tracking for a Thermoelectric Generator Systems

    DEFF Research Database (Denmark)

    Vadstrup, Casper; Chen, Min; Schaltz, Erik

    Thermo Electric Generator (TEG) modules are often connected in a series and/or parallel system in order to match the TEG system voltage with the load voltage. However, in order to be able to control the power production of the TEG system a DC/DC converter is inserted between the TEG system...... and the load. The DC/DC converter is under the control of a Maximum Power Point Tracker (MPPT) which insures that the TEG system produces the maximum possible power to the load. However, if the conditions, e.g. temperature, health, etc., of the TEG modules are different each TEG module will not produce its...

  9. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    International Nuclear Information System (INIS)

    Aktaa, J.; Lerch, M.

    2006-01-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 deg. C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 (R is the load ratio with R = F min /F max where F min and F max are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature

  10. Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil.

    Science.gov (United States)

    Yiin, Chung Loong; Yusup, Suzana; Quitain, Armando T; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya

    2018-05-01

    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2014-08-01

    Full Text Available The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter systems are conducted and results are presented in the paper. The maximum power point tracking function is achieved through appropriate control of the power switches of the power converter. A fuzzy logic controller is developed to perform the MPPT function for obtaining maximum power from the PV panel. The MATLAB-based Simulink piecewise linear electric circuit simulation tool is used to verify the complete circuit simulation model.

  12. Analysis of graphite gasification by water vapor at different conversions

    International Nuclear Information System (INIS)

    Xiaowei, Luo; Xiaoyu, Yu; Suyuan, Yu; Jean-Charles, Robin

    2014-01-01

    Highlights: • Graphite was gasified at different conversions. • The reaction temperature influences on the dimensionless the reaction rate. • The thickness or radius influence on the dimensionless reaction rate. - Abstract: The gasification rate of porous solids varies with the conversions with the rate increasing to a maximum and then decreasing. Many graphite gasification experiments have illustrated that the maximum gasification rates occur at different conversions for different temperatures and sample geometries. Thus, the gasification rate is related to the conversion, temperature and geometry of the graphite. The influences of those factors were studied for the graphite gasification by water vapor. A theoretical analysis was done on the basis of several logical assumptions. The influence of temperatures on the reaction rate was investigated for plate-like and cylindrical graphite. The effects of thickness for a plate-like graphite sample and of radius for a cylindrical sample on the reaction rate were also studied theoretically. The results reveal that the maximum dimensionless reaction rate decreases with reaction temperature. The plate thickness or the cylinder radius also affects the maximum dimensionless reaction rate

  13. Numerical simulation of temperature distribution using finite difference equations and estimation of the grain size during friction stir processing

    International Nuclear Information System (INIS)

    Arora, H.S.; Singh, H.; Dhindaw, B.K.

    2012-01-01

    Highlights: ► Magnesium alloy AE42 was friction stir processed under different cooling conditions. ► Heat flow model was developed using finite difference heat equations. ► Generalized MATLAB code was developed for solving heat flow model. ► Regression equation for estimation of grain size was developed. - Abstract: The present investigation is aimed at developing a heat flow model to simulate temperature history during friction stir processing (FSP). A new approach of developing implicit form of finite difference heat equations solved using MATLAB code was used. A magnesium based alloy AE42 was friction stir processed (FSPed) at different FSP parameters and cooling conditions. Temperature history was continuously recorded in the nugget zone during FSP using data acquisition system and k type thermocouples. The developed code was validated at different FSP parameters and cooling conditions during FSP experimentation. The temperature history at different locations in the nugget zone at different instants of time was further utilized for the estimation of grain growth rate and final average grain size of the FSPed specimen. A regression equation relating the final grain size, maximum temperature during FSP and the cooling rate was developed. The metallurgical characterization was done using optical microscopy, SEM, and FIB-SIM analysis. The simulated temperature profiles and final average grain size were found to be in good agreement with the experimental results. The presence of fine precipitate particles generated in situ in the investigated magnesium alloy also contributed in the evolution of fine grain structure through Zener pining effect at the grain boundaries.

  14. Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Bharathi Bai J. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560017 (India)], E-mail: bharathi@css.nal.res.in; Vasantharajan, N. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560017 (India)

    2008-10-15

    The temperature dependence of the luminescence lifetime of temperature sensor films based on europium (III) thenoyltrifluoroacetonate (EuTTA) as sensor dye in various polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA), polyurethane (PU) and model airplane dope was studied and compared. The luminescence lifetime of EuTTA was found to depend on the polymer matrix. The temperature sensitivity of lifetime was maximum for EuTTA-PS coating in the temperature range of 10-60 deg. C. The effect of concentration of the sensor dye in the polymer on the lifetime and temperature sensitivity was also studied.

  15. A rapid method for measuring maximum density temperatures in water and aqueous solutions for the study of quantum zero point energy effects in these liquids

    International Nuclear Information System (INIS)

    Deeney, F A; O'Leary, J P

    2008-01-01

    The connection between quantum zero point fluctuations and a density maximum in water and in liquid He 4 has recently been established. Here we present a description of a simple and rapid method of determining the temperatures at which maximum densities in water and aqueous solutions occur. The technique is such as to allow experiments to be carried out in one session of an undergraduate laboratory thereby introducing students to the concept of quantum zero point energy

  16. A portable storage maximum thermometer

    International Nuclear Information System (INIS)

    Fayart, Gerard.

    1976-01-01

    A clinical thermometer storing the voltage corresponding to the maximum temperature in an analog memory is described. End of the measurement is shown by a lamp switch out. The measurement time is shortened by means of a low thermal inertia platinum probe. This portable thermometer is fitted with cell test and calibration system [fr

  17. MAXIMUM POWEWR POINT TRACKING SYSTEM FOR PHOTOVOLTAIC STATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. Elzein

    2015-01-01

    Full Text Available In recent years there has been a growing attention towards the use of renewable energy sources. Among them solar energy is one of the most promising green energy resources due to its environment sustainability and inexhaustibility. However photovoltaic systems (PhV suffer from big cost of equipment and low efficiency. Moreover, the solar cell V-I characteristic is nonlinear and varies with irradiation and temperature. In general, there is a unique point of PhV operation, called the Maximum Power Point (MPP, in which the PV system operates with maximum efficiency and produces its maximum output power. The location of the MPP is not known in advance, but can be located, either through calculation models or by search algorithms. Therefore MPPT techniques are important to maintain the PV array’s high efficiency. Many different techniques for MPPT are discussed. This review paper hopefully will serve as a convenient tool for future work in PhV power conversion.

  18. Comparison of Different Fuel Temperature Models

    Energy Technology Data Exchange (ETDEWEB)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  19. Comparison of Different Fuel Temperature Models

    International Nuclear Information System (INIS)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  20. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    Science.gov (United States)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  1. Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature.

    Science.gov (United States)

    Cerasoli, Sofia; Wertin, Timothy; McGuire, Mary Anne; Rodrigues, Ana; Aubrey, Doug P; Pereira, João Santos; Teskey, Robert O

    2014-04-11

    Most investigations of plant responses to changes in temperature have focused on a constant increase in mean day/night temperature without considering how differences in temperature cycles can affect physiological processes and growth. To test the effects of changes in growth temperature on foliar carbon balance and plant growth, we repeatedly exposed poplar saplings (Populus deltoides × nigra) to temperature cycles consisting of 5 days of a moderate (M, +5 °C) or extreme (E, +10 °C) increase in temperature followed by 5 days of a moderate (M, -5 °C) or extreme (E, -10 °C) decrease in temperature, with respect to a control treatment (C, 23.4 °C). The temperature treatments had the same mean temperature over each warm and cool cycle and over the entire study. Our goal was to examine the influence of recurring temperature shifts on growth. Net photosynthesis (A) was relatively insensitive to changes in growth temperature (from 20 to 35 °C), suggesting a broad range of optimum temperature for photosynthesis. Leaf respiration (R) exhibited substantial acclimation to temperature, having nearly the same rate at 13 °C as at 33 °C. There was no evidence that preconditioning through temperature cycles affected the response of A or R to treatment temperature fluctuations. Averaged across the complete warm/cool temperature cycle, the A : R ratio did not differ among the temperature treatments. While foliar carbon balance was not affected, the temperature treatments significantly affected growth. Whole-plant biomass was 1.5 times greater in the M treatment relative to the C treatment. Carbon allocation was also affected with shoot volume and biomass greater in the M and E treatments than in the C treatment. Our findings indicate that temperature fluctuations can have important effects on growth, though there were few effects on leaf gas exchange, and can help explain differences in growth that are not correlated with mean growth temperature. Published by Oxford

  2. Energy harvesting through gas dynamics in the free molecular flow regime between structured surfaces at different temperatures

    Science.gov (United States)

    Baier, Tobias; Dölger, Julia; Hardt, Steffen

    2014-05-01

    For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility to extract work from the system which operates as a heat engine. Since both surfaces are held at constant temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant efficiencies can be obtained by tangential momentum transfer between structured surfaces.

  3. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    Science.gov (United States)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita

    2011-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  4. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1995-01-01

    Sausages with added Staphylococcus xylosus were fermented at different temperatures and with different added levels of salt, glucose, nitrite, nitrate and Pediococcus pentosaceus in accordance with a six factor fractional design. The odour of the sausages was evaluated by a quantitative descriptive...... tested using multiple linear regression and analysis of variance. The study showed that salami odour was more pronounced in sausages fermented at low temperature than in sausages fermented at high temperature and added nitrite, glucose and P. pentosaceus. High temperature sausages had a more sour...

  5. A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN)

    Energy Technology Data Exchange (ETDEWEB)

    Karlis, A.D. [Electrical Machines Laboratory, Department of Electrical & amp; Computer Engineering, Democritus University of Thrace, V. Sofias 12, 67100 Xanthi (Greece); Kottas, T.L.; Boutalis, Y.S. [Automatic Control Systems Laboratory, Department of Electrical & amp; Computer Engineering, Democritus University of Thrace, V. Sofias 12, 67100 Xanthi (Greece)

    2007-03-15

    Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. This paper presents a novel MPPT method based on fuzzy cognitive networks (FCN). The new method gives a good maximum power operation of any PV array under different conditions such as changing insolation and temperature. The numerical results show the effectiveness of the proposed algorithm. (author)

  6. MAXIMUM NUMBER OF REPETITIONS, TOTAL WEIGHT LIFTED AND NEUROMUSCULAR FATIGUE IN INDIVIDUALS WITH DIFFERENT TRAINING BACKGROUNDS

    Directory of Open Access Journals (Sweden)

    Valeria Panissa

    2013-04-01

    Full Text Available The aim of this study was to evaluate the performance, as well as neuromuscular activity, in a strength task in subjects with different training backgrounds. Participants (n = 26 were divided into three groups according to their training backgrounds (aerobic, strength or mixed and submitted to three sessions: (1 determination of the maximum oxygen uptake during the incremental treadmill test to exhaustion and familiarization of the evaluation of maximum strength (1RM for the half squat; (2 1RM determination; and (3 strength exercise, four sets at 80�0of the 1RM, in which the maximum number of repetitions (MNR, the total weight lifted (TWL, the root mean square (RMS and median frequency (MF of the electromyographic (EMG activity for the second and last repetition were computed. There was an effect of group for MNR, with the aerobic group performing a higher MNR compared to the strength group (P = 0.045, and an effect on MF with a higher value in the second repetition than in the last repetition (P = 0.016. These results demonstrated that individuals with better aerobic fitness were more fatigue resistant than strength trained individuals. The absence of differences in EMG signals indicates that individuals with different training backgrounds have a similar pattern of motor unit recruitment during a resistance exercise performed until failure, and that the greater capacity to perform the MNR probably can be explained by peripheral adaptations.

  7. Constitutive Behavior and Deep Drawability of Three Aluminum Alloys Under Different Temperatures and Deformation Speeds

    Science.gov (United States)

    Panicker, Sudhy S.; Prasad, K. Sajun; Basak, Shamik; Panda, Sushanta Kumar

    2017-08-01

    In the present work, uniaxial tensile tests were carried out to evaluate the stress-strain response of AA2014, AA5052 and AA6082 aluminum alloys at four temperatures: 303, 423, 523 and 623 K, and three strain rates: 0.0022, 0.022 and 0.22 s-1. It was found that the Cowper-Symonds model was not a robust constitutive model, and it failed to predict the flow behavior, particularly the thermal softening at higher temperatures. Subsequently, a comparative study was made on the capability of Johnson-Cook (JC), modified Zerilli-Armstrong (m-ZA), modified Arrhenius (m-ARR) and artificial neural network (ANN) for modeling the constitutive behavior of all the three aluminum alloys under the mentioned strain rates and temperatures. Also, the improvement in formability of the materials was evaluated at an elevated temperature of 623 K in terms of cup height and maximum safe strains by conducting cylindrical cup deep drawing experiments under two different punch speeds of 4 and 400 mm/min. The cup heights increased during warm deep drawing due to thermal softening and increase in failure strains. Also, a small reduction in cup height was observed when the punch speed increased from 4 to 400 mm/min at 623 K. Hence, it was suggested to use high-speed deformation at elevated temperature to reduce both punch load and cycle time during the deep drawing process.

  8. The sublethal effects of zinc at different water temperatures on ...

    African Journals Online (AJOL)

    The sublethal effects of zinc at different water temperatures on selected ... of 96h at different water temperatures representing the seasonal temperatures in the ... are mobilised to meet increased energy demands during periods of stress.

  9. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  10. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  11. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  12. Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures

    DEFF Research Database (Denmark)

    Christensen, Emil Aputsiaq Flindt; Svendsen, Morten Bo Søndergaard; Steffensen, John Fleng

    2017-01-01

    with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20...... of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity......The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased...

  13. Impacts of Land Cover and Seasonal Variation on Maximum Air Temperature Estimation Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Yulin Cai

    2017-03-01

    Full Text Available Daily maximum surface air temperature (Tamax is a crucial factor for understanding complex land surface processes under rapid climate change. Remote detection of Tamax has widely relied on the empirical relationship between air temperature and land surface temperature (LST, a product derived from remote sensing. However, little is known about how such a relationship is affected by the high heterogeneity in landscapes and dynamics in seasonality. This study aims to advance our understanding of the roles of land cover and seasonal variation in the estimation of Tamax using the MODIS (Moderate Resolution Imaging Spectroradiometer LST product. We developed statistical models to link Tamax and LST in the middle and lower reaches of the Yangtze River in China for five major land-cover types (i.e., forest, shrub, water, impervious surface, cropland, and grassland and two seasons (i.e., growing season and non-growing season. Results show that the performance of modeling the Tamax-LST relationship was highly dependent on land cover and seasonal variation. Estimating Tamax over grasslands and water bodies achieved superior performance; while uncertainties were high over forested lands that contained extensive heterogeneity in species types, plant structure, and topography. We further found that all the land-cover specific models developed for the plant non-growing season outperformed the corresponding models developed for the growing season. Discrepancies in model performance mainly occurred in the vegetated areas (forest, cropland, and shrub, suggesting an important role of plant phenology in defining the statistical relationship between Tamax and LST. For impervious surfaces, the challenge of capturing the high spatial heterogeneity in urban settings using the low-resolution MODIS data made Tamax estimation a difficult task, which was especially true in the growing season.

  14. Effect of temperature on different stages of Romanomermis iyengari, a mermithid nematode parasite of mosquitoes

    Directory of Open Access Journals (Sweden)

    K. P. Paily

    1994-12-01

    Full Text Available The effect of temperature (20 degrees-35 degrees C on different stages of Romanomermis iyengari was studied. In embryonic development, the single-cell stage eggs developed into mature eggs in 4.5-6.5 days at 25-35 degrees C but, required 9.5 days at 20 degrees C. Complete hatching occurred in 7 and 9 days after egg-laying at 35 and 30 degrees C, respectively. At 25 and 20 degrees C, 85-96 of the eggs did not hatch even by 30th day. Loss of infectivity and death of the preparasites occurred faster at higher temperatures. The 50 survival durations of preparasites at 20 and 35 degrees C were 105.8 and 10.6 hr respectively. They retained 50 infectivity up to 69.7 and 30.3 hr. The duration of the parasitic phase increased as temperature decreased. Low temperature favoured production of a higher proportion of females which were also larger in size. The maximum time taken for the juveniles to become adults was 14 days at 20 degrees C and the minimum was 9 days at 35 degrees C. Oviposition began earlier at higher temperature than at lower temperature. However, its fecundic period was shorter at 20 degrees C than at 35 degrees C indicating enhanced rate of oviposition at 20 degrees C. Fecundity was adversely affected at 20 degrees C and 35 degrees C. It is shown that the temperature range of 25 degrees-30 degrees C favours optimum development of R. iyengari.

  15. Impact of different temperatures on survival and energy metabolism in the Asian citrus psyllid, Diaphorina citri Kuwayama.

    Science.gov (United States)

    El-Shesheny, Ibrahim; Hijaz, Faraj; El-Hawary, Ibrahim; Mesbah, Ibrahim; Killiny, Nabil

    2016-02-01

    Temperature influences the life history and metabolic parameters of insects. Asian citrus psyllid (ACP), Diaphorina citri is a tropical and subtropical pest. ACP invaded new regions around the world and threatened the citrus industry as a vector for Huanglongbing (HLB) disease. ACP is widely distributed and can survive high (up to 45 °C) and low temperatures (as low as -6 °C). The precise mechanism of temperature tolerance in ACP is poorly understood. We investigated adult survival, cellular energy balance, gene expression, and nucleotide and sugar-nucleotide changes under the effect of different temperature regimes (0 °C to 45 °C with 5 °C intervals). The optimum temperatures for survival were 20 and 25 °C. Low temperatures of 0 °C and 5 °C caused 50% mortality after 2 and 4 days respectively, while one day at high temperature (40 °C and 45 °C) caused more than 95% mortality. The lowest quantity of ATP (3.69 ± 1.6 ng/insect) and the maximum ATPase enzyme activities (57.43 ± 7.6 μU/insect) were observed at 25 °C. Correlation between ATP quantities and ATPase activity was negative. Gene expression of hsp 70, V-type proton ATPase catalytic subunit A and ATP synthase α subunit matched these results. Twenty-four nucleotides and sugar-nucleotides were quantified using HPLC in ACP adults maintained at low, high, and optimum temperatures. The nucleotide profiles were different among treatments. The ratios between AMP:ATP and ADP:ATP were significantly decreased and positively correlated to adults survival, whereas the adenylate energy charge was increased in response to low and high temperatures. Exploring energy metabolic regulation in relation with adult survival might help in understanding the physiological basis of how ACP tolerates newly invaded regions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  17. Isolation and Screening of Thermo-Stable Cellulase Enzyme Fungal Producer at Different Temperature

    International Nuclear Information System (INIS)

    Noor Ashiqin Jamroo; Noor Azrimi Umor; Kamsani

    2015-01-01

    Thermo stable cellulase from fungi has high potential for industrial application. In this study, wild -type of fungal were isolate from different sources such as hot spring water, sea water, soft wood, rice straw and cow dung. The isolates were characterized by cultural and morphological observation. Based on morphological characteristics, the genera of all fungal cultures were identified namely Aspergillus fumigatus. The screening for thermo stable cellulase were done using 2 % carboxymethyl cellulose and congo red as an indicator at temperature 30, 37, 45 and 50 degree Celsius respectively. Out of 26 fungal isolates, only eight isolates were selected for further screening and showed the abilities to secrete cellulases by forming distinct halo zones on selective agar plate. The maximum halo zone ranging from 32 mm to 35 mm were obtained after 72 hour incubation at 50 degree Celsius by H2, SW1 and C1 isolates. As contrary other isolates showed halo zone range from 22 mm to 29 mm at same temperature. All the isolates showed the abilities to secrete cellulase enzyme at other temperature but lower when compared to 50 degree Celsius referred to the halo zone obtained. The SW1 isolates showed highest cellulolytic index which was 2.93 measured at 37 degree Celsius and 2.67 at 50 degree Celsius respectively. (author)

  18. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method

    Science.gov (United States)

    Tang, Shaolei; Yang, Xiaofeng; Dong, Di; Li, Ziwei

    2015-12-01

    Sea surface temperature (SST) is an important variable for understanding interactions between the ocean and the atmosphere. SST fusion is crucial for acquiring SST products of high spatial resolution and coverage. This study introduces a Bayesian maximum entropy (BME) method for blending daily SSTs from multiple satellite sensors. A new spatiotemporal covariance model of an SST field is built to integrate not only single-day SSTs but also time-adjacent SSTs. In addition, AVHRR 30-year SST climatology data are introduced as soft data at the estimation points to improve the accuracy of blended results within the BME framework. The merged SSTs, with a spatial resolution of 4 km and a temporal resolution of 24 hours, are produced in the Western Pacific Ocean region to demonstrate and evaluate the proposed methodology. Comparisons with in situ drifting buoy observations show that the merged SSTs are accurate and the bias and root-mean-square errors for the comparison are 0.15°C and 0.72°C, respectively.

  19. Synthesis and characterization of nickel oxide particulate annealed at different temperatures

    Science.gov (United States)

    Sharma, Khem Raj; Thakur, Shilpa; Negi, N. S.

    2018-04-01

    Nickel oxide has been synthesized by solution combustion technique. The nickel oxide ceramic was annealed at 600°C and 1000°C for 2 hours. Structural, electrical, dielectric and magnetic properties were analyzed which are strongly dependent upon the synthesis method. Structural properties were examined by X-ray diffractometer (XRD), which confirmed the purity and cubic phase of nickel oxide. XRD data reveals the increase in crystallite size and decrease in full width half maximum (FWHM) as the annealing temperature increases. Electrical conductivity is found to increase from 10-6 to 10-5 (Ω-1cm-1) after annealing. Dielectric constant is observed to increase from 26 to 175 when the annealing temperature is increased from 600°C to 1000°C. Low value of coercive field is found which shows weak ferromagnetic behavior of NiO. It is observed that all the properties of NiO particulate improve with increasing annealing temperature.

  20. Total number of tillers of different accessions of Panicum maximum Jacq.

    Directory of Open Access Journals (Sweden)

    Thiago Perez Granato

    2012-12-01

    Full Text Available The productivity of forage grasses is due to continuous emission of leaves and tillers, ensuring the restoration of leaf área after cutting or grazing, thus ensuring the sustainability of forage. This study aimed to asses the total number tillers in different acessions of Panicum maximum Jacq. The experiment was carried in field belonging to the Instituto de Zootecnia located in Nova Odessa / SP. Evaluated two new accesses Panicum maximum, and two commercial cultivars. The cultivars tested were Aruana, Milenio, NO 2487, NO 78, and the two latter belonging to the Germoplasm Collection of the IZ. The experimental desing was in randomized complete block with four replications. The experimental area consisted of 16 plots of 10 m2 (5 x 2 m each. The experimental area was analyzed and according to the results, received dolomitic limestone corresponding 2t /ha, two months before the implementation of the experiment. Sowing was made by broad costing together with 80 kg/ha of P2O5 in the form of single superphosfate. After 60 days of implantation of the experiment it was a made a leveling of the plots to a height of about 15 cm. After this it was applied 250g of the 20-00-20 fertilizer/plot. Thirty days after the standardization it was evaluated the total number of tillers of the cultivars, using a metal frame of 0.5 x 0.5m which was thrown at random on each of the 16 plots, leaving one meter of each extremitly, and all tillers which were within the frame counted. After finished the counting of all tillers, the plots cut again at a height of approximately 15 cm. The second evaluation took place after thirty days, and it was again counted the total number of tillers following the same procedure. The results were analyzed by Tukey test at 5% after transforming the data to log(x. For the first evaluation there was no statistical difference in the total number of tillers between cultivars. But, in the second evaluation, the total number of tillers of NO 78

  1. Honey bee forager thoracic temperature inside the nest is tuned to broad-scale differences in recruitment motivation.

    Science.gov (United States)

    Sadler, Nik; Nieh, James C

    2011-02-01

    Insects that regulate flight muscle temperatures serve as crucial pollinators in a broad range of ecosystems, in part because they forage over a wide span of temperatures. Honey bees are a classic example and maintain their thoracic muscles at temperatures (T(th)) tuned to the caloric benefits of floral resources. Using infrared thermography, we tested the hypothesis that forager motivation to recruit nestmates for a food source is positively correlated with T(th). We trained bees to a sucrose feeder located 5-100 m from the nest. Recruiting foragers had a significantly higher average T(th) (2.7°C higher) when returning from 2.5 mol l(-1) sucrose (65% w/w) than when returning from 1.0 mol l(-1) sucrose (31% w/w). Foragers exhibited significantly larger thermal fluctuations the longer they spent inside the nest between foraging trips. The difference between maximum and minimum temperatures during a nest visit (T(range)) increased with total duration of the nest visit (0.7°C increase per additional min spent inside the nest). Bees that recruited nestmates (waggle or round danced) were significantly warmer, with a 1.4-1.5 times higher ΔT(th) (difference between T(th) and nest ambient air temperature) than bees who tremble danced or simply walked on the nest floor without recruiting between foraging bouts. However, recruiter T(th) was not correlated with finer-scale measures of motivation: the number of waggle dance circuits or waggle dance return phase duration. These results support the hypothesis that forager T(th) within the nest is correlated to broad-scale differences in foraging motivation.

  2. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? – Perspectives from equilibrium simulations

    Directory of Open Access Journals (Sweden)

    C. J. Van Meerbeeck

    2009-03-01

    Full Text Available Dansgaard-Oeschger events occurred frequently during Marine Isotope Stage 3 (MIS3, as opposed to the following MIS2 period, which included the Last Glacial Maximum (LGM. Transient climate model simulations suggest that these abrupt warming events in Greenland and the North Atlantic region are associated with a resumption of the Thermohaline Circulation (THC from a weak state during stadials to a relatively strong state during interstadials. However, those models were run with LGM, rather than MIS3 boundary conditions. To quantify the influence of different boundary conditions on the climates of MIS3 and LGM, we perform two equilibrium climate simulations with the three-dimensional earth system model LOVECLIM, one for stadial, the other for interstadial conditions. We compare them to the LGM state simulated with the same model. Both climate states are globally 2°C warmer than LGM. A striking feature of our MIS3 simulations is the enhanced Northern Hemisphere seasonality, July surface air temperatures being 4°C warmer than in LGM. Also, despite some modification in the location of North Atlantic deep water formation, deep water export to the South Atlantic remains unaffected. To study specifically the effect of orbital forcing, we perform two additional sensitivity experiments spun up from our stadial simulation. The insolation difference between MIS3 and LGM causes half of the 30–60° N July temperature anomaly (+6°C. In a third simulation additional freshwater forcing halts the Atlantic THC, yielding a much colder North Atlantic region (−7°C. Comparing our simulation with proxy data, we find that the MIS3 climate with collapsed THC mimics stadials over the North Atlantic better than both control experiments, which might crudely estimate interstadial climate. These results suggest that freshwater forcing is necessary to return climate from warm interstadials to cold stadials during MIS3. This changes our perspective, making the stadial

  3. Comparison of full width at half maximum and penumbra of different Gamma Knife models.

    Science.gov (United States)

    Asgari, Sepideh; Banaee, Nooshin; Nedaie, Hassan Ali

    2018-01-01

    As a radiosurgical tool, Gamma Knife has the best and widespread name recognition. Gamma Knife is a noninvasive intracranial technique invented and developed by Swedish neurosurgeon Lars Leksell. The first commercial Leksell Gamma Knife entered the therapeutic armamentarium at the University of Pittsburgh in the United States on August 1987. Since that time, different generation of Gamma Knife developed. In this study, the technical points and dosimetric parameters including full width at half maximum and penumbra on different generation of Gamma Knife will be reviewed and compared. The results of this review study show that the rotating gamma system provides a better dose conformity.

  4. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  5. Micro-scale heterogeneity in water temperature | Dallas | Water SA

    African Journals Online (AJOL)

    Micro-scale heterogeneity in water temperature was examined in 6 upland sites in the Western Cape, South Africa. Hourly water temperature data converted to daily data showed that greatest differences were apparent in daily maximum temperatures between shallow- and deep-water biotopes during the warmest period of ...

  6. Maximum power point tracker based on fuzzy logic

    International Nuclear Information System (INIS)

    Daoud, A.; Midoun, A.

    2006-01-01

    The solar energy is used as power source in photovoltaic power systems and the need for an intelligent power management system is important to obtain the maximum power from the limited solar panels. With the changing of the sun illumination due to variation of angle of incidence of sun radiation and of the temperature of the panels, Maximum Power Point Tracker (MPPT) enables optimization of solar power generation. The MPPT is a sub-system designed to extract the maximum power from a power source. In the case of solar panels power source. the maximum power point varies as a result of changes in its electrical characteristics which in turn are functions of radiation dose, temperature, ageing and other effects. The MPPT maximum the power output from panels for a given set of conditions by detecting the best working point of the power characteristic and then controls the current through the panels or the voltage across them. Many MPPT methods have been reported in literature. These techniques of MPPT can be classified into three main categories that include: lookup table methods, hill climbing methods and computational methods. The techniques vary according to the degree of sophistication, processing time and memory requirements. The perturbation and observation algorithm (hill climbing technique) is commonly used due to its ease of implementation, and relative tracking efficiency. However, it has been shown that when the insolation changes rapidly, the perturbation and observation method is slow to track the maximum power point. In recent years, the fuzzy controllers are used for maximum power point tracking. This method only requires the linguistic control rules for maximum power point, the mathematical model is not required and therefore the implementation of this control method is easy to real control system. In this paper, we we present a simple robust MPPT using fuzzy set theory where the hardware consists of the microchip's microcontroller unit control card and

  7. Temperature rise produced by different light-curing units through dentin.

    Science.gov (United States)

    Yazici, A Rüya; Müftü, Ali; Kugel, Gerard

    2007-11-01

    This study investigated the temperature rise caused by different light curing units and the temperature increase in dentin of different thicknesses. Dentin discs of 1.0 and 2.0 mm thicknesses were prepared from extracted human mandibular molars. Temperatures were recorded directly at the surface of the light guide tip, under dentin discs with different thicknesses, and through a sandwich composed of 2 mm thick cured composite and dentin using a K-type thermocouple. The curing units used were two quartz-tungsten-halogen lights (Spectrum and Elipar Trilight-ET) and a light-emitting diode (LED). The highest temperature rise was observed under a Mylar strip using ET standard mode. Under 1 and 2 mm thick dentin barriers, the lowest temperature rise was measured for the LED curing light. Significant differences in temperature rise existed among all curing units except between the Spectrum and ET exponential modes under a 1 mm thick dentin barrier with cured composite. Temperature rises were insignificant between the Spectrum and ET exponential modes and between two modes of Trilight when the same experimental setup was used under a 2 mm thick dentin barrier. For all curing units, temperature elevation through 2 mm of dentin was less than for 1 mm of dentin thickness. The ET standard mode produced the highest and the LED produced the lowest temperature rise for all tested conditions. The thickness of dentin and light-curing unit might affect temperature transmission.

  8. Last interglacial temperature evolution – a model inter-comparison

    Directory of Open Access Journals (Sweden)

    P. Bakker

    2013-03-01

    Full Text Available There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG. This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter

  9. Maximum of difference assessment of typical semitrailers: a global study

    CSIR Research Space (South Africa)

    Kienhofer, F

    2016-11-01

    Full Text Available the maximum allowable width and frontal overhang as stipulated by legislation from Australia, the European Union, Canada, the United States and South Africa. The majority of the Australian, EU and Canadian semitrailer combinations and all of the South African...

  10. Reduced oxygen at high altitude limits maximum size.

    Science.gov (United States)

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  11. Heat Convection at the Density Maximum Point of Water

    Science.gov (United States)

    Balta, Nuri; Korganci, Nuri

    2018-01-01

    Water exhibits a maximum in density at normal pressure at around 4° degree temperature. This paper demonstrates that during cooling, at around 4 °C, the temperature remains constant for a while because of heat exchange associated with convective currents inside the water. Superficial approach implies it as a new anomaly of water, but actually it…

  12. Hierarchical Load Tracking Control of a Grid-connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    DEFF Research Database (Denmark)

    Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu

    2015-01-01

    efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active...... power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model......Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject...

  13. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities.

    Science.gov (United States)

    Davis, Robert E; Hondula, David M; Patel, Anjali P

    2016-06-01

    Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum

  14. Fracture peculiarities in ceramic tungsten at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1981-01-01

    Stress-strain diagrams and results of metallographic analyses are presented for the ceramic tungsten samples tested for fracture toughness under conditions of eccentric tension at different temperatures (20...1600 deg C) in vacuum. The tungsten fracture is shown to be of brittle nature within the whole temperature range studied, but the fracture process has its own peculiarities at different test temperatures

  15. Probabilistic maximum-value wind prediction for offshore environments

    DEFF Research Database (Denmark)

    Staid, Andrea; Pinson, Pierre; Guikema, Seth D.

    2015-01-01

    statistical models to predict the full distribution of the maximum-value wind speeds in a 3 h interval. We take a detailed look at the performance of linear models, generalized additive models and multivariate adaptive regression splines models using meteorological covariates such as gust speed, wind speed......, convective available potential energy, Charnock, mean sea-level pressure and temperature, as given by the European Center for Medium-Range Weather Forecasts forecasts. The models are trained to predict the mean value of maximum wind speed, and the residuals from training the models are used to develop...... the full probabilistic distribution of maximum wind speed. Knowledge of the maximum wind speed for an offshore location within a given period can inform decision-making regarding turbine operations, planned maintenance operations and power grid scheduling in order to improve safety and reliability...

  16. Time-temperature dependent variations in beta-carotene contents in carrot using different spectrophotometric techniques

    Science.gov (United States)

    Ullah, Rahat; Khan, Saranjam; Shah, Attaullah; Ali, Hina; Bilal, Muhammad

    2018-05-01

    The current study presents time dependent variations in the concentration of beta-carotene in carrot under different storage-temperature conditions using UV–VIS and Raman spectrophotometric techniques. The UV–VIS absorption spectra of beta-carotene extracted from carrot shows three distinct absorption peaks at 442, 467, and 500 nm with maximum absorption at 467 nm. These absorption peaks are very much reproducible and are assigned to β-carotene. Similarly, Raman spectra of carrot samples also confirmed the three main Raman peaks of beta-carotene at shift positions 1003, 1150, and 1515 cm‑1. An overall decrease in beta-carotene content has been observed for time-temperature conditions. These results depict a decrease of about 40% in the content of beta-carotene when carrot samples were stored in a refrigerator (4 °C) for the first 20 d, whereas a decrease of about 25% was observed when carrot samples were stored in a freezer (‑16 °C) for the same period. The objective of this study is to investigate the possible use of Raman spectroscopy and UV–VIS spectroscopy for quick and detailed analysis of changes (degradation) in beta-carotene content associated with time and temperature in storage (frozen foods) in order to promote quality foods for consumers. Future study with a greater focus on the concentration/content of beta-carotene in other fruits/vegetables is also desirable.

