WorldWideScience

Sample records for maximum rooting depth

  1. ISLSCP II Ecosystem Rooting Depths

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this study was to predict the global distribution of plant rooting depths based on data about global aboveground vegetation structure and climate....

  2. ISLSCP II Ecosystem Rooting Depths

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The goal of this study was to predict the global distribution of plant rooting depths based on data about global aboveground vegetation structure and...

  3. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    Science.gov (United States)

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  5. Hydrologic regulation of plant rooting depth.

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  6. Hydrologic regulation of plant rooting depth

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  7. Rooting depths of plants relative to biological and environmental factors

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance

  8. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    Science.gov (United States)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.

    2017-12-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  9. The maximum economic depth of groundwater abstraction for irrigation

    Science.gov (United States)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of

  10. Mid-depth temperature maximum in an estuarine lake

    Science.gov (United States)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  11. Determination of the maximum-depth to potential field sources by a maximum structural index method

    Science.gov (United States)

    Fedi, M.; Florio, G.

    2013-01-01

    A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott-Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast. Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP). The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott-Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott-Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio. The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.

  12. Hydrologic Regulation of Plant Rooting Depth and Vice Versa

    Science.gov (United States)

    Fan, Y.; Miguez-Macho, G.

    2017-12-01

    How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.

  13. Regrowth of Cirsium arvense from intact roots and root fragments at different soil depths

    Directory of Open Access Journals (Sweden)

    Thomsen, Mette Goul

    2014-02-01

    Full Text Available In the present work we measured the shoot rate from intact roots and from root fragments of Cirsium arvense at different digging depths and the number of leaves were used as estimate of minimum regenerative capacity. The experiments were performed on four sites with three or four repetitions of each treatment. On each site plot, the soil was removed down to a given depth within a 1 x 1 m square. All plant parts was excavated from the soil and the soil was either replaced without any root material, or roots of C. arvense was cut into 10 cm long fragments and replaced into the source hole. Shoot number, aboveground biomass and number of leaves were measured. Digging depth and time explained 50% - 60% of the variation in biomass (P<0.001. Replacement of root fragments increased the shoot number in one out of four treatments but did not affect biomass produced compared to production from undisturbed root systems. Number of leaves showed that shoots from all digging depths passed the level of minimum regenerative capacity. We conclude that the intact root system from all depths was able to regenerate within one season and it has a high contribution to the produced biomass compared with root fragments in the upper soil layers.

  14. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species

    Science.gov (United States)

    Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer; Maria E. Arce

    2009-01-01

    We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (Leaf) hydraulic conductivity, wood density (Pw), rooting depth, and specific leaf...

  15. Quantification of effective plant rooting depth: advancing global hydrological modelling

    Science.gov (United States)

    Yang, Y.; Donohue, R. J.; McVicar, T.

    2017-12-01

    Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.

  16. Spatiotemporal fusion of multiple-satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method

    Science.gov (United States)

    Tang, Qingxin; Bo, Yanchen; Zhu, Yuxin

    2016-04-01

    Merging multisensor aerosol optical depth (AOD) products is an effective way to produce more spatiotemporally complete and accurate AOD products. A spatiotemporal statistical data fusion framework based on a Bayesian maximum entropy (BME) method was developed for merging satellite AOD products in East Asia. The advantages of the presented merging framework are that it not only utilizes the spatiotemporal autocorrelations but also explicitly incorporates the uncertainties of the AOD products being merged. The satellite AOD products used for merging are the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Level-2 AOD products (MOD04_L2) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Deep Blue Level 2 AOD products (SWDB_L2). The results show that the average completeness of the merged AOD data is 95.2%,which is significantly superior to the completeness of MOD04_L2 (22.9%) and SWDB_L2 (20.2%). By comparing the merged AOD to the Aerosol Robotic Network AOD records, the results show that the correlation coefficient (0.75), root-mean-square error (0.29), and mean bias (0.068) of the merged AOD are close to those (the correlation coefficient (0.82), root-mean-square error (0.19), and mean bias (0.059)) of the MODIS AOD. In the regions where both MODIS and SeaWiFS have valid observations, the accuracy of the merged AOD is higher than those of MODIS and SeaWiFS AODs. Even in regions where both MODIS and SeaWiFS AODs are missing, the accuracy of the merged AOD is also close to the accuracy of the regions where both MODIS and SeaWiFS have valid observations.

  17. Rooting depths of plants on low-level waste disposal sites

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and rooting frequencies were determined and related to present LLW maintenance. The data base was searched for information on rooting depths of 53 species found on LLW sites at Los Alamos National Laboratory. The study indicates 12 out of 13 grasses found on LLW sites root below 91 cm. June grass [Koeleria cristata (L.) Pers.] (76 cm) was the shallowest rooting grass and side-oats grama [Bouteloua curtipendula (Michx.) Torr.] was the deepest rooting grass (396 cm). Forbs were more variable in rooting depths. Indian paintbrush (Castelleja spp.) (30 cm) was the shallowest rooting forb and alfalfa (Medicago sativa L.) was the deepest (>3900 cm). Trees and shrubs commonly rooted below 457 cm. The shallowest rooting tree was elm (Ulmus pumila L.) (127 cm) and the deepest was one-seed juniper [Juniperus monosperma (Engelm) Sarg.] (>6000 cm). Apache plume [Fallugia paradoxa (D. Don) Endl.] rooted to 140 cm, whereas fourwing saltbush [Atriplex canecens (Pursh) Nutt.] rooted to 762 cm

  18. Multi-approach analysis of maximum riverbed scour depth above subway tunnel

    OpenAIRE

    Jun Chen; Hong-wu Tang; Zui-sen Li; Wen-hong Dai

    2010-01-01

    When subway tunnels are routed underneath rivers, riverbed scour may expose the structure, with potentially severe consequences. Thus, it is important to identify the maximum scour depth to ensure that the designed buried depth is adequate. There are a range of methods that may be applied to this problem, including the fluvial process analysis method, geological structure analysis method, scour formula method, scour model experiment method, and numerical simulation method. However, the applic...

  19. A generic statistical methodology to predict the maximum pit depth of a localized corrosion process

    International Nuclear Information System (INIS)

    Jarrah, A.; Bigerelle, M.; Guillemot, G.; Najjar, D.; Iost, A.; Nianga, J.-M.

    2011-01-01

    Highlights: → We propose a methodology to predict the maximum pit depth in a corrosion process. → Generalized Lambda Distribution and the Computer Based Bootstrap Method are combined. → GLD fit a large variety of distributions both in their central and tail regions. → Minimum thickness preventing perforation can be estimated with a safety margin. → Considering its applications, this new approach can help to size industrial pieces. - Abstract: This paper outlines a new methodology to predict accurately the maximum pit depth related to a localized corrosion process. It combines two statistical methods: the Generalized Lambda Distribution (GLD), to determine a model of distribution fitting with the experimental frequency distribution of depths, and the Computer Based Bootstrap Method (CBBM), to generate simulated distributions equivalent to the experimental one. In comparison with conventionally established statistical methods that are restricted to the use of inferred distributions constrained by specific mathematical assumptions, the major advantage of the methodology presented in this paper is that both the GLD and the CBBM enable a statistical treatment of the experimental data without making any preconceived choice neither on the unknown theoretical parent underlying distribution of pit depth which characterizes the global corrosion phenomenon nor on the unknown associated theoretical extreme value distribution which characterizes the deepest pits. Considering an experimental distribution of depths of pits produced on an aluminium sample, estimations of maximum pit depth using a GLD model are compared to similar estimations based on usual Gumbel and Generalized Extreme Value (GEV) methods proposed in the corrosion engineering literature. The GLD approach is shown having smaller bias and dispersion in the estimation of the maximum pit depth than the Gumbel approach both for its realization and mean. This leads to comparing the GLD approach to the GEV one

  20. Competition between Plant-Populations with Different Rooting Depths. 2. Pot Experiments

    NARCIS (Netherlands)

    Berendse, F.

    1981-01-01

    In a previous paper in this series a model was proposed lor the competition between plant populations with different rooting depths. This model predicts that in mixtures of plant populations with different rooting depths the Relative Yield Total will exceed unity. Secondly it predicts that in these

  1. Competition between Plant-Populations with Different Rooting Depths. 1. Theoretical Considerations

    NARCIS (Netherlands)

    Berendse, F.

    1979-01-01

    As an extension of De Wit's competition theory a theoretical description has been developed of competition between plant populations with different rooting depths. This model shows that in mixtures of plants with different rooting depths the value of the Relative Yield Total can be expected to

  2. Competition Between Plant Populations with Different Rooting Depths I. Theoretical Considerations

    NARCIS (Netherlands)

    Berendse, Frank

    1979-01-01

    As an extension of De Wit’s competition theory a theoretical description has been developed of competition between plant populations with different rooting depths. This model shows that in mixtures of plants with different rooting depths the value of the Relative Yield Total can be expected to

  3. Competition between Plant-Populations with Different Rooting Depths. 3. Field Experiments

    NARCIS (Netherlands)

    Berendse, F.

    1982-01-01

    The model proposed in the first paper in this series predicts that in mixtures of plant species with different rooting depths there will be an inverse correlation between the relative crowding coefficient of the deep rooting species with respect to the shallow rooting one and the frequency of the

  4. Assessment of geomechanical properties, maximum depth and excavation damaged zone aspects - Expert report

    International Nuclear Information System (INIS)

    Amann, F.; Löw, S.; Perras, M.

    2015-11-01

    This comprehensive report published by the Swiss National Nuclear Safety Inspectorate ENSI discusses the expert report published on the need for the assessment of geomechanical properties and maximum depth of repositories for high, medium and low-activity nuclear wastes. Also, aspects concerning excavation damaged zones (EDZ) are considered. These are all criteria for the selection of sites as part of Phase 2 of the Swiss waste disposal project. Four questions are examined: are NAGRA’s documented basic considerations and calculations on Opalinus Clay comprehensive enough and correct, are the calculations on maximum depth correct, are the proposed storage perimeters correct with respect to depth and will NAGRA be able to take possible excavation damaged zones (EDZ) into account? Literature and references concerning the subject are quoted

  5. Root carbon decomposition and microbial biomass response at different soil depths

    Science.gov (United States)

    Rumpel, C.

    2012-12-01

    The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.

  6. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    2012-03-01

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrally buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.

  7. Multi-approach analysis of maximum riverbed scour depth above subway tunnel

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2010-12-01

    Full Text Available When subway tunnels are routed underneath rivers, riverbed scour may expose the structure, with potentially severe consequences. Thus, it is important to identify the maximum scour depth to ensure that the designed buried depth is adequate. There are a range of methods that may be applied to this problem, including the fluvial process analysis method, geological structure analysis method, scour formula method, scour model experiment method, and numerical simulation method. However, the application ranges and forecasting precision of these methods vary considerably. In order to quantitatively analyze the characteristics of the different methods, a subway tunnel passing underneath a river was selected, and the aforementioned five methods were used to forecast the maximum scour depth. The fluvial process analysis method was used to characterize the river regime and evolution trend, which were the baseline for examination of the scour depth of the riverbed. The results obtained from the scour model experiment and the numerical simulation methods are reliable; these two methods are suitable for application to tunnel projects passing underneath rivers. The scour formula method was less accurate than the scour model experiment method; it is suitable for application to lower risk projects such as pipelines. The results of the geological structure analysis had low precision; the method is suitable for use as a secondary method to assist other research methods. To forecast the maximum scour depth of the riverbed above the subway tunnel, a combination of methods is suggested, and the appropriate analysis method should be chosen with respect to the local conditions.

  8. The Hengill geothermal area, Iceland: Variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G. R.

    1995-04-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area S. Iceland, a dominantly basaltic area. The likely strain rate calculated from thermal and tectonic considerations is 10 -15 s -1, and temperature measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up to 150 °C km -1 throughout the upper 2 km. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ± 50 °C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes located highly accurately by performing a simultaneous inversion for three-dimensional structure and hypocentral parameters. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. Beneath the high-temperature part of the geothermal area, the maximum depth of earthquakes may be as shallow as 4 km. The geothermal gradient below drilling depths in various parts of the area ranges from 84 ± 9 °Ckm -1 within the low-temperature geothermal area of the transform zone to 138 ± 15 °Ckm -1 below the centre of the high-temperature geothermal area. Shallow maximum depths of earthquakes and therefore high average geothermal gradients tend to correlate with the intensity of the geothermal area and not with the location of the currently active spreading axis.

  9. Influence of Thread Root Radius on Maximum Local Stresses at Large Diameter Bolts under Axial Loading

    Directory of Open Access Journals (Sweden)

    Cojocaru Vasile

    2014-06-01

    Full Text Available In the thread root area of the threaded bolts submitted to axial loading occur local stresses, higher that nominal stresses calculated for the bolts. These local stresses can generate failure and can reduce the fatigue life of the parts. The paper is focused on the study of the influence of the thread root radius on the maximum local stresses. A large diameter trapezoidal bolt was subjected to a static analysis (axial loading using finite element simulation.

  10. [Effects of sowing depth on seedling traits and root characteristics of summer maize].

    Science.gov (United States)

    Cao, Hui-ying; Wang, Ding-bo; Shi, Jian-guo; Zhu, Kun-lun; Dong, Shu-ting; Liu, Peng; Zhao, Bin; Zhang, Ji-wang

    2015-08-01

    Two summer maize hybrids, Zhengdan 958 (ZD958) and Xianyu 335 (XY335), were used as experimental materials. 4 sowing depths (3, 5, 7 and 9 cm) and uneven sowing depth (CK) were designed under sand culture and field experiments to investigate the effects of sowing depth on seedling traits and root characteristics of summer maize. The results showed that the seedling emergence rate gradually decreased and seedling emergence time gradually lengthened as the sowing depth increased. Compared with the sowing depth of 3 cm, the seedling emergence rates of ZD958 and XY335 sown at the depth of 9 cm were reduced by 9.4% and 11.8%, respectively, and the seedling emergence duration was prolonged 1.5 d. With the increasing sowing depth, the seedling length and uniformity decreased significantly, the mesocotyl length increased significantly, while the coleoptile length had no significant difference; the primary radicle length gradually decreased, the total length of secondary radicle gradually increased, and the total root length had no significant difference; the total dry mass of seedling and mesocotyl increased significantly, and the total root dry mass had no significant difference. With the increasing sowing depth, the soluble sugar content in each part of seedling increased and the amount of nutritional consumption of germinating seeds increased, the seedling root growth rate increased, but the root activity decreased, and the number of total nodal root and nodal layers increased. With the increasing sowing depth, harvested ears per unit area were reduced by decreased seedling emergence rate and seedling vigor, thus influenced the yield. In addition, uniform sowing depth could improve the canopy uniformity and relative characteristics, then increase the yield.

  11. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.

    2013-02-01

    To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.

  12. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  13. DNA analysis of soil extracts can be used to investigate fine root depth distribution of trees

    Science.gov (United States)

    Bithell, Sean L.; Tran-Nguyen, Lucy T. T.; Hearnden, Mark N.; Hartley, Diana M.

    2015-01-01

    Understanding the root distribution of trees by soil coring is time-consuming as it requires the separation of roots from soil and classification of roots into particular size classes. This labour-intensive process can limit sample throughput and therefore sampling intensity. We investigated the use of quantitative polymerase chain reaction (qPCR) on soil DNA extractions to determine live fine root DNA density (RDD, mg DNA m−2) for mango (Mangifera indica) trees. The specificity of the qPCR was tested against DNA extracted from 10 mango cultivars and 14 weed species. All mango cultivars and no weeds were detected. Mango DNA was successfully quantified from control soil spiked with mango roots and weed species. The DNA yield of mango root sections stored in moist soil at 23–28 °C declined after 15 days to low concentrations as roots decayed, indicating that dead root materials in moist soil would not cause false-positive results. To separate large roots from samples, a root separation method for field samples was used to target the root fragments remaining in sieved (minimum 2 mm aperture) soil for RDD comparisons. Using this method we compared the seasonal RDD values of fine roots for five mango rootstock cultivars in a field trial. The mean cultivar DNA yields by depth from root fragments in the sieved soil samples had the strongest relationship (adjusted multiple R2 = 0.9307, P < 0.001) with the dry matter (g m−2) of fine (diameter <0.64 mm) roots removed from the soil by sieving. This method provides a species-specific and rapid means of comparing the distribution and concentration of live fine roots of trees in orchards using soil samples up to 500 g. PMID:25552675

  14. Effects of countermovement depth on kinematic and kinetic patterns of maximum vertical jumps.

    Science.gov (United States)

    Mandic, Radivoj; Jakovljevic, Sasa; Jaric, Slobodan

    2015-04-01

    Although maximum height (H(max)), muscle force (F), and power output (P), have been routinely obtained from maximum vertical jumps for various purposes, a possible role of the countermovement depth (H(cmd)) on the same variables remains largely unexplored. Here we hypothesized that (1) the optimum H(cmd) for maximizing H(max) exists, while (2) an increase in H(cmd) would be associated with a decrease in both F and P. Professional male basketball players (N=11) preformed maximum countermovement jumps with and without arm swing while varying H(cmd)±25 cm from its preferred value. Although regression models revealed a presence of optimum H(cmd) for maximizing H(max), H(max) revealed only small changes within a wide range of H(cmd). The preferred H(cmd) was markedly below its optimum value (p vertical jumps should be taken with caution since both of them could be markedly confounded by H(cmd). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Quantifying rooting at depth in a wheat doubled haploid population with introgression from wild emmer.

    Science.gov (United States)

    Clarke, Christina K; Gregory, Peter J; Lukac, Martin; Burridge, Amanda J; Allen, Alexandra M; Edwards, Keith J; Gooding, Mike J

    2017-09-01

    The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer. A secondary aim was to determine whether genetic effects found in the field could have been predicted by other assessment methods. Roots of doubled haploid (DH) lines from a winter wheat ('Shamrock' × 'Shango') population were assessed using a seedling screen in moist paper rolls, in rhizotrons to the end of tillering, and in the field post-anthesis. A linkage map was produced using single nucleotide polymorphism markers to identify quantitative trait loci (QTLs) for rooting traits. Shamrock had greater root length density (RLD) at depth than Shango, in the field and within the rhizotrons. The DH population exhibited diversity for rooting traits within the three environments studied. QTLs were identified on chromosomes 5D, 6B and 7B, explaining variation in RLD post-anthesis in the field. Effects associated with the non-glaucous trait on RLD interacted significantly with depth in the field, and some of this interaction mapped to 2BS. The effect of genotype was strongly influenced by the method of root assessment, e.g. glaucousness expressed in the field was negatively associated with root length in the rhizotrons, but positively associated with length in the seedling screen. To our knowledge, this is the first study to identify QTLs for rooting at depth in field-grown wheat at mature growth stages. Within the population studied here, our results are consistent with the hypothesis that some of the variation in rooting is associated with recent introgression from wild emmer. The expression of genetic effects differed between the methods of root assessment. © The Author 2017. Published by Oxford University Press on behalf of the

  16. Rooting Depths of Red Maple (Acer Rubrum L.) on Various Sites in the Lake States

    Science.gov (United States)

    Carl L. Haag; James E. Johnson; Gayne G. Erdmann

    1989-01-01

    Rooting depth and habit of red maple were observed on 60 sites in northern Wisconsin and Michigan as part of a regional soil-site studay. Vertical woody root extension on dry, outwash sites averaged 174 cm, which was significantly greater than the extension on sites with fragipans (139 cm) and on wet sites (112 cm). Site index was higher on wet sites and non-woody...

  17. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Directory of Open Access Journals (Sweden)

    Hongguang Cai

    2014-10-01

    Full Text Available A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen (N, phosphorus (P, and potassium (K uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development, increased nutrient accumulation, and increased yield. Compared with conventional soil management (CK, root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm (T1 and subsoil tillage to 50 cm (T2 were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the 12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  18. Maximum likelihood unit rooting test in the presence GARCH: A new test with increased power

    OpenAIRE

    Cook , Steve

    2008-01-01

    Abstract The literature on testing the unit root hypothesis in the presence of GARCH errors is extended. A new test based upon the combination of local-to-unity detrending and joint maximum likelihood estimation of the autoregressive parameter and GARCH process is presented. The finite sample distribution of the test is derived under alternative decisions regarding the deterministic terms employed. Using Monte Carlo simulation, the newly proposed ML t-test is shown to exhibit incre...

  19. In-depth morphological study of mesiobuccal root canal systems in maxillary first molars: review

    Directory of Open Access Journals (Sweden)

    Seok-Woo Chang

    2013-02-01

    Full Text Available A common failure in endodontic treatment of the permanent maxillary first molars is likely to be caused by an inability to locate, clean, and obturate the second mesiobuccal (MB canals. Because of the importance of knowledge on these additional canals, there have been numerous studies which investigated the maxillary first molar MB root canal morphology using in vivo and laboratory methods. In this article, the protocols, advantages and disadvantages of various methodologies for in-depth study of maxillary first molar MB root canal morphology were discussed. Furthermore, newly identified configuration types for the establishment of new classification system were suggested based on two image reformatting techniques of micro-computed tomography, which can be useful as a further 'Gold Standard' method for in-depth morphological study of complex root canal systems.

  20. At site and regional analysis of maximum annual and seasonal discharges and precipitation depths in the upper Hron region

    International Nuclear Information System (INIS)

    Kohnova, S.; Hlavcova, K.

    2004-01-01

    In this presentation authors deal with the regional analysis of maximum annual and seasonal discharges and precipitation depths in the upper Hron region (Slovak Republic). This work has two objectives: (1) At site and regional analysis of annual and seasonal maximum design discharges in the upper Hron region; (2) Analysis of annual and seasonal maximum design precipitations in the connection of extreme runoff condition in the upper Hron region

  1. Root engineering for self-irrigation that exploits soil depth dimension for carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Gatliff, E. G.; Negri, M. C.

    2002-07-16

    A comprehensive carbon management program to sequester excess CO{sub 2} includes the maximization of the carbon sink potential of the terrestrial ecosystem. The establishment of sustainable vegetation on semi-arid or damaged land is necessary to increase the carbon inventory in the terrestrial ecosystem, as it is increasing the depth of the soil carbon sink. The availability of water for sustained growth at acceptable costs, when or where precipitation is too scarce or unpredictable, may, however, significantly affect the cost and sustainability of the revegetation efforts. We tested an innovative technology that enables the establishment of 'plantations' that are independent of erratic water supplies or irrigation by developing deep root systems that tap into deeper groundwater. Applied Natural Sciences (ANS) patented technologies (TreeMediation{reg_sign} and TreeWell{reg_sign} systems) overcome soil conditions unfavorable to deep rooting and 'engineer' the growth of phreatophytic tree roots into soil to reliably reach the groundwater. Carbon sinks can then be increased by increasing rooting depths and especially by enabling vegetative growth altogether. We collected soil cores from three phytoremediation sites where these technologies have been previously deployed. From these, we developed detailed information on root density and soil conditions at increasing depths to estimate C gains. The largest C gains were found when these technologies are used to control desertification. In these cases, significant gross C gains (at least between 4 and 6 tons/ha per year) can be envisioned. Other indirect benefits include resource recycling, pollution prevention, remediation, creating agricultural diversity and innovation in fruit and other tree crop and hardwood management.

  2. ABOUT RATIONING MAXIMUM ALLOWABLE DEFECT DEPTH ON THE SURFACE OF STEEL BILLETS IN PRODUCTION OF HOT-ROLLED STEEL

    Directory of Open Access Journals (Sweden)

    PARUSOV E. V.

    2017-01-01

    Full Text Available Formulation of the problem. Significant influence on the quality of rolled steel have various defects on its surface, which in its turn inherited from surface defects of billet and possible damage to the surface of rolled steel in the rolling mill line. One of the criteria for assessing the quality indicators of rolled steel is rationing of surface defects [1; 2; 3; 6; 7]. Current status of the issue. Analyzing the different requirements of regulations to the surface quality of the rolled high-carbon steels, we can conclude that the maximum allowable depth of defects on the surface of billet should be in the range of 2.0...5.0 mm (depending on the section of the billet, method of its production and further the destination Purpose. Develop a methodology for calculating the maximum allowable depth of defects on the steel billet surface depending on the requirements placed on the surface quality of hot-rolled steel. Results. A simplified method of calculation, allowing at the rated depth of defects on the surface of the hot-rolled steel to make operatively calculation of the maximum allowable depth of surface defects of steel billets before heating the metal in the heat deformation was developed. The findings shows that the maximum allowable depth of surface defects is reduced with increasing diameter rolled steel, reducing the initial section steel billet and degrees of oxidation of the metal in the heating furnace.

  3. Rooting depth varies differentially in trees and grasses as a function of mean annual rainfall in an African savanna.

    Science.gov (United States)

    Holdo, Ricardo M; Nippert, Jesse B; Mack, Michelle C

    2018-01-01

    A significant fraction of the terrestrial biosphere comprises biomes containing tree-grass mixtures. Forecasting vegetation dynamics in these environments requires a thorough understanding of how trees and grasses use and compete for key belowground resources. There is disagreement about the extent to which tree-grass vertical root separation occurs in these ecosystems, how this overlap varies across large-scale environmental gradients, and what these rooting differences imply for water resource availability and tree-grass competition and coexistence. To assess the extent of tree-grass rooting overlap and how tree and grass rooting patterns vary across resource gradients, we examined landscape-level patterns of tree and grass functional rooting depth along a mean annual precipitation (MAP) gradient extending from ~ 450 to ~ 750 mm year -1 in Kruger National Park, South Africa. We used stable isotopes from soil and stem water to make inferences about relative differences in rooting depth between these two functional groups. We found clear differences in rooting depth between grasses and trees across the MAP gradient, with grasses generally exhibiting shallower rooting profiles than trees. We also found that trees tended to become more shallow-rooted as a function of MAP, to the point that trees and grasses largely overlapped in terms of rooting depth at the wettest sites. Our results reconcile previously conflicting evidence for rooting overlap in this system, and have important implications for understanding tree-grass dynamics under altered precipitation scenarios.

  4. Measurement of the Depth of Maximum of Extensive Air Showers above 10(18) eV

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barroso, S. L. C.; Barbosa, A. F.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De la Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Froehlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Gamez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Horandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Micanovic, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafa, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Nyklicek, M.; Oehlschlaeger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Riviere, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuessler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tapia, A.; Tarutina, T.; Tascau, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Winnick, M. G.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2010-01-01

    We describe the measurement of the depth of maximum, X-max, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10(18) eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are

  5. Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement

    International Nuclear Information System (INIS)

    Lerche, Ch.W.; Ros, A.; Monzo, J.M.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Esteve, R.; Gadea, R.; Colom, R.J.; Toledo, J.; Mateo, F.; Sebastia, A.; Sanchez, F.; Benlloch, J.M.

    2009-01-01

    The center of gravity algorithm leads to strong artifacts for gamma-ray imaging detectors that are based on monolithic scintillation crystals and position sensitive photo-detectors. This is a consequence of using the centroids as position estimates. The fact that charge division circuits can also be used to compute the standard deviation of the scintillation light distribution opens a way out of this drawback. We studied the feasibility of maximum likelihood estimation for computing the true gamma-ray photo-conversion position from the centroids and the standard deviation of the light distribution. The method was evaluated on a test detector that consists of the position sensitive photomultiplier tube H8500 and a monolithic LSO crystal (42mmx42mmx10mm). Spatial resolution was measured for the centroids and the maximum likelihood estimates. The results suggest that the maximum likelihood positioning is feasible and partially removes the strong artifacts of the center of gravity algorithm.

  6. Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, Ch.W. [Grupo de Sistemas Digitales, ITACA, Universidad Politecnica de Valencia, 46022 Valencia (Spain)], E-mail: lerche@ific.uv.es; Ros, A. [Grupo de Fisica Medica Nuclear, IFIC, Universidad de Valencia-Consejo Superior de Investigaciones Cientificas, 46980 Paterna (Spain); Monzo, J.M.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Esteve, R.; Gadea, R.; Colom, R.J.; Toledo, J.; Mateo, F.; Sebastia, A. [Grupo de Sistemas Digitales, ITACA, Universidad Politecnica de Valencia, 46022 Valencia (Spain); Sanchez, F.; Benlloch, J.M. [Grupo de Fisica Medica Nuclear, IFIC, Universidad de Valencia-Consejo Superior de Investigaciones Cientificas, 46980 Paterna (Spain)

    2009-06-01

    The center of gravity algorithm leads to strong artifacts for gamma-ray imaging detectors that are based on monolithic scintillation crystals and position sensitive photo-detectors. This is a consequence of using the centroids as position estimates. The fact that charge division circuits can also be used to compute the standard deviation of the scintillation light distribution opens a way out of this drawback. We studied the feasibility of maximum likelihood estimation for computing the true gamma-ray photo-conversion position from the centroids and the standard deviation of the light distribution. The method was evaluated on a test detector that consists of the position sensitive photomultiplier tube H8500 and a monolithic LSO crystal (42mmx42mmx10mm). Spatial resolution was measured for the centroids and the maximum likelihood estimates. The results suggest that the maximum likelihood positioning is feasible and partially removes the strong artifacts of the center of gravity algorithm.

  7. Bilateral differences in peak force, power, and maximum plie depth during multiple grande jetes

    NARCIS (Netherlands)

    Wyon, M.; Harris, J.; Brown, D.D.; Clark, F.

    2013-01-01

    A lateral bias has been previously reported in dance training. The aim of this study was to investigate whether there are any bilateral differences in peak forces, power, and maximum knee flexion during a sequence of three grand jetes and how they relate to leg dominance. A randomised observational

  8. Countermovement depth - a variable which clarifies the relationship between the maximum power output and height of a vertical jump.

    Science.gov (United States)

    Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew

    2018-01-01

    The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.

  9. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height

    Directory of Open Access Journals (Sweden)

    Mandic Radivoj

    2016-09-01

    Full Text Available The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  10. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height.

    Science.gov (United States)

    Mandic, Radivoj; Knezevic, Olivera M; Mirkov, Dragan M; Jaric, Slobodan

    2016-09-01

    The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  11. Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J.; /Buenos Aires, CONICET; Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahn, E.J.; /Fermilab; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche /Buenos Aires, CONICET; Allen, J.; /New York U.; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U.; Anchordoqui, L.; /Wisconsin U., Milwaukee; Andringa, S.; /Lisbon, IST /Boskovic Inst., Zagreb

    2010-02-01

    We describe the measurement of the depth of maximum, X{sub max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10{sup 18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{sub -21}{sup +35}) g/cm{sup 2}/decade below 10{sup 18.24 {+-} 0.05}eV, and (24 {+-} 3) g/cm{sup 2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{sup 2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  12. Similar mid-depth Atlantic water mass provenance during the Last Glacial Maximum and Heinrich Stadial 1

    Science.gov (United States)

    Howe, Jacob N. W.; Huang, Kuo-Fang; Oppo, Delia W.; Chiessi, Cristiano M.; Mulitza, Stefan; Blusztajn, Jurek; Piotrowski, Alexander M.

    2018-05-01

    The delivery of freshwater to the North Atlantic during Heinrich Stadial 1 (HS1) is thought to have fundamentally altered the operation of Atlantic meridional overturning circulation (AMOC). Although benthic foraminiferal carbon isotope records from the mid-depth Atlantic show a pronounced excursion to lower values during HS1, whether these shifts correspond to changes in water mass proportions, advection, or shifts in the carbon cycle remains unclear. Here we present new deglacial records of authigenic neodymium isotopes - a water mass tracer that is independent of the carbon cycle - from two cores in the mid-depth South Atlantic. We find no change in neodymium isotopic composition, and thus water mass proportions, between the Last Glacial Maximum (LGM) and HS1, despite large decreases in carbon isotope values at the onset of HS1 in the same cores. We suggest that the excursions of carbon isotopes to lower values were likely caused by the accumulation of respired organic matter due to slow overturning circulation, rather than to increased southern-sourced water, as typically assumed. The finding that there was little change in water mass provenance in the mid-depth South Atlantic between the LGM and HS1, despite decreased overturning, suggests that the rate of production of mid-depth southern-sourced water mass decreased in concert with decreased production of northern-sourced intermediate water at the onset of HS1. Consequently, we propose that even drastic changes in the strength of AMOC need not cause a significant change in South Atlantic mid-depth water mass proportions.

  13. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara.

    Science.gov (United States)

    Zhang, Qian; Visser, Eric J W; de Kroon, Hans; Huber, Heidrun

    2015-08-01

    Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. © The Author 2015. Published by

  14. Monitoring plant water status and rooting depth for precision irrigation in the vineyards of Classic Karst

    Science.gov (United States)

    Savi, Tadeja; Moretti, Elisa; Dal Borgo, Anna; Petruzzellis, Francesco; Stenni, Barbara; Bertoncin, Paolo; Dreossi, Giuliano; Zini, Luca; Martellos, Stefano; Nardini, Andrea

    2017-04-01

    The extreme summer drought and heat waves that occurred in South-Europe in 2003 and 2012 have led to the loss of more than 50% of winery production in the Classic Karst (NE Italy). The irrigation of vineyards in this area is not appropriately developed and, when used, it does not consider the actual water status and needs of plants, posing risks of inappropriate or useless usage of large water volumes. The predicted future increase in frequency and severity of extreme climate events poses at serious risk the local agriculture based on wine business. We monitored seasonal trends of pre-dawn (Ψpd) and minimum (Ψmin) leaf water potential, and stomatal conductance (gL) of 'Malvasia' grapevine in one mature (MV, both in 2015 and 2016) and one young vineyard (YV, in 2016). Moreover, we extracted xylem sap form plant stems and soil water from samples collected in nearby caves, by cryo-vacuum distillation. We also collected precipitation and irrigation water in different months. Oxygen isotope composition (δ18O) of atmospheric, plant, soil and irrigation water was analyzed to get information about rooting depth. In 2015, at the peak of summer aridity, two irrigation treatments were applied according to traditional management practices. The treatments were performed in a sub-area of the MV, followed by physiological analysis and yield measurements at grape harvest. In 2016, the soil water potential (Ψsoil) at 50 cm depth was also monitored throughout the season. Under harsh environmental conditions the apparently deep root system ensured relatively favorable plant water status in both MV and YV and during both growing seasons. The Ψsoil at 50 cm depth gradually decreased as drought progressed, reaching a minimum value of about -1.7 MPa, far more negative than Ψpd recorded in plants (about -0.5 MPa). In July, significant stomatal closure was observed, but Ψmin never surpassed the critical threshold of -1.3 MPa, indicating that irrigation was not needed. The xylem sap

  15. The effect of modifying rooting depths and nitrification inhibitors on nutrient uptake from organic biogas residues in maize

    Science.gov (United States)

    Dietrich, Charlotte C.; Koller, Robert; Nagel, Kerstin A.; Schickling, Anke; Schrey, Silvia D.; Jablonowski, Nicolai D.

    2017-04-01

    Optimizing the application of and nutrient uptake from organic nutrient sources, such as the nutrient-rich residues ("digestates") from the biogas industry, is becoming a viable option in remediating fertility on previously unsuitable soils for agricultural utilization. Proposedly, concurrent changes in root system architecture and functioning could also serve as the basis of future phytomining approaches. Herein, we evaluate the effect of spatial nutrient availability and nitrification on maize root architecture and nutrient uptake. We test these effects by applying maize-based digestate at a rate of 170 kg/ha in layers of varying depths (10, 25 and 40 cm) and through either the presence or absence of nitrification inhibitors. In order to regularly monitor above- and below-ground plant biomass production, we used the noninvasive phenotyping platform, GROWSCREEN-Rhizo at the Forschungszentrum Jülich, using rhizotrons (Nagel et al., 2012). Measured parameters included projected plant height and leaf area, as well as root length and spatial distribution. Additionally, root diameters were quantified after the destructive harvest, 21 days after sowing (DAS). Spatial nutrient availability significantly affected root system architecture, as for example root system size -the area occupied by roots- increased alongside nutrient layer depths. Fertilization also positively affected root length density (RLD). Within fertilized layers, the presence of nitrification inhibitors increased RLD by up to 30% and was most pronounced in the fine root biomass fraction (0.1 to 0.5mm). Generally, nitrification inhibitors promoted early plant growth by up to 45% across treatments. However, their effect varied in dependence of layer depths, leading to a time-delayed response in deeper layers, accounting for plants having to grow significantly longer roots in order to reach fertilized substrate. Nitrification inhibitors also initiated the comparatively early on-set of growth differences in

  16. Spatio-temporal distribution of Diaphanosoma brachyurum (Cladocera: Sididae in freshwater reservoir ecosystems: importance of maximum water depth and macrophyte beds for avoidance of fish predation

    Directory of Open Access Journals (Sweden)

    Jong-Yun Choi

    2014-10-01

    Full Text Available In empirical studies, Cladocera is commonly utilized as a primary food source for predators such as fish, thus, predator avoidance are important strategies to sustain their population in freshwater ecosystems. In this study, we tested the hypothesis that water depth is an important factor in determining the spatial distribution of Diaphanosoma brachyurum Liévin, 1848 in response to fish predation. Quarterly monitoring was implemented at three water layers (i.e., water surface and middle and bottom layers in 21 reservoirs located in the southeastern part of South Korea. D. brachyurum individuals were frequently observed at the study sites and exhibited different spatial patterns of distribution in accordance with the maximum depth of the reservoirs. In the reservoirs with a maximum depth of more than 6 m, high densities of D. brachyurum were observed in the bottom layers; however, in the shallower reservoirs (maximum depth <6 m, D. brachyurum were concentrated in the surface layer. Moreover, during additional surveys, we observed a trend in which D. brachyurum densities increased as the maximum depth or macrophyte biomass increased. Gut contents analysis revealed that predatory fishes in each reservoir frequently consumed D. brachyurum; however, the consumption rate abruptly decreased in reservoirs where the maximum depth was more than 11 m or in the shallow reservoirs supporting a macrophyte bed. Interestingly, the reservoirs more than 11-m depth supported high densities of D. brachyurum in the bottom layer and in the surface macrophyte bed. Based on these results, reservoirs with a maximum depth of more than 11 m or those with a macrophyte bed may provide a refuge for D. brachyurum to avoid fish predation. Compared with other cladoceran species, D. brachyurum readily exploits various types of refugia (in this study, the deep layer or surface macrophyte bed, which may help explain why this species is abundant in various types of reservoirs.

