WorldWideScience

Sample records for maximum sunspot number

  1. Fractal Dimension and Maximum Sunspot Number in Solar Cycle

    Directory of Open Access Journals (Sweden)

    R.-S. Kim

    2006-09-01

    Full Text Available The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89 between the observed and predicted maximum sunspot numbers in the solar cycles.

  2. Predicting Maximum Sunspot Number in Solar Cycle 24 Nipa J Bhatt ...

    Indian Academy of Sciences (India)

    Key words. Sunspot number—precursor prediction technique—geo- magnetic activity index aa. 1. Introduction. Predictions of solar and geomagnetic activities are important for various purposes, including the operation of low-earth orbiting satellites, operation of power grids on. Earth, and satellite communication systems.

  3. Solar Indices - Sunspot Numbers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Revised Sunspot Numbers and the Effects on Understanding the Sunspot Cycle

    Science.gov (United States)

    Hathaway, D. H.

    2014-12-01

    While sunspot numbers provide only limited information about the sunspot cycle, they provide that information for at least twice as many sunspot cycles as any other direct solar observation. In particular, sunspot numbers are available before, during, and immediately after the Maunder Minimum (1645-1715). The instruments and methods used to count sunspots have changed over the last 400+ years. This leads to systematic changes in the sunspot number that can mask, or artificially introduce, characteristics of the sunspot cycle. The most widely used sunspot number is the International (Wolf/Zurich) sunspot number which is now calculated at the Solar Influences Data Center in Brussels, Belgium. These numbers extend back to 1749. The Group sunspot number extends back to the first telescopic observations of the Sun in 1610. There are well-known and significant differences between these two numbers where they overlap. Recent work has helped us to understand the sources of these differences and has led to proposed revisions in the sunspot numbers. Independent studies now support many of these revisions. These revised sunspot numbers suggest changes to our understanding of the sunspot cycle itself and to our understanding of its connection to climate change.

  5. Sunspots

    International Nuclear Information System (INIS)

    Moore, R.; Rabin, D.

    1985-01-01

    It is pointed out that the sun provides a close-up view of many astrophysically important phenomena, nearly all connected with the causes and effects of solar magnetic fields. The present article provides a review of the role of sunspots in a number of new areas of research. Connections with other solar phenomena are examined, taking into account flares, the solar magnetic cycle, global flows, luminosity variation, and global oscillations. A selective review of the structure and dynamic phenomena observed within sunspots is also presented. It is found that sunspots are usually contorted during the growth phase of an active region as magnetic field rapidly emerges and sunspots form, coalesce, and move past or even through each other. Attention is given to structure and flows, oscillations and waves, and plans for future studies. 145 references

  6. Extreme Value Theory Applied to the Millennial Sunspot Number Series

    Science.gov (United States)

    Acero, F. J.; Gallego, M. C.; García, J. A.; Usoskin, I. G.; Vaquero, J. M.

    2018-01-01

    In this work, we use two decadal sunspot number series reconstructed from cosmogenic radionuclide data (14C in tree trunks, SN 14C, and 10Be in polar ice, SN 10Be) and the extreme value theory to study variability of solar activity during the last nine millennia. The peaks-over-threshold technique was used to compute, in particular, the shape parameter of the generalized Pareto distribution for different thresholds. Its negative value implies an upper bound of the extreme SN 10Be and SN 14C timeseries. The return level for 1000 and 10,000 years were estimated leading to values lower than the maximum observed values, expected for the 1000 year, but not for the 10,000 year return levels, for both series. A comparison of these results with those obtained using the observed sunspot numbers from telescopic observations during the last four centuries suggests that the main characteristics of solar activity have already been recorded in the telescopic period (from 1610 to nowadays) which covers the full range of solar variability from a Grand minimum to a Grand maximum.

  7. The topside ionosphere above Arecibo at equinox during sunspot maximum

    International Nuclear Information System (INIS)

    Bailey, G.J.

    1980-01-01

    The coupled time-dependent 0 + and H + continuity and momentum equations and 0 + , H + and electron heat balance equations are solved simultaneously within the L = 1.4 (Arecibo) magnetic flux tube between an altitude of 120 km and the equatorial plane. The results of the calculations are used in a study of the topside ionosphere above Arecibo at equinox during sunspot maximum. Magnetically quiet conditions are assumed. The results of the calculations show that the L = 1.4 magnetic flux tube becomes saturated from an arbitrary state within 2-3 days. During the day the ion content of the magnetic flux tube consists mainly of 0 + whereas 0 + and H + are both important during the night. There is an altitude region in the topside ionosphere during the day where ion-counterstreaming occurs with H + flowing downward and 0 + flowing upward. The conditions causing this ion-counterstreaming are discussed. There is a net chemical gain of H + at the higher altitudes. This H + diffuses both upwards and downwards whilst 0 + diffuses upwards from its solar e.u.v. production source which is most important at the lower altitudes. During the night the calculated 0 + and H + temperatures are very nearly equal whereas during the day there are occasions when the H + temperature exceeds the 0 - temperature by about 300 K. (author)

  8. The Recalibrated Sunspot Number: Impact on Solar Cycle Predictions

    Science.gov (United States)

    Clette, F.; Lefevre, L.

    2017-12-01

    Recently and for the first time since their creation, the sunspot number and group number series were entirely revisited and a first fully recalibrated version was officially released in July 2015 by the World Data Center SILSO (Brussels). Those reference long-term series are widely used as input data or as a calibration reference by various solar cycle prediction methods. Therefore, past predictions may now need to be redone using the new sunspot series, and methods already used for predicting cycle 24 will require adaptations before attempting predictions of the next cycles.In order to clarify the nature of the applied changes, we describe the different corrections applied to the sunspot and group number series, which affect extended time periods and can reach up to 40%. While some changes simply involve constant scale factors, other corrections vary with time or follow the solar cycle modulation. Depending on the prediction method and on the selected time interval, this can lead to different responses and biases. Moreover, together with the new series, standard error estimates are also progressively added to the new sunspot numbers, which may help deriving more accurate uncertainties for predicted activity indices. We conclude on the new round of recalibration that is now undertaken in the framework of a broad multi-team collaboration articulated around upcoming ISSI workshops. We outline the future corrections that can still be expected in the future, as part of a permanent upgrading process and quality control. From now on, future sunspot-based predictive models should thus be made more adaptable, and regular updates of predictions should become common practice in order to track periodic upgrades of the sunspot number series, just like it is done when using other modern solar observational series.

  9. Sunspots

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    The existence of sunspots has been known since ancient times, but it was only at the beginning of this century that they were found to be the sites of very strong magnetic fields, and it was realised that they represent the places where huge magnetic flux tubes burst through the solar surface. A theoretical understanding of sunspots has had to await the development of magnetohydrodynamics; however, even now, there is some controversy about answers to fundamental questions, such as: why is a sunspot cool, what is its equilibrium structure and how is it formed. Other topics that are discussed in the present chapter include magnetoconvection and the process of magnetic buoyancy whereby a flux tube deep within the Sun tends to rise towards the surface because it is lighter than its surroundings. Outside active regions the magnetic flux is not spread out uniformly to a weak field of a few Gauss, but instead it is mainly concentrated at supergranulation boundaries into intense flux tubes, whose properties are discussed. (Auth.)

  10. Sunspot number recalibration: The ~1840–1920 anomaly in the observer normalization factors of the group sunspot number

    Directory of Open Access Journals (Sweden)

    Cliver Edward W.

    2017-01-01

    Full Text Available We analyze the normalization factors (k′-factors used to scale secondary observers to the Royal Greenwich Observatory (RGO reference series of the Hoyt & Schatten (1998a, 1998b group sunspot number (GSN. A time series of these k′-factors exhibits an anomaly from 1841 to 1920, viz., the average k′-factor for all observers who began reporting groups from 1841 to 1883 is 1.075 vs. 1.431 for those who began from 1884 to 1920, with a progressive rise, on average, during the latter period. The 1883–1884 break between the two subintervals occurs precisely at the point where Hoyt and Schatten began to use a complex daisy-chaining method to scale observers to RGO. The 1841–1920 anomaly implies, implausibly, that the average sunspot observer who began from 1841 to 1883 was nearly as proficient at counting groups as mid-20th century RGO (for which k′ = 1.0 by definition while observers beginning during the 1884–1920 period regressed in group counting capability relative to those from the earlier interval. Instead, as shown elsewhere and substantiated here, RGO group counts increased relative to those of other long-term observers from 1874 to ~1915. This apparent inhomogeneity in the RGO group count series is primarily responsible for the increase in k′-factors from 1884 to 1920 and the suppression, by 44% on average, of the Hoyt and Schatten GSN relative to the original Wolf sunspot number (WSN before ~1885. Correcting for the early “learning curve” in the RGO reference series and minimizing the use of daisy-chaining rectifies the anomalous behavior of the k′-factor series. The resultant GSN time series (designated GSN* is in reasonable agreement with the revised WSN (SN*; Clette & Lefèvre 2016 and the backbone-based group sunspot number (RGS; Svalgaard & Schatten 2016 but significantly higher than other recent reconstructions (Friedli, personal communication, 2016; Lockwood et al. 2014a, 2014b; Usoskin et al. 2016a. This result

  11. Using dynamo theory to predict the sunspot number during solar cycle 21

    Science.gov (United States)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the polar field strength of the sun near a solar minimum is closely related to the solar activity of the following cycle. Four methods of estimating the polar magnetic field strength of the sun near solar minimum are employed to provide an estimate of the yearly mean sunspot number of cycle 21 at solar maximum of 140 + or - 20. This estimate may be considered a first-order attempt to predict the cycle activity using one parameter of physical importance based upon dynamo theory.

  12. Evolution of the Sunspot Number and Solar Wind B Time Series

    Science.gov (United States)

    Cliver, Edward W.; Herbst, Konstantin

    2018-03-01

    The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610-1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ˜1885. An effort from 2011-2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (B) from 1750-present that can be compared with two independent long-term (> ˜600 year) series of annual B-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.

  13. New reconstruction of the sunspot group numbers since 1739 using direct calibration and "backbone" methods

    Science.gov (United States)

    Chatzistergos, Theodosios; Usoskin, Ilya G.; Kovaltsov, Gennady A.; Krivova, Natalie A.; Solanki, Sami K.

    2017-06-01

    Context. The group sunspot number (GSN) series constitute the longest instrumental astronomical database providing information on solar activity. This database is a compilation of observations by many individual observers, and their inter-calibration has usually been performed using linear rescaling. There are multiple published series that show different long-term trends for solar activity. Aims: We aim at producing a GSN series, with a non-linear non-parametric calibration. The only underlying assumptions are that the differences between the various series are due to different acuity thresholds of the observers, and that the threshold of each observer remains constant throughout the observing period. Methods: We used a daisy chain process with backbone (BB) observers and calibrated all overlapping observers to them. We performed the calibration of each individual observer with a probability distribution function (PDF) matrix constructed considering all daily values for the overlapping period with the BB. The calibration of the BBs was carried out in a similar manner. The final series was constructed by merging different BB series. We modelled the propagation of errors straightforwardly with Monte Carlo simulations. A potential bias due to the selection of BBs was investigated and the effect was shown to lie within the 1σ interval of the produced series. The exact selection of the reference period was shown to have a rather small effect on our calibration as well. Results: The final series extends back to 1739 and includes data from 314 observers. This series suggests moderate activity during the 18th and 19th century, which is significantly lower than the high level of solar activity predicted by other recent reconstructions applying linear regressions. Conclusions: The new series provides a robust reconstruction, based on modern and non-parametric methods, of sunspot group numbers since 1739, and it confirms the existence of the modern grand maximum of solar

  14. A New Revision of the Solar Irradiance Climate Data Record Incorporates Recent Research into Proxies of Sunspot Darkening and the Sunspot Number Record

    Science.gov (United States)

    Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.

    2017-12-01

    An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using

  15. SOLAR CYCLE 24: CURIOUS CHANGES IN THE RELATIVE NUMBERS OF SUNSPOT GROUP TYPES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Ozguc, A.; Rozelot, J. P.

    2014-01-01

    Here, we analyze different sunspot group (SG) behaviors from the points of view of both the sunspot counts (SSCs) and the number of SGs, in four categories, for the time period of 1982 January-2014 May. These categories include data from simple (A and B), medium (C), large (D, E, and F), and decaying (H) SGs. We investigate temporal variations of all data sets used in this study and find the following results. (1) There is a very significant decrease in the large groups' SSCs and the number of SGs in solar cycle 24 (cycle 24) compared to cycles 21-23. (2) There is no strong variation in the decaying groups' data sets for the entire investigated time interval. (3) Medium group data show a gradual decrease for the last three cycles. (4) A significant decrease occurred in the small groups during solar cycle 23, while no strong changes show in the current cycle (cycle 24) compared to the previous ones. We confirm that the temporal behavior of all categories is quite different from cycle to cycle and it is especially flagrant in solar cycle 24. Thus, we argue that the reduced absolute number of the large SGs is largely, if not solely, responsible for the weak cycle 24. These results might be important for long-term space weather predictions to understand the rate of formation of different groups of sunspots during a solar cycle and the possible consequences for the long-term geomagnetic activity

  16. The Sunspot Number and beyond : reconstructing detailed solar information over centuries

    Science.gov (United States)

    Lefevre, L.

    2014-12-01

    With four centuries of solar evolution, the International Sunspot Number (SSN) forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. Because of its importance, this unique time-series must be closely monitored for any possible biases and drifts. Here, we report about recent disagreements between solar indices, for example the sunspot sumber and the 10.7cm radio flux. Recent analyses indicate that while part of this divergence may be due to a calibration drift in the SSN, it also results from an intrinsic change in the global magnetic parameters of sunspots and solar active regions, suggesting a possible transition to a new activity regime. Going beyond the SSN series, in the framework of the TOSCA (www.cost-tosca.eu/) and SOLID (projects.pmodwrc.ch/solid/) projects, we produced a survey of all existing catalogs providing detailed sunspot information (Lefevre & Clette, 2014:10.1007/s11207-012-0184-5) and we also located different primary solar images and drawing collections that can be exploitable to complement the existing catalogs. These are first steps towards the construction of a multi-parametric time series of multiple sunspot and sunspot group properties over more than a century, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. We will present here the current status of this work. The preliminary version catalog now extends over the last 150 years. It makes use of data from DPD (http://fenyi.solarobs.unideb.hu/DPD/index.html), from the Uccle Solar Equatorial Table (USET:http://sidc.oma.be/uset/) operated by the Royal Obeservatory of Belgium, the Greenwich

  17. Long-term Modulation of Cosmic Ray Intensity in relation to Sunspot ...

    Indian Academy of Sciences (India)

    it should be more closely connected with cosmic ray modulation than with other solar characteristics (sunspot numbers or coronal emission intensity). The intensity of galactic cosmic rays varies inversely with sunspot numbers, having their maximum intensity at the minimum of the 11-year sunspot cycle (Forbush 1954, 1958) ...

  18. On the statistical aspects of sunspot number time series and its association with the summer-monsoon rainfall over India

    Science.gov (United States)

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    The present paper reports studies on the association between the mean annual sunspot numbers and the summer monsoon rainfall over India. The cross correlations have been studied. After Box-Cox transformation, the time spectral analysis has been executed and it has been found that both of the time series have an important spectrum at the fifth harmonic. An artificial neural network (ANN) model has been developed on the data series averaged continuously by five years and the neural network could establish a predictor-predict and relationship between the sunspot numbers and the mean yearly summer monsoon rainfall over India.

  19. Values of Kp Indices, Ap Indices, Cp Indices, C9 Indices, Sunspot Number, and 10.7 cm Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data file consists of Kp indices, Ap indices, Cp indices, C9 indices, sunspot number, and 10.7 cm flux. The most often requested parameter of this file are the...

  20. Effect of solar flare ans sunspot numbers on the intensity of 5577A line in the night airglow

    International Nuclear Information System (INIS)

    Kundu, N.; Ghosh, S.N.

    1981-01-01

    The effects of solar flare and sunspot number on the intensity of 5577 A line emission are presented. The time lag between the occurrence of a flare and the enhancement of 5577 A line intensity is determined by observing the intensity of the line on three successive nights- the night preceding the flare and the two nights following it. The velocity of the solar corpuscles is then calculated. The value obtained at Allahabad (2400 Km/sec) is in agreement with the De Jager's prediction for explosive flare. Day-to-day analyses of the observations taken at Allahabad exhibit high correlation of the intensity of 5577 A line emission with sunspot number. Also, correlation is found for the intensity of 5577 A with the change in sunspot number (DELTA R) from the day preceding the night of observation to the day following it. The intensity appears to vary with the magnetic field produced by the sunspot and not with the spot area. (author)

  1. Principal components and iterative regression analysis of geophysical series: Application to Sunspot number (1750 2004)

    Science.gov (United States)

    Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.

    2008-11-01

    We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.

  2. Probability Estimates of Solar Proton Doses During Periods of Low Sunspot Number for Short Duration Missions

    Science.gov (United States)

    Atwell, William; Tylka, Allan J.; Dietrich, William F.; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper presented at ICES in 2015, we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the monthly smoothed sunspot number (SSN) was less than 30. Although such months are generally considered "solar-quiet", SPEs observed during these months even include Ground Level Events, the most energetic type of SPE. In this paper, we add to previous study those SPEs that occurred in 1973-2015 when the SSN was greater than 30 but less than 50. Based on the observable energy range of the solar protons, we classify the event as GLEs, sub-GLEs, and sub-sub-GLEs, all of which are potential contributors to the radiation hazard. We use the spectra of these events to construct a probabilistic model of the absorbed dose due to solar protons when SSN < 50 at various confidence levels for various depths of shielding and for various mission durations. We provide plots and tables of solar proton-induced absorbed dose as functions of confidence level, shielding thickness, and mission-duration that will be useful to system designers.

  3. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  4. A dynamo theory prediction for solar cycle 22 - Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1984-01-01

    Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  5. Worldwide variation in atmospheric noise intensities with sunspot number: an in-depth look at the 20 to 24 hour seasonal time block

    International Nuclear Information System (INIS)

    Joglekar, P.J.; Sathiamurthy, T.S.

    1975-01-01

    Comparisons of the variation of atmospheric radio noise intensities for 20 to 24 hr to sunspot numbers have been completed. Statistical dependence between the noise intensities and sunspot numbers was found for different seasons at a number of frequencies for many locations in the global network of ARN-2 noise recorders. The noise intensities generally tended to decrease with sunspot number in the range from 50 kHz to 5 MHz, which is presumed to be due to increases in residual ionospheric absorption during nighttime. At frequencies greater than 5 MHz, noise intensities increased with sunspot number in many cases, which would be expected from our present knowledge of ionospheric behavior in the HF range. By convention, CCIR treats year-to-year variation in the noise intensities as random and includes them in the prediction uncertainty sigma /sub Fam/ (for which one value is given at a frequency for a seasonal time block for all locations) in system performance evaluation. An error analysis on a global basis shows that a large portion of the year-to-year variability is due to sunspot variation. This suggests the possibility of improved noise estimates. (auth)

  6. Period of sunspot numbers is 11.02653720 years (11 years 9 days 16 hours 18 minutes 0 seconds)

    International Nuclear Information System (INIS)

    Norita, Sadataka

    1976-01-01

    In the statistical analysis of time series there have been applied usually the stationary stochastic process or the Markov stochastic process and recently there are applied remarkably an autoregressive process, a stochastic difference equation, an autoregressive-moving average process, a moving average process, the Whittaker periodogram, the correlogram, Schuster periodogram, chi-squared periodogram, level crossings, harmonic process, difference method, spectral density and first order vector equation, but in special case it is desirable to apply the nonstationary stocastic process. In this paper we introduce an stationarity into the autoregressive process and then it is the first purpose to compute precisely period of sunspot numbers. The result up to the eighth places at the decimal point was obtained that its period is 11.02653720 years, that is, 11 years 9 days 16 hours 18 minutes 0 seconds. This is considered to be more relevant than numerical values by which Schuster (1906) and Yule (1927) had calculated the respective 11.125 years and 10.60 years in the past. We revised the theoretical expression in the thesis of Anderson, Shaman, Lindgren, Brillinger, Newbold, Parzen, Kingman, Van Ness and Kenneth, etc. and executed the numerical analysis of period of sunspot numbers investigated now. (auth.)

  7. Period of sunspot numbers is 11. 02653720 years (11 years 9 days 16 hours 18 minutes 0 seconds)

    Energy Technology Data Exchange (ETDEWEB)

    Norita, S [Miyazaki Univ. (Japan). Faculty of Engineering

    1976-09-01

    In the statistical analysis of time series there have been applied usually the stationary stochastic process or the Markov stochastic process and recently there are applied remarkably an autoregressive process, a stochastic difference equation, an autoregressive-moving average process, a moving average process, the Whittaker periodogram, the correlogram, Schuster periodogram, chi-squared periodogram, level crossings, harmonic process, difference method, spectral density and first order vector equation, but in special case it is desirable to apply the nonstationary stocastic process. In this paper we introduce a stationarity into the autoregressive process and then it is the first purpose to compute precisely the period of sunspot numbers. The result up to the eighth places at the decimal point was obtained that its period is 11.02653720 years, that is, 11 years 9 days 16 hours 18 minutes 0 seconds. This is considered to be more relevant than numerical values by which Schuster (1906) and Yule (1927) had calculated the respective 11.125 years and 10.60 years in the past. We revised the theoretical expression in the thesis of Anderson, Shaman, Lindgren, Brillinger, Newbold, Parzen, Kingman, Van Ness and Kenneth, etc. and executed the numerical analysis of period of sunspot numbers investigated now.

  8. On sunspots

    CERN Document Server

    Galilei, Galileo; Reeves, Eileen; Helden, Albert van

    2010-01-01

    Galileo's telescopic discoveries, and especially his observation of sunspots, caused great debate in an age when the heavens were thought to be perfect and unchanging. Christoph Scheiner, a Jesuit mathematician, argued that sunspots were planets or moons crossing in front of the Sun. Galileo, on the other hand, countered that the spots were on or near the surface of the Sun itself, and he supported his position with a series of meticulous observations and mathematical demonstrations that eventually convinced even his rival.  On Sunspots collects the correspondenc

  9. An econometric investigation of the sunspot number record since the year 1700 and its prediction into the 22nd century

    Science.gov (United States)

    Travaglini, Guido

    2015-09-01

    Solar activity, as measured by the yearly revisited time series of sunspot numbers (SSN) for the period 1700-2014 (Clette et al., 2014), undergoes in this paper a triple statistical and econometric checkup. The conclusions are that the SSN sequence: (1) is best modeled as a signal that features nonlinearity in mean and variance, long memory, mean reversion, 'threshold' symmetry, and stationarity; (2) is best described as a discrete damped harmonic oscillator which linearly approximates the flux-transport dynamo model; (3) its prediction well into the 22nd century testifies of a substantial fall of the SSN centered around the year 2030. In addition, the first and last Gleissberg cycles show almost the same peak number and height during the period considered, yet the former slightly prevails when measured by means of the estimated smoother. All of these conclusions are achieved by making use of modern tools developed in the field of Financial Econometrics and of two new proposed procedures for signal smoothing and prediction.

  10. The maximum number of minimal codewords in long codes

    DEFF Research Database (Denmark)

    Alahmadi, A.; Aldred, R.E.L.; dela Cruz, R.

    2013-01-01

    Upper bounds on the maximum number of minimal codewords in a binary code follow from the theory of matroids. Random coding provides lower bounds. In this paper, we compare these bounds with analogous bounds for the cycle code of graphs. This problem (in the graphic case) was considered in 1981 by...

  11. Long-term periodicities in the sunspot record

    International Nuclear Information System (INIS)

    Wilson, R.M.

    1984-07-01

    Sunspot records are systematically maintained, with the knowledge that an 11 year average period exists since about 1850. Thus, the sunspot record of highest quality and considered to be the most reliable is that of cycle eight through the present. On the basis of cycles 8 through 20, various combinations of sine curves were used to approximate the observed R sub MAX values (where R sub MAX is the smoothed sunspot number at cycle maximum). It is found that a three component sinusoidal function, having an 11 cycle and a 2 cycle variation on a 90 cycle periodicity, yields computed R sub MAX values which fit, reasonably well, observed R sub MAX values for the modern sunspot cycles. Extrapolation of the empirical functions forward in time allows for the projection of values of R sub MAX for cycles 21 and 22. For cycle 21, the function projects a value of 157.3, very close to the actually observed value of 164.5. For cycle 22, the function projects a value of about 107. Linear regressions applied to cycle 22 indicate a long-period cycle (cycle duration 132 months). An extensive bibliography on techniques used to estimate the time dependent behavior of sunspot cycles is provided

  12. The sunspot cycle revisited

    International Nuclear Information System (INIS)

    Lomb, Nick

    2013-01-01

    The set of sunspot numbers observed since the invention of the telescope is one of the most studied time series in astronomy and yet it is also one of the most complex. Fourteen frequencies are found in the yearly mean sunspot numbers from 1700 to 2011using the Lomb-Scargle periodogram and prewhitening. All of the frequencies corresponding to shorter term periods can be matched with simple algebraic combinations of the frequency of the main 11-year period and the frequencies of the longer term periods in the periodogram. This is exactly what can be expected from amplitude and phase modulation of an 11.12-year periodicity by longer term variations. Similar, though not identical, results are obtained after correcting the sunspot number series as proposed by Svalgaard. On looking separately at the amplitude and phase modulation a clear relationship is found between the two modulations although this relationship has broken down for the last four solar cycles. The phase modulation implies that there is a definite underlying period for the solar cycle. Such a clock mechanism does seem to be a possibility in models of the solar dynamo incorporating a conveyor-belt-like meridional circulation between high polar latitudes and the equator.

  13. Gentile statistics with a large maximum occupation number

    International Nuclear Information System (INIS)

    Dai Wusheng; Xie Mi

    2004-01-01

    In Gentile statistics the maximum occupation number can take on unrestricted integers: 1 1 the Bose-Einstein case is not recovered from Gentile statistics as n goes to N. Attention is also concentrated on the contribution of the ground state which was ignored in related literature. The thermodynamic behavior of a ν-dimensional Gentile ideal gas of particle of dispersion E=p s /2m, where ν and s are arbitrary, is analyzed in detail. Moreover, we provide an alternative derivation of the partition function for Gentile statistics

  14. Sunspot drawings handwritten character recognition method based on deep learning

    Science.gov (United States)

    Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li

    2016-05-01

    High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.

  15. Preliminary observations and results obtained with the ultraviolet spectrometer and polarimeter. [for Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hassen, E.; Cheng, C. C.; Athay, R. G.; Beckers, J. M.; Brandt, J. C.; Chapman, R. D.; Bruner, E. C.; Henze, W.; Hyder, C. L.; Gurman, J. B.

    1981-01-01

    New observation with the Ultraviolet Spectrometer and Polarimeter (UVSP) of a number of manifestations of solar activity obtained during the first three months of Solar Maximum Mission operations are presented. Attention is given to polarimetry in sunspots, oscillations above sunspots, density diagnostics of transition-zone plasmas in active regions, and the eruptive prominence - coronal transient link.

  16. A Test of the Active-Day Fraction Method of Sunspot Group Number Calibration: Dependence on the Level of Solar Activity

    Science.gov (United States)

    Willamo, T.; Usoskin, I. G.; Kovaltsov, G. A.

    2018-04-01

    The method of active-day fraction (ADF) was proposed recently to calibrate different solar observers to standard observational conditions. The result of the calibration may depend on the overall level of solar activity during the observational period. This dependency is studied quantitatively using data of the Royal Greenwich Observatory by formally calibrating synthetic pseudo-observers to the full reference dataset. It is shown that the sunspot group number is precisely estimated by the ADF method for periods of moderate activity, may be slightly underestimated by 0.5 - 1.5 groups ({≤} 10%) for strong and very strong activity, and is strongly overestimated by up to 2.5 groups ({≤} 30%) for weak-to-moderate activity. The ADF method becomes inapplicable for the periods of grand minima of activity. In general, the ADF method tends to overestimate the overall level of activity and to reduce the long-term trends.

  17. The use of solar faculae in studies of the sunspot cycle

    International Nuclear Information System (INIS)

    Brown, G.M.; Evans, R.

    1980-01-01

    Comparison of the long-term variation of photospheric faculae areas with that of sunspots shows that studies of faculae provide both complementary and supplementary information on the behaviour of the solar cycle. Detailed studies of the development of sunspots with respect to faculae show that there is a high degree of order over much of a given cycle, but marked differences from cycle to cycle. Within a cycle the relationship between spot and faculae areas appears to be similar for the N and S solar hemispheres, and over the early stages of a cycle it is directly related to the magnitude of the maximum sunspot number subsequently attained in that cycle. This result may well have predictive applications, and formulae are given relating the peak sunspot number to simple parameters derived from this early developmental stage. Full application to the current cycle 21 is denied due to the cessation of the Greenwich daily photoheliographic measurements, but use of the cruder weekly data suggests a maximum smoothed sunspot number of 150 +- 22. The effects of the incompatibility of the spot and faculae data, in that faculae are unobservable over a large fraction of the solar disc and also do not always develop associated spots, have been examined in a detailed study of two cycles and shown not to vitiate the results. (orig.)

  18. Relationship between geomagnetic classes’ activity phases and their occurrence during the sunspot cycle

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2009-06-01

    Full Text Available Four well known geomagnetic classes of activity such as quiet days activity, fluctuating activity, recurrent activity
    and shock activity time occurrences have been determined not only by using time profile of sunspot number
    Rz but also by using aa index values.
    We show that recurrent wind stream activity and fluctuating activity occur in opposite phase and slow solar wind
    activity during minimum phase and shock activity at the maximum phase.
    It emerges from this study that fluctuating activity precedes the sunspot cycle by π/2 and the latter also precedes
    recurrent activity by π/2. Thus in the majority the activities do not happen at random; the sunspot cycle starts
    with quiet days activity, continues with fluctuating activity and during its maximum phase arrives shock activity.
    The descending phase is characterized by the manifestation of recurrent wind stream activity.

  19. Sunspot variation and selected associated phenomena: a look at solar cycle 21 and beyond

    International Nuclear Information System (INIS)

    Wilson, R.M.

    1982-02-01

    Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated

  20. Probability Estimates of Solar Particle Event Doses During a Period of Low Sunspot Number for Thinly-Shielded Spacecraft and Short Duration Missions

    Science.gov (United States)

    Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.

  1. Sunspots During the Maunder Minimum from Machina Coelestis by Hevelius

    Science.gov (United States)

    Carrasco, V. M. S.; Álvarez, J. Villalba; Vaquero, J. M.

    2015-10-01

    We revisited the sunspot observations published by Johannes Hevelius in his book Machina Coelestis (1679) corresponding to the period of 1653 - 1675 (just in the middle of the Maunder Minimum). We show detailed translations of the original Latin texts describing the sunspot records and provide the general context of these sunspot observations. From this source, we present an estimate of the annual values of the group sunspot number based only on the records that explicitly inform us of the presence or absence of sunspots. Although we obtain very low values of the group sunspot number, in accordance with a grand minimum of solar activity, these values are significantly higher in general than the values provided by Hoyt and Schatten ( Solar Phys. 179, 189, 1998) for the same period.

  2. Featured Image: Bright Dots in a Sunspot

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba

  3. On the insignificance of Herschel's sunspot correlation

    Science.gov (United States)

    Love, Jeffrey J.

    2013-08-01

    We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is "statistically significant." On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are "insignificant." Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.

  4. Coordination failure caused by sunspots

    DEFF Research Database (Denmark)

    Beugnot, Julie; Gürgüç, Zeynep; Øvlisen, Frederik Roose

    2012-01-01

    on the efficient equilibrium, we consider sunspots as a potential reason for coordination failure. We conduct an experiment with a three player 2x2x2 game in which coordination on the efficient equilibrium is easy and should normally occur. In the control session, we find almost perfect coordination on the payoff......-dominant equilibrium, but in the sunspot treatment, dis-coordination is frequent. Sunspots lead to significant inefficiency, and we conclude that sunspots can indeed cause coordination failure....

  5. Towards the automatic detection and analysis of sunspot rotation

    Science.gov (United States)

    Brown, Daniel S.; Walker, Andrew P.

    2016-10-01

    Torsional rotation of sunspots have been noted by many authors over the past century. Sunspots have been observed to rotate up to the order of 200 degrees over 8-10 days, and these have often been linked with eruptive behaviour such as solar flares and coronal mass ejections. However, most studies in the literature are case studies or small-number studies which suffer from selection bias. In order to better understand sunspot rotation and its impact on the corona, unbiased large-sample statistical studies are required (including both rotating and non-rotating sunspots). While this can be done manually, a better approach is to automate the detection and analysis of rotating sunspots using robust methods with well characterised uncertainties. The SDO/HMI instrument provide long-duration, high-resolution and high-cadence continuum observations suitable for extracting a large number of examples of rotating sunspots. This presentation will outline the analysis of SDI/HMI data to determine the rotation (and non-rotation) profiles of sunspots for the complete duration of their transit across the solar disk, along with how this can be extended to automatically identify sunspots and initiate their analysis.

  6. Iwahashi Zenbei's Sunspot Drawings in 1793 in Japan

    Science.gov (United States)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Toriumi, Shin; Shibata, Kazunari

    2018-01-01

    Three Japanese sunspot drawings associated with Iwahashi Zenbei (1756 - 1811) are shown here from contemporary manuscripts and woodprint documents with the relevant texts. We reveal the observational date of one of the drawings to be 26 August 1793, and the overall observations lasted for over a year. Moreover, we identify the observational site for the dated drawing as Fushimi in Japan. We then compare Zenbei's observations with the group sunspot number and the raw group count from the Sunspot Index and Long-term Solar Observations (SILSO) to reveal the context of the data, and we conclude that these drawings fill gaps in our understanding that are due to the fragmental sunspot observations around 1793. These drawings are important as a clue to evaluate astronomical knowledge of contemporary Japan in the late eighteenth century and are valuable as a non-European observation, considering that most sunspot observations up to the middle of the nineteenth century are from Europe.

  7. A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups

    Science.gov (United States)

    Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana

    2017-12-01

    The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.

  8. Planetary tides during the Maunder sunspot minimum

    International Nuclear Information System (INIS)

    Smythe, C.M.; Eddy, J.A.

    1977-01-01

    Sun-centered planetary conjunctions and tidal potentials are here constructed for the AD1645 to 1715 period of sunspot absence, referred to as the 'Maunder Minimum'. These are found to be effectively indistinguishable from patterns of conjunctions and power spectra of tidal potential in the present era of a well established 11 year sunspot cycle. This places a new and difficult restraint on any tidal theory of sunspot formation. Problems arise in any direct gravitational theory due to the apparently insufficient forces and tidal heights involved. Proponents of the tidal hypothesis usually revert to trigger mechanisms, which are difficult to criticise or test by observation. Any tidal theory rests on the evidence of continued sunspot periodicity and the substantiation of a prolonged period of solar anomaly in the historical past. The 'Maunder Minimum' was the most drastic change in the behaviour of solar activity in the last 300 years; sunspots virtually disappeared for a 70 year period and the 11 year cycle was probably absent. During that time, however, the nine planets were all in their orbits, and planetary conjunctions and tidal potentials were indistinguishable from those of the present era, in which the 11 year cycle is well established. This provides good evidence against the tidal theory. The pattern of planetary tidal forces during the Maunder Minimum was reconstructed to investigate the possibility that the multiple planet forces somehow fortuitously cancelled at the time, that is that the positions of the slower moving planets in the 17th and early 18th centuries were such that conjunctions and tidal potentials were at the time reduced in number and force. There was no striking dissimilarity between the time of the Maunder Minimum and any period investigated. The failure of planetary conjunction patterns to reflect the drastic drop in sunspots during the Maunder Minimum casts doubt on the tidal theory of solar activity, but a more quantitative test

  9. Essential features of long-term changes of areas and diameters of sunspot groups in solar activity cycles 12-24

    Science.gov (United States)

    Efimenko, V. M.; Lozitsky, V. G.

    2018-06-01

    We analyze the Greenwich catalog data on areas of sunspot groups of last thirteen solar cycles. Various parameters of sunspots are considered, namely: average monthly smoothed areas, maximum area for each year and equivalent diameters of groups of sunspots. The first parameter shows an exceptional power of the 19th cycle of solar activity, which appears here more contrastively than in the numbers of spots (that is, in Wolf's numbers). It was found that in the maximum areas of sunspot groups for a year there is a unique phenomenon: a short and high jump in the 18th cycle (in 1946-1947) that has no analogues in other cycles. We also studied the integral distributions for equivalent diameters and found the following: (a) the average value of the index of power-law approximation is 5.4 for the last 13 cycles and (b) there is reliable evidence of Hale's double cycle (about 44 years). Since this indicator reflects the dispersion of sunspot group diameters, the results obtained show that the convective zone of the Sun generates embryos of active regions in different statistical regimes which change with a cycle of about 44 years.

  10. On two populations of sunspot groups

    International Nuclear Information System (INIS)

    Kuklin, G.V.

    1980-01-01

    The principal component method was applied studying the sunspot groups distribution in respect to the maximum area for the individual 11-year cycles 12 to 19 (Lopez Arroyo and Lahulla, 1974) and for the years 1900 to 1964 (Mandrykina, 1974). The existence of two populations of sunspot groups is confirmed. The variations of the importance parameter q, which determines the population shares, in the 80-, 22- and 11-year cycles are considered. The obtained maximal area distributions for populations I and II are approximated by linear combination of logarithmic-normal distributions, the subpopulations Ia, Ib, Ic by the most probable maximum areas of 22, 298 and 90 mvh, respectively, and the subpopulations IIa, IIb, IIc by the most probable maximal areas of 6, 142 and 754 mvh, respectively. The characteristic distinction between populations I and II is apparently the magnetic structure of the groups belonging to them (bipolar and unipolar ones). (author)

  11. MAXIMUM CORONAL MASS EJECTION SPEED AS AN INDICATOR OF SOLAR AND GEOMAGNETIC ACTIVITIES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Gopalswamy, N.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions.

  12. Application of Avco data analysis and prediction techniques (ADAPT) to prediction of sunspot activity

    Science.gov (United States)

    Hunter, H. E.; Amato, R. A.

    1972-01-01

    The results are presented of the application of Avco Data Analysis and Prediction Techniques (ADAPT) to derivation of new algorithms for the prediction of future sunspot activity. The ADAPT derived algorithms show a factor of 2 to 3 reduction in the expected 2-sigma errors in the estimates of the 81-day running average of the Zurich sunspot numbers. The report presents: (1) the best estimates for sunspot cycles 20 and 21, (2) a comparison of the ADAPT performance with conventional techniques, and (3) specific approaches to further reduction in the errors of estimated sunspot activity and to recovery of earlier sunspot historical data. The ADAPT programs are used both to derive regression algorithm for prediction of the entire 11-year sunspot cycle from the preceding two cycles and to derive extrapolation algorithms for extrapolating a given sunspot cycle based on any available portion of the cycle.

  13. Nature's third cycle a story of sunspots

    CERN Document Server

    Choudhuri, Arnab Rai

    2015-01-01

    The cycle of day and night and the cycle of seasons are two familiar natural cycles around which many human activities are organized. But is there a third natural cycle of importance for us humans? On 13 March 1989, six million people in Canada went without electricity for many hours: a large explosion on the sun was discovered as the cause of this blackout. Such explosions occur above sunspots, dark features on the surface of the Sun that have been observed through telescopes since the time of Galileo. The number of sunspots has been found to wax and wane over a period of 11 years. Although this cycle was discovered less than two centuries ago, it is becoming increasingly important for us as human society becomes more dependent on technology. For nearly a century after its discovery, the cause of the sunspot cycle remained completely shrouded in mystery. The 1908 discovery of strong magnetic fields in sunspots made it clear that the 11-year cycle is the magnetic cycle of the sun. It is only during the last ...