  17. Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system

    Directory of Open Access Journals (Sweden)

    S. Shabaan

    2018-05-01

    Full Text Available Solar photovoltaic (PV systems are a clean and naturally replenished energy source. PV panels have a unique point which represents the maximum available power and this point depend on the environmental conditions such as temperature and irradiance. A maximum power point tracking (MPPT is therefore necessary for maximum efficiency. In this paper, a study of MPPT for PV water pumping system based on adaptive neuro-fuzzy inference system (ANFIS is discussed. A comparison between the performance of the system with and without MPPT is carried out under varying irradiation and temperature conditions. ANFIS based controller shows fast response with high efficiency at all irradiance and temperature levels making it a powerful technique for non-linear systems as PV modules. Keywords: MPPT, ANFIS, Boost converter, PMDC pump

  18. Effect of Temperature on Wettability and Optimum Wetting Conditions for Maximum Oil Recovery in Carbonate Reservoir System

    DEFF Research Database (Denmark)

    Sohal, Muhammad Adeel Nassar; Thyne, Geoffrey; Søgaard, Erik Gydesen

    2017-01-01

    The additional oil recovery from fractured & oil-wet carbonates by ionically modified water is principally based on changing wettability and often attributed to an improvement in water wetness. The influence of different parameters like dilution of salinity, potential anions, temperature, pressure......, lithology, pH, oil acid and base numbers to improve water wetting has been tested in recovery experiments. In these studies temperature is mainly investigated to observe the reactivity of potential anions (SO42-, PO33-, and BO33-) at different concentrations. But the influence of systematically increasing...... and 100 times. It was observed that as temperature increased the water-wetness decreased for seawater and seawater dilutions, however, the presence of elevated sulfate can somewhat counter this trend as sulfate increased oil wetting....

  19. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1995-01-01

    Sausages with added Staphylococcus xylosus were fermented at different temperatures and with different added levels of salt, glucose, nitrite, nitrate and Pediococcus pentosaceus in accordance with a six factor fractional design. The numbers of surviving Staphylococcus xylosus, lactic acid bacteria......, pH, free fatty acids and residual amounts of nitrite and nitrate were measured. The effects of temperature and different ingredients on the chemical and bacterial data were tested using multiple linear regression and analysis of variance. The study showed that numbers of surviving Staphylococcus...... of glucose and Pediococcus pentosaceus. On the other hand pH was increased by addition of nitrate. The pH-lowering effect of glucose was small when temperature was low. The residual levels of nitrite and nitrate were increased by addition of nitrate, but then increased and decreased, respectively...

  20. Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Xia, Shaojun; Sun, Fengrui

    2016-01-01

    A sulphuric acid decomposition process in a tubular plug-flow reactor with fixed inlet flow rate and completely controllable exterior wall temperature profile and reactants pressure profile is studied in this paper by using finite-time thermodynamics. The maximum production rate of the aimed product SO 2 and the optimal exterior wall temperature profile and reactants pressure profile are obtained by using nonlinear programming method. Then the optimal reactor with the maximum production rate is compared with the reference reactor with linear exterior wall temperature profile and the optimal reactor with minimum entropy generation rate. The result shows that the production rate of SO 2 of optimal reactor with the maximum production rate has an increase of more than 7%. The optimization of temperature profile has little influence on the production rate while the optimization of reactants pressure profile can significantly increase the production rate. The results obtained may provide some guidelines for the design of real tubular reactors. - Highlights: • Sulphuric acid decomposition process in tubular plug-flow reactor is studied. • Fixed inlet flow rate and controllable temperature and pressure profiles are set. • Maximum production rate of aimed product SO 2 is obtained. • Corresponding optimal temperature and pressure profiles are derived. • Production rate of SO 2 of optimal reactor increases by 7%.

  1. Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method

    International Nuclear Information System (INIS)

    Lin, Chia-Hung; Huang, Cong-Hui; Du, Yi-Chun; Chen, Jian-Liung

    2011-01-01

    Highlights: → The FOICM can shorten the tracking time less than traditional methods. → The proposed method can work under lower solar radiation including thin and heavy clouds. → The FOICM algorithm can achieve MPPT for radiation and temperature changes. → It is easy to implement in a single-chip microcontroller or embedded system. -- Abstract: This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.

  2. Apparent molal volumes of HMT and TATD in aqueous solutions around the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Clavijo Penagos, J.A.; Blanco, L.H.

    2012-01-01

    Highlights: ►V φ for HMT and TATD in aqueous solutions around the temperature of maximum density of water are reported. ► V φ is linear in m form m = 0.025 for all the aqueous solutions investigated. ► Variation of V ¯ 2 ∞ with T obeys a second grade polynomial trend. ► The solutes are classified as structure breakers according to Hepler’s criterion. - Abstract: Apparent molal volumes V φ have been determined from density measurements for several aqueous solutions of 1,3,5,7-tetraazatricyclo[3.3.1.1(3,7)]decane (HMT) and 1,3,6,8-tetraazatricyclo[4.4.1.1(3,8)]dodecane (TATD) at T = (275.15, 275.65, 276.15, 276.65, 277.15, 277.65 and 278.15) K as function of composition. The infinite dilution partial molar volumes of solutes in aqueous solution are evaluated through extrapolation. Interactions of the solutes with water are discussed in terms of the effect of the temperature on the volumetric properties and the structure of the solutes. The results are interpreted in terms of water structure-breaking or structure forming character of the solutes.

  3. Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum

    Science.gov (United States)

    Makos, Michał; Dzierżek, Jan; Nitychoruk, Jerzy; Zreda, Marek

    2014-07-01

    During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26-21 ka (LGM I - maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N-S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.

  4. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures.

    Science.gov (United States)

    Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G

    2004-10-01

    Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters.

  5. Two-phase exchangers with small temperature differences

    International Nuclear Information System (INIS)

    Moracchioli, R.; Marie, G.; Lallee, J. de.

    1976-01-01

    The possibility in using heat available at low temperature level is shown (industrial wastes, solar energy, geothermal energy, heat power from seas). Special emphasis is put on the importance of heat exchangers that commonly should be evaporators and condensors working with small temperature differences (20 to 100 deg C). The expansion of the so-called ''new'' energies or recovery processes will depend on the physical performance of exchangers (Rankine two-phase cycles) and cost of the elementary exchange interfaces and assembling technics [fr

  6. Seasonal differences in human responses to increasing temperatures

    DEFF Research Database (Denmark)

    Kitazawa, Sachie; Andersen, Rune Korsholm; Wargocki, Pawel

    2014-01-01

    to be sleepier. Heart rate slightly increased during exposure, and SpO2 and ETCO2 began to decrease while core temperature started to increase. Performance of Tsai-partington test and addition test improved during exposures due to learning though lesser in winter. Results show negative effects of the temperature......Experiments were conducted in late summer and winter with 80 young and elderly Danish subjects exposed for 3.5 hours in a climate chamber to the temperature increasing from 24°C to 35.2°C at a rate of 3.7K/h. Psychological and physiological measurements were performed during exposure and subjects...... assessed comfort and acute health symptoms. Thermal sensation increased with increasing chamber temperature and did not differ during late summer and winter exposures. Skin temperature increased with increasing temperature and was slightly but significantly higher in the late summer in the first half...

  7. Ion temperature profiles in JET

    International Nuclear Information System (INIS)

    Hellermann, M. von; Mandl, W.; Summers, H.P.; Weisen, H.

    1989-01-01

    The results presented in this paper have shown some extreme cases of ion temperature profiles illustrating the different operation modes of the JET tokamak. In the three examples of low-density high temperature, high-density moderates and high-density high-confinement plasmas comparable values of a maximum fusion product n d T i τ E in the order of 10 20 keV m -3 sec are achieved. (author) 1 ref., 7 figs

  8. Weak scale from the maximum entropy principle

    Science.gov (United States)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2015-03-01

    The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.

  9. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure

    International Nuclear Information System (INIS)

    Nukiyama, S.

    1991-01-01

    The quantity of heat transmitted from a metal surface to boiling water increases as the temperature difference ΔT is increased, but after the ΔT has reached a certain limit, quantity Q decreases with further increase in ΔT. This turning point is the maximum value of heat transmitted. The existence of this point was actually observed in the experiment. Under atmospheric pressure, ΔT corresponding to the maximum value of heat transfer for water at 100 degrees C falls between 20-40 degrees C, and Q is between 1,080,000 and 1,800,000 kcal/m 2 h (i.e. between 2,000 and 3,000 kg/m 2 h, if expressed in constant evaporation rate at 100 degrees C); this figure is larger than the maximum value of heat transfer as was previously considered. In this paper the minimum value of heat transfer was obtained, and in the Q-ΔT curve for the high temperature region, the burn-out effect is discussed

  10. A Maximum Radius for Habitable Planets.

    Science.gov (United States)

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  11. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  12. Projection of temperature-related mortality due to cardiovascular disease in beijing under different climate change, population, and adaptation scenarios.

    Science.gov (United States)

    Zhang, Boya; Li, Guoxing; Ma, Yue; Pan, Xiaochuan

    2018-04-01

    Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  14. Estimation of complete temperature fields from measured temperatures

    International Nuclear Information System (INIS)

    Clegg, S.T.; Roemer, R.B.

    1984-01-01

    In hyperthermia treatments, it is desirable to be able to predict complete tissue temperature fields from sampled temperatures taken at a few locations. This is a difficult problem in hyperthermia treatments since the tissue blood perfusion is unknown. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between steady state temperatures measured during a treatment and temperatures (at the same locations) predicted from treatment simulations has been previously reported. A second technique using transient temperatures following a step decrease in power has been developed. This technique, which appears to be able to better predict complete temperature fields is presented and both it and the steady state technique are applied to data from both simulated and experimental hyperthermia treatments. The results of applying the two techniques are compared for one-dimensional situations. One particularly important problem which the transient technique can solve (and the steady state technique does not seem to be able to do as well) is that of predicting the complete temperature field in situations where the true maximum and/or minimum temperatures present are not measured by the available instrumentation

  15. temperature overspecification

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghan

    2001-01-01

    Full Text Available Two different finite difference schemes for solving the two-dimensional parabolic inverse problem with temperature overspecification are considered. These schemes are developed for indentifying the control parameter which produces, at any given time, a desired temperature distribution at a given point in the spatial domain. The numerical methods discussed, are based on the (3,3 alternating direction implicit (ADI finite difference scheme and the (3,9 alternating direction implicit formula. These schemes are unconditionally stable. The basis of analysis of the finite difference equation considered here is the modified equivalent partial differential equation approach, developed from the 1974 work of Warming and Hyett [17]. This allows direct and simple comparison of the errors associated with the equations as well as providing a means to develop more accurate finite difference schemes. These schemes use less central processor times than the fully implicit schemes for two-dimensional diffusion with temperature overspecification. The alternating direction implicit schemes developed in this report use more CPU times than the fully explicit finite difference schemes, but their unconditional stability is significant. The results of numerical experiments are presented, and accuracy and the Central Processor (CPU times needed for each of the methods are discussed. We also give error estimates in the maximum norm for each of these methods.

  16. Penalised Maximum Likelihood Simultaneous Longitudinal PET Image Reconstruction with Difference-Image Priors.

    Science.gov (United States)

    Ellis, Sam; Reader, Andrew J

    2018-04-26

    Many clinical contexts require the acquisition of multiple positron emission tomography (PET) scans of a single subject, for example to observe and quantify changes in functional behaviour in tumours after treatment in oncology. Typically, the datasets from each of these scans are reconstructed individually, without exploiting the similarities between them. We have recently shown that sharing information between longitudinal PET datasets by penalising voxel-wise differences during image reconstruction can improve reconstructed images by reducing background noise and increasing the contrast-to-noise ratio of high activity lesions. Here we present two additional novel longitudinal difference-image priors and evaluate their performance using 2D simulation studies and a 3D real dataset case study. We have previously proposed a simultaneous difference-image-based penalised maximum likelihood (PML) longitudinal image reconstruction method that encourages sparse difference images (DS-PML), and in this work we propose two further novel prior terms. The priors are designed to encourage longitudinal images with corresponding differences which have i) low entropy (DE-PML), and ii) high sparsity in their spatial gradients (DTV-PML). These two new priors and the originally proposed longitudinal prior were applied to 2D simulated treatment response [ 18 F]fluorodeoxyglucose (FDG) brain tumour datasets and compared to standard maximum likelihood expectation-maximisation (MLEM) reconstructions. These 2D simulation studies explored the effects of penalty strengths, tumour behaviour, and inter-scan coupling on reconstructed images. Finally, a real two-scan longitudinal data series acquired from a head and neck cancer patient was reconstructed with the proposed methods and the results compared to standard reconstruction methods. Using any of the three priors with an appropriate penalty strength produced images with noise levels equivalent to those seen when using standard

  17. Non-linear trends and fluctuations in temperature during different growth stages of summer maize in the North China Plain from 1960 to 2014

    Science.gov (United States)

    Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning

    2017-12-01

    North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.

  18. A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height

    Science.gov (United States)

    Katherine A. McCulloh; Daniel M. Johnson; Joshua Petitmermet; Brandon McNellis; Frederick C. Meinzer; Barbara Lachenbruch; Nathan Phillips

    2015-01-01

    The physiological mechanisms underlying the short maximum height of shrubs are not understood. One possible explanation is that differences in the hydraulic architecture of shrubs compared with co-occurring taller trees prevent the shrubs from growing taller. To explore this hypothesis, we examined various hydraulic parameters, including vessel lumen diameter,...

  19. Measurement and estimation of maximum skin dose to the patient for different interventional procedures

    International Nuclear Information System (INIS)

    Cheng Yuxi; Liu Lantao; Wei Kedao; Yu Peng; Yan Shulin; Li Tianchang

    2005-01-01

    Objective: To determine the dose distribution and maximum skin dose to the patient for four interventional procedures: coronary angiography (CA), hepatic angiography (HA), radiofrequency ablation (RF) and cerebral angiography (CAG), and to estimate the definitive effect of radiation on skin. Methods: Skin dose was measured using LiF: Mg, Cu, P TLD chips. A total of 9 measuring points were chosen on the back of the patient with two TLDs placed at each point, for CA, HA and RF interventional procedures, whereas two TLDs were placed on one point each at the postero-anterior (PA) and lateral side (LAT) respectively, during the CAG procedure. Results: The results revealed that the maximum skin dose to the patient was 1683.91 mGy for the HA procedure with a mean value of 607.29 mGy. The maximum skin dose at the PA point was 959.3 mGy for the CAG with a mean value of 418.79 mGy; While the maximum and the mean doses at the LAT point were 704 mGy and 191.52 mGy, respectively. For the RF procedure the maximum dose was 853.82 mGy and the mean was 219.67 mGy. For the CA procedure the maximum dose was 456.1 mGy and the mean was 227.63 mGy. Conclusion: All the measured dose values in this study are estimated ones which could not provide the accurate maximum value because it is difficult to measure using a great deal of TLDs. On the other hand, the small area of skin exposed to high dose could be missed as the distribution of the dose is successive. (authors)

  20. Western Arctic Temperature Sensitivity Varies under Different Mean States

    Science.gov (United States)

    Daniels, W.; Russell, J. M.; Morrill, C.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Hu, A.; Huang, Y.

    2017-12-01

    The Arctic is warming faster than anywhere on earth. Predictions of future change, however, are hindered by uncertainty in the mechanisms that underpin Arctic amplification. Data from Beringia (Alaska and Eastern Siberia) are particularly inconclusive with regards to both glacial-interglacial climate change as well as the presence or absence of abrupt climate change events such as the Younger Dryas. Here we investigate temperature change in Beringia from the last glacial maximum (LGM) to present using a unique 30 kyr lacustrine record of leaf wax hydrogen isotope ratios (δDwax) from Northern Alaska. We evaluate our results in the context of PMIP3 climate simulations as well as sensitivity tests of the effects of sea level and Bering Strait closure on Arctic Alaskan climate. The amplitude of LGM cooling in Alaska (-3.2 °C relative to pre-industrial) is smaller than other parts of North America and areas proximal to LGM ice sheets, but similar to Arctic Asia and Europe. This suggests that the local feedbacks (vegetation, etc.) had limited impacts on regional temperatures during the last ice-age, and suggests most of the Arctic exhibited similar responses to global climate boundary conditions. Deglacial warming was superimposed by a series of rapid warming events that encompass most of the temperature increase. These events are largely synchronous with abrupt events in the North Atlantic, but are amplified, muted, or even reversed in comparison depending on the mean climate state. For example, we observe warming during Heinrich 1 and during the submergence of the Bering Land Bridge, which are associated with cooling in the North Atlantic. Climate modeling suggests that opening of the Bering Strait controlled the amplitude and sign of millennial-scale temperature changes across the glacial termination.

  1. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  2. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  3. Thermomechanical behavior of different Ni-base superalloys during cyclic loading at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Huber Daniel

    2014-01-01

    Full Text Available The material behavior of three Ni-base superalloys (Inconel® 718, Allvac® 718PlusTM and Haynes® 282® during in-phase cyclic mechanical and thermal loading was investigated. Stress controlled thermo-mechanical tests were carried out at temperatures above 700 ∘C and different levels of maximum compressive stress using a Gleeble® 3800 testing system. Microstructure investigations via light optical microscopy (LOM and field emission gun scanning electron microscopy (FEG-SEM as well as numerical precipitation kinetics simulations were performed to interpret the obtained results. For all alloys, the predominant deformation mechanism during deformation up to low plastic strains was identified as dislocation creep. The main softening mechanism causing progressive increase of plastic strain after preceding linear behavior is suggested to be recrystallization facilitated by coarsening of grain boundary precipitates. Furthermore, coarsening and partial transformation of strengthening phases was observed. At all stress levels, Haynes® 282® showed best performance which is attributable to its stable microstructure containing a high phase fraction of small, intermetallic precipitates inside grains and different carbides evenly distributed along grain boundaries.

  4. Temperature and stress calculation for final disposal

    International Nuclear Information System (INIS)

    Tarandi, T.

    1979-02-01

    Temperature and stress distribution in and around the final storage facility has been calculated for three different arrangements of the tunnels: - 2 planes with 60 m vertical distance between them - 2 planes with 100 m distance and - 1 plane. The highest temperatures and stresses occur for the 2 plane alternative with distance 60 m between planes. The maximum compressive stress is in this case 24.0 MPa 140 years after the time of deposition, compared with 12.6 MPa in the 1 plane case. The maximum tensile stress exists at the surface and is in the 2 plane case 6.0 MPa 800 - 1,500 years after deposition, compared with 4.2 MPa for the 1 plane variant. An estimation of maximum tensile stresses between the tunnel planes yields a value of 1.5 MPa. The above-mentioned stresses are due to temperature distribution induced by the radioactive waste. To obtain the total stresses, initial stresses in the undisturbed rock, which vary according to location, are to be added to these stresses. (author)

  5. Uniformity factor of temperature difference in heat exchanger networks

    International Nuclear Information System (INIS)

    Chen, Shang; Cui, Guo-min

    2016-01-01

    Highlights: • A uniformity factor of temperature (UFTD) is proposed to heat exchanger network (HEN). • A novel stage-wise superstructure with inner utilities is presented based on UFTD. • New model and DE method is combined as an optimization method. • Optimal HEN structures with inner utilities can be obtained with new method. - Abstract: A uniformity factor of temperature difference (UFTD) is proposed and set up to guide the optimization of Heat exchanger network (HEN). At first, the factor is presented to evaluate the whole enhancement of HEN by handling the logical mean temperature difference as two-dimensional discrete temperature field in system. Then, the factor is applied to different HENs, of which the comparison indicates that a more uniform discrete temperature field leads to a lower UFTD which correlated with a better whole enhancement to improve the optimization level of HEN. A novel stage-wise superstructure model where inner utility can be generated is presented for further analysis of correlation between UFTD and the efficiency of HEN, and more optimal HEN structures can be obtained as inner utility added. Inner utility appears to violate the thermodynamic law, but it makes the discrete temperature field more uniform and improves the heat transfer efficiency of the whole HEN, which brings much more profit than the side effect of inner utility. In sum, the UFTD can not only evaluate the optimization level of the HEN, but also be an optimization object to design new HEN with higher efficiency of energy utilization and lower total annual cost.

  6. Maximum total organic carbon limit for DWPF melter feed

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T ampersand E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit

  7. Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures

    Science.gov (United States)

    Zeng, Zhi-wei; Tan, Xiao-fei; Liu, Yun-guo; Tian, Si-rong; Zeng, Guang-ming; Jiang, Lu-hua; Liu, Shao-bo; Li, Jiang; Liu, Ni; Yin, Zhi-hong

    2018-01-01

    This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature [i.e., 700°C (BC700)], have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300–500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment. PMID:29637067

  8. Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures

    Science.gov (United States)

    Zeng, Zhi-wei; Tan, Xiao-fei; Liu, Yun-guo; Tian, Si-rong; Zeng, Guang-ming; Jiang, Lu-hua; Liu, Shao-bo; Li, Jiang; Liu, Ni; Yin, Zhi-hong

    2018-03-01

    This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature (i.e., 700°C (BC700)), have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300-500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment.

  9. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    Science.gov (United States)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest

  10. Probabilistic properties of the date of maximum river flow, an approach based on circular statistics in lowland, highland and mountainous catchment

    Science.gov (United States)

    Rutkowska, Agnieszka; Kohnová, Silvia; Banasik, Kazimierz

    2018-04-01

    Probabilistic properties of dates of winter, summer and annual maximum flows were studied using circular statistics in three catchments differing in topographic conditions; a lowland, highland and mountainous catchment. The circular measures of location and dispersion were used in the long-term samples of dates of maxima. The mixture of von Mises distributions was assumed as the theoretical distribution function of the date of winter, summer and annual maximum flow. The number of components was selected on the basis of the corrected Akaike Information Criterion and the parameters were estimated by means of the Maximum Likelihood method. The goodness of fit was assessed using both the correlation between quantiles and a version of the Kuiper's and Watson's test. Results show that the number of components varied between catchments and it was different for seasonal and annual maxima. Differences between catchments in circular characteristics were explained using climatic factors such as precipitation and temperature. Further studies may include circular grouping catchments based on similarity between distribution functions and the linkage between dates of maximum precipitation and maximum flow.

  11. Influence of initial temperature and heating method in the temperature profile during alkaline dissolution of Al for the production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth L.; Araujo, Izilda C.; Mindrisz, Ana C.; Forbicini, Christina A.L.G. de O., E-mail: rcamilo@ipen.br, E-mail: cruzaraujo22@gmail.com, E-mail: acmindri@ipen.br, E-mail: cforbici@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radionuclides in nuclear medicine can be used for diagnosis and therapy. The {sup 99m}Tc, son of {sup 99}Mo, is most often used in nuclear medicine as tracer element because of its favorable nuclear properties, accounting for about 80% of all diagnostic procedures in vivo. Aiming to resolve the dependency of Brazil with respect to the supply of {sup 99}Mo was created the Brazilian Multipurpose Reactor project (BMR), started in 2008, having as main objective to produce about 1000 Ci/week of {sup 99}Mo. This study is part of the project to obtain {sup 9}'9Mo by alkaline dissolution of UAl{sub x}-Al targets. The initial reaction temperature is an important parameter, since it has great influence on the value of the maximum temperature and dissolution time. According to literature, for security reasons the dissolution process must have its temperature controlled so that the maximum temperature has to be around 90 deg C. The behavior of the temperature during dissolution using three different methods of heating in order to minimize the fluctuation of temperature during dissolution, keeping its maximum value at around 90 deg C was studied. The three methods of heating chosen were: a) initial temperature of 85 deg C with continuous heating, b) heating water bath until it reaches the initial temperature (70 to 95 deg C), turning off after that, and c) external heating until it reached the starting temperature (60-95 deg C). The alkaline solution used was 3 mol.L{sup -1} NaOH{sub 3} and 2 mol.L{sup -1} NaNO{sub 3}. In the first study it was observed that after 1 minute of dissolution the solution temperature reached 100 deg C on average, up to a maximum of 109 deg C, ending with values around 95 deg C. In the second study after 3 minutes of dissolution the maximum temperature was 106 deg C and the minimum 100 deg C. In the third study the temperature rise during dissolution increased with increasing initial temperature which practically remains constant until the end

  12. Leaf Dynamics of Panicum maximum under Future Climatic Changes.

    Science.gov (United States)

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. 'Mombaça' (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day(-1)) and leaf elongation rate (LER, cm day(-1)) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.

  13. Parametric optimization of thermoelectric elements footprint for maximum power generation

    DEFF Research Database (Denmark)

    Rezania, A.; Rosendahl, Lasse; Yin, Hao

    2014-01-01

    The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost......-performance, and variation of efficiency in the uni-couple over a wide range of the heat transfer coefficient on the cold junction. The three-dimensional (3D) governing equations of the thermoelectricity and the heat transfer are solved using the finite element method (FEM) for temperature dependent properties of TE...... materials. The results, which are in good agreement with the previous computational studies, show that the maximum power generation and the maximum cost-performance in the module occur at An/Ap

  14. Maximum-Entropy Inference with a Programmable Annealer

    Science.gov (United States)

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-03-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.

  15. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junhua, E-mail: junhua.zhao@uni-weimar.de [Jiangsu Province Key Laboratory of Advanced Manufacturing Equipment and Technology of Food, Jiangnan University, 214122 Wuxi (China); Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); Jiang, Jin-Wu, E-mail: jwjiang5918@hotmail.com [Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); Rabczuk, Timon, E-mail: timon.rabczuk@uni-weimar.de [Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); School of Civil, Environmental and Architectural Engineering, Korea University, 136-701 Seoul (Korea, Republic of)

    2013-12-02

    The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS{sub 2}) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS{sub 2}. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.

  16. Controls on seasonal patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic light response: contributions from both temperature and photoperiod.

    Science.gov (United States)

    Stoy, Paul C; Trowbridge, Amy M; Bauerle, William L

    2014-02-01

    Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.

  17. Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures

    International Nuclear Information System (INIS)

    Jia Wangcun; Aguilar, Guillermo; Wang Guoxiang; Nelson, J Stuart

    2004-01-01

    Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic therapy. However, the dominant mechanisms of heat transfer during the transient cooling process are incompletely understood. The objective of this study is to elucidate the physics of CSC by measuring the effect of initial substrate temperature (T 0 ) on cooling dynamics. Cryogen was delivered by a straight-tube nozzle onto a skin phantom. A fast-response thermocouple was used to record the phantom temperature changes before, during and after the cryogen spray. Surface heat fluxes (q'') and heat-transfer coefficients (h) were computed using an inverse heat conduction algorithm. The maximum surface heat flux (q'' max ) was observed to increase with T 0 . The surface temperature corresponding to q'' max also increased with T 0 but the latter has no significant effect on h. It is concluded that heat transfer between the cryogen spray and skin phantom remains in the nucleate boiling region even if T 0 is 80 0 C

  18. An equatorial temperature and wind anomaly (ETWA)

    International Nuclear Information System (INIS)

    Raghavarao, R.; Wharton, L.E.; Mayr, H.G.; Brace, L.H.; Spencer, N.W.

    1991-01-01

    Data obtained from the WATS (Wind and Temperature Spectrometer) and LP (Langmuir Probe) experiments on board DE-2 (Dynamic Explorer) during high solar activity show evidence of anomalous latitudinal variations in the zonal winds and temperature at low latitudes. The zonal winds exhibit a broad maximum centered around the dip equator, flanked by minima on either side around 25 degrees; while the temperature exhibits a pronounced bowl-shaped minimum at the dip equator which is flanked by maxima. The two minima in the zonal winds and the corresponding maxima in the temperature are nearly collocated with the crests of the well known Equatorial Ionization Anomaly (EIA). The maximum in the zonal winds and the minimum in the gas temperature are collected with the trough of the EIA. The differences between the maxima and minima in temperature and zonal winds, on many occasions, are observed to exceed 100 K and 100 m/s, respectively. The characteristics of this new phenomenon have eluded present day empirical models of thermospheric temperature and winds. The connection among these variables can be understood from the ion-neutral drag effect on the motions of the neutrals that in turn affect their energy balance

  19. Studies on the sugars development of irradiated potatoes receiving different nitrogen levels during growth and stored at different temperatures

    International Nuclear Information System (INIS)

    Badshah, N.; Iritani, W.M.; Rom, C.R.; Patterson, M.E.

    1990-01-01

    Tubers of Russet Burbank potatoes from 0, 181.8 and 363.6 kg/ha nitrogen were irradiated with 0, 0.05, 0.1 and 0.2 kGy of gamma rays (Co 60 source) and stored for three months at temperatures of 10 and 15.5°C. Changes in reducing sugars and sucrose contents were significantly influenced by nitrogen and irradiation levels while storage temperatures had no significant effect. Nitrogen and irradiation significantly decreased reducing and non-reducing sugars while temperature had no significant effect. Reducing sugars decreased with increasing levels of nitrogen and irradiation. Tubers from zero fertilizer regime developed 1.5% reducing sugars. Irradiation at 0.2 kGy dosage decreased reducing sugars from 1.7 to 0.9%. The breakdown of non-reducing sugars increased with increasing nitrogen levels but decreased with irradiation. Tubers from the maximum nitrogen plot had a 36% decrease of non-reducing sugars. Irradiation at 0.1 kGy dosage had the least change (4.9% decrease) of non-reducing sugars. (author)

  20. Combined effects of the herbicide terbuthylazine and temperature on different flagellates from the Northern Adriatic Sea.

    Science.gov (United States)

    Fiori, Emanuela; Mazzotti, Matilde; Guerrini, Franca; Pistocchi, Rossella

    2013-03-15

    The triazinic herbicide terbuthylazine (TBA) is becoming an emergent contaminant in Italian rivers and in coastal and groundwater. A preliminary analysis of the sensitivity of marine flagellates to TBA was performed by monitoring the photosynthetic efficiency of nine species (belonging to the Dinophyceae or Raphidophyceae class) isolated from the Adriatic Sea. Different sensitivity levels for each flagellate were observed and the most sensitive microalgae, based on PSII inhibition, were: Gonyaulax spinifera>Fibrocapsa japonica>Lingulodinium polyedrum while the most resistant were two species belonging to the Prorocentrum genus. Then the response of two microalgae to drivers, such as temperature and terbuthylazine, applied in combination was also investigated. Two potentially toxic flagellates, Prorocentrum minimum and G. spinifera, were exposed, under different temperature conditions (15, 20 and 25°C), to TBA concentrations that did not completely affect PSII. For both flagellates, effects of TBA on algal growth, measured through cell density and carbon analysis, as well as on the photosynthetic activity are reported. All parameters analyzed showed a negative effect of TBA from the exponential phase. TBA effect on algal growth was significantly enhanced at the optimal temperature conditions (20 and 25°C), while no difference between control and herbicide treatments were detected for G. spinifera grown at 15°C, which represented a stress condition for this species. The maximum inhibition of photosynthetic efficiency was found at 20°C for both organisms. Both flagellates increased cell carbon and nitrogen content in herbicide treatments compared to the control, except G. spinifera grown at 15°C. Chlorophyll-a production was increased only in G. spinifera exposed to 5 μg L(-1) of TBA and the effect was enhanced with the increase of temperature. Herbicide-induced variations in cellular components determined changes in cellular carbon:nitrogen (C:N) and

  1. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  2. Temperature Calculation of Annular Fuel Pellet by Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.

  3. Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L.

    Science.gov (United States)

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2015-12-01

    Beauveria bassiana HQ917687 virulence to housefly larvae and adult was assessed at different relative humidity, RH (50, 75, 90, and 100 %) and temperature (15, 20, 25, 30, 35, 40, 45 °C) conditions at the fungal dose of 10(8) conidia/ml. Depending on the temperature and RH regime tested, difference in mortality rates of housefly adult and larvae were detected. During assay on adult housefly, 100 % mortality was achieved at RH, 90 and 100 % while the temperature of 30 °C showed maximum mortality at all the tested humidity conditions. Lethal time, LT50 was 2.9 days at 100 % RH. Larval mortality at different humidity conditions varied between 30 and 74 %, with maximum mortality at 100 % RH and 30 °C. Optimum temperature for B. bassiana virulence to housefly larvae was also found to be 30 °C. The interaction between temperature and RH revealed significant effect of RH at moderate temperature range (20-35 °C), while such an interaction was not observed at extreme temperatures. The results obtained in this study have useful implications in understanding the pathogen behavior under actual field conditions. This in turn may help devising suitable entomopathogen release schedules for maximum fungal infection.

  4. The Effects of Engine Speed and Mixture Temperature on the Knocking Characteristics of Several Fuels

    Science.gov (United States)

    Lee, Dana W

    1940-01-01

    Six 100-octane and two 87-octane aviation engine fuels were tested in a modified C.F.R. variable-compression engine at 1,500, 2,000 and 2,500 rpm. The mixture temperature was raised from 50 to 300 F in approximately 50 degree steps and, at each temperature, the compression ratio was adjusted to give incipient knock as shown by a cathode ray indicator. The results are presented in tabular form. The results are analyzed on the assumption that the conditions which determine whether a given fuel will knock are the maximum values of density and temperature reached by the burning gases. A maximum permissible density factor, proportional to the maximum density of the burning gases just prior to incipient knock, and the temperature of the burning gases at that time were computed for each of the test conditions. Values of the density factors were plotted against the corresponding end-gas temperatures for the three engine speeds and also against engine speed for several and end-gas temperatures. The maximum permissible density factor varied only slightly with engine speed but decreased rapidly with an increase in the end-gas temperature. The effect of changing the mixture temperature was different for fuels of different types. The results emphasize the desirability of determining the anti knock values of fuels over a wide range of engine and intake-air conditions rather that at a single set of conditions.

  5. Comparison of infrared canopy temperature in a rubber plantation and tropical rain forest

    Science.gov (United States)

    Song, Qing-Hai; Deng, Yun; Zhang, Yi-Ping; Deng, Xiao-Bao; Lin, You-Xing; Zhou, Li-Guo; Fei, Xue-Hai; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Gao, Jin-Bo

    2017-10-01

    Canopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature. In the dry season, the maximum differences (Tc - Ta) between canopy temperature (Tc) and air temperature (Ta) in the RP and TR were 2.6 and 0.1 K, respectively. In the rainy season, the maximum (Tc - Ta) values in the RP and TR were 1.0 and -1.1 K, respectively. There were consistent differences between the two forests, with the RP having higher (Tc - Ta) than the TR throughout the entire year. Infrared measurements of Tc can be used to calculate canopy stomatal conductance in both forests. The difference in (Tc - Ta) at three gc levels with increasing direct radiation in the RP was larger than in the TR, indicating that change in (Tc - Ta) in the RP was relatively sensitive to the degree of stomatal closure.

  6. Conditions for maximum isolation of stable condensate during separation in gas-condensate systems

    Energy Technology Data Exchange (ETDEWEB)

    Trivus, N.A.; Belkina, N.A.