  17. Effects of catch crop type and root depth on nitrogen leaching and yield of spring barley

    DEFF Research Database (Denmark)

    Sapkota, Tek Bahadur; Askegaard, Margrethe; Lægdsmand, Mette

    2012-01-01

    [chicory (Cichorium intybus L.), fodder radish (Raphanus sativus L.) and perennial ryegrass (Lolium perenne L.)] and their effect on soil mineral N (NO3− and NH4+) in different soil layers by using the FASSET model. The simulated results of catch crop biomass and root growth and mineral N in the soil...

  18. Root Systems of Individual Plants, and the Biotic and Abiotic Factors Controlling Their Depth and Distribution: a Synthesis Using a Global Database.

    Science.gov (United States)

    Tumber-Davila, S. J.; Schenk, H. J.; Jackson, R. B.

    2017-12-01

    This synthesis examines plant rooting distributions globally, by doubling the number of entries in the Root Systems of Individual Plants database (RSIP) created by Schenk and Jackson. Root systems influence many processes, including water and nutrient uptake and soil carbon storage. Root systems also mediate vegetation responses to changing climatic and environmental conditions. Therefore, a collective understanding of the importance of rooting systems to carbon sequestration, soil characteristics, hydrology, and climate, is needed. Current global models are limited by a poor understanding of the mechanisms affecting rooting, carbon stocks, and belowground biomass. This improved database contains an extensive bank of records describing the rooting system of individual plants, as well as detailed information on the climate and environment from which the observations are made. The expanded RSIP database will: 1) increase our understanding of rooting depths, lateral root spreads and above and belowground allometry; 2) improve the representation of plant rooting systems in Earth System Models; 3) enable studies of how climate change will alter and interact with plant species and functional groups in the future. We further focus on how plant rooting behavior responds to variations in climate and the environment, and create a model that can predict rooting behavior given a set of environmental conditions. Preliminary results suggest that high potential evapotranspiration and seasonality of precipitation are indicative of deeper rooting after accounting for plant growth form. When mapping predicted deep rooting by climate, we predict deepest rooting to occur in equatorial South America, Africa, and central India.

  19. On the applicability of extreme value statistics in the prediction of maximum pit depth in heavily corroded non-piggable buried pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, L. [Universidad Autonoma de la Ciudad de Mexico, Mexico D.F. 09790 (Mexico); Caleyo, F.; Hallen, J. M.; Araujo, J. [ESIQIE, Instituto Politecnico Nacional, Mexico D.F. (Mexico)

    2010-07-01

    Pitting corrosion entails serious risks in industrial plants, since a perforation resulting from a single pit can cause the failure of in-service components like water pipes, heat exchangers or oil tanks. A number of statistical methods have been suggested to estimate the maximum pit depth. Over the years, a successful application of extreme value analysis has been found in the application of the Gumbel distribution to predict the maximum pit depth from a smaller number of samples with small area. There is a lack of studies devoted to the applicability of the Gumbel method to the prediction of maximum pitting-corrosion depth. The aim of the work presented in this paper is to introduce a new strategy for the application of the Gumbel method in real pipelines. The methodology proposed is based on the fact that the clustered pattern of the pit depth distribution is less pronounced when the analysis is restricted to sections of the pipeline that exhibits similar characteristics.

  20. Temperature of the Icelandic crust: Inferred from electrical conductivity, temperature surface gradient, and maximum depth of earthquakes

    Science.gov (United States)

    Björnsson, Axel

    2008-02-01

    Two different models of the structure of the Icelandic crust have been presented. One is the thin-crust model with a 10-15 km thick crust beneath the axial rift zones, with an intermediate layer of partially molten basalt at the base of the crust and on the top of an up-domed asthenosphere. The thick-crust model assumes a 40 km thick and relatively cold crust beneath central Iceland. The most important and crucial parameter to distinguish between these different models is the temperature distribution with depth. Three methods are used to estimate the temperature distribution with depth. First, the surface temperature gradient measured in shallow wells drilled outside geothermal areas. Second, the thickness of the seismogenic zone which is associated with a 750 °C isothermal surface. Third, the depth to a layer with high electrical conductivity which is associated with partially molten basalt with temperature around 1100 °C at the base of the crust. Combination of these data shows that the temperature gradient can be assumed to be nearly linear from the surface down to the base of the crust. These results are strongly in favour of the thin-crust model. The scattered deep seismic reflectors interpreted as Moho in the thick-crust model could be caused by phase transitions or reflections from melt pockets in the mantle.

  1. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age.

    Science.gov (United States)

    Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe

    2016-08-21

    In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Annual ring width at the stem base increased up to 2·5 mm yr -1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha -1 and NPP of perennial roots was 1·3 t ha -1 yr -1 Fine root biomass (0-30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha -1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha -1 yr -1 (69 % of total root NPP). Fine root turnover was 1·3 yr -1 and lifespan was 0·8 years. Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. © The Author 2016. Published by Oxford University Press on

  2. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    Science.gov (United States)

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  3. Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations

    Directory of Open Access Journals (Sweden)

    Jean-Paul eLaclau

    2013-07-01

    Full Text Available Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production (GPP that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle of Eucalyptus plantations. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1-3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5- and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years. The root intersects were counted on 224 m2 of trench walls in 15 pits. Monitoring the soil water content showed that, after clear-cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the stand cycle. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. The results showed that a considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses.

  4. Validation of calculated tissue maximum ratio obtained from measured percentage depth dose (PPD) data for high energy photon beam ( 6 MV and 15 MV)

    International Nuclear Information System (INIS)

    Osei, J.E.

    2014-07-01

    During external beam radiotherapy treatments, high doses are delivered to the cancerous cell. Accuracy and precision of dose delivery are primary requirements for effective and efficiency in treatment. This leads to the consideration of treatment parameters such as percentage depth dose (PDD), tissue air ratio (TAR) and tissue phantom ratio (TPR), which show the dose distribution in the patient. Nevertheless, tissue air ratio (TAR) for treatment time calculation, calls for the need to measure in-air-dose rate. For lower energies, measurement is not a problem but for higher energies, in-air measurement is not attainable due to the large build-up material required for the measurement. Tissue maximum ratio (TMR) is the quantity required to replace tissue air ratio (TAR) for high energy photon beam. It is known that tissue maximum ratio (TMR) is an important dosimetric function in radiotherapy treatment. As the calculation methods used to determine tissue maximum ratio (TMR) from percentage depth dose (PDD) were derived by considering the differences between TMR and PDD such as geometry and field size, where phantom scatter or peak scatter factors are used to correct dosimetric variation due to field size difference. The purpose of this study is to examine the accuracy of calculated tissue maximum ratio (TMR) data with measured TMR values for 6 MV and 15 MV photon beam at Sweden Ghana Medical Centre. With the help of the Blue motorize water phantom and the Omni pro-Accept software, Pdd values from which TMRs are calculated were measured at 100 cm source-to-surface distance (SSD) for various square field sizes from 5x5 cm to 40x40 cm and depth of 1.5 cm to 25 cm for 6 MV and 15 MV x-ray beam. With the same field sizes, depths and energies, the TMR values were measured. The validity of the calculated data was determined by making a comparison with values measured experimentally at some selected field sizes and depths. The results show that; the reference depth of maximum

  5. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    Science.gov (United States)

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  6. A simulation study of Linsley's approach to infer elongation rate and fluctuations of the EAS maximum depth from muon arrival time distributions

    International Nuclear Information System (INIS)

    Badea, A.F.; Brancus, I.M.; Rebel, H.; Haungs, A.; Oehlschlaeger, J.; Zazyan, M.

    1999-01-01

    The average depth of the maximum X m of the EAS (Extensive Air Shower) development depends on the energy E 0 and the mass of the primary particle, and its dependence from the energy is traditionally expressed by the so-called elongation rate D e defined as change in the average depth of the maximum per decade of E 0 i.e. D e = dX m /dlog 10 E 0 . Invoking the superposition model approximation i.e. assuming that a heavy primary (A) has the same shower elongation rate like a proton, but scaled with energies E 0 /A, one can write X m = X init + D e log 10 (E 0 /A). In 1977 an indirect approach studying D e has been suggested by Linsley. This approach can be applied to shower parameters which do not depend explicitly on the energy of the primary particle, but do depend on the depth of observation X and on the depth X m of shower maximum. The distribution of the EAS muon arrival times, measured at a certain observation level relatively to the arrival time of the shower core reflect the pathlength distribution of the muon travel from locus of production (near the axis) to the observation locus. The basic a priori assumption is that we can associate the mean value or median T of the time distribution to the height of the EAS maximum X m , and that we can express T = f(X,X m ). In order to derive from the energy variation of the arrival time quantities information about elongation rate, some knowledge is required about F i.e. F = - ∂ T/∂X m ) X /∂(T/∂X) X m , in addition to the variations with the depth of observation and the zenith-angle (θ) dependence, respectively. Thus ∂T/∂log 10 E 0 | X = - F·D e ·1/X v ·∂T/∂secθ| E 0 . In a similar way the fluctuations σ(X m ) of X m may be related to the fluctuations σ(T) of T i.e. σ(T) = - σ(X m )· F σ ·1/X v ·∂T/∂secθ| E 0 , with F σ being the corresponding scaling factor for the fluctuation of F. By simulations of the EAS development using the Monte Carlo code CORSIKA the energy and angle

  7. Rooting Platanus (Platanus acerifolia (Aiton Willd. cuttings in Marechal Cândido Rondon - PR, Brazil: Influence of lesions at cutting bases and depth of planting

    Directory of Open Access Journals (Sweden)

    Danimar Dalla Rosa

    2018-01-01

    Full Text Available Platanus, an arboreal and deciduous plant, is widely adapted and can be used for several purposes. Despite producing viable seeds, production of platanus seedlings usually occurs through vegetative propagation; cuttings are the best and most efficient source for obtaining seedlings. Although cuttings offer a practical and easy method to obtain seedlings in different vegetable species, they are influenced by several factors, both external and internal. The present study aimed to analyze the behavior of plantain cuttings planted in sand subjected to damage or no damage at the cuttings base, and planted at depths of 20 and 40 cm. Experiment was carried out at the experimental station of horticulture and protected cultivation of UNIOESTE-Brazil, in a randomized 2×2 factorial design, which comprises both, planted at 20 cm and 40 cm depths, with 5 replicates and 5 cuttings per replicate. After 170 days of incubation, injured and non- injured cuttings, were evaluated for rooting percentage and cuttings sprouted, length of roots and medium length of stems, stem diameter, number of leaves per stem, and dry mass of roots and shoots. No significant differences were observed in cutting injury. All variables analyzed presented higher values when cuttings were planted at 20 cm depth. Results indicate that planting of platanus cuttings at 20 cm depth leads to better rooting rates and vegetative development.

  8. A comparison of conventional maximum intensity projection with a new depth-specific topographic mapping technique in the CT analysis of proximal tibial subchondral bone density

    International Nuclear Information System (INIS)

    Johnston, James D.; Kontulainen, Saija A.; Masri, Bassam A.; Wilson, David R.

    2010-01-01

    The objective was to identify subchondral bone density differences between normal and osteoarthritic (OA) proximal tibiae using computed tomography osteoabsorptiometry (CT-OAM) and computed tomography topographic mapping of subchondral density (CT-TOMASD). Sixteen intact cadaver knees from ten donors (8 male:2 female; mean age:77.8, SD:7.4 years) were categorized as normal (n = 10) or OA (n = 6) based upon CT reconstructions. CT-OAM assessed maximum subchondral bone mineral density (BMD). CT-TOMASD assessed average subchondral BMD across three layers (0-2.5, 2.5-5 and 5-10 mm) measured in relation to depth from the subchondral surface. Regional analyses of CT-OAM and CT-TOMASD included: medial BMD, lateral BMD, and average BMD of a 10-mm diameter area that searched each medial and lateral plateau for the highest ''focal'' density present within each knee. Compared with normal knees, both CT-OAM and CT-TOMASD demonstrated an average of 17% greater whole medial compartment density in OA knees (p 0.05). CT-TOMASD focal region analyses revealed an average of 24% greater density in the 0- to 2.5-mm layer (p = 0.003) and 36% greater density in the 2.5- to 5-mm layer (p = 0.034) in OA knees. Both CT-OAM and TOMASD identified higher medial compartment density in OA tibiae compared with normal tibiae. In addition, CT-TOMASD indicated greater focal density differences between normal and OA knees with increased depth from the subchondral surface. Depth-specific density analyses may help identify and quantify small changes in subchondral BMD associated with OA disease onset and progression. (orig.)

  9. The biologically active zone in upland habitats at the Hanford Site, Washington, USA: Focus on plant rooting depth and biomobilization.

    Science.gov (United States)

    Lovtang, Sara; Delistraty, Damon; Rochette, Elizabeth

    2018-07-01

    We challenge the suggestion by Sample et al. (2015) that a depth of 305 cm (10 ft) exceeds the depth of biological activity in soils at the Hanford Site, Washington, USA, or similar sites. Instead, we support the standard point of compliance, identified in the Model Toxics Control Act in the state of Washington, which specifies a depth of 457 cm (15 ft) for the protection of both human and ecological receptors at the Hanford Site. Our position is based on additional information considered in our expanded review of the literature, the influence of a changing environment over time, plant community dynamics at the Hanford Site, and inherent uncertainty in the Sample et al. (2015) analysis. Integr Environ Assess Manag 2018;14:442-446. © 2018 SETAC. © 2018 SETAC.

  10. Effects of canal enlargement and irrigation needle depth on the cleaning of the root canal system at 3 mm from the apex

    Directory of Open Access Journals (Sweden)

    Ho-Jin Moon

    2012-02-01

    Full Text Available Objectives The aim of this study was to test the hypothesis, that the effectiveness of irrigation in removing smear layer in the apical third of root canal system is dependent on the depth of placement of the irrigation needle into the root canal and the enlargement size of the canal. Materials and Methods Eighty sound human lower incisors were divided into eight groups according to the enlargement size (#25, #30, #35 and #40 and the needle penetration depth (3 mm from working length, WL-3 mm and 9 mm from working length, WL-9 mm. Each canal was enlarged to working length with Profile.06 Rotary Ni-Ti files and irrigated with 5.25% NaOCl. Then, each canal received a final irrigation with 3 mL of 3% EDTA for 4 min, followed by 5 mL of 5.25% NaOCl at different level (WL-3 mm and WL-9 mm from working length. Each specimen was prepared for the scanning electron microscope (SEM. Photographs of the 3mm area from the apical constriction of each canal with a magnification of ×250, ×500, ×1,000, ×2,500 were taken for the final evaluation. Results Removal of smear layer in WL-3 mm group showed a significantly different effect when the canal was enlarged to larger than #30. There was a significant difference in removing apical smear layer between the needle penetration depth of WL-3 mm and WL-9 mm. Conclusions Removal of smear layer from the apical portion of root canals was effectively accomplished with apical instrumentation to #35/40 06 taper file and 3 mm needle penetration from the working length.

  11. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  12. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10.sup.17.8./sup.  eV

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 90, č. 12 (2014), "122005-1"-"122005-25" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) 7AMB14AR005; GA MŠk(CZ) LG13007; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : astroparticle physics * Pierre Auger Observatory * cosmic rays * air showers * depth of maximum * Xmax Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  13. Predicting Maximum Lake Depth from Surrounding Topography

    Science.gov (United States)

    Lake volume aids understanding of the physical and ecological dynamics of lakes, yet is often not readily available. The data needed to calculate lake volume (i.e. bathymetry) are usually only collected on a lake by lake basis and are difficult to obtain across broad regions. ...

  14. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site.

    Science.gov (United States)

    Wang, Chao; White, Philip J; Li, Chunjian

    2017-05-01

    Effects of soil depth and plant growth stages on arbuscular mycorrhizal fungal (AMF) colonization and community structure in maize roots and their potential contribution to host plant phosphorus (P) nutrition under different P-fertilizer inputs were studied. Research was conducted on a long-term field experiment over 3 years. AMF colonization was assessed by AM colonization rate and arbuscule abundances and their potential contribution to host P nutrition by intensity of fungal alkaline phosphatase (ALP)/acid phosphatase (ACP) activities and expressions of ZmPht1;6 and ZmCCD8a in roots from the topsoil and subsoil layer at different growth stages. AMF community structure was determined by specific amplification of 18S rDNA. Increasing P inputs up to 75-100 kg ha -1  yr -1 increased shoot biomass and P content but decreased AMF colonization and interactions between AMF and roots. AM colonization rate, intensity of fungal ACP/ALP activities, and expression of ZmPht1;6 in roots from the subsoil were greater than those from topsoil at elongation and silking but not at the dough stage when plants received adequate or excessive P inputs. Neither P input nor soil depth influenced the number of AMF operational taxonomic units (OTUs) present in roots, but P-fertilizer input, in particular, influenced community composition and relative AMF abundance. In conclusion, although increasing P inputs reduce AMF colonization and influence AMF community structure, AMF can potentially contribute to plant P nutrition even in well-fertilized soils, depending on the soil layer in which roots are located and the growth stage of host plants.

  15. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    French, Sean B.; Christensen, Candace; Jennings, Terry L.; Jaros, Christopher L.; Wykoff, David S.; Crowell, Kelly J.; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  16. Revisiting the two-layer hypothesis: coexistence of alternative functional rooting strategies in savannas.

    Science.gov (United States)

    Holdo, Ricardo M

    2013-01-01

    The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models.

  17. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    Science.gov (United States)

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Root Hydraulics and Root Sap Flow in a Panamanian Low-Land Tropical Forest

    Science.gov (United States)

    Bretfeld, M.; Ewers, B. E.; Hall, J. S.; Ogden, F. L.; Beverly, D.; Speckman, H. N.

    2017-12-01

    In the tropics, trees are subjected to increasingly frequent and severe droughts driven by climate change. Given the hydrological benefits associated with tropical forests, such as reduced peak runoff during high precipitation events and increased base flow during drought periods ("sponge-effect"), the underlying plant-hydrological processes at the soil-plant interface have become the focus of recent research efforts. In Panama, the 2015/16 El Niño-Southern Oscillation (ENSO) event ranks amongst the driest and hottest periods on record, thus providing an excellent opportunity to study the effects of drought on tropical forests. Starting in 2015, we instrumented 76 trees with heat-ratio sap flow sensors in regrowing secondary forest (8-, 25-, and 80-year old stands) in the 15 km2 Agua Salud study area, located in central Panama. Of those trees, 16 individuals were instrumented with additional sap flow sensors on three roots each. Data were logged every 30 minutes and soil moisture was measured at 10, 30, 50, and 100 cm depth. Meteorological data were taken from a nearby met-station. Rooting depth and root density were assessed in eight 2×2×2 m soil pits. In April 2017, we measured hydraulic conductance and vulnerability to cavitation of eight species using the centrifuge technique. Trees in 8-year old forest limited transpiration during the drought whereas no such limitation was evident in trees of the 80-year old forest. Root sap flow data show seasonal shifts in water uptake between individual roots of a given tree, with sap flow decreasing in some roots while simultaneously increasing in other roots during the wet-dry season transition. Roots followed a typical log distribution along the profile, with overall root densities of 46, 43, and 52 roots m-2 in the 8-, 25-, and 80-yo stand, respectively. Roots were found up to 200 cm depth in all forests, with roots >5 cm occurring at lower depths (>125 cm) only in 25- and 80-year old forests. Maximum hydraulic

  19. Lime and gypsum to improve root depth of orange crop in an Ultisol of the Coastal Tablelands Calcário e gesso no aprofundamento radicular da laranjeira em um Argissolo dos Tabuleiros Costeiros

    Directory of Open Access Journals (Sweden)

    Lafayette F. Sobral

    2009-12-01

    Full Text Available Coastal Tableland is a landscape unit in the North East of Brazil in which the main soils are Ultisols. In these soils, a compacted layer denominated "cohesive horizon" occurs and root growth is limited by it. An experiment with five treatments and six replications was set up in order to study how liming and gypsum could improve root depth of orange (Citrus sinensis L. Osbeck crop in an Ultisol in which a compacted layer was found at 0.3 m. Treatments were: A - No liming and no gypsum; B - Liming to achieve 60% base saturation; C - B + 1 t of gypsum ha-1 ; D - B + 2 t of gypsum ha-1 and E - B + 3 t of gypsum ha-1. Gypsum increased calcium and sulfate in the cohesive horizon. Surface application of lime and gypsum did not cause changes in soil density and total porosity in the cohesive horizon. An improvement of root length was observed at the cohesive horizon.Os tabuleiros costeiros são uma unidade de paisagem em que um dos principais solos são os Argissolos, nos quais, uma camada compactada, denominada "horizonte coeso" ocorre e o crescimento radicular é por ela limitado. Um experimento com cinco tratamentos e seis repetições foi implantado para se estudar os efeitos da calagem e do gesso no aprofundamento radicular da laranjeira (Citrus sinensis L. Osbeck em um Argissolo onde o horizonte coeso está a 0,3 m de profundidade. Os tratamentos foram: A - Sem gesso e sem calagem; B - Calagem para atingir 60% de saturação por bases; C - B + 1 t ha-1 de gesso ; D - B + 2 t ha-1 de gesso; e E - B + 3 t ha-1 de gesso. A calagem e o gesso aumentaram significativamente os teores de sulfato e de calcio no solo até a profundidade de 0,40 m. A aplicação a lanço de calcário e gesso não causaram modificações na densidade do solo e na porosidade total da camada compactada "horizonte coeso". Foi observado um aumento do comprimento das raízes da laranjeira na camada compactada.

  20. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  1. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    Science.gov (United States)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  2. Root reinforcement and its contribution to slope stability in the Western Ghats of Kerala, India

    Science.gov (United States)

    Lukose Kuriakose, Sekhar; van Beek, L. P. H.

    2010-05-01

    computed root tensile strength both vertically and spatially. Root cohesion varies significantly with the type of land use and the depth of soil. The computation showed that a maximum root reinforcement of 40 kPa was available in the first 30 cm of soil while exponentially decreased with depth to just about 3 kPa at 3 m depth. Mixed crops land use unit had the maximum root cohesion while fallow land, degraded forest and young rubber plantation had the lowest root reinforcement. These are the upper limits of root reinforcement that the vegetation can provide. When the soil is saturated, the bond between soil and roots reduces and thus the applicable root reinforcement is limited by the root pullout strength. Root reinforcement estimated from pullout strength vs diameter relationships was significantly lower than those estimated from tensile strength vs diameter relationships.

  3. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR).

    Science.gov (United States)

    Malmstrom, Carolyn M; Bigelow, Patrick; Trębicki, Piotr; Busch, Anna K; Friel, Colleen; Cole, Ellen; Abdel-Azim, Heba; Phillippo, Colin; Alexander, Helen M

    2017-09-15

    stunted annual Avena sativa L. (oats). These findings suggest that some of the diversity in grass-infecting Luteoviridae reflects viral capacity to modulate defenses in different host types. Intriguingly, while all virus treatments also reduced root production in both host species, only crop-associated BYDV-PAV (or co-infection) reduced rooting depths. Such root effects may increase host susceptibility to drought, and indicate that BYDV-PAV pathogenicity is determined by something other than a P0 VSR. These findings contribute to growing evidence that pathogenic crop-associated viruses may harm native species as well as crops. Critical next questions include the extent to which crop-associated selection pressures drive viral pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of root planing on surface topography: an in-vivo randomized experimental trial.

    Science.gov (United States)

    Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F

    2015-04-01

    The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p  0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The Tubular Penetration Depth and Adaption of Four Sealers: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Huan Chen

    2017-01-01

    Full Text Available Background. The tubular penetration and adaptation of the sealer are important factors for successful root canal filling. The aim of this study was to evaluate the tubular penetration depth of four different sealers in the coronal, middle, and apical third of root canals as well as the adaptation of these sealers to root canal walls. Materials and Methods. 50 single-rooted teeth were prepared in this study. Forty-eight of them were filled with different sealers (Cortisomol, iRoot SP, AH-Plus, and RealSeal SE and respective core filling materials. Then the specimens were sectioned and scanning electron microscopy was employed to assess the tubular penetration and adaptation of the sealers. Results. Our results demonstrated that the maximum penetration was exhibited by RealSeal SE, followed by AH-Plus, iRoot SP, and Cortisomol. As regards the adaptation property to root canal walls, AH-Plus has best adaptation capacity followed by iRoot SP, RealSeal SE, and Cortisomol. Conclusion. The tubular penetration and adaptation vary with the different sealers investigated. RealSeal SE showed the most optimal tubular penetration, whereas AH-Plus presented the best adaptation to the root canal walls.

  6. Effect of rooting depth, plant density and planting date on maize (Zea Mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.

    2014-01-01

    Under low and poorly distributed rainfall higher food production can be achieved by increasing crop water use efficiency (WUE) through optimum soil fertility management and selection of deep-rooting cultivars, appropriate plant density and planting dates. We explored AquaCrop's applicability in

  7. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  8. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  9. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    Science.gov (United States)

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  10. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  11. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  12. Root systems of chaparral shrubs.

    Science.gov (United States)

    Kummerow, Jochen; Krause, David; Jow, William

    1977-06-01

    Root systems of chaparral shrubs were excavated from a 70 m 2 plot of a mixed chaparral stand located on a north-facing slope in San Diego County (32°54' N; 900 m above sea level). The main shrub species present were Adenostoma fasciculatum, Arctostaphylos pungens, Ceanothus greggii, Erigonum fasciculatum, and Haplopappus pinifolius. Shrubs were wired into their positions, and the soil was washed out beneath them down to a depth of approximately 60 cm, where impenetrable granite impeded further washing and root growth was severely restricted. Spacing and interweaving of root systems were recorded by an in-scale drawing. The roots were harvested in accordance to their depths, separated into diameter size classes for each species, and their dry weights measured. Roots of shrubs were largely confined to the upper soil levels. The roots of Eriogonum fasciculatum were concentrated in the upper soil layer. Roots of Adenostoma fasciculatum tended to be more superficial than those from Ceanothus greggii. It is hypothesized that the shallow soil at the excavation site impeded a clear depth zonation of the different root systems. The average dry weight root:shoot ratio was 0.6, ranging for the individual shrubs from 0.8 to 0.4. The root area always exceeded the shoot area, with the corresponding ratios ranging from 6 for Arctostaphylos pungens to 40 for Haplopappus pinifolius. The fine root density of 64 g dry weight per m 2 under the canopy was significantly higher than in the unshaded area. However, the corresponding value of 45 g dry weight per m 2 for the open ground is still high enough to make the establishment of other shrubs difficult.

  13. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea

    DEFF Research Database (Denmark)

    Olesen, B.; Enríquez, Susana; Duarte, Carlos M.

    2002-01-01

    and roots at greater depths, thereby promoting the balance between photosynthesis and respiration in the shoots. C. nodosa, being a potentially fast-growing species compared to P. oceanica, had higher maximum photosynthetic and respiration rates as well as light compensation points for photosynthesis....... Photosynthetic efficiency at low light, however, was almost the same for the 2 species as suggested by the relatively small differences in mass-specific light absorption. Only C. nodosa acclimated physiologically to depth as light-use efficiency increased, and light compensation point declined significantly from...... shallow to deep water. P. oceanica, however, possessed low respiration rates and slightly lower light compensation points values than C. nodosa throughout the depth range. Shoot mortality and recruitment rates were unaffected by rooting depth. C. nodosa stand experienced fast shoot turnover compared to P...

  14. Roots & Hollers

    OpenAIRE

    Kollman, Patrick L; Gorman, Thomas A

    2011-01-01

    Roots & Hollers, 2011 A documentary by Thomas Gorman & Patrick Kollman Master’s Project Abstract: Roots & Hollers uncovers the wild American ginseng trade, revealing a unique intersection between Asia and rural America. Legendary in Asia for its healing powers, ginseng helps sustain the livelihoods of thousands in Appalachia. A single root can sell for thousands of dollars at auction. Shot on-location in the mountains of Kentucky and West Virginia, this student doc...

  15. Root cause of waterborne diseases in Pakistan

    International Nuclear Information System (INIS)

    Hashml, H.N.; Ghumman, A.R.; Malik, N.E.

    2005-01-01

    The waterborne diseases are increasing rapidly at an alarming rate in Pakistan due to poor sanitation and unsafe drinking water supplies. This study shows that about 25 percent of all the illnesses in Lahore are due to severe cases of waterborne diseases. Unhygienic sanitation system is the root cause for this scenario. Drinking water, samples were collected from different zones of the city to find out the root cause of waterborne diseases. The samples from the distribution system serving 'Kachi Abbadies' (Underdeveloped areas) were much more contaminated, may be due to non-chlorination as compared to the water which is regularly chlorinated in posh areas of the city. Contribution of soakage pits in groundwater contamination is more significant at shallow depths. From the laboratory results it is clear that water distribution in underdeveloped areas of the city is highly contaminated and ground water available at shallow depth is also infected by microbial activities. Data collected from the different hospitals to investigate the problem shows that waterborne diseases vary their trend seasonally. Here in Pakistan, rainy season (July-August) reveals maximum number of cases of waterborne diseases. Proper sanitation and water supply systems are more essential to control the influence of waterborne diseases within the country. It is strongly recommended that reputable ways of communications are urgently required to highlight the diseases related to unsafe drinking water. (author)

  16. Distribuição das raízes dos citros em função da profundidade da cova de plantio em Latossolo Amarelo dos Tabuleiros Costeiros Citros root distribution in Coastal Tablelands Yellow Latosol in different planting hole depth

    Directory of Open Access Journals (Sweden)

    Laercio Duarte Souza

    2006-04-01

    Full Text Available A citricultura no Nordeste do Brasil está concentrada nos Estados da Bahia e Sergipe, com 106.385 ha de área plantada no agroecossistema dos Tabuleiros Costeiros, onde predominam Latossolos Amarelos, que apresentam horizontes coesos subsuperficiais que se tornam extremamente duros quando secos. Esses horizontes impedem o desenvolvimento das raízes ao longo do perfil, diminuindo o volume de solo explorado e a disponibilidade de água e nutrientes. Para romper a zona de ocorrência da coesão e aumentar o volume de solo ocupado pelas raízes, foram utilizados plantios com profundidades de cova de 0,40; 0,60; 0,80; 1,00 e 1,20 m, com laranjeira 'Valência' enxertada sobre limoeiro 'Volkameriano'. A distribuição das raízes, divididas em quatro diâmetros, apresentou diferenças entre tratamentos. Os melhores resultados ocorreram na linha de plantio para os tratamentos 0,80 m, 1,00 m e 1,20 m.Citros crop in Northeast Brazil is concentrated on states of Bahia and Sergipe, with 106,385 hectares, established in the Coastal Tablelands agricultural ecosystem, where Yellow Latosol prevail, with cohesive horizons that become hard when dry. This problem retains the roots development along the soil profile, decreasing the soil volume explored and consequently the availability of water and nutrients. To solve this problem, breaking the cohesive layer and increasing the volume of roots in the soil, orange tree 'Valência' grafted on lemon tree 'Volkameriano' was planted in several hole depths (0.40; 0.60; 0.80; 1.00 and 1.20 m. The distribution of roots, evaluated in four different diameters, showed differences among the treatments. The best depths were 0.80 m, 1.00 m and 1.20 m.

  17. Root patterning

    NARCIS (Netherlands)

    Scheres, Ben; Laskowski, Marta

    2016-01-01

    The mechanisms that pattern lateral root primordial are essential for the elaboration of root system architecture, a trait of key importance for future crop breeding. But which are most important: periodic or local cues? In this issue of Journal of Experimental Botany (pages 1411-1420), Kircher

  18. Distribution of the root system of peach palm under drip irrigation

    Directory of Open Access Journals (Sweden)

    Adriano da Silva Lopes

    2014-07-01

    Full Text Available The incorporation of technologies has resulted in increased productivity and the more rational management of peach palm, with irrigation being an important tool for certain regions. Thus, studies leading to proper crop management are extremely important, such as the estimate of the effective depth of the root system, which is indispensable for proper irrigation management. The objective of this study was to evaluate the effects of different irrigation depths, as applied by drip irrigation, on the distribution of the root system of peach palm. This experiment was conducted in Ilha Solteira, São Paulo State, Brazil, with drip irrigation, with the two systems (flow of 0.0023 m3 h-1 consisting of four irrigation treatments corresponding to 0, 50, 100 and 150% of Class ‘A’ pan evaporation. After five years, an analysis of the Bactris gasipaes root system was performed at a distance of 0.0, 0.5 and 1.0 meters from the trunk, collecting sampling at two depths (0.0 to 0.3 m and 0.3 to 0.6 m via the auger method (volumetric analysis. We concluded that the effective depth of the root system used for irrigation management should be a maximum of 0.3 meters.

  19. Intercomparison On Depth Dose Measurement

    International Nuclear Information System (INIS)

    Rohmah, N; Akhadi, M

    1996-01-01

    Intercomparation on personal dose evaluation system has been carried out between CSRSR-NAEA of Indonesia toward Standard Laboratory of JAERI (Japan) and ARL (Australia). The intercomparison was in 10 amm depth dose measurement , Hp (10), from the intercomparison result could be stated that personal depth dose measurement conducted by CSRSR was sufficiently good. Deviation of dose measurement result using personal dosemeter of TLD BG-1 type which were used by CSRSR in the intercomparison and routine photon personal dose monitoring was still in internationally agreed limit. Maximum deviation of reported doses by CSRSR compared to delivered doses for dosemeter irradiation by JAERI was -10.0 percent and by ARL was +29 percent. Maximum deviation permitted in personal dose monitoring is ± 50 percent

  20. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...... processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has...

  1. Comparing simple root phenotyping methods on a core set of rice genotypes.

    Science.gov (United States)

    Shrestha, R; Al-Shugeairy, Z; Al-Ogaidi, F; Munasinghe, M; Radermacher, M; Vandenhirtz, J; Price, A H

    2014-05-01

    Interest in belowground plant growth is increasing, especially in relation to arguments that shallow-rooted cultivars are efficient at exploiting soil phosphorus while deep-rooted ones will access water at depth. However, methods for assessing roots in large numbers of plants are diverse and direct comparisons of methods are rare. Three methods for measuring root growth traits were evaluated for utility in discriminating rice cultivars: soil-filled rhizotrons, hydroponics and soil-filled pots whose bottom was sealed with a non-woven fabric (a potential method for assessing root penetration ability). A set of 38 rice genotypes including the OryzaSNP set of 20 cultivars, additional parents of mapping populations and products of marker-assisted selection for root QTLs were assessed. A novel method of image analysis for assessing rooting angles from rhizotron photographs was employed. The non-woven fabric was the easiest yet least discriminatory method, while the rhizotron was highly discriminatory and allowed the most traits to be measured but required more than three times the labour of the other methods. The hydroponics was both easy and discriminatory, allowed temporal measurements, but is most likely to suffer from artefacts. Image analysis of rhizotrons compared favourably to manual methods for discriminating between cultivars. Previous observations that cultivars from the indica subpopulation have shallower rooting angles than aus or japonica cultivars were confirmed in the rhizotrons, and indica and temperate japonicas had lower maximum root lengths in rhizotrons and hydroponics. It is concluded that rhizotrons are the preferred method for root screening, particularly since root angles can be assessed. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  3. Institutional Strength in Depth

    International Nuclear Information System (INIS)

    Weightman, M.