  14. Association of Plages with Sunspots: A Multi-Wavelength Study Using Kodaikanal Ca ii K and Greenwich Sunspot Area Data

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2017-02-01

    Plages are the magnetically active chromospheric structures prominently visible in the Ca ii K line (3933.67 Å). A plage may or may not be associated with a sunspot, which is a magnetic structure visible in the solar photosphere. In this study we explore this aspect of association of plages with sunspots using the newly digitized Kodaikanal Ca ii K plage data and the Greenwich sunspot area data. Instead of using the plage index or fractional plage area and its comparison with the sunspot number, we use, to our knowledge for the first time, the individual plage areas and compare them with the sunspot area time series. Our analysis shows that these two structures, formed in two different layers, are highly correlated with each other on a timescale comparable to the solar cycle. The area and the latitudinal distributions of plages are also similar to those of sunspots. Different area thresholdings on the “butterfly diagram” reveal that plages of area ≥4 arcmin{sup 2} are mostly associated with a sunspot in the photosphere. Apart from this, we found that the cyclic properties change when plages of different sizes are considered separately. These results may help us to better understand the generation and evolution of the magnetic structures in different layers of the solar atmosphere.

  15. Vertical gradients of sunspot magnetic fields

    Science.gov (United States)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  16. Prediction on sunspot activity based on fuzzy information granulation and support vector machine

    Science.gov (United States)

    Peng, Lingling; Yan, Haisheng; Yang, Zhigang

    2018-04-01

    In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.

  17. The reconciliation of an F-region irregularity model with sunspot-cycle variations in spread-F occurrence

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1974-11-01

    A recently proposed means of combining models of ionospheric F-layer peak electron density and irregularity incremental electron density (ΔN) so as to simulate the global occurrence probability of the frequency spreading component of spread-F is discussed. This procedure is then used to model experimental spread-F occurrence results. It is found possible to readily simulate the sunspot-maximum results, independently of season, with only small adjustments to the amplitudes of the empirical expressions used to ΔN in the several latitude regimes. However, at sunspot minimum and for each season, the ΔN model requires modification in the equatorial and mid-latitude regions of high irregularity incidence, before successful simulations of the spread-F data can be obtained. These modifications, which include a broadening of the equatorial region and a polewards shift to the mid-latitude region with decreasing sunspot number, are discussed in detail. It is concluded that the scintillation data base, from which the original ΔN model derives, is not sufficiently representative with regard to sunspot number and magnetic index. The use of the spread-F adaptation of the ΔN model, as well as its original scintillation version, to rectify these failings of the ΔN model are also discussed. (author)

  18. Prediction of the Maximum Number of Repetitions and Repetitions in Reserve From Barbell Velocity.

    Science.gov (United States)

    García-Ramos, Amador; Torrejón, Alejandro; Feriche, Belén; Morales-Artacho, Antonio J; Pérez-Castilla, Alejandro; Padial, Paulino; Haff, Guy Gregory

    2018-03-01

    To provide 2 general equations to estimate the maximum possible number of repetitions (XRM) from the mean velocity (MV) of the barbell and the MV associated with a given number of repetitions in reserve, as well as to determine the between-sessions reliability of the MV associated with each XRM. After determination of the bench-press 1-repetition maximum (1RM; 1.15 ± 0.21 kg/kg body mass), 21 men (age 23.0 ± 2.7 y, body mass 72.7 ± 8.3 kg, body height 1.77 ± 0.07 m) completed 4 sets of as many repetitions as possible against relative loads of 60%1RM, 70%1RM, 80%1RM, and 90%1RM over 2 separate sessions. The different loads were tested in a randomized order with 10 min of rest between them. All repetitions were performed at the maximum intended velocity. Both the general equation to predict the XRM from the fastest MV of the set (CV = 15.8-18.5%) and the general equation to predict MV associated with a given number of repetitions in reserve (CV = 14.6-28.8%) failed to provide data with acceptable between-subjects variability. However, a strong relationship (median r 2  = .984) and acceptable reliability (CV  .85) were observed between the fastest MV of the set and the XRM when considering individual data. These results indicate that generalized group equations are not acceptable methods for estimating the XRM-MV relationship or the number of repetitions in reserve. When attempting to estimate the XRM-MV relationship, one must use individualized relationships to objectively estimate the exact number of repetitions that can be performed in a training set.

  19. Oscillations and Waves in Sunspots

    Directory of Open Access Journals (Sweden)

    Elena Khomenko

    2015-11-01

    Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.

  20. MAXIMUM NUMBER OF REPETITIONS, TOTAL WEIGHT LIFTED AND NEUROMUSCULAR FATIGUE IN INDIVIDUALS WITH DIFFERENT TRAINING BACKGROUNDS

    Directory of Open Access Journals (Sweden)

    Valeria Panissa

    2013-04-01

    Full Text Available The aim of this study was to evaluate the performance, as well as neuromuscular activity, in a strength task in subjects with different training backgrounds. Participants (n = 26 were divided into three groups according to their training backgrounds (aerobic, strength or mixed and submitted to three sessions: (1 determination of the maximum oxygen uptake during the incremental treadmill test to exhaustion and familiarization of the evaluation of maximum strength (1RM for the half squat; (2 1RM determination; and (3 strength exercise, four sets at 80�0of the 1RM, in which the maximum number of repetitions (MNR, the total weight lifted (TWL, the root mean square (RMS and median frequency (MF of the electromyographic (EMG activity for the second and last repetition were computed. There was an effect of group for MNR, with the aerobic group performing a higher MNR compared to the strength group (P = 0.045, and an effect on MF with a higher value in the second repetition than in the last repetition (P = 0.016. These results demonstrated that individuals with better aerobic fitness were more fatigue resistant than strength trained individuals. The absence of differences in EMG signals indicates that individuals with different training backgrounds have a similar pattern of motor unit recruitment during a resistance exercise performed until failure, and that the greater capacity to perform the MNR probably can be explained by peripheral adaptations.

  1. Observational Evidence of a Flux Rope within a Sunspot Umbra

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmino, Salvo L.; Zuccarello, Francesca [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95125 Catania (Italy); Romano, Paolo, E-mail: salvo.guglielmino@oact.inaf.it [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95125 Catania (Italy)

    2017-09-10

    We observed an elongated filamentary bright structure inside the umbra of the big sunspot in active region NOAA 12529, which differs from the light bridges usually observed in sunspots for its morphology, magnetic configuration, and velocity field. We used observations taken with the Solar Dynamic Observatory satellite to characterize this feature. Its lifetime is 5 days, during which it reaches a maximum length of about 30″. In the maps of the vertical component of the photospheric magnetic field, a portion of the feature has a polarity opposite to that of the hosting sunspot. At the same time, in the entire feature the horizontal component of the magnetic field is about 2000 G, substantially stronger than in the surrounding penumbral filaments. Doppler velocity maps reveal the presence of both upward and downward plasma motions along the structure at the photospheric level. Moreover, looking at the chromospheric level, we noted that it is located in a region corresponding to the edge of a small filament that seems rooted in the sunspot umbra. Therefore, we interpreted the bright structure as the photospheric counterpart of a flux rope touching the sunspot and giving rise to penumbral-like filaments in the umbra.

  2. Sunspot Oscillations From The Chromosphere To The Corona

    Science.gov (United States)

    Brynildsen, N.; Maltby, P.; Fredvik, T.; Kjeldseth-Moe, O.

    The behavior of the 3 minute sunspot oscillations is studied as a function of temper- ature through the transition region using observations with CDS/SOHO and TRACE. The oscillations occur above the umbra, with amplitudes increasing to a maximum near 200 000 K, then decreasing towards higher temperatures. Deviations from pure linear oscillations are present in several cases. Power spectra of the oscillations are remarkably similar in the chromosphere and through the transition region in contra- diction to the predictions of the sunspot filter theory. The 3 minute oscillations pene- trate to the low temperature end of the corona, where they are channeled into smaller areas coinciding with the endpoints of sunspot coronal loops. This differs from the transition zone where the oscillating region covers the umbra.

  3. Total number of tillers of different accessions of Panicum maximum Jacq.

    Directory of Open Access Journals (Sweden)

    Thiago Perez Granato

    2012-12-01

    Full Text Available The productivity of forage grasses is due to continuous emission of leaves and tillers, ensuring the restoration of leaf área after cutting or grazing, thus ensuring the sustainability of forage. This study aimed to asses the total number tillers in different acessions of Panicum maximum Jacq. The experiment was carried in field belonging to the Instituto de Zootecnia located in Nova Odessa / SP. Evaluated two new accesses Panicum maximum, and two commercial cultivars. The cultivars tested were Aruana, Milenio, NO 2487, NO 78, and the two latter belonging to the Germoplasm Collection of the IZ. The experimental desing was in randomized complete block with four replications. The experimental area consisted of 16 plots of 10 m2 (5 x 2 m each. The experimental area was analyzed and according to the results, received dolomitic limestone corresponding 2t /ha, two months before the implementation of the experiment. Sowing was made by broad costing together with 80 kg/ha of P2O5 in the form of single superphosfate. After 60 days of implantation of the experiment it was a made a leveling of the plots to a height of about 15 cm. After this it was applied 250g of the 20-00-20 fertilizer/plot. Thirty days after the standardization it was evaluated the total number of tillers of the cultivars, using a metal frame of 0.5 x 0.5m which was thrown at random on each of the 16 plots, leaving one meter of each extremitly, and all tillers which were within the frame counted. After finished the counting of all tillers, the plots cut again at a height of approximately 15 cm. The second evaluation took place after thirty days, and it was again counted the total number of tillers following the same procedure. The results were analyzed by Tukey test at 5% after transforming the data to log(x. For the first evaluation there was no statistical difference in the total number of tillers between cultivars. But, in the second evaluation, the total number of tillers of NO 78

  4. A Standard Law for the Equatorward Drift of the Sunspot Zones

    Science.gov (United States)

    Hathaway, David H.

    2012-01-01

    The latitudinal location of the sunspot zones in each hemisphere is determined by calculating the centroid position of sunspot areas for each solar rotation from May 1874 to June 2012. When these centroid positions are plotted and analyzed as functions of time from each sunspot cycle maximum there appears to be systematic differences in the positions and equatorward drift rates as a function of sunspot cycle amplitude. If, instead, these centroid positions are plotted and analyzed as functions of time from each sunspot cycle minimum then most of the differences in the positions and equatorward drift rates disappear. The differences that remain disappear entirely if curve fitting is used to determine the starting times (which vary by as much as 8 months from the times of minima). The sunspot zone latitudes and equatorward drift measured relative to this starting time follow a standard path for all cycles with no dependence upon cycle strength or hemispheric dominance. Although Cycle 23 was peculiar in its length and the strength of the polar fields it produced, it too shows no significant variation from this standard. This standard law, and the lack of variation with sunspot cycle characteristics, is consistent with Dynamo Wave mechanisms but not consistent with current Flux Transport Dynamo models for the equatorward drift of the sunspot zones.

  5. STOCHASTIC DESCRIPTION OF THE HIGH-FREQUENCY CONTENT OF DAILY SUNSPOTS AND EVIDENCE FOR REGIME CHANGES

    International Nuclear Information System (INIS)

    Shapoval, A.; Le Mouël, J.-L.; Courtillot, V.; Shnirman, M.

    2015-01-01

    The irregularity index λ is applied to the high-frequency content of daily sunspot numbers ISSN. This λ is a modification of the standard maximal Lyapunov exponent. It is computed here as a function of embedding dimension m, within four-year time windows centered at the maxima of Schwabe cycles. The λ(m) curves form separate clusters (pre-1923 and post-1933). This supports a regime transition and narrows its occurrence to cycle 16, preceding the growth of activity leading to the Modern Maximum. The two regimes are reproduced by a simple autoregressive process AR(1), with the mean of Poisson noise undergoing 11 yr modulation. The autocorrelation a of the process (linked to sunspot lifetime) is a ≈ 0.8 for 1850-1923 and ≈0.95 for 1933-2013. The AR(1) model suggests that groups of spots appear with a Poisson rate and disappear at a constant rate. We further applied the irregularity index to the daily sunspot group number series for the northern and southern hemispheres, provided by the Greenwich Royal Observatory (RGO), in order to study a possible desynchronization. Correlations between the north and south λ(m) curves vary quite strongly with time and indeed show desynchronization. This may reflect a slow change in the dimension of an underlying dynamical system. The ISSN and RGO series of group numbers do not imply an identical mechanism, but both uncover a regime change at a similar time. Computation of the irregularity index near the maximum of cycle 24 will help in checking whether yet another regime change is under way

  6. The visibility function and its effect on the observed characteristics of sunspot groups. 1

    International Nuclear Information System (INIS)

    Kopecky, M.; Kuklin, G.V.; Starkova, I.P.

    1985-01-01

    The paper is an introductory study to a series dealing with the visibility function, the function of foreshortening of sunspot group areas, and with the effect of these functions on the results of the statistical processing of observations, which has to be taken into account in interpreting the results. A ''diagram of observational conditions'' is described, which enables a number of statistical problems of sunspot groups on the rotating Sun to be solved by computer modelling or by graphical methods. Examples are given of the use of this diagram in studying the distribution of the observed lifetime of sunspot groups with a given actual lifetime, of the decrease in the number of sunspot groups towards the limb of the solar disc, of the east-west asymmetry of sunspot group appearance and disappearance. (author)

  7. Is sunspot activity a factor in influenza pandemics?

    Science.gov (United States)

    Qu, Jiangwen

    2016-09-01

    The 2009 AH1N1 pandemic became a global health concern, although fortunately, its worst anticipated effects were not realised. While the origins of such outbreaks remain poorly understood, it is very important to identify the precipitating factors in their emergence so that future pandemics can be detected as quickly as possible. Methords: Descriptive epidemiology was used to analyse the association between influenza pandemics and possible pandemics and relative number of sunspots. Non-conditional logistic regression was performed to analyse the statistical association between sunspot extremes and influenza pandemics to within plus or minus 1 year. Almost all recorded influenza/possible pandemics have occurred in time frames corresponding to sunspot extremes, or +/- 1 year within such extremes. These periods were identified as important risk factors in both possible and confirmed influenza pandemics (odds ratio: 3.87; 95% confidence interval: 1.08 to 13.85). Extremes of sunspot activity to within plus or minus 1 year may precipitate influenza pandemics. Mechanisms of epidemic initiation and early spread are discussed including primary causation by externally derived viral variants (from space via cometary dust). Efforts to construct a comprehensive early warning system for potential influenza and other viral pandemics that include analysis of sunspot activity and stratospheric sampling for viral variants should be supported. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Maximum Diameter and Number of Tumors as a New Prognostic Indicator of Colorectal Liver Metastases.

    Science.gov (United States)

    Yoshimoto, Toshiaki; Morine, Yuji; Imura, Satoru; Ikemoto, Tetsuya; Iwahashi, Syuichi; Saito, Y U; Yamada, Sinichiro; Ishikawa, Daichi; Teraoku, Hiroki; Yoshikawa, Masato; Higashijima, Jun; Takasu, Chie; Shimada, Mitsuo

    2017-01-01

    Surgical resection is currently considered the only potentially curative option as a treatment strategy of colorectal liver metastases (CRLM). However, the criteria for selection of resectable CRLM are not clear. The aim of this study was to confirm a new prognostic indicator of CRLM after hepatic resection. One hundred thirty nine patients who underwent initial surgical resection from 1994 to 2015 were investigated retrospectively. Prognostic factors of overall survival including the product of maximum diameter and number of metastases (MDN) were analyzed. Primary tumor differentiation, vessel invasion, lymph node (LN) metastasis, non-optimally resectable metastases, H score, grade of liver metastases, resection with non-curative intent and MDN were found to be prognostic factors of overall survival (OS). In multivariate analyses of clinicopathological features associated with OS, MDN and non-curative intent were independent prognostic factors. Patients with MDN ≥30 had shown significantly poorer prognosis than patients with MDN <30 in OS and relapse-free survival (RFS). MDN ≥30 is an independent prognostic factor of survival in patients with CRLM and optimal surgical criterion of hepatectomy for CRLM. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Cao, W.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers from their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.

  10. The Relative Phase Asynchronization between Sunspot Numbers ...

    Indian Academy of Sciences (India)

    of Sciences, P. O. Box 110, 650011 Kunming, People's Republic of China. ... by studying the North–South asymmetry in the predominant rotation periods of ... earth, the polar faculae counts show strong annual variation, and the polar region is.

  11. Long-term variations in the geomagnetic activity level Part II: Ascending phases of sunspot cycles

    Directory of Open Access Journals (Sweden)

    V. Mussino

    1994-08-01

    Full Text Available Monthly averages of the Helsinki Ak-values have been reduced to the equivalent aa-indices to extend the aa-data set back to 1844. A periodicity of about five cycles was found for the correlation coefficient (r between geomagnetic indices and sunspot numbers for the ascending phases of sunspot cycles 9 to 22, confirming previous findings based on a minor number of sunspot cycles. The result is useful to researchers in topics related to solar-terrestrial physics, particularly for the interpretation of long-term trends in geomagnetic activity during the past, and to forecast geomagnetic activity levels in the future.

  12. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions

    Science.gov (United States)

    Wilson, Robert M.

    2013-01-01

    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  13. Critical frequencies of the ionospheric F1 and F2 layers during the last four solar cycles: Sunspot group type dependencies

    Science.gov (United States)

    Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre

    2018-06-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.

  14. The photospheric vector magnetic field of a sunspot and its vertical gradient

    Science.gov (United States)

    Hagyard, M. J.; West, E. A.; Tandberg-Hanssen, E.; Smith, J. E.; Henze, W., Jr.; Beckers, J. M.; Bruner, E. C.; Hyder, C. L.; Gurman, J. B.; Shine, R. A.

    1981-01-01

    The results of direct comparisons of photospheric and transition region line-of-sight field observations of sunspots using the SMM UV spectrometer and polarimeter are reported. The analysis accompanying the data is concentrated on demonstrating that the sunspot concentrated magnetic field extends into the transition region. An observation of a sunspot on Oct. 23, 1980 at the S 18 E 03 location is used as an example. Maximum field strengths ranged from 2030-2240 gauss for large and small umbrae viewed and inclination of the field to the line-of-sight was determined for the photosphere and transition region. The distribution of the magnetic field over the sunspot and variation of the line-of-sight gradient are discussed, as are the magnitudes and gradients of the photospheric field across the penumbral-photospheric boundaries.

  15. 38 CFR 59.40 - Maximum number of nursing home care and domiciliary care beds for veterans by State.

    Science.gov (United States)

    2010-07-01

    ... home care and domiciliary care beds for veterans by State. 59.40 Section 59.40 Pensions, Bonuses, and... ACQUISITION OF STATE HOMES § 59.40 Maximum number of nursing home care and domiciliary care beds for veterans... projection of demand for nursing home and domiciliary care by veterans who at such time are 65 years of age...

  16. Maximum compression of Z-pinch in a gas with high atomic number

    International Nuclear Information System (INIS)

    Gerusov, A.V.

    1989-01-01

    An ideal system of equations with shock heating is used for describing of a Z pinch in a gas with high atomic number. In this case equations do not depend from the installation parameters. The approximate simple solution of such a system is presented. Numerical calculations of equations with radiative cooling and various dissipative effects have determined the employment conditions of ideal magnetohydrodynamic equation system. 10 refs

  17. HELIOSEISMOLOGY OF A REALISTIC MAGNETOCONVECTIVE SUNSPOT SIMULATION

    International Nuclear Information System (INIS)

    Braun, D. C.; Birch, A. C.; Rempel, M.; Duvall, T. L. Jr.

    2012-01-01

    We compare helioseismic travel-time shifts measured from a realistic magnetoconvective sunspot simulation using both helioseismic holography and time-distance helioseismology, and measured from real sunspots observed with the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory. We find remarkable similarities in the travel-time shifts measured between the methodologies applied and between the simulated and real sunspots. Forward modeling of the travel-time shifts using either Born or ray approximation kernels and the sound-speed perturbations present in the simulation indicates major disagreements with the measured travel-time shifts. These findings do not substantially change with the application of a correction for the reduction of wave amplitudes in the simulated and real sunspots. Overall, our findings demonstrate the need for new methods for inferring the subsurface structure of sunspots through helioseismic inversions.

  18. Visual Circular Analysis of 266 Years of Sunspot Counts.

    Science.gov (United States)

    Buelens, Bart

    2016-06-01

    Sunspots, colder areas that are visible as dark spots on the surface of the Sun, have been observed for centuries. Their number varies with a period of ∼11 years, a phenomenon closely related to the solar activity cycle. Recently, observation records dating back to 1749 have been reassessed, resulting in the release of a time series of sunspot numbers covering 266 years of observations. This series is analyzed using circular analysis to determine the periodicity of the occurrence of solar maxima. The circular analysis is combined with spiral graphs to provide a single visualization, simultaneously showing the periodicity of the series, the degree to which individual cycle lengths deviate from the average period, and differences in levels reached during the different maxima. This type of visualization of cyclic time series with varying cycle lengths in which significant events occur periodically is broadly applicable. It is aimed particularly at science communication, education, and public outreach.

  19. The 17 GHz active region number

    Energy Technology Data Exchange (ETDEWEB)

    Selhorst, C. L.; Pacini, A. A. [IP and D-Universidade do Vale do Paraíba-UNIVAP, São José dos Campos (Brazil); Costa, J. E. R. [CEA, Instituto Nacional de Pesquisas Espaciais, São José dos Campos (Brazil); Giménez de Castro, C. G.; Valio, A. [CRAAM, Universidade Presbiteriana Mackenzie, São Paulo (Brazil); Shibasaki, K., E-mail: caius@univap.br [Nobeyama Solar Radio Observatory/NAOJ, Minamisaku, Nagano 384-1305 (Japan)

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  20. The sunspot databases of the Debrecen Observatory

    Science.gov (United States)

    Baranyi, Tünde; Gyori, Lajos; Ludmány, András

    2015-08-01

    We present the sunspot data bases and online tools available in the Debrecen Heliophysical Observatory: the DPD (Debrecen Photoheliographic Data, 1974 -), the SDD (SOHO/MDI-Debrecen Data, 1996-2010), the HMIDD (SDO/HMI-Debrecen Data, HMIDD, 2010-), the revised version of Greenwich Photoheliographic Data (GPR, 1874-1976) presented together with the Hungarian Historical Solar Drawings (HHSD, 1872-1919). These are the most detailed and reliable documentations of the sunspot activity in the relevant time intervals. They are very useful for studying sunspot group evolution on various time scales from hours to weeks. Time-dependent differences between the available long-term sunspot databases are investigated and cross-calibration factors are determined between them. This work has received funding from the European Community's Seventh Framework Programme (FP7/2012-2015) under grant agreement No. 284461 (eHEROES).

  1. Self-affinity and nonextensivity of sunspots

    International Nuclear Information System (INIS)

    Moret, M.A.

    2014-01-01

    In this paper we study the time series of sunspots by using two different approaches, analyzing its self-affine behavior and studying its distribution. The long-range correlation exponent α has been calculated via Detrended Fluctuation Analysis and the power law vanishes to values greater than 11 years. On the other hand, the distribution of the sunspots obeys a q-exponential decay that suggests a non-extensive behavior. This observed characteristic seems to take an alternative interpretation of the sunspots dynamics. The present findings suggest us to propose a dynamic model of sunspots formation based on a nonlinear Fokker–Planck equation. Therefore its dynamic process follows the generalized thermostatistical formalism.

  2. Maruhn-Greiner Maximum for Confirmation of Low Energy Nuclear Reactions (LENR) via a Compound Nucleus with Double Magic Numbers

    Science.gov (United States)

    Hora, Heinrich; Miley, George

    2007-03-01

    One of the most convincing facts about LENR due to deuterons (ds) or protons of very high concentration in host metals of palladium is the measurement of the large scale minimum in the reaction probability with product elements centered around the nucleon number A = 153. The local maximum was measured in this region is similar to fission of uranium at A = 119 where the local maximum follows the Maruhn-Greiner mechanism^1. We suggest this phenomenon can be explained by the strong screening of the Maxwellian ds on the degenerate rigid electron background within the swimming electrons at the metal surface or thin filem interfaces. The deuterons behave like neutrals at distances of above 2 picometers (pm) and form clusters due to soft attraction in the range of thermal energy; 10 pm diameter clusters can react over long time scales (10^6 s) with Pd leading to double magic number compound nuclei 306x126 decaying via fission to an A=153 element distribution. J. Maruhn et al, Phys. Rev. Letters 32, 548 (1974) H. Hora, G.H. Miley, CzechJ. Phys. 48, 1111 (1998)

  3. Wings of the butterfly: Sunspot groups for 1826-2015

    Science.gov (United States)

    Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Denker, C.; Mursula, K.

    2017-03-01

    The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Spörer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30°-45°) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20°-30°) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2°-10°) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer. Digital data for Fig. 1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A131

  4. Sunspot activity and influenza pandemics: a statistical assessment of the purported association.

    Science.gov (United States)

    Towers, S

    2017-10-01

    Since 1978, a series of papers in the literature have claimed to find a significant association between sunspot activity and the timing of influenza pandemics. This paper examines these analyses, and attempts to recreate the three most recent statistical analyses by Ertel (1994), Tapping et al. (2001), and Yeung (2006), which all have purported to find a significant relationship between sunspot numbers and pandemic influenza. As will be discussed, each analysis had errors in the data. In addition, in each analysis arbitrary selections or assumptions were also made, and the authors did not assess the robustness of their analyses to changes in those arbitrary assumptions. Varying the arbitrary assumptions to other, equally valid, assumptions negates the claims of significance. Indeed, an arbitrary selection made in one of the analyses appears to have resulted in almost maximal apparent significance; changing it only slightly yields a null result. This analysis applies statistically rigorous methodology to examine the purported sunspot/pandemic link, using more statistically powerful un-binned analysis methods, rather than relying on arbitrarily binned data. The analyses are repeated using both the Wolf and Group sunspot numbers. In all cases, no statistically significant evidence of any association was found. However, while the focus in this particular analysis was on the purported relationship of influenza pandemics to sunspot activity, the faults found in the past analyses are common pitfalls; inattention to analysis reproducibility and robustness assessment are common problems in the sciences, that are unfortunately not noted often enough in review.

  5. The Strongest Magnetic Field in Sunspots

    Science.gov (United States)

    Okamoto, J.; Sakurai, T.

    2017-12-01

    Sunspots are concentrations of magnetic fields on the solar surface. Generally, the strongest magnetic field in each sunspot is located in the dark umbra in most cases. A typical field strength in sunspots is around 3,000 G. On the other hand, some exceptions also have been found in complex sunspots with bright regions such as light bridges that separate opposite polarity umbrae, for instance with a strength of 4,300 G. However, the formation mechanism of such strong fields outside umbrae is still puzzling. Here we report an extremely strong magnetic field in a sunspot, which was located in a bright region sandwiched by two opposite-polarity umbrae. The strength is 6,250 G, which is the largest ever observed since the discovery of magnetic field on the Sun in 1908 by Hale. We obtained 31 scanned maps of the active region observed by Hinode/SOT/SP with a cadence of 3 hours over 5 days (February 1-6, 2014). Considering the spatial and temporal evolution of the vector magnetic field and the Doppler velocity in the bright region, we suggested that this strong field region was generated as a result of compression of one umbra pushed by the outward flow from the other umbra (Evershed flow), like the subduction of the Earth's crust in plate tectonics.

  6. Variations and Regularities in the Hemispheric Distributions in Sunspot Groups of Various Classes

    Science.gov (United States)

    Gao, Peng-Xin

    2018-05-01

    The present study investigates the variations and regularities in the distributions in sunspot groups (SGs) of various classes in the northern and southern hemispheres from Solar Cycles (SCs) 12 to 23. Here, we use the separation scheme that was introduced by Gao, Li, and Li ( Solar Phys. 292, 124, 2017), which is based on A/U ( A is the corrected area of the SG, and U is the corrected umbral area of the SG), in order to separate SGs into simple SGs (A/U ≤ 4.5) and complex SGs (A/U > 6.2). The time series of Greenwich photoheliographic results from 1875 to 1976 (corresponding to complete SCs 12 - 20) and Debrecen photoheliographic data during the period 1974 - 2015 (corresponding to complete SCs 21 - 23) are used to show the distributions of simple and complex SGs in the northern and southern hemispheres. The main results we obtain are reported as follows: i) the larger of the maximum annual simple SG numbers in the two hemispheres and the larger of the maximum annual complex SG numbers in the two hemispheres occur in different hemispheres during SCs 12, 14, 18, and 19; ii) the relative changing trends of two curves - cumulative SG numbers in the northern and southern hemispheres - for simple SGs are different from those for complex SGs during SCs 12, 14, 18, and 21; and iii) there are discrepancies between the dominant hemispheres of simple and complex SGs for SCs 12, 14, 18, and 21.

  7. Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer

    International Nuclear Information System (INIS)

    Madani, Indira; Duprez, Fréderic; Boterberg, Tom; Van de Wiele, Christophe; Bonte, Katrien; Deron, Philippe; De Gersem, Werner; Coghe, Marc; De Neve, Wilfried

    2011-01-01

    Purpose: To determine the maximum tolerated dose (MTD) in a phase I trial on adaptive dose-painting-by-numbers (DPBN) for non-metastatic head and neck cancer. Materials and methods: Adaptive intensity-modulated radiotherapy was based on voxel intensity of pre-treatment and per-treatment [ 18 F]fluoro-2-deoxy-D-glucose positron emission tomography ( 18 F-FDG-PET) scans. Dose was escalated to a median total dose of 80.9 Gy in the high-dose clinical target volume (dose level I) and 85.9 Gy in the gross tumor volume (dose level II). The MTD would be reached, if ⩾33% of patients developed any grade ⩾4 toxicity (DLT) up to 3 months follow-up. Results: Between February 2007 and August 2009, seven patients at dose level I and 14 at dose level II were treated. All patients completed treatment without interruption. At a median follow-up for surviving patients of 38 (dose level I) and 22 months (dose level II) there was no grade ⩾4 toxicity during treatment and follow-up but six cases of mucosal ulcers at latency of 4–10 months, of which five (36%) were observed at dose level II. Mucosal ulcers healed spontaneously in four patients. Conclusions: Considering late mucosal ulcers as DLT, the MTD of a median dose of 80.9 Gy has been reached in our trial.

  8. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    Science.gov (United States)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  9. Diode laser heterodyne observations of silicon monoxide in sunspots - A test of three sunspot models

    Science.gov (United States)

    Glenar, D. A.; Deming, D.; Jennings, D. E.; Kostiuk, T.; Mumma, M. J.

    1983-01-01

    Absorption features from the 8 micron SiO fundamental (upsilon = 1-0) and hot bands (upsilon = 2-1) have been observed in sunspots at sub-Doppler resolution using a ground-based tunable diode laser heterodyne spectrometer. The observed line widths suggest an upper limit of 0.5 km/s for the microturbulent velocity in sunspot umbrae. Since the silicon monoxide abundance is very sensitive to sunspot temperature, the measured equivalent widths permit an unambiguous determination of the temperature-pressure relation in the upper layers of the umbral atmosphere. In the region of SiO line formation (log P sub g = 3.0-4.5), the results support the sunspot model suggested by Stellmacher and Wiehr (1970).

  10. On the structure of small sunspots

    International Nuclear Information System (INIS)

    Ringnes, T.S.

    1984-01-01

    The smallest and most short-lived sunspots are decribed differently at the observatories in Zuerich and Greenwich. These differences which seem to originate both from the observing procedure and from the definitions of penumbra and umbra adopted, are further discussed

  11. Sunspot Positions and Areas from Observations by Galileo Galilei

    Science.gov (United States)

    Vokhmyanin, M. V.; Zolotova, N. V.

    2018-02-01

    Sunspot records in the seventeenth century provide important information on the solar activity before the Maunder minimum, yielding reliable sunspot indices and the solar butterfly diagram. Galilei's letters to Cardinal Francesco Barberini and Marcus Welser contain daily solar observations on 3 - 11 May, 2 June - 8 July, and 19 - 21 August 1612. These historical archives do not provide the time of observation, which results in uncertainty in the sunspot coordinates. To obtain them, we present a method that minimizes the discrepancy between the sunspot latitudes. We provide areas and heliographic coordinates of 82 sunspot groups. In contrast to Sheiner's butterfly diagram, we found only one sunspot group near the Equator. This provides a higher reliability of Galilei's drawings. Large sunspot groups are found to emerge at the same longitude in the northern hemisphere from 3 May to 21 August, which indicates an active longitude.

  12. ARMA-Based SEM When the Number of Time Points T Exceeds the Number of Cases N: Raw Data Maximum Likelihood.

    Science.gov (United States)

    Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.

    2003-01-01

    Demonstrated, through simulation, that stationary autoregressive moving average (ARMA) models may be fitted readily when T>N, using normal theory raw maximum likelihood structural equation modeling. Also provides some illustrations based on real data. (SLD)

  13. On the evolution of magnetic and velocity fields of an originating sunspot group

    International Nuclear Information System (INIS)

    Bachmann, G.

    1978-01-01

    Magnetographic measurements were made to derive longitudinal magnetic field strengths, line-of-sight velocities and the brightness distribution in an originating sunspot group. These results and photographs of the group are used to compare the evaluation of a relatively simple active region with our present ideas about the evolution of active regions in general. We found that the total magnetic flux increased from about 4 to 20x10 20 Mx over three days. The downward flow of gas in regions with stronger magnetic fields is formed only after the magnetic field has already been bipolar for two days. The maximum velocity always occurred in the main spots of the preceding and the subsequent parts of the sunspot group. Transformation into a flow pattern, which looks like Evershed motion, is observed in the main preceding sunspot after the formation of the penumbra. The generation of new active regions by concentration and amplification of magnetic fields, under the action of supergranulation flow in photospheric layers, cannot play an important role. On the contrary, the behaviour of the active region is in agreement with the conception of rising flux tubes, out of which the gas flows down. Our observations confirm that a magnetic field strength, leading to the generation of sunspots, is attained earlier in the preceding part of the originating active region than in its subsequent part. A series of subflares occurred in the active region, when short-lived small magnetic structure elements emerged in the larger bipolar magnetic field. (author)

  14. Physical Properties of Umbral Dots Observed in Sunspots: A Hinode Observation

    Science.gov (United States)

    Yadav, Rahul; Mathew, Shibu K.

    2018-04-01

    Umbral dots (UDs) are small-scale bright features observed in the umbral part of sunspots and pores. It is well established that they are manifestations of magnetoconvection phenomena inside umbrae. We study the physical properties of UDs in different sunspots and their dependence on decay rate and filling factor. We have selected high-resolution, G-band continuum filtergrams of seven sunspots from Hinode to study their physical properties. We have also used Michelson Doppler Imager (MDI) continuum images to estimate the decay rate of selected sunspots. An identification and tracking algorithm was developed to identify the UDs in time sequences. The statistical analysis of UDs exhibits an averaged maximum intensity and effective diameter of 0.26 I_{QS} and 270 km. Furthermore, the lifetime, horizontal speed, trajectory length, and displacement length (birth-death distance) of UDs are 8.19 minutes, 0.5 km s-1, 284 km, and 155 km, respectively. We also find a positive correlation between intensity-diameter, intensity-lifetime, and diameter-lifetime of UDs. However, UD properties do not show any significant relation with the decay rate or filling factor.

  15. Sunspot splitting triggering an eruptive flare

    Science.gov (United States)

    Louis, Rohan E.; Puschmann, Klaus G.; Kliem, Bernhard; Balthasar, Horst; Denker, Carsten

    2014-02-01

    Aims: We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods: Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in Hα and He I 10830 Å of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 Å and 304 Å images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results: Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete ≈6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9° h-1) and caused significant shear flows at its edge. Conclusions: The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We

  16. Empirical mode decomposition and long-range correlation analysis of sunspot time series

    International Nuclear Information System (INIS)

    Zhou, Yu; Leung, Yee

    2010-01-01

    Sunspots, which are the best known and most variable features of the solar surface, affect our planet in many ways. The number of sunspots during a period of time is highly variable and arouses strong research interest. When multifractal detrended fluctuation analysis (MF-DFA) is employed to study the fractal properties and long-range correlation of the sunspot series, some spurious crossover points might appear because of the periodic and quasi-periodic trends in the series. However many cycles of solar activities can be reflected by the sunspot time series. The 11-year cycle is perhaps the most famous cycle of the sunspot activity. These cycles pose problems for the investigation of the scaling behavior of sunspot time series. Using different methods to handle the 11-year cycle generally creates totally different results. Using MF-DFA, Movahed and co-workers employed Fourier truncation to deal with the 11-year cycle and found that the series is long-range anti-correlated with a Hurst exponent, H, of about 0.12. However, Hu and co-workers proposed an adaptive detrending method for the MF-DFA and discovered long-range correlation characterized by H≈0.74. In an attempt to get to the bottom of the problem in the present paper, empirical mode decomposition (EMD), a data-driven adaptive method, is applied to first extract the components with different dominant frequencies. MF-DFA is then employed to study the long-range correlation of the sunspot time series under the influence of these components. On removing the effects of these periods, the natural long-range correlation of the sunspot time series can be revealed. With the removal of the 11-year cycle, a crossover point located at around 60 months is discovered to be a reasonable point separating two different time scale ranges, H≈0.72 and H≈1.49. And on removing all cycles longer than 11 years, we have H≈0.69 and H≈0.28. The three cycle-removing methods—Fourier truncation, adaptive detrending and the

  17. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specification

    Science.gov (United States)

    2010-07-01

    ... Measurements Required, and Maximum Discrepancy Specification C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges..., June 22, 2010, table C-1 to subpart C was revised, effective Aug. 23, 2010. For the convenience of the...

  18. Probing sunspots with two-skip time-distance helioseismology

    Science.gov (United States)

    Duvall, Thomas L., Jr.; Cally, Paul S.; Przybylski, Damien; Nagashima, Kaori; Gizon, Laurent

    2018-06-01

    Context. Previous helioseismology of sunspots has been sensitive to both the structural and magnetic aspects of sunspot structure. Aims: We aim to develop a technique that is insensitive to the magnetic component so the two aspects can be more readily separated. Methods: We study waves reflected almost vertically from the underside of a sunspot. Time-distance helioseismology was used to measure travel times for the waves. Ray theory and a detailed sunspot model were used to calculate travel times for comparison. Results: It is shown that these large distance waves are insensitive to the magnetic field in the sunspot. The largest travel time differences for any solar phenomena are observed. Conclusions: With sufficient modeling effort, these should lead to better understanding of sunspot structure.

  19. Photoelectric observations of propagating sunspot oscillations

    International Nuclear Information System (INIS)

    Lites, B.W.; White, O.R.; Packman, D.

    1982-01-01

    The Sacramento Park Observatory Vacuum Tower Telescope and diode array were used to make repeated intensity and velocity images of a large, isolated sunspot in both a chromospheric (lambda8542 Ca II) and a photospheric (lambda5576 Fe I) line. The movie of the digital data for the chromospheric line shows clearly a relationship between the propagating umbral disturbances and the running penumbral waves. The velocities for transverse propagating of the umbral and penumbral disturbances are 60--70 km s -1 and 20--35 km s -1 , respectively. Power spectra of the oscillations show a sharp peak at a period of about 170 s in both the velocity and intensity signals. The rms velocity fluctuation of this power peak is 0.26 km s -1 . The oscillations at any given point in the sunspot are very regular, and the phase relationship between the velocity and intensity of the chromospheric oscillations is radically different than that for the quiet Sun. Our preliminary interpretation of the phase relationship involves acoustic waves with wave vector directed downwards along the magnetic field lines; however, this interpretation relies on assumptions involved in the data reduction scheme. The mechanical energy flux carried by the observed umbral disturbances does not appear to be a significant contributor to the overall energy budget of the sunspot or the surrounding active region

  20. On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23

    Directory of Open Access Journals (Sweden)

    Santos Ângela R. G.

    2017-01-01

    Full Text Available The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short-and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.

  1. COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Deng, L. H.; Xiang, Y. Y.; Dun, G. T. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Li, B., E-mail: wooden@escience.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, Weihai 264209 (China)

    2016-01-15

    The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaotic attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.

  2. Statistics of the largest sunspot and facular areas per solar cycle

    International Nuclear Information System (INIS)

    Willis, D.M.; Kabasakal Tulunay, Y.