    1969-02-01

    A thermodynamic analysis is made of the gas-liquid separation process in order to determine the relationship between conditions of maximum stable condensate separation and physico-chemical nature and composition of condensate. The analysis was made by considering the multicomponent gas-condensate fluid produced from Zyrya field as a ternary system, composed of methane, an intermediate component (propane and butane) and a heavy residue, C/sub 6+/. Composition of 5 ternary systems was calculated for a wide variation in separator conditions. At each separator pressure there is maximum condensate production at a certain temperature. This occurs because solubility of condensate components changes with temperature. Results of all calculations are shown graphically. The graphs show conditions of maximum stable condensate separation.

  7. Densities and volumetric properties of binary mixtures of xylene with N,N-dimethylformamide at different temperatures

    International Nuclear Information System (INIS)

    Chen Bin; Liu Wei

    2007-01-01

    Densities of binary mixtures of o-xylene, or m-xylene, or p-xylene with N,N-dimethylformamide have been measured over the full range of compositions at atmospheric pressure and various temperatures by means of a vibrating-tube densimeter. The excess molar volume V m E , calculated from the density data, provides the temperature dependence of V m E in the temperature range (293.15 to 353.15)K. The V m E results were correlated using the fourth-order Redlich-Kister polynomial equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters. Partial molar volumes and excess partial molar volumes of two components were also calculated. It was found that the V m E in the systems studied increase with rising temperature

  8. Effects of the different atmospheric steam curing processes on the ...

    Indian Academy of Sciences (India)

    hardness when exposed to different atmospheric steam curing temperatures. ... Use of self-compacting concretes (SCCs) lowered the noise level on the ... Although maximum temperature limit values in curing locations should be from 40 to ...

  9. Robust Controller to Extract the Maximum Power of a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    OULD CHERCHALI Noureddine

    2014-05-01

    Full Text Available This paper proposes a technique of intelligent control to track the maximum power point (MPPT of a photovoltaic system . The PV system is non-linear and it is exposed to external perturbations like temperature and solar irradiation. Fuzzy logic control is known for its stability and robustness. FLC is adopted in this work for the improvement and optimization of control performance of a photovoltaic system. Another technique called perturb and observe (P & O is studied and compared with the FLC technique. The PV system is constituted of a photovoltaic panel (PV, a DC-DC converter (Boost and a battery like a load. The simulation results are developed in MATLAB / Simulink software. The results show that the controller based on fuzzy logic is better and faster than the conventional controller perturb and observe (P & O and gives a good maximum power of a photovoltaic generator under different changes of weather conditions.

  10. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Directory of Open Access Journals (Sweden)

    Junguo Hu

    Full Text Available Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK and Co-Kriging (Co-OK methods. The results indicated that the root mean squared errors (RMSEs and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193 were less than those for the OK method (1.146 and 1.539 when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  11. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Science.gov (United States)

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  12. Maximum entropy principle and hydrodynamic models in statistical mechanics

    International Nuclear Information System (INIS)

    Trovato, M.; Reggiani, L.

    2012-01-01

    numerical density n and of the effective temperature T; ii) the results available from literature in the framework both of a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as particular cases; iii) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; iv) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; v) the quantum maximum entropy principle keeps full validity in the classical limit, when ħ→→ 0. Future perspectives of the MEP, are briefly addressed.

  13. HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-08-01

    As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300 0 to approx. 1150 0 C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophy and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology

  14. Responses of Yield Characteristics to High Temperature During Flowering Stage in Hybrid Rice Guodao 6

    Directory of Open Access Journals (Sweden)

    Guan-fu FU

    2008-09-01

    Full Text Available By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control were used to analyze the differences in heat injury index, seed setting rate, grain yield and its components. Guodao 6 showed more stable yield and spikelet fertility, and lower heat injury index than Xieyou 46. Further studies indicated that the spikelet sterility is positively correlated with the average daily temperature and the maximum daily temperature, with the coefficients of 0.8604 and 0.9850 (P<0.05 respectively in Guodao 6. The effect of high temperature injury on seed setting caused by maximum daily temperature was lower than that by average daily temperature during the grain filling stage.

  15. Myoglobin solvent structure at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, B.V.; Korszun, Z.R. [Brookhaven National Laboratory, Upton, NY (United States); Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B{sub sn}, versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35{Angstrom} and 3.85{Angstrom}. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased.

  16. Myoglobin solvent structure at different temperatures

    International Nuclear Information System (INIS)

    Daniels, B.V.; Korszun, Z.R.; Schoenborn, B.P.

    1994-01-01

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B sn , versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35 Angstrom and 3.85 Angstrom. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased

  17. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  18. Regional differences in temperature sensation and thermal comfort in humans.

    Science.gov (United States)

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Yasuhara, Saki; Saito, Yasuyo; Kasuga, Momoko; Nagashima, Kei; Kanosue, Kazuyuki

    2008-12-01

    Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.

  19. Effects of the midnight temperature maximum observed in the thermosphere-ionosphere over the northeast of Brazil

    Science.gov (United States)

    Figueiredo, Cosme Alexandre O. B.; Buriti, Ricardo A.; Paulino, Igo; Meriwether, John W.; Makela, Jonathan J.; Batista, Inez S.; Barros, Diego; Medeiros, Amauri F.

    2017-08-01

    The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry-Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU = 10-22 W m-2 Hz-1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h'F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s-1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s-1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to -50 m s-1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in

  20. Estimate of respiration rate and physicochemical changes of fresh-cut apples stored under different temperatures

    Directory of Open Access Journals (Sweden)

    Cristiane Fagundes

    2013-03-01

    Full Text Available In this study, the influence of storage temperature and passive modified packaging (PMP on the respiration rate and physicochemical properties of fresh-cut Gala apples (Malus domestica B. was investigated. The samples were packed in flexible multilayer bags and stored at 2 °C, 5 °C, and 7 °C for eleven days. Respiration rate as a function of CO2 and O2 concentrations was determined using gas chromatography. The inhibition parameters were estimated using a mathematical model based on Michaelis-Menten equation. The following physicochemical properties were evaluated: total soluble solids, pH, titratable acidity, and reducing sugars. At 2 °C, the maximum respiration rate was observed after 150 hours. At 5 °C and 7 °C the maximum respiration rates were observed after 100 and 50 hours of storage, respectively. The inhibition model results obtained showed a clear effect of CO2 on O2 consumption. The soluble solids decreased, although not significantly, during storage at the three temperatures studied. Reducing sugars and titratable acidity decreased during storage and the pH increased. These results indicate that the respiration rate influenced the physicochemical properties.

  1. Maximum power point tracking algorithm based on sliding mode and fuzzy logic for photovoltaic sources under variable environmental conditions

    Science.gov (United States)

    Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Della, M.; Aillerie, M.

    2017-02-01

    Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP), which depends on the environmental factors, such as temperature and irradiation. In order to continuously harvest maximum power from the solar panels, they have to operate at their MPP despite the inevitable changes in the environment. Various methods for maximum power point tracking (MPPT) were developed and finally implemented in solar power electronic controllers to increase the efficiency in the electricity production originate from renewables. In this paper we compare using Matlab tools Simulink, two different MPP tracking methods, which are, fuzzy logic control (FL) and sliding mode control (SMC), considering their efficiency in solar energy production.

  2. A New Study of Maximum Power Point Tracker Techniques and Comparison for PV Systems

    Directory of Open Access Journals (Sweden)

    Ahmed M. Atallah

    2016-07-01

    Full Text Available The maximum power point tracker techniques vary in many aspects as simplicity, digital or analogical implementation, sensor required, convergence speed, range of effectiveness, implementation hardware,popularity, cost and in other aspects. This paper presents in details comparative study between two most popular  algorithm  technique  which  is  incremental  conductance  algorithm  and  perturb  and  observe algorithm.  Two  different  converters  buck  and  cuk  converter  use  for  comparative  in  this  study. Few comparisons such as efficiency, voltage, current and power output for each different combination have been recorded. Multi changes in irradiance, temperature by keeping voltage and current as main sensed parameter been done in the simulation. Matlab simulink tools have been used for performance evaluation on energy point. Simulation will consider different solar irradiance and temperature variations.

  3. Programmable temperature regulator of VAO-1 furnace

    International Nuclear Information System (INIS)

    Zahalka, F.

    1979-01-01

    A programmable temperature controller is described for a furnace for high-level waste processing. Furnace temperature is controlled by a program compiled from a combination of 3 parts with different linear increments or decrements of time dependent temperature and 2 parts with isothermal control for over a preset period. The equipment consists essentially of a programming unit, a programmed digital-to-analog converter and a power unit. The design is described in detail and its specifications are given. The maximum operating temperature of 1500 degC may be reached in the furnace charge section. (B.S.)

  4. Maximum spreading of liquid drop on various substrates with different wettabilities

    Science.gov (United States)

    Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun

    2017-09-01

    This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.

  5. A combined stochastic analysis of mean daily temperature and diurnal temperature range

    Science.gov (United States)

    Sirangelo, B.; Caloiero, T.; Coscarelli, R.; Ferrari, E.

    2018-03-01

    In this paper, a stochastic model, previously proposed for the maximum daily temperature, has been improved for the combined analysis of mean daily temperature and diurnal temperature range. In particular, the procedure applied to each variable sequentially performs the deseasonalization, by means of truncated Fourier series expansions, and the normalization of the temperature data, with the use of proper transformation functions. Then, a joint stochastic analysis of both the climatic variables has been performed by means of a FARIMA model, taking into account the stochastic dependency between the variables, namely introducing a cross-correlation between the standardized noises. The model has been applied to five daily temperature series of southern Italy. After the application of a Monte Carlo simulation procedure, the return periods of the joint behavior of the mean daily temperature and the diurnal temperature range have been evaluated. Moreover, the annual maxima of the temperature excursions in consecutive days have been analyzed for the synthetic series. The results obtained showed different behaviors probably linked to the distance from the sea and to the latitude of the station.

  6. Novel methods for estimating lithium-ion battery state of energy and maximum available energy

    International Nuclear Information System (INIS)

    Zheng, Linfeng; Zhu, Jianguo; Wang, Guoxiu; He, Tingting; Wei, Yiying

    2016-01-01

    Highlights: • Study on temperature, current, aging dependencies of maximum available energy. • Study on the various factors dependencies of relationships between SOE and SOC. • A quantitative relationship between SOE and SOC is proposed for SOE estimation. • Estimate maximum available energy by means of moving-window energy-integral. • The robustness and feasibility of the proposed approaches are systematic evaluated. - Abstract: The battery state of energy (SOE) allows a direct determination of the ratio between the remaining and maximum available energy of a battery, which is critical for energy optimization and management in energy storage systems. In this paper, the ambient temperature, battery discharge/charge current rate and cell aging level dependencies of battery maximum available energy and SOE are comprehensively analyzed. An explicit quantitative relationship between SOE and state of charge (SOC) for LiMn_2O_4 battery cells is proposed for SOE estimation, and a moving-window energy-integral technique is incorporated to estimate battery maximum available energy. Experimental results show that the proposed approaches can estimate battery maximum available energy and SOE with high precision. The robustness of the proposed approaches against various operation conditions and cell aging levels is systematically evaluated.

  7. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  8. Seed Germination and Early Growth Responses of Hyssop, Sweet Basil and Oregano to Temperature Levels

    Directory of Open Access Journals (Sweden)

    Sajad MIJANI

    2013-12-01

    Full Text Available The objectives of this survey were to determine the effect of temperature on germination and seedling growth of Hyssop (Hyssopus officinalis L., Sweet basil (Ocimum basilicum L. and Oregano (Origanum vulgare L. (Lamiaceae family as well as comparing species regarding germination behavior and growth characteristics. Seeds were germinated on a temperature-gradient bar varying between 5 and 40 °C (with 5 °C intervals. Results indicated that the highest germination percentage of hyssop (92-98%, sweet basil (86-90% and oregano (74-77% occurred at 20-30 °C, 25-30 °C and 20-30 °C, respectively; therefore, moderate and warm temperatures are proper for germination of all species. In all species the maximum germination rate obtained at 30 °C. Among all species, Day 10 % of Sweet basil Germination had the lowest value, which indicates faster germination. The cardinal temperatures (base, optimum and ceiling or maximum were estimated by the segmented model. Base temperature (Tb was calculated for hyssop, sweet basil and oregano as 3.42, 5.70 and 5.46 °C, respectively. Optimal temperature (To calculated for all species was approximately 30°C, So warmer temperatures are much more proper for them. The species showed different maximum temperatures (Tm from 42.91 (Oregano to 48.05 °C (Hyssop. In Hyssop and Sweet basil optimum growth of seedlings were observed at 30°C while Oregano reached its best growth at 25°C. The difference between maximum and minimum temperatures of germination knowing as temperature range (TR index could show adaptation capability to broad sites for planting and domestication. Regarding this index Hyssop stood in the first place.

  9. Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peng-Cheng; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang [Qingdao Technological University, School of Science, Qingdao (China); Li, Xiao-Hua [University of South China, School of Nuclear Science and Technology, Hengyang (China); University of South China, Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, Hengyang (China)

    2017-08-15

    We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β-equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β-equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model. (orig.)

  10. Revealing the Maximum Strength in Nanotwinned Copper

    DEFF Research Database (Denmark)

    Lu, L.; Chen, X.; Huang, Xiaoxu

    2009-01-01

    boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  11. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    Science.gov (United States)

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  12. Study of forecasting maximum demand of electric power

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, B.C.; Hwang, Y.J. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    As far as the past performances of power supply and demand in Korea is concerned, one of the striking phenomena is that there have been repeated periodic surpluses and shortages of power generation facilities. Precise assumption and prediction of power demands is the basic work in establishing a supply plan and carrying out the right policy since facilities investment of the power generation industry requires a tremendous amount of capital and a long construction period. The purpose of this study is to study a model for the inference and prediction of a more precise maximum demand under these backgrounds. The non-parametric model considered in this study, paying attention to meteorological factors such as temperature and humidity, does not have a simple proportionate relationship with the maximum power demand, but affects it through mutual complicated nonlinear interaction. I used the non-parametric inference technique by introducing meteorological effects without importing any literal assumption on the interaction of temperature and humidity preliminarily. According to the analysis result, it is found that the non-parametric model that introduces the number of tropical nights which shows the continuity of the meteorological effect has better prediction power than the linear model. The non- parametric model that considers both the number of tropical nights and the number of cooling days at the same time is a model for predicting maximum demand. 7 refs., 6 figs., 9 tabs.

  13. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  14. Discontinuity of maximum entropy inference and quantum phase transitions

    International Nuclear Information System (INIS)

    Chen, Jianxin; Ji, Zhengfeng; Yu, Nengkun; Zeng, Bei; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Zhou, Duanlu

    2015-01-01

    In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. (paper)

  15. Temperature measurement in the adult emergency department: oral, tympanic membrane and temporal artery temperatures versus rectal temperature.

    Science.gov (United States)

    Bijur, Polly E; Shah, Purvi D; Esses, David

    2016-12-01

    The objective was to compare agreement between three non-invasive measures of temperature and rectal temperatures and to estimate the sensitivity and specificity of these measures to detect a rectal temperature of 38°C or higher. We conducted a study of the diagnostic accuracy of oral, tympanic membrane (TM) and temporal artery (TA) thermometry to measure fever in an urban emergency department (ED). Data were collected from adult patients who received rectal temperature measurement. Bland-Altman analysis was performed; sensitivity, specificity and 95% CIs were calculated. 987 patients were enrolled. 36% of the TM and TA readings differed by 0.5°C or more from rectal temperatures, 50% of oral temperatures. TM measures were most precise-the SD of the difference from rectal was 0.4°C TM, and 0.6°C for oral and TA (ptemperature of 38°C or higher were: 37.0%, 68.3% and 71.1%, respectively (oral vs TM and TA pmethods (pmethods met benchmarks for diagnostic accuracy using the criterion of 38°C to detect rectal temperature of 38°C. A TM cutpoint of 37.5°C provides maximum diagnostic accuracy of the three non-invasive measures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Electrical conductivity of high-purity germanium crystals at low temperature

    Science.gov (United States)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  17. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the Midwest of Jilin Province, China

    Science.gov (United States)

    Guo, Enliang; Zhang, Jiquan; Wang, Yongfang; Alu, Si; Wang, Rui; Li, Danjun; Ha, Si

    2018-05-01

    In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960-2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.

  18. Comparison of temperature change among different adhesive resin cement during polymerization process

    Directory of Open Access Journals (Sweden)

    Murat Alkurt

    2017-01-01

    Full Text Available Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Materials and Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200 were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change (n = 7. The temperature data were recorded (0.0001 sensible and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05. Results: Significant differences were found among the time points and resin cements (P < 0.05. Temperature values of the Pan SA group were significantly higher than Pan F and RelyX (P < 0.05. Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  19. Accelerated technique for plotting of cyclic strain diagrams at different temperatures

    International Nuclear Information System (INIS)

    Varyanitsa, V.Yu.; Egorov, V.I.; Sobolev, N.D.

    1982-01-01

    A method for plotting curves of strain by testing one specimen at different temperatures levels is proposed. It is shown that under considered conditions of the test of prehistory of the temperature interaction does not effect the process of cyclic deformation. It confirms a possibility of steel tests at one specimen at different regimes [ru

  20. Accelerated technique for plotting of cyclic strain diagrams at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Varyanitsa, V Yu; Egorov, V I; Sobolev, N D [Moskovskij Inzhenerno-Fizicheskij Inst. (USSR)

    1982-01-01

    A method for plotting curves of strain by testing one specimen at different temperatures levels is proposed. It is shown that under considered conditions of the test of prehistory of the temperature interaction does not effect the process of cyclic deformation. It confirms a possibility of steel tests at one specimen at different regimes.

  1. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    Science.gov (United States)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  2. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    Science.gov (United States)

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  3. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  4. Towards a frequency-dependent discrete maximum principle for the implicit Monte Carlo equations

    Energy Technology Data Exchange (ETDEWEB)

    Wollaber, Allan B [Los Alamos National Laboratory; Larsen, Edward W [Los Alamos National Laboratory; Densmore, Jeffery D [Los Alamos National Laboratory

    2010-12-15

    It has long been known that temperature solutions of the Implicit Monte Carlo (IMC) equations can exceed the external boundary temperatures, a so-called violation of the 'maximum principle.' Previous attempts at prescribing a maximum value of the time-step size {Delta}{sub t} that is sufficient to eliminate these violations have recommended a {Delta}{sub t} that is typically too small to be used in practice and that appeared to be much too conservative when compared to numerical solutions of the IMC equations for practical problems. In this paper, we derive a new estimator for the maximum time-step size that includes the spatial-grid size {Delta}{sub x}. This explicitly demonstrates that the effect of coarsening {Delta}{sub x} is to reduce the limitation on {Delta}{sub t}, which helps explain the overly conservative nature of the earlier, grid-independent results. We demonstrate that our new time-step restriction is a much more accurate means of predicting violations of the maximum principle. We discuss how the implications of the new, grid-dependent timestep restriction can impact IMC solution algorithms.

  5. Towards a frequency-dependent discrete maximum principle for the implicit Monte Carlo equations

    International Nuclear Information System (INIS)

    Wollaber, Allan B.; Larsen, Edward W.; Densmore, Jeffery D.

    2011-01-01

    It has long been known that temperature solutions of the Implicit Monte Carlo (IMC) equations can exceed the external boundary temperatures, a so-called violation of the 'maximum principle'. Previous attempts at prescribing a maximum value of the time-step size Δ t that is sufficient to eliminate these violations have recommended a Δ t that is typically too small to be used in practice and that appeared to be much too conservative when compared to numerical solutions of the IMC equations for practical problems. In this paper, we derive a new estimator for the maximum time-step size that includes the spatial-grid size Δ x . This explicitly demonstrates that the effect of coarsening Δ x is to reduce the limitation on Δ t , which helps explain the overly conservative nature of the earlier, grid-independent results. We demonstrate that our new time-step restriction is a much more accurate means of predicting violations of the maximum principle. We discuss how the implications of the new, grid-dependent time-step restriction can impact IMC solution algorithms. (author)

  6. Effects of Transverse Power Distribution on Fuel Temperature

    International Nuclear Information System (INIS)

    Jo, Daeseong; Park, Jonghark; Seo, Chul Gyo; Chae, Heetaek

    2014-01-01

    In the present study, transverse power distributions with segments of 4 and 18 are evaluated. Based on the power distribution, the fuel temperatures are evaluated with a consideration of lateral heat conduction. In the present study, the effect of the transverse power distribution on the fuel temperature is investigated. The transverse power distributions with variation of fuel segment number are evaluated. The maximum power peaking with 12 segments is higher than that with 4 segments. Based on the calculation, 6-order polynomial is generated to express the transverse power distributions. The maximum power peaking factor increases with segments. The averaged power peaking is 2.10, and the maximum power peaking with 18 segments is 2.80. With the uniform power distribution, the maximum fuel temperature is found in the middle of the fuel. As the power near the side ends of the fuel increases, the maximum fuel temperature is found near the side ends. However, the maximum fuel temperature is not found where the maximum transverse power is. This is because the high power locally released from the edge of the fuel is laterally conducted to the cladding. As a result of the present study, it can be concluded that the effect of the high power peaking at the edge of the fuel on the fuel outer wall temperature is not significant

  7. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature

    International Nuclear Information System (INIS)

    Shen Suhung; Leptoukh, Gregory G

    2011-01-01

    Surface air temperature (T a ) is a critical variable in the energy and water cycle of the Earth–atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T a from satellite remotely sensed land surface temperature (T s ) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T a and MODIS T s . The relationships between the maximum T a and daytime T s depend significantly on land cover types, but the minimum T a and nighttime T s have little dependence on the land cover types. The largest difference between maximum T a and daytime T s appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T a were estimated from 1 km resolution MODIS T s under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T a were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T a varies from 2.4 °C over closed shrublands to 3.2 °C over grasslands, and the MAE of the estimated minimum T a is about 3.0 °C.

  8. Temperature dependency of external stress corrosion crack propagation of 304 stainless steel

    International Nuclear Information System (INIS)

    Hayashibara, Hitoshi; Mizutani, Yoshihiro; Mayuzumi, Masami; Tani, Jun-ichi

    2010-01-01

    Temperature dependency of external stress corrosion cracking (ESCC) of 304 stainless steel was examined with CT specimens. Maximum ESCC propagation rates appeared in the early phase of ESCC propagation. ESCC propagation rates generally became smaller as testing time advance. Temperature dependency of maximum ESCC propagation rate was analyzed with Arrhenius plot, and apparent activation energy was similar to that of SCC in chloride solutions. Temperature dependency of macroscopic ESCC incubation time was different from that of ESCC propagation rate. Anodic current density of 304 stainless steel was also examined by anodic polarization measurement. Temperature dependency of critical current density of active state in artificial sea water solution of pH=1.3 was similar to that of ESCC propagation rate. (author)

  9. Temperature control in interstitial laser cancer immunotherapy

    Science.gov (United States)

    Bandyopadhyay, Pradip K.; Holmes, Kyland; Burnett, Corinthius; Zharov, Vladimir P.

    2003-07-01

    Positive results of Laser-Assisted Cancer Immunotherapy (LACI) have been reported previously in the irradiation of superficial tumors. This paper reports the effect of LACI using laser interstitial therapy approach. We hypothesize that the maximum immuno response depends on laser induced tumor temperature. The measurement of tumor temperature is crucial to ensure necrosis by thermal damage and immuno response. Wister Furth female rats in this study were inoculated with 13762 MAT B III rat mammary adinocarcinoma. LACI started seven to ten days following inoculation. Contrary to surface irradation, we applied laser interstitial irradiation of tumor volume to maximize the energy deposition. A diode laser with a wavelength of 805 nm was used for tumor irradiation. The laser energy was delivered inside the tumor through a quartz fiber. Tumor temperature was measured with a micro thermocouple (interstitial), while the tumor surface temperature was controlled with an IR detector. The temperature feedback demonstrates that it is possible to maintain the average tumor temperature at the same level with reasonable accuracy in the desired range from 65°C-85°C. In some experiments we used microwave thermometry to control average temperature in deep tissue for considerable period of time, to cause maximum thermal damage to the tumor. The experimental set-up and the different temperature measurement techniques are reported in detail, including the advantages and disadvantages for each method.

  10. Modeling multisite streamflow dependence with maximum entropy copula

    Science.gov (United States)

    Hao, Z.; Singh, V. P.

    2013-10-01

    Synthetic streamflows at different sites in a river basin are needed for planning, operation, and management of water resources projects. Modeling the temporal and spatial dependence structure of monthly streamflow at different sites is generally required. In this study, the maximum entropy copula method is proposed for multisite monthly streamflow simulation, in which the temporal and spatial dependence structure is imposed as constraints to derive the maximum entropy copula. The monthly streamflows at different sites are then generated by sampling from the conditional distribution. A case study for the generation of monthly streamflow at three sites in the Colorado River basin illustrates the application of the proposed method. Simulated streamflow from the maximum entropy copula is in satisfactory agreement with observed streamflow.

  11. Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data

    Science.gov (United States)

    Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari

    2015-03-01

    Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.

  12. Study on Control of Brain Temperature for Brain Hypothermia Treatment

    Science.gov (United States)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    The brain hypothermia treatment is an attractive therapy for the neurologist because of its neuroprotection in hypoxic-ischemic encephalopathy patients. The present paper deals with the possibility of controlling the brain and other viscera in different temperatures from the viewpoint of system control. It is theoretically attempted to realize the special brain hypothermia treatment to cool only the head but to warm the body by using the simple apparatus such as the cooling cap, muffler and warming blanket. For this purpose, a biothermal system concerning the temperature difference between the brain and the other thoracico-abdominal viscus is synthesized from the biothermal model of hypothermic patient. The output controllability and the asymptotic stability of the system are examined on the basis of its structure. Then, the maximum temperature difference to be realized is shown dependent on the temperature range of the apparatus and also on the maximum gain determined from the coefficient matrices A, B and C of the biothermal system. Its theoretical analysis shows the realization of difference of about 2.5°C, if there is absolutely no constraint of the temperatures of the cooling cap, muffler and blanket. It is, however, physically unavailable. Those are shown by simulation example of the optimal brain temperature regulation using a standard adult database. It is thus concluded that the surface cooling and warming apparatus do no make it possible to realize the special brain hypothermia treatment, because the brain temperature cannot be cooled lower than those of other viscera in an appropriate temperature environment. This study shows that the ever-proposed good method of clinical treatment is in principle impossible in the actual brain hypothermia treatment.

  13. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    Science.gov (United States)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  14. An experimental study of the effect of different starting room temperatures on occupant comfort in Danish summer weather

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Simone, Angela; Olesen, Bjarne W.

    2018-01-01

    As office workers will usually have a slightly elevated metabolic rate when arriving at work, they may prefer a room temperature below the comfort range for sedentary activity in the morning. This possibility was studied in an experiment with 25 young people, male and female, exposed to four diff...... be maintained in the early office hours, and that this will lead to a lower maximum room temperature during the day, which would result in less demand for cooling during the summer period....

  15. Spatial-temporal changes of maximum and minimum temperatures in the Wei River Basin, China: Changing patterns, causes and implications

    Science.gov (United States)

    Liu, Saiyan; Huang, Shengzhi; Xie, Yangyang; Huang, Qiang; Leng, Guoyong; Hou, Beibei; Zhang, Ying; Wei, Xiu

    2018-05-01

    Due to the important role of temperature in the global climate system and energy cycles, it is important to investigate the spatial-temporal change patterns, causes and implications of annual maximum (Tmax) and minimum (Tmin) temperatures. In this study, the Cloud model were adopted to fully and accurately analyze the changing patterns of annual Tmax and Tmin from 1958 to 2008 by quantifying their mean, uniformity, and stability in the Wei River Basin (WRB), a typical arid and semi-arid region in China. Additionally, the cross wavelet analysis was applied to explore the correlations among annual Tmax and Tmin and the yearly sunspots number, Arctic Oscillation, Pacific Decadal Oscillation, and soil moisture with an aim to determine possible causes of annual Tmax and Tmin variations. Furthermore, temperature-related impacts on vegetation cover and precipitation extremes were also examined. Results indicated that: (1) the WRB is characterized by increasing trends in annual Tmax and Tmin, with a more evident increasing trend in annual Tmin, which has a higher dispersion degree and is less uniform and stable than annual Tmax; (2) the asymmetric variations of Tmax and Tmin can be generally explained by the stronger effects of solar activity (primarily), large-scale atmospheric circulation patterns, and soil moisture on annual Tmin than on annual Tmax; and (3) increasing annual Tmax and Tmin have exerted strong influences on local precipitation extremes, in terms of their duration, intensity, and frequency in the WRB. This study presents new analyses of Tmax and Tmin in the WRB, and the findings may help guide regional agricultural production and water resources management.

  16. Effect and control on temperature measurement accuracy of the fiber- optic colorimeter by emissivity of different temperatures

    Science.gov (United States)

    Liu, Yu-fang; Han, Xin; Shi, De-heng

    2008-03-01

    Based on the Kirchhoff's Law, a practical dual-wavelength fiber-optic colorimeter, with the optimal work wavelength centered at 2.1 μm and 2.3 μm is presented. The effect of the emissivity on the precision of the measured temperature has been explored under various circumstances (i.e. temperature, wavelength) and for different materials. In addition, by fitting several typical material emissivity-temperature dependencies curves, the influence of the irradiation (radiant flux originating from the surroundings) and the surface reflected radiation on the temperature accuracy is studied. The results show that the calibration of the measured temperature for reflected radiant energy is necessary especially in low target temperature or low target emissivity, and the temperature accuracy is suitable for requirements in the range of 400-1200K.

  17. Natural Ventilation Driven by Wind and Temperature Difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen

    Natural ventilation is a commonly used principle when buildings are being ventilated. It can be controlled by openings in the building envelope, which open or close depending on the need of air inside the building. It can also be the simple action of just opening a door or a window to let the fresh...... driving forces are still wind pressure and temperature differences as with cross-ventilation, but here the turbulence in the wind and the pulsating flow near the opening also affect the flow through the opening. From earlier work, some design expressions already exist, but none of these include...... the incidence angle of the wind, which is an important parameter in this type of ventilation. Several wind tunnel experiments are made and from the results of these, a new design expression is made which includes the wind pressure, temperature difference, incidence angle of the wind and the fluctuations...

  18. Experimental program to determine maximum temperatures for dry storage of spent fuel

    International Nuclear Information System (INIS)

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  19. Emergency building temperature restrictions. Final evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    On July 5, 1979, DOE promulgated final regulations of the Emergency Building Temperature Restrictions program, placing emergency restrictions on thermostat settings for space heating, space cooling, and hot water in commercial, industrial, and nonresidential public buildings. The final regulations restricted space heating to a maximum of 65/sup 0/F, hot water temperature to a maximum of 105/sup 0/F, and cooling temperature to a minimum of 78/sup 0/F. A comprehensive evaluation of the entire EBTF program for a nine-month period from July 16, 1979 is presented. In Chapter 1, an estimate of the population of buildings covered by EBTR is presented. In Chapter 2, EBTR compliance by building type and region is reported. Exemptions are also discussed. In Chapter 3, the simulations of building energy use are explained and the relative impact of various building characteristics and effectiveness of different control strategies are estimated. Finally, in Chapter 4, the methodology for scaling the individual building energy savings to the national level is described, and estimated national energy savings are presented.

  20. Maximum likelihood estimation for integrated diffusion processes

    DEFF Research Database (Denmark)

    Baltazar-Larios, Fernando; Sørensen, Michael

    We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated...... EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...... by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated...

  1. Quantum entanglement at negative temperature

    International Nuclear Information System (INIS)

    Furman, G B; Meerovich, V M; Sokolovsky, V L

    2013-01-01

    An isolated spin system that is in internal thermodynamic equilibrium and that has an upper limit to its allowed energy states can possess a negative temperature. We calculate the thermodynamic characteristics and the concurrence in this system over the entire range of positive and negative temperatures. Our calculation was performed for different real structures, which can be used in experiments. It is found that the temperature dependence of the concurrence is substantially asymmetrical similarly to other thermodynamic characteristics. At a negative temperature the maximum concurrence and the absolute temperature of the entanglement appearance are significantly larger than those at a positive temperature. The concurrence can be characterized by two dimensionless parameters: the ratio between the Zeeman and dipolar energies and the ratio of the thermal and dipolar energies. It was shown that for all considered structures the dimensionless temperatures of the transition between entanglement and separability of the first and second spins are independent of spin structure and the number of spins. (paper)

  2. Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems

    International Nuclear Information System (INIS)

    Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2014-01-01

    High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have received substantial attention due to their high CO (carbon monoxide) tolerance and simplified water management. The hydrogen and CO fractions affect the HT-PEMFC performance and different fuel sources for hydrogen production result in different product gas compositions. Therefore, the aim of this study is to investigate the theoretical performance of HT-PEMFCs fueled by the reformate gas derived from various fuel options (i.e., methane, methanol, ethanol, and glycerol). Effects of fuel types and CO poisoning on the HT-PEMFC performance are analyzed. Furthermore, the necessity of a water-gas shift (WGS) reactor as a CO removal unit for pretreating the reformate gas is investigated for each fuel type. The methane steam reforming shows the highest possibility of CO formation, whereas the methanol steam reforming produces the lowest quantity of CO in the reformate gas. The methane fuel processing gives the maximum fraction of hydrogen (≈0.79) when the WGS reactor is included. The most suitable fuel is the one with the lowest CO poisoning effect and the maximum fuel cell performance. It is found that the HT-PEMFC system fueled by methanol without the WGS reactor and methane with WGS reactor shows the highest system efficiency (≈50%). - Highlights: • Performance of HT-PEMFC run on different fuel options is theoretically investigated. • Glycerol, methanol, ethanol and methane are hydrogen sources for the HT-PEMFC system. • Effect of CO poisoning on the HT-PEMFC performance is taken into account. • The suitable fuel for HT-PEMFC system is identified regarding the system efficiency

  3. Changes in atmospheric circulation between solar maximum and minimum conditions in winter and summer

    Science.gov (United States)

    Lee, Jae Nyung

    2008-10-01

    Statistically significant climate responses to the solar variability are found in Northern Annular Mode (NAM) and in the tropical circulation. This study is based on the statistical analysis of numerical simulations with ModelE version of the chemistry coupled Goddard Institute for Space Studies (GISS) general circulation model (GCM) and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The low frequency large scale variability of the winter and summer circulation is described by the NAM, the leading Empirical Orthogonal Function (EOF) of geopotential heights. The newly defined seasonal annular modes and its dynamical significance in the stratosphere and troposphere in the GISS ModelE is shown and compared with those in the NCEP/NCAR reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both the model and observation suggests that the summer stratosphere is more "summer-like" when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum

  4. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions.