    2016-01-01

    Much work has been undertaken in order to identify, learn and implement the lessons from the TEPCO Fukushima Daiichi nuclear accident. These have mainly targeted on engineering or operational lessons. Less attention has been paid to the institutional lessons, although there have been some measures to improve individual peer reviews, particularly by the World Association of Nuclear Operators, and the authoritative IAEA report published in 2015 brought forward several important lessons for regulators and advocated a system approach. The report noted that one of the contributing factors the accident was the tendency of stakeholders not to challenge. Additionally, it reported deficiencies in the regulatory authority and system. Earlier, the root cause of the accident was identified by a Japanese independent parliamentary report as being cultural and institutional. The sum total of the institutions, the safety system, was ineffective. While it is important to address the many technical and operational lessons these may not necessary address this more fundamental lesson, and may not serve to provide robust defences against human or institutional failings over a wide variety of possible events and combinations. The overall lesson is that we can have rigorous and comprehensive safety standards and other tools in place to deliver high levels of safety, but ultimately what is important is the ability of the nuclear safety system to ensure that the relevant institutions diligently and effectively apply those standards and tools — to be robust and resilient. This has led to the consideration of applying the principles of the strength in depth philosophy to a nuclear safety system as a way of providing a framework for developing, assessing, reviewing and improving the system. At an IAEA conference in October 2013, a model was presented for a robust national nuclear safety system based on strength in depth philosophy. The model highlighted three main layers: industry, the

  4. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  5. Maximum power demand cost

    International Nuclear Information System (INIS)

    Biondi, L.

    1998-01-01

    The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it

  6. Soil weathering agents are limited where deep tree roots are removed, even after decades of forest regeneration

    Science.gov (United States)

    Billings, S. A.; Richter, D. D., Jr.; Hirmas, D.; Lehmeier, C.; Bagchi, S.; Brecheisen, Z.; Sullivan, P. L.; Min, K.; Hauser, E.; Stair, R.; Flournoy, R.

    2017-12-01

    Deep roots pump reduced C deep into Earth's critical zone (CZ) as they grow and function. This action generates acid-forming CO2 and organic acids (OA) and fosters microbes that also produce these weathering agents. This phenomenon results in a regolith-weathering reaction front that propagates down with vertical root extension and water infiltration. Across old-growth hardwood, younger pine, and annual crop plots at the Calhoun Critical Zone Observatory, we tested the hypothesis that persistent absence of deep roots, a widespread anthropogenic phenomenon, reduces root- and microbially-mediated biogeochemical pools and fluxes important for weathering, even well below maximum root density. We also hypothesized that land use effects on deep soil biogeochemistry is evident even after decades of forest regeneration. Root abundance to 2 m declined with depth, and was greater in old-growth and regenerating forests than in crop plots at most depths. Old-growth soils also contain more roots than younger pine soils: between 30-45 and 70-80 cm depth, old-growth root abundances were greater than in regenerating forests, and old-growth soils exhibited root distributions with less severe declines with depth and harbored more root-associated bacteria than younger forests. Changing root abundances influenced concentrations of weathering agents. At 3 m, in situ soil [CO2] reached 6%, 4%, and 2% in old-growth, regenerating, and crop soils, respectively. Soil organic C (SOC) and extractable OC (EOC, an OA proxy) did not differ across land use, but at 4-5 m EOC/SOC was higher in old-growth compared to regenerating forests and crop soils (20.0±2.6 vs. 2.0±1.0%). We suggest that biogeochemistry deep beneath old-growth forests reflects greater root prevalence and propensity for generation of weathering agents, and that disturbance regimes inducing deep root mortality impose top-down signals relevant to weathering processes deep in Earth's CZ even after decades of forest regeneration.

  7. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  8. Maximum parsimony on subsets of taxa.

    Science.gov (United States)

    Fischer, Mareike; Thatte, Bhalchandra D

    2009-09-21

    In this paper we investigate mathematical questions concerning the reliability (reconstruction accuracy) of Fitch's maximum parsimony algorithm for reconstructing the ancestral state given a phylogenetic tree and a character. In particular, we consider the question whether the maximum parsimony method applied to a subset of taxa can reconstruct the ancestral state of the root more accurately than when applied to all taxa, and we give an example showing that this indeed is possible. A surprising feature of our example is that ignoring a taxon closer to the root improves the reliability of the method. On the other hand, in the case of the two-state symmetric substitution model, we answer affirmatively a conjecture of Li, Steel and Zhang which states that under a molecular clock the probability that the state at a single taxon is a correct guess of the ancestral state is a lower bound on the reconstruction accuracy of Fitch's method applied to all taxa.

  9. Plant iodine-131 uptake in relation to root concentration as measured in minirhizotron by video camera:

    International Nuclear Information System (INIS)

    Moss, K.J.

    1990-09-01

    Glass viewing tubes (minirhizotrons) were placed in the soil beneath native perennial bunchgrass (Agropyron spicatum). The tubes provided access for observing and quantifying plant roots with a miniature video camera and soil moisture estimates by neutron hydroprobe. The radiotracer I-131 was delivered to the root zone at three depths with differing root concentrations. The plant was subsequently sampled and analyzed for I-131. Plant uptake was greater when I-131 was applied at soil depths with higher root concentrations. When I-131 was applied at soil depths with lower root concentrations, plant uptake was less. However, the relationship between root concentration and plant uptake was not a direct one. When I-131 was delivered to deeper soil depths with low root concentrations, the quantity of roots there appeared to be less effective in uptake than the same quantity of roots at shallow soil depths with high root concentration. 29 refs., 6 figs., 11 tabs

  10. ACCURACY ANALYSIS OF KINECT DEPTH DATA

    Directory of Open Access Journals (Sweden)

    K. Khoshelham

    2012-09-01

    Full Text Available This paper presents an investigation of the geometric quality of depth data obtained by the Kinect sensor. Based on the mathematical model of depth measurement by the sensor a theoretical error analysis is presented, which provides an insight into the factors influencing the accuracy of the data. Experimental results show that the random error of depth measurement increases with increasing distance to the sensor, and ranges from a few millimetres up to about 4 cm at the maximum range of the sensor. The accuracy of the data is also found to be influenced by the low resolution of the depth measurements.

  11. Profundidade da amostragem de solo e de raízes e índice de infestação de Oryzophagus oryzae (Costa Lima, 1936 (Coleoptera: Curculionidae em cultivares de arroz Sampling depth of soil and roots and Oryzophagus oryzae (Costa Lima, 1936 (Coleoptera: Curculionidae infestation index in rice cultivars

    Directory of Open Access Journals (Sweden)

    Márcio Bartz das Neves

    2011-12-01

    . Concluiu-se que, num Planossolo Háplico, amostras de solo e de raízes de arroz retiradas à profundidade de 6cm são mais apropriadas à captura e à visualização de larvas de O. oryzae, na suspensão (solo e água formada nas peneiras usadas para a sua contagem, e à obtenção de adultos desse inseto.Oryzophagus oryzae is the key insect pest in flooded rice fields in southern Brazil. Their larvae, known as rice water weevil cause significant yield losses when they cut the roots of rice plants. For the monitoring and survey of the larval population of O. oryzae, on rice fields and rice trials, respectively, are currently used standard samples of soil and roots, with 8.5cm deep and 10cm wide, blown away by submersion and shaking in a sieve with water for the counting of larvae. The visualization of larvae, especially the 1st and 2nd instars, becomes difficult in the suspension formed by the soil samples with these dimensions and the water inside the sieves. Thus, an experiment was conducted in a Typic Albaqualf soil according to the Latin square design to determine a sampling depth of soil and roots that makes possible the capture and display a larger number of larvae in a smallest possible volume of soil, in different rice cultivars. The treatments consisted of six rice cultivars ('BRS Atalanta'; 'BRS Firmeza'; 'BRS Ligeirinho'; 'BRS Querência'; 'BRS Sinuelo CL'; 'IRGA 417' and three depths (3, 6 and 9cm for removing samples of soil and roots, every 10cm diameter. In the immediate withdrawal of samples, it was announced the number of larvae. Subsequently, in periodic evaluations, it was announced the number of adults emerged from samples kept intact in plastic buckets with water depth of 13, 16 and 19cm, covered by screened mesh fabric. It was detected a significant interaction between sampling depths and the rice cultivars 'BRS Sinuelo CL' and 'BRS Querência' in the rate of infestation of larvae and adults of O. oryzae, respectively. In the case of both variables

  12. Root cause and how to find it

    International Nuclear Information System (INIS)

    Gano, D.L.

    1987-01-01

    This paper provides an in-depth discussion of the definition of root cause, the use of the cause-and-effect process to find the root cause, and the use of proper cause categorization as a means to better understand the nuances of root cause. It also provides a detailed statistical breakdown of reactor trips at boiling water reactors for 1986 as compiled from Boiling Water Reactor Owners' Group Scram Frequency Reduction Commitee (BWROGSFRC) data

  13. Anchorage failure of young trees in sandy soils is prevented by a rigid central part of the root system with various designs

    Science.gov (United States)

    Danquechin Dorval, Antoine; Meredieu, Céline; Danjon, Frédéric

    2016-01-01

    Background and Aims Storms can cause huge damage to European forests. Even pole-stage trees with 80-cm rooting depth can topple. Therefore, good anchorage is needed for trees to survive and grow up from an early age. We hypothesized that root architecture is a predominant factor determining anchorage failure caused by strong winds. Methods We sampled 48 seeded or planted Pinus pinaster trees of similar aerial size from four stands damaged by a major storm 3 years before. The trees were gathered into three classes: undamaged, leaning and heavily toppled. After uprooting and 3D digitizing of their full root architectures, we computed the mechanical characteristics of the main components of the root system from our morphological measurements. Key Results Variability in root architecture was quite large. A large main taproot, either short and thick or long and thin, and guyed by a large volume of deep roots, was the major component that prevented stem leaning. Greater shallow root flexural stiffness mainly at the end of the zone of rapid taper on the windward side also prevented leaning. Toppling in less than 90-cm-deep soil was avoided in trees with a stocky taproots or with a very big leeward shallow root. Toppled trees also had a lower relative root biomass – stump excluded – than straight trees. Conclusions It was mainly the flexural stiffness of the central part of the root system that secured anchorage, preventing a weak displacement of the stump. The distal part of the longest taproot and attached deep roots may be the only parts of the root system contributing to anchorage through their maximum tensile load. Several designs provided good anchorage, depending partly on available soil depth. Pole-stage trees are in-between the juvenile phase when they fail by toppling and the mature phase when they fail by uprooting. PMID:27456136

  14. Maximum likely scale estimation

    DEFF Research Database (Denmark)

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

    2005-01-01

    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  15. Robust Maximum Association Estimators

    NARCIS (Netherlands)

    A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)

    2017-01-01

    textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation

  16. Root (Botany)

    Science.gov (United States)

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  17. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  18. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  19. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  20. Weighted halfspace depth

    Czech Academy of Sciences Publication Activity Database

    Kotík, Lukáš; Hlubinka, D.; Vencálek, O.

    Vol. 46, č. 1 (2010), s. 125-148 ISSN 0023-5954 Institutional research plan: CEZ:AV0Z10750506 Keywords : data depth * nonparametric multivariate analysis * strong consistency of depth * mixture of distributions Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/kotik-weighted halfspace depth.pdf

  1. The effect of EDTA in attachment gain and root coverage.

    Science.gov (United States)

    Kassab, Moawia M; Cohen, Robert E; Andreana, Sebastiano; Dentino, Andrew R

    2006-06-01

    Root surface biomodification using low pH agents such as citric acid and tetracycline has been proposed to enhance root coverage following connective tissue grafting. The authors hypothesized that root conditioning with neutral pH edetic acid would improve vertical recession depth, root surface coverage, pocket depth, and clinical attachment levels. Twenty teeth in 10 patients with Miller class I and II recession were treated with connective tissue grafting. The experimental sites received 24% edetic acid in sterile distilled water applied to the root surface for 2 minutes before grafting. Controls were pretreated with only sterile distilled water. Measurements were evaluated before surgery and 6 months after surgery. Analysis of variance was used to determine differences between experimental and control groups. We found significant postoperative improvements in vertical recession depth, root surface coverage, and clinical attachment levels in test and control groups, compared to postoperative data. Pocket depth differences were not significant (P<.01).

  2. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  3. Locally Finite Root Supersystems

    OpenAIRE

    Yousofzadeh, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  4. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems.

    Directory of Open Access Journals (Sweden)

    Len J Wade

    Full Text Available The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7-40.7 Mb and on chromosome 8 (20.3-21.9 Mb. Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.

  5. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  6. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  7. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1988-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  8. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  9. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1989-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. The author reviews the need for such methods in data analysis and shows, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. He concludes with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  10. Functional Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg

    2005-01-01

    MAF outperforms the functional PCA in concentrating the interesting' spectra/shape variation in one end of the eigenvalue spectrum and allows for easier interpretation of effects. Conclusions. Functional MAF analysis is a useful methods for extracting low dimensional models of temporally or spatially......Purpose. We aim at data where samples of an underlying function are observed in a spatial or temporal layout. Examples of underlying functions are reflectance spectra and biological shapes. We apply functional models based on smoothing splines and generalize the functional PCA in......\\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

  11. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  12. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  13. Complexity and Dynamical Depth

    Directory of Open Access Journals (Sweden)

    Terrence Deacon

    2014-07-01

    Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.

  14. The maximum significant wave height in the Southern North Sea

    NARCIS (Netherlands)

    Bouws, E.; Tolman, H.L.; Holthuijsen, L.H.; Eldeberky, Y.; Booij, N.; Ferier, P.

    1995-01-01

    The maximum possible wave conditions along the Dutch coast, which seem to be dominated by the limited water depth, have been estimated in the present study with numerical simulations. Discussions with meteorologists suggest that the maximum possible sustained wind speed in North Sea conditions is

  15. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  16. On the road to quantitative genetic/genomic analyses of root growth and development components underlying root architecture

    International Nuclear Information System (INIS)

    Draye, X.; Dorlodot, S. de; Lavigne, T.

    2006-01-01

    The quantitative genetic and functional genomic analyses of root development, growth and plasticity will be instrumental in revealing the major regulatory pathways of root architecture. Such knowledge, combined with in-depth consideration of root physiology (e.g. uptake, exsudation), form (space-time dynamics of soil exploration) and ecology (including root environment), will settle the bases for designing root ideotypes for specific environments, for low-input agriculture or for successful agricultural production with minimal impact on the environment. This report summarizes root research initiated in our lab between 2000 and 2004 in the following areas: quantitative analysis of root branching in bananas, high throughput characterisation of root morphology, image analysis, QTL mapping of detailed features of root architecture in rice, and attempts to settle a Crop Root Research Consortium. (author)

  17. Motivation with Depth.

    Science.gov (United States)

    DiSpezio, Michael A.

    2000-01-01

    Presents an illusional arena by offering experience in optical illusions in which students must apply critical analysis to their innate information gathering systems. Introduces different types of depth illusions for students to experience. (ASK)

  18. Scaling root processes based on plant functional traits (Invited)

    Science.gov (United States)

    Eissenstat, D. M.; McCormack, M. L.; Gaines, K.; Adams, T.

    2013-12-01

    There are great challenges to scaling root processes as variation across species and variation of a particular species over different spatial and temporal scales is poorly understood. We have examined tree species variation using multispecies plantings, often referred to by ecologists as 'common gardens'. Choosing species with wide variation in growth rate, root morphology (diameter, branching intensity) and root chemistry (root N and Ca concentration), we found that variation in root lifespan was well correlated with plant functional traits across 12 species. There was also evidence that localized liquid N addition could increase root lifespan and localized water addition diminished root lifespan over untreated controls, with effects strongest in the species of finest root diameter. In an adjacent forest, we have also seen tree species variation in apparent depth of rooting using water isotopes. In particular species of wood anatomy that was ring porous (e.g. oaks) typically had the deepest rooting depth, whereas those that had either diffuse-porous sapwood (maples) or tracheid sapwood (pines) were shallower rooted. These differences in rooting depth were related to sap flux of trees during and immediately after periods of drought. The extent that the patterns observed in central Pennsylvania are modulated by environment or indicative of other plant species will be discussed.

  19. Simulating Root Density Dynamics and Nitrogen Uptake – Can a Simple Approach be Sufficient?

    OpenAIRE

    Pedersen, Anders; Zhang, Kefeng; Jensen, Lars Stoumann; Thorup-Kristensen, Kristian

    2007-01-01

    The modeling of root growth in many plant–soil models is simple and with few possibilities to adapt simulated root proliferation and depth distribution to that actually found with different crop species. Here we propose a root model, developed to describe root growth, root density and nitrogen uptake. The model focuses on annual crops, and attempts to model root growth of different crop species and row crops and its significance for nitrogen uptake from different parts of the soil volume.

  20. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    Science.gov (United States)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  1. A conceptual approach to approximate tree root architecture in infinite slope models

    Science.gov (United States)

    Schmaltz, Elmar; Glade, Thomas

    2016-04-01

    Vegetation-related properties - particularly tree root distribution and coherent hydrologic and mechanical effects on the underlying soil mantle - are commonly not considered in infinite slope models. Indeed, from a geotechnical point of view, these effects appear to be difficult to be reproduced reliably in a physically-based modelling approach. The growth of a tree and the expansion of its root architecture are directly connected with both intrinsic properties such as species and age, and extrinsic factors like topography, availability of nutrients, climate and soil type. These parameters control four main issues of the tree root architecture: 1) Type of rooting; 2) maximum growing distance to the tree stem (radius r); 3) maximum growing depth (height h); and 4) potential deformation of the root system. Geometric solids are able to approximate the distribution of a tree root system. The objective of this paper is to investigate whether it is possible to implement root systems and the connected hydrological and mechanical attributes sufficiently in a 3-dimensional slope stability model. Hereby, a spatio-dynamic vegetation module should cope with the demands of performance, computation time and significance. However, in this presentation, we focus only on the distribution of roots. The assumption is that the horizontal root distribution around a tree stem on a 2-dimensional plane can be described by a circle with the stem located at the centroid and a distinct radius r that is dependent on age and species. We classified three main types of tree root systems and reproduced the species-age-related root distribution with three respective mathematical solids in a synthetic 3-dimensional hillslope ambience. Thus, two solids in an Euclidian space were distinguished to represent the three root systems: i) cylinders with radius r and height h, whilst the dimension of latter defines the shape of a taproot-system or a shallow-root-system respectively; ii) elliptic

  2. Use of isotopes in root activities and distribution studies

    International Nuclear Information System (INIS)

    Nario M, Adriana; Pino N, Ines; Albornoz G, Maria Paz; Baherle V, Pedro

    2003-01-01

    Several studies shown the relevance of the plant's root activity pattern knowledge, across the profile, to determine the suitable zone to apply the nutrients and irrigation to the plant. In Chile, the studies with the isotopes 15 N and 32 P had been used to carry out applications in solution across the soil profile and in lateral distances from the plant in fruit trees and prairies to determine root activity pattern. In peaches, under furrow irrigation, the major root concentration was found at 20 cm depth and 1 m lateral distance from the trunk. Table grapes, under drip irrigation, presented more root activity at 40 cm depth and under the dripper line in lateral distance. In prairies, the root activity was found between 10 to 40 cm depth, depending on the root capacity to explore the profile (author)

  3. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  4. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    Science.gov (United States)

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  5. Seedling root targets

    Science.gov (United States)

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  6. Prestack depth migration

    International Nuclear Information System (INIS)

    Postma, R.W.

    1991-01-01

    Two lines form the southern North Sea, with known velocity inhomogeneities in the overburden, have been pre-stack depth migrated. The pre-stack depth migrations are compared with conventional processing, one with severe distortions and one with subtle distortions on the conventionally processed sections. The line with subtle distortions is also compared with post-stack depth migration. The results on both lines were very successful. Both have already influenced drilling decisions, and have caused a modification of structural interpretation in the respective areas. Wells have been drilled on each of the lines, and well tops confirm the results. In fact, conventional processing led to incorrect locations for the wells, both of which were dry holes. The depth migrated sections indicate the incorrect placement, and on one line reveals a much better drilling location. This paper reports that even though processing costs are high for pre-stack depth migration, appropriate use can save millions of dollars in dry-hole expense

  7. Radon depth migration

    International Nuclear Information System (INIS)

    Hildebrand, S.T.; Carroll, R.J.

    1993-01-01

    A depth migration method is presented that used Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrain to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples: (1) a point diffractor, and (2) a dipping layer and syncline interface model. It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation

  8. Measuring depth in boreholes

    International Nuclear Information System (INIS)

    Hodson, G.M.

    1979-01-01

    This invention relates to a method of determining the depth of rock strata and other features of a borehole. It may be employed with particular advantage when access to the top of the borehole is difficult, for example in underwater operations. A radioactive marker, such as a source of gamma rays, is positioned near the top of the riser of a sub-sea wellhead structure. A radiation detector is lowered between the marker and a radioactive stratum and the length of line supplied is measured on the floating platform. This enables the depth of the stratum to be measured irrespective of tidal variations of the height of the platform. (U.K.)

  9. Functional traits and root morphology of alpine plants.

    Science.gov (United States)

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-09-01

    Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level.

  10. Why bother about depth?

    DEFF Research Database (Denmark)

    Stæhr, Peter A.; Obrador, Biel; Christensen, Jesper Philip

    We present results from a newly developed method to determine depth specific rates of GPP, NEP and R using frequent automated profiles of DO and temperature. Metabolic rate calculations were made for three lakes of different trophic status using a diel DO methodology that integrates rates across...

  11. Defining depth of anesthesia.

    Science.gov (United States)

    Shafer, S L; Stanski, D R

    2008-01-01

    In this chapter, drawn largely from the synthesis of material that we first presented in the sixth edition of Miller's Anesthesia, Chap 31 (Stanski and Shafer 2005; used by permission of the publisher), we have defined anesthetic depth as the probability of non-response to stimulation, calibrated against the strength of the stimulus, the difficulty of suppressing the response, and the drug-induced probability of non-responsiveness at defined effect site concentrations. This definition requires measurement of multiple different stimuli and responses at well-defined drug concentrations. There is no one stimulus and response measurement that will capture depth of anesthesia in a clinically or scientifically meaningful manner. The "clinical art" of anesthesia requires calibration of these observations of stimuli and responses (verbal responses, movement, tachycardia) against the dose and concentration of anesthetic drugs used to reduce the probability of response, constantly adjusting the administered dose to achieve the desired anesthetic depth. In our definition of "depth of anesthesia" we define the need for two components to create the anesthetic state: hypnosis created with drugs such as propofol or the inhalational anesthetics and analgesia created with the opioids or nitrous oxide. We demonstrate the scientific evidence that profound degrees of hypnosis in the absence of analgesia will not prevent the hemodynamic responses to profoundly noxious stimuli. Also, profound degrees of analgesia do not guarantee unconsciousness. However, the combination of hypnosis and analgesia suppresses hemodynamic response to noxious stimuli and guarantees unconsciousness.

  12. Root architecture and wind-firmness of mature Pinus pinaster.

    Science.gov (United States)

    Danjon, Frédéric; Fourcaud, Thierry; Bert, Didier

    2005-11-01

    This study aims to link three-dimensional coarse root architecture to tree stability in mature timber trees with an average of 1-m rooting depth. Undamaged and uprooted trees were sampled in a stand damaged by a storm. Root architecture was measured by three-dimensional (3-D) digitizing. The distribution of root volume by root type and in wind-oriented sectors was analysed. Mature Pinus pinaster root systems were organized in a rigid 'cage' composed of a taproot, the zone of rapid taper of horizontal surface roots and numerous sinkers and deep roots, imprisoning a large mass of soil and guyed by long horizontal surface roots. Key compartments for stability exhibited strong selective leeward or windward reinforcement. Uprooted trees showed a lower cage volume, a larger proportion of oblique and intermediate depth horizontal roots and less wind-oriented root reinforcement. Pinus pinaster stability on moderately deep soils is optimized through a typical rooting pattern and a considerable structural adaptation to the prevailing wind and soil profile.

  13. Root traits contributing to plant productivity under drought

    Directory of Open Access Journals (Sweden)

    Louise eComas

    2013-11-01

    Full Text Available Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length (SRL, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less ‘leaky’ and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g. functional differences between fine and coarse roots needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria and rice (Oryza show approaches to phenotyping of root traits and current understanding of root trait

  14. ROOT Reference Documentation

    CERN Document Server

    Fuakye, Eric Gyabeng

    2017-01-01

    A ROOT Reference Documentation has been implemented to generate all the lists of libraries needed for each ROOT class. Doxygen has no option to generate or add the lists of libraries for each ROOT class. Therefore shell scripting and a basic C++ program was employed to import the lists of libraries needed by each ROOT class.

  15. Tree-root control of shallow landslides

    Science.gov (United States)

    Cohen, Denis; Schwarz, Massimiliano

    2017-08-01

    Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel) tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope-parallel directions. Roots

  16. Tree-root control of shallow landslides

    Directory of Open Access Journals (Sweden)

    D. Cohen

    2017-08-01

    Full Text Available Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope

  17. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  18. Conjoined lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kyoshima, Kazumitsu; Nishiura, Iwao; Koyama, Tsunemaro

    1986-01-01

    Several kinds of the lumbosacral nerve root anomalies have already been recognized, and the conjoined nerve roots is the most common among them. It does not make symptoms by itself, but if there is a causation of neural entrapment, for example, disc herniation, lateral recessus stenosis, spondylolisthesis, etc., so called ''biradicular syndrome'' should occur. Anomalies of the lumbosacral nerve roots, if not properly recognized, may lead to injury of these nerves during operation of the lumbar spine. Recently, the chance of finding these anomalous roots has been increased more and more with the use of metrizamide myelography and metrizamide CT, because of the improvement of the opacification of nerve roots. We describe the findings of the anomalous roots as revealed by these two methods. They demonstrate two nerve roots running parallel and the asymmetrical wide root sleeve. Under such circumstances, it is important to distinguish the anomalous roots from the normal ventral and dorsal roots. (author)

  19. Root canal irrigants

    OpenAIRE

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  20. The worst case complexity of maximum parsimony.

    Science.gov (United States)

    Carmel, Amir; Musa-Lempel, Noa; Tsur, Dekel; Ziv-Ukelson, Michal

    2014-11-01

    One of the core classical problems in computational biology is that of constructing the most parsimonious phylogenetic tree interpreting an input set of sequences from the genomes of evolutionarily related organisms. We reexamine the classical maximum parsimony (MP) optimization problem for the general (asymmetric) scoring matrix case, where rooted phylogenies are implied, and analyze the worst case bounds of three approaches to MP: The approach of Cavalli-Sforza and Edwards, the approach of Hendy and Penny, and a new agglomerative, "bottom-up" approach we present in this article. We show that the second and third approaches are faster than the first one by a factor of Θ(√n) and Θ(n), respectively, where n is the number of species.

  1. The Maximums and Minimums of a Polnomial or Maximizing Profits and Minimizing Aircraft Losses.

    Science.gov (United States)

    Groves, Brenton R.

    1984-01-01

    Plotting a polynomial over the range of real numbers when its derivative contains complex roots is discussed. The polynomials are graphed by calculating the minimums, maximums, and zeros of the function. (MNS)

  2. The effects of different irrigation methods on root distribution ...

    African Journals Online (AJOL)

    drip, subsurface drip, surface and under-tree micro sprinkler) on the root distribution, intensity and effective root depth of “Williams Pride” and “Jersey Mac” apple cultivars budded on M9, rapidly grown in Isparta Region. The rootstocks were ...

  3. Multiscale analysis of depth-dependent soil penetration resistance in a tropical soil

    Science.gov (United States)

    Paiva De Lima, Renato; Santos, Djail; Medeiros Bezerra, Joel; Machado Siqueira, Glécio; Paz González, Antonio

    2013-04-01

    Soil penetration resistance (PR) is widely used because it is linked to basic soil properties; it is correlated to root growth and plant production and is also used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent PR profiles and how this information can be used at the field scale. We analyzed multifractality of 50 PR vertical profiles, measured from 0 to 40 cm depth and randomly located on a 6.5 ha sugar cane field in north-eastern Brazil. According to the Soil Taxonomy, the studied soil was classified as an Orthic Podsol The scaling property of each profile was typified by singularity and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. Singularity and Rènyi spectra showed the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to one indicating strong persistence in PR variation with soil depth. Also Hurst exponent was negatively and significantly correlated to coefficient of variation (CV) and skewness of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean, maximum and minimum values of PR; these maps showed the multifractal approach also may complete information provided by descriptive statistics at the field scale.

  4. Effect of water table fluctuations on phreatophytic root distribution.

    Science.gov (United States)

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Shave-off depth profiling: Depth profiling with an absolute depth scale

    International Nuclear Information System (INIS)

    Nojima, M.; Maekawa, A.; Yamamoto, T.; Tomiyasu, B.; Sakamoto, T.; Owari, M.; Nihei, Y.

    2006-01-01

    Shave-off depth profiling provides profiling with an absolute depth scale. This method uses a focused ion beam (FIB) micro-machining process to provide the depth profile. We show that the shave-off depth profile of a particle reflected the spherical shape of the sample and signal intensities had no relationship to the depth. Through the introduction of FIB micro-sampling, the shave-off depth profiling of a dynamic random access memory (DRAM) tip was carried out. The shave-off profile agreed with a blue print from the manufacturing process. Finally, shave-off depth profiling is discussed with respect to resolutions and future directions

  6. Fine root production at drained peatland sites

    Energy Technology Data Exchange (ETDEWEB)

    Finer, L [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Laine, J [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1997-12-31

    The preliminary results of the Finnish project `Carbon balance of peatlands and climate change` show that fine roots play an important role in carbon cycling on peat soils. After drainage the roots of mire species are gradually replaced by the roots of trees and other forest species. Pine fine root biomass reaches a maximum level by the time of crown closure, some 20 years after drainage on pine mire. The aim of this study is to compare the results of the sequential coring method and the ingrowth bag method used for estimating fine root production on three drained peatland sites of different fertility. The results are preliminary and continuation to the work done in the study Pine root production on drained peatlands, which is part of the Finnish project `Carbon cycling on peatlands and climate change`. In this study the fine root biomass was greater on the poor site than on the rich sites. Pine fine root production increased with the decrease in fertility. Root turnover and the production of field layer species were greater on the rich sites than on the poor site. The results suggested that the in growth bag method measured more root activity than the magnitude of production. More than two growing seasons would have been needed to balance the root dynamics in the in growth bags with the surrounding soil. That time would probably have been longer on the poor site than on the rich ones and longer for pine and field layer consisting of dwarf shrubs than for field layer consisting of sedge like species and birch. (11 refs.)

  7. Fine root production at drained peatland sites

    Energy Technology Data Exchange (ETDEWEB)

    Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Laine, J. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The preliminary results of the Finnish project `Carbon balance of peatlands and climate change` show that fine roots play an important role in carbon cycling on peat soils. After drainage the roots of mire species are gradually replaced by the roots of trees and other forest species. Pine fine root biomass reaches a maximum level by the time of crown closure, some 20 years after drainage on pine mire. The aim of this study is to compare the results of the sequential coring method and the ingrowth bag method used for estimating fine root production on three drained peatland sites of different fertility. The results are preliminary and continuation to the work done in the study Pine root production on drained peatlands, which is part of the Finnish project `Carbon cycling on peatlands and climate change`. In this study the fine root biomass was greater on the poor site than on the rich sites. Pine fine root production increased with the decrease in fertility. Root turnover and the production of field layer species were greater on the rich sites than on the poor site. The results suggested that the in growth bag method measured more root activity than the magnitude of production. More than two growing seasons would have been needed to balance the root dynamics in the in growth bags with the surrounding soil. That time would probably have been longer on the poor site than on the rich ones and longer for pine and field layer consisting of dwarf shrubs than for field layer consisting of sedge like species and birch. (11 refs.)

  8. Corrosion pit depth extreme value prediction from limited inspection data

    International Nuclear Information System (INIS)

    Najjar, D.; Bigerelle, M.; Iost, A.; Bourdeau, L.; Guillou, D.

    2004-01-01

    Passive alloys like stainless steels are prone to localized corrosion in chlorides containing environments. The greater the depth of the localized corrosion phenomenon, the more dramatic the related damage that can lead to a structure weakening by fast perforation. In practical situations, because measurements are time consuming and expensive, the challenge is usually to predict the maximum pit depth that could be found in a large scale installation from the processing of a limited inspection data. As far as the parent distribution of pit depths is assumed to be of exponential type, the most successful method was found in the application of the statistical extreme-value analysis developed by Gumbel. This study aims to present a new and alternative methodology to the Gumbel approach with a view towards accurately estimating the maximum pit depth observed on a ferritic stainless steel AISI 409 subjected to an accelerated corrosion test (ECC1) used in automotive industry. This methodology consists in characterising and modelling both the morphology of pits and the statistical distribution of their depths from a limited inspection dataset. The heart of the data processing is based on the combination of two recent statistical methods that avoid making any choice about the type of the theoretical underlying parent distribution of pit depths: the Generalized Lambda Distribution (GLD) is used to model the distribution of pit depths and the Bootstrap technique to determine a confidence interval on the maximum pit depth. (authors)

  9. Root phenology at Harvard Forest and beyond

    Science.gov (United States)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, pGrowth form (woody or herbaceous) also influenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April 2012 through August 2013 at the Harvard Forest in Petersham, MA, USA. Greenness and stem growth were highest in late May and early June with one clear

  10. Root activity distribution pattern of Ganesh pomegranate (Punica granatum) seedlings

    International Nuclear Information System (INIS)

    Kotur, S.C.; Murthy, S.V.K.

    2001-01-01

    In one-year old Ganesh pomegranate seedlings raised on a loamy sand (Typic Haplustalf) under rain fed conditions, during winter (January-March) one-half of the active roots (44-51%) resided at 50 cm radial distance. Depth wise, bulk (44-78%) of the roots were found at 15 cm depth. The results indicate that the zone of high root activity is located around 50 cm distance from trunk and applications of fertilizers in this zone may lead to enhanced use efficiency of fertilizers. (author)

  11. Root distribution of rootstocks for 'Tahiti' lime

    Directory of Open Access Journals (Sweden)

    Neves Carmen Silvia Vieira Janeiro

    2004-01-01

    Full Text Available Field studies on citrus roots are important for genetic selection of cultivars and for management practices such as localized irrigation and fertilization. To characterize root systems of six rootstocks, taking into consideration chemical and physical characteristics of a clayey Typic Hapludox of the Northern State of Paraná, this study was performed having as scion the 'IAC-5 Tahiti' lime [Citrus latifolia (Yu. Tanaka]. The rootstocks 'Rangpur' lime (C. limonia Osbeck, 'Africa Rough' lemon (C. jambhiri Lush., 'Sunki' mandarin [C. sunki (Hayata hort. ex Tan.], Poncirus trifoliata (L. Raf., 'C13' citrange [C. sinensis (L. Osb. x P. trifoliata (L. Raf] and 'Catânia 2' Volkamer lemon (C. volkameriana Ten. & Pasq. were used applying the trench profile method and the SIARCS® 3.0 software to determine root distribution. 'C-13' citrange had the largest root system. 'Volkamer' lemon and 'Africa Rough' lemon presented the smallest amount of roots. The effective depth for 80 % of roots was 31-53 cm in rows and 67-68 cm in inter-rows. The effective distance of 80 % of roots measured from the tree trunk exceeded the tree canopy for P. trifoliata, 'Sunki' mandarin, and 'Volkamer' and 'Africa Rough' lemons.

  12. Root region airfoil for wind turbine

    Science.gov (United States)

    Tangler, James L.; Somers, Dan M.

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

  13. Why rooting fails

    OpenAIRE

    Creutz, Michael

    2007-01-01

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four "tastes." The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  14. Rooting gene trees without outgroups: EP rooting.

    Science.gov (United States)

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  15. Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms.