    1979-01-01

    The statistics of extreme values is used to investigate the statistical properties of the largest areas sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun. (orig.)

  3. Tracking the Magnetic Flux in and Around Sunspots

    Energy Technology Data Exchange (ETDEWEB)

    Sheeley, N. R. Jr.; Stauffer, J. R.; Thomassie, J. C.; Warren, H. P., E-mail: solsheeley@verizon.net, E-mail: harry.warren@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2017-02-10

    We have developed a procedure for tracking sunspots observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory and for making curvature-corrected space/time maps of the associated line-of-sight magnetic field and continuum intensity. We apply this procedure to 36 sunspots, each observed continuously for nine days around its central meridian passage time, and find that the proper motions separate into two distinct components depending on their speeds. Fast (∼3–5 km s{sup −1}) motions, comparable to Evershed flows, are produced by weak vertical fluctuations of the horizontal canopy field and recur on a timescale of 12–20 min. Slow (∼0.3–0.5 km s{sup −1}) motions diverge from a sunspot-centered ring whose location depends on the size of the sunspot, occurring in the mid-penumbra for large sunspots and at the outer edge of the penumbra for small sunspots. The slow ingoing features are contracting spokes of a quasi-vertical field of umbral polarity. These inflows disappear when the sunspot loses its penumbra, and may be related to inward-moving penumbral grain. The slow outgoing features may have either polarity depending on whether they originate from quasi-vertical fields of umbral polarity or from the outer edge of the canopy. When a sunspot decays, the penumbra and canopy disappear, and the moat becomes filled with slow outflows of umbral polarity. We apply our procedure to decaying sunspots, to long-lived sunspots, and to numerical simulations of a long-lived sunspot by Rempel.

  4. Towards a first detailed reconstruction of sunspot information over the last 150 years

    Science.gov (United States)

    Lefevre, Laure; Clette, Frédéric

    2013-04-01

    With four centuries of solar evolution, the International Sunspot Number (SSN) forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. For such a quantitative use, this unique time-series must be closely monitored for any possible biases and drifts. This is the main objective of the Sunspot Workshops organized jointly by the National Solar Observatory (NSO) and the Royal Observatory of Belgium (ROB) since 2010. Here, we will report about some recent outcomes of past workshops, like diagnostics of scaling errors and their proposed corrections, or the recent disagreement between the sunspot sumber and other solar indices like the 10.7cm radio flux. Our most recent analyses indicate that while part of this divergence may be due to a calibration drift in the SSN, it also results from an intrinsic change in the global magnetic parameters of sunspots and solar active regions, suggesting a possible transition to a new activity regime. Going beyond the SSN series, in the framework of the SOTERIA, TOSCA and SOLID projects, we produced a survey of all existing catalogs providing detailed sunspot information and we also located different primary solar images and drawing collections that can be exploitable to complement the existing catalogs (COMESEP project). These are first steps towards the construction of a multi-parametric time series of multiple sunspot group properties over at least the last 150 years, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. We will present here the current status of this work. The catalog now extends over the last 3 cycles (Lefevre & Clette 2011

  5. Repeatability, number of harvests, and phenotypic stability of dry matter yield and quality traits of Panicum maximum jacq.

    Directory of Open Access Journals (Sweden)

    Francisco Duarte Fernandes

    2017-04-01

    Full Text Available Selection of superior forage genotypes is based on agronomic traits assayed in repeated measures. The questions are how repeatable the performance of individual genotypes is and how many harvests are needed to select the best genotypes. The objectives were to estimate repeatability coefficients of dry matter yield (DMY and forage quality, their phenotypic stability and the number of harvests needed for an accurate selection. Two randomized complete block design experiments data with 24 genotypes each, undergoing 12 and 16 harvests, over a period of 2 and 3 years, respectively, were used. The DMY repeatability estimates ranged from 0.42 to 0.55, suggesting a low heritability. The mean numbers of repeated measures were 5 and 7 harvests for 0.80 and 0.85 accuracy, respectively. The inclusion of the first two harvests negatively affects the estimates. Repeatability for quality traits ranged from 0.30 to 0.69, indicating low to moderate heritability.

  6. The EUV Spectrum of Sunspot Plumes Observed by SUMER on ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. We present results from sunspot observations obtained by. SUMER on SOHO. In sunspot plumes the EUV spectrum differs from the quiet Sun; continua are observed with different slopes and intensities; emission lines from molecular hydrogen and many unidentified species indicate unique plasma conditions ...

  7. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  8. An essay on sunspots and solar flares

    International Nuclear Information System (INIS)

    Akasofu, S.-I.

    1984-01-01

    The presently prevailing theories of sunspots and solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes for solar flare energy. In this paper, attention is paid to the fact that there are large-scale magnetic fields which divide the photosphere into positive and negative (line-of-sight) polarity regions and that they are likely to be more fundamental than sunspot fields, as emphasized most recently by McIntosh. A new phenomenological model of the sunspot pair formation is then constructed by considering an amplification process of these large-scale fields near their boundaries by shear flows, including localized vortex motions. The amplification results from a dynamo process associated with such vortex flows and the associated convergence flow in the large-scale fields. This dynamo process generates also some of the familiar ''force-free'' fields or the ''sheared'' magnetic fields in which the magnetic field-aligned currents are essential. Upward field-aligned currents generated by the dynamo process are carried by downward streaming electrons which are expected to be accelerated by an electric potential structure; a similar structure is responsible for accelerating auroral electrons in the magnetosphere. Depending on the magnetic field configuration and the shear flows, the current-carrying electrons precipitate into different geometrical patterns, causing circular flares, umbral flares, two-ribbon flares, etc. Thus, it is suggested that ''low temperature flares'' are directly driven by the photospheric dynamo process. (author)

  9. Solar rotation and meridional motions derived from sunspot groups

    International Nuclear Information System (INIS)

    Tuominen, J.; Tuominen, I.; Kyroelaeinen, J.

    1982-01-01

    Latitudinal and longitudinal motions of sunspot groups have been studied using the positions of recurrent sunspot groups of 103 years published by Greenwich observatory. In order to avoid any limb effects, only positions close to the central meridian have been used. The data were divided into two parts: those belonging to the years around sunspot maxima and those belonging to the years around sunspot minima. Using several different criteria it was ascertained that sunspot groups show meridional motions and that their drift curves as a function of latitude are different around maxima and around minima. In addition, also the angular velocity, as a function of latitude, was found to be different around maxima and minima. (Auth.)

  10. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  11. Relation of flare activity to the approach and separation of sunspots in an active region and to its magnetic properties

    International Nuclear Information System (INIS)

    Markova, E.

    1978-01-01

    The relation between the flare activity of active regions within the scope of a large complex and the magnetic gradients of these active regions and their daily variations is investigated in the interval of the exceptionally high flare activity occurring in June 1970. New indices, characterizing the active region, were defined, e.g., the instantaneous sunspot-area density and the instantaneous sunspot-number density. These indices were determined on the basis of measurements of the surface containing all sunspots of the complex of active regions enclosed by an envelope. An attempt was made to substitute the surface in the relation for the individual indices by distance. The daily variations of these indices were again compared with the flare activity and some mutual relations were derived. (author)

  12. Photometric measurements of solar irradiance variations due to sunspots

    International Nuclear Information System (INIS)

    Chapman, G.A.; Herzog, A.D.; Laico, D.E.; Lawrence, J.K.; Templer, M.S.

    1989-01-01

    A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage. 23 refs

  13. Maruhn-Greiner Maximum of Uranium Fission for Confirmation of Low Energy Nuclear Reactions LENR via a Compound Nucleus with Double Magic Numbers

    Science.gov (United States)

    Hora, H.; Miley, G. H.

    2007-12-01

    One of the most convincing facts about LENR due to deuterons of very high concentration in host metals as palladium is the measurement of the large scale minimum of the reaction probability depending on the nucleon number A of generated elements at A = 153 where a local maximum was measured. This is similar to the fission of uranium at A = 119 where the local maximum follows from the Maruhn-Greiner theory if the splitting nuclei are excited to about MeV energy. The LENR generated elements can be documented any time after the reaction by SIMS or K-shell X-ray excitation to show the very unique distribution with the local maximum. An explanation is based on the strong Debye screening of the Maxwellian deuterons within the degenerate rigid electron background especially within the swimming electron layer at the metal surface or at interfaces. The deuterons behave like neutrals at distances of about 2 picometers. They may form clusters due to soft attraction in the range above thermal energy. Clusters of 10 pm diameter may react over long time probabilities (megaseconds) with Pd nuclei leading to a double magic number compound nucleus which splits like in fission to the A = 153 element distribution.

  14. Sunspot Light Walls Suppressed by Nearby Brightenings

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun; Hou, Yijun; Li, Xiaohong [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robertus [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Yan, Limei, E-mail: shuhongyang@nao.cas.cn [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2017-07-01

    Light walls, as ensembles of oscillating bright structures rooted in sunspot light bridges, have not been well studied, although they are important for understanding sunspot properties. Using the Interface Region Imaging Spectrograph and Solar Dynamics Observatory observations, here we study the evolution of two oscillating light walls each within its own active region (AR). The emission of each light wall decays greatly after the appearance of adjacent brightenings. For the first light wall, rooted within AR 12565, the average height, amplitude, and oscillation period significantly decrease from 3.5 Mm, 1.7 Mm, and 8.5 minutes to 1.6 Mm, 0.4 Mm, and 3.0 minutes, respectively. For the second light wall, rooted within AR 12597, the mean height, amplitude, and oscillation period of the light wall decrease from 2.1 Mm, 0.5 Mm, and 3.0 minutes to 1.5 Mm, 0.2 Mm, and 2.1 minutes, respectively. Particularly, a part of the second light wall even becomes invisible after the influence of a nearby brightening. These results reveal that the light walls are suppressed by nearby brightenings. Considering the complex magnetic topology in light bridges, we conjecture that the fading of light walls may be caused by a drop in the magnetic pressure, where the flux is canceled by magnetic reconnection at the site of the nearby brightening. Another hypothesis is that the wall fading is due to the suppression of driver source ( p -mode oscillation), resulting from the nearby avalanche of downward particles along reconnected brightening loops.

  15. Sunspots Resource--From Ancient Cultures to Modern Research

    Science.gov (United States)

    Craig, N.

    2000-10-01

    Sunspots is a web-based lesson that was developed by the Science Education Gateway (SEGway) program with participants from the Exploratorium, a well known science Museum in San Francisco, UC Berkeley Space Sciences Laboratory, and teachers from several California schools. This space science resource allows 8-12 grade students to explore the nature of sunspots and the history of solar physics in its effort to understand their nature. Interviews with solar physicists and archeo-astronomers, historic images, cutting-edge NASA images, movies, and research results, as well as a student-centered sunspot research activity using NASA space science data defines this lesson. The sunspot resource is aligned with the NCTM and National Science Education Standards. It emphasizes inquiry-based methods and mathematical exercises through measurement, graphic data representation, analysis of NASA data, lastly, interpreting results and drawing conclusions. These resources have been successfully classroom tested in 4 middle schools in the San Francisco Unified School District as part of the 3-week Summer School Science curricula. Lessons learned from the Summer School 1999 will be explained. This resource includes teacher-friendly lesson plans, space science background material and student worksheets. There will be Sunspots lesson CD-ROM and printed version of the relevant classroom-ready materials and a teacher resource booklet available. Sunspot resource is brought to you by, The Science Education Gateway - SEGway - Project, and the HESSI satellite and NASA's Office of Space Science Sun-Earth Connection Education Forum.

  16. Latitudinal migration of sunspots based on the ESAI database

    Science.gov (United States)

    Zhang, Juan; Li, Fu-Yu; Feng, Wen

    2018-01-01

    The latitudinal migration of sunspots toward the equator, which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone, is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation. The Extended time series of Solar Activity Indices (ESAI) elongated the Greenwich observation record of sunspots by several decades in the past. In this study, ESAI’s yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear. It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function. In addition, the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses, providing a particular constraint for solar dynamo models. Indeed, the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period, and it is located at higher latitudinal position, giving evidence to support the Babcock-Leighton dynamo mechanism.

  17. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  18. Analysis of factors that influence the maximum number of repetitions in two upper-body resistance exercises: curl biceps and bench press.

    Science.gov (United States)

    Iglesias, Eliseo; Boullosa, Daniel A; Dopico, Xurxo; Carballeira, Eduardo

    2010-06-01

    The purpose of this study was to analyze the influence of exercise type, set configuration, and relative intensity load on relationship between 1 repetition maximum (1RM) and maximum number of repetitions (MNR). Thirteen male subjects, experienced in resistance training, were tested in bench press and biceps curl for 1RM, MNR at 90% of 1RM with cluster set configuration (rest of 30s between repetitions) and MNR at 70% of 1RM with traditional set configuration (no rest between repetitions). A lineal encoder was used for measuring displacement of load. Analysis of variance analysis revealed a significant effect of load (pbench press and biceps curl, respectively; pbench press and biceps curl, respectively; p>0.05). Correlation between 1RM and MNR was significant for medium-intensity in biceps curl (r=-0.574; pvelocity along set, so velocity seems to be similar at a same relative intensity for subjects with differences in maximum strength levels. From our results, we suggest the employment of MNR rather than % of 1RM for training monitoring. Furthermore, we suggest the introduction of cluster set configuration for upper-body assessment of MNR and for upper-body muscular endurance training at high-intensity loads, as it seems an efficient approach in looking for sessions with greater training volumes. This could be an interesting approach for such sports as wrestling or weightlifting.

  19. ASYMMETRIC SUNSPOT ACTIVITY AND THE SOUTHWARD DISPLACEMENT OF THE HELIOSPHERIC CURRENT SHEET

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Robbrecht, E.

    2011-01-01

    Observations of the interplanetary magnetic field (IMF) have suggested a statistical tendency for the heliospheric current sheet (HCS) to be shifted a few degrees southward of the heliographic equator during the period 1965-2010, particularly in the years near sunspot minimum. Using potential-field source-surface extrapolations and photospheric flux-transport simulations, we demonstrate that this southward displacement follows from Joy's law and the observed hemispheric asymmetry in the sunspot numbers, with activity being stronger in the southern (northern) hemisphere during the declining (rising) phase of cycles 20-23. The hemispheric asymmetry gives rise to an axisymmetric quadrupole field, whose equatorial zone has the sign of the leading-polarity flux in the dominant hemisphere; during the last four cycles, the polarity of the IMF around the equator thus tended to match that of the north polar field both before and after polar field reversal. However, large fluctuations are introduced by the nonaxisymmetric field components, which depend on the longitudinal distribution of sunspot activity in either hemisphere. Consistent with this model, the HCS showed an average northward displacement during cycle 19, when the 'usual' alternation was reversed and the northern hemisphere became far more active than the southern hemisphere during the declining phase of the cycle. We propose a new method for determining the north-south displacement of the HCS from coronal streamer observations.

  20. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men.

    Science.gov (United States)

    Shimano, Tomoko; Kraemer, William J; Spiering, Barry A; Volek, Jeff S; Hatfield, Disa L; Silvestre, Ricardo; Vingren, Jakob L; Fragala, Maren S; Maresh, Carl M; Fleck, Steven J; Newton, Robert U; Spreuwenberg, Luuk P B; Häkkinen, Keijo

    2006-11-01

    Resistance exercise intensity is commonly prescribed as a percent of 1 repetition maximum (1RM). However, the relationship between percent 1RM and the number of repetitions allowed remains poorly studied, especially using free weight exercises. The purpose of this study was to determine the maximal number of repetitions that trained (T) and untrained (UT) men can perform during free weight exercises at various percentages of 1RM. Eight T and 8 UT men were tested for 1RM strength. Then, subjects performed 1 set to failure at 60, 80, and 90% of 1RM in the back squat, bench press, and arm curl in a randomized, balanced design. There was a significant (p squat than the bench press or arm curl at 60% 1RM for T and UT. At 80 and 90% 1RM, there were significant differences between the back squat and other exercises; however, differences were much less pronounced. No differences in number of repetitions performed at a given exercise intensity were noted between T and UT (except during bench press at 90% 1RM). In conclusion, the number of repetitions performed at a given percent of 1RM is influenced by the amount of muscle mass used during the exercise, as more repetitions can be performed during the back squat than either the bench press or arm curl. Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity.

  1. Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot

    Science.gov (United States)

    Henze, W., Jr.; Tandberg-Hanssen, E.; Hagyard, M. J.; West, E. A.; Woodgate, B. E.; Shine, R. A.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; West, E. A.

    1982-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacraft has observed for the first time the longitudinal component of the magnetic field by means of the Zeeman effect in the transition region above a sunspot. The data presented here were obtained on three days in one sunspot, have spatial resolutions of 10 arcsec and 3 arcsec, and yield maximum field strengths greater than 1000 G above the umbrae in the spot. The method of analysis, including a line-width calibration feature used during some of the observations, is described in some detail in an appendix; the line width is required for the determination of the longitudinal magnetic field from the observed circular polarization. The transition region data for one day are compared with photospheric magnetograms from the Marshall Space Flight Center. Vertical gradients of the magnetic field are compared from the two sets of data; the maximum gradients of 0.41 to 0.62 G/km occur above the umbra and agree with or are smaller than values observed previously in the photosphere and low chromosphere.

  2. Interactions between nested sunspots. 1: The formation and breakup of a delta-type sunspot

    Science.gov (United States)

    Gaizauskas, V.; Harvey, K. L.; Proulx, M.

    1994-01-01

    We investigate a nest of sunspots in which three ordinary bipolar pairs of sunspots are aligned collinearly. The usual spreading action of the growing regions brings two spots of leading polarity together (p-p collision) and forces the leading and trailing spots of the two interior regions to overlap inot a single penumbra (p-f collision), thus forming a delta-spot. We examine digitally processed images from the Ottawa River Solar Observatory of two related events inside the delta-spot 5 days after the p-f collision begins: the violent disruption of the f-umbra, and the formation in less than a day of an hydrogen-alpha filament. The evolutionary changes in shape, area, relative motions, and brightness that we measure for each spot in the elongated nest are more compatible with Parker's (1979a) hypothesis of a sunspot as a cluster of flux tubes held together by downdrafts than with the notion of a sunspot as a monolithic plug of magnetic flux. From chromospheric developments over the delta-spot, we show that a shearing motion along a polarity inversion is more effective than convergence for creating a chromospheric filament. We invoke the release of an instability, triggered by a sequence of processes lasting 1 day or more, to explain the disruption of the f-umbra in this delta-spot. We show that the sequence is initiated when the colliding p-f umbrae reach a critical separation around 3200 +/- 200 km. We present a descriptive model in which the reconnected magnetic fields block vertical transport of convective heat flux just beneath the photosphere. We observe the formation of an unusual type of penumbra adjacent to the f-polarity portion of this delta-spot just before its disruption. A tangential penumbral band grows out of disordered matter connected to the f-umbra. We present this as evidence for the extrusion of umbral magnetic flux by thermal plumes rising through a loosely bound umbra.

  3. SEISMIC DISCRIMINATION OF THERMAL AND MAGNETIC ANOMALIES IN SUNSPOT UMBRAE

    International Nuclear Information System (INIS)

    Lindsey, C.; Cally, P. S.; Rempel, M.

    2010-01-01

    Efforts to model sunspots based on helioseismic signatures need to discriminate between the effects of (1) a strong magnetic field that introduces time-irreversible, vantage-dependent phase shifts, apparently connected to fast- and slow-mode coupling and wave absorption and (2) a thermal anomaly that includes cool gas extending an indefinite depth beneath the photosphere. Helioseismic observations of sunspots show travel times considerably reduced with respect to equivalent quiet-Sun signatures. Simulations by Moradi and Cally of waves skipping across sunspots with photospheric magnetic fields of order 3 kG show travel times that respond strongly to the magnetic field and relatively weakly to the thermal anomaly by itself. We note that waves propagating vertically in a vertical magnetic field are relatively insensitive to the magnetic field, while remaining highly responsive to the attendant thermal anomaly. Travel-time measurements for waves with large skip distances into the centers of axially symmetric sunspots are therefore a crucial resource for discrimination of the thermal anomaly beneath sunspot umbrae from the magnetic anomaly. One-dimensional models of sunspot umbrae based on compressible-radiative-magnetic-convective simulations such as by Rempel et al. can be fashioned to fit observed helioseismic travel-time spectra in the centers of sunspot umbrae. These models are based on cooling of the upper 2-4 Mm of the umbral subphotosphere with no significant anomaly beneath 4.5 Mm. The travel-time reductions characteristic of these models are primarily a consequence of a Wilson depression resulting from a strong downward buoyancy of the cooled umbral medium.

  4. Umbral oscillations as a probe of sunspot

    International Nuclear Information System (INIS)

    Abdelatif, T.E.H.

    1985-01-01

    The interaction of the solar five-minute oscillations with a sunspot is thoroughly explored, both on observational and theoretical grounds. Simple theoretical models are developed in order to understand the observations of umbral oscillations. Observations made at the National Solar Observatory detected both the three-minute and five-minute umbral oscillations at photospheric heights. The three-minute oscillations were found to have a kinetic energy density six times higher in the photosphere than in the chromosphere and to be concentrated in the central part of the umbra, supporting the photospheric resonance theory for the three-minute umbral oscillations. The five-minute oscillations are attenuated in the umbra, which appears to act as a filter in selecting some of the peaks in the power spectrum of five-minute oscillations in the surrounding photosphere. The k-omega power spectrum of the umbral oscillations shows a shift of power to longer wavelengths. Theoretical models of the transmission of acoustic waves into a magnetic region explain both observed effects

  5. LOOKING FOR GRANULATION AND PERIODICITY IMPRINTS IN THE SUNSPOT TIME SERIES

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silva, Hugo G., E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: hgsilva@uevora.pt [Departamento de Física, ECT, Instituto de Ciências da Terra, Universidade de Évora, Rua Romão Ramalho 59, 7002-554 Évora (Portugal)

    2015-05-10

    The sunspot activity is the end result of the cyclic destruction and regeneration of magnetic fields by the dynamo action. We propose a new method to analyze the daily sunspot areas data recorded since 1874. By computing the power spectral density of daily data series using the Mexican hat wavelet, we found a power spectrum with a well-defined shape, characterized by three features. The first term is the 22 yr solar magnetic cycle, estimated in our work to be 18.43 yr. The second term is related to the daily volatility of sunspots. This term is most likely produced by the turbulent motions linked to the solar granulation. The last term corresponds to a periodic source associated with the solar magnetic activity, for which the maximum power spectral density occurs at 22.67 days. This value is part of the 22–27 day periodicity region that shows an above-average intensity in the power spectra. The origin of this 22.67 day periodic process is not clearly identified, and there is a possibility that it can be produced by convective flows inside the star. The study clearly shows a north–south asymmetry. The 18.43 yr periodical source is correlated between the two hemispheres, but the 22.67 day one is not correlated. It is shown that toward the large timescales an excess occurs in the northern hemisphere, especially near the previous two periodic sources. To further investigate the 22.67 day periodicity, we made a Lomb–Scargle spectral analysis. The study suggests that this periodicity is distinct from others found nearby.

  6. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    International Nuclear Information System (INIS)

    McClintock, B. H.; Norton, A. A.

    2016-01-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations

  7. The Flares Associated with the Dynamics of the Sunspots K. M. ...

    Indian Academy of Sciences (India)

    tional theory of magnetic reconnection is briefly discussed. ... between changes in the sunspots' dynamics, emerging flux region, twisting of the field ... the eventual triggering of the flares is due to proper motion of the sunspots. Using .... rotation rates obtained from the daily motion of sunspot groups with respect to their life.

  8. The magnetic nature of umbra-penumbra boundary in sunspots

    Science.gov (United States)

    Jurčák, J.; Rezaei, R.; González, N. Bello; Schlichenmaier, R.; Vomlel, J.

    2018-03-01

    Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra-penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods: We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra-penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results: We statistically prove that the umbra-penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849-1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions: The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra-penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.

  9. A new look at sunspot formation using theory and observations

    Science.gov (United States)

    Losada, I. R.; Warnecke, J.; Glogowski, K.; Roth, M.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.

    2017-10-01

    Sunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong super-equipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism.

  10. Predicting the start and maximum amplitude of solar cycle 24 using similar phases and a cycle grouping

    International Nuclear Information System (INIS)

    Wang Jialong; Zong Weiguo; Le Guiming; Zhao Haijuan; Tang Yunqiu; Zhang Yang

    2009-01-01

    We find that the solar cycles 9, 11, and 20 are similar to cycle 23 in their respective descending phases. Using this similarity and the observed data of smoothed monthly mean sunspot numbers (SMSNs) available for the descending phase of cycle 23, we make a date calibration for the average time sequence made of the three descending phases of the three cycles, and predict the start of March or April 2008 for cycle 24. For the three cycles, we also find a linear correlation of the length of the descending phase of a cycle with the difference between the maximum epoch of this cycle and that of its next cycle. Using this relationship along with the known relationship between the rise-time and the maximum amplitude of a slowly rising solar cycle, we predict the maximum SMSN of cycle 24 of 100.2 ± 7.5 to appear during the period from May to October 2012. (letters)

  11. Exploring the atmospheric chemistry of O2SO3- and assessing the maximum turnover number of ion-catalysed H2SO4 formation

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Vehkamäki, H.

    2013-01-01

    molecule, but reaction (b) is in general much more probable. Although we are unable to assess the overall importance of this cycle in the real atmosphere due to the unknown influence of CO2 and NOx, we roughly estimate that ion-induced catalysis may contribute with several percent of H2SO4 levels......It has recently been demonstrated that the O2SO3- ion forms in the atmosphere as a natural consequence of ionizing radiation. Here, we present a density functional theory-based study of the reactions of O2SO3- with O-3. The most important reactions are (a) oxidation to O3SO3- and (b) cluster...... the two major sinks for O2SO3- is assessed, thereby providing a measure of the maximum turnover number of ion-catalysed SO2 oxidation, i.e. how many SO2 can be oxidized per free electron. The rate ratio between reactions (a) and (b) is significantly altered by the presence or absence of a single water...

  12. Solar wind and coronal structure near sunspot minimum: Pioneer and SMM observations from 1985-1987

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Barnes, A.; Hundhausen, A.J.; Smith, E.J.

    1990-01-01

    The solar wind speeds observed in the outer heliosphere (20 to 40 AU heliocentric distance, approximately) by Pioneers 10 an 11, and at a heliocentric distance of 0.7 AU by the Pioneer Venus spacecraft, reveal a complex set of changes in the years near the recent sunspot minimum, 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations made from the Solar Maximum Mission spacecraft during the same epoch show a systematic variation in coronal structure and (by implication) the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet (or with heliomagnetic latitude), and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum. The authors confirm here that this basic organization of the solar wind speed persists in the outer heliosphere with an orientation of the neutral sheet consistent with that inferred at a heliocentric distance of a few solar radii, from the coronal observations

  13. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, T. [Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife (Spain); Braun, D. C.; Crouch, A. D. [NorthWest Research Associates, Colorado Research Associates, Boulder, CO 80301 (United States); Birch, A. C., E-mail: tobias@iac.es [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-10-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  14. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES

    International Nuclear Information System (INIS)

    Felipe, T.; Braun, D. C.; Crouch, A. D.; Birch, A. C.

    2016-01-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  15. Are climatological correlations with the Hale double sunspot cycle meaningful

    International Nuclear Information System (INIS)

    Goldberg, R.A.; Herman, J.R.

    1975-09-01

    A sunspot cycle which may have been subject to a predicted phase reversal between 1800 and 1880 A.D. is discussed. Several climatological parameters normally correlated with this cycle are examined and do not exhibit a corresponding phase reversal during this period. It is proposed that this apparent discrepency can be resolved by suitable observations during the upcoming half decade

  16. Automated Sunspot Detection and Classification Using SOHO/MDI Imagery

    Science.gov (United States)

    2015-03-01

    to the geocentric North). 3. Focus and size of the solar disk is adjusted to fit an 18 cm diameter circle on the worksheet. 4. Analyst hand draws the...General Nature of the Sunspot,” The Astrophysical Journal 230, 905–913 (1979). 14. Wheatland, M. S., “A Bayesian Approach to Solar Flare Prediction,” The

  17. 3-color photometry of a sunspot using speckle masking techniques

    NARCIS (Netherlands)

    Wiehr, E.; Sütterlin, P.

    1998-01-01

    A three-colour photometry is used to deduce the temperature of sunspot fine-structures. Using the Speckle-Masking method for image restoration, the resulting images (one per colour and burst) have a spatial resolution only limited by the telescope's aperture, i.e. 95km (blue), 145 km (red) and

  18. SUNSPOT CYCLES IMPACTS ON TOURISM AND QUALITY OF LIFE

    Directory of Open Access Journals (Sweden)

    Tadeja Jere Jakulin

    2017-09-01

    Full Text Available We live under the influence of natural cycles caused by the rotation of our planet and its revolution around the sun. The nature of our nearest star is also subject to cyclical change. This article presents a study of a correlation between sunspot cycles and foreign tourists arrivals in Slovenia, based on historical data between sunspot cycles and sea salt production in Slovenia's Municipality of Piran during the Maunder Minimum period (1645-1715. The production of salt by the solar evaporation of brine in salt pans and tourist industry are seasonal economic activities that are affected by changes to the weather. The paper looks at sea salt production in Piran during a particular period in the past. The repetition of the sea salt production in the past is not possible. For this reason, the study uses mathematical tools and an additional case study, which analyses arrivals of foreign tourists to Slovenia over the past 65 years (1948-2012. The study has two purposes: to identify a linear correlation coefficient, which provides evidence of a correlation between arrivals of foreign tourists to Slovenia and sunspot cycles and to develop a causal loop diagram (CLD or so called qualitative model of a complex tourism system, which shows the interdependency of sunspot cycles, tourism system, and quality of life.

  19. Exploring the atmospheric chemistry of O2SO3− and assessing the maximum turnover number of ion-catalysed H2SO4 formation

    Directory of Open Access Journals (Sweden)

    N. Bork

    2013-04-01

    Full Text Available It has recently been demonstrated that the O2SO3− ion forms in the atmosphere as a natural consequence of ionizing radiation. Here, we present a density functional theory-based study of the reactions of O2SO3− with O3. The most important reactions are (a oxidation to O2SO3− and (b cluster decomposition into SO3, O2 and O3−. The former reaction is highly exothermic, and the nascent O2SO3− will rapidly decompose into SO4− and O2. If the origin of O2SO3− is SO2 oxidation by O3−, the latter reaction closes a catalytic cycle wherein SO2 is oxidized to SO3. The relative rate between the two major sinks for O2SO3− is assessed, thereby providing a measure of the maximum turnover number of ion-catalysed SO2 oxidation, i.e. how many SO2 can be oxidized per free electron. The rate ratio between reactions (a and (b is significantly altered by the presence or absence of a single water molecule, but reaction (b is in general much more probable. Although we are unable to assess the overall importance of this cycle in the real atmosphere due to the unknown influence of CO2 and NOx, we roughly estimate that ion-induced catalysis may contribute with several percent of H2SO4 levels in typical CO2-free and low NOx reaction chambers, e.g. the CLOUD chamber at CERN.

  20. Improvement of the photometric sunspot index and changes of the disk-integrated sunspot contrast with time

    Science.gov (United States)

    Froehlich, Claus; Pap, Judit M.; Hudson, Hugh S.

    1994-06-01

    The photometric sunspot index (PSI) was developed to study the effects of sunspots on solar irradiance. It is calculated from the sunspot data published in the Solar-Geophysical Data catalog. It has been shown that the former PSI models overestimate the effect of dark sunspots on solar irradiance; furthermore results of direct sunspot photometry indicate that the contrast of spots depends on their area. An improved PSI calculation is presented; it takes into account the area dependence of the contrast and calculates `true' daily means for each observation using the differential rotation of the spots. Moreover, the observations are screened for outliers which improves the homogeneity of the data set substantially, at least for the period after December 1981 when NOAA started to report data from a few instead of one to two stations. A detailed description of the method is provided. The correlation between the newly calculated PSI and total solar irradiance is studied for different phases of the solar cycles 21 and 22 using bi-variate spectral analysis. The results can be used as a `calibration' of PSI in terms of gain, the factor by which PSI has to be multiplied to yield the observed irradiance change. The factor changes with time from about 0.6 in 1980 to 1.1 in 1990. This unexpected result cannot be interpreted by a change of the contrast relative to the quiet Sun (as it is normally defined and determined by direct photometry) but rather as a change of the contrast between the spots and their surrounding as seen in total irradiance (integrated over the solar disk). This may partly be explained by a change in the ratio between the areas of the spots and the surrounding faculae.

  1. Initial phase of the development of sunspot groups and their forecast

    International Nuclear Information System (INIS)

    Berlyand, B.O.; Burov, V.A.; Stepanyan, N.N.

    1979-01-01

    Some characteristics of the initial phase of sunspot groups and their forecast have been considered. Experimental data on 340 sunspot groups were obtained in 1967-1969. It was found that oscillations of the magnetic flux in the groups indicate the possibility of the existence of typical periods (2 and 4 days) of the magnetic field development. Most of the groups appears in young plages. The probability of the protons injection from the young groups is very small. The typical time of the development of the proton centre is 10-30 days. The characteristics of the group on the first day of its existence are vaguely connected with the lifetime of the group. On the second and third days the magnetic characteristics (the summary magnetic flux and the number of the unipolar regions) have the highest correlation coefficient (approximately 70%) with the lifetime of the group. The problem of the group lifetime forecast was being solved with the pattern recognition technique. On the base of the second day observation of the existence of the group verification of the received forecast 14% exceeds the verification of the climatological forecast. The forecast of the Zurich class with the same technique is effective beginning with the fifth day of the group existence and the forecast of the flare activity of the group since the day of its appearance. The exceeding of the verification as compared with the climatological forecasts in these problems is 10% and 8% accordingly

  2. Identification of possible intense historical geomagnetic storms using combined sunspot and auroral observations from East Asia

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    2005-03-01

    Full Text Available Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma

  3. On the correlation of longitudinal and latitudinal motions of sunspots

    International Nuclear Information System (INIS)

    Gilman, P.A.

    1984-01-01

    Using new measurements of positions of individual sunspots and sunspot groups obtained from 62 years of the Mt. Wilson white-light plate collection, we have recomputed the correlation between longitude and latitude motion. Our results for groups are similar to those of Ward (1965a) computed from the Greenwich record, but for individual spots the covariance is reduced by a factor of about 3 from the Ward values, though still of the same sign and still statistically significant. We conclude that there is a real correlation between longitude and latitude movement of individual spots, implying angular momentum transport toward the equator as inferred by Ward. The two thirds reduction in the covariance for individual spots as opposed to groups is probably due to certain properties of spot groups, as first pointed out in an unpublished manuscript by Leighton. (orig.)

  4. Molecular Diagnostics of the Internal Structure of Starspots and Sunspots

    Science.gov (United States)

    Afram, N.; Berdyugina, S. V.; Fluri, D. M.; Solanki, S. K.; Lagg, A.; Petit, P.; Arnaud, J.

    2006-12-01

    We have analyzed the usefulness of molecules as a diagnostic tool for studying solar and stellar magnetism with the molecular Zeeman and Paschen-Back effects. In the first part we concentrate on molecules that are observed in sunspots such as MgH and TiO. We present calculated molecular line profiles obtained by assuming magnetic fields of 2-3 kG and compare these synthetic Stokes profiles with spectro-polarimetric observations in sunspots. The good agreement between the theory and observations allows us to turn our attention in the second part to starspots to gain insight into their internal structure. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and compare synthetic Stokes profiles with our recent observations.

  5. Aurorae, sunspots and weather, mainly since A.D. 1200

    International Nuclear Information System (INIS)

    Schove, D.J.

    1981-01-01

    Auroral records recieved for the Spectrum of Time project were used in 1955 to estimate sunspot activity and the dates maxima and minima back to 649 B.C. An additional set of rules has been developed and has made possible further improvements utilizing the separate auroral maxima associated with flares and coronal holes on the sun. A further set can now be given. 1) The time between sunspot maxima depends especially on the ratio of the amplitudes: the time between minima is high if the next cycle is very weak and low when the two consecutive cycles are both strong. 2) The time of rise is usually dependent on the strength of the next maxima, and the time of fall is low when a moderate cycle is followed by a strong one. (orig./WL)

  6. Studies of kinematic elements in two multicenter sunspot groups

    International Nuclear Information System (INIS)

    Korobova, Z.B.

    1983-01-01

    Some features of kinematic elements (KE) in two multicenter sunspot groups were studied using Tashkent full-disc white light heliograms. KE and morphological elements do not reveal any relationship. A KE coincides with a unipolar or multipolar spot or with part of a spot. It may also contain an extended stream including several spots. Relation of KE to large-scale photospheric magnetic fields is less clear. The line of polarity reversal is, in most cases, the deviding line between two adjacent KE. At the same time, a KE can contain spots of both polarities. Sunspot trajectories in the leading polarity regions show the best similarity. Interactions of KE are greatly influenced by the meridional drift. (author)

  7. Application of the Markov chain approximation to the sunspot observations

    International Nuclear Information System (INIS)

    Onal, M.

    1988-01-01

    The positions of the 13,588 sunspot groups observed during the cycle of 1950-1960 at the Istanbul University Observatory have been corrected for the effect of differential rotation. The evolution probability of a sunspot group to the other one in the same region have been determined. By using the Markov chain approximation, the types of these groups and their transition probabilities during the following activity cycle (1950-1960), and the concentration of active regions during 1950-1960 have been estimated. The transition probabilities from the observations of the activity cycle 1960-1970 have been compared with the predicted transition probabilities and a good correlation has been noted. 5 refs.; 2 tabs

  8. LONG-TERM MEASUREMENTS OF SUNSPOT MAGNETIC TILT ANGLES

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States); Ulrich, Roger K., E-mail: jli@igpp.ucla.edu [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States)

    2012-10-20

    Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and SOHO/MDI magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of {approx}0.{sup 0}5 per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by {approx}0.{sup 0}9 per year on average, a trend that largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the Southern than in the Northern Hemisphere for all latitude zones, and the differences increase with increasing latitude.

  9. The Temperature - Magnetic Field Relation in Observed and Simulated Sunspots

    Czech Academy of Sciences Publication Activity Database

    Sobotka, Michal; Rezaei, R.

    2017-01-01

    Roč. 292, č. 12 (2017), 188/1-188/12 ISSN 0038-0938 R&D Projects: GA ČR(CZ) GA14-04338S; GA MŠk(CZ) 7E13003 EU Projects: European Commission(XE) 312495 - SOLARNET Institutional support: RVO:67985815 Keywords : sunspots * magnetic fields * comparison Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.682, year: 2016

  10. SPECTROPOLARIMETRICALLY ACCURATE MAGNETOHYDROSTATIC SUNSPOT MODEL FOR FORWARD MODELING IN HELIOSEISMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Przybylski, D.; Shelyag, S.; Cally, P. S. [Monash Center for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia)

    2015-07-01

    We present a technique to construct a spectropolarimetrically accurate magnetohydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion, and absorption in the solar interior and photosphere with the sunspot embedded into it. With the 6173 Å magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as the full Stokes vector for the simulation at various positions at the solar disk, and analyze the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterized. An increase in acoustic power in the simulated observations of the sunspot umbra away from the solar disk center was confirmed as the slow magnetoacoustic wave.

  11. SPECTROPOLARIMETRICALLY ACCURATE MAGNETOHYDROSTATIC SUNSPOT MODEL FOR FORWARD MODELING IN HELIOSEISMOLOGY

    International Nuclear Information System (INIS)

    Przybylski, D.; Shelyag, S.; Cally, P. S.