    Science.gov (United States)

    Arduini, Agnese; Redaelli, Veronica; Luzi, Fabio; Dall'Olio, Stefania; Pace, Vincenzo; Nanni Costa, Leonardo

    2017-02-10

    In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score ( p trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  5. On solubility of rare earth chlorides in water at different temperatures

    International Nuclear Information System (INIS)

    Nikolaev, A.V.; Sorokina, A.A.; Sokolova, N.P.; Kotlyar-Shapirov, G.S.; Bagryantseva, L.I.

    1978-01-01

    Solubility of rare earth chlorides at -5, -10 and -15 deg C is studied. Rare earth chloride solubility dependences on the temperature in the interval from -15 to 50 deg C are presented. Decrease of solubility temperature coefficient to a zero is observed at temperature drop almost for all rare earth chlorides. Solubility temperature coefficient at the same temperature but for different rare earth chlorides reduces appreciably with the growth of rare earth chloride serial number. This testifies to the corresponding decrease of integral solution heat of rare earth chloride crystallohydrates

  6. Evaluating the Properties of High-Temperature and Low-Temperature Wear of TiN Coatings Deposited at Different Temperatures

    Directory of Open Access Journals (Sweden)

    B. Khorrami Mokhori

    2017-02-01

    Full Text Available In this research titanium nitride (TiN films were prepared by plasma assisted chemical vapor deposition using TiCl4, H2, N2 and Ar on the AISI H13 tool steel. Coatings were deposited during different substrate temperatures (460°C, 480 ° C  and 510 °C. Wear tests were performed in order to study the acting wear mechanisms in the high(400 °C and low (25 °C temperatures by ball on disc method. Coating structure and chemical composition were characterized using scanning electron microscopy, microhardness and X-ray diffraction. Wear test result was described in ambient temprature according to wear rate. It was evidenced that the TiN coating deposited at 460 °C has the least weight loss with the highest hardness value. The best wear resistance was related to the coating with the highest hardness (1800 Vickers. Wear mechanisms were observed to change by changing wear temperatures. The result of wear track indicated that low-temprature wear has surface fatigue but high-temperature wear showed adhesive mechanism.

  7. Intramuscular temperature changes during and after 2 different cryotherapy interventions in healthy individuals.

    Science.gov (United States)

    Rupp, Kimberly A; Herman, Daniel C; Hertel, Jay; Saliba, Susan A

    2012-08-01

    Crossover. To compare the time required to decrease intramuscular temperature 8°C below baseline temperature, and to compare intramuscular temperature 90 minutes posttreatment, between 2 cryotherapy modalities. Cryotherapy is used to treat pain from muscle injuries. Cooler intramuscular temperatures may reduce cellular metabolism and secondary hypoxic injury to attenuate acute injury response, specifically the rate of chemical mediator activity. Modalities that decrease intramuscular temperature quickly may be beneficial in the treatment of muscle injuries. Eighteen healthy subjects received 2 cryotherapy conditions, crushed-ice bag (CIB) and cold-water immersion (CWI), in a randomly allocated order, separated by 72 hours. Each condition was applied until intramuscular temperature decreased 8°C below baseline. Intramuscular temperature was monitored in the gastrocnemius, 1 cm below subcutaneous adipose tissue. The primary outcome was time to decrease intramuscular temperature 8°C below baseline. A secondary outcome was intramuscular temperature at the end of a 90-minute rewarming period. Paired t tests were used to examine outcomes. Time to reach an 8°C reduction in intramuscular temperature was not significantly different between CIB and CWI (mean difference, 2.6 minutes; 95% confidence interval: -3.10, 8.30). Intramuscular temperature remained significantly colder 90 minutes post-CWI compared to CIB (mean difference, 2.8°C; 95% confidence interval: 2.07°C, 3.52°C). There was no difference in time required to reduce intramuscular temperature 8°C 1 cm below adipose tissue using CIB and CWI. However, intramuscular temperature remained significantly colder 90 minutes following CWI. These results provide clinicians with information that may guide treatment-modality decisions.

  8. Effect of temperature on growth of psychrophilic and psychrotrophic members of Rhodotorula aurantiaca.

    Science.gov (United States)

    Sabri, A; Jacques, P; Weekers, F; Baré, G; Hiligsmann, S; Moussaïf, M; Thonart, P

    2000-01-01

    The thermo-dependence of growth kinetic parameters was investigated for the Antarctic psychrophilic strain Rhodotorula aurantiaca and a psychrotrophic strain of the same species isolated in Belgium (Ardennes area). Cell production, maximum growth rate (mu max), and half-saturation constant for glucose uptake (Ks) of both yeasts were temperature dependent. For the two yeasts, a maximum cell production was observed at about 0 degree C, and cell production decreased when temperature increased. The mu max values for both strains increased with temperature up to a maximum of 10 degrees C for the psychrophilic strain and 17 degrees C for the psychrotrophic strain. For both yeasts, Ks for glucose was relatively constant at low temperatures. It increased at temperatures above 10 degrees C for the psychrophilic strain and 17 degrees C for the psychrotrophic strain. Although its glucose affinity was lower, the psychrotrophic strain grew more rapidly than the psychrophilic one. The difference in growth rate and substrate affinity was related to the origin of the strain and the adaptation strategy of R. aurantiaca to environmental conditions.

  9. Biofilm formation capacity of Salmonella serotypes at different temperature conditions

    Directory of Open Access Journals (Sweden)

    Karen A. Borges

    Full Text Available ABSTRACT: Salmonella spp. are one of the most important agents of foodborne disease in several countries, including Brazil. Poultry-derived products are the most common food products, including meat and eggs, involved in outbreaks of human salmonellosis. Salmonella has the capacity to form biofilms on both biotic and abiotic surfaces. The biofilm formation process depends on an interaction among bacterial cells, the attachment surface and environmental conditions. These structures favor bacterial survival in hostile environments, such as slaughterhouses and food processing plants. Biofilms are also a major problem for public health because breakage of these structures can cause the release of pathogenic microorganisms and, consequently, product contamination. The aim of this study was to determine the biofilm production capacity of Salmonella serotypes at four different temperatures of incubation. Salmonella strains belonging to 11 different serotypes, isolated from poultry or from food involved in salmonellosis outbreaks, were selected for this study. Biofilm formation was investigated under different temperature conditions (37°, 28°, 12° and 3°C using a microtiter plate assay. The tested temperatures are important for the Salmonella life cycle and to the poultry-products process. A total of 92.2% of the analyzed strains were able to produce biofilm on at least one of the tested temperatures. In the testing, 71.6% of the strains produced biofilm at 37°C, 63% at 28°C, 52.3% at 12°C and 39.5% at 3°C, regardless of the serotype. The results indicate that there is a strong influence of temperature on biofilm production, especially for some serotypes, such as S. Enteritidis, S. Hadar and S. Heidelberg. The production of these structures is partially associated with serotype. There were also significant differences within strains of the same serotype, indicating that biofilm production capacity may be strain-dependent.

  10. The effect and mechanism of the bipolar junction transistor in different temperature

    International Nuclear Information System (INIS)

    Wang Dong; Lu Wu; Ren Diyuan; Li Aiwu; Kuang Zhibing

    2007-01-01

    The annealing-effect of bipolar junction transistor in different temperature is investigated. It is found that the anneal of the bipolar transistor is related to the annealing-temperature, and the annealing-effect of the different type transistor is dissimilar. The possible mechanism is discussed. (authors)

  11. The effects of spatial sampling choices on MR temperature measurements.

    Science.gov (United States)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.

  12. Maximum Entropy Closure of Balance Equations for Miniband Semiconductor Superlattices

    Directory of Open Access Journals (Sweden)

    Luis L. Bonilla

    2016-07-01

    Full Text Available Charge transport in nanosized electronic systems is described by semiclassical or quantum kinetic equations that are often costly to solve numerically and difficult to reduce systematically to macroscopic balance equations for densities, currents, temperatures and other moments of macroscopic variables. The maximum entropy principle can be used to close the system of equations for the moments but its accuracy or range of validity are not always clear. In this paper, we compare numerical solutions of balance equations for nonlinear electron transport in semiconductor superlattices. The equations have been obtained from Boltzmann–Poisson kinetic equations very far from equilibrium for strong fields, either by the maximum entropy principle or by a systematic Chapman–Enskog perturbation procedure. Both approaches produce the same current-voltage characteristic curve for uniform fields. When the superlattices are DC voltage biased in a region where there are stable time periodic solutions corresponding to recycling and motion of electric field pulses, the differences between the numerical solutions produced by numerically solving both types of balance equations are smaller than the expansion parameter used in the perturbation procedure. These results and possible new research venues are discussed.

  13. The stress characteristics of plate-fin structures at the different operation parameters of LNG heat exchanger

    Directory of Open Access Journals (Sweden)

    Ma Hongqiang

    2018-01-01

    Full Text Available In this paper, the stresses of plate-fin structures at the different operation parameters were analyzed in actual operation process of LNG plate-fin heat exchanger based on finite element method and thermal elastic theory. Stress characteristics of plate-fin structures were investigated at the different operation parameters of that. The results show that the structural failure of plate-fin structures is mainly induced by the maximum shear stress at the brazing filler metal layer between plate and fin while by the maximum normal stress in the region of brazed joint near the fin side. And a crack would initiate in brazed joint near the fin side. The maximum normal stress is also main factor to result in the structural failure of plate-fin structures at the different temperature difference (between Natural Gas (NG and Mixture Refrigerant (MR, MR temperature and NG pressure of LNG heat exchanger. At the same time, the peak stresses obviously increase as the temperature difference, MR temperature and NG pressure increase. These results will provide some constructive instructions in the safe operation of LNG plate-fin heat exchanger in a large-scale LNG cold-box.

  14. Long-term comparison of temperature measurements by the multi-plate shield and Czech-Slovak thermometer screen

    Energy Technology Data Exchange (ETDEWEB)

    Mozny, Martin; Stepanek, Petr; Hajkova, Lenka; Bares, Daniel [Doksany Observatory, Doksany (Czech Republic). Czech Hydrometeorological Inst.; Trnka, Mirek [Academy of Science of the Czech Republic, Brno (Czech Republic). Global Change Research Centre; Zalud, Zdenek; Semeradova, Daniela [Mendel Univ., Brno (Czech Republic). Agrosystems and Bioclimatology; Koznarova, Vera [Czech Univ. of Life Sciences, Prague (Czech Republic). Dept. of Agroecology and Biometeorology

    2012-04-15

    Differences between measurements taken with the Czech-Slovak thermometer screen (TS) and the multiplate radiation shield (MRS) should not be neglected. The average difference between the TS and the MRS measurements varied between 0.3 and 2.8 C during suitable weather conditions (wind speed less than 3 m/s, bright and sunny day) throughout the year, during both daytime and nighttime hours. A 10-year time series of comparative measurements in Doksany, Czech Republic, showed that relative to TS, measurements from MRS yielded average and minimum air temperatures that were lower in the winter and higher in the summer. Daily maximum air temperatures were lower for MRS than TS throughout the year. The greatest differences were observed in the maximum air temperatures; only 62 % of all differences between the TS and MRS were less than 0.5 C, and 70 % were less than 1 C. Among minimum air temperatures, 60 % of differences were less than 0.5 C, and 79 % were less than 1 C. In contrast, 74 % of all differences in average daily temperature were less than 0.5 C, and 97 % were less than 1 C. The use of temperature measurements from multiple equipments may negatively affect inference from climate and hydro-meteorological models. Irregular temperature data could be corrected using a simulation of temperature differences (SITEDI) model, which incorporates differences between the MRS and the TS. It is important to consider whether temperature data in the Czech Republic and Slovakia come from the TS or the MRS when analyzing and modeling temperature in Central Europe. (orig.)

  15. Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides

    DEFF Research Database (Denmark)

    Zühlsdorf, Benjamin; Jensen, Jonas Kjær; Cignitti, Stefano

    2018-01-01

    refrigerants. This approach enables a match of the temperature glide of sink and source with the temperature of the working fluid during phase change and thus, a reduction of the exergy destruction due to heat transfer. The model was evaluated for four different boundary conditions. The exergy destruction due...

  16. Elevated temperature mechanical properties of line pipe steels

    Science.gov (United States)

    Jacobs, Taylor Roth

    strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a

  17. Effects of light and temperature on duckweed photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wedge, R M; Burris, J E

    1982-06-01

    Rates of photosynthesis of Lemna minor L. and Spirodela punctata, two aquatic angiosperms, were measured at different temperatures and light intensities. Photosynthesis was measured both as oxygen evolution and /sup 14/CO/sub 2/ fixation. At temperatures ranging from 15 to 35/sup 0/C, light saturation of photosynthetic O/sub 2/ evolution of Lemna occured from 300-600 ..mu..E m/sup -2/ s/sup -1/, while in Spirodela photosynthetic O/sub 2/ evolution was light saturated at 5600-1200 ..mu..E m/sup -2/ s/sup -1/. Photosynthetic O/sub 2/ evolution of both species was photoinhibited at light intensities greater than 1200 ..mu..E m/sup -2/ s/sup -1/. The optimal temperature for Lemna photosynthetic O/sub 2/ evolution was 30/sup 0/C, while the optimal temperatures for /sup 14/CO/sub 2/ fixation were from 20 to 30/sup 0/C. For Spirodela maximum photosynthetic O/sub 2/, evolution occurred at 35/sup 0/C, while maximum /sup 14/CO/sub 2/ fixation was at 30/sup 0/C.

  18. Temperature Effects on Development and Phenotype in a Free-Living Population of Western Pond Turtles (Emys marmorata).

    Science.gov (United States)

    Christie, Nicole E; Geist, Nicholas R

    Changes in temperature regimes are occurring globally due to climate change as well as habitat alterations. Temperatures are expected to continue to rise in the future, along with a greater degree of climatic instability. Such changes could have potentially serious consequences for oviparous ectotherms, especially those with temperature-dependent sex determination. To investigate the effects of temperature on a range of developmental phenomena in a population of western pond turtles (Emys marmorata), we placed temperature sensors on top of each layer of eggs within nests and recorded temperatures hourly through the first 2-3 mo of incubation. These methods allowed us to look at in situ nest temperatures with high resolution. We found that mean incubation temperatures were similar between different nests and at different levels within nests but that incubation temperature fluctuations and maximum incubation temperatures differed greatly in both cases. The hatchling turtles were more likely to be female if they spent 30% or more of their sex-determining period of incubation above 29°C. Hatching success was best predicted by the maximum incubation temperature. We also found that incubation duration tended to be shorter as the mean temperature increased. However, exposure to either extremely high or low temperatures extended incubation times.

  19. The approximate determination of the critical temperature of a liquid by measuring surface tension versus the temperature

    International Nuclear Information System (INIS)

    Maroto, J A; Nieves, F J de las; Quesada-Perez, M

    2004-01-01

    A classical experience in a physics student laboratory is to determine the surface tension of a liquid versus the temperature and to check the linear appearance of the obtained graph. In this work we show a simple method to estimate the critical temperature of three liquids by using experimental data of surface tension at different temperatures. By a logarithm fitting between surface tension and temperature, the critical temperature can be determined and compared with data from the literature. For two liquids (butanol and nitrobenzene) the comparison is acceptable but the differences are too high for the third liquid (water). By discussing the results it seems to be clear that the difference between the critical temperature of the liquid and the maximum temperature of the surface tension measurements is the determining factor in obtaining acceptable results. From this study it is possible to obtain more information on the liquid characteristics from surface tension measurements that are currently carried out in a student laboratory. Besides, in this paper it is shown how to select the most suitable liquids which provide both acceptable values for the critical temperature and measurements of the surface tension at moderate temperatures. The complementary use of numerical methods permits us to offer a complete experience for the students with a simple laboratory experiment which we recommend for physics students in advanced university courses

  20. Evaluating comfort with varying temperatures: a graphic design tool

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.M. [Research Centre Habitat and Energy, Faculty of Architecture, Design and Urbanism, University of Buenos Aires, Ciudad Universitaria (Argentina)

    2002-07-01

    This paper considers the need to define comfort of indoor and outdoor spaces in relation to the daily variations of temperature. A graphical tool is presented, which indicates the daily swings of temperature, shown as a single point on a graph representing the average temperature and the maximum temperature swing. This point can be compared with the comfort zones for different activity levels, such as sedentary activity, sleeping, indoor and outdoor circulation according to the design proposals for different spaces. The graph allows the representation of climatic variables, the definition of comfort zones, the selection of bio climatic design resources and the evaluation of indoor temperatures, measured in actual buildings or obtained from computer simulations. The development of the graph is explained and examples given with special emphasis on the use of thermal mass. (author)

  1. Effects of the midnight temperature maximum observed in the thermosphere–ionosphere over the northeast of Brazil

    Directory of Open Access Journals (Sweden)

    C. A. O. B. Figueiredo

    2017-08-01

    Full Text Available The midnight temperature maximum (MTM has been observed in the lower thermosphere by two Fabry–Pérot interferometers (FPIs at São João do Cariri (7.4° S, 36.5° W and Cajazeiras (6.9° S, 38.6° W during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU  =  10−22 W m−2 Hz−1. The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300, and ionospheric parameters, such as virtual height (h′F, the peak height of the F2 region (hmF2, and critical frequency of the F region (foF2, which were measured by a Digisonde instrument (DPS at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011. The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012 model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s−1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s−1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to −50 m s−1. Our results indicate that the reversal (changes

  2. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    Science.gov (United States)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  3. Nest temperature fluctuations in a cavity nester, the southern ground-hornbill.

    Science.gov (United States)

    Combrink, L; Combrink, H J; Botha, A J; Downs, C T

    2017-05-01

    Southern ground-hornbills Bucorvus leadbeateri inhabit savanna and bushveld regions of South Africa. They nest in the austral summer, which coincides with the wet season and hottest daytime temperatures in the region. They are secondary cavity nesters and typically nest in large cavities in trees, cliffs and earth banks, but readily use artificial nest boxes. Southern ground-hornbills are listed as Endangered in South Africa, with reintroductions into suitable areas highlighted as a viable conservation intervention for the species. Nest microclimate, and the possible implications this may have for the breeding biology of southern ground-hornbills, have never been investigated. We used temperature dataloggers to record nest cavity temperature and ambient temperature for one artificial and 11 natural southern ground-hornbill tree cavity nests combined, spanning two breeding seasons. Mean hourly nest temperature, as well as mean minimum and mean maximum nest temperature, differed significantly between southern ground-hornbill nests in both breeding seasons. Mean nest temperature also differed significantly from mean ambient temperature for both seasons. Natural nest cavities provided a buffer against the ambient temperature fluctuations. The artificial nest provided little insulation against temperature extremes, being warmer and cooler than the maximum and minimum local ambient temperatures, respectively. Nest cavity temperature was not found to have an influence on the breeding success of the southern ground-hornbill groups investigated in this study. These results have potentially important implications for southern ground-hornbill conservation and artificial nest design, as they suggest that the birds can tolerate greater nest cavity temperature extremes than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of Different Environment Temperatures on Some Motor Characteristics and Muscle Strength

    Science.gov (United States)

    Çakir, Ergün; Yüksek, Selami; Asma, Bülent; Arslanoglu, Erkal

    2016-01-01

    The aim of this study was determine the effects of different environment temperatures on motor characteristics and muscle strength. 15 athletes participated to study. Flexibility, vertical jump, hand grip-leg strength, 30m sprint, 20-meter shuttle run and coordination-agility tests were measured in five different environment temperatures. (22°C,…

  5. Efficiency of Photovoltaic Maximum Power Point Tracking Controller Based on a Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Ammar Al-Gizi

    2017-07-01

    Full Text Available This paper examines the efficiency of a fuzzy logic control (FLC based maximum power point tracking (MPPT of a photovoltaic (PV system under variable climate conditions and connected load requirements. The PV system including a PV module BP SX150S, buck-boost DC-DC converter, MPPT, and a resistive load is modeled and simulated using Matlab/Simulink package. In order to compare the performance of FLC-based MPPT controller with the conventional perturb and observe (P&O method at different irradiation (G, temperature (T and connected load (RL variations – rising time (tr, recovering time, total average power and MPPT efficiency topics are calculated. The simulation results show that the FLC-based MPPT method can quickly track the maximum power point (MPP of the PV module at the transient state and effectively eliminates the power oscillation around the MPP of the PV module at steady state, hence more average power can be extracted, in comparison with the conventional P&O method.

  6. Test Plan to Determine the Maximum Surface Temperatures for a Plutonium Storage Cubicle with Horizontal 3013 Canisters

    International Nuclear Information System (INIS)

    HEARD, F.J.

    2000-01-01

    A simulated full-scale plutonium storage cubicle with 22 horizontally positioned and heated 3013 canisters is proposed to confirm the effectiveness of natural circulation. Temperature and airflow measurements will be made for different heat generation and cubicle door configurations. Comparisons will be made to computer based thermal Hydraulic models

  7. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Stroescu, H.; Gartner, M.; Anastasescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Fogarassy, Zs. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege Miklos u. 29-33, H-1121 Budapest (Hungary); Mihailescu, N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A., E-mail: szekeres@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Bakalova, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania)

    2016-06-30

    Highlights: • Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. • 800 °C seed film boosts the next growth of crystalline structures at lower temperature. • Two-stage deposited AlN samples exhibit randomly oriented wurtzite structures. • Band gap energy values increase with deposition temperature. • Correlation was observed between single- and multi-stage AlN films. - Abstract: We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN “seed” layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4–2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0–5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  8. Climate Prediction Center (CPC) U.S. Daily Maximum Air Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily air temperature (1200 UTC to 1200 UTC) are made by members of the NWS Automated Surface Observing Systems (ASOS) network; NWS...

  9. Testing the Metabolic Theory of Ecology with marine bacteria: Different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom

    KAUST Repository

    Arandia-Gorostidi, Nestor

    2017-08-24

    Although temperature is a key driver of bacterioplankton metabolism, the effect of ocean warming on different bacterial phylogenetic groups remains unclear. Here, we conducted monthly short-term incubations with natural coastal bacterial communities over an annual cycle to test the effect of experimental temperature on the growth rates and carrying capacities of four phylogenetic groups: SAR11, Rhodobacteraceae, Gammaproteobacteria and Bacteroidetes. SAR11 was the most abundant group year-round as analysed by CARD-FISH, with maximum abundances in summer, while the other taxa peaked in spring. All groups, including SAR11, showed high temperature-sensitivity of growth rates and/or carrying capacities in spring, under phytoplankton bloom or post-bloom conditions. In that season, Rhodobacteraceae showed the strongest temperature response in growth rates, estimated here as activation energy (E, 1.43 eV), suggesting an advantage to outcompete other groups under warmer conditions. In summer E values were in general lower than 0.65 eV, the value predicted by the Metabolic Theory of Ecology (MTE). Contrary to MTE predictions, carrying capacity tended to increase with warming for all bacterial groups. Our analysis confirms that resource availability is key when addressing the temperature response of heterotrophic bacterioplankton. We further show that even under nutrient-sufficient conditions, warming differentially affected distinct bacterioplankton taxa. This article is protected by copyright. All rights reserved.

  10. Venus atmosphere profile from a maximum entropy principle

    Directory of Open Access Journals (Sweden)

    L. N. Epele

    2007-10-01

    Full Text Available The variational method with constraints recently developed by Verkley and Gerkema to describe maximum-entropy atmospheric profiles is generalized to ideal gases but with temperature-dependent specific heats. In so doing, an extended and non standard potential temperature is introduced that is well suited for tackling the problem under consideration. This new formalism is successfully applied to the atmosphere of Venus. Three well defined regions emerge in this atmosphere up to a height of 100 km from the surface: the lowest one up to about 35 km is adiabatic, a transition layer located at the height of the cloud deck and finally a third region which is practically isothermal.

  11. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 3 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Land Surface Temperature Databank contains monthly timescale mean, maximum, and minimum temperature for approximately 40,000 stations globally. It was...

  12. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    Energy Technology Data Exchange (ETDEWEB)

    Barletti, Luigi, E-mail: luigi.barletti@unifi.it [Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze (Italy)

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  13. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  14. Temperature profiles of different cooling methods in porcine pancreas procurement.

    Science.gov (United States)

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  15. Temperature distribution in target tumor tissue and photothermal tissue destruction during laser immunotherapy

    Science.gov (United States)

    Doughty, Austin; Hasanjee, Aamr; Pettitt, Alex; Silk, Kegan; Liu, Hong; Chen, Wei R.; Zhou, Feifan

    2016-03-01

    Laser Immunotherapy is a novel cancer treatment modality that has seen much success in treating many different types of cancer, both in animal studies and in clinical trials. The treatment consists of the synergistic interaction between photothermal laser irradiation and the local injection of an immunoadjuvant. As a result of the therapy, the host immune system launches a systemic antitumor response. The photothermal effect induced by the laser irradiation has multiple effects at different temperature elevations which are all required for optimal response. Therefore, determining the temperature distribution in the target tumor during the laser irradiation in laser immunotherapy is crucial to facilitate the treatment of cancers. To investigate the temperature distribution in the target tumor, female Wistar Furth rats were injected with metastatic mammary tumor cells and, upon sufficient tumor growth, underwent laser irradiation and were monitored using thermocouples connected to locally-inserted needle probes and infrared thermography. From the study, we determined that the maximum central tumor temperature was higher for tumors of less volume. Additionally, we determined that the temperature near the edge of the tumor as measured with a thermocouple had a strong correlation with the maximum temperature value in the infrared camera measurement.

  16. Co-doped sodium chloride crystals exposed to different irradiation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Morales, A. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F., Mexico and Unidad de Irradiacion y Segurid (Mexico); Cruz-Zaragoza, E.; Furetta, C. [Unidad de Irradiacion y Seguridad Radiologica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F (Mexico); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP. 20-364, 01000 Mexico D.F (Mexico)

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  17. Effects of Pouring Temperature and Electromagnetic Stirring on Porosity and Mechanical Properties of A357 Aluminum Alloy Rheo-Diecasting

    Science.gov (United States)

    Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu

    2018-05-01

    Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.

  18. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  19. Corrosion fatigue crack growth behaviour of low-alloy RPV steels at different temperatures and loading frequencies under BWR/NWC environment

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2004-01-01

    The strain-induced corrosion cracking or low-frequency corrosion fatigue (LFCF) crack growth behaviour of different reactor pressure vessel (RPV) steels and of a RPV weld filler/weld heat-affected zone (HAZ) material were characterized under simulated transient boiling water reactor/normal water chemistry conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in oxygenated high-temperature water at temperatures of either 288, 250, 200, or 150 deg. C. Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographic analysis by SEM were used to quantify the cracking response. Under low-flow and highly oxidising conditions (ECP > 0 mV SHE , O 2 = 0.4 ppm) the cycle-based LFCF crack growth rates (CGR) Δa/ΔN increased with decreasing loading frequency and increasing temperature with a maximum/plateau at/above 250 deg. C. Sustained environmentally-assisted crack growth could be maintained down to low frequencies of 10 -5 Hz. The LFCF CGR of low- and high-sulphur steels and of the weld filler/HAZ material were comparable over a wide range of loading conditions and conservatively covered by the 'high-sulphur line' of the General Electric-model. The 'ASME XI wet fatigue CGR curves' could be significantly exceeded in all materials by cyclic fatigue loading at low frequencies ( -2 Hz) at high and low load ratios R. (authors)

  20. Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources

    Directory of Open Access Journals (Sweden)

    Eliane Dalva Godoy Danesi

    2011-03-01

    Full Text Available The effects of light intensity and temperature in S. platensis cultivation with potassium nitrate or urea as nitrogen source were investigated, as well as the biomass chlorophyll contents of this cyanobacteria, through the Response Surface Methodology. Experiments were performed at temperatures from 25 to 34.5ºC and light intensities from 15 to 69 µmol photons m-2 s-1, in mineral medium. In cultivations with both sources of nitrogen, KNO3 and urea, statistic evaluation through multiple regression, no interactions of such independent variables were detected in the results of the dependent variables maximum cell concentration, chlorophyll biomass contents, cell and chlorophyll productivities, as well as in the nitrogen-cell conversion factor. In cultivation performed with both sources of nitrogen, it was possible to obtain satisfactory adjustments to relate the dependent variables to the independent variables. The best results were achieved at temperature of 30ºC, at light intensity of 60 µmol photons m-2s-1, for cell growth, with cell productivity of approximately 95 mg L-1 d-1 in cultivations with urea. For the chlorophyll biomass content, the most adequate light intensity was 24 µmol photons m-2 s-1.

  1. Intricacies of using temperature of different niches for assessing impact on malaria transmission

    Directory of Open Access Journals (Sweden)

    Poonam Singh

    2016-01-01

    Full Text Available Background & objectives: The influence of temperature on the life cycle of mosquitoes as well as on development of malaria parasite in mosquitoes is well studied. Most of the studies use outdoor temperature for understanding the transmission dynamics and providing projections of malaria. As the mosquitoes breed in water and rest usually indoors, it is logical to relate the transmission dynamics with temperature of micro-niche. The present study was, therefore, undertaken to understand the influence of different formats of temperature of different micro-niches on transmission of malaria for providing more realistic projections. Methods: The study was conducted in one village each of Assam and Uttarakhand s0 tates of India. Temperatures recorded from outdoor (air as well as indoor habitats (resting place of mosquito were averaged into daily, fortnightly and monthly and were used for determination of transmission windows (TWs for Plasmodium vivax (Pv and P. falciparum (Pf based on minimum temperature threshold required for transmission. Results: The daily temperature was found more useful for calculation of sporogony than fortnightly and monthly temperatures. Monthly TWs were further refined using fortnightly temperature, keeping in view the completion of more than one life cycle of malaria vectors and sporogony of malaria parasite in a month. A linear regression equation was generated to find out the relationship between outdoor and indoor temperatures and R [2] to predict the percentage of variation in indoor temperature as a function of outdoor temperature at both localities. Interpretation & conclusions: The study revealed that the indoor temperature was more than outdoors in stable malarious area (Assam but fluctuating in low endemic area like Uttarakhand. Transmission windows of malaria should be determined by transforming outdoor data to indoor and preferably at fortnightly interval. With daily recorded temperature, sporogonic and

  2. Comparison of cyanobacterial and green algal growth rates at different temperatures

    NARCIS (Netherlands)

    Lurling, M.; Faassen, E.J.; Kosten, S.; Eshetu, Z.; Huszar, V.M.

    2013-01-01

    1.The hypothesis that cyanobacteria have higher optimum growth temperatures and higher growth rates at the optimum as compared to chlorophytes was tested by running a controlled experiment with eight cyanobacteria species and eight chlorophyte species at six different temperatures (20-35°C) and by

  3. Parametric characteristics of a solar thermophotovoltaic system at the maximum efficiency

    International Nuclear Information System (INIS)

    Liao, Tianjun; Chen, Xiaohang; Yang, Zhimin; Lin, Bihong; Chen, Jincan

    2016-01-01

    Graphical abstract: A model of the far-field TPVC driven by solar energy, which consists of an optical concentrator, an absorber, an emitter, and a PV cell and is simply referred as to the far-field STPVS. - Highlights: • A model of the far-field solar thermophotovoltaic system (STPVS) is established. • External and internal irreversible losses are considered. • The maximum efficiency of the STPVS is calculated. • Optimal values of key parameters at the maximum efficiency are determined. • Effects of the concentrator factor on the performance of the system are discussed. - Abstract: A model of the solar thermophotovoltaic system (STPVS) consisting of an optical concentrator, a thermal absorber, an emitter, and a photovoltaic (PV) cell is proposed, where the far-field thermal emission between the emitter and the PV cell, the radiation losses from the absorber and emitter to the environment, the reflected loss from the absorber, and the finite-rate heat exchange between the PV cell and the environment are taken into account. Analytical expressions for the power output of and overall efficiency of the STPVS are derived. By solving thermal equilibrium equations, the operating temperatures of the emitter and PV cell are determined and the maximum efficiency of the system is calculated numerically for given values of the output voltage of the PV cell and the ratio of the front surface area of the absorber to that of the emitter. For different bandgaps, the maximum efficiencies of the system are calculated and the corresponding optimum values of several operating parameters are obtained. The effects of the concentrator factor on the optimum performance of the system are also discussed.

  4. Use of a high temperature hydrostatic extrusion technique for powders strengthening

    International Nuclear Information System (INIS)

    Decours, J.; Gavinet, J.; Weisz, M.

    1975-01-01

    A conventional 575 tonnes extrusion press has been modified by a device permitting the extrusion process by hydrostatic pression through a leakless mechanical set (13,000 bars maximum), from room temperature to 1,200 deg C. This new device allows: the high temperature hydrostatic extrusion for strengthening of powders, the isostatic compression of powders. Examples of realisations obtained by this process are described, including the influence of different parameters: pressure, temperature, extrusion ratio and for different materials: pure metals (iron, nickel, niobium, etc...) and alloys (stainless steel, molybdenum, niobium nickel alloys, etc...). Then, the advantages of the process are emphasized [fr

  5. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Science.gov (United States)

    2010-07-01

    ...) Maximum engine power for an engine family is generally the weighted average value of maximum engine power... engine family's maximum engine power apply in the following circumstances: (1) For outboard or personal... value for maximum engine power from all the different configurations within the engine family to...

  6. Attitude sensor alignment calibration for the solar maximum mission

    Science.gov (United States)

    Pitone, Daniel S.; Shuster, Malcolm D.

    1990-01-01

    An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.

  7. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1995-01-01

    headspace sampling and quantified and identified by gas chromatography and gas chromatography-mass spectrometry. The effects of temperature and different ingredients on the levels of individual volatiles were tested using multiple linear regression and analysis of variance. The study showed that sausages...