    Science.gov (United States)

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J

    2009-07-01

    Atmospheric carbon dioxide (CO(2)) and ozone (O(3)) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO(2) and O(3) effects on roots, particularly fine-root life span, a critical demographic parameter and determinant of soil C and N pools and cycling rates. We conducted a study in which ponderosa pine (Pinus ponderosa) seedlings were exposed to two levels of CO(2) and O(3) in sun-lit controlled-environment mesocosms for 3 years. Minirhizotrons were used to monitor individual fine roots in three soil horizons every 28 days. Proportional hazards regression was used to analyze effects of CO(2), O(3), diameter, depth, and season of root initiation on fine-root survivorship. More fine roots were produced in the elevated CO(2) treatment than in ambient CO(2). Elevated CO(2), increasing root diameter, and increasing root depth all significantly increased fine-root survivorship and median life span. Life span was slightly, but not significantly, lower in elevated O(3), and increased O(3) did not reduce the effect of elevated CO(2). Median life spans varied from 140 to 448 days depending on the season of root initiation. These results indicate the potential for elevated CO(2) to increase the number of fine roots and their residence time in the soil, which is also affected by root diameter, root depth, and phenology.

  16. Offshore Wind Technology Depth Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coastal bathymetric depth, measured in meters at depth values of: -30, -60, -900 Shallow Zone (0-30m): Technology has been demonstrated on a commercial scale at...

  17. Vertical Root Fracture initiation in curved roots after root canal preparation: A dentinal micro-crack analysis with LED transillumination.

    Science.gov (United States)

    Miguéns-Vila, Ramón; Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo

    2017-10-01

    One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. 60 human mandibular premolars with curvatures between 30-49° and radii between 2-4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) ( P Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system ( P Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words: Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture.

  18. On an Objective Basis for the Maximum Entropy Principle

    Directory of Open Access Journals (Sweden)

    David J. Miller

    2015-01-01

    Full Text Available In this letter, we elaborate on some of the issues raised by a recent paper by Neapolitan and Jiang concerning the maximum entropy (ME principle and alternative principles for estimating probabilities consistent with known, measured constraint information. We argue that the ME solution for the “problematic” example introduced by Neapolitan and Jiang has stronger objective basis, rooted in results from information theory, than their alternative proposed solution. We also raise some technical concerns about the Bayesian analysis in their work, which was used to independently support their alternative to the ME solution. The letter concludes by noting some open problems involving maximum entropy statistical inference.

  19. Modelling root reinforcement in shallow forest soils

    Science.gov (United States)

    Skaugset, Arne E.

    1997-01-01

    A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak

  20. Depth and stratigraphy of regolith. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Nyman, Helena; Sohlenius, Gustav; Stroemgren, Maarten; Brydsten, Lars

    2008-06-01

    on the geographical distribution of Quaternary deposits. The average regolith depth in each domain was calculated by the use of available data. These average depths were used together with measured depths to interpolate the regolith depths in the model area. The six layers (Z1-Z6) were modelled in the same way. The six layers represent different types of regolith. The uppermost layer, Z1, is influenced by the impact from surface processes, e.g. roots and biological activity. The next layer (Z2) consists of peat. After that follows layer Z3, which is characterised by clay gyttja, followed by layer Z4 that consist of sand/gravel, glaciofluvial sediment or artificial fill. Layer Z5 correspond to glacial clay and the bottom layer Z6 correspond to till, which is resting directly upon the bedrock surface. The resulting model clearly shows the valleys with thick regolith depths, surrounded by higher areas with thin layers of regolith and bedrock outcrops. The glaciofluvial esker (The Tuna esker) is distinctly shown as north-south band with a thick layer of regolith in the western part of the model area. The maximum depth of regolith in the model is about 48 m, and the average depth in this area is 2.2 m with bedrock outcrops included and 3.7 m with outcrops excluded

  1. Depth and stratigraphy of regolith. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, Helena (SWECO Position, Stockholm (Sweden)); Sohlenius, Gustav (Geological Survey of Sweden (SGU), Uppsala (Sweden)); Stroemgren, Maarten; Brydsten, Lars (Umeaa Univ., Umeaa (Sweden))

    2008-06-15

    the geographical distribution of Quaternary deposits. The average regolith depth in each domain was calculated by the use of available data. These average depths were used together with measured depths to interpolate the regolith depths in the model area. The six layers (Z1-Z6) were modelled in the same way. The six layers represent different types of regolith. The uppermost layer, Z1, is influenced by the impact from surface processes, e.g. roots and biological activity. The next layer (Z2) consists of peat. After that follows layer Z3, which is characterised by clay gyttja, followed by layer Z4 that consist of sand/gravel, glaciofluvial sediment or artificial fill. Layer Z5 correspond to glacial clay and the bottom layer Z6 correspond to till, which is resting directly upon the bedrock surface. The resulting model clearly shows the valleys with thick regolith depths, surrounded by higher areas with thin layers of regolith and bedrock outcrops. The glaciofluvial esker (The Tuna esker) is distinctly shown as north-south band with a thick layer of regolith in the western part of the model area. The maximum depth of regolith in the model is about 48 m, and the average depth in this area is 2.2 m with bedrock outcrops included and 3.7 m with outcrops excluded

  2. Field grown Acacia Mangium: how intensive is root growth?

    International Nuclear Information System (INIS)

    Wan Rasidah Kadir; Azizol Abdul Kadir; Van Cleemput, O.; Zaharah Abdul Rahman

    1998-01-01

    Under rainfed conditions, root development of trees can be very unpredictable and variable, depending on the amount and distribution of rainfall received. This becomes more critical when the rainfall is seasonal and the soil has a high clay content. Our investigation dealt with the root development of Acacia mangium established as plantation forest on a soil with heavy clay texture in Kemasul Forest Reserve, Malaysia. The distribution of active roots was measured at 9- and 21- month-old plantations using the radioactive P injection method. Growth at different distances from the tree base and at different soil depths was studied. After nine months of field planting, we found that roots were mostly concentrated at the surface within 1000 mm distance from the tree base. At one year after the first measurement, roots were traced as far as 6400 mm away. A large part of these roots, however, were detected within 3700 mm distance in the upper 300 mm soil. At this stage, roots can still did not go deeper than 450 mm depth, probably due to the high clay content at lower depth and low pH. This rapid root growth indicates that below-ground competition can be very intense if this species is established as a mixed-species plantation

  3. Measurement of unsaturated flow below the root zone at an arid site

    International Nuclear Information System (INIS)

    Kirkham, R.R.; Gee, G.W.

    1983-12-01

    We measured moisture content changes below the root zone of a grass-covered area at the Hanford Site in Washington State and determined that drainage exceeded 5 cm or 20% of the total precipitation for November 1982 through October 1983. Although the average annual rainfall at the Hanford Site is 16 cm, the test year precipitation exceeded 24 cm with nearly 75% of the precipitation occurring during November through April. The moisture content at all depths in the soil reached a maximum and the monthly average potential evapotranspiration reached a minimum during this period of time. Moisture content profiles were measured at depth on biweekly intervals from January through October; these data were used to estimate drainage from the profile. Grass roots were not found below 1 m, hence moisture changes below 1 m were assumed to be entirely due to drainage. Upward capillary flow was considered to be negligible since the soil was a coars sand and the water table was below 10 m. The large amount of drainage from this arid site is attributed to rainfall distribution pattern, shallow root-zone, and soil drainage characteristics. Unsaturated flow model simulations predicted about 5-cm drainage from the grass site using daily climatic data, estimated soil hydraulic properties, and estimated transpiration parameters for cheatgrass at the Hanford Site. Improvements in the comparisons between measured and predicted drainage are anticipated with field-measured hydraulic properties and more realistic estimates of grass cover transpiration. However, both measurements and model predictions support the conclusion that under conditions where the majority of the rainfall occurs during periods of low potential evaporation and where soils are coarse textured, significant drainage can occur from the root zone of vegetated areas at Hanford or similar arid zone sites

  4. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field

    Directory of Open Access Journals (Sweden)

    Shiping Zhu

    2014-06-01

    Full Text Available The objectives of this study were to detect coarse tree root and to estimate root biomass in the field by using an advanced 3D Ground Penetrating Radar (3D GPR system. This study obtained full-resolution 3D imaging results of tree root system using 500 MHz and 800 MHz bow-tie antennas, respectively. The measurement site included two larch trees, and one of them was excavated after GPR measurements. In this paper, a searching algorithm, based on the continuity of pixel intensity along the root in 3D space, is proposed, and two coarse roots whose diameters are more than 5 cm were detected and delineated correctly. Based on the detection results and the measured root biomass, a linear regression model is proposed to estimate the total root biomass in different depth ranges, and the total error was less than 10%. Additionally, based on the detected root samples, a new index named “magnitude width” is proposed to estimate the root diameter that has good correlation with root diameter compared with other common GPR indexes. This index also provides direct measurement of the root diameter with 13%–16% error, providing reasonable and practical root diameter estimation especially in the field.

  5. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 90, č. 12 (2014), "122006-1"-"122006-12" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * air- shower * fluorescence telescopes Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  6. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahlers, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Tománková, L.; Trávníček, Petr; Vícha, Jakub

    2013-01-01

    Roč. 2013, č. 2 (2013), s. 1-21 ISSN 1475-7516 R&D Projects: GA MŠk LA08015; GA TA ČR TA01010517; GA MŠk(CZ) MEB111003; GA AV ČR KJB100100904; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : ultra high energy cosmic rays * cosmic ray experiments Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.877, year: 2013 http://iopscience.iop.org/1475-7516/2013/02/026/pdf/1475-7516_2013_02_026.pdf

  7. Genomic Regions Influencing Seminal Root Traits in Barley.

    Science.gov (United States)

    Robinson, Hannah; Hickey, Lee; Richard, Cecile; Mace, Emma; Kelly, Alison; Borrell, Andrew; Franckowiak, Jerome; Fox, Glen

    2016-03-01

    Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.). Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH) population (ND24260 × 'Flagship') comprising 330 lines genotyped with diversity array technology (DArT) markers were evaluated for seminal root angle (deviation from vertical) and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL) for seminal root traits (root angle, two QTL; root number, five QTL) were detected in the DH population. A major QTL influencing both root angle and root number (/) was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L.), and sorghum [ (L.) Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley. Copyright © 2016 Crop Science Society of America.

  8. Genomic Regions Influencing Seminal Root Traits in Barley

    Directory of Open Access Journals (Sweden)

    Hannah Robinson

    2016-03-01

    Full Text Available Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.. Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH population (ND24260 × ‘Flagship’ comprising 330 lines genotyped with diversity array technology (DArT markers were evaluated for seminal root angle (deviation from vertical and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL for seminal root traits (root angle, two QTL; root number, five QTL were detected in the DH population. A major QTL influencing both root angle and root number (/ was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L., and sorghum [ (L. Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley.

  9. Saltmarsh creek bank stability: Biostabilisation and consolidation with depth

    Science.gov (United States)

    Chen, Y.; Thompson, C. E. L.; Collins, M. B.

    2012-03-01

    The stability of cohesive sediments of a saltmarsh in Southern England was measured in the field and the laboratory using a Cohesive Strength Meter (CSM) and a shear vane apparatus. Cores and sediment samples were collected from two tidal creek banks, covered by Atriplex portulacoides (Sea Purslane) and Juncus maritimus (Sea Rush), respectively. The objectives of the study were to examine the variation of sediment stability throughout banks with cantilevers present and investigate the influence of roots and downcore consolidation on bank stability. Data on erosion threshold and shear strength were interpreted with reference to bank depth, sediment properties and biological influences. The higher average erosion threshold was from the Sea Purslane bank whilst the Sea Rush bank showed higher average vane shear strength. The vertical variation in core sediment stability was mainly affected by roots and downcore consolidation with depth. The data obtained from the bank faces revealed that vertical variations in both erosion threshold and vane shear strength were affected primarily by roots and algae. A quantitative estimate of the relative contributions of roots and downcore consolidation to bank sediment stability was undertaken using the bank stability data and sediment density data. This showed that roots contributed more to the Sea Purslane bank stability than downcore consolidation, whilst downcore consolidation has more pronounced effects on the Sea Rush bank stability.

  10. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  11. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  12. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  13. A portable storage maximum thermometer

    International Nuclear Information System (INIS)

    Fayart, Gerard.

    1976-01-01

    A clinical thermometer storing the voltage corresponding to the maximum temperature in an analog memory is described. End of the measurement is shown by a lamp switch out. The measurement time is shortened by means of a low thermal inertia platinum probe. This portable thermometer is fitted with cell test and calibration system [fr

  14. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  15. Depth and stratigraphy of Quaternary deposits. Preliminary site description Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, Helena [SWECO Position AB, Stockholm (Sweden)

    2005-09-01

    This report aims at describing the modelled Quaternary deposits (QD) depth according to six layers with different geological and hydrological properties in the Simpevarp regional model area. The program used in the modelling of QD depths is the GeoEditor, which is an ArcView3.3-extension. The input data used in the model consist of 102 boreholes and 328 observation points. As input is also a large number of observation points interpreted from geophysical investigations used; 1,087 points based on refraction seismic measurements (distributed in 31 profiles), 22 points from electrical soundings (VES) and 19,237 points from seismic and sediment echo sounding data. The outer part of the area has a low data density. Some of the used points are generally not very deep and do not describe the actual bedrock elevation. They do, however, describe the minimum QD depth at each location. A detailed topographical Digital Elevation Model (DEM), the maps of Quaternary deposits and outcrops were also used. The model is based on a three-layer-principle where each layer can be given similar properties. The uppermost layer, Z1, has been influenced by the impact from surface processes, e.g. roots and biological activity. The bottom layer, Z3, is characterized by contact with the bedrock and is corresponding to a till layer. The middle layer, Z2, is corresponding to a clay layer and assumed to have different hydraulic qualities than Z1 and Z3. Besides those layers, another three layers are also modelled; M1 corresponds to a peat layer, M2 answers to a glaciofluvial sediment layer and M3 corresponds to a layer with artificial fill. All layers can have thickness zero. The resulting model clearly shows the valleys with thicker depths of QD, surrounded by areas with thinner or no depths. The esker near Faarbo (Tunaaasen) is also distinctly marked in the south-western area. The northern and central part of the model area are characterized by numerous bedrock outcrops. The maximum depth of

  16. Defence in depth perspectives

    International Nuclear Information System (INIS)

    Veneau, Tania; Ferrier, Agnes; Barbaud, Jean

    2017-01-01

    The Defence in Depth (DiD) concept was introduced to the field of nuclear safety in the sixties and early seventies. Even though it was not well developed at the beginning, the principles rapidly became close to those currently used. The concept was then composed of 3 levels, and was already associated with operating conditions. These principles have progressed over time and now there are five levels, including progressively situations issued from design extension conditions, to cope with severe accidents and dealing with accident management off-site. Indeed, human and organizational features are considered as a part of the safety provisions at all levels in an integrated approach that is not just related to reactor design. That's the current vision from IAEA, addressed first in INSAG 3 then in INSAG 10, and in the IAEA standards requirements currently addressed by SSR-2/1 superseding NS-R-1). These five levels of DiD are also referred to in other texts including WENRA documents in Europe, but also in the national requirements from different countries. Thus, the application of DiD principle has become a recognized international practice. The 2011 Fukushima Daiichi accidents, even if they raised many questions on nuclear safety issues, confirmed the merits of the DiD concept. Indeed, lessons learned from the accidents have reinforced the use of the DiD concept to ensure adequate safety. The discussions focused more on the implementation of the concept (how it has been or can be used in practice) than the concept itself, and in particular on the following subjects: the notion of level robustness, generally addressed separately from the levels definition, but playing an important role for the efficiency of the concept; the notion of levels independence and the need for strengthening them; the role of diversity to achieve levels independence. However, a prescription of additional diversity and independence across all safety levels could result in inappropriately

  17. Carbon turnover in topsoil and subsoil: The microbial response to root litter additions and different environmental conditions in a reciprocal soil translocation experiment

    Science.gov (United States)

    Preusser, Sebastian; Poll, Christian; Marhan, Sven; Kandeler, Ellen

    2017-04-01

    At the global scale, soil organic carbon (SOC) represents the largest active terrestrial organic carbon (OC) pool. Carbon dynamics in subsoil, however, vary from those in topsoil with much lower C concentrations in subsoil than in topsoil horizons, although more than 50 % of SOC is stored in subsoils below 30 cm soil depth. In addition, microorganisms in subsoil are less abundant, more heterogeneously distributed and the microbial communities have a lower diversity than those in topsoil. Especially in deeper soil, the impact of changes in habitat conditions on microorganisms involved in carbon cycling are largely unexplored and consequently the understanding of microbial functioning is limited. A reciprocal translocation experiment allowed us to investigate the complex interaction effects of altered environmental and substrate conditions on microbial decomposer communities in both topsoil and subsoil habitats under in situ conditions. We conducted this experiment with topsoil (5 cm soil depth) and subsoil (110 cm) samples of an acid and sandy Dystric Cambisol from a European beech (Fagus sylvatica L.) forest in Lower Saxony, Germany. In total 144 samples were buried into three depths (5 cm, 45 cm and 110 cm) and 13C-labelled root litter was added to expose the samples to different environmental conditions and to increase the substrate availability, respectively. Samples were taken in three month intervals up to a maximum exposure time of one year to follow the temporal development over the experimental period. Analyses included 13Cmic and 13C PLFA measurements to investigate the response of microbial abundance, community structure and 13C-root decomposition activity under the different treatments. Environmental conditions in the respective soil depths such as soil temperature and water content were recorded throughout the experimental period. All microbial groups (gram+ and gram- bacteria, fungi) showed highest relative 13C incorporation in 110 cm depth and samples

  18. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  19. On Maximum Entropy and Inference

    Directory of Open Access Journals (Sweden)

    Luigi Gresele

    2017-11-01

    Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.

  20. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species.

    Science.gov (United States)

    Keuper, Frida; Dorrepaal, Ellen; van Bodegom, Peter M; van Logtestijn, Richard; Venhuizen, Gemma; van Hal, Jurgen; Aerts, Rien

    2017-10-01

    Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N-availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N-availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw-front (45 cm depth) and whether N-uptake ( 15 N-tracer) at the thaw-front occurs during maximum thaw-depth, coinciding with the end of the growing season. Moreover, we performed a unique 3-year belowground fertilization experiment with fully factorial combinations of deep- (thaw-front) and shallow-fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw-front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N-uptake from the thaw-front between autumn and spring when aboveground tissue is largely senescent. In response to 3-year shallow-belowground fertilization (S) both shallow- (Empetrum hermaphroditum) and deep-rooting species increased aboveground biomass and N-content, but only deep-rooting species responded positively to enhanced nutrient supply at the thaw-front (D). Moreover, the effects of shallow-fertilization and thaw-front fertilization on aboveground biomass production of the deep-rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant-available N released from thawing permafrost can form a thus far overlooked additional N-source for deep-rooting subarctic plant species and increase their

  1. Maximum Water Hammer Sensitivity Analysis

    OpenAIRE

    Jalil Emadi; Abbas Solemani

    2011-01-01

    Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of ...

  2. Maximum Gene-Support Tree

    Directory of Open Access Journals (Sweden)

    Yunfeng Shan

    2008-01-01

    Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the finding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reflects the phylogenetic relationship among species in comparison.

  3. LCLS Maximum Credible Beam Power

    International Nuclear Information System (INIS)

    Clendenin, J.

    2005-01-01

    The maximum credible beam power is defined as the highest credible average beam power that the accelerator can deliver to the point in question, given the laws of physics, the beam line design, and assuming all protection devices have failed. For a new accelerator project, the official maximum credible beam power is determined by project staff in consultation with the Radiation Physics Department, after examining the arguments and evidence presented by the appropriate accelerator physicist(s) and beam line engineers. The definitive parameter becomes part of the project's safety envelope. This technical note will first review the studies that were done for the Gun Test Facility (GTF) at SSRL, where a photoinjector similar to the one proposed for the LCLS is being tested. In Section 3 the maximum charge out of the gun for a single rf pulse is calculated. In Section 4, PARMELA simulations are used to track the beam from the gun to the end of the photoinjector. Finally in Section 5 the beam through the matching section and injected into Linac-1 is discussed

  4. Studies on rooting pattern of sugarcane using 32P

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Agrawal, M.P.; Ghosh, A.K.

    1975-01-01

    Studies employing 32 P injection in sugarcane shoot and assay of 32 P activity in soil cores both in horizontal and vertical directions from the centre of the clumps revealed that most of the roots are restricted within the first 15 cm depth and their horizontal spread is confined largely to 25 cm. The technique has been standardised for use with other types of studies involving root foraging or activity. The above findings are in confirmation of the earlier data obtained by actual excavation of the roots and also observations made by exposing the roots in-situ. The advantage of the radioactive technique lies in accessing, with better precision, the zone of feeding of active roots, an information which could not be obtained by actual excavation of the roots which may include even the dead ones. (author)

  5. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal; Schott, Mathias; Bonneau, Georges-Pierre; Hansen, Charles D.

    2013-01-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  6. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal

    2013-02-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  7. Endoscopic root canal treatment.

    Science.gov (United States)

    Moshonov, Joshua; Michaeli, Eli; Nahlieli, Oded

    2009-10-01

    To describe an innovative endoscopic technique for root canal treatment. Root canal treatment was performed on 12 patients (15 teeth), using a newly developed endoscope (Sialotechnology), which combines an endoscope, irrigation, and a surgical microinstrument channel. Endoscopic root canal treatment of all 15 teeth was successful with complete resolution of all symptoms (6-month follow-up). The novel endoscope used in this study accurately identified all microstructures and simplified root canal treatment. The endoscope may be considered for use not only for preoperative observation and diagnosis but also for active endodontic treatment.

  8. RUNTIME DICTIONARIES FOR ROOT

    CERN Document Server

    Wind, David Kofoed

    2013-01-01

    ROOT is the LHC physicists' common tool for data analysis; almost all data is stored using ROOT's I/O system. This system benefits from a custom description of types (a so-called dictionary) that is optimised for the I/O. Until now, the dictionary cannot be provided at run-time; it needs to be prepared in a separate prerequisite step. This project will move the generation of the dictionary to run-time, making use of ROOT 6's new just-in-time compiler. It allows a more dynamic and natural access to ROOT's I/O features especially for user code.

  9. Effect of different irrigation systems on root growth of maize and cowpea plants in sandy soil

    Directory of Open Access Journals (Sweden)

    Noha A. Mahgoub

    2017-10-01

    Full Text Available A field experiment was conducted at the Experimental Farm, Faculty of Agriculture, Suez Canal University to study the influence of different irrigation systems on root length density and specific root length of maize and cowpea plants cultivated in sandy soil. Three irrigation systems (Surface, drip and sprinkler irrigation were used in this study. The NPK fertilizers were applied as recommended doses for maize and cowpea. Root samples were collected from the soil profile below one plant (maize and cowpea which was irrigated by the three irrigation systems by using an iron box (30 cm× 20 cm which is divided into 24 small boxes each box is (5× 5 × 5 cm. At surface irrigation, root length density of cowpea reached to soil depth 30-40cm with lateral distances 5-10 cm and 15-20 cm. Vertical distribution of root length density of maize was increased with soil depth till 20-25 cm, and then it decreased till soil depth 35-40cm. Under drip irrigation, root length density of cowpea increased horizontally from 0-5cm to 10-15cm then it decreased till soil depth 25-30 cm and below this depth root length density disappeared. For the root length density and specific root length of maize under drip irrigation, the data showed that root length density and specific root length decreased with increasing in soil depth. The root length density of cowpea under sprinkler irrigation at 0-5cm disappeared from horizontal distance at 25-30 cm. The data showed that root length density of maize under sprinkler irrigation was higher at the soil top layers 0-5 cm and 5-10 cm than other layers from 10-40 cm.

  10. Tree root systems and nutrient mobilization

    DEFF Research Database (Denmark)

    Boyle, Jim; Rob, Harrison; Raulund-Rasmussen, Karsten

    sometimes stored at depth. Other recent studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Release profi les clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Review of evaluations......Roots mobilize nutrients via deep penetration and rhizosphere processes inducing weathering of primary minerals. These contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long-term supplies...... of nutrient elements essential for forest growth and resilience. Research and techniques have signifi cantly advanced since Olof Tamm’s 1934 base mineral index for Swedish forest soils, and basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research in areas that include...

  11. Evaluation of root water uptake in the ISBA-A-gs land surface model using agricultural yield statistics over France

    Science.gov (United States)

    Canal, N.; Calvet, J.-C.; Decharme, B.; Carrer, D.; Lafont, S.; Pigeon, G.

    2014-12-01

    The simulation of root water uptake in land surface models is affected by large uncertainties. The difficulty in mapping soil depth and in describing the capacity of plants to develop a rooting system is a major obstacle to the simulation of the terrestrial water cycle and to the representation of the impacts of drought. In this study, long time series of agricultural statistics are used to evaluate and constrain root water uptake models. The inter-annual variability of cereal grain yield and permanent grassland dry matter yield is simulated over France by the Interactions between Soil, Biosphere and Atmosphere, CO2-reactive (ISBA-A-gs) generic land surface model (LSM). The two soil profile schemes available in the model are used to simulate the above-ground biomass (Bag) of cereals and grasslands: a two-layer force-restore (FR-2L) bulk reservoir model and a multi-layer diffusion (DIF) model. The DIF model is implemented with or without deep soil layers below the root zone. The evaluation of the various root water uptake models is achieved by using the French agricultural statistics of Agreste over the 1994-2010 period at 45 cropland and 48 grassland départements, for a range of rooting depths. The number of départements where the simulated annual maximum Bag presents a significant correlation with the yield observations is used as a metric to benchmark the root water uptake models. Significant correlations (p value neutral impact of the most refined versions of the model is found with respect to the simplified soil hydrology scheme. This shows that efforts should be made in future studies to reduce other sources of uncertainty, e.g. by using a more detailed soil and root density profile description together with satellite vegetation products. It is found that modelling additional subroot-zone base flow soil layers does not improve (and may even degrade) the representation of the inter-annual variability of the vegetation above-ground biomass. These results are

  12. High bit depth infrared image compression via low bit depth codecs

    Science.gov (United States)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  13. Generic maximum likely scale selection

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2007-01-01

    in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based......The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...

  14. Evaluation of canister weld flaw depth for concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Chul; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Jung, Sung Hun; Lee, Young Oh; Jung, In Su [Korea Nuclear Engineering and Service Corp, Daejeon (Korea, Republic of)

    2017-03-15

    Domestically developed concrete storage casks include an internal canister to maintain the confinement integrity of radioactive materials. In this study, we analyzed the depth of flaws caused by loads that propagate canister weld cracks under normal, off-normal and accident conditions, and evaluated the maximum allowable weld flaw depth needed to secure the structural integrity of the canister weld and to reduce the welding time of the internal canister lid of the concrete storage cask. Structural analyses for normal, off-normal and accident conditions were performed using the general-purpose finite element analysis program ABAQUS; the allowable flaw depth was assessed according to ASME B and PV Code Section XI. Evaluation results revealed an allowable canister weld flaw depth of 18.75 mm for the concrete storage cask, which satisfies the critical flaw depth recommended in NUREG-1536.

  15. Contributions of depth filter components to protein adsorption in bioprocessing.

    Science.gov (United States)

    Khanal, Ohnmar; Singh, Nripen; Traylor, Steven J; Xu, Xuankuo; Ghose, Sanchayita; Li, Zheng J; Lenhoff, Abraham M

    2018-04-16

    Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m 2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets. © 2018 Wiley Periodicals, Inc.

  16. Irrational Square Roots

    Science.gov (United States)

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  17. Plant root and shoot dynamics during subsurface obstacle interaction

    Science.gov (United States)

    Conn, Nathaniel; Aguilar, Jeffrey; Benfey, Philip; Goldman, Daniel

    As roots grow, they must navigate complex underground environments to anchor and retrieve water and nutrients. From gravity sensing at the root tip to pressure sensing along the tip and elongation zone, the complex mechanosensory feedback system of the root allows it to bend towards greater depths and avoid obstacles of high impedance by asymmetrically suppressing cell elongation. Here we investigate the mechanical and physiological responses of roots to rigid obstacles. We grow Maize, Zea mays, plants in quasi-2D glass containers (22cm x 17cm x 1.4cm) filled with photoelastic gel and observe that, regardless of obstacle interaction, smaller roots branch off the primary root when the upward growing shoot (which contains the first leaf) reaches an average length of 40 mm, coinciding with when the first leaf emerges. However, prior to branching, contacts with obstacles result in reduced root growth rates. The growth rate of the root relative to the shoot is sensitive to the angle of the obstacle surface, whereby the relative root growth is greatest for horizontally oriented surfaces. We posit that root growth is prioritized when horizontal obstacles are encountered to ensure anchoring and access to nutrients during later stages of development. NSF Physics of Living Systems.

  18. Root activity pattern of banana under irrigated and rain conditions

    International Nuclear Information System (INIS)

    Sobhana, A.; Aravindakshan, M.; Wahid, P.A.

    1989-01-01

    Root morphology by excavation method and root activity pattern by 32 P soil-injection technique have been studied in banana var., Nendran under rainfed/irrigated conditions. The number of roots, length and diameter of roots and dry weight of roots were found to be more for the rainfed banana crop compared to the irrigated. The results of the radiotracer studies indicated that about 60 per cent of the active roots of irrigated banana lie within 20 cm distance and about 90 per cent of the total root activity is found within 40 cm distance from the plant. In the case of rainfed crop about 85 per cent of the active roots were found within a radius of 40 cm around the plant. Active roots were found to be more concentrated at 15 to 30 cm depth under rainfed conditions while the density of active roots was more or less uniform along the profile upto a dpeth of 60 cm in irrigated banana. (author). 4 refs., 3 figs

  19. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  20. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  1. Aortic Root Enlargement or Sutureless Valve Implantation?

    Directory of Open Access Journals (Sweden)

    Nikolaos G. Baikoussis

    2016-11-01

    Full Text Available Aortic valve replacement (AVR in patients with a small aortic annulus is a challenging issue. The importance of prosthesis–patient mismatch (PPM post aortic valve replacement (AVR is controversial but has to be avoided. Many studies support the fact that PPM has a negative impact on short and long term survival. In order to avoid PPM, aortic root enlargement may be performed. Alternatively and keeping in mind that often some comorbidities are present in old patients with small aortic root, the Perceval S suturelles valve implantation could be a perfect solution. The Perceval sutureless bioprosthesis provides reasonable hemodynamic performance avoiding the PPM and providing the maximum of aortic orifice area. We would like to see in the near future the role of the aortic root enlargement techniques in the era of surgical implantation of the sutureless valve (SAVR and the transcatheter valve implantation (TAVI.

  2. System for memorizing maximum values

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1992-08-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  3. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  4. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  5. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  6. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  7. Isotope studies on rainfed rooting characteristics and efficient use of applied fertilizer on cassava

    International Nuclear Information System (INIS)

    Chaiwanakupt, S.

    1981-11-01

    Soil injection of 32 P was used to determine the root activity pattern of rainfed Cassava (Manihot esculenta, Crantz) in Thailand. Root activity decreased with depth so that 57, 38 and 5 percent of the total activity was noted at the 15, 30 and 50 cm depths, respectively. The root activity increased with distance from the plant. Twenty two, 28 and 50 percent of the root activity was obtained at the 10, 20 and 30 cm distances, respectively. It was thus concluded that phosphorus fertilizer should be mixed with the surface 15 cm soil 30 cm from Cassava rows to maximize fertilizer uptake

  8. Characterizing root activity of guava trees by radiotracer technique

    International Nuclear Information System (INIS)

    Purohit, A.G.; Mukherjee, S.K.

    1974-01-01

    The distribution pattern of root activity of 12-year-old trees of guava (Psidium guajava L.) was determined by radiotracer technique. 32 P soloution was injected into the soil at lateral distances of 120, 240 and 360 cm from the tree trunk at depths of 15,30,60 and 90 cm. The 32 P uptake by the tree was determined by leaf analysis. In the rainy season the root activity or 32 P uptake was greater near the soil surface and midway between the trunk and the drip-line. The root activity decreased with an increase in the depth and distance from trunk. These results compared well with the actual distribution of feeder roots as determined by the soil-auger method. In summer the roots near the surface become less active in 32 P absorption with a drcrease in surface soil moisture. A decrease in the root activity in the surface soil was accompanied by an increase in 32 P uptake from lower depths. (author)

  9. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry.

    Science.gov (United States)

    Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-08

    Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.

  10. Root distribution pattern and their contribution in photosynthesis and biomass in Jerusalem artichoke under drought

    International Nuclear Information System (INIS)

    Puangbut, D.; Vorasoot, N.

    2018-01-01

    Root length density and rooting depth have been established as drought resistant traits and these could be used as selection criteria for drought resistant genotype in many plant species. However, information on deep rooting and the root distribution pattern of Jerusalem artichoke under drought conditions is not well documented in the literature. The objective of this study was to investigate the root distribution pattern in Jerusalem artichoke genotypes under irrigated and drought conditions. This experiment was conducted within a greenhouse using rhizoboxes. Three Jerusalem artichoke genotypes were tested under two water regimes (irrigated and drought). A 2 × 3 factorial experiment was arranged in a randomized complete block design with three replications over two years. Data were recorded for root traits, photosynthesis and biomass at 30 days after imposing drought. The drought decreased root length, root surface area and root dry weight, while increased the root: shoot ratio, root distribution in the deeper soil and the percentage of root length at deeper in the soil, when compared to the irrigated conditions JA-5 and JA-60 showed high root length in the lower soil profile under drought conditions, indicating these genotypes could be identified as drought resistant genotype. The highest positive correlation was found between root length at deeper soil layer with relative water content (RWC), net photosynthetic rate (Pn) and biomass. It is expected that selection of Jerusalem artichoke with high root length coupled with maintaining high RWC and their promotion to Pn could improve the biomass and tuber yield under drought conditions. (author)

  11. Maximum entropy and Bayesian methods

    International Nuclear Information System (INIS)

    Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.

    1992-01-01

    Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come

  12. Grass Rooting the System

    Science.gov (United States)

    Perlman, Janice E.

    1976-01-01

    Suggests a taxonomy of the grass roots movement and gives a general descriptive over view of the 60 groups studied with respect to origin, constituency, size, funding, issues, and ideology. (Author/AM)

  13. Evaluating ecohydrological theories of woody root distribution in the Kalahari.

    Directory of Open Access Journals (Sweden)

    Abinash Bhattachan

    Full Text Available The contribution of savannas to global carbon storage is poorly understood, in part due to lack of knowledge of the amount of belowground biomass. In these ecosystems, the coexistence of woody and herbaceous life forms is often explained on the basis of belowground interactions among roots. However, the distribution of root biomass in savannas has seldom been investigated, and the dependence of root biomass on rainfall regime remains unclear, particularly for woody plants. Here we investigate patterns of belowground woody biomass along a rainfall gradient in the Kalahari of southern Africa, a region with consistent sandy soils. We test the hypotheses that (1 the root depth increases with mean annual precipitation (root optimality and plant hydrotropism hypothesis, and (2 the root-to-shoot ratio increases with decreasing mean annual rainfall (functional equilibrium hypothesis. Both hypotheses have been previously assessed for herbaceous vegetation using global root data sets. Our data do not support these hypotheses for the case of woody plants in savannas. We find that in the Kalahari, the root profiles of woody plants do not become deeper with increasing mean annual precipitation, whereas the root-to-shoot ratios decrease along a gradient of increasing aridity.

  14. Rooting an Android Device

    Science.gov (United States)

    2015-09-01

    1. Overview The purpose of this document is to demonstrate how to gain administrative privileges on an Android device. The term “rooting” is...is applicable for the Samsung Galaxy S3 as well as many other Android devices, but there are several steps involved in rooting an Android device (as...root access has been granted. 4. Conclusion This document serves as a tutorial on how to grant user administrative privilege to an Android device by

  15. Root distribution of paddy and wheat grown on differing soil and water conditions

    International Nuclear Information System (INIS)

    Jha, M.N.; Subbiah, B.V.