    2015-01-01

    We present a technique to construct a spectropolarimetrically accurate magnetohydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion, and absorption in the solar interior and photosphere with the sunspot embedded into it. With the 6173 Å magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as the full Stokes vector for the simulation at various positions at the solar disk, and analyze the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterized. An increase in acoustic power in the simulated observations of the sunspot umbra away from the solar disk center was confirmed as the slow magnetoacoustic wave

  12. Photospheric Origin of Three-minute Oscillations in a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Kyungsuk; Yurchyshyn, Vasyl [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-10

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ 5436, Fe i λ 5435, and Na i D{sub 2} λ 5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  13. Frequently Occurring Reconnection Jets from Sunspot Light Bridges

    Science.gov (United States)

    Tian, Hui; Yurchyshyn, Vasyl; Peter, Hardi; Solanki, Sami K.; Young, Peter R.; Ni, Lei; Cao, Wenda; Ji, Kaifan; Zhu, Yingjie; Zhang, Jingwen; Samanta, Tanmoy; Song, Yongliang; He, Jiansen; Wang, Linghua; Chen, Yajie

    2018-02-01

    Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the world’s largest solar telescope, the 1.6 m Goode Solar Telescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the Hα line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200 km s‑1, and that the weakly ionized plasma is heated by at least an order of magnitude up to ∼80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the Hα core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.

  14. MODELING THE CHROMOSPHERE OF A SUNSPOT AND THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Avrett, E.; Tian, H. [Smithsonian Astrophysical Observatory, Cambridge, MA 02138 (United States); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Curdt, W. [Max Planck Institut für Sonnensystemfoschung, Goettingen (Germany); Wülser, J.-P. [Lockheed Martin Advanced Techonology Center (United States)

    2015-10-01

    Semiempirical atmospheric modeling attempts to match an observed spectrum by finding the temperature distribution and other physical parameters along the line of sight through the emitting region such that the calculated spectrum agrees with the observed one. In this paper we take the observed spectrum of a sunspot and the quiet Sun in the EUV wavelength range 668–1475 Å from the 2001 SUMER atlas of Curdt et al. to determine models of the two atmospheric regions, extending from the photosphere through the overlying chromosphere into the transition region. We solve the coupled statistical equilibrium and optically thick radiative transfer equations for a set of 32 atoms and ions. The atoms that are part of molecules are treated separately, and are excluded from the atomic abundances and atomic opacities. We compare the Mg ii k line profile observations from the Interface Region Imaging Spectrograph with the profiles calculated from the two models. The calculated profiles for the sunspot are substantially lower than the observed ones, based on the SUMER models. The only way we have found to raise the calculated Mg ii lines to agree with the observations is to introduce illumination of the sunspot from the surrounding active region.

  15. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn-Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    Science.gov (United States)

    Prelas, M. A.; Hora, H.; Miley, G. H.

    2014-07-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.

  16. The Earth's Interaction With the Sun Over the Millennia From Analyses of Historical Sunspot, Auroral and Climate Records

    Science.gov (United States)

    Yau, K.

    2001-12-01

    spell, dated to {ca} 700 by Dansgaard [{Nature} {255}, 1974, 24]. Using records of advances and retreats of glaciers, previous researchers have linked it to a cold spell in the previous two centuries instead, thus requiring an offset in timescales. Our literature search has yielded more records of sunspot sightings, and established the fifth century as a minimum of solar activity, ending in a maximum at {ca} 500. These features and the minimum at 700 match contemporary deviations of atmospheric C 14 from a secular trend, due primarily to long-term changes in the strength of the Earth's magnetic moment [Stuiver, {Radiocarbon} {35}, 215]. Pang has shown that the climate of Eurasia was cold in the 5th century, due partly to volcanic cooling [{Eos} {80}, #46, 1999, F220]. Reduced solar luminosity may have contributed to that too. The cold apparently forced massive southward migrations of Teutonic and Asian barbarians into the Roman Empire, ending it in 476. Europe was plunged into the Dark Age, from which it did not recover until the climate warmed up again toward the end of the millennium. Finally, climate changes can also be produced by greenhouse warming, reorganization of ocean current systems "Dansgaard-Oeschger events," the Earth's orbital variations "Milankovitch effects," {etc}. Continued analysis of historical records, in conjunction with other proxy data, can help shed light on the nature of the Earth's interactions with the Sun, and the causes of past climate changes.

  17. Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingwen; Tian, Hui; He, Jiansen; Wang, Linghua, E-mail: huitian@pku.edu.cn [School of Earth and Space Sciences, Peking University, 100871 Beijing (China)

    2017-03-20

    High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases to zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.

  18. Distribution of electric currents in sunspots from photosphere to corona

    Energy Technology Data Exchange (ETDEWEB)

    Gosain, Sanjay [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Démoulin, Pascal [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires 1428 (Argentina)

    2014-09-20

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.

  19. High Velocity Horizontal Motions at the Edge of Sunspot Penumbrae

    Science.gov (United States)

    Hagenaar-Daggett, Hermance J.; Shine, R.

    2010-05-01

    The outer edges of sunspot penumbrae have long been noted as a region of interesting dynamics including formation of MMFs, extensions and retractions of the penumbral tips, fast moving (2-3 km/s) bright features dubbed"streakers", and localized regions of high speed downflows interpreted as Evershed "sinks". Using 30s cadence movies of high spatial resolution G band and Ca II H images taken by the Hinode SOT/FPP instrument from 5-7 Jan 2007, we have been investigating the penumbra around a sunspot in AR 10933. In addition to the expected phenomena, we also see occasional small dark crescent-shaped features with high horizontal velocities (6.5 km/s) in G band movies. These appear to be emitted from penumbral tips. They travel about 1.5 Mm developing a bright wake that evolves into a slower moving (1-2 km/s) bright feature. In some cases, there may be an earlier outward propagating disturbance within the penumbra. We have also analyzed available Fe 6302 Stokes V images to obtain information on the magnetic field. Although only lower resolution 6302 images made with a slower cadence are available for these particular data sets, we can establish that the features have the opposite magnetic polarity of the sunspot. This observation may be in agreement with simulations showing that a horizontal flux tube develops crests that move outward with a velocity as large as 10 km/s. This work was supported by NASA contract NNM07AA01C.

  20. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  1. Observations of the birth and fine structure of sunspot penumbrae

    International Nuclear Information System (INIS)

    Collados, M.; Garcia de la Rosa, J.I.; Moreno-Insertis, F.; Vazquez, M.

    1985-01-01

    High resolution white-light pictures of sunspot penumbrae are presented. These include pictures showing details of their filamentary structure and some instances of birth of a penumbra. The observations are discussed in the framework of current penumbra theories. A series of pictures have been presented, which give additional evidence of the existence of dark penumbral filaments as individual structures. With respect to the birth of the penumbra some new observational aspects can be seen. The existence of the filamentary penumbra even in the first moments, its non uniformity and its short length are the major aspects derived from the pictures

  2. Investigation of Quasi-periodic Solar Oscillations in Sunspots Based on SOHO/MDI Magnetograms

    Science.gov (United States)

    Kallunki, J.; Riehokainen, A.

    2012-10-01

    In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95 % significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95 % significance level: 3 - 5, 10 - 23, 220 - 240, 340 and 470 minutes, and we also find common oscillation periods (10 - 23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.

  3. SUNSPOT AND STARSPOT LIFETIMES IN A TURBULENT EROSION MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton (New Zealand); Wheatland, M. S. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2017-01-10

    Quantitative models of sunspot and starspot decay predict the timescale of magnetic diffusion and may yield important constraints in stellar dynamo models. Motivated by recent measurements of starspot lifetimes, we investigate the disintegration of a magnetic flux tube by nonlinear diffusion. Previous theoretical studies are extended by considering two physically motivated functional forms for the nonlinear diffusion coefficient D : an inverse power-law dependence D ∝ B {sup −ν} and a step-function dependence of D on the magnetic field magnitude B . Analytical self-similar solutions are presented for the power-law case, including solutions exhibiting “super fast” diffusion. For the step-function case, the heat-balance integral method yields approximate solutions, valid for moderately suppressed diffusion in the spot. The accuracy of the resulting solutions is confirmed numerically, using a method which provides an accurate description of long-time evolution by imposing boundary conditions at infinite distance from the spot. The new models may allow insight into the differences and similarities between sunspots and starspots.

  4. Response of Solar Irradiance to Sunspot-area Variations

    Science.gov (United States)

    Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.

    2018-02-01

    One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.

  5. Depressed emission between magnetic arcades near a sunspot

    Science.gov (United States)

    Ryabov, B. I.; Shibasaki, K.

    The locations of the depressed emission in microwaves, EUV and soft X-rays are compared with each other and with the location of the plasma outflow in the active region (AR) 8535 on the Sun. We found that two open-field regions overlap the regions of depressed emission near the AR's sunspot. These two open-field regions are simulated with the potential-field source-surface (PFSS) model under radial distances of RSS = 1.8 R⊙ and RSS = 2.5 R⊙. Each open-field region is located between the arcades of the loops of the same magnetic polarity. The former open-field region covers the region of the plasma outflow, which is thus useful for the tests on connection to the heliosphere. The utmost microwave depression of the intensity in the ordinary mode (the Very Large Array 15 GHz observations) also overlaps the region of the plasma outflow and thus indicates this outflow. The lasting for eight days depression in soft X-rays and the SOHO EIT 2.84× 10-8 m images are attributed to the evacuation of as hot coronal plasma as T≥ 2× 106 K from the extended in height (``open") magnetic structures. We conclude that the AR 8535 presents the sunspot atmosphere affected by the large-scale magnetic fields.

  6. NUMERICAL SIMULATIONS OF CONVERSION TO ALFVÉN WAVES IN SUNSPOTS

    International Nuclear Information System (INIS)

    Khomenko, E.; Cally, P. S.

    2012-01-01

    We study the conversion of fast magnetoacoustic waves to Alfvén waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfvén/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfvén speed gradient, but around and above this reflection height it partially converts to Alfvén waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfvén waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfvén waves. We find that the conversion to Alfvén waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90° the generated Alfvén waves continue upward, but above 90° downgoing Alfvén waves are preferentially produced. This yields negative Alfvén energy flux for azimuths between 90° and 180°. Alfvén energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.

  7. Sunspots sketches during the solar eclipses of 9th January and 29th December of 1777 in Mexico

    Science.gov (United States)

    Domínguez-Castro, Fernando; Gallego, María Cruz; Vaquero, José Manuel

    2017-06-01

    Two sunspot observations recorded by the Mexican Felipe de Zúñiga y Ontiveros have been revealed from a manuscript. One sunspot group was recorded on 9th January 1777 and four sunspot groups on 29th December 1777. Both records were taken during the observation of solar eclipses from Mexico City and their description also included sketches of the solar disk with sunspots. The sunspot group corresponding to 9th January was also observed by Erasmus Lievog. The observation on 29th December 1777 is the only record corresponding to this date.

  8. Enabling the maximum number of people to access essential services will not be possible without private sector involvement and appropriate pricing of the services concerned

    Directory of Open Access Journals (Sweden)

    Luc Rigouzzo

    2012-06-01

    Full Text Available Private sector provision of basic services (water, energy, financial services and housing for people in developing countries is a necessity if we really want to try to curb poverty. However, ‘traditional’ private funding is not spontaneously directed towards these sectors, largely as a result of rejecting the idea that poor population groups should ‘pay’ for essential services; an issue that has often been the subject of opposition campaigns mounted by social stakeholders. Nevertheless, there are many, many examples to show that given the impact of these services on their quality of life, consumers in these countries - and especially those at the ‘bottom of the pyramid’ - are prepared to pay for them as long as they have access to a high-quality service. In these sectors, the nominal cost of the service concerned matters much less than its opportunity cost and the impact it will have on the lives of those who benefit from it. Very often, this service may even be paid for in advance as a way of enabling families to gain greater control over the expenditure they can devote to obtaining it.It is, however, important to distinguish between the supply of essential services and those of consumer goods, and - of course - to avoid abuses. In any event, the possibility of building financially-balanced models is what governs the process of securing sufficient funding from local and international financial institutions. In this area, as in others, the way forward is probably the happy medium: avoiding the excesses of overpricing, but accepting the need to maintain profitable economic models. These should enable investors to receive a level of profit that encourages them to continue and increase their investment, thereby increasing the number of recipients as quickly as possible. Aspiring to build social models that reject the ambition to achieve a reasonable profit and rule out any distribution of dividends to shareholders is to condemn the

  9. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    International Nuclear Information System (INIS)

    McClintock, B. H.; Norton, A. A.; Li, J.

    2014-01-01

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators

  10. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A. [HEPL, Stanford University, Palo Alto, CA 94305 (United States); Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  11. On the chromospheric network structure around deVeloped groups of sunspots

    International Nuclear Information System (INIS)

    Kartashova, L.G.

    1980-01-01

    The chromospheric network structure around several developed groups of sunspots were studied on the basis of the observations in the Hsub(α) line. The resolution on the filtergrams was of 2. The following was found: 1) in the neighbourhood of the groups of sunspots 70% (from 870) of network cells stretch along fibrils direction (with accuracy 30 deg), and 15% of cells stretch approximately across that (at angles 70-90 deg); 2) out of the boundary of the main radial fibrils structure the groups of sunspots is often rounded by the system of network cells stretched approximately perpendicular to radial direction

  12. Sunspot Equilibria in a Production Economy: Do Rational Animal Spirits Cause Overproduction?

    OpenAIRE

    Kajii, Atsushi

    2008-01-01

    We study a standard two period economy with one nominal bond and one firm. The input of the firm is done in the first period and financed with the nominal bond, and its profits are distributed to the shareholders in the second period. We show that a sunspot equilibrium exists around each efficient equilibrium. The interest rate is lower than optimal and there is over production in sunspot equilibria, under some conditions. But a sunspot equilibrium does not exist if the profit share can be tr...

  13. Strong Solar Control of Infrared Aurora on Jupiter: Correlation Since the Last Solar Maximum

    Science.gov (United States)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.

    2009-01-01

    Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.

  14. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn–Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Prelas, M.A. [University of Missouri, Columbia, MO (United States); Hora, H. [University of New South Wales, Sydney (Australia); Miley, G.H. [University of Illinois, Urbana-Champaign (United States)

    2014-07-04

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Q{sub α}, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn–Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation. - Highlights: • Use of Bagge procedure confirmed that Z=126 and N=184 are proper magic numbers. • Elements are generated by low energy nuclear reactions in deuterium loaded metal. • Postulated from measured distribution that a compound nucleus {sup 310}X{sub 126} was formed. • Formation of 164 deuterons in Bose–Einstein state clusters with 2 pm spacing.

  15. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn–Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    International Nuclear Information System (INIS)

    Prelas, M.A.; Hora, H.; Miley, G.H.

    2014-01-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Q α , arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn–Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation. - Highlights: • Use of Bagge procedure confirmed that Z=126 and N=184 are proper magic numbers. • Elements are generated by low energy nuclear reactions in deuterium loaded metal. • Postulated from measured distribution that a compound nucleus 310 X 126 was formed. • Formation of 164 deuterons in Bose–Einstein state clusters with 2 pm spacing

  16. Historical evidence concerning the Sun: interpretation of sunspot records during the telescopic and pretelescopic eras

    International Nuclear Information System (INIS)

    Stephenson, F.R.

    1990-01-01

    The value of sunspot observations in investigating solar activity trends - mainly on the centennial to millennial timescale - is considered in some detail. It is shown that although observations made since the mid-eighteenth century are in general very reliable indicators of solar activity, older data are of dubious quality and utility. The sunspot record in both the pretelescopic and early telescopic periods appears to be confused by serious data artefacts. (author)

  17. DYNAMICS IN SUNSPOT UMBRA AS SEEN IN NEW SOLAR TELESCOPE AND INTERFACE REGION IMAGING SPECTROGRAPH DATA

    Energy Technology Data Exchange (ETDEWEB)

    Yurchyshyn, V.; Abramenko, V. [Big Bear Solar Observatory, New Jersey Institute of Technology, Big Bear City, CA 92314 (United States); Kilcik, A. [Department of Space Science and Technologies, Akdeniz University, 07058 Antalya (Turkey)

    2015-01-10

    We analyze sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured by the Mg II k 2796.35 Å and Si IV 1393.76 Å line formation levels changes during the observed period, and peak-to-peak delays may range from 40 s to zero. The intensity of chromospheric shocks also displays long-term (about 20 min) variations. NST's high spatial resolution Hα data allowed us to conclude that, in this sunspot, umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. The time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and transition region data appears bright above the locations of light bridges and the areas where the dark umbra is dotted with clusters of umbral dots. Co-spatial and co-temporal data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory showed that the same locations were associated with bright footpoints of coronal loops suggesting that the light bridges may play an important role in heating the coronal sunspot loops. Finally, the power spectra analysis showed that the intensity of chromospheric and transition region oscillations significantly vary across the umbra and with height, suggesting that umbral non-uniformities and the structure of sunspot magnetic fields may play a role in wave propagation and heating of umbral loops.

  18. SUNSPOT ROTATION AS A DRIVER OF MAJOR SOLAR ERUPTIONS IN THE NOAA ACTIVE REGION 12158

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P.; Ravindra, B. [Indian Institute of Astrophysics, Koramangala, Bangalore-560034 (India); Cheng, X., E-mail: vemareddy@iiap.res.in [School of Astronomy and Space Science, Nanjing University, Nanjing-210023 (China)

    2016-09-20

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°–5° h{sup −1} with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.

  19. Occurrences of flares with type II and IV radio events in interacting sunspot groups in the course of revolutions

    International Nuclear Information System (INIS)

    Klimes, J.; Krivsky, L.

    1984-01-01

    Using data from 11-year solar cycle No. 20, it was found that flares with type II radio bursts are more than twice as frequent and flares with type IV bursts nearly twice as frequent in sunspot groups which developed close to each other or which merged in the course of revolutions than in isolated sunspot groups. With both types the occurrence of these flares is concentrated in the revolution of the so-called sunspot group interaction (their approximation, merging). (author)

  20. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    Science.gov (United States)

    Song, Donguk; Chae, Jongchul; Yurchyshyn, Vasyl; Lim, Eun-Kyung; Cho, Kyung-Suk; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca II 8542 Å and Hα intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s-1 two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  1. ENHANCEMENT OF A SUNSPOT LIGHT WALL WITH EXTERNAL DISTURBANCES

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robert, E-mail: shuhongyang@nao.cas.cn [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-12-20

    Based on the Interface Region Imaging Spectrograph observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease. Five hours later, another nearby flare takes place, and a bright channel is formed that extends from the flare toward the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to lower heights. We suggest, based on the observed cases, that the interaction of falling material and ejected flare material with the light wall results in the brightenings of wall base and causes the height of the light wall to increase. Our results reveal that the light wall can be not only powered by the linkage of p -mode from below the photosphere, but may also be enhanced by external disturbances, such as falling material.

  2. Observations of Running Penumbral Waves Emerging in a Sunspot

    Science.gov (United States)

    Priya, T. G.; Wenda, Cao; Jiangtao, Su; Jie, Chen; Xinjie, Mao; Yuanyong, Deng; Robert, Erdélyi

    2018-01-01

    We present results from the investigation of 5 minute umbral oscillations in a single-polarity sunspot of active region NOAA 12132. The spectra of TiO, Hα, and 304 Å are used for corresponding atmospheric heights from the photosphere to lower corona. Power spectrum analysis at the formation height of Hα – 0.6 Å to the Hα center resulted in the detection of 5 minute oscillation signals in intensity interpreted as running waves outside the umbral center, mostly with vertical magnetic field inclination >15°. A phase-speed filter is used to extract the running wave signals with speed v ph > 4 km s‑1, from the time series of Hα – 0.4 Å images, and found twenty-four 3 minute umbral oscillatory events in a duration of one hour. Interestingly, the initial emergence of the 3 minute umbral oscillatory events are noticed closer to or at umbral boundaries. These 3 minute umbral oscillatory events are observed for the first time as propagating from a fraction of preceding running penumbral waves (RPWs). These fractional wavefronts rapidly separate from RPWs and move toward the umbral center, wherein they expand radially outwards suggesting the beginning of a new umbral oscillatory event. We found that most of these umbral oscillatory events develop further into RPWs. We speculate that the waveguides of running waves are twisted in spiral structures and hence the wavefronts are first seen at high latitudes of umbral boundaries and later at lower latitudes of the umbral center.

  3. On the Theory of Sunspots Proposed by Signor Kirchoff

    Directory of Open Access Journals (Sweden)

    Secchi A.

    2011-07-01

    Full Text Available Eileen Reeves (Department of Comparative Literature, Princeton University, Princeton, New Jersey, 08544 and Mary Posani (Department of French and Italian, The Ohio State University, Columbus, Ohio, 43221 provide a translation of Father Pietro Angelo Secchi’s classic work “ Secchi A. Sulla Teoria Delle Macchie Solari: Proposta dal sig. Kirchoff” as it appeared in Bullettino Meteorologico dell’ Osservatorio del Collegio Romano , 31 January 1864, v.3(4, 1–4. This was the first treatise to propose a partic- ulate photosphere floating on the gaseous body of the Sun. The idea would dominate astrophysical thought for the next 50 years. Secchi appears to have drafted the article, as a response to Gustav Kirchhoff’s proposal, echoing early Galilean ideas, that sunspots represented clouds which floated above the photosphere. Other than presenting a new solar model, noteworthy aspects of this work include Secchi’s appropriate insistence that materials do not emit the same light at the same temperature and his gentle rebuke of Kirchhoff relative to commenting on questions of astronomy.

  4. Complex network approach to characterize the statistical features of the sunspot series

    International Nuclear Information System (INIS)

    Zou, Yong; Liu, Zonghua; Small, Michael; Kurths, Jürgen

    2014-01-01

    Complex network approaches have been recently developed as an alternative framework to study the statistical features of time-series data. We perform a visibility-graph analysis on both the daily and monthly sunspot series. Based on the data, we propose two ways to construct the network: one is from the original observable measurements and the other is from a negative-inverse-transformed series. The degree distribution of the derived networks for the strong maxima has clear non-Gaussian properties, while the degree distribution for minima is bimodal. The long-term variation of the cycles is reflected by hubs in the network that span relatively large time intervals. Based on standard network structural measures, we propose to characterize the long-term correlations by waiting times between two subsequent events. The persistence range of the solar cycles has been identified over 15–1000 days by a power-law regime with scaling exponent γ = 2.04 of the occurrence time of two subsequent strong minima. In contrast, a persistent trend is not present in the maximal numbers, although maxima do have significant deviations from an exponential form. Our results suggest some new insights for evaluating existing models. (paper)

  5. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Song, Donguk; Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Yurchyshyn, Vasyl [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States); Lim, Eun-Kyung; Cho, Kyung-Suk, E-mail: dusong@astro.snu.ac.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca ii 8542 Å and H α intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s{sup −1} two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  6. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    International Nuclear Information System (INIS)

    Zhao, Hui; Chou, Dean-Yi

    2016-01-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ ab and the scattering cross section σ sc for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ ab and σ sc , the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ ab of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ sc of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ ab is approximately proportional to the sunspot radius, while the dependence of σ sc on radius is faster than the linear increase.

  7. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui [National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 200012 (China); Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2016-05-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.

  8. On the determination of heliographic positions and rotation velocities of sunspots. Pt. 2

    International Nuclear Information System (INIS)

    Balthasar, H.

    1983-01-01

    Using sunspot positions of small sunspots observed at Debrecen and Locarno as well as positions of recurrent sunspots taken from the Greenwich Photoheliographic Results (1940-1976) the influence of the Wilson depression on the rotation velocities was investigated. It was found that the Wilson depression can be determined by minimizing errors of the rotation velocities or minimizing the differences of rotation velocities determined from disk passages and central meridian passages. The Wilson depressions found were between 765 km and 2500 km for the first sample while they were between 0 km and several 1000 km for the second sample. The averaged Wilson depression for the second sample is between 500 km and 965 km depending on the reduction method. A dependence of the Wilson depression on the age of the spots investigated seems not to exist. (orig.)

  9. Possibility to explain the temperature distribution in sunspots by an anisotropic heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Eschrich, K O; Krause, F [Akademie der Wissenschaften der DDR, Potsdam. Zentralinstitut fuer Astrophysik

    1977-01-01

    Numerical solutions of a heat conduction problem in an anisotropic medium are used for a discussion of the possibility to explain the temperature distribution in sunspots and their environment. The anisotropy is assumed being due to the strong magnetic field in sunspots and the region below. This magnetic field forces the convection to take an anisotropic structure (two-dimensional turbulence) and thus the region gets anisotropic conduction properties, on the average. The discussion shows that the observed temperature profiles can be explained in the case the depth of the region of anisotropy is about as large as the diameter of the spot or larger.

  10. Outflow of chromospheric emission features from the rim of a sunspot

    Science.gov (United States)

    Liu, S.-Y.

    1973-01-01

    In viewing a 16 mm movie made from a time sequence of spectroheliograms, some of these emission features are found to move outward from the rim of the sunspot until they are eventually lost in the small plage. There are two interpretations for the streaming of the magnetic features. It is possible that kinks in the line of force propagate along a horizontal extension of the penumbral magnetic field. Alternatively, fragments of the sunspot magnetic field are carried away by the photospheric velocity field.

  11. Sunspot proper motions in active region NOAA 2372 and its flare activity during SMY period of 1980 April 4-13

    International Nuclear Information System (INIS)

    Ambastha, A.; Bhatnagar, A.

    1988-01-01

    Solar Active Region NOAA 2372 was observed extensively by the Solar Maximum Mission (SMM) satellite and several ground-based observatories during 1980 April 4-13 in the Solar Maximum Year. After its birth around April 4, it underwent a rapid growth and produced a reported 84 flares in the course of its disc passage. In this paper, photospheric and chromospheric observations of this active region have been studied together with Marshall Space Flight Center magnetograms and X-ray data from HXIS aboard the SMM satellite. In particular, the relationship of the flare-productivity with sunspot proper motions and emergence of new regions of magnetic flux in the active region from its birth to its disappearance at the W-limb has been discussed. (author). 7 figures, 2 tables, 29 refs

  12. Lower atmosphere of solar flares; Proceedings of the Solar Maximum Mission Symposium, Sunspot, NM, Aug. 20-24, 1985

    International Nuclear Information System (INIS)

    Neidig, D.F.

    1986-01-01

    The topics discussed by the present conference encompass the chromospheric flare phenomenon, white light flares, UV emission and the flare transition region, the flare corona and high energy emissions, stellar flares, and flare energy release and transport. Attention is given to radiative shocks and condensation in flares, impulsive brightening of H-alpha flare points, the structure and response of the chromosphere to radiation backwarming during solar flares, the interpretation of continuum emissions in white light flares, and the radiation properties of solar plasmas. Also discussed are EUV images of a solar flare and C III intensity, an active region survey in H-alpha and X-rays, dynamic thermal plasma conditions in large flares, the evolution of the flare mechanism in dwarf stars, the evidence concerning electron beams in solar flares, the energetics of the nonlinear tearing mode, macroscopic electric fields during two-ribbon flares, and the low temperature signatures of energetic particles

  13. CHROMOSPHERIC SUNSPOTS IN THE MILLIMETER RANGE AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazumasa [National Institute of Information and Communications Technology, Koganei 184-8795, Tokyo (Japan); Koshiishi, Hideki [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, Tsukuba 305-8505 (Japan); Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Nozawa, Satoshi; Miyawaki, Shun; Yoneya, Takuro, E-mail: kazumasa.iwai@nict.go.jp [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan)

    2016-01-10

    We investigate the upper chromosphere and the transition region of the sunspot umbra using the radio brightness temperature at 34 GHz (corresponding to 8.8 mm observations) as observed by the Nobeyama Radioheliograph (NoRH). Radio free–free emission in the longer millimeter range is generated around the transition region, and its brightness temperature yields the region's temperature and density distribution. We use the NoRH data at 34 GHz by applying the Steer-CLEAN image synthesis. These data and the analysis method enable us to investigate the chromospheric structures in the longer millimeter range with high spatial resolution and sufficient visibilities. We also perform simultaneous observations of one sunspot using the NoRH and the Nobeyama 45 m telescope operating at 115 GHz. We determine that 115 GHz emission mainly originates from the lower chromosphere while 34 GHz emission mainly originates from the upper chromosphere and transition region. These observational results are consistent with the radio emission characteristics estimated from current atmospheric models of the chromosphere. On the other hand, the observed brightness temperature of the umbral region is almost the same as that of the quiet region. This result is inconsistent with current sunspot models, which predict a considerably higher brightness temperature of the sunspot umbra at 34 GHz. This inconsistency suggests that the temperature of the region at which the 34 GHz radio emission becomes optically thick should be lower than that predicted by the models.

  14. Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396

    Czech Academy of Sciences Publication Activity Database

    Verma, M.; Denker, C.; Boehm, F.; Balthasar, H.; Fischer, C.E.; Kuckein, C.; Gonzalez, N.B.; Berkefeld, T.; Collados Vera, M.; Diercke, A.; Feller, A.; Gonzalez Manrique, S. J.; Hofmann, A.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pator Yabar, A.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, Michal; Solanki, S.K.; Soltau, D.; Staude, J.; Strassmeier, K.G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.A.

    2016-01-01

    Roč. 337, č. 10 (2016), s. 1090-1098 ISSN 0004-6337. [Dynamic Sun - Exploring the Many Facets of Solar Eruptive Events. Potsdam, 26.10. 2015 -29.10. 2015 ] Institutional support: RVO:67985815 Keywords : Sun * magnetic fields * sunspots Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016

  15. Corona magnetic field over sunspots estimated by m-wave observation

    International Nuclear Information System (INIS)

    Kurihara, Masahiro

    1974-01-01

    The shape of the magnetic field in corona was estimated from the observation of the type I storm occurred in the last decade of August, 1971. It was found from the observation with a 160 MHz interferometer at Mt. Nobeyama that at most three storm sources, which are called radio wave source, were produced. The radio wave sources were fixed above sunspots. The height of the radio wave sources was estimated to be 0.45 R from the photosphere. The sunspots under the radio wave sources can be classified to four sub-groups. Weakening of the magnetic field on the photosphere was found from the reduction of the area of some sub-group. The relation between the activity of type I storm and the intensity of the magnetic field of sunspots is qualitatively suggested. It is considered that the radio wave sources and the sunspots were connected by common magnetic force lines. The probable magnetic field in corona was presumed and is shown in a figure. An interesting point is that the direction of magnetic force lines inclined by about 30 0 outward to the vertical line to the photosphere surface. (Kato, T.)

  16. Fine structure in sunspots. IV. Penumbral grains in speckle reconstucted images

    Czech Academy of Sciences Publication Activity Database

    Sobotka, Michal; Suetterlin, P.

    2001-01-01

    Roč. 380, č. 2 (2001), s. 714-718 ISSN 0004-6361 R&D Projects: GA AV ČR KSK2043105; GA AV ČR IAA3003903 Institutional research plan: CEZ:AV0Z1003909 Keywords : sun * sunspots Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.790, year: 2000

  17. Preliminary results from the orbiting solar observatory 8: Transition-zone dynamics over a sunspot

    International Nuclear Information System (INIS)

    Bruner, E.C. Jr.; Chipman, E.G.; Lites, B.W.; Rottman, G.J.; Shine, R.A.; Athay, R.G.; White, O.R.

    1976-01-01

    The University of Colorado experiment aboard OSO-8 observed the C IV 1548 A line in the bright plume over a sunspot. Transient redshifts at 5 minute intervals were studied, but the expected phenomena associated with simple Alfven wave effects were not observed

  18. Temperature mapping of sunspots and pores from speckle reconstructed three colour photometry

    NARCIS (Netherlands)

    Sütterlin, P.; Wiehr, E.

    1998-01-01

    The two-dimensional temperature distribution in a highly structured sunspot and in two small umbrae is determined from a three-colour photometry in narrow spectral continua. Disturbing influences from the earth’s atmosphere are removed by speckle masking techniques, yielding a spatial resolution

  19. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin; Markel, Robert S.; Thompson, Michael J. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J.; Malanushenko, Anna V. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Davey, Alisdair R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howe, Rachel [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Krista, Larisza D. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80205 (United States); Cirtain, Jonathan W. [Marshall Space Flight Center, Code ZP13, Huntsville, AL 35812 (United States); Gurman, Joseph B.; Pesnell, William D., E-mail: mscott@ucar.edu [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.

  20. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  1. A model of a sunspot chromosphere based on OSO 8 observations

    Science.gov (United States)

    Lites, B. W.; Skumanich, A.

    1982-01-01

    OSO 8 spectrometer observations of the H I, Mg II, and Ca II resonance lines of a large quiet sunspot during November 16-17, 1975, along with a C IV line of that event obtained by a ground-based spectrometer, are analyzed together with near-simultaneous ground-based Stokes measurements to yield an umbral chromosphere and transition region model. Features of this model include a chromosphere that is effectively thin in the resonance lines of H I and Mg II, while being saturated in Ca II, and an upper chromospheric structure similar to that of quiet-sun models. The similarity of the upper chromosphere of the sunspot umbra to the quiet-sun chromosphere suggests that the intense magnetic field plays only a passive role in the chromospheric heating mechanism, and the observations cited indicate that solar-type stars with large areas of ordered magnetic flux would not necessarily exhibit extremely active chromosphere.

  2. The chromosphere above a δ-sunspot in the presence of fan-shaped jets

    Science.gov (United States)

    Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodríguez, Jaime

    2018-01-01

    Context. Delta-sunspots are known to be favourable locations for fast and energetic events like flares and coronal mass ejections. The photosphere of this sunspot type has been thoroughly investigated in the past three decades. The atmospheric conditions in the chromosphere are not as well known, however. Aims: This study is focused on the chromosphere of a δ-sunspot that harbours a series of fan-shaped jets in its penumbra. The aim of this study is to establish the magnetic field topology and the temperature distribution in the presence of jets in the photosphere and the chromosphere. Methods: We use data from the Swedish 1m Solar Telescope (SST) and the Solar Dynamics Observatory. We invert the spectropolarimetric Fe I 6302 Å and Ca II 8542 Å data from the SST using the non-LTE inversion code NICOLE to estimate the magnetic field configuration, temperature, and velocity structure in the chromosphere. Results: A loop-like magnetic structure is observed to emerge in the penumbra of the sunspot. The jets are launched from this structure. Magnetic reconnection between this emerging field and the pre-existing vertical field is suggested by hot plasma patches on the interface between the two fields. The height at which the reconnection takes place is located between log τ500 = -2 and log τ500 = -3. The magnetic field vector and the atmospheric temperature maps show a stationary configuration during the whole observation. Movies associated to Figs. 3-5 are available at http://www.aanda.org

  3. Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB

    Science.gov (United States)

    2014-03-27

    initiating the java program scripted to communicate with the SOON telescope used for continual observation of the sun. The SOON telescope is used at...proximity of spots refers to the angular separation between different spots that could make up a group. The area of each sunspot means the total area...degrees and the different magnetic polarities of each spot being considered. For a spot pair that has the same polarity and small angular separation

  4. SMALL-SCALE AND GLOBAL DYNAMOS AND THE AREA AND FLUX DISTRIBUTIONS OF ACTIVE REGIONS, SUNSPOT GROUPS, AND SUNSPOTS: A MULTI-DATABASE STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Senkpeil, Ryan R. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Tlatov, Andrey G. [Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Kislovodsk 357700 (Russian Federation); Nagovitsyn, Yury A. [Pulkovo Astronomical Observatory, Russian Academy of Sciences, St. Petersburg 196140 (Russian Federation); Pevtsov, Alexei A. [National Solar Observatory, Sunspot, NM 88349 (United States); Chapman, Gary A.; Cookson, Angela M. [San Fernando Observatory, Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE (United Kingdom); Watson, Fraser T. [National Solar Observatory, Tucson, AZ 85719 (United States); Balmaceda, Laura A. [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina); DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Martens, Petrus C. H., E-mail: munoz@solar.physics.montana.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2015-02-10

    In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)

  5. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-01-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 ± 1.3%, emissivity reduction 8.2 ± 1.4%, and local suppression 68.5 ± 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10 -5 rad s -1 .

  6. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  7. SOHO sees right through the Sun, and finds sunspots on the far side

    Science.gov (United States)

    2000-03-01

    The story is told today in the journal Science by Charles Lindsey of Tucson, Arizona, and Doug Braun of Boulder, Colorado. They realised that the analytical witchcraft called helioseismic holography might open a window right through the Sun. And the technique worked when they used it to decode waves seen on the visible surface by one of SOHO's instruments, the Michelson Doppler Imager, or MDI. "We've known for ten years that in theory we could make the Sun transparent all the way to the far side," said Charles Lindsey. "But we needed observations of exceptional quality. In the end we got them, from MDI on SOHO." For more than 100 years scientists have been aware that groups of dark sunspots on the Sun's visible face are often the scene of flares and other eruptions. Nowadays they watch the Sun more closely than ever, because modern systems are much more vulnerable to solar disturbances than old-style technology was. The experts can still be taken by surprise, because the Sun turns on its axis. A large group of previously hidden sunspots can suddenly swing into view on the eastern (left-hand) edge of the Sun. It may already be blazing away with menacing eruptions. With a far-side preview of sunspots, nasty shocks for the space weather forecasters may now be avoidable. Last year, French and Finnish scientists used SWAN, another instrument on SOHO, to detect activity on the far side. They saw an ultraviolet glow lighting up gas in the Solar System beyond the Sun, and moving across the sky like a lighthouse beam as the Sun rotated. The method used by Lindsey and Braun with MDI data is completely different, and it pinpoints the source of the activity on the far side. Solar seismology chalks up another success Detection of sound waves reverberating through the Sun opened its gassy interior for investigation, in much the same way as seismologists learned to explore the Earth's rocky interior with earthquake waves. Using special telescopes on the ground and in space

  8. Records of auroral candidates and sunspots in Rikkokushi, chronicles of ancient Japan from early 7th century to 887

    Science.gov (United States)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Ebihara, Yusuke; Kawamura, Akito Davis; Isobe, Hiroaki; Namiki, Katsuko; Shibata, Kazunari

    2017-12-01

    We present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese official histories from the early 7th century to 887, to review the solar and auroral activities. In total, we found one sunspot record and 13 auroral candidates in Rikkokushi. We then examine the records of the sunspots and auroral candidates, compare the auroral candidates with the lunar phase to estimate their reliability, and compare the records of the sunspots and auroral candidates with the contemporary total solar irradiance reconstructed from radioisotope data. We also identify the locations of the observational sites to review possible equatorward expansion of the auroral oval. These discussions suggest a major gap in auroral candidates from the late 7th to early 9th centuries, which includes the candidate of the grand minimum reconstructed from the radioisotope data, a similar tendency as the distributions of sunspot records in contemporary China, and a relatively high magnetic latitude of observational sites with a higher potential for observing aurorae more frequently than at present.

  9. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  10. Maximum power demand cost

    International Nuclear Information System (INIS)

    Biondi, L.