  8. Differences in the H-mode pedestal width of temperature and density

    International Nuclear Information System (INIS)

    Schneider, P A; Wolfrum, E; Günter, S; Kurzan, B; Lackner, K; Zohm, H; Groebner, R J; Osborne, T H; Ferron, J R; Snyder, P B; Beurskens, M N A; Dunne, M G

    2012-01-01

    A pedestal database was built using data from type-I ELMy H-modes of ASDEX Upgrade, DIII-D and JET. ELM synchronized pedestal data were analysed with the two-line method. The two-line method is a bilinear fit which shows better reproducibility of pedestal parameters than a modified hyperbolic tangent fit. This was tested with simulated and experimental data. The influence of the equilibrium reconstruction on pedestal parameters was investigated with sophisticated reconstructions from CLISTE and EFIT including edge kinetic profiles. No systematic deviation between the codes could be observed. The flux coordinate system is influenced by machine size, poloidal field and plasma shape. This will change the representation of the width in different coordinates, in particular, the two normalized coordinates Ψ N and r/a show a very different dependence on the plasma shape. The scalings derived for the pedestal width, Δ, of all machines suggest a different scaling for the electron temperature and the electron density. Both cases show similar dependence with machine size, poloidal magnetic field and pedestal electron temperature and density. The influence of ion temperature and toroidal magnetic field is different on each of Δ T e and Δ n e . In dimensionless form the density pedestal width in Ψ N scales with ρ 0.6 i* , the temperature pedestal width with β p,ped 0.5 . Both widths also show a strong correlation with the plasma shape. The shape dependence originates from the coordinate transformation and is not visible in real space. The presented scalings predict that in ITER the temperature pedestal will be appreciably wider than the density pedestal. (paper)

  9. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  10. Spatio-temporal long-term (1950-2009) temperature trend analysis in North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.; Mekonnen, Ademe

    2015-04-01

    This study analyzed long-term (1950-2009) annual and seasonal time series data of maximum and minimum temperature from 249 uniformly distributed stations across the State of North Carolina, United States. The Mann-Kendall and Theil-Sen approach were applied to quantify the significance and magnitude of trend, respectively. A pre-whitening technique was applied to eliminate the effect of lag-1 serial correlation. For most stations over the period of the past 60 years, the difference between minimum and maximum temperatures was found decreasing with an overall increasing trend in the mean temperature. However, significant trends (confidence level ≥ 95 %) in the mean temperature analysis were detected only in 20, 3, 23, and 20 % of the stations in summer, winter, autumn, and spring, respectively. The magnitude of the highest warming trend in minimum temperature and the highest cooling trend in maximum temperature was +0.073 °C/year in the autumn season and -0.12 °C/year in the summer season, respectively. Additional analysis in mean temperature trend was conducted on three regions of North Carolina (mountain, piedmont, and coastal). The results revealed a warming trend for the coastal zone, a cooling trend for the mountain zone, and no distinct trend for the piedmont zone. The Sequential Mann-Kendall test results indicated that the significant increasing trends in minimum temperature and decreasing trend in maximum temperature had begun around 1970 and 1960 (change point), respectively, in most of the stations. Finally, the comparison between mean surface air temperature (SAT) and the North Atlantic Oscillation (NAO) concluded that the variability and trend in SAT can be explained partially by the NAO index for North Carolina.

  11. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different .... elevation of 1300 m above sea level), located at the southeastern fringe of ... cipitation is the only source of soil water replenish- ment. ...... 2001 Effects of nutrients and shade on tree-grass inter- actions in an ...

  12. Investigation of Breakpoint and Trend of Daily Air Temperature Range for Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    shideh shams

    2017-01-01

    Full Text Available Introduction: Air temperature as an important climatic factor can influence variability and distribution of other climatic parameters. Therefore, tracking the changes in air temperature is a popular procedure in climate change studies.. According to the national academy in the last decade, global temperature has raised 0.4 to 0.8⁰C. Instrumental records show that, with the exception of 1998, the 10 warmest year (during the last 150 years, occurred since 2000, and 2014 was the warmest year. Investigation of maximum and minimum air temperature temporal trend indicates that these two parameters behave differently over time. It has been shown that the minimum air temperature raises noticeably more than the maximum air temperature, which causes a reduction in the difference of maximum and minimum daily air temperature (daily temperature range, DTR. There are several factors that have an influence on reducing DTR such as: Urban development, farms’ irrigation and desertification. It has been shown that DTR reduction occurs mostly during winter and is less frequent during summer, which shows the season’s effect on the temperature trend. Considering the significant effects of the climatological factors on economic and agricultural management issues, the aim of this study is to investigate daily air temperature range for yearly, seasonal and monthly time scales, using available statistical methods. Materials and Methods: Daily maximum and minimum air temperature records (from 1950 to 2010 were obtained from Mashhad Meteorological Organization. In order to control the quality of daily Tmax and Tmin data, four different types of quality controls were applied. First of all, gross errors were checked. In this step maximum and minimum air temperature data exceeding unlikely air temperature values, were eliminated from data series. Second, data tolerance was checked by searching for periods longer than a certain number of consecutive days with exactly the

  13. Temperature diagnostic line ratios of Fe XVII

    International Nuclear Information System (INIS)

    Raymond, J.C.; Smith, B.W.; Los Alamos National Lab., NM)

    1986-01-01

    Based on extensive calculations of the excitation rates of Fe XVII, four temperature-sensitive line ratios are investigated, paying special attention to the contribution of resonances to the excitation rates and to the contributions of dielectronic recombination satellites to the observed line intensities. The predictions are compared to FPCS observations of Puppis A and to Solar Maximum Mission (SMM) and SOLEX observations of the sun. Temperature-sensitive line ratios are also computed for emitting gas covering a broad temperature range. It is found that each ratio yields a differently weighted average for the temperature and that this accounts for some apparent discrepancies between the theoretical ratios and solar observations. The effects of this weighting on the Fe XVII temperature diagnostics and on the analogous Fe XXIV/Fe XXV satellite line temperature diagnostics are discussed. 27 references

  14. Temperature field downstream of an heated bundle mock-up results for different power distribution

    International Nuclear Information System (INIS)

    Girard, J.P.; Buravand, Y.

    1982-10-01

    The aim of these peculiar experiments performed on the ML4 loop in ISPRA is to evaluate the characteristics of the temperature field over a length of 20 to 30 dias downstream of a rod bundle for different temperatures profiles at the bundle outlet. The final purpose of this work will be to establish either directly or through models whether it is possible or not to detect subassembly failures using suitable of the subassembly outlet temperature signal. 15 hours of digital and analog recording were taped for five different power distributions in the bundle. The total power dissipation remained constant during the whole run. Two flow rates and seven axial location were investigated. It is shown that the different temperature profiles produce slight differences in the variance and skewness of the temperature signal measured along the axis of the pipe over 20 dias

  15. Technical basis for the reduction of the maximum temperature TGA-MS analysis of oxide samples from the 3013 destructive examination program

    International Nuclear Information System (INIS)

    Scogin, J. H.

    2016-01-01

    Thermogravimetric analysis with mass spectroscopy of the evolved gas (TGA-MS) is used to quantify the moisture content of materials in the 3013 destructive examination (3013 DE) surveillance program. Salts frequently present in the 3013 DE materials volatilize in the TGA and condense in the gas lines just outside the TGA furnace. The buildup of condensate can restrict the flow of purge gas and affect both the TGA operations and the mass spectrometer calibration. Removal of the condensed salts requires frequent maintenance and subsequent calibration runs to keep the moisture measurements by mass spectroscopy within acceptable limits, creating delays in processing samples. In this report, the feasibility of determining the total moisture from TGA-MS measurements at a lower temperature is investigated. A temperature of the TGA-MS analysis which reduces the complications caused by the condensation of volatile materials is determined. Analysis shows that an excellent prediction of the presently measured total moisture value can be made using only the data generated up to 700 °C and there is a sound physical basis for this estimate. It is recommended that the maximum temperature of the TGA-MS determination of total moisture for the 3013 DE program be reduced from 1000 °C to 700 °C. It is also suggested that cumulative moisture measurements at 550 °C and 700°C be substituted for the measured value of total moisture in the 3013 DE database. Using these raw values, any of predictions of the total moisture discussed in this report can be made.

  16. Technical basis for the reduction of the maximum temperature TGA-MS analysis of oxide samples from the 3013 destructive examination program

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-24

    Thermogravimetric analysis with mass spectroscopy of the evolved gas (TGA-MS) is used to quantify the moisture content of materials in the 3013 destructive examination (3013 DE) surveillance program. Salts frequently present in the 3013 DE materials volatilize in the TGA and condense in the gas lines just outside the TGA furnace. The buildup of condensate can restrict the flow of purge gas and affect both the TGA operations and the mass spectrometer calibration. Removal of the condensed salts requires frequent maintenance and subsequent calibration runs to keep the moisture measurements by mass spectroscopy within acceptable limits, creating delays in processing samples. In this report, the feasibility of determining the total moisture from TGA-MS measurements at a lower temperature is investigated. A temperature of the TGA-MS analysis which reduces the complications caused by the condensation of volatile materials is determined. Analysis shows that an excellent prediction of the presently measured total moisture value can be made using only the data generated up to 700 °C and there is a sound physical basis for this estimate. It is recommended that the maximum temperature of the TGA-MS determination of total moisture for the 3013 DE program be reduced from 1000 °C to 700 °C. It is also suggested that cumulative moisture measurements at 550 °C and 700°C be substituted for the measured value of total moisture in the 3013 DE database. Using these raw values, any of predictions of the total moisture discussed in this report can be made.

  17. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer

    Science.gov (United States)

    Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming

    2018-04-01

    A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.

  18. Acumulación de hojarasca en un pastizal de Panicum maximum y en un sistema silvopastoril de Panicum maximum y Leucaena leucocephala Litter accumulation in a Panicum maximum grassland and in a silvopastoral system of Panicum maximum and Leucaena leucocephala

    Directory of Open Access Journals (Sweden)

    Saray Sánchez

    2007-09-01

    Full Text Available Se realizó un estudio en la Estación Experimental de Pastos y Forrajes "Indio Hatuey", Matanzas, Cuba, con el objetivo de determinar la acumulación de la hojarasca en un pastizal de Panicum maximum Jacq cv. Likoni y en un sistema silvopastoril de Panicum maximum y Leucaena leucocephala (Lam de Wit cv. Cunningham. En los pastizales de P. maximum de ambos sistemas se determinó la acumulación de la hojarasca según la técnica propuesta por Bruce y Ebershon (1982, mientras que la hojarasca de L. leucocephala acumulada en el sistema silvopastoril se determinó según Santa Regina et al. (1997. De forma general, los resultados demostraron que en ambos pastizales la guinea acumuló una menor cantidad de hojarasca durante el período junio-diciembre, etapa en la que se produce su mayor desarrollo vegetativo. En la leucaena la mayor producción de hojarasca ocurrió en el período de diciembre a enero, asociada con la caída natural de sus hojas que se produce por efecto de las temperaturas más bajas y la escasa humedad en el suelo. En el sistema silvopastoril la hojarasca de leucaena representó el mayor porcentaje de peso dentro de la producción total, con un contenido más alto de nitrógeno y de calcio que el de la hojarasca del estrato herbáceo. En la guinea la lluvia fue el factor climático que mayor correlación negativa presentó con la producción de hojarasca en ambos sistemas, y en la leucaena la mayor correlación negativa se encontró con la temperatura mínima.A study was carried out at the Experimental Station of Pastures and Forages "Indio Hatuey", Matanzas, Cuba, with the objective of determining the litter accumulation in a pastureland of Panicum maximum Jacq cv. Likoni and in a silvopastoral system of Panicum maximum and Leucaena leucocephala (Lam de Wit cv. Cunningham. In the P. maximum pasturelands of both systems the litter accumulation was determined by means of the technique proposed by Bruce and Ebershon (1982, while

  19. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Agnese Arduini

    2017-02-01

    Full Text Available In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min, 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score (p < 0.05, which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  20. Emf, maximum power and efficiency of fuel cells

    International Nuclear Information System (INIS)

    Gaggioli, R.A.; Dunbar, W.R.

    1990-01-01

    This paper discusses the ideal voltage of steady-flow fuel cells usually expressed by Emf = -ΔG/nF where ΔG is the Gibbs free energy of reaction for the oxidation of the fuel at the supposed temperature of operation of the cell. Furthermore, the ideal power of the cell is expressed as the product of the fuel flow rate with this emf, and the efficiency of a real fuel cell, sometimes called the Gibbs efficiency, is defined as the ratio of the actual power output to this ideal power. Such viewpoints are flawed in several respects. While it is true that if a cell operates isothermally the maximum conceivable work output is equal to the difference between the Gibbs free energy of the incoming reactants and that of the leaving products, nevertheless, even if the cell operates isothermally, the use of the conventional ΔG of reaction assumes that the products of reaction leave separately from one another (and from any unused fuel), and when ΔS of reaction is positive it assumes that a free heat source exists at the operating temperature, whereas if ΔS is negative it neglects the potential power which theoretically could be obtained form the heat released during oxidation. Moreover, the usual cell does not operate isothermally but (virtually) adiabatically

  1. Metabolic responses of Eucalyptus species to different temperature regimes

    NARCIS (Netherlands)

    Mokochinski, Joao Benhur; Mazzafera, Paulo; Sawaya, Alexandra Christine Helena Frankland; Mumm, Roland; Vos, de Ric Cornelis Hendricus; Hall, Robert David

    2018-01-01

    Species and hybrids of Eucalyptus are the world's most widely planted hardwood trees. They are cultivated across a wide range of latitudes and therefore environmental conditions. In this context, comprehensive metabolomics approaches have been used to assess how different temperature regimes may

  2. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    Science.gov (United States)

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  3. Spatial variability of maximum annual daily rain under different return periods at the Rio de Janeiro state, Brazil

    Directory of Open Access Journals (Sweden)

    Roriz Luciano Machado

    2010-01-01

    Full Text Available Knowledge of maximum daily rain and its return period in a region is an important tool to soil conservation, hydraulic engineering and preservation of road projects. The objective of this work was to evaluate the spatial variability of maximum annual daily rain considering different return periods, at the Rio de Janeiro State. The data set was composed by historical series of 119 rain gauges, for 36 years of observation. The return periods, estimated by Gumbel distribution, were 2, 5, 10, 25, 50 and 100 years. The spatial variability of the return periods was evaluated by semivariograms. All the return periods presented spatial dependence, with exponential and spherical model fitted to the experimental semivariograms. The parameters of the fitted semivariogram model were very similar; however, it was observed the presence of higher nugget effects for semivariograms of longer return periods. The values of maximum annual daily average rain in all the return periods increased from north to south and from countryside to the coast. In the region between the Serra do Mar range and the coast, besides increasing in magnitude, an increase in the spatial variability of the studied values with increasing return periods was also noticed. This behavior is probably caused by the orographic effect. The interpolated maps were more erratic for higher return periods and at the North, Northeast and Coastal Plain regions, in which the installation of new pluviometric stations are recommended.

  4. Maximum entropy approach to H-theory: Statistical mechanics of hierarchical systems.

    Science.gov (United States)

    Vasconcelos, Giovani L; Salazar, Domingos S P; Macêdo, A M S

    2018-02-01

    A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex system with multiple time and length scales. In this approach, the system is formally treated as being composed of a small subsystem-representing the region where the measurements are made-in contact with a set of "nested heat reservoirs" corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E 95, 032315 (2017)10.1103/PhysRevE.95.032315] from a stochastic dynamical approach to the problem.

  5. Optimal Design of ORC Systems with a Low-Temperature Heat Source

    Directory of Open Access Journals (Sweden)

    Nicolas Galanis

    2012-02-01

    Full Text Available A numerical model of subcritical and trans-critical power cycles using a fixed-flowrate low-temperature heat source has been validated and used to calculate the combinations of the maximum cycle pressure (Pev and the difference between the source temperature and the maximum working fluid temperature (DT which maximize the thermal efficiency (ηth or minimize the non-dimensional exergy losses (β, the total thermal conductance of the heat exchangers (UAt and the turbine size (SP. Optimum combinations of Pev and DT were calculated for each one of these four objective functions for two working fluids (R134a, R141b, three source temperatures and three values of the non-dimensional power output. The ratio of UAt over the net power output (which is a first approximation of the initial cost per kW shows that R141b is the better working fluid for the conditions under study.

  6. Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2015-01-01

    Highlights: • Fully ceramic microencapsulated fuel-loaded core is analyzed via a two-temperature homogenized thermal-conductivity model. • The model is compared to harmonic- and volumetric-average thermal conductivity models. • The three thermal analysis models show ∼100 pcm differences in the k eff eigenvalue. • The three thermal analysis models show more than 70 K differences in the maximum temperature. • There occur more than 3 times differences in the maximum power for a control rod ejection accident. - Abstract: Fully ceramic microencapsulated (FCM) fuel, a type of accident-tolerant fuel (ATF), consists of TRISO particles randomly dispersed in a SiC matrix. In this study, for a thermal analysis of the FCM fuel with such a high heterogeneity, a two-temperature homogenized thermal-conductivity model was applied by the authors. This model provides separate temperatures for the fuel-kernels and the SiC matrix. It also provides more realistic temperature profiles than those of harmonic- and volumetric-average thermal conductivity models, which are used for thermal analysis of a fuel element in VHTRs having a composition similar to the FCM fuel, because such models are unable to provide the fuel-kernel and graphite matrix temperatures separately. In this study, coupled with a neutron diffusion model, a FCM fuel-loaded reactor core is analyzed via a two-temperature homogenized thermal-conductivity model at steady- and transient-states. The results are compared to those from harmonic- and volumetric-average thermal conductivity models, i.e., we compare k eff eigenvalues, power distributions, and temperature profiles in the hottest single-channel at steady-state. At transient-state, we compare total powers, reactivity, and maximum temperatures in the hottest single-channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized thermal

  7. Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis

    International Nuclear Information System (INIS)

    Chintala, Venkateswarlu; Subramanian, K.A.

    2014-01-01

    This work is aimed at study of maximum available work and irreversibility (mixing, combustion, unburned, and friction) of a dual-fuel diesel engine (H 2 (hydrogen)–diesel) using exergy analysis. The maximum available work increased with H 2 addition due to reduction in irreversibility of combustion because of less entropy generation. The irreversibility of unburned fuel with the H 2 fuel also decreased due to the engine combustion with high temperature whereas there is no effect of H 2 on mixing and friction irreversibility. The maximum available work of the diesel engine at rated load increased from 29% with conventional base mode (without H 2 ) to 31.7% with dual-fuel mode (18% H 2 energy share) whereas total irreversibility of the engine decreased drastically from 41.2% to 39.3%. The energy efficiency of the engine with H 2 increased about 10% with 36% reduction in CO 2 emission. The developed methodology could also be applicable to find the effect and scope of different technologies including exhaust gas recirculation and turbo charging on maximum available work and energy efficiency of diesel engines. - Highlights: • Energy efficiency of diesel engine increases with hydrogen under dual-fuel mode. • Maximum available work of the engine increases significantly with hydrogen. • Combustion and unburned fuel irreversibility decrease with hydrogen. • No significant effect of hydrogen on mixing and friction irreversibility. • Reduction in CO 2 emission along with HC, CO and smoke emissions

  8. Effects of diurnal temperature difference and gamma radiation on the frequency of somatic cell mutations in the stamen hairs

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Won Rok; Kim, Jae Sung; Shin, Hae Shick; Lee, Jeong Joo

    1998-01-01

    This study deals with the effects of diurnal temperature difference (DTD) on somatic cell mutation frequencies in Tradescantia stamen hairs irradiated with radiation. Potted plants of Tradescantia 4430 were irradiated with 0.3, 0.5, 1.0 and 2.0 Gy of gamma radiation. The irradiated plants were maintained under two different experimental conditions; at constant temperature of 20 degree C (DTD0) and at 28 degree C for 14-h day and 8 degree C for 10-h night (DTD20). The somatic cell mutation rate in 0.5 Gy irradiated group showed a big increase on the 6th day and reached a maximum value on the 10th day after irradiation while the rate in the experimental group under the condition of DTD20 started to increase on the 8th day and got to a maximal value on the 14th day postirradiation. In both of the two experiments, the dose-response relationships were clearly linear. The slope of the DTD20 dose-response curve was much steeper than that of the DTD0 one. In conclusion, a great DTD, as one of environmental stresses, enhanced the effectiveness of radiation in the induction of somatic cell mutations and caused a shift of the peak interval of radiation-induced mutations in Tradescantia stamen hairs

  9. Method of determining coking temperature of coke. [Experimental method of determining final coking temperature using a small sample and calibration graph

    Energy Technology Data Exchange (ETDEWEB)

    Mel' nichuk, A.Yu.; Bondarenko, A.K.; Fialkov, B.S.; Khegay, L.U.; Khvan, L.A.; Muzyzhuk, V.D.; Zakharov, A.G.; Zelenskiy, V.P.

    1985-01-01

    The coking temperature of coke should be determined from the magnitude of the ionization current of the medium during heating (3/sup 0//min) of a coke sample (2 g, fraction < 0.2 mm) in an oxidation medium with air supply (1 1/min). The coking temperature is determined from the maximum magnitude of current using a graduated graph constructed during analysis of coke samples obtained with different final coking temperatures. The discrepancy between the established coking temperature and that defined from the proposed method is 8-19/sup 0/, and that defined from electrical resistance of coke is 26-43/sup 0/. In addition to high accuracy, this method reduces the time outlays for making the analysis.

  10. Increasing the maximum daily operation time of MNSR reactor by modifying its cooling system

    International Nuclear Information System (INIS)

    Khamis, I.; Hainoun, A.; Al Halbi, W.; Al Isa, S.

    2006-08-01

    thermal-hydraulic natural convection correlations have been formulated based on a thorough analysis and modeling of the MNSR reactor. The model considers detailed description of the thermal and hydraulic aspects of cooling in the core and vessel. In addition, determination of pressure drop was made through an elaborate balancing of the overall pressure drop in the core against the sum of all individual channel pressure drops employing an iterative scheme. Using this model, an accurate estimation of various timely core-averaged hydraulic parameters such as generated power, hydraulic diameters, flow cross area, ... etc. for each one of the ten-fuel circles in the core can be made. Furthermore, distribution of coolant and fuel temperatures, including maximum fuel temperature and its location in the core, can now be determined. Correlation among core-coolant average temperature, reactor power, and core-coolant inlet temperature, during both steady and transient cases, have been established and verified against experimental data. Simulating various operating condition of MNSR, good agreement is obtained for at different power levels. Various schemes of cooling have been investigated for the purpose of assessing potential benefits on the operational characteristics of the syrian MNSR reactor. A detailed thermal hydraulic model for the analysis of MNSR has been developed. The analysis shows that an auxiliary cooling system, for the reactor vessel or installed in the pool which surrounds the lower section of the reactor vessel, will significantly offset the consumption of excess reactivity due to the negative reactivity temperature coefficient. Hence, the maximum operating time of the reactor is extended. The model considers detailed description of the thermal and hydraulic aspects of cooling the core and its surrounding vessel. Natural convection correlations have been formulated based on a thorough analysis and modeling of the MNSR reactor. The suggested 'micro model

  11. Treponema pallidum 3-Phosphoglycerate Mutase Is a Heat-Labile Enzyme That May Limit the Maximum Growth Temperature for the Spirochete

    Science.gov (United States)

    Benoit, Stéphane; Posey, James E.; Chenoweth, Matthew R.; Gherardini, Frank C.

    2001-01-01

    In the causative agent of syphilis, Treponema pallidum, the gene encoding 3-phosphoglycerate mutase, gpm, is part of a six-gene operon (tro operon) that is regulated by the Mn-dependent repressor TroR. Since substrate-level phosphorylation via the Embden-Meyerhof pathway is the principal way to generate ATP in T. pallidum and Gpm is a key enzyme in this pathway, Mn could exert a regulatory effect on central metabolism in this bacterium. To study this, T. pallidum gpm was cloned, Gpm was purified from Escherichia coli, and antiserum against the recombinant protein was raised. Immunoblots indicated that Gpm was expressed in freshly extracted infective T. pallidum. Enzyme assays indicated that Gpm did not require Mn2+ while 2,3-diphosphoglycerate (DPG) was required for maximum activity. Consistent with these observations, Mn did not copurify with Gpm. The purified Gpm was stable for more than 4 h at 25°C, retained only 50% activity after incubation for 20 min at 34°C or 10 min at 37°C, and was completely inactive after 10 min at 42°C. The temperature effect was attenuated when 1 mM DPG was added to the assay mixture. The recombinant Gpm from pSLB2 complemented E. coli strain PL225 (gpm) and restored growth on minimal glucose medium in a temperature-dependent manner. Increasing the temperature of cultures of E. coli PL225 harboring pSLB2 from 34 to 42°C resulted in a 7- to 11-h period in which no growth occurred (compared to wild-type E. coli). These data suggest that biochemical properties of Gpm could be one contributing factor to the heat sensitivity of T. pallidum. PMID:11466272

  12. Measurement of very rapidly variable temperatures

    International Nuclear Information System (INIS)

    Elberg, S.; Mathonnet, P.

    1974-01-01

    Bibliographical research and visits to laboratories were undertaken in order to survey the different techniques used to measure rapidly variable temperatures, specifying the limits in maximum temperature and variation rate (time constant). On the basis of the bibliographical study these techniques were classified in three categories according to the physical meaning of their response time. Extension of the bibliographical research to methods using fast temperature variation measurement techniques and visits to research and industrial laboratories gave in an idea of the problems raised by the application of these methods. The use of these techniques in fields other than those for which they were developed can sometimes be awkward in the case of thermometric probe devices where the time constant cannot generally be specified [fr

  13. Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

    Science.gov (United States)

    Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan

    2018-06-01

    In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.

  14. Different types of maximum power point tracking techniques for renewable energy systems: A survey

    Science.gov (United States)

    Khan, Mohammad Junaid; Shukla, Praveen; Mustafa, Rashid; Chatterji, S.; Mathew, Lini

    2016-03-01

    Global demand for electricity is increasing while production of energy from fossil fuels is declining and therefore the obvious choice of the clean energy source that is abundant and could provide security for development future is energy from the sun. In this paper, the characteristic of the supply voltage of the photovoltaic generator is nonlinear and exhibits multiple peaks, including many local peaks and a global peak in non-uniform irradiance. To keep global peak, MPPT is the important component of photovoltaic systems. Although many review articles discussed conventional techniques such as P & O, incremental conductance, the correlation ripple control and very few attempts have been made with intelligent MPPT techniques. This document also discusses different algorithms based on fuzzy logic, Ant Colony Optimization, Genetic Algorithm, artificial neural networks, Particle Swarm Optimization Algorithm Firefly, Extremum seeking control method and hybrid methods applied to the monitoring of maximum value of power at point in systems of photovoltaic under changing conditions of irradiance.

  15. Fluid temperature measurement technique by using Raman scattering

    International Nuclear Information System (INIS)

    An, Jeong Soo; Yang, Sun Kyu; Min, Kyung Ho; Chung, Moon Ki; Choi, Young Don

    1999-06-01

    Temperature measurement technique by using Raman scattering was developed for the liquid water at temperature of 20 - 90 degree C and atmospheric pressure. Strong relationship between Raman scattering characteristics and liquid temperature change was observed. Various kinds of measurement techniques, such as Peak Intensity, Peak Wavelength, FWHM (Full Width at Half Maximum), PMCR ( Polymer Monomer Concentration RAte), TSIR (Temperature Sensitive Intensity Ratio), IDIA (Integral Difference Intensity Area) were tested. TSIR has the highest accuracy in mean error or 0.1 deg C and standard deviation of 0.1248 deg C. This report is one of the results in developing process of Raman temperature measurement technique. Next research step is to develop Raman temperature measurement technique at the high temperature and high pressure conditions in single or two phase flows. (author). 13 refs., 3 tabs., 38 figs

  16. The coupled dynamical problem of thermoelasticity in case of large temperature differences

    International Nuclear Information System (INIS)

    Szekeres, A.

    1981-01-01

    In the tasks of thermoelasticity in general, also in dynamical problems it is common to suppose small temperature differences. The equations used in scientific literature refer to these. It arises the thought of what is the influence on the dynamical problems of taking into account the large temperature changes. To investigate this first we present the general equation of heat conduction in case of small temperature differences according to Nowacki and Biot. On this basis we introduce the general equation of heat conduction with large temperature changes. Some remarks show the connection between the two cases. Using the latter in the equations of thermoelasticity we write down the expressions of the problem for the thermal shock of a long bar. Finally we show the results of the numerical example and the experimental opoortunity to measure some of the constants. (orig.)

  17. Experimental investigation on a small pumpless ORC (organic rankine cycle) system driven by the low temperature heat source

    International Nuclear Information System (INIS)

    Gao, P.; Wang, L.W.; Wang, R.Z.; Jiang, L.; Zhou, Z.S.

    2015-01-01

    A small pumpless ORC (organic rankine cycle) system with different scroll expanders modified from compressors of the automobile air-conditioner is established, and the refrigerant R245fa is chosen as the working fluid. Different hot water temperatures of 80, 85, 90 and 95 °C are employed to drive the pumpless ORC system. Experimental results show that a maximum shaft power of 361.0 W is obtained under the hot water temperature of 95 °C, whereas the average shaft power is 155.8 W. The maximum energy efficiency of 2.3% and the maximum exergy efficiency of 12.8% are obtained at the hot water temperature of 90 °C. Meanwhile a test rig for investigating the mechanical loss of the scroll expander is established. The torque caused by the internal mechanical friction of the expander is about 0.4 N m. Additionally, another scroll expander with a displacement of 86 ml/r is also employed to investigate how scroll expander displacement influences the performance of the pumpless ORC system. Finally, the performance of the pumpless ORC system is compared with that of the conventional ORC system, and experimental results show that the small pumpless ORC system has more advantages for the low-grade heat recovery. - Highlights: • A small pumpless ORC (organic rankine cycle) system is established, and different scroll expanders are tested. • The maximum energy and exergy efficiency are 2.3% and 12.8% respectively. • A maximum shaft power of 361.0 W is obtained under the heat source temperature of 95 °C. • The small pumpless ORC system has characteristics of the high efficiency.

  18. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  19. Effects of different temperature treatments on biological ice nuclei in snow samples

    Science.gov (United States)

    Hara, Kazutaka; Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Matsuki, Atsushi

    2016-09-01

    The heat tolerance of biological ice nucleation activity (INA) depends on their types. Different temperature treatments may cause varying degrees of inactivation on biological ice nuclei (IN) in precipitation samples. In this study, we measured IN concentration and bacterial INA in snow samples using a drop freezing assay, and compared the results for unheated snow and snow treated at 40 °C and 90 °C. At a measured temperature of -7 °C, the concentration of IN in untreated snow was 100-570 L-1, whereas the concentration in snow treated at 40 °C and 90 °C was 31-270 L-1 and 2.5-14 L-1, respectively. In the present study, heat sensitive IN inactivated by heating at 40 °C were predominant, and ranged 23-78% of IN at -7 °C compared with untreated samples. Ice nucleation active Pseudomonas strains were also isolated from the snow samples, and heating at 40 °C and 90 °C inactivated these microorganisms. Consequently, different temperature treatments induced varying degrees of inactivation on IN in snow samples. Differences in the concentration of IN across a range of treatment temperatures might reflect the abundance of different heat sensitive biological IN components.

  20. Comparison of the Argon Triple-Point Temperature in Small Cells of Different Construction

    Science.gov (United States)

    Kołodziej, B.; Kowal, A.; Lipiński, L.; Manuszkiewicz, H.; Szmyrka-Grzebyk, A.

    2017-06-01

    The argon triple point (T_{90} = 83.8058 \\hbox {K}) is a fixed point of the International Temperature Scale of Preston-Thomas (Metrologia 27:3, 1990). Cells for realization of the fixed point have been manufactured by several European metrology institutes (Pavese in Metrologia 14:93, 1978; Pavese et al. in Temperature, part 1, American Institute of Physics, College Park, 2003; Hermier et al. in Temperature, part 1, American Institute of Physics, College Park, 2003; Pavese and Beciet in Modern gas-based temperature and pressure measurement, Springer, New York, 2013). The Institute of Low Temperature and Structure Research has in its disposal a few argon cells of various constructions used for calibration of capsule-type standard platinum resistance thermometers (CSPRT) that were produced within 40 years. These cells differ in terms of mechanical design and thermal properties, as well as source of gas filling the cell. This paper presents data on differences between temperature values obtained during the realization of the triple point of argon in these cells. For determination of the temperature, a heat-pulse method was applied (Pavese and Beciet in Modern gas-based temperature and pressure measurement, Springer, New York, 2013). The comparisons were performed using three CSPRTs. The temperatures difference was determined in relation to a reference function W(T)=R(T_{90})/R(271.16\\hbox {K}) in order to avoid an impact of CSPRT resistance drift between measurements in the argon cells. Melting curves and uncertainty budgets of the measurements are given in the paper. A construction of measuring apparatus is also presented in this paper.

  1. Impact of container material on the development of Aedes aegypti larvae at different temperatures.

    Science.gov (United States)

    Kumar, Gaurav; Singh, R K; Pande, Veena; Dhiman, R C

    2016-01-01

    Aedes aegypti, the primary vector of dengue generally breeds in intradomestic and peridomestic containers made up of different materials, i.e. plastic, iron, rubber, earthen material etc. The material of container is likely to affect the temperature of water in container with variation in environmental temperature. The present study was aimed to determine the effect of different container materials on larval development of Ae. aegypti at different temperatures. Newly hatched I instar larvae (2-4 h old) were used in the study and experiments were conducted using three different containers made up of plastic, iron and earthen material. Three replicates for each type of container at 22, 26, 30, 34, 38, 40, and 42°C were placed in environmental chamber for the development of larvae. At temperatures >22°C, 50% pupation was completed in earthen pot within 4.3±0.6 to 6.3±0.6 days followed by plastic containers (5±0 to 8±0 days) and iron containers (6±0 to 9±0 days). Developmental time for 50% pupation in the three containers differed significantly (p containers (p containers resulted in significant variations in the developmental period of larvae. More than 35°C temperature of water was found inimical for pupal development. The results revealed the variation in temperature of water in different types of containers depending on the material of container, affecting duration of larval development. As the larval development was faster in earthen pot as compared to plastic and iron containers, community should be discouraged for storing the water in earthen pots. However, in view of containers of different materials used by the community in different temperature zones in the country, further studies are required for devising area-specific preventive measures for Aedes breeding.

  2. Comparison of Conductor-Temperature Calculations Based on Different Radial-Position-Temperature Detections for High-Voltage Power Cable

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2018-01-01

    Full Text Available In this paper, the calculation of the conductor temperature is related to the temperature sensor position in high-voltage power cables and four thermal circuits—based on the temperatures of insulation shield, the center of waterproof compound, the aluminum sheath, and the jacket surface are established to calculate the conductor temperature. To examine the effectiveness of conductor temperature calculations, simulation models based on flow characteristics of the air gap between the waterproof compound and the aluminum are built up, and thermocouples are placed at the four radial positions in a 110 kV cross-linked polyethylene (XLPE insulated power cable to measure the temperatures of four positions. In measurements, six cases of current heating test under three laying environments, such as duct, water, and backfilled soil were carried out. Both errors of the conductor temperature calculation and the simulation based on the temperature of insulation shield were significantly smaller than others under all laying environments. It is the uncertainty of the thermal resistivity, together with the difference of the initial temperature of each radial position by the solar radiation, which led to the above results. The thermal capacitance of the air has little impact on errors. The thermal resistance of the air gap is the largest error source. Compromising the temperature-estimation accuracy and the insulation-damage risk, the waterproof compound is the recommended sensor position to improve the accuracy of conductor-temperature calculation. When the thermal resistances were calculated correctly, the aluminum sheath is also the recommended sensor position besides the waterproof compound.

  3. Anomalous maximum and minimum for the dissociation of a geminate pair in energetically disordered media

    Science.gov (United States)

    Govatski, J. A.; da Luz, M. G. E.; Koehler, M.