    1977-01-01

    Two varieties of paddy and one variety of wheat were grown on two soil texture types - paddy on silty clay loam and wheat on sandy loam. Wheat crop was grown on a well drained plot and given normally scheduled irrigation while paddy was given normal and restricted irrigation. The root distribution pattern of these crops was determined. Under normal irrigation, NP 130 showed greater proportion of roots in a soil zone of 16 cm depth and 16.5 cm lateral distance. In case of Padma, the trend was similar to NP 130. More roots were found in a soil zone of 8 cm depth and 22.5 cm lateral distance. Under restricted irrigation, NP 130 showed greater proportion upto 16 cm depth and 22.5 cm lateral distance. In case of Padma, larger proportion of roots was found to be in a soil zone of 8 cm depth and 16.5 cm lateral distance. The root distribution of wheat described almost cylindrical geometry with little overall lateral growth. Regardless of treatments, roots showed a tendency to describe a cylindrical geometry (of about 1.5 cm dia and 32 cm depth). Water stress does effect the root distribution pattern of crops. Other conditions remaining the same, the narrow root cylinder described by the crops of paddy and wheat could possibly be a genetically controlled behaviour. 32 P plant injection technique was used in the study. (author)

  16. Prevalence and features of distolingual roots in mandibular molars analyzed by cone-beam computed tomography

    International Nuclear Information System (INIS)

    Choi, Mi Ree; Moon, Young Mi; Seo, Min Seock

    2015-01-01

    This study evaluated the prevalence of distolingual roots in mandibular molars among Koreans, the root canal system associated with distolingual roots, and the concurrent appearance of a distolingual root in the mandibular first molar and a C-shaped canal in the mandibular second molar. Cone-beam computed tomographic images of 264 patients were screened and examined. Axial sections of 1056 mandibular molars were evaluated to determine the number of roots. The interorifice distances from the distolingual canal to the distobuccal canal were also estimated. Using an image analysis program, the root canal curvature was calculated. Pearson's chi-square test, the paired t-test, one-way analysis of variance, and post-hoc analysis were performed. Distolingual roots were observed in 26.1% of the subjects. In cases where a distolingual root was observed in the mandibular molar, a significant difference was observed in the root canal curvature between the buccolingual and mesiodistal orientations. The maximum root canal curvature was most commonly observed in the mesiodistal orientation in the coronal portion, but in the apical portion, maximum root canal curvature was most often observed in the buccolingual orientation. The canal curvature of distolingual roots was found to be very complex, with a different direction in each portion. No correlation was found between the presence of a distolingual root in the mandibular first molar and the presence of a C-shaped canal in the mandibular second molar

  17. Maximum entropy principal for transportation

    International Nuclear Information System (INIS)

    Bilich, F.; Da Silva, R.

    2008-01-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  18. effects of different concentrations of auxins on rooting and root

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The effect of auxins and their different concentrations on rooting and root ... primary root length and the longest primary root was recorded with the ... ceuticals, lubricants, foods, electrical insulators, .... stem cuttings of jojoba treated with IBA and NAA, .... increasing cell division and enlargement at each.

  19. Λ and Σ well depth

    International Nuclear Information System (INIS)

    Satoh, Eiji

    1982-01-01

    The Λ well depth was calculated by taking into account the effect of the ΛΣ conversion. Takahashi et al. obtained the separate type of potentials which described the hyperon-nucleon interaction up to p waves. Two types of the potentials among several types they obtained were used to calculate the Λ well depth. The G matrix was easily calculated, and the Λ well depth was obtained by integrating the G matrix in momentum space up to the Fermi surface. The effect of the ΛΣ conversion was given by an equation. The total Λ well depth was estimated to be 9.13 MeV and 49.36 MeV for each type of potential, respectively. It was concluded that the argument by Bodmer et al. was not correct. The Σ well depth was also calculated using the potential obtained by Takahashi et al. for I = 1/2 and the one obtained by Σ + p → Σ + p scattering data for I = 3/2. The obtained value 35.30 MeV may be overestimated, and the experimental value is expected to be in the range from 20 MeV to 30 MeV. (Ito, K.)

  20. Uptake of 3HHO and 32P by roots of wheat and rape

    International Nuclear Information System (INIS)

    Bole, J.B.

    1977-01-01

    Direct measurements were made of 3 HHO and 32 P taken up from labelled soil by roots of wheat (Triticum aestivum L.) and rape (Brassica campestris L.). Single roots were encased in labelled soil for 3 days, and the amount of 3 HHO and 32 P retained in the shoots was determined. Plants were grown to five stages of maturity in growth boxes under controlled conditions. Roots were labelled at up to four depths (to 90 cm) depending on the rooting depth at each stage of maturity. Uptake of 3 HHP per unit length of root increased as the plant age increased, while uptake of 32 P decreased to below detection levels by 45 days after germination. Larger amounts of both nutrients were translocated to and retained in the shoots from surface roots than from roots located deeper in the soil although the soil was uniform in temperature, bulk density, and composition through the growth boxes. Wheat roots were more efficient than rape roots in absorbing 3 HHO; however, rape roots took up larger amounts of 32 P per unit length of root. Neither native nor added P located more than 30 cm deep is of much importance to these annual crops, since uptake is minimal and the main demand for this nutrient occurs at early growth stages when the root system is restricted to the surface layers

  1. Fine-Root Production in an Amazon Rain Forest: Deep Roots are an Important Component of Net Primary Productivity

    Science.gov (United States)

    Norby, R.; Cordeiro, A. L.; Oblitas, E.; Valverde-Barrantes, O.; Quesada, C. A.

    2017-12-01

    Fine-root production is a significant component of net primary production (NPP), but it is the most difficult of the major components to measure. Data on fine-root production are especially sparse from tropical forests, and therefore the estimates of tropical forest NPP may not be accurate. Many estimates of fine-root production are based on observations in the top 15 or 30 cm of soil, with the implicit assumption that this approach will capture most of the root distribution. We measured fine-root production in a 30-m tall, old-growth, terra firme rain forest near Manaus, Brazil, which is the site for a free-air CO2 enrichment (FACE) experiment. Ten minirhizotrons were installed at a 45 degree angle to a depth of 1.1 meters; the tubes were installed 2 years before any measurements were made to allow the root systems to recover from disturbance. Images were collected biweekly, and measurements of root length per area of minirhizotron window were scaled up to grams of root per unit land area. Scaling up minirhizotron measurments is problematic, but our estimate of fine-root standing crop in the top 15 cm of soil (281 ± 37 g dry matter m-2) compares well with a direct measurement of fine roots in two nearby 15-cm soil cores (290 ± 37 g m-2). Although the largest fraction of the fine-root standing crop was in the upper soil horizons, 44% of the fine-root mass was deeper than 30 cm, and 17% was deeper than 60 cm. Annual fine-root production was 934 ± 234 g dry matter m-2 (453 ± 113 g C m-2), which was 35% of estimated NPP of the forest stand (1281 g C m-2). A previous estimate of NPP of the forest at this site was smaller (1010 g m-2), but that estimate relied on fine-root production measured elsewhere and only in the top 10 or 30 cm of soil; fine roots accounted for 21% of NPP in that analysis. Extending root observations deeper into the soil will improve estimates of the contribution of fine-root production to NPP, which will in turn improve estimates of ecosystem

  2. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  3. Maximum Parsimony on Phylogenetic networks

    Science.gov (United States)

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  4. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-01-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  5. Crustal seismicity and the earthquake catalog maximum moment magnitude (Mcmax) in stable continental regions (SCRs): Correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-12-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  6. Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing

    Science.gov (United States)

    Laio, Francesco

    2014-05-01

    The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.

  7. Spectrometric kidney depth measurement method

    International Nuclear Information System (INIS)

    George, P.; Soussaline, F.; Raynaud, C.

    1976-01-01

    The method proposed uses the single posterior surface measurement of the kidney radioactivity distribution. The ratio C/P of the number of scattered photons to the number of primary photons, which is a function of the tissue depth penetrated, is calculated for a given region. The parameters on which the C/P value depends are determined from studies on phantoms. On the basis of these results the kidney depth was measured on a series of 13 patients and a correlation was established between the value thus calculated and that obtained by the profile method. The reproducibility of the method is satisfactory [fr

  8. Heat flow of standard depth

    International Nuclear Information System (INIS)

    Cull, J.P.

    1981-01-01

    Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which could contain geothermal resources may be more easily resolved by measuring relative values at a standard depth (e.g. 100 m) so that all data are subject to similar corrections. (orig./ME)

  9. Fine roots in stands of Fagus sylvatica and Picea abies along a gradient of soil acidification

    International Nuclear Information System (INIS)

    Braun, Sabine; Cantaluppi, Leonardo; Flueckiger, Walter

    2005-01-01

    Root length of naturally grown young beech trees (Fagus sylvatica L.) was investigated in 26 forest plots of differing base saturation and nitrogen deposition. The relative length of finest roots (<0.25 mm) was found to decrease in soils with low base saturation. A similar reduction of finest roots in plots with high nitrogen deposition was masked by the effect of base saturation. The formation of adventitious roots was enhanced in acidic soils. The analysis of 128 soil profiles for fine roots of all species present in stands of either Fagus sylvatica L., Picea abies [Karst.] L. or both showed a decreased rooting depth in soils with ≤20% base saturation and in hydromorphic soils. For base rich, well drained soils an average rooting depth of 108 cm was found. This decreased by 28 cm on acidic, well drained soils. The results suggest an effect of the current soil acidification in Switzerland and possibly also of nitrogen deposition on the fine root systems of forest trees. - Fine root length of Fagus sylvatica and fine root depth in stands of Fagus sylvatica and/or Picea abies were impaired in soils with low base saturation

  10. The "Green" Root Beer Laboratory

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  11. Can diversity in root architecture explain plant water use efficiency? A modeling study.

    Science.gov (United States)

    Tron, Stefania; Bodner, Gernot; Laio, Francesco; Ridolfi, Luca; Leitner, Daniel

    2015-09-24

    Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture model combined with a soil-hydrological model to analyze whether there is a root system ideotype of general adaptation to drought or water uptake efficiency of root systems is a function of specific hydrological conditions. This was done by modeling transpiration of 48 root architectures in 16 drought scenarios with distinct soil textures, rainfall distributions, and initial soil moisture availability. We find that the efficiency in water uptake of root architecture is strictly dependent on the hydrological scenario. Even dense and deep root systems are not superior in water uptake under all hydrological scenarios. Our results demonstrate that mere architectural description is insufficient to find root systems of optimum functionality. We find that in environments with sufficient rainfall before the growing season, root depth represents the key trait for the exploration of stored water, especially in fine soils. Root density, instead, especially near the soil surface, becomes the most relevant trait for exploiting soil moisture when plant water supply is mainly provided by rainfall events during the root system development. We therefore concluded that trait based root breeding has to consider root systems with specific adaptation to the hydrology of the target environment.

  12. Incidence and severity of root resorption in orthodontically moved premolars in dogs.

    Science.gov (United States)

    Maltha, J C; van Leeuwen, E J; Dijkman, G E H M; Kuijpers-Jagtman, A M

    2004-05-01

    To study treatment-related factors for external root resorption during orthodontic tooth movement. An experimental animal study. Department of Orthodontics and Oral Biology, University Medical Centre Nijmegen, The Netherlands. Twenty-four young adult beagle dogs. Mandibular premolars were bodily moved with continuous or intermittent controlled orthodontic forces of 10, 25, 50, 100, or 200 cN according to standardized protocols. At different points in time histomorphometry was performed to determine the severity of root resorption. Prevalence of root resorptions, defined as microscopically visible resorption lacunae in the dentin. Severity of resorption was defined by the length, relative length, depth, and surface area of each resorption area. The incidence of root resorption increased with the duration of force application. After 14-17 weeks of force application root resorption was found at 94% of the root surfaces at pressure sides. The effect of force magnitude on the severity of root resorption was not statistically significant. The severity of root resorption was highly related to the force regimen. Continuous forces caused significantly more severe root resorption than intermittent forces. A strong correlation (0.60 < r < 0.68) was found between the amount of tooth movement and the severity of root resorption. Root resorption increases with the duration of force application. The more teeth are displaced, the more root resorption will occur. Intermittent forces cause less severe root resorption than continuous forces, and force magnitude is probably not decisive for root resorption.

  13. Fine-root mortality rates in a temperate forest: Estimates using radiocarbon data and numerical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W.J.; Gaudinski, J.B.; Torn, M.S.; Joslin, J.D.; Hanson, P.J.

    2009-09-01

    We used an inadvertent whole-ecosystem {sup 14}C label at a temperate forest in Oak Ridge, Tennessee, USA to develop a model (Radix1.0) of fine-root dynamics. Radix simulates two live-root pools, two dead-root pools, non-normally distributed root mortality turnover times, a stored carbon (C) pool, and seasonal growth and respiration patterns. We applied Radix to analyze measurements from two root size classes (< 0.5 and 0.5-2.0 mm diameter) and three soil-depth increments (O horizon, 0-15 cm and 30-60 cm). Predicted live-root turnover times were < 1 yr and 10 yr for short- and long-lived pools, respectively. Dead-root pools had decomposition turnover times of 2 yr and 10 yr. Realistic characterization of C flows through fine roots requires a model with two live fine-root populations, two dead fine-root pools, and root respiration. These are the first fine-root turnover time estimates that take into account respiration, storage, seasonal growth patterns, and non-normal turnover time distributions. The presence of a root population with decadal turnover times implies a lower amount of belowground net primary production used to grow fine-root tissue than is currently predicted by models with a single annual turnover pool.

  14. Distribution of phytoplankton groups within the deep chlorophyll maximum

    KAUST Repository

    Latasa, Mikel

    2016-11-01

    The fine vertical distribution of phytoplankton groups within the deep chlorophyll maximum (DCM) was studied in the NE Atlantic during summer stratification. A simple but unconventional sampling strategy allowed examining the vertical structure with ca. 2 m resolution. The distribution of Prochlorococcus, Synechococcus, chlorophytes, pelagophytes, small prymnesiophytes, coccolithophores, diatoms, and dinoflagellates was investigated with a combination of pigment-markers, flow cytometry and optical and FISH microscopy. All groups presented minimum abundances at the surface and a maximum in the DCM layer. The cell distribution was not vertically symmetrical around the DCM peak and cells tended to accumulate in the upper part of the DCM layer. The more symmetrical distribution of chlorophyll than cells around the DCM peak was due to the increase of pigment per cell with depth. We found a vertical alignment of phytoplankton groups within the DCM layer indicating preferences for different ecological niches in a layer with strong gradients of light and nutrients. Prochlorococcus occupied the shallowest and diatoms the deepest layers. Dinoflagellates, Synechococcus and small prymnesiophytes preferred shallow DCM layers, and coccolithophores, chlorophytes and pelagophytes showed a preference for deep layers. Cell size within groups changed with depth in a pattern related to their mean size: the cell volume of the smallest group increased the most with depth while the cell volume of the largest group decreased the most. The vertical alignment of phytoplankton groups confirms that the DCM is not a homogeneous entity and indicates groups’ preferences for different ecological niches within this layer.

  15. A bell pepper cultivar tolerant to chilling enhanced nitrogen allocation and stress-related metabolite accumulation in the roots in response to low root-zone temperature.

    Science.gov (United States)

    Aidoo, Moses Kwame; Sherman, Tal; Lazarovitch, Naftali; Fait, Aaron; Rachmilevitch, Shimon

    2017-10-01

    Two bell pepper (Capsicum annuum) cultivars, differing in their response to chilling, were exposed to three levels of root-zone temperatures. Gas exchange, shoot and root phenology, and the pattern of change of the central metabolites and secondary metabolites caffeate and benzoate in the leaves and roots were profiled. Low root-zone temperature significantly inhibited gaseous exchange, with a greater effect on the sensitive commercial pepper hybrid (Canon) than on the new hybrid bred to enhance abiotic stress tolerance (S103). The latter was less affected by the treatment with respect to plant height, shoot dry mass, root maximum length, root projected area, number of root tips and root dry mass. More carbon was allocated to the leaves of S103 than nitrogen at 17°C, while in the roots at 17°C, more nitrogen was allocated and the ratio between C/N decreased. Metabolite profiling showed greater increase in the root than in the leaves. Leaf response between the two cultivars differed significantly. The roots accumulated stress-related metabolites including γ-aminobutyric acid (GABA), proline, galactinol and raffinose and at chilling (7°C) resulted in an increase of sugars in both cultivars. Our results suggest that the enhanced tolerance of S103 to root cold stress, reflected in the relative maintenance of shoot and root growth, is likely linked to a more effective regulation of photosynthesis facilitated by the induction of stress-related metabolism. © 2017 Scandinavian Plant Physiology Society.

  16. First-arrival Tomography Using the Double-square-root Equation Solver Stepping in Subsurface Offset

    KAUST Repository

    Serdyukov, A.S.; Duchkov, A.A.

    2013-01-01

    Double-square-root (DSR) equation can be viewed as a Hamilton-Jacobi equation describing kinematics of downward data continuation in depth. It describes simultaneous propagation of source and receiver rays assuming that they are nowhere horizontal

  17. Pursuing the Depths of Knowledge

    Science.gov (United States)

    Boyles, Nancy

    2016-01-01

    Today's state literacy standards and assessments demand deeper levels of knowledge from students. But many teachers ask, "What does depth of knowledge look like on these new, more rigorous assessments? How do we prepare students for this kind of thinking?" In this article, Nancy Boyles uses a sampling of questions from the PARCC and SBAC…

  18. Modelling of soil depth and lake sediments. An application of the GeoEditor at the Forsmark site

    International Nuclear Information System (INIS)

    Vikstroem, Maria

    2005-02-01

    This report aims at describing the modelled soil depth according to three layers with different hydrogeological properties at the Forsmark site, based on available data from boreholes, observation points, seismic data and radar profiles. For the lakes in the area, the sediment has been modelled according to six layers of the most common deposits in the area. The peat layer at Stenroesmossen has also been visualized. The program used in the modelling of soil depths is the GeoEditor, which is an ArcView3.3-extension. The input data used in the model consist of 1,532 points based on seismic measurements, 31 profiles of interpreted ground penetrating radar data, 119 boreholes and 472 observation points. The western and south eastern part of the area has a low data density. In the southern parts the data density with respect to estimated bedrock elevation is low. Observation points in this area are generally not very deep and do not describe the actual bedrock elevation. They do, however, describe the minimum soil depth at each location. A detailed topographical DEM, bathymetry and map of Quaternary deposits were also used. The model is based on a three-layer-principle where each layer is assumed to have similar hydrological characteristics. The uppermost layer, Z1, is characterized by the impact from surface processes, roots and biological activity. The bottom layer, Z3, is characterized by contact with the bedrock. The middle layer, Z2, is assumed to have different hydraulic qualities than Z1 and Z3. The lake sediments have been modelled according to six classes of typical deposits. The modelled soil depths show a relatively high bedrock elevation and thus small total soil depth in the major part of the area. The median soil depth has been calculated to 1.9 m, based on model results in areas with higher data density. The maximum modelled soil depth is about 13 m, just north of Lake Stocksjoen. Generally, the sediment layers in the lakes of the area consists of a

  19. Hyperspectral aerosol optical depths from TCAP flights

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, Yohei [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Bay Area Environmental REsearch Institute; Johnson, Roy R [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Flynn, Connor J [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Philip B [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-01

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), a hyperspectral airborne sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean-square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3- km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong

  20. The Effects of Two Different Deficit Irrigation Managements on the Root Length of Maize

    Directory of Open Access Journals (Sweden)

    M. Gheysari

    2015-06-01

    Full Text Available The response of root to water stress is one of the most important parameters for researchers. Study of growth and distribution of root under different irrigation managements helpsresearchersto a better understanding of soil water content, and the availability of water and nutrition in water stress condition. To investigate the effects of four levels of irrigation under two different deficit irrigation managements on the root length of maize, a study was conducted in 2009. Irrigation managements included fixed irrigation interval-variable irrigation depth (M1 and variable irrigation interval-fixed irrigation depth (M2. Maize plants were planted in 120 large 110-liter containers in a strip-plot design in a randomized complete block with three replications. Root data sampling was done after root washing in five growth stages. The results showed that the effect of irrigation levels on root length was significant (P

  1. Root bioactivity of corn and sunflower as evaluated by 75Se-plant injection technique

    International Nuclear Information System (INIS)

    Haak, E.; Paltineanu, I.C.

    1982-01-01

    A tracer technique was used for root studies under field conditions on a chernozemic soil in Romania. 75 Se was injected at the stem base and radioassayed for its presence in soil profiles with a gammasond lowered to different depths. Based on the assumption that 75 Se is preferably transferred within the root system to active root tissue of injected plants, the root bioactivity was estimated for corn at the knee high stage and just before tasseling, and for sunflower at early maturing, the crops being subjected to different N-fertilization and irigation treatments. The pattern of root bioactivity varied with crop, time and treatment applied. The technique, which is briefly described, seems to be a promising tool for delineation of root response to variation with depth in the soil profile of moisture and nutrient status and as shown in this pilote investigation for delineation of effects of irrigation and N-fertilization. (Authors)

  2. Two-dimensional maximum entropy image restoration

    International Nuclear Information System (INIS)

    Brolley, J.E.; Lazarus, R.B.; Suydam, B.R.; Trussell, H.J.

    1977-07-01

    An optical check problem was constructed to test P LOG P maximum entropy restoration of an extremely distorted image. Useful recovery of the original image was obtained. Comparison with maximum a posteriori restoration is made. 7 figures

  3. Can we manipulate root system architecture to control soil erosion?

    Science.gov (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  4. Survey on depth distribution of underground structures for consideration of human intrusion into TRU waste repository

    International Nuclear Information System (INIS)

    Sakamoto, Yoshiaki; Senoo, Muneaki; Sugimoto, Junichiro; Ohishi, Kiyotaka; Okishio, Masanori; Shimizu, Haruo.

    1996-01-01

    Depth distributions of some kinds of underground structure in Japan have been investigated to get an information about suitable depth of underground repository for TRU waste that is arising from reprocessing and MOX fuel fabrication plants. The underground structures investigated in this work were foundation pile of multistoried building, that of elevated expressway, that of JR shinkansen railway, tunnel of subway and wells. The major depth distribution of the underground structures except for the wells was in range from 30 to 50m, and their maximum depth was less than 100m. On the other hand, the 99% of wells was less than 300m in depth. Maximum depth of the other underground structures has been also investigated for a survey of the utilization of underground by artificial structures in Japan. (author)

  5. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  6. "Roots": Medium and Message.

    Science.gov (United States)

    Kinnamon, Keneth

    A national telephone survey indicated that audiences rated the television production of "Roots" positively in terms of the following: realistic portrayal of the people and the times; relevance for contemporary race relations; perceived emotional effect; and increased understanding of the psychology of black people. However, a comparison…

  7. Armillaria Root Disease

    Science.gov (United States)

    R.E. Williams; C.G. III Shaw; P.M. Wargo; W.H. Sites

    1986-01-01

    Armillaria root disease is found throughout temperate and tropical regions of the world. In the continental United States, the disease has been reported in nearly every State. Hosts include hundreds of species of trees, shrubs, vines, and forbs growing in forests, along roadsides, and in cultivated areas. The disease is caused by fungi, which live as parasites on...

  8. computer-aided root aided root aided root aided root-locus

    African Journals Online (AJOL)

    User

    m, stability, transient response, root-locus, iteration he means by which any a machine, mechanism or d or altered in accordance. Introduction of feedback has the advantages of f system performance to in system parameters, ponse and minimizing the ignals. However, feedback of components, increases ain and introduces ...

  9. (Lamiaceae) root extracts

    African Journals Online (AJOL)

    Purpose: To evaluate the larvicidal, nematicidal, antifeedant, and antifungal effects of 10 solvent extracts of Mentha spicata root. Methods: Ten solvent extracts were investigated for their total flavonoid and phenolic content and screened for larvicidal, nematicidal, antifeedant, and antifungal activities. The total phenolic ...

  10. Applications of positron depth profiling

    International Nuclear Information System (INIS)

    Hakvoort, R.A.

    1993-01-01

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM)

  11. Applications of positron depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Hakvoort, R A

    1993-12-23

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM).

  12. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  13. No support for Heincke's law in hagfish (Myxinidae): lack of an association between body size and the depth of species occurrence.

    Science.gov (United States)

    Schumacher, E L; Owens, B D; Uyeno, T A; Clark, A J; Reece, J S

    2017-08-01

    This study tests for interspecific evidence of Heincke's law among hagfishes and advances the field of research on body size and depth of occurrence in fishes by including a phylogenetic correction and by examining depth in four ways: maximum depth, minimum depth, mean depth of recorded specimens and the average of maximum and minimum depths of occurrence. Results yield no evidence for Heincke's law in hagfishes, no phylogenetic signal for the depth at which species occur, but moderate to weak phylogenetic signal for body size, suggesting that phylogeny may play a role in determining body size in this group. © 2017 The Fisheries Society of the British Isles.

  14. Carbon contributions from roots in cotton based rotations

    Science.gov (United States)

    Tan, D. K. Y.; Hulugalle, N. R.

    2012-04-01

    Most research on the decline in soil organic carbon (SOC) stocks in Australian cotton farming systems has focussed on the inputs from above-ground crop residues, with contribution from roots being less studied. This paper aims to outline the contribution of cotton roots and roots of other crops to soil carbon stocks in furrow-irrigated Vertisols in several cotton (Gossypium hirsutum L.)-based rotations. Data was collected from cotton-based rotation systems: cotton monoculture, cotton-vetch (Vicia benghalensis) Roth.), cotton-wheat (Triticum aestivum L.), cotton-wheat-vetch, cotton-corn, corn-corn, cotton-sorghum (Sorghum bicolor L.) and from BollgardTM II (Bt) and non-Bt cotton. Land management systems were permanent beds, with or without standing stubble, and conventional tillage. Root growth in the surface 0.10 m was measured with the core-break method, and that in the 0.10 to 1.0 m depth with a minirhizotron and I-CAP image capture system. These measurements were used to derive root C added to soil through intra-seasonal root death (Clost), C in roots remaining at the end of season (Croot), and total root C added to soil (Ctotal = Croot + Clost). Ctotal in non-Bt cotton (Sicot 80RRF, 0.9 t C/ha/year) was higher than in Bt cotton (Sicot 80RRF, 0.6 t C/ha/year). Overall, Ctotal from cotton roots ranges between 0.5 to 5 t C/ha/year, with Clost contributing 25-70%. Ctotal was greater with vetch than with wheat and was in the order of vetch in cotton-wheat-vetch (5.1 t C/ha/year) > vetch in cotton-vetch (1.9 t C/ha/year) > wheat in cotton-wheat (1.6 t C/ha/year) = wheat in cotton-wheat-vetch (1.7 t C/ha/year). Intra-seasonal root mortality accounted for 12% of total root carbon in vetch and 36% in wheat. Average corn Ctotal with monoculture was 9.3 t/ha and with cotton-corn 5.0 t/ha. Ctotal averaged between both treatments was, thus, of the order of 7.7 t C/ha/year and average Clost 0.04 t/ha/yr. Sorghum roots contributed less carbon with conventional tillage (8.2 t

  15. RELATIONSHIPS BETWEEN INITIAL PROBING DEPTH AND CHANGES IN THE CLINICAL PARAMETERS FOLLOWING NON-SURGICAL PERIODONTAL TREATMENT IN CHRONIC PERIODONTITIS

    Directory of Open Access Journals (Sweden)

    Süleyman Emre MESELİ

    2017-10-01

    Full Text Available Purpose: The aim of this study was to evaluate the relationship between initial probing depth (IPD and changes in clinical parameters following non-surgical periodontal treatment (NPT in chronic periodontitis patients. Subjects and Methods: A total of 1672 periodontal pockets having 3mm≤IPD≤9mm of depth in 15 chronic periodontitis patients were included. NPT consisting of oral hygiene instructions, scaling and root planing was applied in two sessions. Probing depth (PD, clinical attachment level, gingival recessions (GR were measured before and eight weeks after treatment. Pocket sites were grouped according to their IPD and root number as single- or multi-rooted teeth. Results: Other than the sites having 3 mm IPD, PD reduction and GR increase were significant in all groups (p<0.001. Attachment gains (AG were significant in all single-rooted teeth (p<0.001 again except those having IPD=3mm. However, AG was significant in multi-rooted teeth having only 7mm≤IPD≤9mm (p<0.05. Positive correlations were observed between IPD and PD reduction, GR increase and AG in single-rooted teeth (p<0.001. Furthermore, positive correlations were found between IPD and PD reduction and GR increase in multi-rooted teeth (p<0.001, but there was no correlation between IPD and AG. Conclusion: NPT may lead to positive association between IPD and PD reduction as well as GR increase, which is independent from tooth root anatomy.

  16. Can root electrical capacitance be used to predict root mass in soil?

    Science.gov (United States)

    Dietrich, R C; Bengough, A G; Jones, H G; White, P J

    2013-07-01

    Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates. The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes. Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series. The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass.

  17. Introduction to the ROOT System

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Introduction to the ROOT data handling system. ROOT is used in some for or another by all LHC experiments and will be used by all for final data analysis. The introduction gives an overview of the system. Prerequisite knowledge: C++

  18. Variation in root wood anatomy

    NARCIS (Netherlands)

    Cutler, D.F.

    1976-01-01

    Variability in the anatomy of root wood of selected specimens particularly Fraxinus excelsior L. and Acer pseudoplatanus L. in the Kew reference microscope slide collection is discussed in relation to generalised statements in the literature on root wood anatomy.

  19. Sowing Depth Effects on Vetch Yield in Maragheh Dry Lands

    Directory of Open Access Journals (Sweden)

    J Asghari Meidany

    2013-12-01

    Full Text Available Increases forage production and economic production in rainfed condition requires attention to agricultural issues such as determination of appropriate sowing depth. So in order to determine the effect of different sowing depths of vetch this experiment was conducted in Agricultural Research Station of Maragheh as strip plot based on randomized complete block design with three species of vetch V. sativa , V. dasycarpa-kouhak and V. narbonensis velox67 as main plots and three sowing depth as sub factor. Results showed that the effect of sowing depth on Vicia yield was significant at the 1% level and the maximum yield of wet hay, dry hay, straw and seed depth of belong to 8-10 cm depth and respectively are 5.364, 3.416, 4.389 and 1.081 ton per ha whereas the minimum yield of wet hay, dry hay, straw and seed depth of belong to 2-4 cm depth and respectively are 4.888, 2.318, 3.729 and 0.825. Among the three Vicia species the highest yield of wet hay, dry hay , straw and seed belongs to V. dasykarpa and respectively are 5.632, 3.532, 4.614 and 1.065 ton/ha. Soil moisture study in the field of these vetches at the time of 10 % vetch flowering showed water differences. V.dasycarpa had lower water depletion from soil. The amount of average soil water for species included: V. dasycarpa 26.31, V. sativa 23.76 and V. narbonesis 22.5.

  20. Water movement near the soybean root by neutron radiography

    International Nuclear Information System (INIS)

    Makino-Nakanishi, Tomoko; Matsumoto, Satoshi; Tsuruno, Akira.

    1994-01-01

    Neutron radiography (NR) was applied to investigate the water movement in soil during the growth of the soybean plant, non-destructively. The plant was grown in a thin aluminum container and was set to the cassete where an X-ray film and a gadrinium converter were sealed in vacuum. Periodically, the sample was taken to the nuclear reactor, JRR-3, installed at Japan Atomic Energy Research Institute. Total neutron flux irradiated was 1.9 x 10 7 n/cm 2 . After irradiation the X-ray film was developed and the sample image was scanned to get the water image. The darkness of the image was corresponded well with the water amount and the resolution was found to be about 15 μm. Scanning of the image along with the horizontal line showed that much amount of water in the soil was decreased at the part adjacent to the root, compared to that of 1-2 mm far from the root. It was also shown that there is the unsymmetrical water uptake of the root at the same depth position. To know the water movement, especially around the secondary root, three dimensional water image was depicted. When the secondary root began to develop, the large water movement around the primary root was observed especially at the opposite side of the secondary root. (author)

  1. Microbiological examination of infected dental root canals.

    Science.gov (United States)

    Gomes, B P F A; Pinheiro, E T; Gadê-Neto, C R; Sousa, E L R; Ferraz, C C R; Zaia, A A; Teixeira, F B; Souza-Filho, F J

    2004-04-01

    The aim of this study was to investigate the root canal microbiota of primary and secondary root-infected canals and the association of constituent species with specific endodontic signs and symptoms. Microbial samples were taken from 60 root canals, 41 with necrotic pulp tissues (primary infection) and 19 with failed endodontic treatment (secondary infection). Strict anaerobic techniques were used for serial dilution, plating, incubation and identification. A total of 224 cultivable isolates were recovered belonging to 56 different bacterial species. Individual root canals yielded a maximum of 10 bacterial species. Of the bacterial isolates, 70% were either strict anaerobes or microphilic. The anaerobes most frequently isolated were: Peptostreptococcus micros (35%), Fusobacterium necrophorum (23.3%), Fusobacterium nucleatum (11.7%), Prevotella intermedia/nigrescens (16.7%), Porphyromonas gingivalis (6.7%) and Porphyromonas endodontalis (5%). The root canal microflora of untreated teeth with apical periodontitis was found to be mixed, comprising gram-negative and gram-positive and mostly anaerobic microorganisms and usually containing more than 3 species per canal. On the other hand, facultative anaerobic and gram-positive bacteria predominated in canals with failed endodontic treatment, which harbored 1-2 species per canal. Suggested relationships were found between anaerobes, especially gram-negatives, and the presence or history of pain, tenderness to percussion and swelling (PEubacterium spp. (both Pspp. (Pspp. (Pspp. (Pspp. (Pspp. (Pspp. (Pspp. (Pspp., P. micros, F. necrophorum (P<0.05). Our findings indicate potential complex interactions of species resulting in characteristic clinical pictures which cannot be achieved by individual species alone. They also indicate that the microbiota of primary infected canals with apical periodontitis differs in number and in species from the secondary infected canals by using the culture technique.

  2. Rooted in Movement

    DEFF Research Database (Denmark)

    The result of the synergy between four doctoral projects and an advanced MA-level course on Bronze Age Europe, this integrated assemblage of articles represents a variety of different subjects united by a single theme: movement. Ranging from theoretical discussion of the various responses to and ...... period of European prehistory. In so doing, the text not only addresses transmission and reception, but also the conceptualization of mobility within a world which was literally Rooted in Movement....

  3. Aquaporins and root water uptake

    Science.gov (United States)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  4. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  5. Expressing Parallelism with ROOT

    Energy Technology Data Exchange (ETDEWEB)

    Piparo, D. [CERN; Tejedor, E. [CERN; Guiraud, E. [CERN; Ganis, G. [CERN; Mato, P. [CERN; Moneta, L. [CERN; Valls Pla, X. [CERN; Canal, P. [Fermilab

    2017-11-22

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  6. Expressing Parallelism with ROOT

    Science.gov (United States)

    Piparo, D.; Tejedor, E.; Guiraud, E.; Ganis, G.; Mato, P.; Moneta, L.; Valls Pla, X.; Canal, P.

    2017-10-01

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  7. Critical Assessment of the Surface Tension determined by the Maximum Pressure Bubble Method

    OpenAIRE

    Benedetto, Franco Emmanuel; Zolotucho, Hector; Prado, Miguel Oscar

    2015-01-01

    The main factors that influence the value of surface tension of a liquid measured with the Maximum Pressure Bubble Method are critically evaluated. We present experimental results showing the effect of capillary diameter, capillary depth, bubble spheroidicity and liquid density at room temperature. We show that the decrease of bubble spheroidicity due to increase of capillary immersion depth is not sufficient to explain the deviations found in the measured surface tension values. Thus, we pro...

  8. Application of the urban mixing-depth concept to air pollution problems

    Science.gov (United States)

    Peter W. Summers

    1977-01-01

    A simple urban mixing-depth model is used to develop an indicator of downtown pollution concentrations based on emission strength, rural temperature lapse rate, wind speed, city heat input, and city size. It is shown that the mean annual downtown suspended particulate levels in Canadian cities are proportional to the fifth root of the population. The implications of...

  9. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  10. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants.

    Science.gov (United States)

    Judd, Lesley A; Jackson, Brian E; Fonteno, William C

    2015-07-03

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  11. Root activity patterns of some tree crops

    International Nuclear Information System (INIS)

    1975-01-01

    A coordinated research programme was followed using a soil injection method which employed 32 P-labelled superphosphate solution. The technique was applied for determining the root activity distribution of various crops. Field experiments were carried out in Uganda on bananas, Spain and Taiwan on citrus, Ghana on cocoa, Columbia and Kenya on coffee, and Ivory Coast and Malaysia on oil palms, to study the patterns of root activity as a function of depth and distance from the tree base, soil type, tree age and season. A few weeks after injection, leaf samples of similar age were taken from well-defined morphological positions on the tree and analyzed for 32 P. The activity of the label in the sample reflects the root activity at the various positions in the soil. Some preliminary experiments were also carried out using 32 P-superphosphate to evaluate the efficiency of different methods of fertilizer placement in relation to phosphate uptake by the plantation as a whole

  12. Revealing the Maximum Strength in Nanotwinned Copper

    DEFF Research Database (Denmark)

    Lu, L.; Chen, X.; Huang, Xiaoxu

    2009-01-01

    boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  13. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  14. A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool

    Directory of Open Access Journals (Sweden)

    R. Dietzel

    2017-08-01

    Full Text Available Plant root material makes a substantial contribution to the soil organic carbon (C pool, but this contribution is disproportionate below 20 cm where 30 % of root mass and 50 % of soil organic C is found. Root carbon inputs changed drastically when native perennial plant systems were shifted to cultivated annual plant systems. We used the reconstruction of a native prairie and a continuous maize field to examine both the relationship between root carbon and soil carbon and the fundamental rooting system differences between the vegetation under which the soils developed versus the vegetation under which the soils continue to change. In all treatments we found that root C  :  N ratios increased with depth, and this plays a role in why an unexpectedly large proportion of soil organic C is found below 20 cm. Measured root C  :  N ratios and turnover times along with modeled root turnover dynamics showed that in the historical shift from prairie to maize, a large, structural-tissue-dominated root C pool with slow turnover concentrated at shallow depths was replaced by a small, nonstructural-tissue-dominated root C pool with fast turnover evenly distributed in the soil profile. These differences in rooting systems suggest that while prairie roots contribute more C to the soil than maize at shallow depths, maize may contribute more C to soil C stocks than prairies at deeper depths.