    1998-01-01

    The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it

  11. On Solar Granulations, Limb Darkening, and Sunspots: Brief Insights in Remembrance of Father Angelo Secchi

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Father Angelo Secchi used the existence of solar granulation as a central line of rea- soning when he advanced that the Sun was a gaseous body with a photosphere contain- ing incandescent particulate matter (Secchi A. Sulla Struttura della Fotosfera Solare. Bullettino Meteorologico dell’Osservatorio del Collegio Romano , 30 November 1864, v.3(11, 1–3. Secchi saw the granules as condensed matter emitting the photospheric spectrum, while the darkened intergranular lanes conveyed the presence of a gaseous solar interior. Secchi also considered the nature of sunspots and limb darkening. In the context of modern solar models, opacity arguments currently account for the emis- sive properties of the photosphere. Optical depth is thought to explain limb darkening. Both temperature variations and magnetic fields are invoked to justify the weakened emissivities of sunspots, even though the presence of static magnetic fields in materi- als is not usually associated with modified emissivity. Conversely, within the context of a liquid metallic hydrogen solar model, the appearance of granules, limb darkening, and sunspots can be elegantly understood through the varying directional emissivity of condensed matter. A single explanation is applicable to all three phenomena. Granular contrast can be directly associated with the generation of limb darkening. Depending on size, granules can be analyzed by considering Kolmogoroff’s formulations and B ́ enard convection, respectively, both of which were observed using incompressible liquids, not gases. Granules follow the 2-dimensional space filling laws of Aboav-Weiner and Lewis. Their adherence to these structural laws provides supportive evidence that the granular surface of the Sun represents elements which can only be constructed from condensed matter. A gaseous Sun cannot be confined to a 2-dimensional framework. Mesogranules, supergranules, and giant cells constitute additional entities which further

  12. The Formation of a Sunspot Penumbra Sector in Active Region NOAA 12574

    Science.gov (United States)

    Li, Qiaoling; Yan, Xiaoli; Wang, Jincheng; Kong, DeFang; Xue, Zhike; Yang, Liheng; Cao, Wenda

    2018-04-01

    We present a particular case of the formation of a penumbra sector around a developing sunspot in the active region NOAA 12574 on 2016 August 11 by using the high-resolution data observed by the New Solar Telescope at the Big Bear Solar Observatory and the data acquired by the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory satellite. Before the new penumbra sector formed, the developing sunspot already had two umbrae with some penumbral filaments. The penumbra sector gradually formed at the junction of two umbrae. We found that the formation of the penumbra sector can be divided into two stages. First, during the initial stage of penumbral formation, the region where the penumbra sector formed always appeared blueshifted in a Dopplergram. The area, mean transverse magnetic field strength, and total magnetic flux of the umbra and penumbra sector all increased with time. The initial penumbral formation was associated with magnetic emergence. Second, when the penumbra sector appeared, the magnetic flux and area of the penumbra sector increased after the umbra’s magnetic flux and area decreased. These results indicate that the umbra provided magnetic flux for penumbral development after the penumbra sector appeared. We also found that the newly formed penumbra sector was associated with sunspot rotation. Based on these findings, we suggest that the penumbra sector was the result of the emerging flux that was trapped in the photosphere at the initial stage of penumbral formation, and when the rudimentary penumbra formed, the penumbra sector developed at the cost of the umbra.

  13. THE FORMATION OF AN INVERSE S-SHAPED ACTIVE-REGION FILAMENT DRIVEN BY SUNSPOT MOTION AND MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Priest, E. R. [Mathematics Institute, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Guo, Q. L., E-mail: yanxl@ynao.ac.cn [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)

    2016-11-20

    We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.

  14. Questioning the Influence of Sunspots on Amazon Hydrology: Even a Broken Clock Tells the Right Time Twice a Day

    Science.gov (United States)

    Baker, J. C. A.; Gloor, M.; Boom, A.; Neill, D. A.; Cintra, B. B. L.; Clerici, S. J.; Brienen, R. J. W.

    2018-02-01

    It was suggested in a recent article that sunspots drive decadal variation in Amazon River flow. This conclusion was based on a novel time series decomposition method used to extract a decadal signal from the Amazon River record. We have extended this analysis back in time, using a new hydrological proxy record of tree ring oxygen isotopes (δ18OTR). Consistent with the findings of Antico and Torres, we find a positive correlation between sunspots and the decadal δ18OTR cycle from 1903 to 2012 (r = 0.60, p r = -0.30, p = 0.11, 1799-1902). This result casts considerable doubt over the mechanism by which sunspots are purported to influence Amazon hydrology.

  15. Solar magnetic field studies using the 12 micron emission lines. II - Stokes profiles and vector field samples in sunspots

    Science.gov (United States)

    Hewagama, Tilak; Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Zipoy, David; Mickey, Donald L.; Garcia, Howard

    1993-01-01

    Polarimetric observations at 12 microns of two sunpots are reported. The horizontal distribution of parameters such as magnetic field strength, inclination, azimuth, and magnetic field filling factors are presented along with information about the height dependence of the magnetic field strength. Comparisons with contemporary magnetostatic sunspot models are made. The magnetic data are used to estimate the height of 12 micron line formation. From the data, it is concluded that within a stable sunspot there are no regions that are magnetically filamentary, in the sense of containing both strong-field and field-free regions.

  16. Maximum likely scale estimation

    DEFF Research Database (Denmark)

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

    2005-01-01

    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  17. Robust Maximum Association Estimators

    NARCIS (Netherlands)

    A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)

    2017-01-01

    textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation

  18. Signature of a possible relationship between the maximum CME speed index and the critical frequencies of the F1 and F2 ionospheric layers: Data analysis for a mid-latitude ionospheric station during the solar cycles 23 and 24

    Science.gov (United States)

    Kilcik, Ali; Ozguc, Atila; Yiǧit, Erdal; Yurchyshyn, Vasyl; Donmez, Burcin

    2018-06-01

    We analyze temporal variations of two solar indices, the monthly mean Maximum CME Speed Index (MCMESI) and the International Sunspot Number (ISSN) as well as the monthly median ionospheric critical frequencies (foF1, and foF2) for the time period of 1996-2013, which covers the entire solar cycle 23 and the ascending branch of the cycle 24. We found that the maximum of foF1 and foF2 occurred respectively during the first and second maximum of the ISSN solar activity index in the solar cycle 23. We compared these data sets by using the cross-correlation and hysteresis analysis and found that both foF1 and foF2 show higher correlation with ISSN than the MCMESI during the investigated time period, but when significance levels are considered correlation coefficients between the same indices become comparable. Cross-correlation analysis showed that the agreement between these data sets (solar indices and ionospheric critical frequencies) is better pronounced during the ascending phases of solar cycles, while they display significant deviations during the descending phase. We conclude that there exists a signature of a possible relationship between MCMESI and foF1 and foF2, which means that MCMESI could be used as a possible indicator of solar and geomagnetic activity, even though other investigations are needed.

  19. On Maximum Entropy and Inference

    Directory of Open Access Journals (Sweden)

    Luigi Gresele

    2017-11-01

    Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.

  20. WAVES AS THE SOURCE OF APPARENT TWISTING MOTIONS IN SUNSPOT PENUMBRAE

    International Nuclear Information System (INIS)

    Bharti, L.; Cameron, R. H.; Hirzberger, J.; Solanki, S. K.; Rempel, M.

    2012-01-01

    The motion of dark striations across bright filaments in a sunspot penumbra has become an important new diagnostic of convective gas flows in penumbral filaments. The nature of these striations has, however, remained unclear. Here, we present an analysis of small-scale motions in penumbral filaments in both simulations and observations. The simulations, when viewed from above, show fine structure with dark lanes running outward from the dark core of the penumbral filaments. The dark lanes either occur preferentially on one side or alternate between both sides of the filament. We identify this fine structure with transverse (kink) oscillations of the filament, corresponding to a sideways swaying of the filament. These oscillations have periods in the range of 5-7 minutes and propagate outward and downward along the filament. Similar features are found in observed G-band intensity time series of penumbral filaments in a sunspot located near disk center obtained by the Broadband Filter Imager on board the Hinode. We also find that some filaments show dark striations moving to both sides of the filaments. Based on the agreement between simulations and observations we conclude that the motions of these striations are caused by transverse oscillations of the underlying bright filaments.

  1. The mutual attraction of magnetic knots. [solar hydromagnetic instability in sunspot regions

    Science.gov (United States)

    Parker, E. N.

    1978-01-01

    It is observed that the magnetic knots associated with active regions on the sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability. The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side.

  2. Sunspots and the physics of magnetic flux tubes in the sun

    International Nuclear Information System (INIS)

    Ballegooijen, A.A. van.

    1982-01-01

    This thesis refers to the sub-surface structure of the solar magnetic field. Following an introductory chapter, chapter II presents an analysis of spectroscopic observations of a sunspot at infrared wavelengths and models of the temperature stratification in the sunspot atmosphere are derived. The main subject of this thesis concerns the structure of the magnetic field deep down below the stellar surface, near the base of the convective envelope. In Chapter III the stability of toroidal flux tubes to wave-like perturbations is discussed, assuming that the tubes are neutrally buoyant. A model is proposed in which the toroidal flux tubes are neutrally buoyant and located in a stably stratified layer just below the base of the convective zone. On the basis of some simple assumptions for the temperature stratification in this storage layer the author considers in Chapter IV the properties of the vertical flux tubes in the convective zone. The adiabatic flux model cannot satisfactorily be applied to the simplified model of the storage layer, so that the problem of magnetic flux storage is reconsidered in Chapter V. A new model of the temperature stratification at the interface of convective zone and radiative interior of the sun is described. Finally, in Chapter VI, the stability of toroidal flux tubes in a differentially rotating star are discussed. It is demonstrated that for realistic values of the magnetic field strength, rotation has a strong effect on the stability of the toroidal flux tubes. (C.F.)

  3. NARROW-LINE-WIDTH UV BURSTS IN THE TRANSITION REGION ABOVE SUNSPOTS OBSERVED BY IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.; Fu, Hui; Mou, Chaozhou; Xie, Haixia, E-mail: z.huang@sdu.edu.cn, E-mail: xld@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, 264209 Shandong (China)

    2016-10-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, four events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s{sup −1}, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s{sup −1} found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.

  4. The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Verth, G. [School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Morton, R. J. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST (United Kingdom); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom); Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Christian, D. J., E-mail: krishna.prasad@qub.ac.uk [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States)

    2017-09-20

    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.

  5. Sunspots and the physics of magnetic flux tubes. II. Aerodynamic drag

    International Nuclear Information System (INIS)

    Parker, E.N.

    1979-01-01

    The aerodynamic drag on a slender flux tube stretched vertically across a convective cell may push the flux tube into the updrafts or into the downdrafts, depending on the density stratification of the convecting fluid and the asymmetry of the fluid motions. The drag is approximately proportional to the local kinetic energy density, so the density stratification weights the drag in favor of the upper layers where the density is low, tending to push the vertical tube into the downdrafts. If, however, the horizontal motions in the convective cell are concentrated toward the bottom of the cell, they may dominate over the upper layers, pushing the tube into the updrafts. In the simple, idealized circumstance of a vertical tube extending across a fluid of uniform density in a convective cell that is symmetric about its midplane, the net aerodynamic drag vanishes in lowest order. The higher order contributions, including the deflection of the tube, then provide a nonvanishing force pushing the tube into a stable equilibrium midway between the updraft and the downdraft.It is pointed out that in the strongly stratified convective zone of the Sun, a downdraft herds flux tubes together into a cluster, while an updraft disperses them. To account for the observed strong cohesion of the cluster of flux tubes that make up a sunspot, we propose a downdraft of the order 2 km s - 1 through the cluster of seprate tubes beneath the sunspot

  6. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  7. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  8. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  9. On the maximum number of cycles in a planar graph

    DEFF Research Database (Denmark)

    Aldred, R.E.L.; Thomassen, Carsten

    2008-01-01

    Let G be a graph on p vertices with q edges and let r = q - p + 1. We show that G has at most 15/162(r) cycles. We also show that if G is planar, then G has at most 2(r-1) + o(2(r-1)) cycles. The planar result is best possible in the sense that any prism, that is, the Cartesian product of a cycle...... and a path with one edge, has more than 2(r-1) cycles....

  10. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  11. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  12. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1988-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  13. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1989-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. The author reviews the need for such methods in data analysis and shows, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. He concludes with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  14. Functional Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg

    2005-01-01

    MAF outperforms the functional PCA in concentrating the interesting' spectra/shape variation in one end of the eigenvalue spectrum and allows for easier interpretation of effects. Conclusions. Functional MAF analysis is a useful methods for extracting low dimensional models of temporally or spatially......Purpose. We aim at data where samples of an underlying function are observed in a spatial or temporal layout. Examples of underlying functions are reflectance spectra and biological shapes. We apply functional models based on smoothing splines and generalize the functional PCA in......\\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

  15. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  16. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  17. Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987

    Science.gov (United States)

    Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.

    1990-01-01

    Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.

  18. Vector magnetic fields in sunspots. I - Stokes profile analysis using the Marshall Space Flight Center magnetograph

    Science.gov (United States)

    Balasubramaniam, K. S.; West, E. A.

    1991-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.

  19. Oscillations in sunspot umbras due to trapped Alfven waves excited by overstability

    International Nuclear Information System (INIS)

    Uchida, Yutaka; Sakurai, Takashi.

    1975-01-01

    Oscillations observed in sunspot umbras are interpreted as a vertical motion in the atmosphere induced by a standing Alfven wave trapped in the region between the overstable layer under the photosphere and the chromosphere-corona transition layer. The Alfven wave motion is considered to be excited by the overstable convection occurring at the bottom of the abovementioned oscillating layer, and waves with special frequencies are selected as eigen-mode waves standing in the ''cavity,'' while other waves which are out of phase with themselves after reflections will disappear. It is shown by solving the eigen-value problem that the fundamental eigen frequency falls in a range around 0.04 rad s -1 (corresponding to 140-180 s) for the condition in the umbra of a typical spot, and also that the eigen frequencies do not depend greatly on the circumstantial physical or geometric parameters of the model atmosphere, such as the temperature in the layer, or the height of the transition layer, etc. The eigen frequencies, however, depend on the Alfven velocity at the base of the oscillating layer (or at the top of the overstable layer), but the latter quantity, which represents the stiffness of the magnetic tube of force against the overturning motion, takes roughly a common value for different sunspots according to SAVAGE's (1969) stability analysis of the umbral atmosphere against thermal convection, and thus gives a comparatively narrow range of resonant frequencies. In addition to the selection mechanism for oscillations of 140-180-s period, some other aspects of the oscillation, such as the relation to the running penumbral waves, are discussed. (auth.)

  20. THE MYSTERIOUS CASE OF THE SOLAR ARGON ABUNDANCE NEAR SUNSPOTS IN FLARES

    International Nuclear Information System (INIS)

    Doschek, G. A.; Warren, H. P.

    2016-01-01

    Recently we discussed an enhancement of the abundance of Ar xiv relative to Ca xiv near a sunspot during a flare, observed in spectra recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The observed Ar xiv/Ca xiv ratio yields an argon/calcium abundance ratio seven times greater than expected from the photospheric abundance. Such a large abundance anomaly is unprecedented in the solar atmosphere. We interpreted this result as being due to an inverse first ionization potential (FIP) effect. In the published work, two lines of Ar xiv were observed, and one line was tentatively identified as an Ar xi line. In this paper, we report observing a similar enhancement in a full-CCD EIS flare spectrum in 13 argon lines that lie within the EIS wavelength ranges. The observed lines include two Ar xi lines, four Ar xiii lines, six Ar xiv lines, and one Ar xv line. The enhancement is far less than reported in Doschek et al. but exhibits similar morphology. The argon abundance is close to a photospheric abundance in the enhanced area, and the abundance could be photospheric. This enhancement occurs in association with a sunspot in a small area only a few arcseconds (1″ = about 700 km) in size. There is no enhancement effect observed in the normally high-FIP sulfur and oxygen line ratios relative to lines of low-FIP elements available to EIS. Calculations of path lengths in the strongest enhanced area in Doschek et al. indicate a depletion of low-FIP elements.

  1. The Maximum Resource Bin Packing Problem

    DEFF Research Database (Denmark)

    Boyar, J.; Epstein, L.; Favrholdt, L.M.

    2006-01-01

    Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...

  2. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  3. Emergence of Magnetic Flux Generated in a Solar Convective Dynamo. I. The Formation of Sunspots and Active Regions, and The Origin of Their Asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng; Rempel, Matthias; Fan, Yuhong, E-mail: chenfeng@ucar.edu [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO, 80307 (United States)

    2017-09-10

    We present a realistic numerical model of sunspot and active region formation based on the emergence of flux bundles generated in a solar convective dynamo. To this end, we use the magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation to drive realistic radiative-magnetohydrodynamic simulations of the uppermost layers of the convection zone. The main results are as follows. (1) The emerging flux bundles rise with the mean speed of convective upflows and fragment into small-scale magnetic elements that further rise to the photosphere, where bipolar sunspot pairs are formed through the coalescence of the small-scale magnetic elements. (2) Filamentary penumbral structures form when the sunspot is still growing through ongoing flux emergence. In contrast to the classical Evershed effect, the inflow seems to prevail over the outflow in a large part of the penumbra. (3) A well-formed sunspot is a mostly monolithic magnetic structure that is anchored in a persistent deep-seated downdraft lane. The flow field outside the spot shows a giant vortex ring that comprises an inflow below 15 Mm depth and an outflow above 15 Mm depth. (4) The sunspots successfully reproduce the fundamental properties of the observed solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of bipolar sunspot pairs. These asymmetries can be linked to the intrinsic asymmetries in the magnetic and flow fields adapted from the convective dynamo simulation.

  4. Maximum concentrations at work and maximum biologically tolerable concentration for working materials 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The meaning of the term 'maximum concentration at work' in regard of various pollutants is discussed. Specifically, a number of dusts and smokes are dealt with. The valuation criteria for maximum biologically tolerable concentrations for working materials are indicated. The working materials in question are corcinogeneous substances or substances liable to cause allergies or mutate the genome. (VT) [de

  5. Spatial-temporal changes of maximum and minimum temperatures in the Wei River Basin, China: Changing patterns, causes and implications

    Science.gov (United States)

    Liu, Saiyan; Huang, Shengzhi; Xie, Yangyang; Huang, Qiang; Leng, Guoyong; Hou, Beibei; Zhang, Ying; Wei, Xiu

    2018-05-01

    Due to the important role of temperature in the global climate system and energy cycles, it is important to investigate the spatial-temporal change patterns, causes and implications of annual maximum (Tmax) and minimum (Tmin) temperatures. In this study, the Cloud model were adopted to fully and accurately analyze the changing patterns of annual Tmax and Tmin from 1958 to 2008 by quantifying their mean, uniformity, and stability in the Wei River Basin (WRB), a typical arid and semi-arid region in China. Additionally, the cross wavelet analysis was applied to explore the correlations among annual Tmax and Tmin and the yearly sunspots number, Arctic Oscillation, Pacific Decadal Oscillation, and soil moisture with an aim to determine possible causes of annual Tmax and Tmin variations. Furthermore, temperature-related impacts on vegetation cover and precipitation extremes were also examined. Results indicated that: (1) the WRB is characterized by increasing trends in annual Tmax and Tmin, with a more evident increasing trend in annual Tmin, which has a higher dispersion degree and is less uniform and stable than annual Tmax; (2) the asymmetric variations of Tmax and Tmin can be generally explained by the stronger effects of solar activity (primarily), large-scale atmospheric circulation patterns, and soil moisture on annual Tmin than on annual Tmax; and (3) increasing annual Tmax and Tmin have exerted strong influences on local precipitation extremes, in terms of their duration, intensity, and frequency in the WRB. This study presents new analyses of Tmax and Tmin in the WRB, and the findings may help guide regional agricultural production and water resources management.

  6. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    International Nuclear Information System (INIS)

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-01-01

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and Hα (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare

  7. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets

    Directory of Open Access Journals (Sweden)

    Y. Brugnara

    2013-07-01

    Full Text Available Here we present a study of the 11 yr sunspot cycle's imprint on the Northern Hemisphere atmospheric circulation, using three recently developed gridded upper-air data sets that extend back to the early twentieth century. We find a robust response of the tropospheric late-wintertime circulation to the sunspot cycle, independent from the data set. This response is particularly significant over Europe, although results show that it is not directly related to a North Atlantic Oscillation (NAO modulation; instead, it reveals a significant connection to the more meridional Eurasian pattern (EU. The magnitude of mean seasonal temperature changes over the European land areas locally exceeds 1 K in the lower troposphere over a sunspot cycle. We also analyse surface data to address the question whether the solar signal over Europe is temporally stable for a longer 250 yr period. The results increase our confidence in the existence of an influence of the 11 yr cycle on the European climate, but the signal is much weaker in the first half of the period compared to the second half. The last solar minimum (2005 to 2010, which was not included in our analysis, shows anomalies that are consistent with our statistical results for earlier solar minima.

  8. Maximum allowable load on wheeled mobile manipulators

    International Nuclear Information System (INIS)

    Habibnejad Korayem, M.; Ghariblu, H.

    2003-01-01

    This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy

  9. Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673

    Science.gov (United States)

    Yan, X. L.; Wang, J. C.; Pan, G. M.; Kong, D. F.; Xue, Z. K.; Yang, L. H.; Li, Q. L.; Feng, X. S.

    2018-03-01

    We present a clear case study on the occurrence of two successive X-class flares, including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities began on September 5 and lasted even after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center, and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of the active region also began to rotate counterclockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counterclockwise rotation of the three sunspots. The existence of a flux rope is found prior to the onset of two flares by using nonlinear force-free field extrapolation based on the vector magnetograms observed by Solar Dynamics Observatory/Helioseismic and Magnetic Image. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that a shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona that produces solar flares and CMEs.

  10. INTERFERENCE OF THE RUNNING WAVES AT LIGHT BRIDGES OF A SUNSPOT

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Priya, T. G.; Yu, S. J.; Zhang, M. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji, K. F. [Kunming University of Science and Technology, Kunming 650093 (China); Banerjee, D. [Indian Institute of Astrophysics, Koramangala Bangalore 560034 (India); Cao, W. D. [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Zhao, J. S.; Ji, H. S., E-mail: jt@bao.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2016-01-01

    The observations of chromospheric oscillations of two umbral light bridges (LBs) within a sunspot from NOAA Active Region 12127 are presented. It was found that the running umbral waves with periods of 2.2–2.6 minutes underwent very fast damping before approaching umbral boundaries, while those with higher periods (>2.6 minutes) could propagate outside umbrae. On two sides of each LB adjacent to umbrae, the cross-wavelet spectra displayed that the oscillations on them had a common significant power region with dominant frequencies of 2–6 minutes and phase differences of ∼90°. A counterstream of two running umbral waves in the 2–6 minute frequency range propagated toward the LBs, where they encountered each other and gave rise to constructive or even destructive interference on the LBs. In addition, the velocity and density perturbations on the LBs were found in opposite phases suggesting that the perturbations were caused by the downward propagating waves.

  11. DETECTION OF SUPERSONIC DOWNFLOWS AND ASSOCIATED HEATING EVENTS IN THE TRANSITION REGION ABOVE SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, L.; Martínez-Sykora, J. [Bay Area Environmental Research Institute, 625 2nd Street, Ste. 209, Petaluma, CA (United States); Antolin, P. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Tian, H.; Testa, P.; Reeves, K. K.; McKillop, S.; Saar, S.; Golub, L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Judge, P. [High Altitude Observatory/NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); De Pontieu, B.; Wuelser, J. P.; Boerner, P.; Hurlburt, N.; Lemen, J.; Tarbell, T. D.; Title, A. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St., Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States); Carlsson, M.; Hansteen, V. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Jaeggli, S., E-mail: lucia.kleint@fhnw.ch [Department of Physics, Montana State University, Bozeman, P.O. Box 173840, Bozeman, MT 59717 (United States); and others

    2014-07-10

    Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.''33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s{sup –1} and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to be the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.

  12. EVIDENCE FOR A TRANSITION REGION RESPONSE TO PENUMBRAL MICROJETS IN SUNSPOTS

    International Nuclear Information System (INIS)

    Vissers, G. J. M.; Rouppe van der Voort, L. H. M.; Carlsson, M.

    2015-01-01

    Penumbral microjets (PMJs) are short-lived, fine-structured, and bright jets that are generally observed in chromospheric imaging of the penumbra of sunspots. Here we investigate their potential transition region signature by combining observations with the Swedish 1-m Solar Telescope in the Ca ii H and Ca ii 8542 Å lines with ultraviolet imaging and spectroscopy obtained with the Interface Region Imaging Spectrograph (IRIS), which includes the C ii 1334/1335 Å, Si iv 1394/1403 Å, and Mg ii h and k 2803/2796 Å lines. We find a clear corresponding signal in the IRIS Mg ii k, C ii, and Si iv slit-jaw images, typically offset spatially from the Ca ii signature in the direction along the jets: from base to top, the PMJs are predominantly visible in Ca ii, Mg ii k, and C ii/Si iv, suggesting progressive heating to transition region temperatures along the jet extent. Hence, these results support the suggestion from earlier studies that PMJs may heat to transition region temperatures

  13. Fan-shaped jets above the light bridge of a sunspot driven by reconnection

    Science.gov (United States)

    Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodriguez, Jaime; Rouppe van der Voort, Luc

    2016-05-01

    We report on a fan-shaped set of high-speed jets above a strongly magnetized light bridge (LB) of a sunspot observed in the Hα line. We study the origin, dynamics, and thermal properties of the jets using high-resolution imaging spectroscopy in Hα from the Swedish 1m Solar Telescope and data from the Solar Dynamics Observatory and Hinode. The Hα jets have lengths of 7-38 Mm, are impulsively accelerated to a speed of ~100 km s-1 close to photospheric footpoints in the LB, and exhibit a constant deceleration consistent with solar effective gravity. They are predominantly launched from one edge of the light bridge, and their footpoints appear bright in the Hα wings. Atmospheric Imaging Assembly data indicates elongated brightenings that are nearly co-spatial with the Hα jets. We interpret them as jets of transition region temperatures. The magnetic field in the light bridge has a strength of 0.8-2 kG and it is nearly horizontal. All jet properties are consistent with magnetic reconnection as the driver. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  14. A steady-state supersonic downflow in the transition region above a sunspot umbra

    Science.gov (United States)

    Straus, Thomas; Fleck, Bernhard; Andretta, Vincenzo

    2015-10-01

    We investigate a small-scale (~1.5 Mm along the slit), supersonic downflow of about 90 km s-1 in the transition region above the lightbridged sunspot umbra in AR 11836. The observations were obtained with the Interface Region Spectrograph (IRIS) on 2013 September 2 from 16:40 to 17:59 UT. The downflow shows up as redshifted "satellite" lines of the Si iv and O iv transition region lines and is remarkably steady over the observing period of nearly 80 min. The downflow is not visible in the chromospheric lines, which only show an intensity enhancement at the location of the downflow. The density inferred from the line ratio of the redshifted satellites of the O iv lines (Ne = 1010.6 ± 0.25 cm-3) is only a factor 2 smaller than the one inferred from the main components (Ne = 1010.95 ± 0.20 cm-3). Consequently, this implies a substantial mass flux (~5 × 10-7 g cm-2 s-1), which would evacuate the overlying corona on timescales close to 10 s. We interpret these findings as evidence of a stationary termination shock of a supersonic siphon flow in a cool loop that is rooted in the central umbra of the spot. The movie is available in electronic form at http://www.aanda.org

  15. Simultaneous Observations of p-mode Light Walls and Magnetic Reconnection Ejections above Sunspot Light Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-10-10

    Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, we suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.

  16. On the structure of a magnetic field and its evolution in the vicinity of sunspots

    International Nuclear Information System (INIS)

    Gopasyuk, S.I.; Kartashova, L.G.

    1981-01-01

    The structure of magnetic field and its evolution around single large sunspots has been studied. For this purpose observational data of the longitudinal magnetic field on the photospheric level and hsub(α) filtergrams for 18 active regions have been used. It is shown that there are characteristic directions corresponding to the transition of the spot field without sign change into an extended region of the same polarity and coinciding with extended (100000-300000 km) systems of filamentary feature chains of the fine chromospheric structure in active region. The horizontal magnetic f+eld component of the spot (systems of filamentary feature chains of the fine chromospheric structure) disappears on an extended region of chromospheric surface in the direction, where the satellite field (the field of opposite polarity) appears near its boundary. On the other hand, when satellite field disappears at some direction from the spot the transversal magnetic field appears on the extended surface region of the chromosphere keeping the same direction. One of the possible causes of disappearance of the transversal magnetic field on an extended region in the chromosphere might be the reconnection of magnetic lines of force [ru

  17. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    Science.gov (United States)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  18. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  19. A SOLAR FLARE DISTURBING A LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Leping; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-10-01

    With the high-resolution data from the Interface Region Imaging Spectrograph , we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational base of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.

  20. A SOLAR FLARE DISTURBING A LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    International Nuclear Information System (INIS)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Leping; Li, Xiaohong

    2016-01-01

    With the high-resolution data from the Interface Region Imaging Spectrograph , we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational base of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.

  1. Extending Counter-streaming Motion from an Active Region Filament to a Sunspot Light Bridge

    Science.gov (United States)

    Wang, Haimin; Liu, Rui; Li, Qin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda

    2018-01-01

    We analyze high-resolution observations from the 1.6 m telescope at Big Bear Solar Observatory that cover an active region filament. Counter-streaming motions are clearly observed in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing, as observed in the Hα off-bands. The apparent speed of the flow is around 10–60 km s‑1 in the filament, decreasing to 5–20 km s‑1 in the light bridge. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, the magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposed magnetic polarities, while the light bridge is between strong fields of the same polarity. We analyze the power of oscillations with the image sequences of constructed Dopplergrams, and find that the filament’s counter-streaming motion is due to physical mass motion along fibrils, while the light bridge’s counter-streaming motion is due to oscillation in the direction along the line-of-sight. The oscillation power peaks around 4 minutes. However, the section of the light bridge next to the filament also contains a component of the extension of the filament in combination with the oscillation, indicating that some strands of the filament are extended to and rooted in that part of the light bridge.

  2. SOLAR VARIABILITY FROM 240 TO 1750 nm IN TERMS OF FACULAE BRIGHTENING AND SUNSPOT DARKENING FROM SCIAMACHY

    International Nuclear Information System (INIS)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-01-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.

  3. Maximum Parsimony on Phylogenetic networks

    Science.gov (United States)

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  4. Solar magnetic field studies using the 12 micron emission lines. I - Quiet sun time series and sunspot slices

    Science.gov (United States)

    Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter

    1988-01-01

    The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.

  5. Determination of the Alfvén Speed and Plasma-beta Using the Seismology of Sunspot Umbra

    Energy Technology Data Exchange (ETDEWEB)

    Cho, I.-H.; Moon, Y.-J.; Nakariakov, V. M.; Park, J.; Choi, S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Cho, K.-S.; Bong, S.-C.; Baek, J.-H.; Kim, Y.-H.; Lee, J., E-mail: ihjo@khu.ac.kr [Space Science Division, Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2017-03-01

    For 478 centrally located sunspots observed in the optical continuum with Solar Dynamics Observatory /Helioseismic Magnetic Imager, we perform seismological diagnostics of the physical parameters of umbral photospheres. The new technique is based on the theory of slow magnetoacoustic waves in a non-isothermally stratified photosphere with a uniform vertical magnetic field. We construct a map of the weighted frequency of three-minute oscillations inside the umbra and use it for the estimation of the Alfvén speed, plasma-beta, and mass density within the umbra. We find the umbral mean Alfvén speed ranges between 10.5 and 7.5 km s{sup −1} and is negatively correlated with magnetic field strength. The umbral mean plasma-beta is found to range approximately between 0.65 and 1.15 and does not vary significantly from pores to mature sunspots. The mean density ranges between (1–6) × 10{sup −4} kg m{sup −3} and shows a strong positive correlation with magnetic field strength.

  6. Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions

    Science.gov (United States)

    Kilcik, A.; Yurchyshyn, V.; Donmez, B.; Obridko, V. N.; Ozguc, A.; Rozelot, J. P.

    2018-04-01

    We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is 113± 1.6 days while we detected much longer periodicities (327± 13, 312 ± 11, and 256± 8 days) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding 55± 0.7 days during Solar Cycles 22 and 24, while a 113± 1.3 days period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only 31± 0.2 days for Cycle 22 and 72± 1.3 days for the current Cycle 24, while the largest measured period was 327± 13 days during Solar Cycle 23.

  7. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  8. Normal and counter Evershed flows in the photospheric penumbra of a sunspot SPINOR 2D inversions of Hinode-SOT/SP observations

    Czech Academy of Sciences Publication Activity Database

    Siu-Tapia, A.; Lagg, A.; Solanki, S.K.; van Noort, M.; Jurčák, Jan

    2017-01-01

    Roč. 607, November (2017), A36/1-A36/17 E-ISSN 1432-0746 Institutional support: RVO:67985815 Keywords : sunspots * photosphere * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  9. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  10. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  11. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  12. A portable storage maximum thermometer

    International Nuclear Information System (INIS)

    Fayart, Gerard.

    1976-01-01

    A clinical thermometer storing the voltage corresponding to the maximum temperature in an analog memory is described. End of the measurement is shown by a lamp switch out. The measurement time is shortened by means of a low thermal inertia platinum probe. This portable thermometer is fitted with cell test and calibration system [fr

  13. Efeito da amplitude de movimento no número máximo de repetições no exercício supino livre Efectos de la amplitud de movimiento em el número máximo de repeticiones em el ejercicio de supino libre Effect of range of motion in the maximum number of repetitions in the bench press exercise

    Directory of Open Access Journals (Sweden)

    Fernando Vitor Lima

    2012-12-01

    about increases in strength using different ranges of motion (ROM. The aim of this study was to compare the maximum number of repetitions (MNR in bench press with two different ROM. Fourteen subjects performed familiarization and one repetition maximum (1 RM tests in sessions 1 and 2. MNR in four sets at 50% of 1 RM, one-minute rest with partial (ROMP and complete ROM (ROMC were performed in the third and fourth sessions. The ROMP used half of the bar vertical displacement compared to ROMC. Two-way ANOVA with repeated measures was used to compare the experimental conditions, followed by post hoc Scheffe. There was a significant decrease of the MNR among sets, except from third to fourth sets in both ROM. MNR in all sets was higher in ROMP than ROMC. The reduction of ROM allow to perform higher number of repetitions.

  14. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  15. HIGH RESOLUTION He i 10830 Å NARROW-BAND IMAGING OF AN M-CLASS FLARE. I. ANALYSIS OF SUNSPOT DYNAMICS DURING FLARING

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ya; Su, Yingna; Hong, Zhenxiang; Ji, Haisheng [Key Laboratory of DMSA, Purple Mountain Observatory, CAS, Nanjing, 210008 (China); Zeng, Zhicheng; Goode, Philip R.; Cao, Wenda [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Ji, Kaifan [Yunnan Astronomical Observatories, Kunming 650011 (China)

    2016-12-20

    In this paper, we report our first-step results of high resolution He i 10830 Å narrow-band imaging (bandpass: 0.5 Å) of an M1.8 class two-ribbon flare on 2012 July 5. The flare was observed with the 1.6 m aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extension of umbral flashes; both take the form of absorption in the 10830 Å narrow-band images. From a space–time image made of a slit cutting across a flare ribbon and the sunspot, we find that the dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside the ribbon when it sweeps into the sunspot’s penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a return of the absorption strip with similar speed. We tentatively explain the phenomena as the result of a sudden increase in the density of ortho-helium atoms in the area of the sunspot being excited by the flare’s extreme ultraviolet illumination. This explanation is based on the observation that 10830 Å absorption around the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.

  16. Maximum Water Hammer Sensitivity Analysis

    OpenAIRE

    Jalil Emadi; Abbas Solemani

    2011-01-01

    Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of ...

  17. Maximum Gene-Support Tree

    Directory of Open Access Journals (Sweden)

    Yunfeng Shan

    2008-01-01

    Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the finding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reflects the phylogenetic relationship among species in comparison.

  18. LCLS Maximum Credible Beam Power

    International Nuclear Information System (INIS)

    Clendenin, J.

    2005-01-01

    The maximum credible beam power is defined as the highest credible average beam power that the accelerator can deliver to the point in question, given the laws of physics, the beam line design, and assuming all protection devices have failed. For a new accelerator project, the official maximum credible beam power is determined by project staff in consultation with the Radiation Physics Department, after examining the arguments and evidence presented by the appropriate accelerator physicist(s) and beam line engineers. The definitive parameter becomes part of the project's safety envelope. This technical note will first review the studies that were done for the Gun Test Facility (GTF) at SSRL, where a photoinjector similar to the one proposed for the LCLS is being tested. In Section 3 the maximum charge out of the gun for a single rf pulse is calculated. In Section 4, PARMELA simulations are used to track the beam from the gun to the end of the photoinjector. Finally in Section 5 the beam through the matching section and injected into Linac-1 is discussed

  19. Maximum entropy method in momentum density reconstruction

    International Nuclear Information System (INIS)

    Dobrzynski, L.; Holas, A.

    1997-01-01

    The Maximum Entropy Method (MEM) is applied to the reconstruction of the 3-dimensional electron momentum density distributions observed through the set of Compton profiles measured along various crystallographic directions. It is shown that the reconstruction of electron momentum density may be reliably carried out with the aid of simple iterative algorithm suggested originally by Collins. A number of distributions has been simulated in order to check the performance of MEM. It is shown that MEM can be recommended as a model-free approach. (author). 13 refs, 1 fig

  20. Hupa Numbers.

    Science.gov (United States)

    Bennett, Ruth, Ed.; And Others

    An introduction to the Hupa number system is provided in this workbook, one in a series of numerous materials developed to promote the use of the Hupa language. The book is written in English with Hupa terms used only for the names of numbers. The opening pages present the numbers from 1-10, giving the numeral, the Hupa word, the English word, and…

  1. Triangular Numbers

    Indian Academy of Sciences (India)

    Admin

    Triangular number, figurate num- ber, rangoli, Brahmagupta–Pell equation, Jacobi triple product identity. Figure 1. The first four triangular numbers. Left: Anuradha S Garge completed her PhD from. Pune University in 2008 under the supervision of Prof. S A Katre. Her research interests include K-theory and number theory.

  2. Proth Numbers

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2015-02-01

    Full Text Available In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.

  3. A Maximum Resonant Set of Polyomino Graphs

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2016-05-01

    Full Text Available A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper, we show that if K is a maximum resonant set of P, then P − K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to the cardinality of a maximum resonant set. This confirms a conjecture of Xu et al. [26]. We also show that if K is a maximal alternating set of P, then P − K has a unique perfect matching.

  4. maximum neutron flux at thermal nuclear reactors

    International Nuclear Information System (INIS)

    Strugar, P.

    1968-10-01

    Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself [sr

  5. Generic maximum likely scale selection

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2007-01-01

    in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based......The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...

  6. Sagan numbers

    OpenAIRE

    Mendonça, J. Ricardo G.

    2012-01-01

    We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.

  7. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  8. Eulerian numbers

    CERN Document Server

    Petersen, T Kyle

    2015-01-01

    This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...

  9. System for memorizing maximum values

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1992-08-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  10. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  11. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  12. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  13. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  14. Transfinite Numbers

    Indian Academy of Sciences (India)

    Transfinite Numbers. What is Infinity? S M Srivastava. In a series of revolutionary articles written during the last quarter of the nineteenth century, the great Ger- man mathematician Georg Cantor removed the age-old mistrust of infinity and created an exceptionally beau- tiful and useful theory of transfinite numbers. This is.

  15. Stokes profile analysis and vector magnetic fields. III. Extended temperature minima of sunspot umbrae as inferred from Stokes profiles of Mg I 4571 A

    International Nuclear Information System (INIS)

    Lites, B.W.; Skumanich, A.; Rees, D.E.; Murphy, G.A.; Carlsson, M.; Sydney Univ., Australia; Oslo Universitetet, Norway)

    1987-01-01

    Observed Stokes profiles of Mg I 4571 A are analyzed as a diagnostic of the magnetic field and thermal structure at the temperature minimum of sunspot umbrae. Multilevel non-LTE transfer calculations of the Mg I-II-III excitation and ionization balance in model umbral atmospheres show: (1) Mg I to be far less ionized in sunspot umbrae than in the quiet sun, leading to greatly enhanced opacity in 4571 A, and (2) LTE excitation of 4571 A. Existing umbral models predict emission cores of the Stokes I profile due to the chromospheric temperature rise. This feature is not present in observed umbral profiles. Moreover, such an emission reversal causes similar anomalous features in the Stokes Q, U, V profiles, which are also not observed. Umbral atmospheres with extended temperature minima are suggested. Implications for chromospheric heating mechanisms and the utility of this line for solar vector magnetic field measurements are discussed. 35 references

  16. Chocolate Numbers

    OpenAIRE

    Ji, Caleb; Khovanova, Tanya; Park, Robin; Song, Angela

    2015-01-01

    In this paper, we consider a game played on a rectangular $m \\times n$ gridded chocolate bar. Each move, a player breaks the bar along a grid line. Each move after that consists of taking any piece of chocolate and breaking it again along existing grid lines, until just $mn$ individual squares remain. This paper enumerates the number of ways to break an $m \\times n$ bar, which we call chocolate numbers, and introduces four new sequences related to these numbers. Using various techniques, we p...