    2015-01-01

    We study the geminated pair dissociation probability φ as function of applied electric field and temperature in energetically disordered nD media. Regardless nD, for certain parameters regions φ versus the disorder degree (σ) displays anomalous minimum (maximum) at low (moderate) fields. This behavior is compatible with a transport energy which reaches a maximum and then decreases to negative values as σ increases. Our results explain the temperature dependence of the persistent photoconductivity in C60 single crystals going through order-disorder transitions. They also indicate how an energetic disorder spatial variation may contribute to higher exciton dissociation in multicomponent donor/acceptor systems.

  4. Optimization of Firing Temperature of PbO-doped SnO2 Sensor for Detection of Acetone, Methanol, Propanol

    Directory of Open Access Journals (Sweden)

    J. K. Srivastava

    2009-08-01

    Full Text Available In the present work, the response of a set of three PbO (1 % wt doped thick film SnO2 sensors fired at different firing temperatures (6500 C, 7500 C, 8500 C have been studied. The selection of appropriate firing temperature is necessary for the sensor fabrication in order to achieve the highest sensitivity for a particular species of gas. To achieve this, thick film PbO-doped sensor were fabricated on a 1˝x1˝ alumina substrate. The sensitivity of these sensors has been studied at different operating temperatures (1500 C-3500 C upon exposure to acetone, methanol and propanol. The sensor fired at 8500 C besides having good adhesion yields maximum sensitivity at an operating temperature of 2500 C for all gases except acetone for which it gives maximum response at 2000 C.

  5. Evaluating efficacy of filtration + UV-C radiation for ballast water treatment at different temperatures

    Science.gov (United States)

    Casas-Monroy, Oscar; Linley, Robert D.; Chan, Po-Shun; Kydd, Jocelyn; Vanden Byllaardt, Julie; Bailey, Sarah

    2018-03-01

    To prevent new ballast water-mediated introductions of aquatic nonindigenous species (NIS), many ships will soon use approved Ballast Water Management Systems (BWMS) to meet discharge standards for the maximum number of viable organisms in ballast water. Type approval testing of BWMS is typically conducted during warmer seasons when plankton concentrations are highest, despite the fact that ships operate globally year-round. Low temperatures encountered in polar and cool temperate climates, particularly during the winter season, may impact treatment efficacy through changes in plankton community composition, biological metabolic rates or chemical reaction rates. Filtration + UV irradiance is one of the most common ballast water treatment methods, but its effectiveness at low temperatures has not been assessed. The objective in this study was to examine the efficacy of filtration + UV-C irradiation treatment at low temperatures for removal or inactivation of phytoplankton and zooplankton populations during simulated ballast water treatment. Organisms from two size classes (≥ 10 to < 50 μm and ≥ 50 μm) were identified and enumerated using microscope and culture techniques. The response of organisms in both size categories to UV-C irradiation was evident across a range of temperatures (18 °C, 12 °C and 2 °C) as a significant decrease in concentration between controls and treated samples. Results indicate that filtration + UV-C irradiation will be effective at low temperatures, with few viable organisms ≥ 10 to < 50 μm recorded even 21 days following UV exposure (significantly lower than in the control treatment).

  6. Temperature effects on flocculation, using different coagulants.

    Science.gov (United States)

    Fitzpatrick, C S B; Fradin, E; Gregory, J

    2004-01-01

    Temperature is known to affect flocculation and filter performance. Jar tests have been conducted in the laboratory, using a photometric dispersion analyser (PDA) to assess the effects of temperature on floc formation, breakage and reformation. Alum, ferric sulphate and three polyaluminium chloride (PACI) coagulants have been investigated for temperatures ranging between 6 and 29 degrees C for a suspension of kaolin clay in London tap water. Results confirm that floc formation is slower at lower temperatures for all coagulants. A commercial PACl product, PAX XL 19, produces the largest flocs for all temperatures; and alum the smallest. Increasing the shear rate results in floc breakage in all cases and the flocs never reform to their original size. This effect is most notable for temperatures around 15 degrees C. Breakage, in terms of floc size reduction, is greater for higher temperatures, suggesting a weaker floc. Recovery after increased shear is greater at lower temperatures implying that floc break-up is more reversible for lower temperatures.

  7. High temperature behaviour of self-consolidating concrete

    International Nuclear Information System (INIS)

    Fares, Hanaa; Remond, Sebastien; Noumowe, Albert; Cousture, Annelise

    2010-01-01

    This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have already been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.

  8. Responses of antennal campaniform sensilla to rapid temperature changes in ground beetles of the tribe platynini with different habitat preferences and daily activity rhythms.

    Science.gov (United States)

    Must, Anne; Merivee, Enno; Luik, Anne; Mänd, Marika; Heidemaa, Mikk

    2006-05-01

    Responses of temperature sensitive (cold) cells from the antenna of ground beetles (tribe Platynini) were compared in species with different ecological preferences and daily activity rhythms. Action potential rates were characterized at various temperatures (ranges 23-39 degrees C) and during rapid changes in it (Deltat=0.5-15 degrees C). The stationary firing frequencies were nearly twice as high in eurythermic open field ground beetles Agonum muelleri and Anchomenus dorsalis (firing rates ranging from 22 to 47imp/s) than in a stenothermic forest species Platynus assimilis. In the eurythermic species, the firing rate did not significantly depend on temperature (Anchomenus dorsalis range of 23-27 degrees C and Agonum muelleri range of 23-33 degrees C) but plots of firing rate versus temperature showed rapid declines when lethally high temperatures were approached. In contrast, a nearly linear decline of the firing rate/temperature curve was observed in Platynus assimilis. Responses to rapid temperature decreases were also considerably higher in eurythermic species. Both the peak frequency of the initial burst (maximum 420-650Hz) as well as the sustained discharge in the first 4s of the response were higher than in Platynus assimilis. Long silent periods, lasting up to several seconds, that occurred at the beginning of the response to rapid warming were significantly shorter in Agonum muelleri and Anchomenus dorsalis compared to Platynus assimilis. These findings suggest that the responses of thermoreceptors to temperature changes may be correlated with specific ecological preferences.

  9. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    A substantial growth of the installed photovoltaic systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking technique enables maximization of the energy production...... of photovoltaic sources during stochastically varying solar irradiation and ambient temperature conditions. Thus, the overall efficiency of the photovoltaic energy production system is increased. Numerous techniques have been presented during the last decade for implementing the maximum power point tracking...... process in a photovoltaic system. This article provides an overview of the operating principles of these techniques, which are suited for either uniform or non-uniform solar irradiation conditions. The operational characteristics and implementation requirements of these maximum power point tracking...

  10. Projected Changes in Temperature Extremes in China Using PRECIS

    Directory of Open Access Journals (Sweden)

    Yujing Zhang

    2017-01-01

    Full Text Available Temperature extremes can cause disastrous impacts on ecological and social economic systems. China is very sensitive to climate change, as its warming rate exceeds that of the global mean level. This paper focused on the spatial and temporal changes of the temperature extremes characterized by the 95th percentile of maximum temperature (TX95, the 5th percentile of the minimum temperature (TN5, high-temperature days (HTD and low-temperature days (LTD. The daily maximum and minimum temperatures generated by PRECIS under different Representative Concentration Pathways (RCPs are used in the research. The results show that: (1 Model simulation data can reproduce the spatial distribution features of the maximum temperature (Tmax and minimum temperature (Tmin as well as that of the extreme temperature indices; (2 By the end of the 21st century (2070–2099, both the Tmax and Tmin are warmer than the baseline level (1961–1990 in China and the eight sub-regions. However, there are regional differences in the asymmetrical warming features, as the Tmin warms more than the Tmax in the northern part of China and the Tibetan Plateau, while the Tmax warms more than the Tmin in the southern part of China; (3 The frequency of the warm extremes would become more usual, as the HTD characterized by the present-day threshold would increase by 106%, 196% and 346%, under RCP2.6, RCP4.5 and RCP8.5, respectively, while the cold extremes characterized by the LTD would become less frequent by the end of the 21st century, decreasing by 75%, 90% and 98% under RCP2.6, RCP4.5 and RCP8.5, respectively. The southern and eastern parts of the Tibetan Plateau respond sensitively to changes in both the hot and cold extremes, suggesting its higher likelihood to suffer from climate warming; (4 The intensity of the warm (cold extremes would increase (decrease significantly, characterized by the changes in the TX95 (TN5 by the end of the 21st century, and the magnitude of the

  11. Single-sided natural ventilation driven by wind pressure and temperature difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Heiselberg, Per

    2008-01-01

    -scale wind tunnel experiments have been made with the aim of making a new expression for calculation of the airflow rate in single-sided natural ventilation. During the wind tunnel experiments it was found that the dominating driving force differs between wind speed and temperature difference depending......Even though opening a window for ventilation of a room seems very simple, the flow that occurs in this situation is rather complicated. The amount of air going through the window opening will depend on the wind speed near the building, the temperatures inside and outside the room, the wind...

  12. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    Science.gov (United States)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  13. Biological parameters of trichogramma chilonis ishii (trichogrammatidae: hymenoptera) feeding on sitotroga cerealella eggs at three constant temperatures

    International Nuclear Information System (INIS)

    Sultan, R.; Khan, J.; Haq, E.

    2013-01-01

    The study was conducted on the biological parameters of trichogramma chilonis ishii (trichogrammatidae: hymenoptera) feeding on grain moth, sitotroga cereallela eggs at three constant temperatures and five different ages of host eggs at insect pest management programme, national agricultural research centre, (narc) islamabad. The results revealed that maximum rate of parasitism was 95.70 +- 1.94 at 28 +- 1 degree c while minimum was 61.30 +-1.70 at 32 +- 1 degree c. maximum adult emergence and female ratio from parasitized eggs were 96.30% with 59.2+- 5.83 female ratio at 28 +-1 degree c while minimum was 51.10% with female ratio of 58.1 at 32+-1 degree c. The maximum developmental duration (9.6 +- 0.32 days) and adult longevity (4.3 +- 0.38 days) was at 24 +-1 degree degree c while minimum was 7.4 +-0.36 and 2.0 +- 0.56 days at 32 +- 1 degree c. The results indicate that temperature has a significant effect on the biological parameters of trichogramma and with increasing temperature developmental duration decreased. Similarly effect of host eggs age indicates that maximum parasitism and adult emergence were 97.40 +- 0.84% and 98.20 +- 0.94% on 2h old eggs while minimum parasitism was 24.6 +- 4.92% and adult emergence was 21.5 +- 1.33% from 72h old eggs. Adult longevity and female ratio was not significantly different at different ages of host eggs. Thus out of three tested temperatures, 28 +-1 degree c was more suitable for mass rearing of tricho-gramma and feeding 2-12h old eggs for maximum parasitism and adult emergence from parasitized eggs under laboratory condition of 28 +-1 degree c. (author)

  14. Clay facial masks: physicochemical stability at different storage temperatures.

    Science.gov (United States)

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  15. Effect of different water temperatures on growth of aquatic plants Salvinia natans and Ceratophyllum demersum

    Directory of Open Access Journals (Sweden)

    Khadija Kadhem Hreeb

    2016-12-01

    Full Text Available Objective: To evaluate the effect of some different water temperatures on growth of aquatic plants (Salvinia natans and Ceratophyllum demersum. Methods: The aquatic plants were brought from Shatt Al-Arab River in 2016. Equal weights of aquatic plants were aquacultured in aquaria, and were exposed to three different temperatures ( 12, 22 and 32 °C. Results: The results showed that the two plants did not show significant differences with respect to their effects on pH and electrical conductivity values. Time and temperature did not affect the values of pH and electrical conductivity. The values of dissolved oxygen was significantly influenced with variation of time and temperature, while the two plants did not have significant differences on dissolved oxygen values, nitrate ion concentration and was not significantly influenced with variation of plant species or temperature or time. Plant species and temperature significantly affected phosphate ion concentration, while the time did not significantly influence the concentration of phosphate ion. Chlorophyll a content and biomass were significantly influenced with the variation of plant species, and temperature . Conclusions: Aquatic plants has a species specific respond to temperatures change in their environment. Water plant, Ceratophyllum demersum is more tolerant to temperatures change than Salvinia natans.

  16. MAXIMUM PRINCIPLE FOR SUBSONIC FLOW WITH VARIABLE ENTROPY

    Directory of Open Access Journals (Sweden)

    B. Sizykh Grigory

    2017-01-01

    Full Text Available Maximum principle for subsonic flow is fair for stationary irrotational subsonic gas flows. According to this prin- ciple, if the value of the velocity is not constant everywhere, then its maximum is achieved on the boundary and only on the boundary of the considered domain. This property is used when designing form of an aircraft with a maximum critical val- ue of the Mach number: it is believed that if the local Mach number is less than unit in the incoming flow and on the body surface, then the Mach number is less then unit in all points of flow. The known proof of maximum principle for subsonic flow is based on the assumption that in the whole considered area of the flow the pressure is a function of density. For the ideal and perfect gas (the role of diffusion is negligible, and the Mendeleev-Clapeyron law is fulfilled, the pressure is a function of density if entropy is constant in the entire considered area of the flow. Shows an example of a stationary sub- sonic irrotational flow, in which the entropy has different values on different stream lines, and the pressure is not a function of density. The application of the maximum principle for subsonic flow with respect to such a flow would be unreasonable. This example shows the relevance of the question about the place of the points of maximum value of the velocity, if the entropy is not a constant. To clarify the regularities of the location of these points, was performed the analysis of the com- plete Euler equations (without any simplifying assumptions in 3-D case. The new proof of the maximum principle for sub- sonic flow was proposed. This proof does not rely on the assumption that the pressure is a function of density. Thus, it is shown that the maximum principle for subsonic flow is true for stationary subsonic irrotational flows of ideal perfect gas with variable entropy.

  17. Performance analysis of ORC power generation system with low-temperature waste heat of aluminum reduction cell

    Science.gov (United States)

    Wang, Zhiqi; Zhou, Naijun; Jing, Guo

    Performance of organic Rankine cycle (ORC) system to recover low-temperature waste heat from aluminum reduction cell was analyzed. The temperature of waste heat is 80°C-200°C and the flow rate is 3×105m3/h. The pinch temperature difference between waste heat and working fluids is 10°C. The results show that there is optimal evaporating temperature for maximum net power under the same pinch point. For heat source temperature range of 80°C-140°C and 150°C-170°C, the working fluid given biggest net power is R227ea and R236fa, respectively. When the temperature is higher than 180°C, R236ea generates the biggest net power. The variation of heat source temperature has important effect on net power. When the temperature decreases 10%, the net power will deviate 30% from the maximum value.

  18. Diurnal variation of intraoral pH and temperature.

    Science.gov (United States)

    Choi, Jung Eun; Lyons, Karl M; Kieser, Jules A; Waddell, Neil J

    2017-01-01

    The aim of this study was to measure continuously the intraoral pH and temperature of healthy individuals to investigate their diurnal variations. Seventeen participants (mean age, 31±9 years) wore a custom-made intraoral appliance fitted with a pH probe and thermocouple for two sets of 24 h, while carrying out normal daily activities including sleep. The continuous changes in intraoral pH and temperature were captured using a sensor placed on the palatal aspect of the upper central incisors. The collected data were categorised into different status (awake and sleep) and periods (morning, afternoon, evening and night). Both quantitative and qualitative analyses were conducted. The intraoral pH change was found to show a distinctive daily rhythm, showing a 12-h interval between maximum (7.73) and minimum (6.6) pH values. The maximum and minimum values were found to repeat after 24 h. The mean pH over 48 h (two sets of 24 h) was found to be 7.27 (±0.74). There was significant difference found in pH when subjects were awake and asleep and different periods during the day ( P pH. There was a significant difference found in temperature depending on the time of the day, except between morning and afternoon ( P =0.78). Our results showed that there is a distinctive daily, circadian-like pattern in intraoral pH variation over a 24-h period, which has been considered as one of the risk factors in sleep-related dental diseases.

  19. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Waade, C.; Waade, Charlotte

    1997-01-01

    Sausages with added Staphylococcus xylosus were fermented at different temperatures and with different added levels of salt, glucose, nitrite, nitrate and Pediococcus pentosaceus in accordance with a six-factor fractional design. The amounts of individual amino acids were measured and the effects...... that the amounts of the volatile compounds, 2-methyl propanal, 2- and 3-methyl butanal, were inversely correlated with the amounts of valine, isoleucine and leucine, respectively, indicating that those volatiles were degradation products of the latter. (C) 1997 Elsevier Science Ltd....

  20. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  1. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or w......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C-1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream...... at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal...

  2. Statistic method of research reactors maximum permissible power calculation

    International Nuclear Information System (INIS)

    Grosheva, N.A.; Kirsanov, G.A.; Konoplev, K.A.; Chmshkyan, D.V.

    1998-01-01

    The technique for calculating maximum permissible power of a research reactor at which the probability of the thermal-process accident does not exceed the specified value, is presented. The statistical method is used for the calculations. It is regarded that the determining function related to the reactor safety is the known function of the reactor power and many statistically independent values which list includes the reactor process parameters, geometrical characteristics of the reactor core and fuel elements, as well as random factors connected with the reactor specific features. Heat flux density or temperature is taken as a limiting factor. The program realization of the method discussed is briefly described. The results of calculating the PIK reactor margin coefficients for different probabilities of the thermal-process accident are considered as an example. It is shown that the probability of an accident with fuel element melting in hot zone is lower than 10 -8 1 per year for the reactor rated power [ru

  3. Heat stress in urban areas. Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig

    Energy Technology Data Exchange (ETDEWEB)

    Franck, Ulrich; Roeder, Stefan; Schlink, Uwe [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Core Facility Studies; Krueger, Michael [Leipzig Univ. (Germany). Inst. of Geography; Schwarz, Nina [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Computational Landscape Ecology; Grossmann, Katrin [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Urban and Environmental Sociology

    2013-04-15

    Climate projections for Leipzig suggest elevated minimum and maximum temperatures as well as more frequent days with high temperatures. Hence, climate change is threatening human well-being and health. People spend the majority of their time indoors. Therefore, indoor temperatures (especially during the night) are of special importance with respect to well-being and health. Indoor air temperature depends on outdoor air temperatures, but is for example modified by type of urban structure, housing area, and may be also influenced by differences in the behavior of the inhabitants. Especially in cities, outdoor air temperatures depend on urban structure e.g. housing density, building arrangement, unpaved areas, types of urban structures, urban green, and other factors. Hence, the questions arise how types of urban structures are related to inner-urban temperature differences and how outdoor air temperatures influence indoor temperatures in dependence on urban housing conditions. This work is a part of a pilot study conducted during the summer 2010 which gathered data from remote sensing, mobile measurements, stationary measurements of air temperatures and relative humidity in areas with different housing structures, and of indoor as well as outdoor temperatures in occupied apartments. Household-survey data reported the subjective perception of heat stress. The study resulted in rather complex relationships between type of housing areas, indoor and outdoor temperatures, morning and evening temperatures, indoor and outdoor temperatures as well as subjective heat perception. Green spaces and types of residential areas are related to air temperatures. More green resulted in lower temperatures. Temperatures have a tendency to increase with increasing story number and are significantly higher in the top floor. An indoor heat island effect corresponding to the outdoor effect could be shown for the homes: Distance to city center is a predicting variable for both outdoor and

  4. Heat stress in urban areas: Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig

    Directory of Open Access Journals (Sweden)

    Ulrich Franck

    2013-04-01

    Full Text Available Climate projections for Leipzig suggest elevated minimum and maximum temperatures as well as more frequent days with high temperatures. Hence, climate change is threatening human well-being and health. People spend the majority of their time indoors. Therefore, indoor temperatures (especially during the night are of special importance with respect to well-being and health. Indoor air temperature depends on outdoor air temperatures, but is for example modified by type of urban structure, housing area, and may be also influenced by differences in the behavior of the inhabitants. Especially in cities, outdoor air temperatures depend on urban structure e.g. housing density, building arrangement, unpaved areas, types of urban structures, urban green, and other factors. Hence, the questions arise how types of urban structures are related to inner-urban temperature differences and how outdoor air temperatures influence indoor temperatures in dependence on urban housing conditions. This work is a part of a pilot study conducted during the summer 2010 which gathered data from remote sensing, mobile measurements, stationary measurements of air temperatures and relative humidity in areas with different housing structures, and of indoor as well as outdoor temperatures in occupied apartments. Household-survey data reported the subjective perception of heat stress. The study resulted in rather complex relationships between type of housing areas, indoor and outdoor temperatures, morning and evening temperatures, indoor and outdoor temperatures as well as subjective heat perception. Green spaces and types of residential areas are related to air temperatures. More green resulted in lower temperatures. Temperatures have a tendency to increase with increasing story number and are significantly higher in the top floor. An indoor heat island effect corresponding to the outdoor effect could be shown for the homes: Distance to city center is a predicting variable for

  5. The GOCF/AWAP system - forecasting temperature extremes

    International Nuclear Information System (INIS)

    Fawcett, Robert; Hume, Timothy

    2010-01-01

    Gridded hourly temperature forecasts from the Bureau of Meteorology's Gridded Operational Consensus Forecasting (GOCF) system are combined in real time with the Australian Water Availability Project (AWAP) gridded daily temperature analyses to produce gridded daily maximum and minimum temperature forecasts with lead times from one to five days. These forecasts are compared against the historical record of AWAP daily temperature analyses (1911 to present), to identify regions where record or near-record temperatures are predicted to occur. This paper describes the GOCF/AWAP system, showing how the daily maximum and minimum temperature forecasts are prepared from the hourly forecasts, and how they are bias-corrected in real time using the AWAP analyses, against which they are subsequently verified. Using monthly climatologies of long-term daily mean, standard deviation and all-time highest and lowest on record, derived forecast products (for both maximum and minimum temperature) include ordinary and standardised anomalies, 'forecast - highest on record' and 'forecast - lowest on record'. Compensation for the climatological variation across the country is achieved in these last two products, which provide the necessary guidance as to whether or not record-breaking temperatures are expected, by expressing the forecast departure from the previous record in both 0 C and standard deviations.

  6. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.

    Science.gov (United States)

    Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H

    2018-01-01

    Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.

  7. EFFECTS OF RATION SIZE AND TEMPERATURE ON MOULT INCREMENT AND METABOLIC PARAMETERS OF JUVENILE NOBLE CRAYFISH, ASTACUS ASTACUS

    Directory of Open Access Journals (Sweden)

    RENAI B.

    2007-07-01

    Full Text Available A laboratory experiment was carried out to test the combined effects of ration size (1 vs 3% body weight, b.w. and temperature (15 ± 2 vs 22 ± 2 °C on moult increment and metabolic parameters of 80 juvenile noble crayfish (Astacus astacus. The maximum daily consumption (Cmax and respiration rate (R were used to calculate the growth scope (i.e. the difference between maximum daily energy consumption and energy costs at a given temperature. The conversion of R into a food-equivalent unit allowed the comparison with Cmax. Results showed that crayfish obtained the maximum moult increment when fed 3% b.w. while temperature seemed to play a less relevant role on growth rate per moult, affecting only the moulting frequency. Crayfish A. astacus fed ad libitum showed a relative insensitivity to the metabolic parameters (oxygen uptake, R and Cmax within the analysed range of temperatures, possibly as a reflection of this “species” distribution across a broad variety of habitats with different thermal regimes. In the present study, A. astacus displayed characteristics proper of a K-selected species, as slow to moderate growth.

  8. Glass temperatures in free-standing canisters

    International Nuclear Information System (INIS)

    Hardy, B.J.; Hensel, S.J.

    1993-01-01

    The waste-forms produced by the Defense Waste Processing Facility (DWPF) are subject to the requirements of the Waste Acceptance Product Specifications (WAPS). The WAPS sets the maximum post cooldown temperature of the waste-form glass at 400 degrees C. This criterion must be satisfied for the ambient conditions and heat generation rates expected for the waste-forms. As part of the work described in task plan, WSRC-RP-93-1177, Rev. 0, a computer model was used to calculate the maximum glass temperatures in free standing wasteforms for a variety of ambient temperatures and heat generation rates

  9. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  10. Charge transport parameters of HBC at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, J. [Max Planck Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Marcon, V.; Kremer, K.; Andrienko, D. [Max Planck Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Nelson, J. [Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2008-05-15

    We study the dependence on temperature of the charge transport parameters for hexabenzocoronene (HBC). Following from Marcus theory, two charge transport parameters will be calculated: the transfer integral and the difference in site energies. These parameters are strongly dependent on the orientation and position of molecules. Position and orientation of molecules are determined using molecular dynamics. Transfer integrals are calculated from a simplified INDO method. A technique to compute energetic disorder, that is the spread in site energies for the charge carriers, is developed. In the herringbone phase transfer integrals are higher, but so is energetic disorder. We consider three derivatives of HBC with different side chains, which lead to different phase behaviour and distributions of charge transport parameters. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Sensory profiling of Dalmatian dry-cured ham under different temperature conditions

    Directory of Open Access Journals (Sweden)

    Zlatko Janječić

    2010-01-01

    Full Text Available To investigate the influence of the Dalmatian ham processing conditions on weight loss and sensory characteristics, 20 hams were processed following different temperature conditions during salting and ripening. For that purpose, hams were evaluated using quantitative descriptive analysis. The weight loss was higher and all sensory traits except presence of tyrosine and phenylalanine crystals were higher rated for hams processed at higher temperatures. The most significant (P<0.0001 influence of temperature was established on subcutaneous fat color, muscle color and presence of tyrosine and phenylalanine, whereas no influence was established on appearance, marbling, flavor and melting. This concludes that there is overall significant effect of higher temperature on sensory characteristics most likely due to the more intense proteolysis and lipolysis.

  12. INTERDEPENDENCE BETWEEN DRY DAYS AND TEMPERATURE OF SYLHET REGION: CORRELATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    Syed Mustakim Ali Shah

    2016-01-01

    Full Text Available Climate change can have profound impact on weather conditions around the world such as heavy rainfall, drought, global warming and so on. Understanding and predicting these natural variations is now a key research challenge for disaster-prone country like Bangladesh. This study focuses on the north eastern part of Bangladesh which is a hilly region, plays an important role in the ecological balance of the country along with socio-economic development. Present study analyses the behavior of maximum temperature and dry days using different statistical tools. Pearson’s correlation matrix and Man-Kendall’s tau are used to correlate monthly dry days with monthly maximum temperature, and also their annual trend. A moderate correlation was found mostly in dry summer months. In addition, a positive trend was observed in Man Kendall’s trend test of yearly temperature which might be an indication of global warming in this region.

  13. Effects of Different Temperatures for Drying Cervical Mucus Smear ...

    African Journals Online (AJOL)

    The effects of different room temperatures for drying cervical mucus on crystallisation of fern-tree patterns was determined using cervical mucus smears from 60 women undergoing investigation for infertility at the University of Benin Teaching Hospital. Cervical mucus smears were dried in the oven at 15, 20, 25, 30 and 35C ...

  14. Do `negative' temperatures exist?

    Science.gov (United States)

    Lavenda, B. H.

    1999-06-01

    A modification of the second law is required for a system with a bounded density of states and not the introduction of a `negative' temperature scale. The ascending and descending branches of the entropy versus energy curve describe particle and hole states, having thermal equations of state that are given by the Fermi and logistic distributions, respectively. Conservation of energy requires isentropic states to be isothermal. The effect of adiabatically reversing the field is entirely mechanical because the only difference between the two states is their energies. The laws of large and small numbers, leading to the normal and Poisson approximations, characterize statistically the states of infinite and zero temperatures, respectively. Since the heat capacity also vanishes in the state of maximum disorder, the third law can be generalized in systems with a bounded density of states: the entropy tends to a constant as the temperature tends to either zero or infinity.

  15. Temperature and SAR measurement errors in the evaluation of metallic linear structures heating during MRI using fluoroptic (registered) probes

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, E [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Triventi, M [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Calcagnini, G [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Censi, F [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Kainz, W [Center for Devices and Radiological Health, Food and Drug Administration, Rockville, MD (United States); Bassen, H I [Center for Devices and Radiological Health, Food and Drug Administration, Rockville, MD (United States); Bartolini, P [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy)

    2007-03-21

    The purpose of this work is to evaluate the error associated with temperature and SAR measurements using fluoroptic (registered) temperature probes on pacemaker (PM) leads during magnetic resonance imaging (MRI). We performed temperature measurements on pacemaker leads, excited with a 25, 64, and 128 MHz current. The PM lead tip heating was measured with a fluoroptic (registered) thermometer (Luxtron, Model 3100, USA). Different contact configurations between the pigmented portion of the temperature probe and the PM lead tip were investigated to find the contact position minimizing the temperature and SAR underestimation. A computer model was used to estimate the error made by fluoroptic (registered) probes in temperature and SAR measurement. The transversal contact of the pigmented portion of the temperature probe and the PM lead tip minimizes the underestimation for temperature and SAR. This contact position also has the lowest temperature and SAR error. For other contact positions, the maximum temperature error can be as high as -45%, whereas the maximum SAR error can be as high as -54%. MRI heating evaluations with temperature probes should use a contact position minimizing the maximum error, need to be accompanied by a thorough uncertainty budget and the temperature and SAR errors should be specified.

  16. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  17. Multi-temperature mixture of fluids

    Directory of Open Access Journals (Sweden)

    Ruggeri Tommaso

    2009-01-01

    Full Text Available We present a survey on some recent results concerning the different models of a mixture of compressible fluids. In particular we discuss the most realistic case of a mixture when each constituent has its own temperature (MT and we first compare the solutions of this model with the one with a unique common temperature (ST . In the case of Eulerian fluids it will be shown that the corresponding (ST differential system is a principal subsystem of the (MT one. Global behavior of smooth solutions for large time for both systems will also be discussed through the application of the Shizuta-Kawashima condition. Then we introduce the concept of the average temperature of mixture based upon the consideration that the internal energy of the mixture is the same as in the case of a single-temperature mixture. As a consequence, it is shown that the entropy of the mixture reaches a local maximum in equilibrium. Through the procedure of Maxwellian iteration a new constitutive equation for non-equilibrium temperatures of constituents is obtained in a classical limit, together with the Fick's law for the diffusion flux. Finally, to justify the Maxwellian iteration, we present for dissipative fluids a possible approach of a classical theory of mixture with multi-temperature and we prove that the differences of temperatures between the constituents imply the existence of a new dynamical pressure even if the fluids have a zero bulk viscosity.

  18. Maximum spectral demands in the near-fault region

    Science.gov (United States)

    Huang, Yin-Nan; Whittaker, Andrew S.; Luco, Nicolas

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed.

  19. The Effect of Different Storage Temperatures on the Agronomic Characteristics and Yield of Two Varieties of Potatoes

    Directory of Open Access Journals (Sweden)

    A. H Jalali

    2016-10-01

    , one treatment of 80 degree-day (T5, and control treatment (T6 on agronomic characteristics and yield of Marfona and Ramus cultivars was investigated by using a factorial experiment based on randomized complete block design with four replications at Kabootar Abad Agriculture Research Center of Isfahan. Period of 10 days and 12 ° C were found in all treatments. For example, in the treatment of T3, the tissue repair process that is carried out for 10 days at 12 ° C to 80 GDD is received by the tubers (8 × 10, 8 for the reason that, 4 ° C is base temperature and should be minus of 12. Salable and non-salable yield, number of stems produced, emergence rate, the number of tubers per plant, tubers weight and the tubers size were measured in this study. Results and Discussion The results of this study showed that the effect of temperature treatment and the interaction of temperature treatment and cultivar on yield and yield components were considered statistically significant. Marfona cultivar and use of T3 treatment with 51733 kg ha-1 had the highest tuber yield. However, there was not significant difference between this treatment and use of T2 treatment, and also using of Ramus cultivar and T3 and T4 temperature storage. For both cultivars used in this study, T3 treatment produced maximum number of stems per plant. Harvest index was fluctuated at different temperature treatments from 63.5 to 76.1 percent in the Ramos cultivar, and from 64 to 79.6 percent in Marfona cultivar. In summary, management of storage temperature can increase potato crop yields, especially in areas with short growing seasons. It seems that effects of physiological age differ between cultivars and different varieties of potatoes have different abilities to produce tuber yields in response to different heat treatments. Increasing of total tuber yield, especially as affected by thermal temperature storage application higher than 500 GDD was reported in some studies such as Knowles and Botar (1992 in

  20. Differences in the environmental control of leaf senescence of four Quercus species coexisting in a Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Teresa del Río-García

    2015-08-01

    Full Text Available Aims of study: Our aim is to check the effect of different environmental factors on the leaf senescence of four Quercus species with different leaf longevities, to help us better understand the implications of climate change on leaf demography. Area of study: The study was carried out in two sites of the province of Salamanca (central-western Spain, both sites showing differences in their temperatures and soil water availability. Material and Methods: Over four years (2007-2010 we monitored the number of leaves of the different cohorts labelled on five specimens of each species at both sites to elaborate life-tables and calculate mortality rates. Mortality rates were then related to several other variables measured during the same period: air temperature, soil water availability, precipitation, predawn water potentials (Ψpd and leaf N resorption. Main results: In the two deciduous species maximum daily temperatures and the time during which their values remain above a certain threshold (between 11 and 12ºC of maximum daily temperature are the main factors controlling the timing of leaf abscission. In the evergreen species abscission of old leaves showed no relationship with the environmental factors analyzed. By contrast, mortality rates of old leaves were related to seasonal N resorption values, with the maximum mortality of old leaves coinciding in time with the maximum withdrawal of N from shed leaves and also with the emergence of the new leaf cohort. Research highlights: The increase in the duration of the leaves of the two deciduous species, as a result of the delayed senescence by warmer autumnal temperatures, could contribute to reducing the differences in the length of the productive leaf life with respect to the evergreen species. This could improve the competitive capacity of deciduous species as opposed to that of evergreen species, and thus alter their respective distribution patterns.

  1. Differences induced by incubation temperature, versus androgen manipulation, in male leopard geckos (Eublepharis macularius).

    Science.gov (United States)

    Huang, Victoria; Crews, David

    2012-08-20

    A fundamental tenet of sexual selection is that in sexually dimorphic traits, there is variation within a sex. In leopard geckos (Eublepharis macularius), a species with temperature-dependent sex determination, embryonic temperature contributes both to sex determination and polymorphisms within each sex. In this study we report that males from different incubation temperatures, one hitherto untested, exhibit significant differences in behavior even when castrated. Further, treatment with dihydrotestosterone increases scent marking, a territorial behavior. This supports previous results indicating that temperature has a direct organizing action on brain and sociosexual behavior independent of gonadal hormones. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperature

    Science.gov (United States)

    Purnamayati, L.; Dewi, EN; Kurniasih, R. A.