  15. Negative Phototropism of Chlorophytum comosum Roots and Their Mechanisms

    Directory of Open Access Journals (Sweden)

    Chen Juan

    2015-07-01

    Full Text Available The aerial roots of Chlorophytum comosum were grown hydroponically, allowing us to study the performance and mechanism of negative phototropism. The results of this study were as follows. All the adventitious roots and their branch roots bent away from light with a maximum curvature of approximately 88.5°. Blue-violet light prominently induced negative phototropism while red light had no effect. The root cap was the site of photo perception. Roots with shaded or divested root caps exposed to unilateral light showed no negative phototropism, but resumed their original characteristics when the shade was removed or when new root caps grew. The curvature increased when the light intensity ranged 0–110 μmol · m−2 · s−1. The negative phototropism curvature could be promoted by exogenous CaCl2 but was inhibited by exogenous LaCl3; exogenous CaCl2 could reduce the inhibitory effect of LaCl3. Unilateral light induced the horizontal transport of IAA from the irradiated side to the shaded side, resulting in an unequal distribution of IAA in both the sides, leading to negative phototropism. The horizontal transport of IAA was promoted by exogenous Ca2+ but inhibited by exogenous La3+.

  16. Root tips moving through soil

    Science.gov (United States)

    Curlango-Rivera, Gilberto

    2011-01-01

    Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1–2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. PMID:21455030

  17. Distribution in depth of quasars

    International Nuclear Information System (INIS)

    Schmidt, M.; Green, R.F.

    1980-01-01

    The authors discuss the distribution in depth of different kinds of quasars: quasi-stellar radio sources with steep radio spectrum, those with flat radio spectrum, and optically selected quasars. All exhibit an increase of space density with distance to a different degree. The optically selected quasars, in particular, show a steep increase of surface density with magnitude. The steepness of the increase is inconsistent with a uniform distribution of quasars in the local hypothesis. In the cosmological hypothesis the co-moving space density of optically selected quasars increases by a factor of 100,000 to a redshift of 2, and by factors of 1000 and 10 for steep-spectrum and flat-spectrum radio quasars, respectively. (Auth.)

  18. Simplicial band depth for multivariate functional data

    KAUST Repository

    López-Pintado, Sara

    2014-03-05

    We propose notions of simplicial band depth for multivariate functional data that extend the univariate functional band depth. The proposed simplicial band depths provide simple and natural criteria to measure the centrality of a trajectory within a sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation study shows the robustness of this new definition of depth and the advantages of using a multivariate depth versus the marginal depths for detecting outliers. Real data examples from growth curves and signature data are used to illustrate the performance and usefulness of the proposed depths. © 2014 Springer-Verlag Berlin Heidelberg.

  19. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole

    2011-01-01

    • Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic...... roots during submergence. • Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. • Aquatic...... adventitious roots contain a complete photosynthetic pathway. Underwater photosynthetic rates are similar to those of stems, with a maximum net photosynthetic rate (P(max)) of 0.38 µmol O(2) m(-2) s(-1); however, this is c. 30-fold lower than that of aquatic-adapted leaves. Under saturating light with 300 mmol...

  20. The coefficient of friction of chrysotile gouge at seismogenic depths

    Science.gov (United States)

    Moore, Diane E.; Lockner, D.A.; Tanaka, H.; Iwata, K.

    2004-01-01

    We report new strength data for the serpentine mineral chrysotile at effective normal stresses, ??sn between 40 and 200 MPa in the temperature range 25??-280??C. Overall, the coefficient of friction, ?? (= shear stress/effective normal stress) of water-saturated chrysotile gouge increases both with increasing temperature and ??sn, but the rates vary and the temperature-related increases begin at ???100??C. As a result, a frictional strength minimum (?? = 0.1) occurs at low ??sn at about 100??C. Maximum strength (?? = 0.55) results from a combination of high normal stress and high temperature. The low-strength region is characterized by velocity strengthening and the high-strength region by velocity-weakening behavior. Thoroughly dried chrysotile has ?? = 0.7 and is velocity-weakening. The frictional properties of chrysolite can be explained in its tendency to adsorb large amounts of water that acts as a lubricant during shear. The water is progressively driven off the fiber surfaces with increasing temperature and pressure, causing chrysotile to approach its dry strength. Depth profiles for a chrysotile-lined fault constructed from these data would pass through a strength minimum at ???3 km depth, where sliding should be stable. Below that depth, strength increases rapidly as does the tendency for unstable (seismic) slip. Such a trend would not have been predicted from the room-temperature data. These results therefore illustrate the potential hazards of extrapolating room-temperature friction data to predict fault zone behavior at depth. This depth profile for chrysotile is consistent with the pattern of slip on the Hayward fault, which creeps aseismically at shallow depths but which may be locked below 5 km depth. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.

  1. [Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests].

    Science.gov (United States)

    Wang, Wei-Wei; Huang, Jin-Xue; Chen, Feng; Xiong, De-Cheng; Lu, Zheng-Li; Huang, Chao-Chao; Yang, Zhi-Jie; Chen, Guang-Shui

    2014-02-01

    Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.

  2. A simple formula for depth dose calculation for Co-60 teletherapy beam dosimetry

    International Nuclear Information System (INIS)

    Tripathi, U.B.; Kelkar, N.Y.

    1979-01-01

    Knowledge of dose at all points of interest in the plane of tumour is essential for treatment planning. A very simple formula for scatter dose calculation along the central axis of a Co-60 beam has been derived. This formula uses primary dose at depth d, scatter air ratio at the depth of maximum ionisation and the effective depth of the volume, irradiating the medium. The method for calculation of percentage depth dose at any point in the principal plane has been explained in detail. The simple form of the formulation will help in improving the treatment plans for treatments of lesions using Co-60 teletherapy machines. (orig.) [de

  3. Philosophical Roots of Cosmology

    Science.gov (United States)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  4. The Roots of Beowulf

    Science.gov (United States)

    Fischer, James R.

    2014-01-01

    The first Beowulf Linux commodity cluster was constructed at NASA's Goddard Space Flight Center in 1994 and its origins are a part of the folklore of high-end computing. In fact, the conditions within Goddard that brought the idea into being were shaped by rich historical roots, strategic pressures brought on by the ramp up of the Federal High-Performance Computing and Communications Program, growth of the open software movement, microprocessor performance trends, and the vision of key technologists. This multifaceted story is told here for the first time from the point of view of NASA project management.

  5. Public-domain software for root image analysis

    Directory of Open Access Journals (Sweden)

    Mirian Cristina Gomes Costa

    2014-10-01

    Full Text Available In the search for high efficiency in root studies, computational systems have been developed to analyze digital images. ImageJ and Safira are public-domain systems that may be used for image analysis of washed roots. However, differences in root properties measured using ImageJ and Safira are supposed. This study compared values of root length and surface area obtained with public-domain systems with values obtained by a reference method. Root samples were collected in a banana plantation in an area of a shallower Typic Carbonatic Haplic Cambisol (CXk, and an area of a deeper Typic Haplic Ta Eutrophic Cambisol (CXve, at six depths in five replications. Root images were digitized and the systems ImageJ and Safira used to determine root length and surface area. The line-intersect method modified by Tennant was used as reference; values of root length and surface area measured with the different systems were analyzed by Pearson's correlation coefficient and compared by the confidence interval and t-test. Both systems ImageJ and Safira had positive correlation coefficients with the reference method for root length and surface area data in CXk and CXve. The correlation coefficient ranged from 0.54 to 0.80, with lowest value observed for ImageJ in the measurement of surface area of roots sampled in CXve. The IC (95 % revealed that root length measurements with Safira did not differ from that with the reference method in CXk (-77.3 to 244.0 mm. Regarding surface area measurements, Safira did not differ from the reference method for samples collected in CXk (-530.6 to 565.8 mm² as well as in CXve (-4231 to 612.1 mm². However, measurements with ImageJ were different from those obtained by the reference method, underestimating length and surface area in samples collected in CXk and CXve. Both ImageJ and Safira allow an identification of increases or decreases in root length and surface area. However, Safira results for root length and surface area are

  6. Updating default depths in the ISC bulletin

    Science.gov (United States)

    Bolton, Maiclaire K.; Storchak, Dmitry A.; Harris, James

    2006-09-01

    The International Seismological Centre (ISC) publishes the definitive global bulletin of earthquake locations. In the ISC bulletin, we aim to obtain a free depth, but often this is not possible. Subsequently, the first option is to obtain a depth derived from depth phases. If depth phases are not available, we then use the reported depth from a reputable local agency. Finally, as a last resort, we set a default depth. In the past, common depths of 10, 33, or multiples of 50 km have been assigned. Assigning a more meaningful default depth, specific to a seismic region will increase the consistency of earthquake locations within the ISC bulletin and allow the ISC to publish better positions and magnitude estimates. It will also improve the association of reported secondary arrivals to corresponding seismic events. We aim to produce a global set of default depths, based on a typical depth for each area, from well-constrained events in the ISC bulletin or where depth could be constrained using a consistent set of depth phase arrivals provided by a number of different reporters. In certain areas, we must resort to using other assumptions. For these cases, we use a global crustal model (Crust2.0) to set default depths to half the thickness of the crust.

  7. MXLKID: a maximum likelihood parameter identifier

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1980-07-01

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables

  8. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter.

    Science.gov (United States)

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen

    2017-01-01

    Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial "DOK." We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0-0.25, 0.25-0.5, 0.5-0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations

  9. Integration time for the perception of depth from motion parallax.

    Science.gov (United States)

    Nawrot, Mark; Stroyan, Keith

    2012-04-15

    The perception of depth from relative motion is believed to be a slow process that "builds-up" over a period of observation. However, in the case of motion parallax, the potential accuracy of the depth estimate suffers as the observer translates during the viewing period. Our recent quantitative model for the perception of depth from motion parallax proposes that relative object depth (d) can be determined from retinal image motion (dθ/dt), pursuit eye movement (dα/dt), and fixation distance (f) by the formula: d/f≈dθ/dα. Given the model's dynamics, it is important to know the integration time required by the visual system to recover dα and dθ, and then estimate d. Knowing the minimum integration time reveals the incumbent error in this process. A depth-phase discrimination task was used to determine the time necessary to perceive depth-sign from motion parallax. Observers remained stationary and viewed a briefly translating random-dot motion parallax stimulus. Stimulus duration varied between trials. Fixation on the translating stimulus was monitored and enforced with an eye-tracker. The study found that relative depth discrimination can be performed with presentations as brief as 16.6 ms, with only two stimulus frames providing both retinal image motion and the stimulus window motion for pursuit (mean range=16.6-33.2 ms). This was found for conditions in which, prior to stimulus presentation, the eye was engaged in ongoing pursuit or the eye was stationary. A large high-contrast masking stimulus disrupted depth-discrimination for stimulus presentations less than 70-75 ms in both pursuit and stationary conditions. This interval might be linked to ocular-following response eye-movement latencies. We conclude that neural mechanisms serving depth from motion parallax generate a depth estimate much more quickly than previously believed. We propose that additional sluggishness might be due to the visual system's attempt to determine the maximum dθ/dα ratio

  10. EOP TDRs (Temperature-Depth-Recordings) Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-depth-recorders (TDRs) were attached to commercial longline and research Cobb trawl gear to obtain absolute depth and temperature measurement during...

  11. Simplicial band depth for multivariate functional data

    KAUST Repository

    Ló pez-Pintado, Sara; Sun, Ying; Lin, Juan K.; Genton, Marc G.

    2014-01-01

    sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation

  12. Variations in depth-dose data between open and wedge fields for 4-MV x-rays

    International Nuclear Information System (INIS)

    Sewchand, W.; Khan, F.M.; Williamson, J.

    1978-01-01

    Central-axis depth-dose data for 4-MV x rays, including tissue-maximum ratios, were measured for wedge fields. Comparison with corresponding open-field data revealed differences in magnitude which increased with depth, field size, and wedge thickness. However, phantom scatter correction factors for the wedge fields differed less than 1% from corresponding open-field factors. The differences in central-axis percent depth doses between the two types of fields indicate beam hardening by the wedge filter. This study also implies that the derivation of tissue-maximum ratios from central-axis percent depth is as valid for wedge as for open fields

  13. Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils

    Directory of Open Access Journals (Sweden)

    U. Rodríguez-Robles

    2017-11-01

    Full Text Available While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR and electrical resistivity tomography (ERT, two geophysical methods advocated by Jayawickreme et al. (2014 to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5 cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil–bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.

  14. Maximum allowable load on wheeled mobile manipulators

    International Nuclear Information System (INIS)

    Habibnejad Korayem, M.; Ghariblu, H.

    2003-01-01

    This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy

  15. Maximum phytoplankton concentrations in the sea

    DEFF Research Database (Denmark)

    Jackson, G.A.; Kiørboe, Thomas

    2008-01-01

    A simplification of plankton dynamics using coagulation theory provides predictions of the maximum algal concentration sustainable in aquatic systems. These predictions have previously been tested successfully against results from iron fertilization experiments. We extend the test to data collect...

  16. Gaspe hole sets depth record

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-09

    The deepest diamond-cored hole in the Western Hemisphere, Gulf Sunnybank No. 1 on the Gaspe Peninsula of Quebec, has been completed at a depth of 11,600 ft. This is the deepest cored hole to be drilled anywhere in search of oil and gas production, and the deepest to be drilled using a wire-line core recovery technique. The well was completed in 183 days, and was cored continuously below the surface casing which was set and cemented at 1,004 ft. After underreaming a portion of the bottom of the hole, intermediate casing was set and cemented at 8,000 ft as a safety precaution against possible high oil or gas-fluid pressure. Actual coring time, after deducting time for underreaming and casing operations, was 152 days. Because of the cost of transporting a conventional oil-drilling rig to the E. location, the 89-ft mining rig was modified for the project. The contractor was Heath and Sherwood Drilling (Western) Ltd.

  17. Maximum-Likelihood Detection Of Noncoherent CPM

    Science.gov (United States)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.

  18. Growth dynamics of fine roots in a coniferous fern forest site close to Forsmark in the central part of Sweden

    International Nuclear Information System (INIS)

    Persson, Hans; Stadenberg, Ingela

    2007-12-01

    The seasonal growth dynamics of live and dead roots for trees and the field layer species (g/m 2 , varying diameter fractions) and live/dead ratios were analysed at a fresh/moist coniferous fern forest site close to the nuclear power plant at Forsmark in the central eastern parts of Sweden. The changes in depth distribution of fine roots were observed at depth intervals of the top humus horizon down to 40 cm in the mineral soil profile. The bulk of living fine roots of trees ( 2 . The total quantity of fine roots (live + dead) amounted to 543, 434, 314 and 546 g/m 2 . Considerable quantities of fine roots (< 1 mm in diameter) were attributed to field-layer species (about 18% of the total biomass during the whole period of investigation). The turnover rate (the rate of construction of new roots) for tree fine roots < 1 mm in diameter amounted to at least the size of the average fine-root biomass. Our methods of estimating fine-root production and mortality, involved periodic measurements of live and dead dry weight of the fine roots from sequential core samples of the forest soil. The collected data give a proper and instant measure of the spatial and temporal distribution of fine roots in the undisturbed soil-profile. Data from other fine-root investigations suggest turnover rates in agreement with our present findings. Differences between root growth and turnover should be expected between trees of different age, tree species and different forest sites, but also between different years. Substantial variations in fine-root biomass, necromass and live/dead ratios are found in different forest sites. Correct methods for estimating the amount of live and dead fine-roots in the soil at regular time intervals are essential for any calculation of fine-root turnover. Definition of root vitality differs in literature, making it difficult to compare results from different root investigators. Our investigation clarifies the importance of using distinct morphological criteria

  19. How Choice of Depth Horizon Influences the Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux

    Science.gov (United States)

    Palevsky, Hilary I.; Doney, Scott C.

    2018-05-01

    Estimated rates and efficiency of ocean carbon export flux are sensitive to differences in the depth horizons used to define export, which often vary across methodological approaches. We evaluate sinking particulate organic carbon (POC) flux rates and efficiency (e-ratios) in a global earth system model, using a range of commonly used depth horizons: the seasonal mixed layer depth, the particle compensation depth, the base of the euphotic zone, a fixed depth horizon of 100 m, and the maximum annual mixed layer depth. Within this single dynamically consistent model framework, global POC flux rates vary by 30% and global e-ratios by 21% across different depth horizon choices. Zonal variability in POC flux and e-ratio also depends on the export depth horizon due to pronounced influence of deep winter mixing in subpolar regions. Efforts to reconcile conflicting estimates of export need to account for these systematic discrepancies created by differing depth horizon choices.

  20. Visual Discomfort and Depth-of-Field

    Directory of Open Access Journals (Sweden)

    Louise O'Hare

    2013-05-01

    Full Text Available Visual discomfort has been reported for certain visual stimuli and under particular viewing conditions, such as stereoscopic viewing. In stereoscopic viewing, visual discomfort can be caused by a conflict between accommodation and convergence cues that may specify different distances in depth. Earlier research has shown that depth-of-field, which is the distance range in depth in the scene that is perceived to be sharp, influences both the perception of egocentric distance to the focal plane, and the distance range in depth between objects in the scene. Because depth-of-field may also be in conflict with convergence and the accommodative state of the eyes, we raised the question of whether depth-of-field affects discomfort when viewing stereoscopic photographs. The first experiment assessed whether discomfort increases when depth-of-field is in conflict with coherent accommodation–convergence cues to distance in depth. The second experiment assessed whether depth-of-field influences discomfort from a pre-existing accommodation–convergence conflict. Results showed no effect of depth-of-field on visual discomfort. These results suggest therefore that depth-of-field can be used as a cue to depth without inducing discomfort in the viewer, even when cue conflicts are large.

  1. ROOT Tutorial for Summer Students

    CERN Multimedia

    CERN. Geneva; Piparo, Danilo

    2015-01-01

    ROOT is a "batteries-included" tool kit for data analysis, storage and visualization. It is widely used in High Energy Physics and other disciplines such as Biology, Finance and Astrophysics. This event is an introductory tutorial to ROOT and comprises a front lecture and hands on exercises. IMPORTANT NOTE: The tutorial is based on ROOT 6.04 and NOT on the ROOT5 series.  IMPORTANT NOTE: if you have ROOT 6.04 installed on your laptop, you will not need to install any virtual machine. The instructions showing how to install the virtual machine on which you can find ROOT 6.04 can be found under "Material" on this page.

  2. Removal of root filling materials.

    LENUS (Irish Health Repository)

    Duncan, H.F. Chong, B.S.

    2011-05-01

    Safe, successful and effective removal of root filling materials is an integral component of non-surgical root canal re-treatment. Access to the root canal system must be achieved in order to negotiate to the canal terminus so that deficiencies in the original treatment can be rectified. Since a range of materials have been advocated for filling root canals, different techniques are required for their removal. The management of commonly encountered root filling materials during non-surgical re-treatment, including the clinical procedures necessary for removal and the associated risks, are reviewed. As gutta-percha is the most widely used and accepted root filling material, there is a greater emphasis on its removal in this review.

  3. Properties of estimated characteristic roots

    OpenAIRE

    Bent Nielsen; Heino Bohn Nielsen

    2008-01-01

    Estimated characteristic roots in stationary autoregressions are shown to give rather noisy information about their population equivalents. This is remarkable given the central role of the characteristic roots in the theory of autoregressive processes. In the asymptotic analysis the problems appear when multiple roots are present as this implies a non-differentiablity so the δ-method does not apply, convergence rates are slow, and the asymptotic distribution is non-normal. In finite samples ...

  4. Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Warynski at different soil depths

    International Nuclear Information System (INIS)

    Gucwa-Przepiora, Ewa; Malkowski, Eugeniusz; Sas-Nowosielska, Aleksandra; Kucharski, Rafal; Krzyzak, Jacek; Kita, Andrzej; Roemkens, Paul F.A.M.

    2007-01-01

    The effects of chemophytostabilization practices on arbuscular mycorrhiza (AM) of Deschampsia cespitosa roots at different depths in soils highly contaminated with heavy metals were studied in field trials. Mycorrhizal parameters, including frequency of mycorrhization, intensity of root cortex colonization and arbuscule abundance were studied. Correlations between concentration of bioavailable Cd, Zn, Pb and Cu in soil and mycorrhizal parameters were estimated. An increase in AM colonization with increasing soil depth was observed in soils with spontaneously growing D. cespitosa. A positive effect of chemophytostabilization amendments (calcium phosphate, lignite) on AM colonization was found in the soil layers to which the amendments were applied. Negative correlation coefficients between mycorrhizal parameters and concentration of bioavailable Cd and Zn in soil were obtained. Our results demonstrated that chemophytostabilization practices enhance AM colonization in D. cespitosa roots, even in soils fertilized with high rates of phosphorus. - Addition of phosphorus and lignite in chemophytostabilization increased arbuscular mycorrhizal colonization of Deschampsia cespitosa roots

  5. Root activity and soil feeding zones of some Bajra hybrids (Pennisetum typhoids Stapf.)

    International Nuclear Information System (INIS)

    Shriniwas

    1980-01-01

    Root activity and soil feeding zones of five bajra hybrids (Hybrid D-356, HB-3, HB-4, HB-1 and Bil-3B) were determined under natural field conditions by placement of 32 P labelled superphosphate enclosed in gelatinous capsules at different soil locations around the plant. Percent root activity varied significantly from one depth to another and it decreased with increase in depths and lateral distances. More than 44 percent of the root activity occurred in a soil feeding zone consisting of 0-15 cm depth having double of this much lateral distance. Percent root activity in HB-3 and HB-4 was almost found identical both horizontally and vertically. Hybrid D-356 and HB-1 approximated more than 38 percent root activity in a soil feeding zone of 0-15 cm in depth and 0-10 cm in lateral distance. 32 P placement in capsules appeared to hold promise over Hall's technique since it overcomes the differences caused by disturbance of the feeding activity of roots at the point of 32 P injection into the soil. (author)

  6. Physical properties of root cementum: Part 26. Effects of micro-osteoperforations on orthodontic root resorption: A microcomputed tomography study.

    Science.gov (United States)

    Chan, Emmanuel; Dalci, Oyku; Petocz, Peter; Papadopoulou, Alexandra K; Darendeliler, M Ali

    2018-02-01

    Studies have demonstrated the potential efficacy of micro-osteoperforations in accelerating tooth movement by amplifying the expression of inflammatory markers. The aim of this investigation was to examine the effects of micro-osteoperforations on orthodontic root resorption with microcomputed tomography. This prospective controlled clinical trial involved 20 subjects requiring extraction of the maxillary first premolars as part of their orthodontic treatment. A buccal tipping force of 150 g was applied to both premolars. Using the Propel appliance (Propel Orthodontics, San Jose, Calif), micro-osteoperforations were applied at a depth of 5 mm on the mesial and distal aspects in the midroot region of the experimental side of the first premolar root; the contralateral side served as the control. After 28 days, both premolars were extracted. The teeth were scanned under microcomputed tomography, and the volumes of root resorption craters were calculated and compared. Premolars treated with micro-osteoperforation exhibited significantly greater average total amounts of root resorption than did the control teeth (0.576 vs 0.406 mm 3 ). The total average volumetric root loss of premolars treated with micro-osteoperforation was 42% greater than that of the control teeth. This 28-day trial showed that micro-osteoperforations resulted in greater orthodontic root resorption. However, these results should be verified in patients who are undergoing full-length orthodontic treatment. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  7. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Shunli [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China)], E-mail: zhoushl@cau.edu.cn; Wu Yongcheng [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); College of Agronomy, Si Chuan Agricultural University, Yaan 625014 (China); Wang Zhimin [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); Lu Laiqing; Wang Runzheng [Wuqiao Experimental Station, China Agricultural University, Hebei 061802 (China)

    2008-04-15

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of {sup 15}N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system.

  8. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    International Nuclear Information System (INIS)

    Zhou Shunli; Wu Yongcheng; Wang Zhimin; Lu Laiqing; Wang Runzheng

    2008-01-01

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15 N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system

  9. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  10. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  11. Abscisic Acid Stimulates Elongation of Excised Pea Root Tips

    Science.gov (United States)

    Gaither, Douglas H.; Lutz, Donald H.; Forrence, Leonard E.

    1975-01-01

    Excised Pisum sativum L. root tips were incubated in a pH 5.2 sucrose medium containing abscisic acid. Elongation growth was inhibited by 100 μm abscisic acid. However, decreasing the abscisic acid concentration caused stimulation of elongation, the maximum response (25% to 30%) occurring at 1 μm abscisic acid. Prior to two hours, stimulation of elongation by 1 μm abscisic acid was not detectable. Increased elongation did not occur in abscisic acid-treated root tips of Lens culinaris L., Phaseolus vulgaris L., or Zea mays L. PMID:16659198

  12. Unit root vector autoregression with volatility induced stationarity

    DEFF Research Database (Denmark)

    Rahbek, Anders; Nielsen, Heino Bohn

    We propose a discrete-time multivariate model where lagged levels of the process enter both the conditional mean and the conditional variance. This way we allow for the empirically observed persistence in time series such as interest rates, often implying unit-roots, while at the same time maintain...... and geometrically ergodic. Interestingly, these conditions include the case of unit roots and a reduced rank structure in the conditional mean, known from linear co-integration to imply non-stationarity. Asymptotic theory of the maximum likelihood estimators for a particular structured case (so-called self...

  13. Unit Root Vector Autoregression with volatility Induced Stationarity

    DEFF Research Database (Denmark)

    Rahbek, Anders; Nielsen, Heino Bohn

    We propose a discrete-time multivariate model where lagged levels of the process enter both the conditional mean and the conditional variance. This way we allow for the empirically observed persistence in time series such as interest rates, often implying unit-roots, while at the same time maintain...... and geometrically ergodic. Interestingly, these conditions include the case of unit roots and a reduced rank structure in the conditional mean, known from linear co-integration to imply non-stationarity. Asymptotic theory of the maximum likelihood estimators for a particular structured case (so-called self...

  14. Aerosol Optical Depth Over India

    Science.gov (United States)

    David, Liji Mary; Ravishankara, A. R.; Kodros, John K.; Venkataraman, Chandra; Sadavarte, Pankaj; Pierce, Jeffrey R.; Chaliyakunnel, Sreelekha; Millet, Dylan B.

    2018-04-01

    Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were 80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor 5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

  15. Maximum neutron flux in thermal reactors; Maksimum neutronskog fluksa kod termalnih reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1968-07-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples.

  16. Is visual short-term memory depthful?

    Science.gov (United States)

    Reeves, Adam; Lei, Quan

    2014-03-01

    Does visual short-term memory (VSTM) depend on depth, as it might be if information was stored in more than one depth layer? Depth is critical in natural viewing and might be expected to affect retention, but whether this is so is currently unknown. Cued partial reports of letter arrays (Sperling, 1960) were measured up to 700 ms after display termination. Adding stereoscopic depth hardly affected VSTM capacity or decay inferred from total errors. The pattern of transposition errors (letters reported from an uncued row) was almost independent of depth and cue delay. We conclude that VSTM is effectively two-dimensional. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The deconvolution of sputter-etching surface concentration measurements to determine impurity depth profiles

    International Nuclear Information System (INIS)

    Carter, G.; Katardjiev, I.V.; Nobes, M.J.

    1989-01-01

    The quasi-linear partial differential continuity equations that describe the evolution of the depth profiles and surface concentrations of marker atoms in kinematically equivalent systems undergoing sputtering, ion collection and atomic mixing are solved using the method of characteristics. It is shown how atomic mixing probabilities can be deduced from measurements of ion collection depth profiles with increasing ion fluence, and how this information can be used to predict surface concentration evolution. Even with this information, however, it is shown that it is not possible to deconvolute directly the surface concentration measurements to provide initial depth profiles, except when only ion collection and sputtering from the surface layer alone occur. It is demonstrated further that optimal recovery of initial concentration depth profiles could be ensured if the concentration-measuring analytical probe preferentially sampled depths near and at the maximum depth of bombardment-induced perturbations. (author)

  18. Back to the roots!

    DEFF Research Database (Denmark)

    Woermann, Niklas

    2017-01-01

    This article argues that one can revive the critical edge that postmodernist theory has brought to marketing, thinking without subscribing to any particular school of (critical) theory by following the principle of methodological situationalism. The roots of postmodernist critique lie in careful...... empirical observation of how social reality is being constructed in local contexts. Because knowledge, subjects, power, and value are social accomplishments, they are neither fixed nor without alternative. Many key developments in marketing theory such as assemblage theory, practice and consumer tribes...... of social order into account, hence fail to provide sensible insight. I propose the principle of methodological situationalism as a litmus test to the analytical strength of a theory or piece of research. The principle states that theoretically adequate accounts of social phenomena must be grounded...

  19. Radiographing roots and shoots

    International Nuclear Information System (INIS)

    Shariffah Noor Khamseah Al Idid

    1985-01-01

    The effect of seed orientation on germination time and on shoot and root growth patterns is studied. Neutron radiography is used to observe the development of 4 types of plants, maize, greenpea, soya bean and padi. These plants were grown in varying orientations; sand sizes, sand thicknesses, and level of water content. Radiography of the seeds and plants were obtained for time exposure ranging from 3-12 hours and at reactor thermal power level, ranging from 500-750 kilowatts. Results obtained showed that seeds planted in varying orientations need different length of time for shoot emergence. Neutron radiography is now developed to other areas of non-industrial applications in Malaysia. (A.J.)

  20. Root layering in a tropical forest after logging (Central Vietnam

    Directory of Open Access Journals (Sweden)

    Zdeněk Čermák

    2012-01-01

    Full Text Available Indigenous stands of tropical rain forests in the region of Kon Ha Nung are one of the most preserved forests in the whole Vietnam. Despite the logging activities mainly in the 1970’s, it was possible to preserve intact forests free from any primary harvesting. In the past, other stands were influenced by the logging to various extent. Some of those stands are managed presently; others were left to natural development. This paper deals with the influence of harvesting activities on the root system in forest stands. In primary stands and in stands with known harvest intensity, samples of root systems were collected. The total weight of dry basis and mainly their layering within the soil profile were assessed. The collected roots were divided into three classes: class I – ≤ 1.0 mm, class II 1.1–5.0 mm, class III – over 5.0 mm in the diameter. In the monitored plots, the total weight of dry basis of fine roots to 1.0 mm ranged from 2.34–3.24 t∙ha−1. The weight of dry basis of roots from 1.0–5.0 mm ranged from 6.57–9.69 t∙ha−1. The majority of roots of class I is presented in the top 10.0 cm of the soil and their share drops with the increasing depth. The roots of class II are distributed more equally. It was impossible to prove the influence of the logging on the root system.

  1. The role of thionins in rice defence against root pathogens.

    Science.gov (United States)

    Ji, Hongli; Gheysen, Godelieve; Ullah, Chhana; Verbeek, Ruben; Shang, Chenjing; De Vleesschauwer, David; Höfte, Monica; Kyndt, Tina

    2015-10-01

    Thionins are antimicrobial peptides that are involved in plant defence. Here, we present an in-depth analysis of the role of rice thionin genes in defence responses against two root pathogens: the root-knot nematode Meloidogyne graminicola and the oomycete Pythium graminicola. The expression of rice thionin genes was observed to be differentially regulated by defence-related hormones, whereas all analysed genes were consistently down-regulated in M. graminicola-induced galls, at least until 7 days post-inoculation (dpi). Transgenic lines of Oryza sativa cv. Nipponbare overproducing OsTHI7 revealed decreased susceptibility to M. graminicola infection and P. graminicola colonization. Taken together, these results demonstrate the role of rice thionin genes in defence against two of the most damaging root pathogens attacking rice. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  2. Cabin crew collectivism: labour process and the roots of mobilization

    OpenAIRE

    Taylor, P.; Moore, S.

    2015-01-01

    The protracted dispute (2009–11) between British Airways and BASSA (British Airways Stewards and Stewardesses Association) was notable for the strength of collective action by cabin crew. In-depth interviews reveal collectivism rooted in the labour process and highlight the key agency of BASSA in effectively articulating worker interests. This data emphasizes crews’ relative autonomy, sustained by unionate on-board Cabin Service Directors who have defended the frontier of control against mana...

  3. Soil compaction limits root development, radiation-use efficiency and yield of three winter wheat (Triticum aestivum L.) cultivars

    DEFF Research Database (Denmark)

    Andersen, Mathias Neumann; Munkholm, Lars Juhl; Nielsen, Anne Lisbeth

    2013-01-01

    . The RUE was positively correlated with an estimated effective rooting depth across cultivars, while DM yield was not. This correlation probably was a result of restrictions on stomatal opening mediated by drought stress and abscisic acid produced in the root system in response to occasional soil drying...

  4. Fine and coarse root parameters from mature black spruce displaying genetic x soil moisture interaction in growth

    Science.gov (United States)

    John E. Major; Kurt H. Johnsen; Debby C. Barsi; Moira Campbell

    2012-01-01

    Fine and coarse root biomass, C, and N mass parameters were assessed by root size and soil depths from soil cores in plots of 32-year-old black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and wet...

  5. Deuterium depth profiles in metals using imaging field desorption

    International Nuclear Information System (INIS)

    Panitz, J.A.

    1976-01-01

    Depth profiles of 80 eV deuterium ions implanted in-situ into (110) tungsten have been measured by Imaging, Field-Desorption Mass Spectrometry. The relative abundance of deuterium was measured from the surface to a depth of 300A with less than 3A depth resolution by controlled field-evaporation of the specimen, and time-of-flight mass spectroscopy. The position of the depth distribution maximum (57 +- 3A from the surface) is shown to be in close agreement with that predicted theoretically for low energy deuterium implants using an amorphous-solid model. Structure in the distribution is attributed to surface morphology and channeling phenomena in the near surface region. Implanted impurity species from the ion source and tungsten surface have also been observed. For C + , C 2+ and 0 + , penetration is limited to less than 30A, with abundance decreasing exponentially from the surface. These results are interpreted in the context of the CTR first-wall impurity problem, and are used to suggest a novel method for in-situ characterization of low energy plasma species in operating CTR devices

  6. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  7. Hair root diameter measurement as an indicator of protein deficiency in nonhospitalized alcoholics.

    Science.gov (United States)

    Bregar, R R; Gordon, M; Whitney, E N

    1978-02-01

    Protein status of alcoholics admitted to a detoxification center was investigated with a view to adapting a hair root test for use in screening for protein deficiency. Hair root volume and hair root diameter had previously been shown to correlate well with hair root protein and to be sensitive indicators of protein deficiency. Hair root volumes in this study correlated well with mean maximum hair root diameters (n = 35, r = 0.9), which were simpler to measure, so diameter measurements were used. Mean maximum hair root diameters (range 0.02 to 0.19 mm) correlated with plasma RNase concentrations (range 6000 to 14,000 units/ml; n = 17, r = -0.7). Mean hair diameters of 84 alcoholics averaged 0.0864 +/- 0.0366 mm; those of 25 nonalcoholics were significantly greater: 0.100 +/- 0.0254 mm (P less than 0.05). Frequency of occurrence of hair root diameters of 0.06 mm or less was significantly higher in 71 alcoholics (29.5%) than in 23 nonalcoholics (8.6%) matched by age. Mean hair root diameters of 0.06 mm or less therefore can be used to signify protein deficiency where more expensive or technically demanding tests are not feasible. Protein deficiency occurs extensively in non hospitalized alcoholics. This method enables staff to single out those clients most likely to be in need of nutritional counseling and therapy.