  17. Number theory

    CERN Document Server

    Andrews, George E

    1994-01-01

    Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl

  18. TRANSITION-REGION/CORONAL SIGNATURES AND MAGNETIC SETTING OF SUNSPOT PENUMBRAL JETS: HINODE (SOT/FG), Hi-C, AND SDO/AIA OBSERVATIONS

    International Nuclear Information System (INIS)

    Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R.; Alpert, Shane E.

    2016-01-01

    Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al. using the Ca ii H-line filter on Hinode's Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbrae (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on the internal structure of sunspot penumbral filaments. Using data of a sunspot from Hinode/SOT, High Resolution Coronal Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except for a few of them showing up in the 1600 Å images. However, we discovered exceptionally stronger jets with similar lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly in a few locations in the penumbra, where evidence of patches of opposite-polarity fields in the tails of some penumbral filaments is seen in Stokes-V images. These tail PJs do display signatures in the TR. Whether they have any coronal-temperature plasma is unclear. We infer that none of the PJs, including the tail PJs, directly heat the corona in active regions significantly, but any penumbral jet might drive some coronal heating indirectly via the generation of Alfvén waves and/or braiding of the coronal field

  19. Maximum entropy and Bayesian methods

    International Nuclear Information System (INIS)

    Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.

    1992-01-01

    Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come

  20. Nice numbers

    CERN Document Server

    Barnes, John

    2016-01-01

    In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...

  1. Maximum entropy principal for transportation

    International Nuclear Information System (INIS)

    Bilich, F.; Da Silva, R.

    2008-01-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  2. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....

  3. Ancestral Sequence Reconstruction with Maximum Parsimony.

    Science.gov (United States)

    Herbst, Lina; Fischer, Mareike

    2017-12-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference and for ancestral sequence inference is Maximum Parsimony (MP). In this manuscript, we focus on this method and on ancestral state inference for fully bifurcating trees. In particular, we investigate a conjecture published by Charleston and Steel in 1995 concerning the number of species which need to have a particular state, say a, at a particular site in order for MP to unambiguously return a as an estimate for the state of the last common ancestor. We prove the conjecture for all even numbers of character states, which is the most relevant case in biology. We also show that the conjecture does not hold in general for odd numbers of character states, but also present some positive results for this case.

  4. The worst case complexity of maximum parsimony.

    Science.gov (United States)

    Carmel, Amir; Musa-Lempel, Noa; Tsur, Dekel; Ziv-Ukelson, Michal

    2014-11-01

    One of the core classical problems in computational biology is that of constructing the most parsimonious phylogenetic tree interpreting an input set of sequences from the genomes of evolutionarily related organisms. We reexamine the classical maximum parsimony (MP) optimization problem for the general (asymmetric) scoring matrix case, where rooted phylogenies are implied, and analyze the worst case bounds of three approaches to MP: The approach of Cavalli-Sforza and Edwards, the approach of Hendy and Penny, and a new agglomerative, "bottom-up" approach we present in this article. We show that the second and third approaches are faster than the first one by a factor of Θ(√n) and Θ(n), respectively, where n is the number of species.

  5. Funny Numbers

    Directory of Open Access Journals (Sweden)

    Theodore M. Porter

    2012-12-01

    Full Text Available The struggle over cure rate measures in nineteenth-century asylums provides an exemplary instance of how, when used for official assessments of institutions, these numbers become sites of contestation. The evasion of goals and corruption of measures tends to make these numbers “funny” in the sense of becoming dis-honest, while the mismatch between boring, technical appearances and cunning backstage manipulations supplies dark humor. The dangers are evident in recent efforts to decentralize the functions of governments and corporations using incen-tives based on quantified targets.

  6. Transcendental numbers

    CERN Document Server

    Murty, M Ram

    2014-01-01

    This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.

  7. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  8. Transfinite Numbers

    Indian Academy of Sciences (India)

    this is a characteristic difference between finite and infinite sets and created an immensely useful branch of mathematics based on this idea which had a great impact on the whole of mathe- matics. For example, the question of what is a number (finite or infinite) is almost a philosophical one. However Cantor's work turned it ...

  9. The ancient Egyptian civilization: maximum and minimum in coincidence with solar activity

    Science.gov (United States)

    Shaltout, M.

    It is proved from the last 22 years observations of the total solar irradiance (TSI) from space by artificial satellites, that TSI shows negative correlation with the solar activity (sunspots, flares, and 10.7cm Radio emissions) from day to day, but shows positive correlations with the same activity from year to year (on the base of the annual average for each of them). Also, the solar constant, which estimated fromth ground stations for beam solar radiations observations during the 20 century indicate coincidence with the phases of the 11- year cycles. It is known from sunspot observations (250 years) , and from C14 analysis, that there are another long-term cycles for the solar activity larger than 11-year cycle. The variability of the total solar irradiance affecting on the climate, and the Nile flooding, where there is a periodicities in the Nile flooding similar to that of solar activity, from the analysis of about 1300 years of the Nile level observations atth Cairo. The secular variations of the Nile levels, regularly measured from the 7 toth 15 century A.D., clearly correlate with the solar variations, which suggests evidence for solar influence on the climatic changes in the East African tropics The civilization of the ancient Egyptian was highly correlated with the Nile flooding , where the river Nile was and still yet, the source of the life in the Valley and Delta inside high dry desert area. The study depends on long -time historical data for Carbon 14 (more than five thousands years), and chronical scanning for all the elements of the ancient Egyptian civilization starting from the firs t dynasty to the twenty six dynasty. The result shows coincidence between the ancient Egyptian civilization and solar activity. For example, the period of pyramids building, which is one of the Brilliant periods, is corresponding to maximum solar activity, where the periods of occupation of Egypt by Foreign Peoples corresponding to minimum solar activity. The decline

  10. The effect of line damping, magneto-optics and parasitic light on the derivation of sunspot vector magnetic fields

    Science.gov (United States)

    Skumanich, A.; Lites, B. W.

    1985-01-01

    The least square fitting of Stokes observations of sunspots using a Milne-Eddington-Unno model appears to lead, in many circumstances, to various inconsistencies such as anomalously large doppler widths and, hence, small magnetic fields which are significantly below those inferred solely from the Zeeman splitting in the intensity profile. It is found that the introduction of additional physics into the model such as the inclusion of damping wings and magneto-optic birefrigence significantly improves the fit to Stokes parameters. Model fits excluding the intensity profile, i.e., of both magnitude as well as spectral shape of the polarization parameters alone, suggest that parasitic light in the intensity profile may also be a source of inconsistencies. The consequences of the physical changes on the vector properties of the field derived from the Fe I lambda 6173 line for the 17 November 1975 spot as well as on the thermodynamic state are discussed. A Doppler width delta lambda (D) - 25mA is bound to be consistent with a low spot temperature and microturbulence, and a damping constant of a = 0.2.

  11. Dynamics of Subarcsecond Bright Dots in the Transition Region above Sunspots and Their Relation to Penumbral Micro-jets

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Tanmoy; Banerjee, Dipankar [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Tian, Hui [School of Earth and Space Sciences, Peking University (China); Schanche, Nicole, E-mail: tsamanta@iiap.res.in, E-mail: huitian@pku.edu.cn, E-mail: dipu@iiap.res.in, E-mail: ns81@st-andrews.ac.uk [University of St. Andrews, St. Andrews (United Kingdom)

    2017-02-01

    Recent high-resolution observations have revealed that subarcsecond bright dots (BDs) with sub-minute lifetimes appear ubiquitously in the transition region (TR) above sunspot penumbra. The presence of penumbral micro-jets (PMJs) in the chromosphere was previously reported. It was proposed that both the PMJs and BDs are formed due to a magnetic reconnection process and may play an important role in heating of the penumbra. Using simultaneous observations of the chromosphere from the Solar Optical Telescope (SOT) on board Hinode and observations of the TR from the Interface Region Imaging Spectrograph , we study the dynamics of BDs and their relation to PMJs. We find two types of BDs, one that is related to PMJs, and another that does not show any visible dynamics in the SOT Ca ii H images. From a statistical analysis we show that these two types have different properties. The BDs that are related to PMJs always appear at the top of the PMJs, the vast majority of which show inward motion and originate before the generation of the PMJs. These results may indicate that the reconnection occurs at the lower coronal/TR height and initiates PMJs at the chromosphere. This formation mechanism is in contrast with the formation of PMJs by reconnection in the (upper) photosphere between differently inclined fields.

  12. The Harm that Underestimation of Uncertainty Does to Our Community: A Case Study Using Sunspot Area Measurements

    Science.gov (United States)

    Munoz-Jaramillo, Andres

    2017-08-01

    Data products in heliospheric physics are very often provided without clear estimates of uncertainty. From helioseismology in the solar interior, all the way to in situ solar wind measurements beyond 1AU, uncertainty estimates are typically hard for users to find (buried inside long documents that are separate from the data products), or simply non-existent.There are two main reasons why uncertainty measurements are hard to find:1. Understanding instrumental systematic errors is given a much higher priority inside instrumental teams.2. The desire to perfectly understand all sources of uncertainty postpones indefinitely the actual quantification of uncertainty in our measurements.Using the cross calibration of 200 years of sunspot area measurements as a case study, in this presentation we will discuss the negative impact that inadequate measurements of uncertainty have on users, through the appearance of toxic and unnecessary controversies, and data providers, through the creation of unrealistic expectations regarding the information that can be extracted from their data. We will discuss how empirical estimates of uncertainty represent a very good alternative to not providing any estimates at all, and finalize by discussing the bare essentials that should become our standard practice for future instruments and surveys.

  13. Maximum likelihood of phylogenetic networks.

    Science.gov (United States)

    Jin, Guohua; Nakhleh, Luay; Snir, Sagi; Tuller, Tamir

    2006-11-01

    Horizontal gene transfer (HGT) is believed to be ubiquitous among bacteria, and plays a major role in their genome diversification as well as their ability to develop resistance to antibiotics. In light of its evolutionary significance and implications for human health, developing accurate and efficient methods for detecting and reconstructing HGT is imperative. In this article we provide a new HGT-oriented likelihood framework for many problems that involve phylogeny-based HGT detection and reconstruction. Beside the formulation of various likelihood criteria, we show that most of these problems are NP-hard, and offer heuristics for efficient and accurate reconstruction of HGT under these criteria. We implemented our heuristics and used them to analyze biological as well as synthetic data. In both cases, our criteria and heuristics exhibited very good performance with respect to identifying the correct number of HGT events as well as inferring their correct location on the species tree. Implementation of the criteria as well as heuristics and hardness proofs are available from the authors upon request. Hardness proofs can also be downloaded at http://www.cs.tau.ac.il/~tamirtul/MLNET/Supp-ML.pdf

  14. MAXIMUM PRINCIPLE FOR SUBSONIC FLOW WITH VARIABLE ENTROPY

    Directory of Open Access Journals (Sweden)

    B. Sizykh Grigory

    2017-01-01

    Full Text Available Maximum principle for subsonic flow is fair for stationary irrotational subsonic gas flows. According to this prin- ciple, if the value of the velocity is not constant everywhere, then its maximum is achieved on the boundary and only on the boundary of the considered domain. This property is used when designing form of an aircraft with a maximum critical val- ue of the Mach number: it is believed that if the local Mach number is less than unit in the incoming flow and on the body surface, then the Mach number is less then unit in all points of flow. The known proof of maximum principle for subsonic flow is based on the assumption that in the whole considered area of the flow the pressure is a function of density. For the ideal and perfect gas (the role of diffusion is negligible, and the Mendeleev-Clapeyron law is fulfilled, the pressure is a function of density if entropy is constant in the entire considered area of the flow. Shows an example of a stationary sub- sonic irrotational flow, in which the entropy has different values on different stream lines, and the pressure is not a function of density. The application of the maximum principle for subsonic flow with respect to such a flow would be unreasonable. This example shows the relevance of the question about the place of the points of maximum value of the velocity, if the entropy is not a constant. To clarify the regularities of the location of these points, was performed the analysis of the com- plete Euler equations (without any simplifying assumptions in 3-D case. The new proof of the maximum principle for sub- sonic flow was proposed. This proof does not rely on the assumption that the pressure is a function of density. Thus, it is shown that the maximum principle for subsonic flow is true for stationary subsonic irrotational flows of ideal perfect gas with variable entropy.

  15. Two-dimensional maximum entropy image restoration

    International Nuclear Information System (INIS)

    Brolley, J.E.; Lazarus, R.B.; Suydam, B.R.; Trussell, H.J.

    1977-07-01

    An optical check problem was constructed to test P LOG P maximum entropy restoration of an extremely distorted image. Useful recovery of the original image was obtained. Comparison with maximum a posteriori restoration is made. 7 figures

  16. NONLINEAR PREDICTION OF SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Kilcik, A.; Anderson, C. N. K.; Ye, H.; Sugihara, G.; Rozelot, J. P.; Ozguc, A.

    2009-01-01

    Sunspot activity is highly variable and challenging to forecast. Yet forecasts are important, since peak activity has profound effects on major geophysical phenomena including space weather (satellite drag, telecommunications outages) and has even been correlated speculatively with changes in global weather patterns. This paper investigates trends in sunspot activity, using new techniques for decadal-scale prediction of the present solar cycle (cycle 24). First, Hurst exponent H analysis is used to investigate the autocorrelation structure of the putative dynamics; then the Sugihara-May algorithm is used to predict the ascension time and the maximum intensity of the current sunspot cycle. Here we report H = 0.86 for the complete sunspot number data set (1700-2007) and H = 0.88 for the reliable sunspot data set (1848-2007). Using the Sugihara-May algorithm analysis, we forecast that cycle 24 will reach its maximum in 2012 December at approximately 87 sunspot units.

  17. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  18. Combining Experiments and Simulations Using the Maximum Entropy Principle

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, Kresten

    2014-01-01

    are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy...... in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results....... Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges....

  19. Post optimization paradigm in maximum 3-satisfiability logic programming

    Science.gov (United States)

    Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd

    2017-08-01

    Maximum 3-Satisfiability (MAX-3SAT) is a counterpart of the Boolean satisfiability problem that can be treated as a constraint optimization problem. It deals with a conundrum of searching the maximum number of satisfied clauses in a particular 3-SAT formula. This paper presents the implementation of enhanced Hopfield network in hastening the Maximum 3-Satisfiability (MAX-3SAT) logic programming. Four post optimization techniques are investigated, including the Elliot symmetric activation function, Gaussian activation function, Wavelet activation function and Hyperbolic tangent activation function. The performances of these post optimization techniques in accelerating MAX-3SAT logic programming will be discussed in terms of the ratio of maximum satisfied clauses, Hamming distance and the computation time. Dev-C++ was used as the platform for training, testing and validating our proposed techniques. The results depict the Hyperbolic tangent activation function and Elliot symmetric activation function can be used in doing MAX-3SAT logic programming.

  20. Maximum likelihood estimation of finite mixture model for economic data

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-06-01

    Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.

  1. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  2. Weakest solar wind of the space age and the current 'MINI' solar maximum

    International Nuclear Information System (INIS)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-01-01

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  3. A STATISTICAL STUDY OF FLARE PRODUCTIVITY ASSOCIATED WITH SUNSPOT PROPERTIES IN DIFFERENT MAGNETIC TYPES OF ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ya-Hui [Institute of Space Science, National Central University, Jhongli 32001, Taiwan (China); Hsieh, Min-Shiu [Geophysical Institute, University of Alaska Fairbanks, AK 99775-7320 (United States); Yu, Hsiu-Shan [Center for Astrophysics and Space Sciences, University of California San Diego, CA 92093 (United States); Chen, P. F., E-mail: yhyang@jupiter.ss.ncu.edu.tw, E-mail: mhsieh2@alaska.edu, E-mail: hsyu@ucsd.edu, E-mail: chenpf@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2017-01-10

    It is often believed that intense flares preferentially originate from the large-size active regions (ARs) with strong magnetic fields and complex magnetic configurations. This work investigates the dependence of flare activity on the AR properties and clarifies the influence of AR magnetic parameters on the flare productivity, based on two data sets of daily sunspot and flare information as well as the GOES soft X-ray measurements and HMI vector magnetograms. By considering the evolution of magnetic complexity, we find that flare behaviors are quite different in the short- and long-lived complex ARs and the ARs with more complex magnetic configurations are likely to host more impulsive and intense flares. Furthermore, we investigate several magnetic quantities and perform the two-sample Kolmogorov–Smirnov test to examine the similarity/difference between two populations in different types of ARs. Our results demonstrate that the total source field strength on the photosphere has a good correlation with the flare activity in complex ARs. It is noted that intense flares tend to occur at the regions of strong source field in combination with an intermediate field-weighted shear angle. This result implies that the magnetic free energy provided by a complex AR could be high enough to trigger a flare eruption even with a moderate magnetic shear on the photosphere. We thus suggest that the magnetic free energy represented by the source field rather than the photospheric magnetic complexity is a better quantity to characterize the flare productivity of an AR, especially for the occurrence of intense flares.

  4. MAXIMUM-LIKELIHOOD-ESTIMATION OF THE ENTROPY OF AN ATTRACTOR

    NARCIS (Netherlands)

    SCHOUTEN, JC; TAKENS, F; VANDENBLEEK, CM

    In this paper, a maximum-likelihood estimate of the (Kolmogorov) entropy of an attractor is proposed that can be obtained directly from a time series. Also, the relative standard deviation of the entropy estimate is derived; it is dependent on the entropy and on the number of samples used in the

  5. A Family of Maximum SNR Filters for Noise Reduction

    DEFF Research Database (Denmark)

    Huang, Gongping; Benesty, Jacob; Long, Tao

    2014-01-01

    significantly increase the SNR but at the expense of tremendous speech distortion. As a consequence, the speech quality improvement, measured by the perceptual evaluation of speech quality (PESQ) algorithm, is marginal if any, regardless of the number of microphones used. In the STFT domain, the maximum SNR...

  6. 44 CFR 208.12 - Maximum Pay Rate Table.

    Science.gov (United States)

    2010-10-01

    ...) Physicians. DHS uses the latest Special Salary Rate Table Number 0290 for Medical Officers (Clinical... Personnel, in which case the Maximum Pay Rate Table would not apply. (3) Compensation for Sponsoring Agency... organizations, e.g., HMOs or medical or engineering professional associations, under the revised definition of...

  7. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    Science.gov (United States)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  8. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  9. Geomagnetic storms and their sources on the sun:the rising phase of the sunspot cycle

    Directory of Open Access Journals (Sweden)

    Takao Saito

    2013-03-01

    Full Text Available Solar phenomena, including solar flares and coronal holes, are considered in the context of a NEWS coordinate system, obtained by application of the heliographic and heliomagnetic coordinate systems to the solar latitude and longitude, respectively. By expressing the occurrence of solar phenomena in terms of NEWS coordinates, we discovered that solar flares tend to converge in the NE and SW quadrants of the solar disk, where they act as sources of sporadic storms. Meanwhile, coronal holes converge to solar longitudes of 0° and 180°, where they are sources of recurrent storms. Because of their concentration in the NE- and SW-quadrants, this correlation is referred to as the 'NEWS law'. The neutral line of the source surface shows a beautiful single wave in its declining phase, while it tends to show a double wave in the rising phase. Solar rotation numbers 2118 to 2119, where the neutral line exhibited two complicated asymmetric waves in both the N-S and S-W directions, were chosen for detailed analysis. Notwithstanding such an extremely complicated case, the NEWS law is satisfied when the double wave is separated into its two single-wave parts.

  10. Revealing the Maximum Strength in Nanotwinned Copper

    DEFF Research Database (Denmark)

    Lu, L.; Chen, X.; Huang, Xiaoxu

    2009-01-01

    boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  11. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  12. A maximum likelihood framework for protein design

    Directory of Open Access Journals (Sweden)

    Philippe Hervé

    2006-06-01

    Full Text Available Abstract Background The aim of protein design is to predict amino-acid sequences compatible with a given target structure. Traditionally envisioned as a purely thermodynamic question, this problem can also be understood in a wider context, where additional constraints are captured by learning the sequence patterns displayed by natural proteins of known conformation. In this latter perspective, however, we still need a theoretical formalization of the question, leading to general and efficient learning methods, and allowing for the selection of fast and accurate objective functions quantifying sequence/structure compatibility. Results We propose a formulation of the protein design problem in terms of model-based statistical inference. Our framework uses the maximum likelihood principle to optimize the unknown parameters of a statistical potential, which we call an inverse potential to contrast with classical potentials used for structure prediction. We propose an implementation based on Markov chain Monte Carlo, in which the likelihood is maximized by gradient descent and is numerically estimated by thermodynamic integration. The fit of the models is evaluated by cross-validation. We apply this to a simple pairwise contact potential, supplemented with a solvent-accessibility term, and show that the resulting models have a better predictive power than currently available pairwise potentials. Furthermore, the model comparison method presented here allows one to measure the relative contribution of each component of the potential, and to choose the optimal number of accessibility classes, which turns out to be much higher than classically considered. Conclusion Altogether, this reformulation makes it possible to test a wide diversity of models, using different forms of potentials, or accounting for other factors than just the constraint of thermodynamic stability. Ultimately, such model-based statistical analyses may help to understand the forces

  13. MXLKID: a maximum likelihood parameter identifier

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1980-07-01

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables

  14. How long do centenarians survive? Life expectancy and maximum lifespan.

    Science.gov (United States)

    Modig, K; Andersson, T; Vaupel, J; Rau, R; Ahlbom, A

    2017-08-01

    The purpose of this study was to explore the pattern of mortality above the age of 100 years. In particular, we aimed to examine whether Scandinavian data support the theory that mortality reaches a plateau at particularly old ages. Whether the maximum length of life increases with time was also investigated. The analyses were based on individual level data on all Swedish and Danish centenarians born from 1870 to 1901; in total 3006 men and 10 963 women were included. Birth cohort-specific probabilities of dying were calculated. Exact ages were used for calculations of maximum length of life. Whether maximum age changed over time was analysed taking into account increases in cohort size. The results confirm that there has not been any improvement in mortality amongst centenarians in the past 30 years and that the current rise in life expectancy is driven by reductions in mortality below the age of 100 years. The death risks seem to reach a plateau of around 50% at the age 103 years for men and 107 years for women. Despite the rising life expectancy, the maximum age does not appear to increase, in particular after accounting for the increasing number of individuals of advanced age. Mortality amongst centenarians is not changing despite improvements at younger ages. An extension of the maximum lifespan and a sizeable extension of life expectancy both require reductions in mortality above the age of 100 years. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  15. Direct maximum parsimony phylogeny reconstruction from genotype data.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2007-12-05

    Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes. In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes. Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.

  16. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  17. Maximum phytoplankton concentrations in the sea

    DEFF Research Database (Denmark)

    Jackson, G.A.; Kiørboe, Thomas

    2008-01-01

    A simplification of plankton dynamics using coagulation theory provides predictions of the maximum algal concentration sustainable in aquatic systems. These predictions have previously been tested successfully against results from iron fertilization experiments. We extend the test to data collect...

  18. Maximum-Likelihood Detection Of Noncoherent CPM

    Science.gov (United States)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.

  19. PNNL: A Supervised Maximum Entropy Approach to Word Sense Disambiguation

    Energy Technology Data Exchange (ETDEWEB)

    Tratz, Stephen C.; Sanfilippo, Antonio P.; Gregory, Michelle L.; Chappell, Alan R.; Posse, Christian; Whitney, Paul D.

    2007-06-23

    In this paper, we described the PNNL Word Sense Disambiguation system as applied to the English All-Word task in Se-mEval 2007. We use a supervised learning approach, employing a large number of features and using Information Gain for dimension reduction. Our Maximum Entropy approach combined with a rich set of features produced results that are significantly better than baseline and are the highest F-score for the fined-grained English All-Words subtask.

  20. Bayesian interpretation of Generalized empirical likelihood by maximum entropy

    OpenAIRE

    Rochet , Paul

    2011-01-01

    We study a parametric estimation problem related to moment condition models. As an alternative to the generalized empirical likelihood (GEL) and the generalized method of moments (GMM), a Bayesian approach to the problem can be adopted, extending the MEM procedure to parametric moment conditions. We show in particular that a large number of GEL estimators can be interpreted as a maximum entropy solution. Moreover, we provide a more general field of applications by proving the method to be rob...

  1. Skills, sunspots and cycles

    DEFF Research Database (Denmark)

    Busato, Francesco; Marchetti, Enrico

    This paper explores the ability of a class of one-sector,multi-input models to generate indeterminate equilibrium paths, andendogenous cycles, without relying on factors' hoarding. The modelpresents a novel theoretical economic mechanism that supportssunspot-driven expansions without requiring...

  2. Study of forecasting maximum demand of electric power

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, B.C.; Hwang, Y.J. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    As far as the past performances of power supply and demand in Korea is concerned, one of the striking phenomena is that there have been repeated periodic surpluses and shortages of power generation facilities. Precise assumption and prediction of power demands is the basic work in establishing a supply plan and carrying out the right policy since facilities investment of the power generation industry requires a tremendous amount of capital and a long construction period. The purpose of this study is to study a model for the inference and prediction of a more precise maximum demand under these backgrounds. The non-parametric model considered in this study, paying attention to meteorological factors such as temperature and humidity, does not have a simple proportionate relationship with the maximum power demand, but affects it through mutual complicated nonlinear interaction. I used the non-parametric inference technique by introducing meteorological effects without importing any literal assumption on the interaction of temperature and humidity preliminarily. According to the analysis result, it is found that the non-parametric model that introduces the number of tropical nights which shows the continuity of the meteorological effect has better prediction power than the linear model. The non- parametric model that considers both the number of tropical nights and the number of cooling days at the same time is a model for predicting maximum demand. 7 refs., 6 figs., 9 tabs.

  3. The maximum number of minimal codewords in an [n, k]-code

    DEFF Research Database (Denmark)

    Alahmadi, A.; Aldred, R. E. L.; de la Cruz, R.

    2013-01-01

    We survey some upper and lower bounds on the function in the title, and make them explicit for n≤15 and 1≤k≤15. Exact values are given for cycle codes of graphs for 3≤n≤15 and 1≤k≤13....

  4. Maximum gravitational redshift of white dwarfs

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Teukolsky, S.A.

    1976-01-01

    The stability of uniformly rotating, cold white dwarfs is examined in the framework of the Parametrized Post-Newtonian (PPN) formalism of Will and Nordtvedt. The maximum central density and gravitational redshift of a white dwarf are determined as functions of five of the nine PPN parameters (γ, β, zeta 2 , zeta 3 , and zeta 4 ), the total angular momentum J, and the composition of the star. General relativity predicts that the maximum redshifts is 571 km s -1 for nonrotating carbon and helium dwarfs, but is lower for stars composed of heavier nuclei. Uniform rotation can increase the maximum redshift to 647 km s -1 for carbon stars (the neutronization limit) and to 893 km s -1 for helium stars (the uniform rotation limit). The redshift distribution of a larger sample of white dwarfs may help determine the composition of their cores

  5. Geometrical relationship of flare-generated solar wind structures to the magnetic axes of bipolar sunspot groups adjacent to their originating solar flares

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Evdokimova, L.V.; Mikerina, N.V.

    1982-01-01

    Occurrences of interplanetary shock waves near the Earth after the powerful isolated flares of 1957-1978 are investigated. The close connection between the occurrences of shock waves and the positions of magnetic axes of bipolar groups of sunspots is suggested on the basis of a statistical study. The shock waves are principally observed when the Earth finds itself near the planes that are projected through the flares in parallel to the appropriate magnetic axes of the nearest bipolar groups. This regularity is interpreted as an indirect argument for a three-dimensional geometry for the interplanetary shock waves which, when projected on these flattened to corresponding planes, are traces of large circular arcs. The typical angular scales of isolated interplanetary shock waves are estimated as approx. equal to 150 0 and approx. equal to 30 0 parallel and perpendicular, respectively, to the magnetic axes correspondingly. (orig.)

  6. Thermal convection for large Prandtl numbers

    NARCIS (Netherlands)

    Grossmann, Siegfried; Lohse, Detlef

    2001-01-01

    The Rayleigh-Bénard theory by Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)] is extended towards very large Prandtl numbers Pr. The Nusselt number Nu is found here to be independent of Pr. However, for fixed Rayleigh numbers Ra a maximum in the Nu(Pr) dependence is predicted. We moreover offer

  7. Maximum entropy analysis of EGRET data

    DEFF Research Database (Denmark)

    Pohl, M.; Strong, A.W.

    1997-01-01

    EGRET data are usually analysed on the basis of the Maximum-Likelihood method \\cite{ma96} in a search for point sources in excess to a model for the background radiation (e.g. \\cite{hu97}). This method depends strongly on the quality of the background model, and thus may have high systematic unce...... uncertainties in region of strong and uncertain background like the Galactic Center region. Here we show images of such regions obtained by the quantified Maximum-Entropy method. We also discuss a possible further use of MEM in the analysis of problematic regions of the sky....

  8. Shower maximum detector for SDC calorimetry

    International Nuclear Information System (INIS)

    Ernwein, J.

    1994-01-01

    A prototype for the SDC end-cap (EM) calorimeter complete with a pre-shower and a shower maximum detector was tested in beams of electrons and Π's at CERN by an SDC subsystem group. The prototype was manufactured from scintillator tiles and strips read out with 1 mm diameter wave-length shifting fibers. The design and construction of the shower maximum detector is described, and results of laboratory tests on light yield and performance of the scintillator-fiber system are given. Preliminary results on energy and position measurements with the shower max detector in the test beam are shown. (authors). 4 refs., 5 figs

  9. Topics in Bayesian statistics and maximum entropy

    International Nuclear Information System (INIS)

    Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.

    1998-12-01

    Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)

  10. Density estimation by maximum quantum entropy

    International Nuclear Information System (INIS)

    Silver, R.N.; Wallstrom, T.; Martz, H.F.

    1993-01-01

    A new Bayesian method for non-parametric density estimation is proposed, based on a mathematical analogy to quantum statistical physics. The mathematical procedure is related to maximum entropy methods for inverse problems and image reconstruction. The information divergence enforces global smoothing toward default models, convexity, positivity, extensivity and normalization. The novel feature is the replacement of classical entropy by quantum entropy, so that local smoothing is enforced by constraints on differential operators. The linear response of the estimate is proportional to the covariance. The hyperparameters are estimated by type-II maximum likelihood (evidence). The method is demonstrated on textbook data sets

  11. Scientific substantination of maximum allowable concentration of fluopicolide in water

    Directory of Open Access Journals (Sweden)

    Pelo I.М.

    2014-03-01

    Full Text Available In order to substantiate fluopicolide maximum allowable concentration in the water of water reservoirs the research was carried out. Methods of study: laboratory hygienic experiment using organoleptic and sanitary-chemical, sanitary-toxicological, sanitary-microbiological and mathematical methods. The results of fluopicolide influence on organoleptic properties of water, sanitary regimen of reservoirs for household purposes were given and its subthreshold concentration in water by sanitary and toxicological hazard index was calculated. The threshold concentration of the substance by the main hazard criteria was established, the maximum allowable concentration in water was substantiated. The studies led to the following conclusions: fluopicolide threshold concentration in water by organoleptic hazard index (limiting criterion – the smell – 0.15 mg/dm3, general sanitary hazard index (limiting criteria – impact on the number of saprophytic microflora, biochemical oxygen demand and nitrification – 0.015 mg/dm3, the maximum noneffective concentration – 0.14 mg/dm3, the maximum allowable concentration - 0.015 mg/dm3.

  12. Nonsymmetric entropy and maximum nonsymmetric entropy principle

    International Nuclear Information System (INIS)

    Liu Chengshi

    2009-01-01

    Under the frame of a statistical model, the concept of nonsymmetric entropy which generalizes the concepts of Boltzmann's entropy and Shannon's entropy, is defined. Maximum nonsymmetric entropy principle is proved. Some important distribution laws such as power law, can be derived from this principle naturally. Especially, nonsymmetric entropy is more convenient than other entropy such as Tsallis's entropy in deriving power laws.

  13. Maximum speed of dewetting on a fiber

    NARCIS (Netherlands)

    Chan, Tak Shing; Gueudre, Thomas; Snoeijer, Jacobus Hendrikus

    2011-01-01

    A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched asymptotic expansion and derive the maximum speed

  14. Maximum potential preventive effect of hip protectors

    NARCIS (Netherlands)

    van Schoor, N.M.; Smit, J.H.; Bouter, L.M.; Veenings, B.; Asma, G.B.; Lips, P.T.A.M.

    2007-01-01

    OBJECTIVES: To estimate the maximum potential preventive effect of hip protectors in older persons living in the community or homes for the elderly. DESIGN: Observational cohort study. SETTING: Emergency departments in the Netherlands. PARTICIPANTS: Hip fracture patients aged 70 and older who

  15. Maximum gain of Yagi-Uda arrays

    DEFF Research Database (Denmark)

    Bojsen, J.H.; Schjær-Jacobsen, Hans; Nilsson, E.

    1971-01-01

    Numerical optimisation techniques have been used to find the maximum gain of some specific parasitic arrays. The gain of an array of infinitely thin, equispaced dipoles loaded with arbitrary reactances has been optimised. The results show that standard travelling-wave design methods are not optimum....... Yagi–Uda arrays with equal and unequal spacing have also been optimised with experimental verification....

  16. correlation between maximum dry density and cohesion

    African Journals Online (AJOL)

    HOD

    represents maximum dry density, signifies plastic limit and is liquid limit. Researchers [6, 7] estimate compaction parameters. Aside from the correlation existing between compaction parameters and other physical quantities there are some other correlations that have been investigated by other researchers. The well-known.

  17. Weak scale from the maximum entropy principle

    Science.gov (United States)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2015-03-01

    The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.

  18. The maximum-entropy method in superspace

    Czech Academy of Sciences Publication Activity Database

    van Smaalen, S.; Palatinus, Lukáš; Schneider, M.

    2003-01-01

    Roč. 59, - (2003), s. 459-469 ISSN 0108-7673 Grant - others:DFG(DE) XX Institutional research plan: CEZ:AV0Z1010914 Keywords : maximum-entropy method, * aperiodic crystals * electron density Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.558, year: 2003

  19. Achieving maximum sustainable yield in mixed fisheries

    NARCIS (Netherlands)

    Ulrich, Clara; Vermard, Youen; Dolder, Paul J.; Brunel, Thomas; Jardim, Ernesto; Holmes, Steven J.; Kempf, Alexander; Mortensen, Lars O.; Poos, Jan Jaap; Rindorf, Anna

    2017-01-01

    Achieving single species maximum sustainable yield (MSY) in complex and dynamic fisheries targeting multiple species (mixed fisheries) is challenging because achieving the objective for one species may mean missing the objective for another. The North Sea mixed fisheries are a representative example

  20. 5 CFR 534.203 - Maximum stipends.

    Science.gov (United States)

    2010-01-01

    ... maximum stipend established under this section. (e) A trainee at a non-Federal hospital, clinic, or medical or dental laboratory who is assigned to a Federal hospital, clinic, or medical or dental... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY UNDER OTHER SYSTEMS Student...

  1. Minimal length, Friedmann equations and maximum density

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Adel [Center for Theoretical Physics, British University of Egypt,Sherouk City 11837, P.O. Box 43 (Egypt); Department of Physics, Faculty of Science, Ain Shams University,Cairo, 11566 (Egypt); Ali, Ahmed Farag [Centre for Fundamental Physics, Zewail City of Science and Technology,Sheikh Zayed, 12588, Giza (Egypt); Department of Physics, Faculty of Science, Benha University,Benha, 13518 (Egypt)

    2014-06-16

    Inspired by Jacobson’s thermodynamic approach, Cai et al. have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation http://dx.doi.org/10.1103/PhysRevD.75.084003 of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p(ρ,a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p=ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.

  2. Optimum detection for extracting maximum information from symmetric qubit sets

    International Nuclear Information System (INIS)

    Mizuno, Jun; Fujiwara, Mikio; Sasaki, Masahide; Akiba, Makoto; Kawanishi, Tetsuya; Barnett, Stephen M.

    2002-01-01

    We demonstrate a class of optimum detection strategies for extracting the maximum information from sets of equiprobable real symmetric qubit states of a single photon. These optimum strategies have been predicted by Sasaki et al. [Phys. Rev. A 59, 3325 (1999)]. The peculiar aspect is that the detections with at least three outputs suffice for optimum extraction of information regardless of the number of signal elements. The cases of ternary (or trine), quinary, and septenary polarization signals are studied where a standard von Neumann detection (a projection onto a binary orthogonal basis) fails to access the maximum information. Our experiments demonstrate that it is possible with present technologies to attain about 96% of the theoretical limit

  3. Maximum field capability of energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Turkot, F.; Cooper, W.E.; Hanft, R.; McInturff, A.

    1983-01-01

    At an energy of 1 TeV the superconducting cable in the Energy Saver dipole magnets will be operating at ca. 96% of its nominal short sample limit; the corresponding number in the quadrupole magnets will be 81%. All magnets for the Saver are individually tested for maximum current capability under two modes of operation; some 900 dipoles and 275 quadrupoles have now been measured. The dipole winding is composed of four individually wound coils which in general come from four different reels of cable. As part of the magnet fabrication quality control a short piece of cable from both ends of each reel has its critical current measured at 5T and 4.3K. In this paper the authors describe and present the statistical results of the maximum field tests (including quench and cycle) on Saver dipole and quadrupole magnets and explore the correlation of these tests with cable critical current

  4. Algorithms of maximum likelihood data clustering with applications

    Science.gov (United States)

    Giada, Lorenzo; Marsili, Matteo

    2002-12-01

    We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.

  5. Maximum entropy reconstructions for crystallographic imaging; Cristallographie et reconstruction d`images par maximum d`entropie

    Energy Technology Data Exchange (ETDEWEB)

    Papoular, R

    1997-07-01

    The Fourier Transform is of central importance to Crystallography since it allows the visualization in real space of tridimensional scattering densities pertaining to physical systems from diffraction data (powder or single-crystal diffraction, using x-rays, neutrons, electrons or else). In turn, this visualization makes it possible to model and parametrize these systems, the crystal structures of which are eventually refined by Least-Squares techniques (e.g., the Rietveld method in the case of Powder Diffraction). The Maximum Entropy Method (sometimes called MEM or MaxEnt) is a general imaging technique, related to solving ill-conditioned inverse problems. It is ideally suited for tackling undetermined systems of linear questions (for which the number of variables is much larger than the number of equations). It is already being applied successfully in Astronomy, Radioastronomy and Medical Imaging. The advantages of using MAXIMUM Entropy over conventional Fourier and `difference Fourier` syntheses stem from the following facts: MaxEnt takes the experimental error bars into account; MaxEnt incorporate Prior Knowledge (e.g., the positivity of the scattering density in some instances); MaxEnt allows density reconstructions from incompletely phased data, as well as from overlapping Bragg reflections; MaxEnt substantially reduces truncation errors to which conventional experimental Fourier reconstructions are usually prone. The principles of Maximum Entropy imaging as applied to Crystallography are first presented. The method is then illustrated by a detailed example specific to Neutron Diffraction: the search for proton in solids. (author). 17 refs.

  6. Direct maximum parsimony phylogeny reconstruction from genotype data

    Directory of Open Access Journals (Sweden)

    Ravi R

    2007-12-01

    Full Text Available Abstract Background Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes. Results In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes. Conclusion Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.

  7. 75 FR 43840 - Inflation Adjustment of the Ordinary Maximum and Aggravated Maximum Civil Monetary Penalties for...

    Science.gov (United States)

    2010-07-27

    ...-17530; Notice No. 2] RIN 2130-ZA03 Inflation Adjustment of the Ordinary Maximum and Aggravated Maximum... remains at $250. These adjustments are required by the Federal Civil Penalties Inflation Adjustment Act [email protected] . SUPPLEMENTARY INFORMATION: The Federal Civil Penalties Inflation Adjustment Act of 1990...