    2018-02-01

    Phycocyanin is natural blue colorant which easily damages by heat. The inlet temperature of spray dryer is an important parameter representing the feature of the microcapsules.The aim of this study was to investigate the phycocyanin stability of microcapsules made from Spirulina sp with maltodextrin and κ-Carrageenan as the coating material, processed by spray drying method in different inlet temperature. Microcapsules were processed in three various inlet temperaturei.e. 90°C, 110°C, and 130°C, respectively. The results indicated that phycocyanin microcapsule with 90°C of inlet temperature produced the highest moisture content, phycocyanin concentration and encapsulation efficiency of 3,5%, 1,729% and 29,623%, respectively. On the other hand, the highest encapsulation yield was produced by 130°C of theinlet temperature of 29,48% and not significantly different with 110°C. The results of Scanning Electron Microscopy (SEM) showed that phycocyanin microcapsules with 110°C of inlet temperature produced the most rounded shape. To sum up, 110°C was the best inlet temperature to phycocyanin microencapsulation by the spray dryer.

  3. Physical performance and peak aerobic power at different body temperatures.

    Science.gov (United States)

    Bergh, U; Ekblom, B

    1979-05-01

    In eight male subjects we studied the effect of different core (esophageal, (Tes 34.9--38.4 degrees C) and muscle (Tm 35.1--39.3 degrees C) temperature on 1) physical performance (time to exhaustion at a standard maximal rate of work, WT), 2) aerobic power (VO2), 3) heart rate (HR), and 4) blood lactate (LA) concentration during exhaustive combined arm and leg exercise. In three subjects the effects at different mean skin temperatures (Tsk 27 and 31 degrees C, respectively) were also studied. Peak VO2 was positively correlated to both Tes (r = 0.88) and Tm (r = 0.91). None of the subjects attained control VO2max at Tes and Tm lower than 37.5 and 38.0 degrees C, respectively. HR was correlated to both Tes (r = 0.97) and Tm (r = 0.95). Different Tsk did not affect peak VO2 and HR at subnormal body temperatures. Pulmonary ventilation was independent of Tes and Tm in all experimental situations. LA was significantly higher at Tes 37.5 degrees C compared to both Tes 34.9 and 38.5 degrees C, respectively. At Tes less than 37.5 degrees C and Tm less than 38.0 degrees C, there was a linear reduction in WT (20%.degrees C-1), peak VO2 (5--6%.degrees C-1), and HR (8 beats.min-1.degrees C-1) with lowered Tes and Tm.

  4. Mechanical properties and porosity of dental glass-ceramics hot-pressed at different temperatures

    Directory of Open Access Journals (Sweden)

    Carla Castiglia Gonzaga

    2008-09-01

    Full Text Available The objective of this work was to evaluate biaxial-flexural-strength (σf, Vickers hardness (HV, fracture toughness (K Ic, Young's modulus (E, Poisson's ratio (ν and porosity (P of two commercial glass-ceramics, Empress (E1 and Empress 2 (E2, as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.

  5. Lidar measurements of mesospheric temperature inversion at a low latitude

    Directory of Open Access Journals (Sweden)

    V. Siva Kumar

    2001-08-01

    Full Text Available The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E, India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.Key words. Atmospheric composition and structure (pressure, density and temperature. Meterology and atmospheric dynamics (climatology

  6. Temperature dependent kinematic viscosity of different types of engine oils

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2009-01-01

    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.

  7. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    Science.gov (United States)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module

  8. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  9. Moisture Sensitivity of Crumb Rubber Modified Modifier Warm Mix Asphalt Additive for Two Different Compaction Temperatures

    Science.gov (United States)

    Bilema, Munder A.; Aman, Mohamad Y.; Hassan, Norhidayah A.; Ahmad, Kabiru A.; Elghatas, Hamza M.; Radwan, Ashraf A.; Shyaa, Ahmed S.

    2018-04-01

    Crumb rubber obtained from scrap tires has been incorporated with asphalt binder to improve the performance of asphalt mixtures in the past decades. Pavements containing crumb-rubber modified (CRM) binders present one major drawback: larger amounts of greenhouse gas emissions are produced as there is rise in the energy consumption at the asphalt plant due to the higher viscosity of these type of binders compared with a conventional mixture. The objective of this paper is to calculate the optimum bitumen content for each percentage and evaluate the moisture sensitivity of crumb rubber modified asphalt at two different compacting temperatures. In this study, crumb rubber modified percentages was 0%, 5%, 10% and 15% from the binder weight, with adding 1.5% warm mix asphalt additive (Sasobit) and crush granite aggregate of 9.5mm Nominal maximum size was used after assessing its properties. Ordinary Portland Cement (OPC) used by 2% from fine aggregate. The wet method was using to mix the CRM with bitumen, the CRM conducted at 177°C for 30 min with 700rpm and Sasobit conducted at 120°C for 10 min with 1000rpm. As a result, from this study the optimum bitumen content (OBC) was increased with increased crumb rubber content. For performance test, it was conducted using the AASHTO T283 (2007): Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage. The result was as expected and it was within the specification of the test, the result show that the moisture damage increased with increased the crumb rubber content but it is not exceeding the limit of specification 80% for indirect tension strength ratio (ITSR). For the temperature was with lowing the temperature the moisture damage increased.

  10. Studies on the influence of the interval after blood withdrawal and different storage temperatures on the uptake and kinetics of 14C-serotonin in human thrombocytes in vitro

    International Nuclear Information System (INIS)

    Jarosch, U.

    1978-07-01

    The active in-vitro uptake of 14 C-serotonin in human thrombocytes was investigated in dependence of the interval after blood withdrawal (10-130 min) and the storage temperature of the platelet-rich plasma (4 0 , 22 0 , 37 0 C) for different incubation periods (2, 5, 10 minutes at 37 0 C). The kinetic study of 14 C serotonin uptake showed a constant affinity to the thrombocyte serotonin transport system for all experimental conditions while the maximum reaction rate was clearly affected. One exception was the value determined after 130 minutes of storage time and a storage temperature of 37 0 C for a 14 C serotonin concentration of 10 -5 M which showed a reduced affinity. (orig./AJ) [de

  11. Partition coefficient n-octanol/water of propranolol and atenolol at different temperatures: Experimental and theoretical studies

    International Nuclear Information System (INIS)

    Mohsen-Nia, M.; Ebrahimabadi, A.H.; Niknahad, B.

    2012-01-01

    Highlights: ► n-Octanol/water partition coefficients of propranolol and atenolol were measured. ► The effect of temperature on the partition coefficient was studied. ► The equilibrium data were correlated using the NRTL and UNIQUAC activity models. ► The binary interaction parameters of the activity models were reported. ► It is concluded that propranolol is more hydrophobic than the atenolol at 298.15 K. - Abstract: The n-octanol/water partition coefficients of propranolol and atenolol were experimentally determined by ultraviolet (UV) spectroscopy at T = (298.15, 310.15 and 314.15) K. All measurements were made at the maximum wavelength corresponding to maximum absorption. The results showed that the n-octanol/water partition coefficients of propranolol and atenolol increase with the increase of temperature. The experimental data of this work were also used to examine the phase equilibrium correlating capability of some liquid-phase models. The equilibrium experimental data were correlated using the NRTL and UNIQUAC activity coefficient models and the binary interaction parameters were reported. The average root-mea n-square deviations (RMSD) between the experimental and calculated mass fractions of the (n-octanol + propranolol + water) and (n-octanol + atenolol + water) systems were determined. From the partition coefficients obtained, it is concluded that propranolol (log P ow = 3.12 ± 0.14) is more hydrophobic than the atenolol (log P ow = 0.16 ± 0.01) at T = 298.15 K.

  12. The sectional size effect on the deformation behaviour of Inconel 718 at different temperatures

    Directory of Open Access Journals (Sweden)

    Zhao R.

    2015-01-01

    Full Text Available Inconel 718, as a multiphase super-alloy, is widely used in aeronautics and astronautics industries. In this field, a modified Hall-Petch equation was used to describe the grain size effect on the deformation behaviour of Inconel 718 sheet in uniaxial tension test. There is a piecewise linearity in the σ-d−1 curve: With the thickness t is a constant, the slope changes obviously after a critical t/d ratio, which increases with strain. Moreover, the influence on sectional curve caused by temperature is also an interesting issue. To address that, the sectionalized curve was fitted at different strains and temperatures, and the phenomena of grain size effect in piecewise curve at different temperatures were further explained. A surface model of Inconel 718 was proposed to explain the intrinsic mechanism of different slopes. The research provided an in-depth understanding of the size effect on the deformation behaviour of Inconel 718 at different hot working temperatures.

  13. Effect of Different Tree canopies on the Brightness Temperature of Snowpack

    Science.gov (United States)

    Mousavi, S.; De Roo, R. D.; Brucker, L.

    2017-12-01

    Snow stores the water we drink and is essential to grow food that we eat. But changes in snow quantities such as snow water equivalent (SWE) are underway and have serious consequences. So, effective management of the freshwater reservoir requires to monitor frequently (weekly or better) the spatial distribution of SWE and snowpack wetness. Both microwave radar and radiometer systems have long been considered as relevant remote sensing tools in retrieving globally snow physical parameters of interest thanks to their all-weather operation capability. However, their observations are sensitive to the presence of tree canopies, which in turns impacts SWE estimation. To address this long-lasting challenge, we parked a truck-mounted microwave radiometer system for an entire winter in a rare area where it exists different tree types in the different cardinal directions. We used dual-polarization microwave radiometers at three different frequencies (1.4, 19, and 37 GHz), mounted on a boom truck to observe continuously the snowpack surrounding the truck. Observations were recorded at different incidence angles. These measurements have been collected in Grand Mesa National Forest, Colorado as part of the NASA SnowEx 2016-17. In this presentation, the effect of Engelmann Spruce and Aspen trees on the measured brightness temperature of snow is discussed. It is shown that Engelmann Spruce trees increases the brightness temperature of the snowpack more than Aspen trees do. Moreover, the elevation angular dependence of the measured brightness temperatures of snowpack with and without tree canopies is investigated in the context of SWE retrievals. A time-lapse camera was monitoring a snow post installed in the sensors' field of view to characterize the brightness temperature change as snow depth evolved. Also, our study takes advantage of the snowpit measurements that were collected near the radiometers' field of view.

  14. Prediction of Human Performance Using Electroencephalography under Different Indoor Room Temperatures

    Science.gov (United States)

    Zhang, Tinghe; Mao, Zijing; Xu, Xiaojing; Zhang, Lin; Pack, Daniel J.; Dong, Bing; Huang, Yufei

    2018-01-01

    Varying indoor environmental conditions is known to affect office worker’s performance; wherein past research studies have reported the effects of unfavorable indoor temperature and air quality causing sick building syndrome (SBS) among office workers. Thus, investigating factors that can predict performance in changing indoor environments have become a highly important research topic bearing significant impact in our society. While past research studies have attempted to determine predictors for performance, they do not provide satisfactory prediction ability. Therefore, in this preliminary study, we attempt to predict performance during office-work tasks triggered by different indoor room temperatures (22.2 °C and 30 °C) from human brain signals recorded using electroencephalography (EEG). Seven participants were recruited, from whom EEG, skin temperature, heart rate and thermal survey questionnaires were collected. Regression analyses were carried out to investigate the effectiveness of using EEG power spectral densities (PSD) as predictors of performance. Our results indicate EEG PSDs as predictors provide the highest R2 (> 0.70), that is 17 times higher than using other physiological signals as predictors and is more robust. Finally, the paper provides insight on the selected predictors based on brain activity patterns for low- and high-performance levels under different indoor-temperatures. PMID:29690601

  15. Tungsten self-sputtering yield with different incidence angles and target temperatures

    International Nuclear Information System (INIS)

    Bandourko, V.; Nakamura, K.; Akiba, M.; Jimbou, R.

    1998-01-01

    The self-sputtering of different types of tungsten due to 1 keV W + bombardment at temperatures of 25 C and 600 C and incident angles in the range of 30-60 was studied by means of the weight loss method. The experimental data at room temperature agreed reasonably with the results of TRIM calculations. Enhanced self-sputtering yields due to beam-induced desorption of WO 2 were found at a temperature of 600 C. The weight loss of W-Cu composite is larger than that of the CVD-W and ps-W under the same irradiation conditions due to the selective removal of copper. (orig.)

  16. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1989-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. The author reviews the need for such methods in data analysis and shows, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. He concludes with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  17. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1988-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  18. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    Science.gov (United States)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  19. Temperature distribution of a simplified rotor due to a uniform heat source

    Science.gov (United States)

    Welzenbach, Sarah; Fischer, Tim; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver

    2018-03-01

    In gas turbines, high combustion efficiency as well as operational safety are required. Thus, labyrinth seal systems with honeycomb liners are commonly used. In the case of rubbing events in the seal system, the components can be damaged due to cyclic thermal and mechanical loads. Temperature differences occurring at labyrinth seal fins during rubbing events can be determined by considering a single heat source acting periodically on the surface of a rotating cylinder. Existing literature analysing the temperature distribution on rotating cylindrical bodies due to a stationary heat source is reviewed. The temperature distribution on the circumference of a simplified labyrinth seal fin is calculated using an available and easy to implement analytical approach. A finite element model of the simplified labyrinth seal fin is created and the numerical results are compared to the analytical results. The temperature distributions calculated by the analytical and the numerical approaches coincide for low sliding velocities, while there are discrepancies of the calculated maximum temperatures for higher sliding velocities. The use of the analytical approach allows the conservative estimation of the maximum temperatures arising in labyrinth seal fins during rubbing events. At the same time, high calculation costs can be avoided.

  20. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae).

    Science.gov (United States)

    Sanabria, Eduardo A; Vaira, Marcos; Quiroga, Lorena B; Akmentins, Mauricio S; Pereyra, Laura C

    2014-04-01

    We study the variation in thermal parameters in two contrasting populations Yungas Redbelly Toads (Melanophryniscus rubriventris) with different discrete color phenotypes comparing field body temperatures, critical thermal maximum and heating rates. We found significant differences in field body temperatures of the different morphs. Temperatures were higher in toads with a high extent of dorsal melanization. No variation was registered in operative temperatures between the study locations at the moment of capture and processing. Critical thermal maximum of toads was positively related with the extent of dorsal melanization. Furthermore, we founded significant differences in heating rates between morphs, where individuals with a high extent of dorsal melanization showed greater heating rates than toads with lower dorsal melanization. The color pattern-thermal parameter relationship observed may influence the activity patterns and body size of individuals. Body temperature is a modulator of physiological and behavioral functions in amphibians, influencing daily and seasonal activity, locomotor performance, digestion rate and growth rate. It is possible that some growth constraints may arise due to the relationship of color pattern-metabolism allowing different morphs to attain similar sizes at different locations instead of body-size clines. Copyright © 2014. Published by Elsevier Ltd.

  1. Utilising temperature differences as constraints for estimating parameters in a simple climate model

    International Nuclear Information System (INIS)

    Bodman, Roger W; Karoly, David J; Enting, Ian G

    2010-01-01

    Simple climate models can be used to estimate the global temperature response to increasing greenhouse gases. Changes in the energy balance of the global climate system are represented by equations that necessitate the use of uncertain parameters. The values of these parameters can be estimated from historical observations, model testing, and tuning to more complex models. Efforts have been made at estimating the possible ranges for these parameters. This study continues this process, but demonstrates two new constraints. Previous studies have shown that land-ocean temperature differences are only weakly correlated with global mean temperature for natural internal climate variations. Hence, these temperature differences provide additional information that can be used to help constrain model parameters. In addition, an ocean heat content ratio can also provide a further constraint. A pulse response technique was used to identify relative parameter sensitivity which confirmed the importance of climate sensitivity and ocean vertical diffusivity, but the land-ocean warming ratio and the land-ocean heat exchange coefficient were also found to be important. Experiments demonstrate the utility of the land-ocean temperature difference and ocean heat content ratio for setting parameter values. This work is based on investigations with MAGICC (Model for the Assessment of Greenhouse-gas Induced Climate Change) as the simple climate model.

  2. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    Science.gov (United States)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  3. Maximum repulsed magnetization of a bulk superconductor with low pulsed field

    International Nuclear Information System (INIS)

    Tsuchimoto, M.; Kamijo, H.; Fujimoto, H.

    2005-01-01

    Pulsed field magnetization of a bulk high-T c superconductor (HTS) is important technique especially for practical applications of a bulk superconducting magnet. Full magnetization is not obtained for low pulsed field and trapped field is decreased by reversed current in the HTS. The trapped field distribution by repulsed magnetization was previously reported in experiments with temperature control. In this study, repulsed magnetization technique with the low pulsed field is numerically analyzed under assumption of variable shielding current by the temperature control. The shielding current densities are discussed to obtain maximum trapped field by two times of low pulsed field magnetizations

  4. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    Science.gov (United States)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  5. Study of magneto-thermal coupled phenomena in High Temperature Superconductors

    International Nuclear Information System (INIS)

    Berger, Kevin

    2006-01-01

    Theoretical study of HTS devices requires to solve magneto-thermal coupled equations. As coupling effects are very important in these materials, the development of numerical tools is almost unavoidable. A computer code based on the Finite Difference Method was developed in this direction, making it possible to solve 1D and 2D problems. It is then possible to numerically simulate the behavior of HTS. Study of the losses in a Bi-2223 current lead, fed by an alternating current at 50 Hz, subjected to a DC magnetic field and immersed in a liquid nitrogen bath, is then carried out in a theoretical and experimental way. Thermal instabilities were observed experimentally. This phenomenon was studied starting from the search for the stable and unstable steady state solutions. For a given current and magnetic field, a maximum temperature above which recovery of the superconducting state is not possible could be defined. YBCO pellets can trap strong magnetic fields and be used as very powerful cryo-magnets. The dynamic response of these pellets, subjected to variations of a magnetic field, is studied in a detailed way (current density, magnetic field and temperature distributions). Results of the simulations show significant differences when the influences of the magnetic field and temperature are taken into account in the electrical law E(J). An optimum of the maximum magnetic field to apply leading to a maximum of trapped flux could be given. This information is of great interest as it enables the design of the most effective pulse magnetization device. (author) [fr

  6. Variation of Probable Maximum Precipitation in Brazos River Basin, TX

    Science.gov (United States)

    Bhatia, N.; Singh, V. P.

    2017-12-01

    The Brazos River basin, the second-largest river basin by area in Texas, generates the highest amount of flow volume of any river in a given year in Texas. With its headwaters located at the confluence of Double Mountain and Salt forks in Stonewall County, the third-longest flowline of the Brazos River traverses within narrow valleys in the area of rolling topography of west Texas, and flows through rugged terrains in mainly featureless plains of central Texas, before its confluence with Gulf of Mexico. Along its major flow network, the river basin covers six different climate regions characterized on the basis of similar attributes of vegetation, temperature, humidity, rainfall, and seasonal weather changes, by National Oceanic and Atmospheric Administration (NOAA). Our previous research on Texas climatology illustrated intensified precipitation regimes, which tend to result in extreme flood events. Such events have caused huge losses of lives and infrastructure in the Brazos River basin. Therefore, a region-specific investigation is required for analyzing precipitation regimes along the geographically-diverse river network. Owing to the topographical and hydroclimatological variations along the flow network, 24-hour Probable Maximum Precipitation (PMP) was estimated for different hydrologic units along the river network, using the revised Hershfield's method devised by Lan et al. (2017). The method incorporates the use of a standardized variable describing the maximum deviation from the average of a sample scaled by the standard deviation of the sample. The hydrometeorological literature identifies this method as more reasonable and consistent with the frequency equation. With respect to the calculation of stable data size required for statistically reliable results, this study also quantified the respective uncertainty associated with PMP values in different hydrologic units. The corresponding range of return periods of PMPs in different hydrologic units was

  7. Fuel temperature prediction using a variable bypass gap size in the prismatic VHTR

    International Nuclear Information System (INIS)

    Lee, Sung Nam; Tak, Nam-il; Kim, Min Hwan

    2016-01-01

    Highlights: • The bypass flow of the prismatic very high temperature reactor is analyzed. • The bypass gap sizes are calculated considering the effect of the neutron fluences and thermal expansion. • The fuel hot spot temperature and temperature profiles are calculated using the variable gap size. • The BOC, MOC and EOC condition at the cycle 07 and 14 are applied. - Abstract: The temperature gradient and hot spot temperatures were calculated in the prismatic very high temperature reactor as a function of the variable bypass gap size. Many previous studies have predicted the temperature of the reactor core based on a fixed bypass gap size. The graphite matrix of the assemblies in the reactor core undergoes a dimensional change during the operation due to thermal expansion and neutron fluence. The expansion and shrinkage of the bypass gaps change the coolant flow fractions into the coolant channels, the control rod holes, and the bypass gaps. Therefore, the temperature of the assemblies may differ compared to those for the fixed bypass gap case. The temperature gradient and the hot spot temperatures are important for the design of reactor structures to ensure their safety and efficiency. In the present study, the temperature variation of the PMR200 is studied at the beginning (BOC), middle (MOC), and end (EOC) of cycles 07 and 14. CORONA code which has been developed in KAERI is applied to solve the thermal-hydraulics of the reactor core of the PMR200. CORONA solves a fluid region using a one-dimensional formulation and a solid region using a three-dimensional formulation to enhance the computational speed and still obtain a reasonable accuracy. The maximum temperatures in the fuel assemblies using the variable bypass gaps did not differ much from the corresponding temperatures using the fixed bypass gaps. However, the maximum temperatures in the reflector assemblies using the variable bypass gaps differ significantly from the corresponding temperatures

  8. Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-05-01

    Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.

  9. Studies on the temperature distribution of steel plates with different paints under solar radiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Chen, Zhihua; Chen, Binbin; Xiao, Xiao; Wang, Xiaodun

    2014-01-01

    Thermal effects on steel structures exposed to solar radiation are significant and complicated. Furthermore, the solar radiation absorption coefficient of steel surface with different paintings is the main factor affecting the non-uniform temperature of spatial structures under solar radiation. In this paper, nearly two hundreds steel specimens with different paintings were designed and measured to obtain their solar radiation absorption coefficients using spectrophotometer. Based on the test results, the effect of surface color, painting type, painting thickness on the solar radiation absorption coefficient was analyzed. The actual temperatures under solar radiation for all specimens were also measured in summer not only to verify the absorption coefficient but also provide insight for the temperature distribution of steel structures with different paintings. A numerical simulation and simplified formula were also conducted and verified by test, in order to study the temperature distribution of steel plates with different paints under solar radiation. The results have given an important reference in the future research of thermal effect of steel structures exposed to solar radiation. - Highlights: • Solar radiation absorptions for steel with different paintings were measured. • The temperatures of all specimens under solar radiation were measured. • The effect of color, thickness and painting type on solar absorption was analyzed. • A numerical analysis was conducted and verified by test data. • A simplified formula was deduced and verified by test data

  10. Forced convection of ammonia. Liquid ammonia. Case of large wall to fluid temperature differences; Convection forcee de l'ammoniac. Premiere partie. Ammoniac liquide. Cas de grands ecarts de temperatures entre fluide et paroi

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, P; Rebiere, J; Rowe, A [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    Two test tubes were used: Inconel (ID 3 mm, OD 3.5 mn length 300 mm) and tantalum (ID 3 mm, OD 4 mm; length 450 mm). Measurements were performed in the following conditions inlet temperature of subcooled liquid from +4 deg C to + 54 deg C; inlet pressure from 10 to 42, bars; mass velocity from 33 to 243 g/cm{sup 2}.s; maximum heat flux 583 W/cm{sup 2}; maximum wall temperature 1523 deg C; steam quality reaching 1. When the flow is liquid, a film of vapor is formed on the heated wall. Using the Martinelli-Nelson parameter X{sub tt} a correlation of the heat transfer coefficients is presented in the two-phase region. This correlation is analogous to the one developed for liquid hydrogen. In the gaseous phase region the correlation established is: N{sub u} 0.0046 R{sub e}{sup 0.95} P{sub r}{sup 0.4} with a film temperature of t{sub 0.5}. The Martinelli-Nelson method gives fairly good results for pressure drop evaluation. Gross experimental results are published separately. (authors) [French] Deux tubes d'essais ont ete utilises: inconel (diametre 3 x 3,5 mm; longueur 300 mm) et tantale (diametre 3 x 4 mm; longueur 450 mm). Les mesures ont ete effectuees dans les conditions suivantes: temperature d'entree du liquide sous-refroidi, + 4 deg C a + 54 deg C; pression d'entree, 10 a 42 bars; vitesse massique, 33 a 243 g/cm{sup 2}.s; densite de flux de chaleur maximum 583 W/cm{sup 2}; temperature maximale de la paroi: 1523 deg C; titre de vapeur atteignant 1. Quand l'ecoulement est liquide, il se forme un film de vapeur sur la paroi. En double-phase on a etabli une correlation des coefficients d'echanges, utilisant le parametre de Martinelli et Nelson X{sub tt}, analogue a celle obtenue pour l'hydrogene liquide. En phase gazeuse la correlation presentee est: N{sub u} = 0,0046 R{sub e}{sup 0,95} P{sub r}{sup 0,4} avec une temperature de film de t{sub 0,5}. La methode de Martinelli et Nelson donne d'assez bons resultats pour le calcul des pertes de charge. Les resultats

  11. Effects of the generator and evaporator temperature differences on a double absorption heat transformer—Different control strategies on utilizing heat sources

    International Nuclear Information System (INIS)

    Wang, Hanzhi; Li, Huashan; Bu, Xianbiao; Wang, Lingbao

    2017-01-01

    Highlights: • Effects of the GETD on the DAHT system performance are analyzed. • Three different configurations are compared in detail. • Suggestions on the heat source control strategies are given. - Abstract: The combination of the absorption heat transformer with renewable energy systems, like solar thermal systems, is raising more and more concern. In those combined systems the strategies on utilizing heat sources can affect system thermodynamic performance significantly. Therefore, this study presents a detailed analysis on the effect of the heat source temperature and different heat source flow patterns on the performance of a double absorption heat transformer (DAHT). A detailed comparative study is carried out to clarify the impact of the generator and evaporator temperature differences (GETD) on the coefficient of performance (COP), exergy efficient (ECOP), exergy destruction rates in the individual components and heat transfer areas needed for each component. The results show that the generator, condenser and absorber-evaporator are responsible for most of the exergy destruction rate in the DAHT system; the parallel-flow configuration (the generator temperature is equal to the evaporator temperature) performs better under the high gross temperature lift conditions; in the case of the counter-flow configuration (the generator temperature is relatively higher), better performance can be obtained in both the COP and ECOP under the proper heat source temperature (85 and 95 °C); the fair-flow configuration (higher temperature in the evaporator) is not recommended in this paper due to no advantages found in either thermodynamic performance or system size.

  12. Experimental determination of a critical temperature for maximum anaerobic digester biogas production

    CSIR Research Space (South Africa)

    Sichilalu, S

    2017-08-01

    Full Text Available fission of methanogenic bacteria. The temperature was varied over time over several days and the biogas production is recorded every after 24 hours(1 day) . Based on the experiment setup, the results show a higher biogas production proportional to the rise...

  13. Temperature and moisture regimes in the Enterprise Forest, 1970--1973

    International Nuclear Information System (INIS)

    Crow, T.R.; Buech, R.R.

    1977-01-01

    Within the Enterprise Radiation Forest, measurements of ambient air temperature, humidity, and precipitation were taken from 1970 through 1973. Temperature and moisture stresses that could alter the responses of organisms to gamma radiation were not evident during irradiation (1972) or during the recovery year 1973. Changes in microclimatic regimes as a result of the destruction of vegetation by gamma radiation were also assessed. Although differences in temperature and vapor-pressure deficit (VPD) were small when considering monthly means, mean maximum and mean minimum temperature and standardized plots of mean daily temperature and mean daily VPD indicated greater extremes in the newly created open environment than under the forest canopy. These relationships parallel those reported in comparisons of open environments to forested environments

  14. Physical method to assess a probable maximum precipitation, using CRCM datas

    International Nuclear Information System (INIS)

    Beauchamp, J.

    2009-01-01

    'Full text:' For Nordic hydropower facilities, spillways are designed with a peak discharge based on extreme conditions. This peak discharge is generally derived using the concept of a probable maximum flood (PMF), which results from the combined effect of abundant downpours (probable maximum precipitation - PMP) and rapid snowmelt. On a gauged basin, the weather data record allows for the computation of the PMF. However, uncertainty in the future climate raises questions as to the accuracy of current PMP estimates for existing and future hydropower facilities. This project looks at the potential use of the Canadian Regional Climate Model (CRCM) data to compute the PMF in ungauged basins and to assess potential changes to the PMF in a changing climate. Several steps will be needed to accomplish this task. This paper presents the first step that aims at applying/adapting to CRCM data the in situ moisture maximization technique developed by the World Meteorological Organization, in order to compute the PMP at the watershed scale. The CRCM provides output data on a 45km grid at a six hour time step. All of the needed atmospheric data is available at sixteen different pressure levels. The methodology consists in first identifying extreme precipitation events under current climate conditions. Then, a maximum persisting twelve hours dew point is determined at each grid point and pressure level for the storm duration. Afterwards, the maximization ratio is approximated by merging the effective temperature with dew point and relative humidity values. The variables and maximization ratio are four-dimensional (x, y, z, t) values. Consequently, two different approaches are explored: a partial ratio at each step and a global ratio for the storm duration. For every identified extreme precipitation event, a maximized hyetograph is computed from the application of this ratio, either partial or global, on CRCM precipitation rates. Ultimately, the PMP is the depth of the

  15. Physical method to assess a probable maximum precipitation, using CRCM datas

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, J. [Univ. de Quebec, Ecole de technologie superior, Quebec (Canada)

    2009-07-01

    'Full text:' For Nordic hydropower facilities, spillways are designed with a peak discharge based on extreme conditions. This peak discharge is generally derived using the concept of a probable maximum flood (PMF), which results from the combined effect of abundant downpours (probable maximum precipitation - PMP) and rapid snowmelt. On a gauged basin, the weather data record allows for the computation of the PMF. However, uncertainty in the future climate raises questions as to the accuracy of current PMP estimates for existing and future hydropower facilities. This project looks at the potential use of the Canadian Regional Climate Model (CRCM) data to compute the PMF in ungauged basins and to assess potential changes to the PMF in a changing climate. Several steps will be needed to accomplish this task. This paper presents the first step that aims at applying/adapting to CRCM data the in situ moisture maximization technique developed by the World Meteorological Organization, in order to compute the PMP at the watershed scale. The CRCM provides output data on a 45km grid at a six hour time step. All of the needed atmospheric data is available at sixteen different pressure levels. The methodology consists in first identifying extreme precipitation events under current climate conditions. Then, a maximum persisting twelve hours dew point is determined at each grid point and pressure level for the storm duration. Afterwards, the maximization ratio is approximated by merging the effective temperature with dew point and relative humidity values. The variables and maximization ratio are four-dimensional (x, y, z, t) values. Consequently, two different approaches are explored: a partial ratio at each step and a global ratio for the storm duration. For every identified extreme precipitation event, a maximized hyetograph is computed from the application of this ratio, either partial or global, on CRCM precipitation rates. Ultimately, the PMP is the depth of the

  16. TEMPERATURE DISTRIBUTION MONITORING AND ANALYSES AT DIFFERENT HEATING CONTROL PRINCIPLES

    DEFF Research Database (Denmark)

    Simone, Angela; Rode, Carsten; Olesen, Bjarne W.

    2010-01-01

    under different control strategies of the heating system (Pseudo Random Binary Sequence signal controlling all the heaters (PRBS) or thermostatic control of the heaters (THERM)). A comparison of the measured temperatures within the room, for the five series of experiments, shows a better correlation...

  17. Detection of the relationship between peak temperature and extreme precipitation

    Science.gov (United States)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  18. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  19. Effect of PV module output power on module temperature; Taiyo denchi no shutsuryoku henka ga module hyomen ondo ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, T; Kitamura, A [Kansai Electric Power Co. Inc., Osaka (Japan); Igaki, K; Mizumoto, T [Kanden Kako Co. Inc., Osaka (Japan)

    1996-10-27

    Effect of the photovoltaic (PV) module output power variation on the module surface temperature has been investigated by field measurements. PV modules with capacity of 54 W were used for the temperature measurements. Three 2 kW-class PV systems were operated. T-type thermocouples were used for measuring temperatures. Measurement time intervals were 15 minutes, 30 minutes, 60 minutes, and 24 hours. Measurement period was between May 25, 1995 and June 25, 1996. The surface temperature increased during non-loaded PV output, and decreased during load-carrying PV output. Difference of the surface temperature between non-loaded PV output and load-carrying PV output was 3.5{degree}C at maximum through a year. The surface temperature was saturated within 30 minutes. When PV output was changed in 30 or 60 minutes interval, the variation of surface temperature was distinctly observed. When PV output was changed in 15 minutes interval, it was not observed distinctly. There was no difference of the surface temperatures during the time zones with less solar radiation, such as in the morning and evening, and at night. Except these time zones, difference of the surface temperatures was 3.5{degree}C at maximum. 4 figs.

  20. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  1. Bands of respiratory rate and cloacal temperature for different broiler chicken strains

    Directory of Open Access Journals (Sweden)

    Sheila Tavares Nascimento

    2012-05-01

    Full Text Available The objective of this investigation was to estimate ideal bands of respiratory rate and cloacal temperature for broiler chicken strains during the rearing period and to evaluate the influence of time of exposure on bird physiological variables under different thermal stress conditions. The research was conducted in a climatic chamber during the six weeks of the rearing period, with Avian and Cobb strains exposed to two climatic conditions (comfort and stress, in three distinct times of exposure, in three conditions (before going to the chamber; at the end of exposure time; 30 minutes after the end of exposure, in four treatments: comfort with 60 minutes of exposure; stress with 30 minutes of exposure; stress with 60 minutes of exposure; stress with 90 minutes of exposure. Bands of respiratory rate and cloacal temperature were elaborated for both strains, for each one of the weeks of the rearing period. Strains differed, regardless of treatments and conditions adopted in the research on the third, fifth and sixth weeks of life in relation to the cloacal temperature. The Cobb strain is more tolerant to thermal stress in comparison with the Avian. There was difference for both variables between comfort and stress, but time of exposure to stress did not influence the physiological response of birds, except for cloacal temperature on the second week of life.

  2. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    Science.gov (United States)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  3. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  4. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  5. Difference in canopy and air temperature as an indicator of grassland water stress

    International Nuclear Information System (INIS)

    Duffková, R.