  8. Modulation depth analysis in fast pulsations of solar radio emission

    International Nuclear Information System (INIS)

    Chernov, G.P.; Kurts, Yu.; Akademie der Wissenschaften der DDR, Berlin

    1990-01-01

    A model of millisecond pulsations due to a pulsation regime of a whistler spectrum is confirmed by the statistical analysis of the modulation depth in five type IV bursts; a modulation depth distribution ΔI/I versus the period (p) grows linearly (with the different slope) up to the maximum at the value ΔI/I ≅ 0.5-0.6. The same dependence ΔI/I(p) for spikes, observed during the same events, testifies also in favour of this model. The overlap on fast pulsations of fiber bursts and of sudden reductions are displayed in the ΔI/I(p) distribution by diffuse tails which are naturally explained by the known models of this fine structure

  9. Wave Loads on Ships Sailing in Restricted Water Depth

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2003-01-01

    depth for a container vessel. The results show that if the water depth is less than two times the draft of the vessel, the wave-induced bending moment becomes significant larger than in deep water with the same sea state description. The peak in the frequency response function for the wave bending......The wave-induced bending moment in ships is the most important sea load parameter for ships larger than 100m in length. Hence, any rational ship design procedure must include a reasonable accurate determination of this load and a large amount of various hydrodynamic formulations have been published......, ranging from semi-empirical formulas to three-dimensional non-linear procedures. A review of the state-of-the art can be found in ISSC.VI.1 (2000). These procedures must be combined with operational and sea state information to predict the probability distribution of the maximum wave-induced bending...

  10. Osmolarity and root canal antiseptics.

    Science.gov (United States)

    Rossi-Fedele, G; Guastalli, A R

    2014-04-01

    Antiseptics used in endodontics for disinfection purposes include root canal dressings and irrigants. Osmotic shock is known to cause the alteration of microbial cell viability and might have a role in the mechanism of action of root canal antiseptics. The aim of this review was to determine the role of osmolarity on the performance of antiseptics in root canal treatment. A literature search using the Medline electronic database was conducted up to 30 May 2013 using the following search terms and combinations: 'osmolarity AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmolality AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmotic AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmosis AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; sodium chloride AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm'. Publications were included if the effects of osmolarity on the clinical performance of antiseptics in root canal treatment were stated, if preparations with different osmolarities values were compared and if they were published in English. A hand search of articles published online, 'in press' and 'early view', and in the reference list of the included papers was carried out following the same criteria. A total of 3274 publications were identified using the database, and three were included in the review. The evidence available in endodontics suggests a possible role for hyperosmotic root canal medicaments as disinfectants, and that there is no influence of osmolarity on the tissue dissolution capacity of sodium hypochlorite. There are insufficient data to obtain a sound conclusion regarding the role of hypo-osmosis in root canal disinfection, or osmosis in any further desirable

  11. Measurement of the depth of maximum of extensive air showers above 10.sup.18./sup. eV

    Czech Academy of Sciences Publication Activity Database

    Abraham, J.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Kárová, Tatiana; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr

    2010-01-01

    Roč. 104, č. 9 (2010), 091101/1-091101/7 ISSN 0031-9007 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA AV ČR KJB100100904; GA AV ČR KJB300100801; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : composition * cosmic rays * Pierre Auger Observatory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.621, year: 2010

  12. High-resolution quantification of root dynamics in split-nutrient rhizoslides reveals rapid and strong proliferation of maize roots in response to local high nitrogen.

    Science.gov (United States)

    in 't Zandt, Dina; Le Marié, Chantal; Kirchgessner, Norbert; Visser, Eric J W; Hund, Andreas

    2015-09-01

    The plant's root system is highly plastic, and can respond to environmental stimuli such as high nitrogen (N) in patches. A root may respond to an N patch by selective placement of new lateral roots, and therewith increases root N uptake. This may be a desirable trait in breeding programmes, since it decreases NO3(-) leaching and N2O emission. Roots of maize (Zea mays L.) were grown without N in split-nutrient rhizoslides. One side of the slides was exposed to high N after 15 d of root development, and root elongation was measured for another 15 d, described in a time course model and parameterized. The elongation rates of crown axile roots on the N-treated side of the plant followed a logistic increase to a maximum of 5.3cm d(-1); 95% of the maximum were reached within 4 d. At the same time, on the untreated side, axile root elongation dropped linearly to 1.2cm d(-1) within 6.4 d and stayed constant thereafter. Twice as many lateral roots were formed on the crown axis on the N side compared to the untreated side. Most strikingly, the elongation rates of laterals of the N side increased linearly with most of the roots reaching an asymptote ~8 d after start of the N treatment. By contrast, laterals on the side without N did not show any detectable elongation beyond the first day after their emergence. We conclude that split-nutrient rhizoslides have great potential to improve our knowledge about nitrogen responsiveness and selection for contrasting genotypes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Effects of Infection by Belonolaimus longicaudatus on Rooting Dynamics among St. Augustinegrass and Bermudagrass Genotypes.

    Science.gov (United States)

    Aryal, Sudarshan K; Crow, William T; McSorley, Robert; Giblin-Davis, Robin M; Rowland, Diane L; Poudel, Bishow; Kenworthy, Kevin E

    2015-12-01

    Understanding rooting dynamics using the minirhizotron technique is useful for cultivar selection and to quantify nematode damage to roots. A 2-yr microplot study including five bermudagrass ('Tifway', Belonolaimus longicaudatus susceptible; two commercial cultivars [TifSport and Celebration] and two genotypes ['BA132' and 'PI 291590'], which have been reported to be tolerant to B. longicaudatus) and two St. Augustinegrass ('FX 313', susceptible, and 'Floratam' that was reported as tolerant to B. longicaudatus) genotypes in a 5 x 2 and 2 x 2 factorial design with four replications, respectively, was initiated in 2012. Two treatments included were uninoculated and B. longicaudatus inoculated. In situ root images were captured each month using a minirhizotron camera system from April to September of 2013 and 2014. Mixed models analysis and comparison of least squares means indicated significant differences in root parameters studied across the genotypes and soil depths of both grass species. 'Celebration', 'TifSport' and 'PI 291590' bermudagrass, and 'Floratam' St. Augustinegrass had significantly different root parameters compared to the corresponding susceptible genotypes (P ≤ 0.05). Only 'TifSport' had no significant root loss when infested with B. longicaudatus compared to non-infested. 'Celebration' and 'PI 291590' had significant root loss but retained significantly greater root densities than 'Tifway' in B. longicaudatus-infested conditions (P ≤ 0.05). Root lengths were greater at the 0 to 5 cm depth followed by 5 to 10 and 10 to 15 cm of vertical soil depth for both grass species (P ≤ 0.05). 'Celebration', 'TifSport', and 'PI 291590' had better root vigor against B. longicaudatus compared to Tifway.

  14. Maximum gravitational redshift of white dwarfs

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Teukolsky, S.A.

    1976-01-01

    The stability of uniformly rotating, cold white dwarfs is examined in the framework of the Parametrized Post-Newtonian (PPN) formalism of Will and Nordtvedt. The maximum central density and gravitational redshift of a white dwarf are determined as functions of five of the nine PPN parameters (γ, β, zeta 2 , zeta 3 , and zeta 4 ), the total angular momentum J, and the composition of the star. General relativity predicts that the maximum redshifts is 571 km s -1 for nonrotating carbon and helium dwarfs, but is lower for stars composed of heavier nuclei. Uniform rotation can increase the maximum redshift to 647 km s -1 for carbon stars (the neutronization limit) and to 893 km s -1 for helium stars (the uniform rotation limit). The redshift distribution of a larger sample of white dwarfs may help determine the composition of their cores

  15. Root systems and soil microbial biomass under no-tillage system

    Directory of Open Access Journals (Sweden)

    Venzke Filho Solismar de Paiva

    2004-01-01

    Full Text Available Some root parameters such as distribution, length, diameter and dry matter are inherent to plant species. Roots can influence microbial population during vegetative cycle through the rhizodeposits and, after senescence, integrating the soil organic matter pool. Since they represent labile substrates, especially regarding nitrogen, they can determine the rate of nutrient availability to the next crop cultivated under no-tillage (NT. The root systems of two crop species: maize (Zea mays L. cultivar Cargill 909 and soybean [Glycine max (L. Merr.] cultivar Embrapa 59, were compared in the field, and their influence on spatial distribution of the microbial C and N in a clayey-textured Typic Hapludox cultivated for 22 years under NT, at Tibagi, State of Paraná (PR, Brazil, was determined. Digital image processing and nail-plate techniques were used to evaluate 40 plots of a 80 ´ 50 ´ 3 cm soil profile. It was observed that 36% and 30% of the maize and soybeans roots, respectively, are concentrated in the 0 to 10 cm soil layer. The percent distribution of root dry matter was similar for both crops. The maize roots presented a total of 1,324 kg C ha-1 and 58 kg N ha-1, with higher root dry matter density and more roots in decomposition in the upper soil layer, decreasing with depth. The soybean roots (392 kg C ha-1 and 21 kg N ha-1 showed higher number of thinner roots and higher density per length unity compared to the maize. The maize roots enhanced microbial-C down to deeper soil layers than did the soybean roots. The microbial N presented a better correlation with the concentration of thin active roots and with roots in decomposition or in indefinite shape, possibly because of higher concentration of C and N easily assimilated by soil microorganisms.

  16. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.

    Directory of Open Access Journals (Sweden)

    F. Giadrossich

    2009-09-01

    Full Text Available The present paper deals with the root system's characteristics of Spanish Broom (Spartium junceum L., a species whose capacity for adaptating and resisting to drought is worth investigating. In particular, the aims of the study were 1 to investigate the plant's bio-mechanical aspects and 2 to verify whether root reinforcement and the field rooting ability of stem cuttings enhance its potential for use in slope stabilization and soil bio-engineering techniques, particularly in the Mediterranean areas. Single root specimens were sampled and tested for tensile strength, obtaining classic tensile strength-diameter relationships. Analysis were performed on the root systems in order to assess root density distribution. The Root Area Ratio (RAR was analyzed by taking both direct and indirect measurements, the latter relying on image processing. The data obtained were used to analyze the stability of an artificial slope (landfill and the root reinforcement. The measurement and calculation of mean root number, mean root diameter, RAR, root cohesion and Factor of safety are presented in order to distinguish the effect of plant origin and propagation. Furthermore, tests were performed to assess the possibility of agamic propagation (survival rate of root-ball endowed plants, rooting from stem cuttings. These tests confirmed that agamic propagation is difficult, even though roots were produced from some buried stems, and for practical purposes it has been ruled out. Our results show that Spanish Broom has good bio-mechanical characteristics with regard to slope stabilization, even in critical pedoclimatic conditions and where inclinations are quite steep, and it is effective on soil depths up to about 50 cm, in agreement with other studies on Mediterranean species. It is effective in slope stabilization, but less suitable for soil bio-engineering or for triggering natural plant succession.

  17. [Root resorption and orthodontic treatment].

    Science.gov (United States)

    Sebbar, M; Bourzgui, F

    2011-09-01

    The aim of our study was to investigate the prevalence of root resorption during and at the end of orthodontic treatment and to assess its relationship with age, sex and treatment with or without extractions. Our study included 82 patients (51 women and 31 men) aged between 6 and 38 years, who received orthodontic treatment. Evaluation of root resorption was performed on panoramics at the beginning and at the end of orthodontic treatment. All the teeth were observed. The degree of root resorption was increased respectively by the standards in four ordinal levels (4). Data analysis was performed by Epi Info 6.0. Root resorption was present in all the teeth and maxillary incisors are the most affected. The correlation between age and root resorption was significant (p = 0.008). Women were more affected by resorption (P = 0.002). Patients treated with extraction showed more root resorption (p = 0.12). Our results suggest that orthodontic treatment is involved in the development of root resorption. The most often teeth resorbed are maxillary incisors. Age, sex and orthodontic extractions can be considered as risk factors for root resorption.

  18. Searching for Roots / Pierre Gervasoni

    Index Scriptorium Estoniae

    Gervasoni, Pierre

    1997-01-01

    Uuest heliplaadist "Searching for Roots. Eduard Tubin: Symphonie no 11; Arvo Pärt: Nekrolog-Symphonie no 1; Erkki-Sven Tüür: Searching for Roots - Insula deserta - Zeitraum; Orchestre philharmonique royal de Stockholm, Paavo Järvi (direction)" Virgin Classics 5 45212 2 (distribue par EMI)

  19. Maximum entropy analysis of EGRET data

    DEFF Research Database (Denmark)

    Pohl, M.; Strong, A.W.

    1997-01-01

    EGRET data are usually analysed on the basis of the Maximum-Likelihood method \\cite{ma96} in a search for point sources in excess to a model for the background radiation (e.g. \\cite{hu97}). This method depends strongly on the quality of the background model, and thus may have high systematic unce...... uncertainties in region of strong and uncertain background like the Galactic Center region. Here we show images of such regions obtained by the quantified Maximum-Entropy method. We also discuss a possible further use of MEM in the analysis of problematic regions of the sky....

  20. The Maximum Resource Bin Packing Problem

    DEFF Research Database (Denmark)

    Boyar, J.; Epstein, L.; Favrholdt, L.M.

    2006-01-01

    Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...

  1. Shower maximum detector for SDC calorimetry

    International Nuclear Information System (INIS)

    Ernwein, J.

    1994-01-01

    A prototype for the SDC end-cap (EM) calorimeter complete with a pre-shower and a shower maximum detector was tested in beams of electrons and Π's at CERN by an SDC subsystem group. The prototype was manufactured from scintillator tiles and strips read out with 1 mm diameter wave-length shifting fibers. The design and construction of the shower maximum detector is described, and results of laboratory tests on light yield and performance of the scintillator-fiber system are given. Preliminary results on energy and position measurements with the shower max detector in the test beam are shown. (authors). 4 refs., 5 figs

  2. Topics in Bayesian statistics and maximum entropy

    International Nuclear Information System (INIS)

    Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.

    1998-12-01

    Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)

  3. Density estimation by maximum quantum entropy

    International Nuclear Information System (INIS)

    Silver, R.N.; Wallstrom, T.; Martz, H.F.

    1993-01-01

    A new Bayesian method for non-parametric density estimation is proposed, based on a mathematical analogy to quantum statistical physics. The mathematical procedure is related to maximum entropy methods for inverse problems and image reconstruction. The information divergence enforces global smoothing toward default models, convexity, positivity, extensivity and normalization. The novel feature is the replacement of classical entropy by quantum entropy, so that local smoothing is enforced by constraints on differential operators. The linear response of the estimate is proportional to the covariance. The hyperparameters are estimated by type-II maximum likelihood (evidence). The method is demonstrated on textbook data sets

  4. Subring Depth, Frobenius Extensions, and Towers

    Directory of Open Access Journals (Sweden)

    Lars Kadison

    2012-01-01

    Full Text Available The minimum depth d(B,A of a subring B⊆A introduced in the work of Boltje, Danz and Külshammer (2011 is studied and compared with the tower depth of a Frobenius extension. We show that d(B,A < ∞ if A is a finite-dimensional algebra and Be has finite representation type. Some conditions in terms of depth and QF property are given that ensure that the modular function of a Hopf algebra restricts to the modular function of a Hopf subalgebra. If A⊇B is a QF extension, minimum left and right even subring depths are shown to coincide. If A⊇B is a Frobenius extension with surjective Frobenius, homomorphism, its subring depth is shown to coincide with its tower depth. Formulas for the ring, module, Frobenius and Temperley-Lieb structures are noted for the tower over a Frobenius extension in its realization as tensor powers. A depth 3 QF extension is embedded in a depth 2 QF extension; in turn certain depth n extensions embed in depth 3 extensions if they are Frobenius extensions or other special ring extensions with ring structures on their relative Hochschild bar resolution groups.

  5. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  6. Characterising root density of peach trees in a semi-arid Chernozem to increase plant density

    Science.gov (United States)

    Paltineanu, Cristian; Septar, Leinar; Gavat, Corina; Chitu, Emil; Oprita, Alexandru; Moale, Cristina; Calciu, Irina; Vizitiu, Olga; Lamureanu, Gheorghe

    2016-01-01

    The available information on root system in fully mature peach orchards in semi-arid regions is insufficient. This paper presents a study on the root system density in an irrigated peach orchard from Dobrogea, Romania, using the trench technique. The old orchard has clean cultivation in inter-row and in-row. The objectives of the study were to: test the hypothesis that the roots of fully mature peach trees occupy the whole soil volume; find out if root repulsive effect of adjacent plants occurred for the rootstocks and soil conditions; find relationships between root system and soil properties and analyse soil state trend. Some soil physical properties were significantly deteriorated in inter-row versus in-row, mainly due to soil compaction induced by technological traffic. Density of total roots was higher in-row than inter-row, but the differences were not significant. Root density decreased more intensely with soil depth than with distance from tree trunks. Root density correlated with some soil properties. No repulsive effect of the roots of adjacent peach trees was noted. The decrease of root density with distance from trunk can be used in optimising tree arrangement. The conclusions could also be used in countries with similar growth conditions.

  7. A holistic water depth simulation model for small ponds

    Science.gov (United States)

    Ali, Shakir; Ghosh, Narayan C.; Mishra, P. K.; Singh, R. K.

    2015-10-01

    Estimation of time varying water depth and time to empty of a pond is prerequisite for comprehensive and coordinated planning of water resource for its effective utilization. A holistic water depth simulation (HWDS) and time to empty (TE) model for small, shallow ephemeral ponds have been derived by employing the generalized model based on the Green-Ampt equation in the basic water balance equation. The HWDS model includes time varying rainfall, runoff, surface water evaporation, outflow and advancement of wetting front length as external inputs. The TE model includes two external inputs; surface water evaporation and advancement of wetting front length. Both the models also consider saturated hydraulic conductivity and fillable porosity of the pond's bed material as their parameters. The solution of the HWDS model involved numerical iteration in successive time intervals. The HWDS model has successfully evaluated with 3 years of field data from two small ponds located within a watershed in a semi-arid region in western India. The HWDS model simulated time varying water depth in the ponds with high accuracy as shown by correlation coefficient (R2 ⩾ 0.9765), index of agreement (d ⩾ 0.9878), root mean square errors (RMSE ⩽ 0.20 m) and percent bias (PB ⩽ 6.23%) for the pooled data sets of the measured and simulated water depth. The statistical F and t-tests also confirmed the reliability of the HWDS model at probability level, p ⩽ 0.0001. The response of the TE model showed its ability to estimate the time to empty the ponds. An additional field calibration and validation of the HWDS and TE models with observed field data in varied hydro-climatic conditions could be conducted to increase the applicability and credibility of the models.

  8. Cytokinin signaling during root development.

    Science.gov (United States)

    Bishopp, Anthony; Help, Hanna; Helariutta, Ykä

    2009-01-01

    The cytokinin class of phytohormones regulates division and differentiation of plant cells. They are perceived and signaled by a phosphorelay mechanism similar to those observed in prokaryotes. Research into the components of phosphorelay had previously been marred by genetic redundancy. However, recent studies have addressed this with the creation of high-order mutants. In addition, several new elements regulating cytokinin signaling have been identified. This has uncovered many roles in diverse developmental and physiological processes. In this review, we look at these processes specifically in the context of root development. We focus on the formation and maintenance of the root apical meristem, primary and secondary vascular development, lateral root emergence and development, and root nodulation. We believe that the root is an ideal organ with which to investigate cytokinin signaling in a wider context.

  9. Fungi in neotropical epiphyte roots.

    Science.gov (United States)

    Bermudes, D; Benzing, D H

    1989-01-01

    Roots of thirty-eight Ecuadoran vascular epiphytes, representing eleven angiosperm families, were examined for the presence of symbiotic microorganisms. Most orchid roots contained fungal endophytes like those that regularly infect terrestrial counterparts. Hyphae were also common in and on nonorchid roots, but assignments of these relationships to known mycorrhizal morphologies was not possible in all cases. Evidence of vesicular-arbuscular mycorrhizae (VAM) existed in a number of subjects while in Ericaceae and Campanulaceae a fungal association similar to the demateaceous surface fungi (DSF) described for alpine and prarie plants was usually present. Some associations were characterized by multicellular propagules on root surfaces. The significance of these findings and the factors likely to influence occurrence and consequences of root-fungus mutualisms in tropical forest canopies are discussed. Facts and considerations that could aid future inquiry on these systems are provided.

  10. Physical root-soil interactions

    Science.gov (United States)

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-12-01

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  11. Determining clinical photon beam spectra from measured depth dose with the Cimmino algorithm

    International Nuclear Information System (INIS)

    Bloch, P.; Altschuler, M.D.; Bjaerngard, B.E.; Kassaee, A.; McDonough, J.

    2000-01-01

    A method to determine the spectrum of a clinical photon beam from measured depth-dose data is described. At shallow depths, where the range of Compton-generated electrons increases rapidly with photon energy, the depth dose provides the information to discriminate the spectral contributions. To minimize the influence of contaminating electrons, small (6x6cm2 ) fields were used. The measured depth dose is represented as a linear combination of basis functions, namely the depth doses of monoenergetic photon beams derived by Monte Carlo simulations. The weights of the basis functions were obtained with the Cimmino feasibility algorithm, which examines in each iteration the discrepancy between predicted and measured depth dose. For 6 and 15 MV photon beams of a clinical accelerator, the depth dose obtained from the derived spectral weights was within about 1% of the measured depth dose at all depths. Because the problem is ill conditioned, solutions for the spectrum can fluctuate with energy. Physically realistic smooth spectra for these photon beams appeared when a small margin (about ±1%) was attributed to the measured depth dose. The maximum energy of both derived spectra agreed with the measured energy of the electrons striking the target to within 1 MeV. The use of a feasibility method on minimally relaxed constraints provides realistic spectra quickly and interactively. (author)

  12. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling.

    Science.gov (United States)

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant

    2016-05-15

    A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. RootJS: Node.js Bindings for ROOT 6

    Science.gov (United States)

    Beffart, Theo; Früh, Maximilian; Haas, Christoph; Rajgopal, Sachin; Schwabe, Jonas; Wolff, Christoph; Szuba, Marek

    2017-10-01

    We present rootJS, an interface making it possible to seamlessly integrate ROOT 6 into applications written for Node.js, the JavaScript runtime platform increasingly commonly used to create high-performance Web applications. ROOT features can be called both directly from Node.js code and by JIT-compiling C++ macros. All rootJS methods are invoked asynchronously and support callback functions, allowing non-blocking operation of Node.js applications using them. Last but not least, our bindings have been designed to platform-independent and should therefore work on all systems supporting both ROOT 6 and Node.js. Thanks to rootJS it is now possible to create ROOT-aware Web applications taking full advantage of the high performance and extensive capabilities of Node.js. Examples include platforms for the quality assurance of acquired, reconstructed or simulated data, book-keeping and e-log systems, and even Web browser-based data visualisation and analysis.

  14. Assesing tree-root & soil interaction using pull-out test apparatus

    Science.gov (United States)

    Wibowo, J.; Corcoran, M. K.; Kala, R.; Leavell, D.

    2011-12-01

    Knowing in situ root strength provides a better understanding of the responses of tree root systems against external loads. Root pullout devices are used to record these strengths and can be expressed in two ways: pullout force, which is a direct output from the load cell (measured in pounds) or pullout stress, which is the pullout force divided by root cross section area (measured in pounds per square in.). Pullout tests show not only the possible tensile strength of a tree root, but also the interaction between the tree root and the surrounding geological materials. After discussion with engineers from the University of Nottingham-Trent, the U.S. Army Engineer Research and Development Center (ERDC) constructed a root pullout apparatus with some modifications. These modifications included using a T-System configuration at the base of an aluminum frame instead of a diagonal rod and varying the size of the clamp placed around the tested root. The T-System is placed in front of the root perpendicular to the root path. In the ERDC pullout device, the root was pulled directly without a lever system. A string pot was used to measure displacement when the root was pulled. The device is capable of pulling tree roots with a diameter of up to 2.5 in. and a maximum load of 5000 lbs. Using this device, ERDC conducted field operations in Portland, Oregon; Burlington, Washington; and Albuquerque, New Mexico, on Oregon ash, alder, maple, and cedar trees. In general, pullout tests were conducted approximately 60 deg around the tree selected for the tests. The location of a test depended on the availability of a root near the ground surface. A backhoe was used to remove soil around the tree to locate roots. Before the root was secured in a clamp, root diameter was measured and recorded, and the root was photographed. The tree species, dip angle and dip direction of the root, root location with respect to the tree, tree location, dates, weather, and soil type were also recorded

  15. Root distribution pattern of flue-cured tobacco in light and heavy soils

    International Nuclear Information System (INIS)

    Nagaraj, G.; Gopalachari, N.C.

    1977-01-01

    Root distribution of flue-cured tobacco (variety : Kanakaprabha) in clayey and loamy sand soils was studied with the help of 32 P wick feeding technique. About 90 percent of the roots of tobacco plant in black soil on 40th day and in light soil on 60th day are present in a soil core of diameter 40 cm and depth 30 cm. On the 90th day of growth stage, no significant differences were observed in the root distribution of tobacco between the two types of soil. About 85 percent of the roots were present in a soil core of diameter 40 cm and depth 30 cm on 90th day in both the soils. (author)

  16. Nonsymmetric entropy and maximum nonsymmetric entropy principle

    International Nuclear Information System (INIS)

    Liu Chengshi

    2009-01-01

    Under the frame of a statistical model, the concept of nonsymmetric entropy which generalizes the concepts of Boltzmann's entropy and Shannon's entropy, is defined. Maximum nonsymmetric entropy principle is proved. Some important distribution laws such as power law, can be derived from this principle naturally. Especially, nonsymmetric entropy is more convenient than other entropy such as Tsallis's entropy in deriving power laws.

  17. Maximum speed of dewetting on a fiber

    NARCIS (Netherlands)

    Chan, Tak Shing; Gueudre, Thomas; Snoeijer, Jacobus Hendrikus

    2011-01-01

    A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched asymptotic expansion and derive the maximum speed

  18. Maximum potential preventive effect of hip protectors

    NARCIS (Netherlands)

    van Schoor, N.M.; Smit, J.H.; Bouter, L.M.; Veenings, B.; Asma, G.B.; Lips, P.T.A.M.

    2007-01-01

    OBJECTIVES: To estimate the maximum potential preventive effect of hip protectors in older persons living in the community or homes for the elderly. DESIGN: Observational cohort study. SETTING: Emergency departments in the Netherlands. PARTICIPANTS: Hip fracture patients aged 70 and older who

  19. Maximum gain of Yagi-Uda arrays

    DEFF Research Database (Denmark)

    Bojsen, J.H.; Schjær-Jacobsen, Hans; Nilsson, E.

    1971-01-01

    Numerical optimisation techniques have been used to find the maximum gain of some specific parasitic arrays. The gain of an array of infinitely thin, equispaced dipoles loaded with arbitrary reactances has been optimised. The results show that standard travelling-wave design methods are not optimum....... Yagi–Uda arrays with equal and unequal spacing have also been optimised with experimental verification....

  20. correlation between maximum dry density and cohesion

    African Journals Online (AJOL)

    HOD

    represents maximum dry density, signifies plastic limit and is liquid limit. Researchers [6, 7] estimate compaction parameters. Aside from the correlation existing between compaction parameters and other physical quantities there are some other correlations that have been investigated by other researchers. The well-known.

  1. Weak scale from the maximum entropy principle

    Science.gov (United States)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2015-03-01

    The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.

  2. The maximum-entropy method in superspace

    Czech Academy of Sciences Publication Activity Database

    van Smaalen, S.; Palatinus, Lukáš; Schneider, M.

    2003-01-01

    Roč. 59, - (2003), s. 459-469 ISSN 0108-7673 Grant - others:DFG(DE) XX Institutional research plan: CEZ:AV0Z1010914 Keywords : maximum-entropy method, * aperiodic crystals * electron density Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.558, year: 2003

  3. Achieving maximum sustainable yield in mixed fisheries

    NARCIS (Netherlands)

    Ulrich, Clara; Vermard, Youen; Dolder, Paul J.; Brunel, Thomas; Jardim, Ernesto; Holmes, Steven J.; Kempf, Alexander; Mortensen, Lars O.; Poos, Jan Jaap; Rindorf, Anna

    2017-01-01

    Achieving single species maximum sustainable yield (MSY) in complex and dynamic fisheries targeting multiple species (mixed fisheries) is challenging because achieving the objective for one species may mean missing the objective for another. The North Sea mixed fisheries are a representative example

  4. 5 CFR 534.203 - Maximum stipends.

    Science.gov (United States)

    2010-01-01

    ... maximum stipend established under this section. (e) A trainee at a non-Federal hospital, clinic, or medical or dental laboratory who is assigned to a Federal hospital, clinic, or medical or dental... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY UNDER OTHER SYSTEMS Student...

  5. Minimal length, Friedmann equations and maximum density

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Adel [Center for Theoretical Physics, British University of Egypt,Sherouk City 11837, P.O. Box 43 (Egypt); Department of Physics, Faculty of Science, Ain Shams University,Cairo, 11566 (Egypt); Ali, Ahmed Farag [Centre for Fundamental Physics, Zewail City of Science and Technology,Sheikh Zayed, 12588, Giza (Egypt); Department of Physics, Faculty of Science, Benha University,Benha, 13518 (Egypt)

    2014-06-16

    Inspired by Jacobson’s thermodynamic approach, Cai et al. have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation http://dx.doi.org/10.1103/PhysRevD.75.084003 of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p(ρ,a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p=ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.

  6. A Hybrid Physical and Maximum-Entropy Landslide Susceptibility Model

    Directory of Open Access Journals (Sweden)

    Jerry Davis

    2015-06-01

    Full Text Available The clear need for accurate landslide susceptibility mapping has led to multiple approaches. Physical models are easily interpreted and have high predictive capabilities but rely on spatially explicit and accurate parameterization, which is commonly not possible. Statistical methods can include other factors influencing slope stability such as distance to roads, but rely on good landslide inventories. The maximum entropy (MaxEnt model has been widely and successfully used in species distribution mapping, because data on absence are often uncertain. Similarly, knowledge about the absence of landslides is often limited due to mapping scale or methodology. In this paper a hybrid approach is described that combines the physically-based landslide susceptibility model “Stability INdex MAPping” (SINMAP with MaxEnt. This method is tested in a coastal watershed in Pacifica, CA, USA, with a well-documented landslide history including 3 inventories of 154 scars on 1941 imagery, 142 in 1975, and 253 in 1983. Results indicate that SINMAP alone overestimated susceptibility due to insufficient data on root cohesion. Models were compared using SINMAP stability index (SI or slope alone, and SI or slope in combination with other environmental factors: curvature, a 50-m trail buffer, vegetation, and geology. For 1941 and 1975, using slope alone was similar to using SI alone; however in 1983 SI alone creates an Areas Under the receiver operator Curve (AUC of 0.785, compared with 0.749 for slope alone. In maximum-entropy models created using all environmental factors, the stability index (SI from SINMAP represented the greatest contributions in all three years (1941: 48.1%; 1975: 35.3; and 1983: 48%, with AUC of 0.795, 0822, and 0.859, respectively; however; using slope instead of SI created similar overall AUC values, likely due to the combined effect with plan curvature indicating focused hydrologic inputs and vegetation identifying the effect of root cohesion

  7. Gravisensing in roots

    Science.gov (United States)

    Perbal, G.

    1999-01-01

    The mode of gravisensing in higher plants is not yet elucidated. Although, it is generally accepted that the amyloplasts (statoliths) in the root cap cells (statocytes) are responsible for susception of gravity. However, the hypothesis that the whole protoplast acts as gravisusceptor cannot be dismissed. The nature of the sensor that is able to transduce and amplify the mechanical energy into a biochemical factor is even more controversial. Several cell structures could potentially serve as gravireceptors: the endoplasmic reticulum, the actin network, the plasma membrane, or the cytoskeleton associated with this membrane. The nature of the gravisusceptors and gravisensors is discussed by taking into account the characteristics of the gravitropic reaction with respect to the presentation time, the threshold acceleration, the reciprocity rule, the deviation from the sine rule, the movement of the amyloplasts, the pre-inversion effect, the response of starch free and intermediate mutants and the effects of cytochalasin treatment. From this analysis, it can be concluded that both the amyloplasts and the protoplast could be the gravisusceptors, the former being more efficient than the latter since they can focus pressure on limited areas. The receptor should be located in the plasma membrane and could be a stretch-activated ion channel.

  8. Coding of Depth Images for 3DTV

    DEFF Research Database (Denmark)

    Zamarin, Marco; Forchhammer, Søren

    In this short paper a brief overview of the topic of coding and compression of depth images for multi-view image and video coding is provided. Depth images represent a convenient way to describe distances in the 3D scene, useful for 3D video processing purposes. Standard approaches...... for the compression of depth images are described and compared against some recent specialized algorithms able to achieve higher compression performances. Future research directions close the paper....

  9. Medico-legal aspects of vertical root fractures in root filled teeth

    DEFF Research Database (Denmark)

    Rosen, E; Tsesis, I; Tamse, A

    2012-01-01

    To analyse the medico-legal aspects of vertical root fracture (VRF) following root canal treatment (RCT).......To analyse the medico-legal aspects of vertical root fracture (VRF) following root canal treatment (RCT)....

  10. GNF Defense in Depth Update

    Energy Technology Data Exchange (ETDEWEB)

    Lingenfelter, Andrew A.; Schneider, Robert J.; Cantonwine, Paul E.; Moore, Brian; Rea, John; Crawford, Douglas C. [Global Nuclear Fuel, P.O. Box 780 M/C H25, Wilmington, NC 28402 (United States)

    2009-06-15

    Global Nuclear Fuel (GNF) has designed, fabricated, and placed into operation more than 9 million fuel rods in approximately 135 thousand assemblies. Customer satisfaction has always compelled GNF to reduce fuel rod failures (defined here as fuel rods that breach or leak in service), However, increasing success with and subsequent expectations for economic performance of nuclear reactor plants have raised broader Industry emphasis on fuel reliability. In 2005, GNF established its Defense-in-Depth (DID) Program for the purpose of focusing attention on the many aspects of fuel design, fabrication, performance, and utilization that affect fuel reliability as well as on the key methods that govern the utilization of GNF fuel. The Program is structured to address each of the identified in-service, fuel failure mechanisms. This paper provides a summary of GNF fuel performance, following previous updates. This paper will discuss recent GNF fuel reliability and channel performance, GNF2 introduction status, and methods. GNF's more recent fuel experience includes approximately 3.8 million GE11/13 (9x9) and GE12/14 (10x10) fuel rods, well over half of which are the GE12/14 design. (Those figures also include roughly 25,000 recently-introduced GNF2 fuel rods.) Reliability, expressed as annual, observed fuel failure rates (i.e., number of rods failed each year divided by the number of opportunities, or fuel rods in service), has improved for each year since 2005. The GNF fuel failure rate for years leading up to 2007 and 2008 has been on the order of 5 to 7 ppm (excluding the corrosion events of 2001-2003), and as of this writing (January 2009) the current in-service failure has decreased to around 1.5 ppm. Failures in GE14 fuel rod failures have been primarily due to debris-fretting (> 60%), with other failures being duty-related or yet undetermined. The only failure observed in GNF2 to date was a single, early-life debris failure in a bundle not equipped with GNF

  11. Depth Perception In Remote Stereoscopic Viewing Systems

    Science.gov (United States)

    Diner, Daniel B.; Von Sydow, Marika

    1989-01-01

    Report describes theoretical and experimental studies of perception of depth by human operators through stereoscopic video systems. Purpose of such studies to optimize dual-camera configurations used to view workspaces of remote manipulators at distances of 1 to 3 m from cameras. According to analysis, static stereoscopic depth distortion decreased, without decreasing stereoscopitc depth resolution, by increasing camera-to-object and intercamera distances and camera focal length. Further predicts dynamic stereoscopic depth distortion reduced by rotating cameras around center of circle passing through point of convergence of viewing axes and first nodal points of two camera lenses.

  12. Directional Joint Bilateral Filter for Depth Images

    Directory of Open Access Journals (Sweden)

    Anh Vu Le

    2014-06-01

    Full Text Available Depth maps taken by the low cost Kinect sensor are often noisy and incomplete. Thus, post-processing for obtaining reliable depth maps is necessary for advanced image and video applications such as object recognition and multi-view rendering. In this paper, we propose adaptive directional filters that fill the holes and suppress the noise in depth maps. Specifically, novel filters whose window shapes are adaptively adjusted based on the edge direction of the color image are presented. Experimental results show that our method yields higher quality filtered depth maps than other existing methods, especially at the edge boundaries.