  8. Guidance document on the derivation of maximum permissible risk levels for human intake of soil contaminants

    NARCIS (Netherlands)

    Janssen PJCM; Speijers GJA; CSR

    1997-01-01

    This report contains a basic step-to-step description of the procedure followed in the derivation of the human-toxicological Maximum Permissible Risk (MPR ; in Dutch: Maximum Toelaatbaar Risico, MTR) for soil contaminants. In recent years this method has been applied for a large number of compounds

  9. Zipf's law, power laws and maximum entropy

    International Nuclear Information System (INIS)

    Visser, Matt

    2013-01-01

    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified. (paper)

  10. Maximum-entropy description of animal movement.

    Science.gov (United States)

    Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M

    2015-03-01

    We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

  11. Pareto versus lognormal: a maximum entropy test.

    Science.gov (United States)

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

    2011-08-01

    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

  12. Maximum likelihood estimation for integrated diffusion processes

    DEFF Research Database (Denmark)

    Baltazar-Larios, Fernando; Sørensen, Michael

    We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated...... EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...... by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated...

  13. A Maximum Radius for Habitable Planets.

    Science.gov (United States)

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  14. Maximum parsimony on subsets of taxa.

    Science.gov (United States)

    Fischer, Mareike; Thatte, Bhalchandra D

    2009-09-21

    In this paper we investigate mathematical questions concerning the reliability (reconstruction accuracy) of Fitch's maximum parsimony algorithm for reconstructing the ancestral state given a phylogenetic tree and a character. In particular, we consider the question whether the maximum parsimony method applied to a subset of taxa can reconstruct the ancestral state of the root more accurately than when applied to all taxa, and we give an example showing that this indeed is possible. A surprising feature of our example is that ignoring a taxon closer to the root improves the reliability of the method. On the other hand, in the case of the two-state symmetric substitution model, we answer affirmatively a conjecture of Li, Steel and Zhang which states that under a molecular clock the probability that the state at a single taxon is a correct guess of the ancestral state is a lower bound on the reconstruction accuracy of Fitch's method applied to all taxa.

  15. Maximum entropy analysis of liquid diffraction data

    International Nuclear Information System (INIS)

    Root, J.H.; Egelstaff, P.A.; Nickel, B.G.

    1986-01-01

    A maximum entropy method for reducing truncation effects in the inverse Fourier transform of structure factor, S(q), to pair correlation function, g(r), is described. The advantages and limitations of the method are explored with the PY hard sphere structure factor as model input data. An example using real data on liquid chlorine, is then presented. It is seen that spurious structure is greatly reduced in comparison to traditional Fourier transform methods. (author)

  16. Automatic maximum entropy spectral reconstruction in NMR

    International Nuclear Information System (INIS)

    Mobli, Mehdi; Maciejewski, Mark W.; Gryk, Michael R.; Hoch, Jeffrey C.

    2007-01-01

    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system

  17. Number Sense on the Number Line

    Science.gov (United States)

    Woods, Dawn Marie; Ketterlin Geller, Leanne; Basaraba, Deni

    2018-01-01

    A strong foundation in early number concepts is critical for students' future success in mathematics. Research suggests that visual representations, like a number line, support students' development of number sense by helping them create a mental representation of the order and magnitude of numbers. In addition, explicitly sequencing instruction…

  18. The Maximums and Minimums of a Polnomial or Maximizing Profits and Minimizing Aircraft Losses.

    Science.gov (United States)

    Groves, Brenton R.

    1984-01-01

    Plotting a polynomial over the range of real numbers when its derivative contains complex roots is discussed. The polynomials are graphed by calculating the minimums, maximums, and zeros of the function. (MNS)

  19. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  20. Elemental composition of cosmic rays using a maximum likelihood method

    International Nuclear Information System (INIS)

    Ruddick, K.

    1996-01-01

    We present a progress report on our attempts to determine the composition of cosmic rays in the knee region of the energy spectrum. We have used three different devices to measure properties of the extensive air showers produced by primary cosmic rays: the Soudan 2 underground detector measures the muon flux deep underground, a proportional tube array samples shower density at the surface of the earth, and a Cherenkov array observes light produced high in the atmosphere. We have begun maximum likelihood fits to these measurements with the hope of determining the nuclear mass number A on an event by event basis. (orig.)

  1. An Efficient Algorithm for the Maximum Distance Problem

    Directory of Open Access Journals (Sweden)

    Gabrielle Assunta Grün

    2001-12-01

    Full Text Available Efficient algorithms for temporal reasoning are essential in knowledge-based systems. This is central in many areas of Artificial Intelligence including scheduling, planning, plan recognition, and natural language understanding. As such, scalability is a crucial consideration in temporal reasoning. While reasoning in the interval algebra is NP-complete, reasoning in the less expressive point algebra is tractable. In this paper, we explore an extension to the work of Gerevini and Schubert which is based on the point algebra. In their seminal framework, temporal relations are expressed as a directed acyclic graph partitioned into chains and supported by a metagraph data structure, where time points or events are represented by vertices, and directed edges are labelled with < or ≤. They are interested in fast algorithms for determining the strongest relation between two events. They begin by developing fast algorithms for the case where all points lie on a chain. In this paper, we are interested in a generalization of this, namely we consider the problem of finding the maximum ``distance'' between two vertices in a chain ; this problem arises in real world applications such as in process control and crew scheduling. We describe an O(n time preprocessing algorithm for the maximum distance problem on chains. It allows queries for the maximum number of < edges between two vertices to be answered in O(1 time. This matches the performance of the algorithm of Gerevini and Schubert for determining the strongest relation holding between two vertices in a chain.

  2. Maximum likelihood as a common computational framework in tomotherapy

    International Nuclear Information System (INIS)

    Olivera, G.H.; Shepard, D.M.; Reckwerdt, P.J.; Ruchala, K.; Zachman, J.; Fitchard, E.E.; Mackie, T.R.

    1998-01-01

    Tomotherapy is a dose delivery technique using helical or axial intensity modulated beams. One of the strengths of the tomotherapy concept is that it can incorporate a number of processes into a single piece of equipment. These processes include treatment optimization planning, dose reconstruction and kilovoltage/megavoltage image reconstruction. A common computational technique that could be used for all of these processes would be very appealing. The maximum likelihood estimator, originally developed for emission tomography, can serve as a useful tool in imaging and radiotherapy. We believe that this approach can play an important role in the processes of optimization planning, dose reconstruction and kilovoltage and/or megavoltage image reconstruction. These processes involve computations that require comparable physical methods. They are also based on equivalent assumptions, and they have similar mathematical solutions. As a result, the maximum likelihood approach is able to provide a common framework for all three of these computational problems. We will demonstrate how maximum likelihood methods can be applied to optimization planning, dose reconstruction and megavoltage image reconstruction in tomotherapy. Results for planning optimization, dose reconstruction and megavoltage image reconstruction will be presented. Strengths and weaknesses of the methodology are analysed. Future directions for this work are also suggested. (author)

  3. Maximum entropy decomposition of quadrupole mass spectra

    International Nuclear Information System (INIS)

    Toussaint, U. von; Dose, V.; Golan, A.

    2004-01-01

    We present an information-theoretic method called generalized maximum entropy (GME) for decomposing mass spectra of gas mixtures from noisy measurements. In this GME approach to the noisy, underdetermined inverse problem, the joint entropies of concentration, cracking, and noise probabilities are maximized subject to the measured data. This provides a robust estimation for the unknown cracking patterns and the concentrations of the contributing molecules. The method is applied to mass spectroscopic data of hydrocarbons, and the estimates are compared with those received from a Bayesian approach. We show that the GME method is efficient and is computationally fast

  4. Maximum power operation of interacting molecular motors

    DEFF Research Database (Denmark)

    Golubeva, Natalia; Imparato, Alberto

    2013-01-01

    , as compared to the non-interacting system, in a wide range of biologically compatible scenarios. We furthermore consider the case where the motor-motor interaction directly affects the internal chemical cycle and investigate the effect on the system dynamics and thermodynamics.......We study the mechanical and thermodynamic properties of different traffic models for kinesin which are relevant in biological and experimental contexts. We find that motor-motor interactions play a fundamental role by enhancing the thermodynamic efficiency at maximum power of the motors...

  5. On the maximum drawdown during speculative bubbles

    Science.gov (United States)

    Rotundo, Giulia; Navarra, Mauro

    2007-08-01

    A taxonomy of large financial crashes proposed in the literature locates the burst of speculative bubbles due to endogenous causes in the framework of extreme stock market crashes, defined as falls of market prices that are outlier with respect to the bulk of drawdown price movement distribution. This paper goes on deeper in the analysis providing a further characterization of the rising part of such selected bubbles through the examination of drawdown and maximum drawdown movement of indices prices. The analysis of drawdown duration is also performed and it is the core of the risk measure estimated here.

  6. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  7. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  8. Dynamical maximum entropy approach to flocking.

    Science.gov (United States)

    Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco; Mora, Thierry; Piovani, Duccio; Tavarone, Raffaele; Walczak, Aleksandra M

    2014-04-01

    We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.

  9. Maximum Temperature Detection System for Integrated Circuits

    Science.gov (United States)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  10. Maximum entropy PDF projection: A review

    Science.gov (United States)

    Baggenstoss, Paul M.

    2017-06-01

    We review maximum entropy (MaxEnt) PDF projection, a method with wide potential applications in statistical inference. The method constructs a sampling distribution for a high-dimensional vector x based on knowing the sampling distribution p(z) of a lower-dimensional feature z = T (x). Under mild conditions, the distribution p(x) having highest possible entropy among all distributions consistent with p(z) may be readily found. Furthermore, the MaxEnt p(x) may be sampled, making the approach useful in Monte Carlo methods. We review the theorem and present a case study in model order selection and classification for handwritten character recognition.

  11. Multiperiod Maximum Loss is time unit invariant.

    Science.gov (United States)

    Kovacevic, Raimund M; Breuer, Thomas

    2016-01-01

    Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant.

  12. Maximum a posteriori decoder for digital communications

    Science.gov (United States)

    Altes, Richard A. (Inventor)

    1997-01-01

    A system and method for decoding by identification of the most likely phase coded signal corresponding to received data. The present invention has particular application to communication with signals that experience spurious random phase perturbations. The generalized estimator-correlator uses a maximum a posteriori (MAP) estimator to generate phase estimates for correlation with incoming data samples and for correlation with mean phases indicative of unique hypothesized signals. The result is a MAP likelihood statistic for each hypothesized transmission, wherein the highest value statistic identifies the transmitted signal.

  13. Improved Maximum Parsimony Models for Phylogenetic Networks.

    Science.gov (United States)

    Van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2018-05-01

    Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.

  14. Ancestral sequence reconstruction with Maximum Parsimony

    OpenAIRE

    Herbst, Lina; Fischer, Mareike

    2017-01-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference as well as for ancestral sequence inference is Maximum Parsimony (...

  15. Seeking the epoch of maximum luminosity for dusty quasars

    International Nuclear Information System (INIS)

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine

    2014-01-01

    Infrared luminosities νL ν (7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 maximum at any redshift z < 5, reaching a plateau for z ≳ 3 with maximum luminosity νL ν (7.8 μm) ≳ 10 47 erg s –1 ; luminosity functions show one quasar Gpc –3 having νL ν (7.8 μm) > 10 46.6 erg s –1 for all 2 maximum luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL ν (0.25 μm), have the largest values of the ratio νL ν (0.25 μm)/νL ν (7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  16. Objective Bayesianism and the Maximum Entropy Principle

    Directory of Open Access Journals (Sweden)

    Jon Williamson

    2013-09-01

    Full Text Available Objective Bayesian epistemology invokes three norms: the strengths of our beliefs should be probabilities; they should be calibrated to our evidence of physical probabilities; and they should otherwise equivocate sufficiently between the basic propositions that we can express. The three norms are sometimes explicated by appealing to the maximum entropy principle, which says that a belief function should be a probability function, from all those that are calibrated to evidence, that has maximum entropy. However, the three norms of objective Bayesianism are usually justified in different ways. In this paper, we show that the three norms can all be subsumed under a single justification in terms of minimising worst-case expected loss. This, in turn, is equivalent to maximising a generalised notion of entropy. We suggest that requiring language invariance, in addition to minimising worst-case expected loss, motivates maximisation of standard entropy as opposed to maximisation of other instances of generalised entropy. Our argument also provides a qualified justification for updating degrees of belief by Bayesian conditionalisation. However, conditional probabilities play a less central part in the objective Bayesian account than they do under the subjective view of Bayesianism, leading to a reduced role for Bayes’ Theorem.

  17. Efficient heuristics for maximum common substructure search.

    Science.gov (United States)

    Englert, Péter; Kovács, Péter

    2015-05-26

    Maximum common substructure search is a computationally hard optimization problem with diverse applications in the field of cheminformatics, including similarity search, lead optimization, molecule alignment, and clustering. Most of these applications have strict constraints on running time, so heuristic methods are often preferred. However, the development of an algorithm that is both fast enough and accurate enough for most practical purposes is still a challenge. Moreover, in some applications, the quality of a common substructure depends not only on its size but also on various topological features of the one-to-one atom correspondence it defines. Two state-of-the-art heuristic algorithms for finding maximum common substructures have been implemented at ChemAxon Ltd., and effective heuristics have been developed to improve both their efficiency and the relevance of the atom mappings they provide. The implementations have been thoroughly evaluated and compared with existing solutions (KCOMBU and Indigo). The heuristics have been found to greatly improve the performance and applicability of the algorithms. The purpose of this paper is to introduce the applied methods and present the experimental results.

  18. Sequential and Parallel Algorithms for Finding a Maximum Convex Polygon

    DEFF Research Database (Denmark)

    Fischer, Paul

    1997-01-01

    This paper investigates the problem where one is given a finite set of n points in the plane each of which is labeled either ?positive? or ?negative?. We consider bounded convex polygons, the vertices of which are positive points and which do not contain any negative point. It is shown how...... such a polygon which is maximal with respect to area can be found in time O(n³ log n). With the same running time one can also find such a polygon which contains a maximum number of positive points. If, in addition, the number of vertices of the polygon is restricted to be at most M, then the running time...... becomes O(M n³ log n). It is also shown how to find a maximum convex polygon which contains a given point in time O(n³ log n). Two parallel algorithms for the basic problem are also presented. The first one runs in time O(n log n) using O(n²) processors, the second one has polylogarithmic time but needs O...

  19. Bootstrap-based Support of HGT Inferred by Maximum Parsimony

    Directory of Open Access Journals (Sweden)

    Nakhleh Luay

    2010-05-01

    Full Text Available Abstract Background Maximum parsimony is one of the most commonly used criteria for reconstructing phylogenetic trees. Recently, Nakhleh and co-workers extended this criterion to enable reconstruction of phylogenetic networks, and demonstrated its application to detecting reticulate evolutionary relationships. However, one of the major problems with this extension has been that it favors more complex evolutionary relationships over simpler ones, thus having the potential for overestimating the amount of reticulation in the data. An ad hoc solution to this problem that has been used entails inspecting the improvement in the parsimony length as more reticulation events are added to the model, and stopping when the improvement is below a certain threshold. Results In this paper, we address this problem in a more systematic way, by proposing a nonparametric bootstrap-based measure of support of inferred reticulation events, and using it to determine the number of those events, as well as their placements. A number of samples is generated from the given sequence alignment, and reticulation events are inferred based on each sample. Finally, the support of each reticulation event is quantified based on the inferences made over all samples. Conclusions We have implemented our method in the NEPAL software tool (available publicly at http://bioinfo.cs.rice.edu/, and studied its performance on both biological and simulated data sets. While our studies show very promising results, they also highlight issues that are inherently challenging when applying the maximum parsimony criterion to detect reticulate evolution.

  20. Bootstrap-based support of HGT inferred by maximum parsimony.

    Science.gov (United States)

    Park, Hyun Jung; Jin, Guohua; Nakhleh, Luay

    2010-05-05

    Maximum parsimony is one of the most commonly used criteria for reconstructing phylogenetic trees. Recently, Nakhleh and co-workers extended this criterion to enable reconstruction of phylogenetic networks, and demonstrated its application to detecting reticulate evolutionary relationships. However, one of the major problems with this extension has been that it favors more complex evolutionary relationships over simpler ones, thus having the potential for overestimating the amount of reticulation in the data. An ad hoc solution to this problem that has been used entails inspecting the improvement in the parsimony length as more reticulation events are added to the model, and stopping when the improvement is below a certain threshold. In this paper, we address this problem in a more systematic way, by proposing a nonparametric bootstrap-based measure of support of inferred reticulation events, and using it to determine the number of those events, as well as their placements. A number of samples is generated from the given sequence alignment, and reticulation events are inferred based on each sample. Finally, the support of each reticulation event is quantified based on the inferences made over all samples. We have implemented our method in the NEPAL software tool (available publicly at http://bioinfo.cs.rice.edu/), and studied its performance on both biological and simulated data sets. While our studies show very promising results, they also highlight issues that are inherently challenging when applying the maximum parsimony criterion to detect reticulate evolution.

  1. Hydraulic Limits on Maximum Plant Transpiration

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  2. Analogue of Pontryagin's maximum principle for multiple integrals minimization problems

    OpenAIRE

    Mikhail, Zelikin

    2016-01-01

    The theorem like Pontryagin's maximum principle for multiple integrals is proved. Unlike the usual maximum principle, the maximum should be taken not over all matrices, but only on matrices of rank one. Examples are given.

  3. Lake Basin Fetch and Maximum Length/Width

    Data.gov (United States)

    Minnesota Department of Natural Resources — Linear features representing the Fetch, Maximum Length and Maximum Width of a lake basin. Fetch, maximum length and average width are calcuated from the lake polygon...

  4. Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting.

    Science.gov (United States)

    Zhao, Bo; Setsompop, Kawin; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L

    2016-08-01

    This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple MR tissue parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization.

  5. Maximum Profit Configurations of Commercial Engines

    Directory of Open Access Journals (Sweden)

    Yiran Chen

    2011-06-01

    Full Text Available An investigation of commercial engines with finite capacity low- and high-price economic subsystems and a generalized commodity transfer law [n ∝ Δ (P m] in commodity flow processes, in which effects of the price elasticities of supply and demand are introduced, is presented in this paper. Optimal cycle configurations of commercial engines for maximum profit are obtained by applying optimal control theory. In some special cases, the eventual state—market equilibrium—is solely determined by the initial conditions and the inherent characteristics of two subsystems; while the different ways of transfer affect the model in respects of the specific forms of the paths of prices and the instantaneous commodity flow, i.e., the optimal configuration.

  6. Modelling maximum likelihood estimation of availability

    International Nuclear Information System (INIS)

    Waller, R.A.; Tietjen, G.L.; Rock, G.W.

    1975-01-01

    Suppose the performance of a nuclear powered electrical generating power plant is continuously monitored to record the sequence of failure and repairs during sustained operation. The purpose of this study is to assess one method of estimating the performance of the power plant when the measure of performance is availability. That is, we determine the probability that the plant is operational at time t. To study the availability of a power plant, we first assume statistical models for the variables, X and Y, which denote the time-to-failure and the time-to-repair variables, respectively. Once those statistical models are specified, the availability, A(t), can be expressed as a function of some or all of their parameters. Usually those parameters are unknown in practice and so A(t) is unknown. This paper discusses the maximum likelihood estimator of A(t) when the time-to-failure model for X is an exponential density with parameter, lambda, and the time-to-repair model for Y is an exponential density with parameter, theta. Under the assumption of exponential models for X and Y, it follows that the instantaneous availability at time t is A(t)=lambda/(lambda+theta)+theta/(lambda+theta)exp[-[(1/lambda)+(1/theta)]t] with t>0. Also, the steady-state availability is A(infinity)=lambda/(lambda+theta). We use the observations from n failure-repair cycles of the power plant, say X 1 , X 2 , ..., Xsub(n), Y 1 , Y 2 , ..., Ysub(n) to present the maximum likelihood estimators of A(t) and A(infinity). The exact sampling distributions for those estimators and some statistical properties are discussed before a simulation model is used to determine 95% simulation intervals for A(t). The methodology is applied to two examples which approximate the operating history of two nuclear power plants. (author)

  7. Evaluating the maximum patient radiation dose in cardiac interventional procedures

    International Nuclear Information System (INIS)

    Kato, M.; Chida, K.; Sato, T.; Oosaka, H.; Tosa, T.; Kadowaki, K.

    2011-01-01

    Many of the X-ray systems that are used for cardiac interventional radiology provide no way to evaluate the patient maximum skin dose (MSD). The authors report a new method for evaluating the MSD by using the cumulative patient entrance skin dose (ESD), which includes a back-scatter factor and the number of cine-angiography frames during percutaneous coronary intervention (PCI). Four hundred consecutive PCI patients (315 men and 85 women) were studied. The correlation between the cumulative ESD and number of cine-angiography frames was investigated. The irradiation and overlapping fields were verified using dose-mapping software. A good correlation was found between the cumulative ESD and the number of cine-angiography frames. The MSD could be estimated using the proportion of cine-angiography frames used for the main angle of view relative to the total number of cine-angiography frames and multiplying this by the cumulative ESD. The average MSD (3.0±1.9 Gy) was lower than the average cumulative ESD (4.6±2.6 Gy). This method is an easy way to estimate the MSD during PCI. (authors)

  8. A theory of the Earth's magnetic field and of sunspots, based on a self-excited dynamo incorporating the Hall effect

    Directory of Open Access Journals (Sweden)

    A. de Paor

    2001-01-01

    Full Text Available A new viewpoint on the generation and maintenance of the Earth's magnetic field is put forward, which integrates self-exciting dynamo theory with the possibility of energy coupling along orthogonal axes provided by the Hall effect. A nonlinear third-order system is derived, with a fourth equation serving as an observer of unspecified geophysical processes which could result in field reversal. Lyapunov analysis proves that chaos is not intrinsic to this system. Relative constancy of one of the variables produces pseudo equilibrium in a second order subsystem and allows for self-excitation of the geomagnetic field. Electromagnetic analysis yields expressions for key parameters. Models for secular variations recorded at London, Palermo and at the Cape of Good Hope over the past four hundred years are offered. Offset of the Earth's magnetic axis from the geographic axis is central to time-varying declination, but its causes have not yet been established. Applicability of the model to the explanation of sunspot activity is outlined. A corroborating experiment published by Peter Barlow in 1831 is appended.

  9. Maximum entropy principle and hydrodynamic models in statistical mechanics

    International Nuclear Information System (INIS)

    Trovato, M.; Reggiani, L.

    2012-01-01

    This review presents the state of the art of the maximum entropy principle (MEP) in its classical and quantum (QMEP) formulation. Within the classical MEP we overview a general theory able to provide, in a dynamical context, the macroscopic relevant variables for carrier transport in the presence of electric fields of arbitrary strength. For the macroscopic variables the linearized maximum entropy approach is developed including full-band effects within a total energy scheme. Under spatially homogeneous conditions, we construct a closed set of hydrodynamic equations for the small-signal (dynamic) response of the macroscopic variables. The coupling between the driving field and the energy dissipation is analyzed quantitatively by using an arbitrary number of moments of the distribution function. Analogously, the theoretical approach is applied to many one-dimensional n + nn + submicron Si structures by using different band structure models, different doping profiles, different applied biases and is validated by comparing numerical calculations with ensemble Monte Carlo simulations and with available experimental data. Within the quantum MEP we introduce a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is then asserted as fundamental principle of quantum statistical mechanics. Accordingly, we have developed a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theory is formulated both in thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of ħ 2 , being ħ the reduced Planck constant. In particular, by using an arbitrary number of moments, we prove that: i) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives both of the

  10. A maximum power point tracking for photovoltaic-SPE system using a maximum current controller

    Energy Technology Data Exchange (ETDEWEB)

    Muhida, Riza [Osaka Univ., Dept. of Physical Science, Toyonaka, Osaka (Japan); Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Park, Minwon; Dakkak, Mohammed; Matsuura, Kenji [Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Tsuyoshi, Akira; Michira, Masakazu [Kobe City College of Technology, Nishi-ku, Kobe (Japan)

    2003-02-01

    Processes to produce hydrogen from solar photovoltaic (PV)-powered water electrolysis using solid polymer electrolysis (SPE) are reported. An alternative control of maximum power point tracking (MPPT) in the PV-SPE system based on the maximum current searching methods has been designed and implemented. Based on the characteristics of voltage-current and theoretical analysis of SPE, it can be shown that the tracking of the maximum current output of DC-DC converter in SPE side will track the MPPT of photovoltaic panel simultaneously. This method uses a proportional integrator controller to control the duty factor of DC-DC converter with pulse-width modulator (PWM). The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment. (Author)

  11. Maximum Entropy, Word-Frequency, Chinese Characters, and Multiple Meanings

    Science.gov (United States)

    Yan, Xiaoyong; Minnhagen, Petter

    2015-01-01

    The word-frequency distribution of a text written by an author is well accounted for by a maximum entropy distribution, the RGF (random group formation)-prediction. The RGF-distribution is completely determined by the a priori values of the total number of words in the text (M), the number of distinct words (N) and the number of repetitions of the most common word (kmax). It is here shown that this maximum entropy prediction also describes a text written in Chinese characters. In particular it is shown that although the same Chinese text written in words and Chinese characters have quite differently shaped distributions, they are nevertheless both well predicted by their respective three a priori characteristic values. It is pointed out that this is analogous to the change in the shape of the distribution when translating a given text to another language. Another consequence of the RGF-prediction is that taking a part of a long text will change the input parameters (M, N, kmax) and consequently also the shape of the frequency distribution. This is explicitly confirmed for texts written in Chinese characters. Since the RGF-prediction has no system-specific information beyond the three a priori values (M, N, kmax), any specific language characteristic has to be sought in systematic deviations from the RGF-prediction and the measured frequencies. One such systematic deviation is identified and, through a statistical information theoretical argument and an extended RGF-model, it is proposed that this deviation is caused by multiple meanings of Chinese characters. The effect is stronger for Chinese characters than for Chinese words. The relation between Zipf’s law, the Simon-model for texts and the present results are discussed. PMID:25955175

  12. Publicizing Your Web Resources for Maximum Exposure.

    Science.gov (United States)

    Smith, Kerry J.

    2001-01-01

    Offers advice to librarians for marketing their Web sites on Internet search engines. Advises against relying solely on spiders and recommends adding metadata to the source code and delivering that information directly to the search engines. Gives an overview of metadata and typical coding for meta tags. Includes Web addresses for a number of…

  13. Maximum mass of magnetic white dwarfs

    International Nuclear Information System (INIS)

    Paret, Daryel Manreza; Horvath, Jorge Ernesto; Martínez, Aurora Perez

    2015-01-01

    We revisit the problem of the maximum masses of magnetized white dwarfs (WDs). The impact of a strong magnetic field on the structure equations is addressed. The pressures become anisotropic due to the presence of the magnetic field and split into parallel and perpendicular components. We first construct stable solutions of the Tolman-Oppenheimer-Volkoff equations for parallel pressures and find that physical solutions vanish for the perpendicular pressure when B ≳ 10 13 G. This fact establishes an upper bound for a magnetic field and the stability of the configurations in the (quasi) spherical approximation. Our findings also indicate that it is not possible to obtain stable magnetized WDs with super-Chandrasekhar masses because the values of the magnetic field needed for them are higher than this bound. To proceed into the anisotropic regime, we can apply results for structure equations appropriate for a cylindrical metric with anisotropic pressures that were derived in our previous work. From the solutions of the structure equations in cylindrical symmetry we have confirmed the same bound for B ∼ 10 13 G, since beyond this value no physical solutions are possible. Our tentative conclusion is that massive WDs with masses well beyond the Chandrasekhar limit do not constitute stable solutions and should not exist. (paper)

  14. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  15. Mammographic image restoration using maximum entropy deconvolution

    International Nuclear Information System (INIS)

    Jannetta, A; Jackson, J C; Kotre, C J; Birch, I P; Robson, K J; Padgett, R

    2004-01-01

    An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate an improvement in image spatial resolution in realistic noisy radiological images with no associated penalty in terms of reduction in the signal-to-noise ratio perceived by the observer. Images of the TORMAM mammographic image quality phantom were recorded using the standard magnification settings of 1.8 magnification/fine focus and also at 1.8 magnification/broad focus and 3.0 magnification/fine focus; the latter two arrangements would normally give rise to unacceptable geometric blurring. Measured point-spread functions were used in conjunction with the MEM image processing to de-blur these images. The results are presented as comparative images of phantom test features and as observer scores for the raw and processed images. Visualization of high resolution features and the total image scores for the test phantom were improved by the application of the MEM processing. It is argued that this successful demonstration of image de-blurring in noisy radiological images offers the possibility of weakening the link between focal spot size and geometric blurring in radiology, thus opening up new approaches to system optimization

  16. Maximum Margin Clustering of Hyperspectral Data

    Science.gov (United States)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2013-09-01

    In recent decades, large margin methods such as Support Vector Machines (SVMs) are supposed to be the state-of-the-art of supervised learning methods for classification of hyperspectral data. However, the results of these algorithms mainly depend on the quality and quantity of available training data. To tackle down the problems associated with the training data, the researcher put effort into extending the capability of large margin algorithms for unsupervised learning. One of the recent proposed algorithms is Maximum Margin Clustering (MMC). The MMC is an unsupervised SVMs algorithm that simultaneously estimates both the labels and the hyperplane parameters. Nevertheless, the optimization of the MMC algorithm is a non-convex problem. Most of the existing MMC methods rely on the reformulating and the relaxing of the non-convex optimization problem as semi-definite programs (SDP), which are computationally very expensive and only can handle small data sets. Moreover, most of these algorithms are two-class classification, which cannot be used for classification of remotely sensed data. In this paper, a new MMC algorithm is used that solve the original non-convex problem using Alternative Optimization method. This algorithm is also extended for multi-class classification and its performance is evaluated. The results of the proposed algorithm show that the algorithm has acceptable results for hyperspectral data clustering.

  17. Paving the road to maximum productivity.

    Science.gov (United States)

    Holland, C

    1998-01-01

    "Job security" is an oxymoron in today's environment of downsizing, mergers, and acquisitions. Workers find themselves living by new rules in the workplace that they may not understand. How do we cope? It is the leader's charge to take advantage of this chaos and create conditions under which his or her people can understand the need for change and come together with a shared purpose to effect that change. The clinical laboratory at Arkansas Children's Hospital has taken advantage of this chaos to down-size and to redesign how the work gets done to pave the road to maximum productivity. After initial hourly cutbacks, the workers accepted the cold, hard fact that they would never get their old world back. They set goals to proactively shape their new world through reorganizing, flexing staff with workload, creating a rapid response laboratory, exploiting information technology, and outsourcing. Today the laboratory is a lean, productive machine that accepts change as a way of life. We have learned to adapt, trust, and support each other as we have journeyed together over the rough roads. We are looking forward to paving a new fork in the road to the future.

  18. Maximum power flux of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Benson, R.F.; Fainberg, J.

    1991-01-01

    The maximum auroral kilometric radiation (AKR) power flux observed by distant satellites has been increased by more than a factor of 10 from previously reported values. This increase has been achieved by a new data selection criterion and a new analysis of antenna spin modulated signals received by the radio astronomy instrument on ISEE 3. The method relies on selecting AKR events containing signals in the highest-frequency channel (1980, kHz), followed by a careful analysis that effectively increased the instrumental dynamic range by more than 20 dB by making use of the spacecraft antenna gain diagram during a spacecraft rotation. This analysis has allowed the separation of real signals from those created in the receiver by overloading. Many signals having the appearance of AKR harmonic signals were shown to be of spurious origin. During one event, however, real second harmonic AKR signals were detected even though the spacecraft was at a great distance (17 R E ) from Earth. During another event, when the spacecraft was at the orbital distance of the Moon and on the morning side of Earth, the power flux of fundamental AKR was greater than 3 x 10 -13 W m -2 Hz -1 at 360 kHz normalized to a radial distance r of 25 R E assuming the power falls off as r -2 . A comparison of these intense signal levels with the most intense source region values (obtained by ISIS 1 and Viking) suggests that multiple sources were observed by ISEE 3

  19. Maximum likelihood window for time delay estimation

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin; Kim, Chi Yup

    2004-01-01

    Time delay estimation for the detection of leak location in underground pipelines is critically important. Because the exact leak location depends upon the precision of the time delay between sensor signals due to leak noise and the speed of elastic waves, the research on the estimation of time delay has been one of the key issues in leak lovating with the time arrival difference method. In this study, an optimal Maximum Likelihood window is considered to obtain a better estimation of the time delay. This method has been proved in experiments, which can provide much clearer and more precise peaks in cross-correlation functions of leak signals. The leak location error has been less than 1 % of the distance between sensors, for example the error was not greater than 3 m for 300 m long underground pipelines. Apart from the experiment, an intensive theoretical analysis in terms of signal processing has been described. The improved leak locating with the suggested method is due to the windowing effect in frequency domain, which offers a weighting in significant frequencies.

  20. Number words and number symbols a cultural history of numbers

    CERN Document Server

    Menninger, Karl

    1992-01-01

    Classic study discusses number sequence and language and explores written numerals and computations in many cultures. "The historian of mathematics will find much to interest him here both in the contents and viewpoint, while the casual reader is likely to be intrigued by the author's superior narrative ability.

  1. 49 CFR 230.24 - Maximum allowable stress.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  2. 20 CFR 226.52 - Total annuity subject to maximum.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Total annuity subject to maximum. 226.52... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Railroad Retirement Family Maximum § 226.52 Total annuity subject to maximum. The total annuity amount which is compared to the maximum monthly amount to...

  3. Half-width at half-maximum, full-width at half-maximum analysis

    Indian Academy of Sciences (India)

    addition to the well-defined parameter full-width at half-maximum (FWHM). The distribution of ... optical side-lobes in the diffraction pattern resulting in steep central maxima [6], reduc- tion of effects of ... and broad central peak. The idea of.

  4. Cosmic shear measurement with maximum likelihood and maximum a posteriori inference

    Science.gov (United States)

    Hall, Alex; Taylor, Andy

    2017-06-01

    We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.

  5. Maximum-likelihood estimation of recent shared ancestry (ERSA).

    Science.gov (United States)

    Huff, Chad D; Witherspoon, David J; Simonson, Tatum S; Xing, Jinchuan; Watkins, W Scott; Zhang, Yuhua; Tuohy, Therese M; Neklason, Deborah W; Burt, Randall W; Guthery, Stephen L; Woodward, Scott R; Jorde, Lynn B

    2011-05-01

    Accurate estimation of recent shared ancestry is important for genetics, evolution, medicine, conservation biology, and forensics. Established methods estimate kinship accurately for first-degree through third-degree relatives. We demonstrate that chromosomal segments shared by two individuals due to identity by descent (IBD) provide much additional information about shared ancestry. We developed a maximum-likelihood method for the estimation of recent shared ancestry (ERSA) from the number and lengths of IBD segments derived from high-density SNP or whole-genome sequence data. We used ERSA to estimate relationships from SNP genotypes in 169 individuals from three large, well-defined human pedigrees. ERSA is accurate to within one degree of relationship for 97% of first-degree through fifth-degree relatives and 80% of sixth-degree and seventh-degree relatives. We demonstrate that ERSA's statistical power approaches the maximum theoretical limit imposed by the fact that distant relatives frequently share no DNA through a common ancestor. ERSA greatly expands the range of relationships that can be estimated from genetic data and is implemented in a freely available software package.

  6. Maximum parsimony, substitution model, and probability phylogenetic trees.

    Science.gov (United States)

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  7. Noise and physical limits to maximum resolution of PET images

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L.; Espana, S. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Vicente, E.; Vaquero, J.J.; Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital GU ' Gregorio Maranon' , E-28007 Madrid (Spain); Udias, J.M. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2007-10-01

    In this work we show that there is a limit for the maximum resolution achievable with a high resolution PET scanner, as well as for the best signal-to-noise ratio, which are ultimately related to the physical effects involved in the emission and detection of the radiation and thus they cannot be overcome with any particular reconstruction method. These effects prevent the spatial high frequency components of the imaged structures to be recorded by the scanner. Therefore, the information encoded in these high frequencies cannot be recovered by any reconstruction technique. Within this framework, we have determined the maximum resolution achievable for a given acquisition as a function of data statistics and scanner parameters, like the size of the crystals or the inter-crystal scatter. In particular, the noise level in the data as a limitation factor to yield high-resolution images in tomographs with small crystal sizes is outlined. These results have implications regarding how to decide the optimal number of voxels of the reconstructed image or how to design better PET scanners.

  8. Noise and physical limits to maximum resolution of PET images

    International Nuclear Information System (INIS)

    Herraiz, J.L.; Espana, S.; Vicente, E.; Vaquero, J.J.; Desco, M.; Udias, J.M.

    2007-01-01

    In this work we show that there is a limit for the maximum resolution achievable with a high resolution PET scanner, as well as for the best signal-to-noise ratio, which are ultimately related to the physical effects involved in the emission and detection of the radiation and thus they cannot be overcome with any particular reconstruction method. These effects prevent the spatial high frequency components of the imaged structures to be recorded by the scanner. Therefore, the information encoded in these high frequencies cannot be recovered by any reconstruction technique. Within this framework, we have determined the maximum resolution achievable for a given acquisition as a function of data statistics and scanner parameters, like the size of the crystals or the inter-crystal scatter. In particular, the noise level in the data as a limitation factor to yield high-resolution images in tomographs with small crystal sizes is outlined. These results have implications regarding how to decide the optimal number of voxels of the reconstructed image or how to design better PET scanners

  9. The MIXMAX random number generator

    Science.gov (United States)

    Savvidy, Konstantin G.

    2015-11-01

    In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.

  10. Relative azimuth inversion by way of damped maximum correlation estimates

    Science.gov (United States)

    Ringler, A.T.; Edwards, J.D.; Hutt, C.R.; Shelly, F.

    2012-01-01

    Horizontal seismic data are utilized in a large number of Earth studies. Such work depends on the published orientations of the sensitive axes of seismic sensors relative to true North. These orientations can be estimated using a number of different techniques: SensOrLoc (Sensitivity, Orientation and Location), comparison to synthetics (Ekstrom and Busby, 2008), or by way of magnetic compass. Current methods for finding relative station azimuths are unable to do so with arbitrary precision quickly because of limitations in the algorithms (e.g. grid search methods). Furthermore, in order to determine instrument orientations during station visits, it is critical that any analysis software be easily run on a large number of different computer platforms and the results be obtained quickly while on site. We developed a new technique for estimating relative sensor azimuths by inverting for the orientation with the maximum correlation to a reference instrument, using a non-linear parameter estimation routine. By making use of overlapping windows, we are able to make multiple azimuth estimates, which helps to identify the confidence of our azimuth estimate, even when the signal-to-noise ratio (SNR) is low. Finally, our algorithm has been written as a stand-alone, platform independent, Java software package with a graphical user interface for reading and selecting data segments to be analyzed.

  11. A Brooks type theorem for the maximum local edge connectivity

    DEFF Research Database (Denmark)

    Stiebitz, Michael; Toft, Bjarne

    2018-01-01

    For a graph $G$, let $\\cn(G)$ and $\\la(G)$ denote the chromatic number of $G$ and the maximum local edge connectivity of $G$, respectively. A result of Dirac \\cite{Dirac53} implies that every graph $G$ satisfies $\\cn(G)\\leq \\la(G)+1$. In this paper we characterize the graphs $G$ for which $\\cn......(G)=\\la(G)+1$. The case $\\la(G)=3$ was already solved by Alboulker {\\em et al.\\,} \\cite{AlboukerV2016}. We show that a graph $G$ with $\\la(G)=k\\geq 4$ satisfies $\\cn(G)=k+1$ if and only if $G$ contains a block which can be obtained from copies of $K_{k+1}$ by repeated applications of the Haj\\'os join....

  12. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2004-01-01

    )-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...... has been compared to the cross-correlation (CC) estimator and the previously developed maximum likelihood estimator (MLE). The results show that the CMLE can handle a larger velocity search range and is capable of estimating even low velocity levels from tissue motion. The CC and the MLE produce...... for the CC and the MLE. When the velocity search range is set to twice the limit of the CC and the MLE, the number of incorrect velocity estimates are 0, 19.1, and 7.2% for the CMLE, CC, and MLE, respectively. The ability to handle a larger search range and estimating low velocity levels was confirmed...

  13. Diamond Fuzzy Number

    Directory of Open Access Journals (Sweden)

    T. Pathinathan

    2015-01-01

    Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.