    2006-01-01

    In 2003–2005 in conditions of the moderately warm region of the Třeboň Basin (Czech Republic) the difference between canopy temperature (T c ) and air temperature at 2 m (T a ) was tested as an indicator of grassland water stress. To evaluate water stress ten-minute averages of temperature difference T c –T a were chosen recorded on days without rainfall with intensive solar radiation from 11.00 to 14.00 CET. Water stress in the zone of the major portion of root biomass (0–0.2 m) in the peak growing season (minimum presence of dead plant residues) documented by a sudden increase in temperature difference, its value 5–12°C and unfavourable canopy temperatures due to overheating (> 30°C) was indicated after high values of suction pressure approaching the wilting point (1300 kPa) were reached. High variability of temperature difference in the conditions of sufficient supply of water to plants was explained by the amount of dead plant residues in canopy, value of vapour pressure deficit (VPD), actual evapotranspiration rate (ETA) and soil moisture content. At the beginning of the growing season (presence of dead plant residues and voids) we proved moderately strong negative linear correlations of T c –T a with VPD and T c –T a with ETA rate and moderately strong positive linear correlations of ETA rate with VPD. In the period of intensive growth (the coverage of dead plant residues and voids lower than 10%) moderately strong linear correlations of T c –T a with VPD and multiple linear correlations of T c –T a with VPD and soil moisture content at a depth of 0.10–0.40 m were demonstrated. (author)

  6. Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2010-01-01

    Samples of concrete at different water-to-cement ratios and air contents subjected to freeze/thaw cycles with the lowest temperature at about -80 degrees C are investigated. By adopting a novel technique, a scanning calorimeter is used to obtain data from which the ice contents at different freeze...... temperatures can be calculated. The length change caused by temperature and ice content changes during test is measured by a separate experiment using the same types of freeze-thaw cycles as in the calorimetric tests. In this way it was possible to compare the amount of formed ice at different temperatures...... and the corresponding measured length changes. The development of cracks in the material structure was indicated by an ultra-sonic technique by measuring on the samples before and after the freeze-thaw tests. Further the air void structure was investigated using a microscopic technique in which air'bubble' size...

  7. Estimating minimum and maximum air temperature using MODIS ...

    Indian Academy of Sciences (India)

    in a wide range of applications in areas of ecology, hydrology ... stations, thus attracting researchers to make use ... simpler because of the lack of solar radiation effect .... water from the snow packed Himalayan region to ... tribution System (LAADS) webdata archive cen- ..... ing due to greenhouse gases is different for the air.

  8. Closely related freshwater macrophyte species, Ceratophyllum demersum and C. submersum, differ in temperature response

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Sorrell, Brian Keith; Brix, Hans

    2014-01-01

    1. The importance of temperature responses of photosynthesis and respiration in determining species distributions was compared in two closely related freshwater macrophytes, Ceratophyllum demersum and C. submersum. The two species differed significantly in response to temperature in the short...... and distributional patterns corresponded well with the long-term (weeks) results obtained, but with some important deviations. The long-term responses of the two species to low temperature (12 °C) were more similar than expected. In contrast, high temperature (35 °C), which stimulated photosynthesis in C. submersum...... in the short term, inhibited photosynthesis in the long term and resulted in lower growth rates of C. submersum, both compared to C. demersum and to growth rates at intermediate temperatures (18 and 25 °C). 3. The long-term acclimation strategy differed between the two species. Ceratophyllum demersum achieved...

  9. [Effects of PASP-KT-NAA on the grain-filling of maize in different accumulated temperature zones of Hilongjiang Province, Norheast China].

    Science.gov (United States)

    Xu, Tian-Jun; Dong, Zhi-Qiang; Gao, Jiao; Chen, Chuan-Xiao; Jiao, Liu; Xie, Zhen-Xing

    2013-02-01

    Taking the two maize varieties Zhengdan 958 and Fengdan 3 grown on the three accumulated temperature zones (I, II and III) in Heilongjiang Provice as test materials, a field investigation was made in 2010 and 2011 to study the effects of PASP-KT-NAA (PKN), a compound of exogenous plant growth regulators, on the grain filling and yield of the varieties under different environmental temperatures. From zone I to III, the air temperature at the grain filling stage had a decreasing trend, with the average minimum temperature being 12.16, 11.40, and 9.56, respectively. The effective accumulated temperature at the mid-ate amt sae stage of grain filling was too low to be sufficient for grain filling, which severely affected the grain filling process. Applying N, P and K promoted the dry matter accumulation of maize grain and the grain filling rate in the three zones, delayed the peak time (Tmax) of the grain filling rate of Fengdan 3 but advanced that of Zhengdan 958, promoted the growth capacity at peak time of grain filling rate and the maximum grain filling rate of the two varieties, and shortened their active grain filling period. Applying N, P, and K increased the grain yield of the two varieties in the three zones obviously, and, as compared with those in zones I and II , the grain yields of Zhengdan 958 and Fengdan 3 in zone III were increased by 8.2% and 5.1% , and 3.4% and 0.8% , respectively. Therefore, applying N, P and K could help maize utilizing the limited accumulation temperature, improve the grain filling rate, decrease the grain water content, and ultimately, increase the maize yield.

  10. Estimation of paddy water temperature during crop development

    International Nuclear Information System (INIS)

    Centeno, H.G.S.; Horie, T.

    1996-01-01

    The crop meristem is in direct contact with paddy water during crop's vegetative stage. Ambient air temperature becomes an important factor in crop development only when internodes elongate sufficiently for the meristem to rise above the water surface. This does not occur until after panicle initiation. Crop growth at vegetative stage is affected more by water temperature than the most commonly measured air temperature. During transplanting in 1992 dry season, the maximum paddy water temperature was 10 deg C higher than the maximum air temperature. For rice crop models, the development of a submodel to estimate water temperature is important to account the effect of paddy water temperature on plant growth. Paddy water temperature is estimated from mean air temperature, solar radiation, and crop canopy. The parameters of the model were derived using the simplex method on data from the 1993 wet- and dry-season field experiments at IRRI

  11. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  12. Temperature effects on sinking velocity of different Emiliania huxleyi strains.

    Science.gov (United States)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2018-01-01

    The sinking properties of three strains of Emiliania huxleyi in response to temperature changes were examined. We used a recently proposed approach to calculate sinking velocities from coccosphere architecture, which has the advantage to be applicable not only to culture samples, but also to field samples including fossil material. Our data show that temperature in the sub-optimal range impacts sinking velocity of E. huxleyi. This response is widespread among strains isolated in different locations and moreover comparatively predictable, as indicated by the similar slopes of the linear regressions. Sinking velocity was positively correlated to temperature as well as individual cell PIC/POC over the sub-optimum to optimum temperature range in all strains. In the context of climate change our data point to an important influence of global warming on sinking velocities. It has recently been shown that seawater acidification has no effect on sinking velocity of a Mediterranean E. huxleyi strain, while nutrient limitation seems to have a small negative effect on sinking velocity. Given that warming, acidification, and lowered nutrient availability will occur simultaneously under climate change scenarios, the question is what the net effect of different influential factors will be. For example, will the effects of warming and nutrient limitation cancel? This question cannot be answered conclusively but analyses of field samples in addition to laboratory culture studies will improve predictions because in field samples multi-factor influences and even evolutionary changes are not excluded. As mentioned above, the approach of determining sinking rate followed here is applicable to field samples. Future studies could use it to analyse not only seasonal and geographic patterns but also changes in sinking velocity over geological time scales.

  13. EMBRYO DEVELOPMENT OF YELLOWFIN TUNA (Thunnus albacares AT DIFFERENT INCUBATION TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Jhon Harianto Hutapea

    2007-12-01

    Full Text Available The experiment was conducted in order to figure out the effect of incubation temperature on embryonic development of yellowfin tuna, Thunnus albacares eggs. Five different incubation temperatures were applied as treatments, i.e.: 24°C, 26°C, 28°C, 30°C, and 32°C with 3 replicate each. Ten micro plates with lid (IWAKI, Japan were used; each has 6 well and 10 mL volumes. Five micro plates were used for experiment and five for balance on shaker. Three well of each micro plate were filled with 8 mL ultra violet sterilized sea water and 50 fertilized eggs. Temperature was set using Multi Thermo Incubator which has 5 level racks. Temperatures were set from the lowest to the highest on bottom to upper rack order. To maintain eggs dispersed in the medium, shaker on each rack was operated at 150 RPM. The embryo was monitored every 30-60 minutes depends on embryonic stage development using Microscope which was connected to Digital Camera DXM 1200F. Image analyses by Image Analyzer Program. The results showed, incubation temperature was significantly affect (P<0.05 embryonic development and hatching time of yellowfin tuna (Thunnus albacares eggs. Optimum incubation temperature for embryo development and hatching was 28°C. Decreased on incubation temperature slows down embryo development at all stages, and vice versa, increased on incubation temperature accelerates embryo development.

  14. Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Larbes, C.; Ait Cheikh, S.M.; Obeidi, T.; Zerguerras, A. [Laboratoire des Dispositifs de Communication et de Conversion Photovoltaique, Departement d' Electronique, Ecole Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger 16200 (Algeria)

    2009-10-15

    This paper presents an intelligent control method for the maximum power point tracking (MPPT) of a photovoltaic system under variable temperature and irradiance conditions. First, for the purpose of comparison and because of its proven and good performances, the perturbation and observation (P and O) technique is briefly introduced. A fuzzy logic controller based MPPT (FLC) is then proposed which has shown better performances compared to the P and O MPPT based approach. The proposed FLC has been also improved using genetic algorithms (GA) for optimisation. Different development stages are presented and the optimized fuzzy logic MPPT controller (OFLC) is then simulated and evaluated, which has shown better performances. (author)

  15. Determining Maximum Photovoltaic Penetration in a Distribution Grid considering Grid Operation Limits

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    High penetration of photovoltaic panels in distribution grid can bring the grid to its operation limits. The main focus of the paper is to determine maximum photovoltaic penetration level in the grid. Three main criteria were investigated for determining maximum penetration level of PV panels...... for this grid: even distribution of PV panels, aggregation of panels at the beginning of each feeder, and aggregation of panels at the end of each feeder. Load modeling is done using Velander formula. Since PV generation is highest in the summer due to irradiation, a summer day was chosen to determine maximum......; maximum voltage deviation of customers, cables current limits, and transformer nominal value. Voltage deviation of different buses was investigated for different penetration levels. The proposed model was simulated on a Danish distribution grid. Three different PV location scenarios were investigated...

  16. Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV Modules

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-10-01

    Full Text Available This paper reports an experimental investigation of the dust particle deposition process on solar photovoltaic (PV modules with different surface temperatures by a heating plate to illustrate the effect of the temperature difference (thermophoresis between the module surface and the surrounding air on the dust accumulation process under different operating temperatures. In general, if the temperature of PV modules is increased, the energy conversion efficiency of the modules is decreased. However, in this study, it is firstly found that higher PV module surface temperature differences result in a higher energy output compared with those modules with lower temperature differences because of a reduced accumulation of dust particles. The measured deposition densities of dust particles were found to range from 0.54 g/m2 to 0.85 g/m2 under the range of experimental conditions and the output power ratios were found to increase from 0.861 to 0.965 with the increase in the temperature difference from 0 to 50 °C. The PV module with a higher temperature difference experiences a lower dust density because of the effect of the thermophoresis force arising from the temperature gradient between the module surface and its surrounding air. In addition, dust particles have a significant impact on the short circuit current, as well as the output power. However, the influence of particles on open circuit voltage can be negligible.

  17. What controls the maximum magnitude of injection-induced earthquakes?

    Science.gov (United States)

    Eaton, D. W. S.

    2017-12-01

    Three different approaches for estimation of maximum magnitude are considered here, along with their implications for managing risk. The first approach is based on a deterministic limit for seismic moment proposed by McGarr (1976), which was originally designed for application to mining-induced seismicity. This approach has since been reformulated for earthquakes induced by fluid injection (McGarr, 2014). In essence, this method assumes that the upper limit for seismic moment release is constrained by the pressure-induced stress change. A deterministic limit is given by the product of shear modulus and the net injected fluid volume. This method is based on the assumptions that the medium is fully saturated and in a state of incipient failure. An alternative geometrical approach was proposed by Shapiro et al. (2011), who postulated that the rupture area for an induced earthquake falls entirely within the stimulated volume. This assumption reduces the maximum-magnitude problem to one of estimating the largest potential slip surface area within a given stimulated volume. Finally, van der Elst et al. (2016) proposed that the maximum observed magnitude, statistically speaking, is the expected maximum value for a finite sample drawn from an unbounded Gutenberg-Richter distribution. These three models imply different approaches for risk management. The deterministic method proposed by McGarr (2014) implies that a ceiling on the maximum magnitude can be imposed by limiting the net injected volume, whereas the approach developed by Shapiro et al. (2011) implies that the time-dependent maximum magnitude is governed by the spatial size of the microseismic event cloud. Finally, the sample-size hypothesis of Van der Elst et al. (2016) implies that the best available estimate of the maximum magnitude is based upon observed seismicity rate. The latter two approaches suggest that real-time monitoring is essential for effective management of risk. A reliable estimate of maximum

  18. Comparison of maximum runup through analytical and numerical approaches for different fault parameters estimates

    Science.gov (United States)

    Kanoglu, U.; Wronna, M.; Baptista, M. A.; Miranda, J. M. A.

    2017-12-01

    The one-dimensional analytical runup theory in combination with near shore synthetic waveforms is a promising tool for tsunami rapid early warning systems. Its application in realistic cases with complex bathymetry and initial wave condition from inverse modelling have shown that maximum runup values can be estimated reasonably well. In this study we generate a simplistic bathymetry domains which resemble realistic near-shore features. We investigate the accuracy of the analytical runup formulae to the variation of fault source parameters and near-shore bathymetric features. To do this we systematically vary the fault plane parameters to compute the initial tsunami wave condition. Subsequently, we use the initial conditions to run the numerical tsunami model using coupled system of four nested grids and compare the results to the analytical estimates. Variation of the dip angle of the fault plane showed that analytical estimates have less than 10% difference for angles 5-45 degrees in a simple bathymetric domain. These results shows that the use of analytical formulae for fast run up estimates constitutes a very promising approach in a simple bathymetric domain and might be implemented in Hazard Mapping and Early Warning.

  19. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu, Xinhe; Yang, Xiaoyong; Wang, Jie

    2017-01-01

    Highlights: • The features of three different power generation schemes, including closed Brayton cycle, non-reheating combined cycle and reheating combined cycle, coupled with high temperature gas-cooled reactor (HTGR) were investigated and compared. • The effects and mechanism of reactor core outlet temperature, compression ratio and other key parameters over cycle characteristics were analyzed by the thermodynamic models.. • It is found that reheated combined cycle has the highest efficiency. Reactor outlet temperature and main steam parameters are key factors to improve the cycle’s performance. - Abstract: With gradual increase in reactor outlet temperature, the efficient power conversion technology has become one of developing trends of (very) high temperature gas-cooled reactors (HTGRs). In this paper, different cycle power generation schemes for HTGRs were systematically studied. Physical and mathematical models were established for these three cycle schemes: closed Brayton cycle, simple combined cycle, and reheated combined cycle. The effects and mechanism of key parameters such as reactor core outlet temperature, reactor core inlet temperature and compression ratio on the features of these cycles were analyzed. Then, optimization results were given with engineering restrictive conditions, including pinch point temperature differences. Results revealed that within the temperature range of HTGRs (700–900 °C), the reheated combined cycle had the highest efficiency, while the simple combined cycle had the lowest efficiency (900 °C). The efficiencies of the closed Brayton cycle, simple combined cycle and reheated combined cycle are 49.5%, 46.6% and 50.1%, respectively. These results provide insights on the different schemes of these cycles, and reveal the effects of key parameters on performance of these cycles. It could be helpful to understand and develop a combined cycle coupled with a high temperature reactor in the future.

  20. Thermoluminescence of KI:Eu2+ Stimulated by Ultraviolet Irradiation at Different Temperatures

    International Nuclear Information System (INIS)

    Aguirre de Carcer, I.; Jaque, F.; Townsend, P.D.

    1999-01-01

    The thermoluminescence (TL) of KI:Eu 2+ after ultraviolet (254 nm) irradiation at different temperatures from -40 deg. C to +40 deg. C has been studied. Two main glow peaks and some minor features have been identified on the thermoluminescence glow curves. Irradiating at low temperature gives a strong peak at γ5 deg. C and a less pronounced one at 230 deg. C. The TL glow peak emission spectra were analysed as consisting of the addition of several Gaussian shaped emission bands. The position of the Gaussian peaks, and their widths, are coincident with divalent europium emission at different sites of the KI:Eu 2+ system. A new emission band centred at 3.05 eV, 0.16 eV FWHM for Eu 2+ has been observed from the TL emission spectra. The changes in the spectral distribution of the TL emission with irradiation temperature are discussed. (author)

  1. Climate Prediction Center (CPC) US daily temperature analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. daily temperature analyses are maps depicting various temperature quantities utilizing daily maximum and minimum temperature data across the US. Maps are...

  2. Modelagem do desenvolvimento de trigo considerando diferentes temperaturas cardinais e métodos de cálculo da função de resposta à temperatura Modeling wheat development considering different cardinal temperatures and methods for the temperature response function calculation

    Directory of Open Access Journals (Sweden)

    Cleber Maus Alberto

    2009-06-01

    Full Text Available O objetivo deste trabalho foi melhorar a estimativa dos estádios de desenvolvimento de genótipos brasileiros de trigo (Triticum aestivum realizada por meio do modelo WE-Streck. Foram avaliadas diferentes combinações de temperaturas cardinais e métodos de cálculo da função de resposta à temperatura. Dados referentes às datas da emergência, da emissão da espigueta terminal, da antese e da maturidade fisiológica de seis genótipos brasileiros de trigo semeados em 11 datas ao longo de três anos (2005, 2006 e 2007 em Santa Maria, RS, foram usados para estimar os coeficientes do modelo WE-Streck modificado e testar as diferentes combinações de temperaturas cardinais e métodos de cálculo da função de resposta à temperatura. Para os genótipos BRS Louro, BRS 177, CEP 51, CEP 52 e Nova Era, a simulação do desenvolvimento com o modelo de WE-Streck é melhor quando são usados maiores valores de temperaturas cardinais ótima e máxima, em comparação às usadas originalmente no modelo. Para o genótipo BRS Tarumã, devem ser utilizadas as temperaturas cardinais do modelo WE-Streck original. É recomendável usar as temperaturas mínimas e máximas diárias para calcular a função de resposta à temperatura quando o modelo WE-Streck for usado para simulação do desenvolvimento de genótipos brasileiros de trigo.The objective of this work was to improve the prediction of developmental stages of Brazilian wheat (Triticum aestivum genotypes made using the WE-Streck model. Different combinations of cardinal temperatures and methods of calculating the temperature response function were evaluated. Data regarding the dates of emergence, terminal spikelet, anthesis, and physiological maturity of six Brazilian wheat genotypes sown on 11 dates during three years (2005, 2006, and 2007 at Santa Maria, RS, Brazil, were used to estimate the WE-Streck model coefficients and to evaluate the different combinations of cardinal temperatures and

  3. Calculated temperature field in and around a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Tarandi, T.

    1983-04-01

    Temperature distribution in and around the final storage has been calculated for BWR-fuel. The results are also applicable to PWR-fuel if the amount of fuel is adjusted so that the power per canister is the same. The calculations are made with the conservative assumption of the coefficient of thermal conductivity of 0.75 W/(m degreeC) in the bentonite and 3.0 W/(m degreeC) in the rock. The amount of BWR fuel is about 1.4 ton per canister. The canisters are deposited 40 years after withdrawal from the reactor. A number of different layouts in single and two-level storages have been studied. Finally, a two-level storage has been chosen as a basis for further project work. The maximum temperature increase of 59.2 degreeC at the surface of the canister is reached about 30 years after the time of deposition. However, in this twolevel storage there will be also a second temperature peak of 58.7 degreeC about 600 years after the deposition. The highest temperature increase in the rock, 56.8 degreeC, occurs about 600 years after the deposition. At the same time as the temperature continues to sink, there is a levelling out of the local temperature differences in the storage. These differences are negligible after about 1000 years. After 100000 years the temperatue in the storage is only a few degrees centigrade above the initial rock temperature. The heat from the storage reaches the ground surface about 200 years after the deposition. The maximum heat flow, 0.28 W/m 2 , occurs about 2000 years after deposition and is considered insignificant compared for example with solar energy flow of about 100 W/m 2 . (author)

  4. Changes in setting time of alginate impression material with different water temperature

    Directory of Open Access Journals (Sweden)

    Decky J. Indrani

    2013-03-01

    Full Text Available Background: Previous studies showed that setting process of alginates can be influenced by temperature. Purpose: To determine the changes in setting time due to differences in water temperature and to determine the correlation between water temperature and the setting time. Methods: Seven groups of dough alginate were prepared by mixing alginate powder and water, each using a temperature between 13° C–28° C with a interval of 2.5° C. A sample mold (Θ = 30 mm, t = 16 mm was placed on a flat plate and filled with doug alginate. Immediately the flat end of a polished acrylic rod was placed in contact with the surface of dough alginate. Setting time of alginat was measured from the starting of the mix to the time when the alginate does not adhere to the end of the rod. Setting time alginate data were analyzed using one way ANOVA, LSD and Pearson. Results: Setting time of alginate with water temperature between 13° C–28° C were 87 to 119.4 seconds and were significantly different (p < 0.01. The setting time between group were also significantly different (p<0.01. There was an inverse correlation between water temperature and the setting time (r = -0.968. Conclusion: Water temperature between 13° C–28°C with a difference of 2.5° C produced significant differences in alginate setting time; the lower the water temperature being used the longer the setting time was produced.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa proses pengerasan alginat dapat dipengaruhi oleh suhu. Tujuan: Mengetahui perubahan waktu pengerasan alginat akibat perbedaan suhu air serta mengetahui hubungan antara suhu air dan waktu pengerasan. Metode: Tujuh kelompok adonan alginat yang dipersiapkan dengan mencampur bubuk alginat dan air, masingmasing menggunakan suhu antara 13°C–28° C dengan interval 2,5° C. Pengukuran waktu pengerasan alginat dilakukan sesuai dengan spesifikasi ADA no.18. Sebuah cetakan sampel terbuat dari pralon berbentuk

  5. PTree: pattern-based, stochastic search for maximum parsimony phylogenies

    OpenAIRE

    Gregor, Ivan; Steinbr?ck, Lars; McHardy, Alice C.

    2013-01-01

    Phylogenetic reconstruction is vital to analyzing the evolutionary relationship of genes within and across populations of different species. Nowadays, with next generation sequencing technologies producing sets comprising thousands of sequences, robust identification of the tree topology, which is optimal according to standard criteria such as maximum parsimony, maximum likelihood or posterior probability, with phylogenetic inference methods is a computationally very demanding task. Here, we ...

  6. Effects of foliage plants on human physiological and psychological responses at different temperatures

    Science.gov (United States)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  7. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  8. Interhemispheric temperature difference as a predictor of boreal winter ENSO

    Science.gov (United States)

    Piskozub, Jacek; Gutowska, Dorota

    2013-04-01

    We use statistical analysis to show statistically significant relationship between the boreal winter MEI index of ENSO and HadCRUT3 temperature difference between Northern and Southern hemispheres (NH - SH) during the preceding summer. Correlation values increase (in absolute terms) if the correlated time periods are increased from month to seasonal length. For example December and January (DJ) MEI values anticorrelate stronger with the preceding MJJA period than with any of the four months taken separately. We believe this is further evidence that the correlation is caused by a real physical process as increase of the averaging period tends to reduce statistical noise. The motivation for looking for such a relationship comes from review of literature on paleoclimatic ENSO behavior. We have noticed that in many cases relatively cold NH coincided with "strong ENSO" (frequent El Niños), for example the Ice Age periods and Little Ice Age. On the other hand periods of relatively warm NH (the Holocene climate optimum or Medieval Climate Anomaly) are coincident with frequent or even "permanent" La Niñas. This relationship suggest the influence of the position of Intertropical Convergence Zone (ITCZ) on the frequency of El Niños. The simplest physical mechanism of the relationship is that the positive (negative) NH-SH temperature difference causes a north (south) shift of ITCZ with a parallel shift of trade wind zones. The North-South orographic difference between the Panama Isthmus and the South America may cause stronger (weaker) trade winds in Eastern Tropical Pacific increasing (decreasing) the thermochemical tilt which, in turn, causes a more negative (positive) ENSO values. Of course this may be only a first approximation of the real mechanism of this "teleconnection". The correlations we have found are not strong even if statistically significant. For example, the MJJA NH-SH temperature vs. DJ MEI correlation has r = -0.28 implying it explains only 8% of boreal

  9. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus

    Science.gov (United States)

    Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao

    2006-09-01

    The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.

  10. A comparison of climate simulations for the last glacial maximum with three different versions of the ECHAM model and implications for summer-green tree refugia

    Directory of Open Access Journals (Sweden)

    K. Arpe

    2011-02-01

    Full Text Available Model simulations of the last glacial maximum (21 ± 2 ka with the ECHAM3 T42 atmosphere-only, ECHAM5-MPIOM T31 atmosphere-ocean coupled and ECHAM5 T106 atmosphere-only models are compared. The topography, land-sea mask and glacier distribution for the ECHAM5 simulations were taken from the Paleoclimate Modelling Intercomparison Project Phase II (PMIP2 data set while for ECHAM3 they were taken from PMIP1. The ECHAM5-MPIOM T31 model produced its own sea surface temperatures (SST while the ECHAM5 T106 simulations were forced at the boundaries by this coupled model SSTs corrected from their present-day biases and the ECHAM3 T42 model was forced with prescribed SSTs provided by Climate/Long-Range Investigation, Mapping, and Prediction project (CLIMAP.

    The SSTs in the ECHAM5-MPIOM simulation for the last glacial maximum (LGM were much warmer in the northern Atlantic than those suggested by CLIMAP or Overview of Glacial Atlantic Ocean Mapping (GLAMAP while the SSTs were cooler everywhere else. This had a clear effect on the temperatures over Europe, warmer for winters in western Europe and cooler for eastern Europe than the simulation with CLIMAP SSTs.

    Considerable differences in the general circulation patterns were found in the different simulations. A ridge over western Europe for the present climate during winter in the 500 hPa height field remains in both ECHAM5 simulations for the LGM, more so in the T106 version, while the ECHAM3 CLIMAP-SST simulation provided a trough which is consistent with cooler temperatures over western Europe. The zonal wind between 30° W and 10° E shows a southward shift of the polar and subtropical jets in the simulations for the LGM, least obvious in the ECHAM5 T31 one, and an extremely strong polar jet for the ECHAM3 CLIMAP-SST run. The latter can probably be assigned to the much stronger north-south gradient in the CLIMAP SSTs. The southward shift of the polar jet during the LGM is supported by

  11. Coronal temperature diagnostics from high-resolution soft X-ray spectra

    Science.gov (United States)

    Strong, K. T.; Claflin, E. S.; Lemen, J. R.; Linford, G. A.

    1988-01-01

    The problem of deriving the temperature of the coronal plasma from soft X-ray spectra is discussed. Spectral atlas scans of the soft X-ray spectrum from the Flat Crystal Spectrometer on the Solar Maximum Mission are compared with theoretical predictions of the relative intensities of some of the brighter lines to determine which line intensity ratios give the most reliable temperature diagnostics. The techniques considered include line widths, He-like G ratios, intensity ratios, and ratios of lines formed by different elements. It is found that the best temperature diagnostics come from the ratios of lines formed by successive ionization stages of the same element.

  12. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    International Nuclear Information System (INIS)

    Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France

    2014-01-01

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures in 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in

  13. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    Energy Technology Data Exchange (ETDEWEB)

    Adam-Poupart, Ariane [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Smargiassi, Audrey [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Institut national de santé publique du Québec (INSPQ), Montreal, QC (Canada); Busque, Marc-Antoine; Duguay, Patrice [Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, QC (Canada); Fournier, Michel [Direction de santé publique, Agence de la santé et des services sociaux de Montréal, Montreal, QC (Canada); Zayed, Joseph [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, QC (Canada); Labrèche, France, E-mail: labreche.france@irsst.qc.ca [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, QC (Canada)

    2014-10-15

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures in 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in

  14. Lidar measurements of mesospheric temperature inversion at a low latitude

    Directory of Open Access Journals (Sweden)

    V. Siva Kumar

    Full Text Available The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E, India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.

    Key words. Atmospheric composition and structure (pressure, density and temperature. Meterology and atmospheric dynamics (climatology

  15. Cardinal Temperatures of Brassica sp. and How to Determine It

    Directory of Open Access Journals (Sweden)

    D. K. SUANDA SUANDA

    2013-08-01

    Full Text Available Cardinal temperatures consist of minimum, optimum and maximum of plant growth, and might beable to be determined by assessing effect of temperature on seed germination. An experiment ofseed germination was conducted in laboratory, using thermal gradient plate for ten days. To test hypothesisthat rapeseed genotypes vary in their response to temperatures. The design of this experiment was asplit plot with four replications. The main-treatments were 14 different temperatures: 0.4°C, 3.3°C,7.8°C, 11.6°C, 13.3°C, 15.0°C, 16.8°C, 18.3°C, 20.9°C, 21.1°C, 25.6°C, 29.0°C, 33.0°C and36.3°C. Sub-treatments were 6 brassica genotypes: Brassica napus genotypes (Tatyoon and Marnoo;B. campestris (Jumbuck and Chinoli B; B. juncea (No. 81797 and Zero Erusic Mustard (ZEM 2.Each treatment was using 50 seeds. Germinations were observed daily for ten days and data wereanalyzed with regression and correlation. Genotypes responded differently to temperatures with Jumbuckthe most sensitive to low temperature with minimum temperature (7.90°C, then respectively followedby Chinoli B (6.36°C, ZEM 2 (4.77°C, Tatyoon (4.63°C, No. 81797 (2.59°C, and Marnoo(1.00°C. For high temperature the most sensitive was No. 81797 with maximum temperature 38.61°C.and then respectively followed by Marnoo (39.76°C, Chinoli B (42.93°C, Tatyoon (43.79°C,Jumbuck (44.58°C and ZEM 2 (45.88°C. Optimum temperatures were for Jumbuck was 24.56°C,ZEM 2 (26.95°C, Tatyoon (27.12°C, No. 81797 (28.12°C, Chinoli B (29.74°C and Marnoo(30.48°C.

  16. The effect of cooling to different subzero temperatures on dog sperm cryosurvival.

    Science.gov (United States)

    Alcantar-Rodriguez, A; Medrano, A

    2017-06-01

    The objective was to assess the effect of cooling to different subzero temperatures around ice formation (-5°C) on dog sperm cryosurvival and plasma membrane fluidity. Semen was centrifuged, and sperm were resuspended in a Tris-egg yolk medium (3% glycerol). Diluted sperm were cooled from 22 to 5°C, and then, a Tris-egg yolk medium containing 7% glycerol was added (final concentration of 5% glycerol and 200 × 10 6  cells/ml). Sperm were packaged in 0.5-ml plastic straws, and equilibration was done 16 hr at 5°C before freezing. I. Straws (n = 47) at 5°C were exposed to nitrogen vapours to determine the freezing point. II. Other straws (from different ejaculates) processed as mentioned, were further cooled to -3, -5 or -7°C and immediately rewarmed in a water bath at 37°C. Motility, plasma membrane functionality and acrosome integrity were assessed. III. Other straws (from different ejaculates) processed as mentioned were further cooled to -3 or -5°C, frozen over nitrogen vapours and stored in liquid nitrogen for one month. Straws were thawed in a water bath at 38°C for 30 s. Motility, plasma membrane functionality, plasma membrane integrity, acrosome integrity, capacitation status and plasma membrane fluidity were assessed. Ice nucleation temperature was -14.3 ± 2.05°C (mean ± SD); cooling to +5, -3, -5 and -7°C, without freezing, produces no differences on sperm quality between target temperatures; cooling to +5, -3, and -5°C produced no differences on sperm survival and plasma membrane fluidity after freeze-thawing. In conclusion, cooling of dog spermatozoa to different subzero temperatures did not improve sperm cryosurvival and had no effect on plasma membrane fluidity after thawing. © 2017 Blackwell Verlag GmbH.

  17. Temperature controlled formation of lead/acid batteries

    Science.gov (United States)

    Bungardt, M.

    At present, standard formation programs have to accommodate the worst case. This is important, especially in respect of variations in climatic conditions. The standard must be set so that during the hottest weather periods the maximum electrolyte temperature is not exceeded. As this value is defined not only by the desired properties and the recipe of the active mass, but also by type and size of the separators and by the dimensions of the plates, general rules cannot be formulated. It is considered to be advantageous to introduce limiting data for the maximum temperature into a general formation program. The latter is defined so that under normal to good ambient conditions the shortest formation time is achieved. If required, the temperature control will reduce the currents employed in the different steps, according to need, and will extend the formation time accordingly. With computer-controlled formation, these parameters can be readily adjusted to suit each type of battery and can also be reset according to modifications in the preceding processing steps. Such a procedure ensures that: (i) the formation time is minimum under the given ambient conditions; (ii) in the event of malpractice ( e.g. actual program not fitting to size) the batteries will not be destroyed; (iii) the energy consumption is minimized (note, high electrolyte temperature leads to excess gassing). These features are incorporated in the BA/FOS-500 battery formation system developed by Digatron. The operational characteristics of this system are listed in Table 1.

  18. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  19. Quality, precision and accuracy of the maximum No. 40 anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Obermeir, J. [Otech Engineering, Davis, CA (United States); Blittersdorf, D. [NRG Systems Inc., Hinesburg, VT (United States)

    1996-12-31

    This paper synthesizes available calibration data for the Maximum No. 40 anemometer. Despite its long history in the wind industry, controversy surrounds the choice of transfer function for this anemometer. Many users are unaware that recent changes in default transfer functions in data loggers are producing output wind speed differences as large as 7.6%. Comparison of two calibration methods used for large samples of Maximum No. 40 anemometers shows a consistent difference of 4.6% in output speeds. This difference is significantly larger than estimated uncertainty levels. Testing, initially performed to investigate related issues, reveals that Gill and Maximum cup anemometers change their calibration transfer functions significantly when calibrated in the open atmosphere compared with calibration in a laminar wind tunnel. This indicates that atmospheric turbulence changes the calibration transfer function of cup anemometers. These results call into question the suitability of standard wind tunnel calibration testing for cup anemometers. 6 refs., 10 figs., 4 tabs.

  20. Mortality impact of extreme winter temperatures

    Science.gov (United States)

    Díaz, Julio; García, Ricardo; López, César; Linares, Cristina; Tobías, Aurelio; Prieto, Luis

    2005-01-01

    During the last few years great attention has been paid to the evaluation of the impact of extreme temperatures on human health. This paper examines the effect of extreme winter temperature on mortality in Madrid for people older than 65, using ARIMA and GAM models. Data correspond to 1,815 winter days over the period 1986 1997, during which time a total of 133,000 deaths occurred. The daily maximum temperature (Tmax) was shown to be the best thermal indicator of the impact of climate on mortality. When total mortality was considered, the maximum impact occured 7 8 days after a temperature extreme; for circulatory diseases the lag was between 7 and 14 days. When respiratory causes were considered, two mortality peaks were evident at 4 5 and 11 days. When the impact of winter extreme temperatures was compared with that associated with summer extremes, it was found to occur over a longer term, and appeared to be more indirect.