  14. Those fascinating numbers

    CERN Document Server

    Koninck, Jean-Marie De

    2009-01-01

    Who would have thought that listing the positive integers along with their most remarkable properties could end up being such an engaging and stimulating adventure? The author uses this approach to explore elementary and advanced topics in classical number theory. A large variety of numbers are contemplated: Fermat numbers, Mersenne primes, powerful numbers, sublime numbers, Wieferich primes, insolite numbers, Sastry numbers, voracious numbers, to name only a few. The author also presents short proofs of miscellaneous results and constantly challenges the reader with a variety of old and new n

  15. Maximum entropy production rate in quantum thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Beretta, Gian Paolo, E-mail: beretta@ing.unibs.i [Universita di Brescia, via Branze 38, 25123 Brescia (Italy)

    2010-06-01

    In the framework of the recent quest for well-behaved nonlinear extensions of the traditional Schroedinger-von Neumann unitary dynamics that could provide fundamental explanations of recent experimental evidence of loss of quantum coherence at the microscopic level, a recent paper [Gheorghiu-Svirschevski 2001 Phys. Rev. A 63 054102] reproposes the nonlinear equation of motion proposed by the present author [see Beretta G P 1987 Found. Phys. 17 365 and references therein] for quantum (thermo)dynamics of a single isolated indivisible constituent system, such as a single particle, qubit, qudit, spin or atomic system, or a Bose-Einstein or Fermi-Dirac field. As already proved, such nonlinear dynamics entails a fundamental unifying microscopic proof and extension of Onsager's reciprocity and Callen's fluctuation-dissipation relations to all nonequilibrium states, close and far from thermodynamic equilibrium. In this paper we propose a brief but self-contained review of the main results already proved, including the explicit geometrical construction of the equation of motion from the steepest-entropy-ascent ansatz and its exact mathematical and conceptual equivalence with the maximal-entropy-generation variational-principle formulation presented in Gheorghiu-Svirschevski S 2001 Phys. Rev. A 63 022105. Moreover, we show how it can be extended to the case of a composite system to obtain the general form of the equation of motion, consistent with the demanding requirements of strong separability and of compatibility with general thermodynamics principles. The irreversible term in the equation of motion describes the spontaneous attraction of the state operator in the direction of steepest entropy ascent, thus implementing the maximum entropy production principle in quantum theory. The time rate at which the path of steepest entropy ascent is followed has so far been left unspecified. As a step towards the identification of such rate, here we propose a possible

  16. Determination of the maximum-depth to potential field sources by a maximum structural index method

    Science.gov (United States)

    Fedi, M.; Florio, G.

    2013-01-01

    A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott-Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast. Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP). The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott-Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott-Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio. The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.

  17. Building Numbers from Primes

    Science.gov (United States)

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  18. Introduction to number theory

    CERN Document Server

    Vazzana, Anthony; Garth, David

    2007-01-01

    One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topics.

  19. States of maximum polarization for a quantum light field and states of a maximum sensitivity in quantum interferometry

    International Nuclear Information System (INIS)

    Peřinová, Vlasta; Lukš, Antonín

    2015-01-01

    The SU(2) group is used in two different fields of quantum optics, the quantum polarization and quantum interferometry. Quantum degrees of polarization may be based on distances of a polarization state from the set of unpolarized states. The maximum polarization is achieved in the case where the state is pure and then the distribution of the photon-number sums is optimized. In quantum interferometry, the SU(2) intelligent states have also the property that the Fisher measure of information is equal to the inverse minimum detectable phase shift on the usual simplifying condition. Previously, the optimization of the Fisher information under a constraint was studied. Now, in the framework of constraint optimization, states similar to the SU(2) intelligent states are treated. (paper)

  20. Weighted Maximum-Clique Transversal Sets of Graphs

    OpenAIRE

    Chuan-Min Lee

    2011-01-01

    A maximum-clique transversal set of a graph G is a subset of vertices intersecting all maximum cliques of G. The maximum-clique transversal set problem is to find a maximum-clique transversal set of G of minimum cardinality. Motivated by the placement of transmitters for cellular telephones, Chang, Kloks, and Lee introduced the concept of maximum-clique transversal sets on graphs in 2001. In this paper, we study the weighted version of the maximum-clique transversal set problem for split grap...

  1. Pattern formation, logistics, and maximum path probability

    Science.gov (United States)

    Kirkaldy, J. S.

    1985-05-01

    The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classification capabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropy function, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are

  2. On the number of special numbers

    Indian Academy of Sciences (India)

    without loss of any generality to be the first k primes), then the equation a + b = c has .... This is an elementary exercise in partial summation (see [12]). Thus ... This is easily done by inserting a stronger form of the prime number theorem into the.

  3. STUDY OF RAPID FORMATION OF A δ SUNSPOT ASSOCIATED WITH THE 2012 JULY 2 C7.4 FLARE USING HIGH-RESOLUTION OBSERVATIONS OF THE NEW SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Wang Haimin; Liu Chang; Wang Shuo; Deng Na; Xu Yan; Jing Ju; Cao Wenda

    2013-01-01

    Rapid, irreversible changes of magnetic topology and sunspot structure associated with flares have been systematically observed in recent years. The most striking features include the increase of the horizontal field at the polarity inversion line (PIL) and the co-spatial penumbral darkening. A likely explanation of the above phenomenon is the back reaction to the coronal restructuring after eruptions: a coronal mass ejection carries the upward momentum while the downward momentum compresses the field lines near the PIL. Previous studies could only use low-resolution (above 1'') magnetograms and white-light images. Therefore, the changes are mostly observed for X-class flares. Taking advantage of the 0.''1 spatial resolution and 15 s temporal cadence of the New Solar Telescope at the Big Bear Solar Observatory, we report in detail the rapid formation of sunspot penumbra at the PIL associated with the C7.4 flare on 2012 July 2. It is unambiguously shown that the solar granulation pattern evolves to an alternating dark and bright fibril structure, the typical pattern of penumbra. Interestingly, the appearance of such a penumbra creates a new δ sunspot. The penumbral formation is also accompanied by the enhancement of the horizontal field observed using vector magnetograms from the Helioseismic and Magnetic Imager. We explain our observations as being due to the eruption of a flux rope following magnetic cancellation at the PIL. Subsequently, the re-closed arcade fields are pushed down toward the surface to form the new penumbra. NLFFF extrapolation clearly shows both the flux rope close to the surface and the overlying fields

  4. A mini-exhibition with maximum content

    CERN Multimedia

    Laëtitia Pedroso

    2011-01-01

    The University of Budapest has been hosting a CERN mini-exhibition since 8 May. While smaller than the main travelling exhibition it has a number of major advantages: its compact design alleviates transport difficulties and makes it easier to find suitable venues in the Member States. Its content can be updated almost instantaneously and it will become even more interactive and high-tech as time goes by.   The exhibition on display in Budapest. The purpose of CERN's new mini-exhibition is to be more interactive and easier to install. Due to its size, the main travelling exhibition cannot be moved around quickly, which is why it stays in the same country for 4 to 6 months. But this means a long waiting list for the other Member States. To solve this problem, the Education Group has designed a new exhibition, which is smaller and thus easier to install. Smaller maybe, but no less rich in content, as the new exhibition conveys exactly the same messages as its larger counterpart. However, in the slimm...

  5. Tail Risk Constraints and Maximum Entropy

    Directory of Open Access Journals (Sweden)

    Donald Geman

    2015-06-01

    Full Text Available Portfolio selection in the financial literature has essentially been analyzed under two central assumptions: full knowledge of the joint probability distribution of the returns of the securities that will comprise the target portfolio; and investors’ preferences are expressed through a utility function. In the real world, operators build portfolios under risk constraints which are expressed both by their clients and regulators and which bear on the maximal loss that may be generated over a given time period at a given confidence level (the so-called Value at Risk of the position. Interestingly, in the finance literature, a serious discussion of how much or little is known from a probabilistic standpoint about the multi-dimensional density of the assets’ returns seems to be of limited relevance. Our approach in contrast is to highlight these issues and then adopt throughout a framework of entropy maximization to represent the real world ignorance of the “true” probability distributions, both univariate and multivariate, of traded securities’ returns. In this setting, we identify the optimal portfolio under a number of downside risk constraints. Two interesting results are exhibited: (i the left- tail constraints are sufficiently powerful to override all other considerations in the conventional theory; (ii the “barbell portfolio” (maximal certainty/ low risk in one set of holdings, maximal uncertainty in another, which is quite familiar to traders, naturally emerges in our construction.

  6. Reconstructing phylogenetic networks using maximum parsimony.

    Science.gov (United States)

    Nakhleh, Luay; Jin, Guohua; Zhao, Fengmei; Mellor-Crummey, John

    2005-01-01

    Phylogenies - the evolutionary histories of groups of organisms - are one of the most widely used tools throughout the life sciences, as well as objects of research within systematics, evolutionary biology, epidemiology, etc. Almost every tool devised to date to reconstruct phylogenies produces trees; yet it is widely understood and accepted that trees oversimplify the evolutionary histories of many groups of organims, most prominently bacteria (because of horizontal gene transfer) and plants (because of hybrid speciation). Various methods and criteria have been introduced for phylogenetic tree reconstruction. Parsimony is one of the most widely used and studied criteria, and various accurate and efficient heuristics for reconstructing trees based on parsimony have been devised. Jotun Hein suggested a straightforward extension of the parsimony criterion to phylogenetic networks. In this paper we formalize this concept, and provide the first experimental study of the quality of parsimony as a criterion for constructing and evaluating phylogenetic networks. Our results show that, when extended to phylogenetic networks, the parsimony criterion produces promising results. In a great majority of the cases in our experiments, the parsimony criterion accurately predicts the numbers and placements of non-tree events.

  7. p-adic numbers

    OpenAIRE

    Grešak, Rozalija

    2015-01-01

    The field of real numbers is usually constructed using Dedekind cuts. In these thesis we focus on the construction of the field of real numbers using metric completion of rational numbers using Cauchy sequences. In a similar manner we construct the field of p-adic numbers, describe some of their basic and topological properties. We follow by a construction of complex p-adic numbers and we compare them with the ordinary complex numbers. We conclude the thesis by giving a motivation for the int...

  8. Accurate modeling and maximum power point detection of ...

    African Journals Online (AJOL)

    Accurate modeling and maximum power point detection of photovoltaic ... Determination of MPP enables the PV system to deliver maximum available power. ..... adaptive artificial neural network: Proposition for a new sizing procedure.

  9. Maximum power per VA control of vector controlled interior ...

    Indian Academy of Sciences (India)

    Thakur Sumeet Singh

    2018-04-11

    Apr 11, 2018 ... Department of Electrical Engineering, Indian Institute of Technology Delhi, New ... The MPVA operation allows maximum-utilization of the drive-system. ... Permanent magnet motor; unity power factor; maximum VA utilization; ...

  10. Electron density distribution in Si and Ge using multipole, maximum ...

    Indian Academy of Sciences (India)

    Si and Ge has been studied using multipole, maximum entropy method (MEM) and ... and electron density distribution using the currently available versatile ..... data should be subjected to maximum possible utility for the characterization of.

  11. Maximum likelihood estimation of the position of a radiating source in a waveguide

    International Nuclear Information System (INIS)

    Hinich, M.J.

    1979-01-01

    An array of sensors is receiving radiation from a source of interest. The source and the array are in a one- or two-dimensional waveguide. The maximum-likelihood estimators of the coordinates of the source are analyzed under the assumptions that the noise field is Gaussian. The Cramer-Rao lower bound is of the order of the number of modes which define the source excitation function. The results show that the accuracy of the maximum likelihood estimator of source depth using a vertical array in a infinite horizontal waveguide (such as the ocean) is limited by the number of modes detected by the array regardless of the array size

  12. On the number of special numbers

    Indian Academy of Sciences (India)

    We now apply the theory of the Thue equation to obtain an effective bound on m. Indeed, by Lemma 3.2, we can write m2 = ba3 and m2 − 4 = cd3 with b, c cubefree. By the above, both b, c are bounded since they are cubefree and all their prime factors are less than e63727. Now we have a finite number of. Thue equations:.

  13. Number projection method

    International Nuclear Information System (INIS)

    Kaneko, K.

    1987-01-01

    A relationship between the number projection and the shell model methods is investigated in the case of a single-j shell. We can find a one-to-one correspondence between the number projected and the shell model states

  14. Numbers and brains.

    Science.gov (United States)

    Gallistel, C R

    2017-12-01

    The representation of discrete and continuous quantities appears to be ancient and pervasive in animal brains. Because numbers are the natural carriers of these representations, we may discover that in brains, it's numbers all the way down.

  15. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Science.gov (United States)

    2010-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Maximum contaminant levels for turbidity. The maximum contaminant levels for turbidity are applicable to... part. The maximum contaminant levels for turbidity in drinking water, measured at a representative...

  16. Maximum Power Training and Plyometrics for Cross-Country Running.

    Science.gov (United States)

    Ebben, William P.

    2001-01-01

    Provides a rationale for maximum power training and plyometrics as conditioning strategies for cross-country runners, examining: an evaluation of training methods (strength training and maximum power training and plyometrics); biomechanic and velocity specificity (role in preventing injury); and practical application of maximum power training and…

  17. 13 CFR 107.840 - Maximum term of Financing.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maximum term of Financing. 107.840... COMPANIES Financing of Small Businesses by Licensees Structuring Licensee's Financing of An Eligible Small Business: Terms and Conditions of Financing § 107.840 Maximum term of Financing. The maximum term of any...

  18. 7 CFR 3565.210 - Maximum interest rate.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Maximum interest rate. 3565.210 Section 3565.210... AGRICULTURE GUARANTEED RURAL RENTAL HOUSING PROGRAM Loan Requirements § 3565.210 Maximum interest rate. The interest rate for a guaranteed loan must not exceed the maximum allowable rate specified by the Agency in...

  19. Characterizing graphs of maximum matching width at most 2

    DEFF Research Database (Denmark)

    Jeong, Jisu; Ok, Seongmin; Suh, Geewon

    2017-01-01

    The maximum matching width is a width-parameter that is de ned on a branch-decomposition over the vertex set of a graph. The size of a maximum matching in the bipartite graph is used as a cut-function. In this paper, we characterize the graphs of maximum matching width at most 2 using the minor o...

  20. Number in Dinka

    DEFF Research Database (Denmark)

    Andersen, Torben

    2014-01-01

    had a marked singular and an unmarked plural. Synchronically, however, the singular is arguably the basic member of the number category as revealed by the use of the two numbers. In addition, some nouns have a collective form, which is grammatically singular. Number also plays a role...

  1. Safety-in-numbers

    DEFF Research Database (Denmark)

    Elvik, Rune; Bjørnskau, Torkel

    2017-01-01

    Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known....

  2. Discovery: Prime Numbers

    Science.gov (United States)

    de Mestre, Neville

    2008-01-01

    Prime numbers are important as the building blocks for the set of all natural numbers, because prime factorisation is an important and useful property of all natural numbers. Students can discover them by using the method known as the Sieve of Eratosthenes, named after the Greek geographer and astronomer who lived from c. 276-194 BC. Eratosthenes…

  3. Simultaneous maximum a posteriori longitudinal PET image reconstruction

    Science.gov (United States)

    Ellis, Sam; Reader, Andrew J.

    2017-09-01

    Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.

  4. Future changes over the Himalayas: Maximum and minimum temperature

    Science.gov (United States)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of minimum and maximum air temperature over the Indian Himalayan region (IHR) from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out under two different Representative Concentration Pathway (RCP) scenarios. The major aim of this study is to assess the probable future changes in the minimum and maximum climatology and its long-term trend under different RCPs along with the elevation dependent warming over the IHR. A number of statistical analysis such as changes in mean climatology, long-term spatial trend and probability distribution function are carried out to detect the signals of changes in climate. The study also tries to quantify the uncertainties associated with different model experiments and their ensemble in space, time and for different seasons. The model experiments and their ensemble show prominent cold bias over Himalayas for present climate. However, statistically significant higher warming rate (0.23-0.52 °C/decade) for both minimum and maximum air temperature (Tmin and Tmax) is observed for all the seasons under both RCPs. The rate of warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios starting from RCP4.5 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the magnitude of trend between different models describes the uncertainty associated with the model projections and scenarios. The projected rate of increase of Tmin may destabilize the snow formation at the higher altitudes in the northern and western parts of Himalayan region, while rising trend of Tmax over southern flank may effectively melt more snow cover. Such combined effect of rising trend of Tmin and Tmax may pose a potential threat to the glacial deposits. The overall trend of Diurnal temperature range (DTR) portrays increasing trend across entire area with

  5. Polar coronal holes and solar cycles

    International Nuclear Information System (INIS)

    Simon, P.A.

    1979-01-01

    The relationship between the geomagnetic activity of the three years preceding a sunspot minimum and the peak of the next sunspot maximum confirms the polar origin of the solar wind during one part of the solar cycle. Pointing out that the polar holes have a very small size or disappear at the time of the polar field reversal, a low latitude origin of the solar-wind at sunspot maximum is suggested and the cycle variation of solar wind and geomagnetic activity is described. In addition a close relationship is noted between the maximum level of the geomagnetic activity reached a few years before a solar minimum and its level at the next sunspot maximum. Studying separately the effects of both the low latitude holes and the solar activity, the possibility of predicting both the level of geomagnetic activity and the sunspot number at the next sunspot maximum is pointed out. As a conclusion the different categories of phenomena contributing to a solar cycle are specified. (Auth.)

  6. Asymptotic numbers: Pt.1

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1980-01-01

    The set of asymptotic numbers A as a system of generalized numbers including the system of real numbers R, as well as infinitely small (infinitesimals) and infinitely large numbers, is introduced. The detailed algebraic properties of A, which are unusual as compared with the known algebraic structures, are studied. It is proved that the set of asymptotic numbers A cannot be isomorphically embedded as a subspace in any group, ring or field, but some particular subsets of asymptotic numbers are shown to be groups, rings, and fields. The algebraic operation, additive and multiplicative forms, and the algebraic properties are constructed in an appropriate way. It is shown that the asymptotic numbers give rise to a new type of generalized functions quite analogous to the distributions of Schwartz allowing, however, the operation multiplication. A possible application of these functions to quantum theory is discussed

  7. Applied number theory

    CERN Document Server

    Niederreiter, Harald

    2015-01-01

    This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas.  Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc.  Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...

  8. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Science.gov (United States)

    2010-07-01

    ... cylinders having an internal diameter of 13.0 cm and a 15.5 cm stroke length, the rounded displacement would... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes...

  9. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics

    Science.gov (United States)

    Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš

    2018-04-01

    We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.

  10. Solar Maximum Mission Experiment - Ultraviolet Spectroscopy and Polarimetry on the Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hanssen, E.; Cheng, C. C.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.; Gurman, J. B.; Hyder, C. L.

    1981-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacecraft is described. It is pointed out that the instrument, which operates in the wavelength range 1150-3600 A, has a spatial resolution of 2-3 arcsec and a spectral resolution of 0.02 A FWHM in second order. A Gregorian telescope, with a focal length of 1.8 m, feeds a 1 m Ebert-Fastie spectrometer. A polarimeter comprising rotating Mg F2 waveplates can be inserted behind the spectrometer entrance slit; it permits all four Stokes parameters to be determined. Among the observing modes are rasters, spectral scans, velocity measurements, and polarimetry. Examples of initial observations made since launch are presented.

  11. Predicting Lotto Numbers

    DEFF Research Database (Denmark)

    Jørgensen, Claus Bjørn; Suetens, Sigrid; Tyran, Jean-Robert

    numbers based on recent drawings. While most players pick the same set of numbers week after week without regards of numbers drawn or anything else, we find that those who do change, act on average in the way predicted by the law of small numbers as formalized in recent behavioral theory. In particular......We investigate the “law of small numbers” using a unique panel data set on lotto gambling. Because we can track individual players over time, we can measure how they react to outcomes of recent lotto drawings. We can therefore test whether they behave as if they believe they can predict lotto......, on average they move away from numbers that have recently been drawn, as suggested by the “gambler’s fallacy”, and move toward numbers that are on streak, i.e. have been drawn several weeks in a row, consistent with the “hot hand fallacy”....

  12. Invitation to number theory

    CERN Document Server

    Ore, Oystein

    2017-01-01

    Number theory is the branch of mathematics concerned with the counting numbers, 1, 2, 3, … and their multiples and factors. Of particular importance are odd and even numbers, squares and cubes, and prime numbers. But in spite of their simplicity, you will meet a multitude of topics in this book: magic squares, cryptarithms, finding the day of the week for a given date, constructing regular polygons, pythagorean triples, and many more. In this revised edition, John Watkins and Robin Wilson have updated the text to bring it in line with contemporary developments. They have added new material on Fermat's Last Theorem, the role of computers in number theory, and the use of number theory in cryptography, and have made numerous minor changes in the presentation and layout of the text and the exercises.

  13. Sunspots and the Newcomb-Benford Law. (Spanish Title: Manchas Solares y la Ley de Newcomb-Benford.) Manchas Solares e a Lei de Newcomb-Benford

    Science.gov (United States)

    Alves, Mauro A.; Lyra, Cássia S.

    2008-12-01

    The Newcomb-Benford's Law (LNB) of first digits is introduced to high school students in an extracurricular activity through the study of sunspots. The LNB establishes that the first digits of various sets of data describing natural occurrences are not distributed uniformly, but according to a logarithmic distribution of probability. The LNB is counter-intuitive and is a good example of how mathematics applied to the study of natural phenomena can provide surprising and unexpected results serving also as a motivating agent in the study of physical sciences. En este trabajo se describe una actividad extracurricular donde se presenta a los estudiantes la ley de los primeros dígitos de Newcomb-Benford (LNB) con el estudio de manchas solares. La LNB establece que los primeros dígitos de algunos tipos de dados de ocurrencia natural no están distribuidos en manera uniforme, pero sí de acuerdo con una distribución logarítmica de probabilidad. La LNB es contra-intuitiva y es un excelente ejemplo de como las matemáticas aplicadas al estudio de fenómenos naturales pueden sorprender al estudiante, sirviendo también como elemento motivador en la educación de ciencias y de matemáticas. Este trabalho descreve uma atividade extracurricular na qual a lei dos primeiros dígitos de Newcomb-Benford (LNB) é introduzida a estudantes através do estudo de manchas solares. A LNB estabelece que os primeiros dígitos de vários tipos de conjunto de dados de ocorrência natural não são distribuídos de maneira uniforme, mas sim de acordo com uma distribuição logarítmica de probabilidade. A LNB é contra-intuitiva e é um ótimo exemplo de como a matemática aplicada ao estudo de fenômenos naturais pode fornecer resultados surpreendentes e inesperados, servindo também como um agente motivador no ensino de ciências e matemática.

  14. The adventure of numbers

    CERN Document Server

    Godefroy, Gilles

    2004-01-01

    Numbers are fascinating. The fascination begins in childhood, when we first learn to count. It continues as we learn arithmetic, algebra, geometry, and so on. Eventually, we learn that numbers not only help us to measure the world, but also to understand it and, to some extent, to control it. In The Adventure of Numbers, Gilles Godefroy follows the thread of our expanding understanding of numbers to lead us through the history of mathematics. His goal is to share the joy of discovering and understanding this great adventure of the mind. The development of mathematics has been punctuated by a n

  15. Predicting Lotto Numbers

    DEFF Research Database (Denmark)

    Suetens, Sigrid; Galbo-Jørgensen, Claus B.; Tyran, Jean-Robert Karl

    2016-01-01

    We investigate the ‘law of small numbers’ using a data set on lotto gambling that allows us to measure players’ reactions to draws. While most players pick the same set of numbers week after week, we find that those who do change react on average as predicted by the law of small numbers...... as formalized in recent behavioral theory. In particular, players tend to bet less on numbers that have been drawn in the preceding week, as suggested by the ‘gambler’s fallacy’, and bet more on a number if it was frequently drawn in the recent past, consistent with the ‘hot-hand fallacy’....

  16. Beurling generalized numbers

    CERN Document Server

    Diamond, Harold G; Cheung, Man Ping

    2016-01-01

    "Generalized numbers" is a multiplicative structure introduced by A. Beurling to study how independent prime number theory is from the additivity of the natural numbers. The results and techniques of this theory apply to other systems having the character of prime numbers and integers; for example, it is used in the study of the prime number theorem (PNT) for ideals of algebraic number fields. Using both analytic and elementary methods, this book presents many old and new theorems, including several of the authors' results, and many examples of extremal behavior of g-number systems. Also, the authors give detailed accounts of the L^2 PNT theorem of J. P. Kahane and of the example created with H. L. Montgomery, showing that additive structure is needed for proving the Riemann hypothesis. Other interesting topics discussed are propositions "equivalent" to the PNT, the role of multiplicative convolution and Chebyshev's prime number formula for g-numbers, and how Beurling theory provides an interpretation of the ...

  17. Intuitive numbers guide decisions

    Directory of Open Access Journals (Sweden)

    Ellen Peters

    2008-12-01

    Full Text Available Measuring reaction times to number comparisons is thought to reveal a processing stage in elementary numerical cognition linked to internal, imprecise representations of number magnitudes. These intuitive representations of the mental number line have been demonstrated across species and human development but have been little explored in decision making. This paper develops and tests hypotheses about the influence of such evolutionarily ancient, intuitive numbers on human decisions. We demonstrate that individuals with more precise mental-number-line representations are higher in numeracy (number skills consistent with previous research with children. Individuals with more precise representations (compared to those with less precise representations also were more likely to choose larger, later amounts over smaller, immediate amounts, particularly with a larger proportional difference between the two monetary outcomes. In addition, they were more likely to choose an option with a larger proportional but smaller absolute difference compared to those with less precise representations. These results are consistent with intuitive number representations underlying: a perceived differences between numbers, b the extent to which proportional differences are weighed in decisions, and, ultimately, c the valuation of decision options. Human decision processes involving numbers important to health and financial matters may be rooted in elementary, biological processes shared with other species.

  18. Numbers, sequences and series

    CERN Document Server

    Hirst, Keith

    1994-01-01

    Number and geometry are the foundations upon which mathematics has been built over some 3000 years. This book is concerned with the logical foundations of number systems from integers to complex numbers. The author has chosen to develop the ideas by illustrating the techniques used throughout mathematics rather than using a self-contained logical treatise. The idea of proof has been emphasised, as has the illustration of concepts from a graphical, numerical and algebraic point of view. Having laid the foundations of the number system, the author has then turned to the analysis of infinite proc

  19. The Extreme Solar Activity during October–November 2003 K. M. ...

    Indian Academy of Sciences (India)

    between occurrence of the abnormal activities of big sunspot groups that ... better statistics, we add the data of the sunspot positional measurements obtained from the ... Ai are the area values of the sunspot group for i number of observations.

  20. Perspectives on Inmate Communication and Interpersonal Relations in the Maximum Security Prison.

    Science.gov (United States)

    Van Voorhis, Patricia; Meussling, Vonne

    In recent years, scholarly and applied inquiry has addressed the importance of interpersonal communication patterns and problems in maximum security institutions for males. As a result of this research, the number of programs designed to improve the interpersonal effectiveness of prison inmates has increased dramatically. Research suggests that…

  1. Maximum a posteriori covariance estimation using a power inverse wishart prior

    DEFF Research Database (Denmark)

    Nielsen, Søren Feodor; Sporring, Jon

    2012-01-01

    The estimation of the covariance matrix is an initial step in many multivariate statistical methods such as principal components analysis and factor analysis, but in many practical applications the dimensionality of the sample space is large compared to the number of samples, and the usual maximum...

  2. Relationship between oral status and maximum bite force in preschool children

    Directory of Open Access Journals (Sweden)

    Ching-Ming Su

    2009-03-01

    Conclusion: By combining the results of this study, it was concluded that associations of bite force with factors like age, maximum mouth opening and the number of teeth in contact were clearer than for other variables such as body height, body weight, occlusal pattern, and tooth decay or fillings.

  3. Low reproducibility of maximum urinary flow rate determined by portable flowmetry

    NARCIS (Netherlands)

    Sonke, G. S.; Kiemeney, L. A.; Verbeek, A. L.; Kortmann, B. B.; Debruyne, F. M.; de la Rosette, J. J.

    1999-01-01

    To evaluate the reproducibility in maximum urinary flow rate (Qmax) in men with lower urinary tract symptoms (LUTSs) and to determine the number of flows needed to obtain a specified reliability in mean Qmax, 212 patients with LUTSs (mean age, 62 years) referred to the University Hospital Nijmegen,

  4. Mothers' Maximum Drinks Ever Consumed in 24 Hours Predicts Mental Health Problems in Adolescent Offspring

    Science.gov (United States)

    Malone, Stephen M.; McGue, Matt; Iacono, William G.

    2010-01-01

    Background: The maximum number of alcoholic drinks consumed in a single 24-hr period is an alcoholism-related phenotype with both face and empirical validity. It has been associated with severity of withdrawal symptoms and sensitivity to alcohol, genes implicated in alcohol metabolism, and amplitude of a measure of brain activity associated with…

  5. PROFIT-PC: a program for estimating maximum net revenue from multiproduct harvests in Appalachian hardwoods

    Science.gov (United States)

    Chris B. LeDoux; John E. Baumgras; R. Bryan Selbe

    1989-01-01

    PROFIT-PC is a menu driven, interactive PC (personal computer) program that estimates optimum product mix and maximum net harvesting revenue based on projected product yields and stump-to-mill timber harvesting costs. Required inputs include the number of trees/acre by species and 2 inches diameter at breast-height class, delivered product prices by species and product...

  6. An experimental investigation of the normality of irrational algebraic numbers

    DEFF Research Database (Denmark)

    Nielsen, Johan Sejr Brinch; Simonsen, Jakob Grue

    2013-01-01

    blocks for each number to bases 2, 3, 5, 7 and 10, as well as the maximum relative frequency deviation from perfect equidistribution. We use the two statistics to perform tests at significance level α = 0.05, respectively, maximum deviation threshold α = 0.05. Our results suggest that if Borel...

  7. Impact of soil moisture on extreme maximum temperatures in Europe

    Directory of Open Access Journals (Sweden)

    Kirien Whan

    2015-09-01

    Full Text Available Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM on summer monthly maximum temperatures (TXx using water balance model-based SM estimates (driven with observations and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD, where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  8. Multifield stochastic particle production: beyond a maximum entropy ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mustafa A.; Garcia, Marcos A.G.; Xie, Hong-Yi; Wen, Osmond, E-mail: mustafa.a.amin@gmail.com, E-mail: marcos.garcia@rice.edu, E-mail: hxie39@wisc.edu, E-mail: ow4@rice.edu [Physics and Astronomy Department, Rice University, 6100 Main Street, Houston, TX 77005 (United States)

    2017-09-01

    We explore non-adiabatic particle production for N {sub f} coupled scalar fields in a time-dependent background with stochastically varying effective masses, cross-couplings and intervals between interactions. Under the assumption of weak scattering per interaction, we provide a framework for calculating the typical particle production rates after a large number of interactions. After setting up the framework, for analytic tractability, we consider interactions (effective masses and cross couplings) characterized by series of Dirac-delta functions in time with amplitudes and locations drawn from different distributions. Without assuming that the fields are statistically equivalent, we present closed form results (up to quadratures) for the asymptotic particle production rates for the N {sub f}=1 and N {sub f}=2 cases. We also present results for the general N {sub f} >2 case, but with more restrictive assumptions. We find agreement between our analytic results and direct numerical calculations of the total occupation number of the produced particles, with departures that can be explained in terms of violation of our assumptions. We elucidate the precise connection between the maximum entropy ansatz (MEA) used in Amin and Baumann (2015) and the underlying statistical distribution of the self and cross couplings. We provide and justify a simple to use (MEA-inspired) expression for the particle production rate, which agrees with our more detailed treatment when the parameters characterizing the effective mass and cross-couplings between fields are all comparable to each other. However, deviations are seen when some parameters differ significantly from others. We show that such deviations become negligible for a broad range of parameters when N {sub f}>> 1.

  9. Efficient algorithms for maximum likelihood decoding in the surface code

    Science.gov (United States)

    Bravyi, Sergey; Suchara, Martin; Vargo, Alexander

    2014-09-01

    We describe two implementations of the optimal error correction algorithm known as the maximum likelihood decoder (MLD) for the two-dimensional surface code with a noiseless syndrome extraction. First, we show how to implement MLD exactly in time O (n2), where n is the number of code qubits. Our implementation uses a reduction from MLD to simulation of matchgate quantum circuits. This reduction however requires a special noise model with independent bit-flip and phase-flip errors. Secondly, we show how to implement MLD approximately for more general noise models using matrix product states (MPS). Our implementation has running time O (nχ3), where χ is a parameter that controls the approximation precision. The key step of our algorithm, borrowed from the density matrix renormalization-group method, is a subroutine for contracting a tensor network on the two-dimensional grid. The subroutine uses MPS with a bond dimension χ to approximate the sequence of tensors arising in the course of contraction. We benchmark the MPS-based decoder against the standard minimum weight matching decoder observing a significant reduction of the logical error probability for χ ≥4.

  10. Applications of the maximum entropy principle in nuclear physics

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1990-01-01

    Soon after the advent of information theory the principle of maximum entropy was recognized as furnishing the missing rationale for the familiar rules of classical thermodynamics. More recently it has also been applied successfully in nuclear physics. As an elementary example we derive a physically meaningful macroscopic description of the spectrum of neutrons emitted in nuclear fission, and compare the well known result with accurate data on 252 Cf. A second example, derivation of an expression for resonance-averaged cross sections for nuclear reactions like scattering or fission, is less trivial. Entropy maximization, constrained by given transmission coefficients, yields probability distributions for the R- and S-matrix elements, from which average cross sections can be calculated. If constrained only by the range of the spectrum of compound-nuclear levels it produces the Gaussian Orthogonal Ensemble (GOE) of Hamiltonian matrices that again yields expressions for average cross sections. Both avenues give practically the same numbers in spite of the quite different cross section formulae. These results were employed in a new model-aided evaluation of the 238 U neutron cross sections in the unresolved resonance region. (orig.) [de

  11. Comparative study of maximum isometric grip strength in different sports

    Directory of Open Access Journals (Sweden)

    Noé Gomes Borges Junior

    2009-06-01

    Full Text Available The objective of this study was to compare maximum isometric grip strength (Fmaxbetween different sports and between the dominant (FmaxD and non-dominant (FmaxND hand. Twenty-nine male aikido (AI, jiujitsu (JJ, judo (JU and rowing (RO athletes and 21non-athletes (NA participated in the study. The hand strength test consisted of maintainingmaximum isometric grip strength for 10 seconds using a hand dynamometer. The position of the subjects was that suggested by the American Society of Hand Therapy. Factorial 2X5 ANOVA with Bonferroni correction, followed by a paired t test and Tukey test, was used for statistical analysis. The highest Fmax values were observed for the JJ group when using the dominant hand,followed by the JU, RO, AI and NA groups. Variation in Fmax could be attributed to handdominance (30.9%, sports modality (39.9% and the interaction between hand dominance andsport (21.3%. The present results demonstrated significant differences in Fmax between the JJ and AI groups and between the JJ and NA groups for both the dominant and non-dominant hand. Significant differences in Fmax between the dominant and non-dominant hand were only observed in the AI and NA groups. The results indicate that Fmax can be used for comparisonbetween different sports modalities, and to identify differences between the dominant and nondominanthand. Studies involving a larger number of subjects will permit the identification of differences between other modalities.

  12. Mixed integer linear programming for maximum-parsimony phylogeny inference.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2008-01-01

    Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.

  13. Templates, Numbers & Watercolors.

    Science.gov (United States)

    Clemesha, David J.

    1990-01-01

    Describes how a second-grade class used large templates to draw and paint five-digit numbers. The lesson integrated artistic knowledge and vocabulary with their mathematics lesson in place value. Students learned how draftspeople use templates, and they studied number paintings by Charles Demuth and Jasper Johns. (KM)

  14. Benefits of the maximum tolerated dose (MTD) and maximum tolerated concentration (MTC) concept in aquatic toxicology

    International Nuclear Information System (INIS)

    Hutchinson, Thomas H.; Boegi, Christian; Winter, Matthew J.; Owens, J. Willie

    2009-01-01

    There is increasing recognition of the need to identify specific sublethal effects of chemicals, such as reproductive toxicity, and specific modes of actions of the chemicals, such as interference with the endocrine system. To achieve these aims requires criteria which provide a basis to interpret study findings so as to separate these specific toxicities and modes of action from not only acute lethality per se but also from severe inanition and malaise that non-specifically compromise reproductive capacity and the response of endocrine endpoints. Mammalian toxicologists have recognized that very high dose levels are sometimes required to elicit both specific adverse effects and present the potential of non-specific 'systemic toxicity'. Mammalian toxicologists have developed the concept of a maximum tolerated dose (MTD) beyond which a specific toxicity or action cannot be attributed to a test substance due to the compromised state of the organism. Ecotoxicologists are now confronted by a similar challenge and must develop an analogous concept of a MTD and the respective criteria. As examples of this conundrum, we note recent developments in efforts to validate protocols for fish reproductive toxicity and endocrine screens (e.g. some chemicals originally selected as 'negatives' elicited decreases in fecundity or changes in endpoints intended to be biomarkers for endocrine modes of action). Unless analogous criteria can be developed, the potentially confounding effects of systemic toxicity may then undermine the reliable assessment of specific reproductive effects or biomarkers such as vitellogenin or spiggin. The same issue confronts other areas of aquatic toxicology (e.g., genotoxicity) and the use of aquatic animals for preclinical assessments of drugs (e.g., use of zebrafish for drug safety assessment). We propose that there are benefits to adopting the concept of an MTD for toxicology and pharmacology studies using fish and other aquatic organisms and the

  15. Microprocessor Controlled Maximum Power Point Tracker for Photovoltaic Application

    International Nuclear Information System (INIS)

    Jiya, J. D.; Tahirou, G.

    2002-01-01

    This paper presents a microprocessor controlled maximum power point tracker for photovoltaic module. Input current and voltage are measured and multiplied within the microprocessor, which contains an algorithm to seek the maximum power point. The duly cycle of the DC-DC converter, at which the maximum power occurs is obtained, noted and adjusted. The microprocessor constantly seeks for improvement of obtained power by varying the duty cycle

  16. Random number generation based on digital differential chaos

    KAUST Repository

    Zidan, Mohammed A.; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    In this paper, we present a fully digital differential chaos based random number generator. The output of the digital circuit is proved to be chaotic by calculating the output time series maximum Lyapunov exponent. We introduce a new post processing

  17. Banner prints social security numbers

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2014-02-01

    Full Text Available No abstract available. Article truncated at 150 words. The Monday edition of the Arizona Republic contained a story with potential interest to our readers. On the most recent address labels of Banner Health's magazine, Smart & Healthy, the addressee's Social Security or Medicare identification numbers, which are often identical to their Social Security numbers (1. The magazine was mailed to more than 50,000 recipients in Arizona late last week. The recipients are members of the Medicare Pioneer Accountable Care Organization, a government health-care plan that Banner serves. Banner generated its mailing list from information it received from the U.S. Centers for Medicare & Medicaid Services, which is an agency within the U.S. Department of Health & Human Services (HHS responsible for administration of several federal health-care programs. Although medical information has been protected by the Health Insurance Portability and Accountability Act (HIPAA since 1996, penalties were recently increased. Civil monetary penalties were increased from a maximum of $100 ...

  18. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    Science.gov (United States)

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  19. Random number generation

    International Nuclear Information System (INIS)

    Coveyou, R.R.

    1974-01-01

    The subject of random number generation is currently controversial. Differing opinions on this subject seem to stem from implicit or explicit differences in philosophy; in particular, from differing ideas concerning the role of probability in the real world of physical processes, electronic computers, and Monte Carlo calculations. An attempt is made here to reconcile these views. The role of stochastic ideas in mathematical models is discussed. In illustration of these ideas, a mathematical model of the use of random number generators in Monte Carlo calculations is constructed. This model is used to set up criteria for the comparison and evaluation of random number generators. (U.S.)

  20. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te