  13. An Exploration of the Needling Depth in Acupuncture: The Safe Needling Depth and the Needling Depth of Clinical Efficacy

    Directory of Open Access Journals (Sweden)

    Jaung-Geng Lin

    2013-01-01

    Full Text Available Objective. To explore the existing scientific information regarding safe needling depth of acupuncture points and the needling depth of clinical efficacy. Methods. We searched the PubMed, EMBASE, Cochrane, Allied and Complementary Medicine (AMED, The National Center for Complementary and Alternative Medicine (NCCAM, and China National Knowledge Infrastructure (CNKI databases to identify relevant monographs and related references from 1991 to 2013. Chinese journals and theses/dissertations were hand searched. Results. 47 studies were recruited and divided into 6 groups by measuring tools, that is, MRI, in vivo evaluation, CT, ultrasound, dissected specimen of cadavers, and another group with clinical efficacy. Each research was analyzed for study design, definition of safe depth, and factors that would affect the measured depths. Depths of clinical efficacy were discussed from the perspective of de-qi and other clinical observations. Conclusions. Great inconsistency in depth of each point measured from different subject groups and tools exists. The definition of safe depth should be established through standardization. There is also lack of researches to compare the clinical efficacy. A well-designed clinical trial selecting proper measuring tools to decide the actual and advisable needling depth for each point, to avoid adverse effects or complications and promote optimal clinical efficacy, is a top priority.

  14. Mycorrhizal Glomus spp. vary in their effects on the dynamics and turnover of fine alfalfa (Medicago sativa L.) roots

    International Nuclear Information System (INIS)

    Ren, A.; Waly, N.; Chunhui, M.; Zhang, Q.; Liu, H.; Yang, J.

    2016-01-01

    The distribution of fine roots in the soil profile has important implications related to water and nutrient uptake. The Objective of this study was to compare the effects of different arbuscular mycorrhizal fungi (AMF) on the fine root dynamics of Medicago sativa L. cv. Sanditi. We used minirhizotrons to observe changes in fine root length density (FRLD, mm/cm2) and fine root surface area density (FRSAD, mm2/cm2) during the growing season. Fine root P concentrations and turnover rate were also measured. The colonization rate of fine roots varied depending on the AMF species. Colonization rates were highest when roots were inoculated with Glomus mosseae and lowest when roots were inoculated G. intraradices. Inoculation with AMF significantly increased both FRLD and FRSAD. G. versiforme increased FRLD and FRSAD most, whereas G. mosseae had the least effect. Inoculation with AMF also decreased fine root turnover rates. Inoculation with a mixture of AMF species increased fine root turnover and P concentrations more than inoculation with a single AMF species. Fine root length density increased to a maximum on Aug. 6 and then decreased. In comparison, FRSAD exhibited two peaks during the growing season. Overall, the Results indicated that inoculation with AMF can significantly promote fine root growth and P uptake by alfalfa growing on soil with low P availability. The AMF may preserve fine root function late in the growing season. (author)

  15. Electroacoustic Process Study of Plasma Sparker Under Different Water Depth

    KAUST Repository

    Huang, Yifan

    2015-01-05

    The plasma sparker has been applied in oceanic high-resolution seismic exploration for decades. Normally it is towed on the water surface. This is suitable for shallow water, but if the water depth is great, the resolution will decrease dramatically, especially in the horizontal direction. This paper proposes the concept of a deep-towed plasma sparker and presents an experimental study of plasma sparker performance in terms of electric parameters, bubble behavior, and acoustic characteristics. The results show that hydrostatic pressure at a source depth ranging from 1 to 2000 m has a negligible influence on the electric parameters but a strong influence on bubble behavior, wherein both the maximum bubble radius and oscillation period are decreased. The collapse pulse vanishes when the source depth reaches 1000 m or deeper, and no bubble oscillation can be distinguished. The source level (evaluated by the expansion pulse) is also decreased as the source depth increases; moreover, the greater the discharge energy, the smaller the source level loss. The discharge energy per electrode should be greater than 20 J for the deep-towed plasma sparker, which can make the source level loss induced by hydrostatic pressure smaller than the transmission loss. The fast Fourier transform (FFT) results show that the dominant energy is around 20 kHz, which is mainly induced by the expansion pulse and its oscillation. According to the simulation results, the fundamental frequency of the acoustic waveform increases with source depth in accord with a log linear trend, and also reaches tens of kilohertz in deep water. So, before the development of deep-towed plasma sparker, a new technical solution will need to be developed to solve this problem. © 1976-2012 IEEE.

  16. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    OpenAIRE

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength we...

  17. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  18. Artemisia tilesii Ledeb hairy roots establishment using Agrobacterium rhizogenes-mediated transformation.

    Science.gov (United States)

    Matvieieva, N A; Shakhovsky, A M; Belokurova, V B; Drobot, K O

    2016-05-18

    An efficient and rapid protocol for the establishment of Artemisia tilesii "hairy" root culture is reported. Leaf explants of aseptically growing plants were cocultured with Agrobacterium rhizogenes A4 wild strain or A. rhizogenes carrying the plasmids with nptII and ifn-α2b genes. Root formation on the explants started in 5-6 days after their cocultivation with bacterial suspension. Prolongation of explant cultivation time on the medium without cefotaxime led to stimulation of root growth. The effects of sucrose concentration as well as of the levels of synthetic indole-3-butyric acid (IBA) and native growth regulator Emistim on the stimulation of A. tilesii "hairy" root growth were studied. Maximum stimulating effect both for the control and for transgenic roots was observed in case of root cultivation on the media supplemented with IBA-up to 7.95- and 9.1-fold biomass increase, respectively. Cultivation on the medium with 10 μl/L Emistime has also led to the control roots growth stimulation (up to 2.75-fold). Emistime at 5 μl/L concentration led to 5.46-fold mass increase in only one "hairy" root line. Higher sucrose content (40 g/L) stimulated growth of two hairy root lines but had no effect on growth of the control roots.

  19. Depth Estimates for Slingram Electromagnetic Anomalies from Dipping Sheet-like Bodies by the Normalized Full Gradient Method

    Science.gov (United States)

    Dondurur, Derman

    2005-11-01

    The Normalized Full Gradient (NFG) method was proposed in the mid 1960s and was generally used for the downward continuation of the potential field data. The method eliminates the side oscillations which appeared on the continuation curves when passing through anomalous body depth. In this study, the NFG method was applied to Slingram electromagnetic anomalies to obtain the depth of the anomalous body. Some experiments were performed on the theoretical Slingram model anomalies in a free space environment using a perfectly conductive thin tabular conductor with an infinite depth extent. The theoretical Slingram responses were obtained for different depths, dip angles and coil separations, and it was observed from NFG fields of the theoretical anomalies that the NFG sections yield the depth information of top of the conductor at low harmonic numbers. The NFG sections consisted of two main local maxima located at both sides of the central negative Slingram anomalies. It is concluded that these two maxima also locate the maximum anomaly gradient points, which indicates the depth of the anomaly target directly. For both theoretical and field data, the depth of the maximum value on the NFG sections corresponds to the depth of the upper edge of the anomalous conductor. The NFG method was applied to the in-phase component and correct depth estimates were obtained even for the horizontal tabular conductor. Depth values could be estimated with a relatively small error percentage when the conductive model was near-vertical and/or the conductor depth was larger.

  20. Hypocotyl adventitious root organogenesis differs from lateral root development.

    Science.gov (United States)

    Verstraeten, Inge; Schotte, Sébastien; Geelen, Danny

    2014-01-01

    Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR

  1. Hypocotyl adventitious root organogenesis differs from lateral root development

    Directory of Open Access Journals (Sweden)

    Inge eVerstraeten

    2014-09-01

    Full Text Available Wound-induced adventitious root (AR formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR and the initiated AR share histological and developmental characteristics with lateral roots (LR. In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in Arabidopsis thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are

  2. The Dietary Approaches to Stop Hypertension Diet and New and Recurrent Root Caries Events in Men.

    Science.gov (United States)

    Kaye, Elizabeth K; Heaton, Brenda; Sohn, Woosung; Rich, Sharron E; Spiro, Avron; Garcia, Raul I

    2015-09-01

    To examine the effect of overall dietary quality on number of teeth with new or recurrent root caries events during follow-up (root caries increment). Prospective study with dental examinations approximately every 3 years over 20 years. Veterans Affairs Dental Longitudinal Study in greater Boston, Massachusetts, area. Men aged 47 to 90 (N = 533). A single calibrated examiner assessed root caries and restorations, calculus, probing pocket depth, and attachment loss on each tooth at each examination. The adjusted root caries increment (root-ADJCI) was computed from new and recurrent root caries events on teeth with recession of 2 mm or more. Dietary information was obtained from food frequency questionnaires. An adherence score was computed by comparing consumption frequency of 10 food groups (fruits, vegetables, total dairy, low-fat dairy, meat, total grains, high-fiber grains, legumes, fats, sweets) from the Dietary Approaches to Stop Hypertension (DASH) diet guidelines. Mean root-ADJCIs were compared according to DASH adherence score quartile using generalized linear negative binomial regression models, controlling for age, number of teeth at risk of root caries, time at risk of root caries, calculus, presence of removable denture, history of dental prophylaxis, body mass index, and smoking status. Men with DASH adherence scores in the highest quartile had a 30% lower mean root-ADJCI (1.86 teeth) than those in the lowest quartile (2.68 teeth) (P = .03). Root-ADJCI was lower with greater adherence to recommendations for vegetables and total grains and greater with greater sugar-sweetened carbonated beverage consumption. Root caries incidence rate did not vary significantly between quartiles. A higher-quality diet may reduce root caries risk in older men. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  3. Spatial and temporal patterns of chickpea genotypes (Cicer arietinum L. root growth under waterlogging stress

    Directory of Open Access Journals (Sweden)

    ali ganjali

    2009-06-01

    Full Text Available The dynamic of root growth of chickpea genotypes; including Rupali (Desi and Flip 97-530 (Kabuli were evaluated under waterlogging stress in a Glasshouse experiment at CSIRO, Perth, WA. during 2005. Root growth boxes (0.1×0.24×1.0 m with one wall of glass were used as experimental units. Data were analyzed based on Randomized Complete Block Design with three replications. Waterlogging was induced when the first root reached 50cm. The water level was maintained on the soil surface for 12 days. After that, waterlogging was finished by draining the root growth boxes. In soil profile, root growth rate were calculated based on recorded information on transparent films during growing season. There was positive and strong linear correlation between the root traits that were measured in soil (direct measurment and transparent films (indirect measurment. Decay and death of roots caused a severe decrease on root growth rate during waterlogging, but root growth rate was sharply increased at the end of recovery period on 0-40 cm layer of soil surface. In both genotypes, spatial and temporal patterns of the root growth were different. Root growth rate was highest on distinc time for each layer of soil profile. In both genotypes, RLD decreased with increasing soil depth. Results showed that more distribution of root system on upper soil layers (0-40 cm is a strategy for chickpea plants, and so, soil management is very important on this layer. In stress and non stress environments, Flip 97-530 showed better root characteristics than the Rupali during growing season, so this genotype is probably more tolerate to water logging stress.

  4. Vertical and horizontal root distribution of mature aspen clones: mechanisms for resource acquisition

    Science.gov (United States)

    Landhäusser, S. M.; Snedden, J.; Silins, U.; Devito, K. J.

    2012-04-01

    Spatial root distribution, root morphology, and intra- and inter-clonal connections of mature boreal trembling aspen clones (Populus tremuloides Michx.) were explored to shed light on the functional relationships between vertical and horizontal distribution of roots and the variation in soil water availability along hill slopes. Root systems of mature aspen were hydraulically excavated in large plots (6 m wide and 12 m long) and to a depth of 30 cm. Most aspen roots were located in the upper 20 cm of the soil and fine and coarse root occupancy was highest in the lower slope positions and lowest towards the upper hill slope position likely because of soil moisture availability. Observation of the root system distribution along the hill slope correlated well with the observation of greater leaf area carried by trees growing at the lower portion of the hill slope. Interestingly, trees growing at the bottom of the slope required also less sapwood area to support the same amount of leaf area of trees growing at the top of a slope. These observations appear to be closely related to soil moisture availability and with that greater productivity at the bottom of the slope. However, trees growing on the upper slope tended to have long lateral roots extending downslope, which suggests long distance water transport through these lateral feeder roots. Genetic analysis indicated that both intra- and inter-clonal root connections occur in aspen, which can play a role in the sharing of resources along moisture gradients. Root systems of boreal aspen growing on upper slope positions exhibited a combination of three attributes (1) asymmetric lateral root systems, that are skewed downslope, (2) deeper taproots, and (3) intra and inter-clonal root connections, which can all be considered adaptive strategies to avoid drought stress in upper slope positions.

  5. Energy-depth relation of electrons in bulk targets by Monte-Carlo calculations

    International Nuclear Information System (INIS)

    Gaber, M.; Fitting, H.J.

    1984-01-01

    Monte-Carlo calculations are used to calculate the energy of penetrating electrons as a function of the depth in thick targets of Ti, Fe, Cu, As, In, and Au. It is shown that the mean energy ratio anti E(z)/E 0 decays exponentially with depth z and depends on the backscattering coefficient eta/sub B/ of the bulk material and the maximum range R(E 0 ) of the primary electrons with initial energy E 0 . Thereby a normalized plot anti E/E 0 as a function of the reduced depth z/R becomes possible. (author)

  6. Knee Kinetics during Squats of Varying Loads and Depths in Recreationally Trained Females.

    Science.gov (United States)

    Flores, Victoria; Becker, James; Burkhardt, Eric; Cotter, Joshua

    2018-03-06

    The back squat exercise is typically practiced with varying squat depths and barbell loads. However, depth has been inconsistently defined, resulting in unclear safety precautions when squatting with loads. Additionally, females exhibit anatomical and kinematic differences to males which may predispose them to knee joint injuries. The purpose of this study was to characterize peak knee extensor moments (pKEMs) at three commonly practiced squat depths of above parallel, parallel, and full depth, and with three loads of 0% (unloaded), 50%, and 85% depth-specific one repetition maximum (1RM) in recreationally active females. Nineteen females (age, 25.1 ± 5.8 years; body mass, 62.5 ± 10.2 kg; height, 1.6 ± 0.10 m; mean ± SD) performed squats of randomized depth and load. Inverse dynamics were used to obtain pKEMs from three-dimensional knee kinematics. Depth and load had significant interaction effects on pKEMs (p = 0.014). Significantly greater pKEMs were observed at full depth compared to parallel depth with 50% 1RM load (p = 0.001, d = 0.615), and 85% 1RM load (p = 0.010, d = 0.714). Greater pKEMs were also observed at full depth compared to above parallel depth with 50% 1RM load (p = 0.003, d = 0.504). Results indicate effect of load on female pKEMs do not follow a progressively increasing pattern with either increasing depth or load. Therefore, when high knee loading is a concern, individuals are must carefully consider both the depth of squat being performed and the relative load they are using.

  7. Maximum concentrations at work and maximum biologically tolerable concentration for working materials 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The meaning of the term 'maximum concentration at work' in regard of various pollutants is discussed. Specifically, a number of dusts and smokes are dealt with. The valuation criteria for maximum biologically tolerable concentrations for working materials are indicated. The working materials in question are corcinogeneous substances or substances liable to cause allergies or mutate the genome. (VT) [de

  8. 75 FR 43840 - Inflation Adjustment of the Ordinary Maximum and Aggravated Maximum Civil Monetary Penalties for...

    Science.gov (United States)

    2010-07-27

    ...-17530; Notice No. 2] RIN 2130-ZA03 Inflation Adjustment of the Ordinary Maximum and Aggravated Maximum... remains at $250. These adjustments are required by the Federal Civil Penalties Inflation Adjustment Act [email protected] . SUPPLEMENTARY INFORMATION: The Federal Civil Penalties Inflation Adjustment Act of 1990...

  9. IAA transport in corn roots includes the root cap

    International Nuclear Information System (INIS)

    Hasenstein, K.H.

    1989-01-01

    In earlier reports we concluded that auxin is the growth regulator that controls gravicurvature in roots and that the redistribution of auxin occurs within the root cap. Since other reports did not detect auxin in the root cap, we attempted to confirm the IAA does move through the cap. Agar blocks containing 3 H-IAA were applied to the cut surface of 5 mm long apical segments of primary roots of corn (mo17xB73). After 30 to 120 min radioactivity (RA) of the cap and root tissue was determined. While segments suspended in water-saturated air accumulated very little RA in the cap, application of 0.5 μ1 of dist. water to the cap (=controls) increased RA of the cap dramatically. Application to the cap of 0.5 μ1 of sorbitol or the Ca 2+ chelator EGTA reduced cap RA to 46% and 70% respectively compared to water, without affecting uptake. Control root segments gravireacted faster than non-treated or osmoticum or EGTA treated segments. The data indicate that both the degree of hydration and calcium control the amount of auxin moving through the cap

  10. Zipf's law, power laws and maximum entropy

    International Nuclear Information System (INIS)

    Visser, Matt

    2013-01-01

    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified. (paper)

  11. Maximum-entropy description of animal movement.

    Science.gov (United States)

    Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M

    2015-03-01

    We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

  12. Pareto versus lognormal: a maximum entropy test.

    Science.gov (United States)

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

    2011-08-01

    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

  13. Maximum likelihood estimation for integrated diffusion processes

    DEFF Research Database (Denmark)

    Baltazar-Larios, Fernando; Sørensen, Michael

    We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated...... EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...... by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated...

  14. A Maximum Radius for Habitable Planets.

    Science.gov (United States)

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  15. Estimation of fractional contribution of root respiration to a forest-floor CO2 flux using carbon isotopes

    International Nuclear Information System (INIS)

    Hachiya, Masashi; Moriizumi, Jun; Yamazawa, Hiromi

    2010-01-01

    Efflux of soil respired carbon dioxide(CO 2 ) is very important component for the global carbon cycle and dynamics of 14 C in environment, and to predict the global climate changes caused by increasing CO 2 concentrations in the atmosphere. There are two components that generate CO 2 in soil, soil organic matter decomposition and root respiration. Although the former is relatively well understood, the root-derived CO 2 efflux has not been evaluated sufficiently. The objective of our research is to estimate depth profile of the root respiration rate. Thus we developed a box model which calculates the depth profile. In this paper, we discussed about (1) the adequacy of calculated result by comparing it to the to observed soil respired CO 2 flux with trenching method and (2) sensitivity of the box model to uncertainty in the input data. The result showed that the depth profile of root respiration rate decreased with soil depth. This is attributed to the distribution of fine roots which dominate root respiration. The model results reasonable agreed with the measurement results and characteristics of root respiration. The output of the model was robust to the variation of the input data. (author)

  16. Maximum entropy analysis of liquid diffraction data

    International Nuclear Information System (INIS)

    Root, J.H.; Egelstaff, P.A.; Nickel, B.G.

    1986-01-01

    A maximum entropy method for reducing truncation effects in the inverse Fourier transform of structure factor, S(q), to pair correlation function, g(r), is described. The advantages and limitations of the method are explored with the PY hard sphere structure factor as model input data. An example using real data on liquid chlorine, is then presented. It is seen that spurious structure is greatly reduced in comparison to traditional Fourier transform methods. (author)

  17. Depth image enhancement using perceptual texture priors

    Science.gov (United States)

    Bang, Duhyeon; Shim, Hyunjung

    2015-03-01

    A depth camera is widely used in various applications because it provides a depth image of the scene in real time. However, due to the limited power consumption, the depth camera presents severe noises, incapable of providing the high quality 3D data. Although the smoothness prior is often employed to subside the depth noise, it discards the geometric details so to degrade the distance resolution and hinder achieving the realism in 3D contents. In this paper, we propose a perceptual-based depth image enhancement technique that automatically recovers the depth details of various textures, using a statistical framework inspired by human mechanism of perceiving surface details by texture priors. We construct the database composed of the high quality normals. Based on the recent studies in human visual perception (HVP), we select the pattern density as a primary feature to classify textures. Upon the classification results, we match and substitute the noisy input normals with high quality normals in the database. As a result, our method provides the high quality depth image preserving the surface details. We expect that our work is effective to enhance the details of depth image from 3D sensors and to provide a high-fidelity virtual reality experience.

  18. A new method for depth profiling

    International Nuclear Information System (INIS)

    Chittleborough, C.W.; Chaudhri, M.A.; Rouse, J.L.

    1978-01-01

    A simple method for obtaining depth profiles of concentrations has been developed for charged particle induced nuclear reactions which produce γ-rays or neutrons. This method is particularly suitable for non-resonant reactions but is also applicable to resonant reactions and can examine the concentration of the sought nuclide throughout the entire activation depth of the incoming particles in the matrix

  19. A Maximum Resonant Set of Polyomino Graphs

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2016-05-01

    Full Text Available A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper, we show that if K is a maximum resonant set of P, then P − K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to the cardinality of a maximum resonant set. This confirms a conjecture of Xu et al. [26]. We also show that if K is a maximal alternating set of P, then P − K has a unique perfect matching.

  20. Automatic maximum entropy spectral reconstruction in NMR

    International Nuclear Information System (INIS)

    Mobli, Mehdi; Maciejewski, Mark W.; Gryk, Michael R.; Hoch, Jeffrey C.

    2007-01-01

    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system

  1. maximum neutron flux at thermal nuclear reactors

    International Nuclear Information System (INIS)

    Strugar, P.

    1968-10-01

    Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself [sr

  2. Depth of origin of magma in eruptions.

    Science.gov (United States)

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  3. Variation in Depth Dose Data between Open and Wedge Fields for 6 MV X-Rays

    International Nuclear Information System (INIS)

    U, Hong; Ryu, M. S. Samuel; Park, In Kyu

    1989-01-01

    Central axis depth dose data for 6 MV X-rays, including tissue maximum ratios, were measured for wedge fields according to Tatcher equation. In wedge fields, the differences in magnitude which increased with depth, field size, and wedge thickness increased when compared with the corresponding open field data. However, phantom scatter correction factors for wedge fields differed less that 1% from the corresponding open field factors. The differences in central axis percent depth dose between two types of fields indicated beam hardening by the wedge filter. The deviation of percent depth doses and scatter correction factors between the effective wedge field and the nominal wedge field at same angle was negligible. The differences were less than 3.26% between the nominal or effective wedge fields and the open fields for percent depth doses to the depth 7cm in 6cm x 6cm field. For larger (10cm x 10cm) field size, however, the deviation of percent depth doses between the nominal or effective wedge fields and the open fields were greater-dosimetric errors were 3.56% at depth 7cm and nearly 5.30% at 12cm. We suggest that the percent depth doses of individual wedge and wedge transmission factors should be considered for the dose calculation or monitor setting in the treatment of deep seated tumor

  4. Dynamic performance of maximum power point tracking circuits using sinusoidal extremum seeking control for photovoltaic generation

    Science.gov (United States)

    Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.

    2011-04-01

    The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.

  5. Root coverage with bridge flap

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar Verma

    2013-01-01

    Full Text Available Gingival recession in anterior teeth is a common concern due to esthetic reasons or root sensitivity. Gingival recession, especially in multiple anterior teeth, is of huge concern due to esthetic reasons. Various mucogingival surgeries are available for root coverage. This case report presents a new bridge flap technique, which allows the dentist not only to cover the previously denuded root surfaces but also to increase the zone of attached gingiva at a single step. In this case, a coronally advanced flap along with vestibular deepening technique was used as root coverage procedure for the treatment of multiple recession-type defect. Here, vestibular deepening technique is used to increase the width of the attached gingiva. The predictability of this procedure results in an esthetically healthy periodontium, along with gain in keratinized tissue and good patient′s acceptance.

  6. (Allium cepa) root tip mitosis

    African Journals Online (AJOL)

    Aghomotsegin

    their chemical composition and genotoxic effects on cell reproduction. Two petrochemicals, air ... the chromosomes of the individual cells of the root tip could be a pointer to their ..... Chromosome technique: Theory and. Practice. Butterworths ...

  7. aqueous root extract on spermatogenesis

    African Journals Online (AJOL)

    Four groups were gavaged with the whole plant or root aqueous extract in low or high doses. The male ... motility and morphology as well as chromatin integrity were evaluated. Results: Serum ... Treatment of disease began long ago with the.

  8. Interaction between Vetiver Grass Roots and Completely Decomposed Volcanic Tuff under Rainfall Infiltration Conditions

    Directory of Open Access Journals (Sweden)

    Ling Xu

    2018-01-01

    Full Text Available The important role of vetiver grass roots in preventing water erosion and mass movement has been well recognized, though the detailed influence of the grass roots on soil has not been addressed. Through planting vetiver grass at the Kadoorie Farm in Hong Kong and leaving it to grow without artificial maintenance, the paper studies the influence of vetiver grass roots on soil properties and slope stability. Under the natural conditions of Hong Kong, growth of the vetiver grass roots can reach 1.1 m depth after one and a half year from planting. The percentage of grain size which is less than 0.075 mm in rooted soil is more than that of the nonrooted soil. Vetiver grass roots can reduce soil erosion by locking the finer grain. The rooted soil of high finer grain content has a relatively small permeability. As a result, the increase in water content is therefore smaller than that of nonrooted soil in the same rainfall conditions. Shear box test reveals that the vetiver grass roots significantly increased the peak cohesion of the soil from 9.3 kPa to 18.9 kPa. The combined effects of grass roots on hydrological responses and shearing strength significantly stabilize the slope in local rainfall condition.

  9. Translocation of 14C in adventitiously rooting Calluna vulgaris on peat

    International Nuclear Information System (INIS)

    Wallen, B.

    1983-01-01

    Seasonal variation in translocation of 14 C-labelled assimilates showed that 14 C-translocation within woody tissue was mainly limited to the phytomass produced during the last eight years. Independent of overgrowth of basal stem segments or decumbent sections by Sphagnum, or of subsequent adventitious rooting, the allocation followed a negative exponential from the assimilating units down the plant, and reached negligible values in 8-yr-old wood. Translocation to fine roots was however, mainly restricted to the shallow roots. Already at ca. 10 cm depth, the fine roots contained only about 5% of the concentration in the fine roots in the surface. During spring and autumn translocation to below ground parts dominated. During summer the main translocation was within the above ground green shoots and flowers. Here most of the allocated 14 C was irreversibly bound. There were only weak indications of accumulation of moblie 14 C-compounds in the woody parts near the soil surface. (author)

  10. Intercropping effect on root growth and nitrogen uptake at different nitrogen levels

    DEFF Research Database (Denmark)

    Ramirez-Garcia, Javier; Martens, Helle Juel; Quemada, Miguel

    2015-01-01

    of root growth and N foraging for barley (Hordeum vulgare L.) and vetch (Vicia sativa L.), frequently grown in mixtures as cover crops. N was added at 0 (N0), 50 (N1) and 150 (N2) kg N ha−1. The roots discrimination relying on the anatomical and morphological differences observed between dicots......Aims Intercropping legumes and non-legumes may affect the root growth of both components in the mixture, and the non-legume is known to be strongly favored by increasing nitrogen (N) supply. The knowledge of how root systems affect the growth of the individual species is useful for understanding...... the interactions in intercrops as well as for planning cover cropping strategies. The aim of this work was (i) to determine if different levels of N in the topsoil influence root depth (RD) and intensity of barley and vetch as sole crops or as an intercropped mixture and (ii) to test if the choice of a mixture...

  11. Long-term effects of deep soil loosening on root distribution and soil physical parameters in compacted lignite mine soils

    Science.gov (United States)

    Badorreck, Annika; Krümmelbein, Julia; Raab, Thomas

    2015-04-01

    Soil compaction is a major problem of soils on dumped mining substrates in Lusatia, Germany. Deep ripping and cultivation of deep rooting plant species are considered to be effective ways of agricultural recultivation. Six years after experiment start, we studied the effect of initial deep soil loosening (i.e. down to 65 cm) on root systems of rye (Secale cereale) and alfalfa (Medicago sativa) and on soil physical parameters. We conducted a soil monolith sampling for each treatment (deep loosened and unloosened) and for each plant species (in three replicates, respectively) to determine root diameter, length density and dry mass as well as soil bulk density. Further soil physical analysis comprised water retention, hydraulic conductivity and texture in three depths. The results showed different reactions of the root systems of rye and alfalfa six years after deep ripping. In the loosened soil the root biomass of the rye was lower in depths of 20-40 cm and the root biomass of alfalfa was also decreased in depths of 20-50 cm together with a lower root diameter for both plant species. Moreover, total and fine root length density was higher for alfalfa and vice versa for rye. The soil physical parameters such as bulk density showed fewer differences, despite a higher bulk density in 30-40cm for the deep loosened rye plot which indicates a more pronounced plough pan.

  12. A new method for depth profiling reconstruction in confocal microscopy

    Science.gov (United States)

    Esposito, Rosario; Scherillo, Giuseppe; Mensitieri, Giuseppe

    2018-05-01

    Confocal microscopy is commonly used to reconstruct depth profiles of chemical species in multicomponent systems and to image nuclear and cellular details in human tissues via image intensity measurements of optical sections. However, the performance of this technique is reduced by inherent effects related to wave diffraction phenomena, refractive index mismatch and finite beam spot size. All these effects distort the optical wave and cause an image to be captured of a small volume around the desired illuminated focal point within the specimen rather than an image of the focal point itself. The size of this small volume increases with depth, thus causing a further loss of resolution and distortion of the profile. Recently, we proposed a theoretical model that accounts for the above wave distortion and allows for a correct reconstruction of the depth profiles for homogeneous samples. In this paper, this theoretical approach has been adapted for describing the profiles measured from non-homogeneous distributions of emitters inside the investigated samples. The intensity image is built by summing the intensities collected from each of the emitters planes belonging to the illuminated volume, weighed by the emitters concentration. The true distribution of the emitters concentration is recovered by a new approach that implements this theoretical model in a numerical algorithm based on the Maximum Entropy Method. Comparisons with experimental data and numerical simulations show that this new approach is able to recover the real unknown concentration distribution from experimental profiles with an accuracy better than 3%.

  13. The graphics editor in ROOT

    International Nuclear Information System (INIS)

    Antcheva, Ilka; Brun, Rene; Hof, Carsten; Rademakers, Fons

    2006-01-01

    A well-designed Graphical User Interface (GUI) has critical importance in any computer application. The user interface is where the end users and the complex system intersect. An effective interface design can make a powerful and complex system, such as ROOT, easy and intuitive to learn and operate. This paper describes the main goals we defined and the design solution we found developing the graphics editor in ROOT

  14. Option-4 algorithm for Florida pocket depth probe: reduction in the variance of site-specific probeable crevice depth measurements.

    Science.gov (United States)

    Breen, H J; Rogers, P; Johnson, N W; Slaney, R

    1999-08-01

    Clinical periodontal measurement is plagued by many sources of error which result in aberrant values (outliers). This study sets out to compare probeable crevice depth measurements (PCD) selected by the option-4 algorithm against those recorded with a conventional double-pass method and to quantify any reduction in site-specific PCD variances. A single clinician recorded full-mouth PCD at 1 visit in 32 subjects (mean age 45.5 years) with moderately advanced chronic adult periodontitis. PCD was recorded over 2 passes at 6 sites per tooth with the Florida Pocket Depth Probes, a 3rd generation probe. The option-4 algorithm compared the 1st pass site-specific PCD value (PCD1) to the 2nd pass site-specific PCD value (PCD2) and, if the difference between these values was >1.00 mm, allowed the recording of a maximum of 2 further measurements (3rd and 4th pass measurements PCD3 and PCD4): 4 site-specific measure-meets were considered to be the maximum subject and tissue tolerance. The algorithm selected the 1st 2 measurements whose difference was difference Y) (Y=[(A-B)/A]X 100) and a 75% reduction in the median site-specific variance of PCD1/PCD2.

  15. Application of Electrical Resistivity Tomography for Detecting Root Biomass in Coffee Trees

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Paglis

    2013-01-01

    Full Text Available Roots play an important role in plants and are responsible for several functions; among them are anchorage and nutrient and water absorption. Several methodologies are being tested and used to study plant root systems in order to avoid destructive root sampling. Electrical resistivity tomography is among these methodologies. The aim of this preliminary study was to use electrical resistivity for detecting root biomass in coffee trees. Measurements were performed in a soil transect with an ABM AL 48-b resistivimeter with a pole-dipole configuration. The tomograms indicated variability in soil resistivity values ranging from 120 to 1400 Ω·m−1. At the first 0.30 cm soil layer, these values were between 267 and 952 Ω·m−1. Oriented by this result, root samples were taken at 0.10, 0.20, and 0.30 m depths within 0.50 m intervals along the soil transect to compare soil resistivity with root mass density (RMD. RMD data, up to this depth, varied from 0.000019 to 0.009469 Mg·m−3, showing high spatial variability and significant relationship to the observed values of soil resistivity. These preliminary results showed that the electrical resistivity tomography can contribute to root biomass studies in coffee plants; however, more experiments are necessary to confirm the found results in Brazil coffee plantations.

  16. Rooting strategies in a subtropical savanna: a landscape-scale three-dimensional assessment.

    Science.gov (United States)

    Zhou, Yong; Boutton, Thomas W; Wu, X Ben; Wright, Cynthia L; Dion, Anais L

    2018-04-01

    In resource-limited savannas, the distribution and abundance of fine roots play an important role in acquiring essential resources and structuring vegetation patterns and dynamics. However, little is known regarding the three-dimensional distribution of fine roots in savanna ecosystems at the landscape scale. We quantified spatial patterns of fine root density to a depth of 1.2 m in a subtropical savanna landscape using spatially specific sampling. Kriged maps revealed that fine root density was highest at the centers of woody patches, decreased towards the canopy edges, and reached lowest values within the grassland matrix throughout the entire soil profile. Lacunarity analyses indicated that spatial heterogeneities of fine root density decreased continuously to a depth of 50 cm and then increased in deeper portions of the soil profile across this landscape. This vertical pattern might be related to inherent differences in root distribution between trees/shrubs and herbaceous species, and the presence/absence of an argillic horizon across this landscape. The greater density of fine roots beneath woody patches in both upper and lower portions of the soil profile suggests an ability to acquire disproportionately more resources than herbaceous species, which may facilitate the development and persistence of woody patches across this landscape.

  17. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Engvild, K.C.; Rasmussen, K.

    2005-01-01

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M 2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M 2 seeds were sown in the field the same day. Spikes, 4-6 per M 1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  18. [Fine root dynamics and its relationship with soil fertility in tropical rainforests of Chocó].

    Science.gov (United States)

    Quinto, Harley; Caicedo, Haylin; Thelis Perez, May; Moreno, Flavio

    2016-12-01

    The fine roots play an important role in the acquisition of water and minerals from the soil, the global carbon balance and mitigation of climate change. The dynamics (productivity and turnover) of fine roots is essential for nutrient cycling and carbon balance of forest ecosystems. The availability of soil water and nutrients has significantly determined the productivity and turnover of fine roots. It has been hypothesized that fine roots dynamics increases with the availability of soil resources in tropical forest ecosystems. To test this hypothesis in tropical rainforests of Chocó (ecosystems with the highest rainfall in the world), five one-ha permanent plots were established in the localities of Opogodó and Pacurita, where the productivity and turnover of fine roots were measured at 0-10 cm and 10-20 cm depth. The measurement of the fine root production was realized by the Ingrowth core method. The fine root turnover was measured like fine roots production divided mean annual biomass. In addition, soil fertility parameters (pH, nutrients, and texture) were measured and their association with productivity and turnover of fine roots was evaluated. It was found that the sites had nutrient-poor soils. The localities also differ in soil; Opogodó has sandy soils and flat topography, and Pacurita has clay soils, rich in aluminum and mountainous topography. In Opogodó fine root production was 6.50 ± 2.62 t/ha.yr (mean ± SD). In Pacurita, fine root production was 3.61 ± 0.88 t/ha.yr. Also in Opogodó, the fine root turnover was higher than in Pacurita (1.17 /y and 0.62 /y, respectively). Fine root turnover and production in the upper soil layers (10 cm upper soil) was considerably higher. Productivity and turnover of fine roots showed positive correlation with pH and contents of organic matter, total N, K, Mg, and sand; whereas correlations were negative with ECEC and contents of Al, silt, and clay. The percentage of sand was the parameter that best explained

  19. Influences of various factors on hairy root induction in Agastache foeniculum (Pursh Kuntze

    Directory of Open Access Journals (Sweden)

    Elnaz NOUROZI

    2016-04-01

    Full Text Available Agrobacterium rhizogenes is known as a natural tool of genetic engineering in many plant species. For the first time, hairy root induction in Agastache foeniculum using A. rhizogenes, rosmarinic acid content and the effect of different culture media and inoculation methods on hairy root growth rate were investigated. Hairy root culture of A. foeniculum was established by inoculation of the 1-month-old leaf explant with A4 strain of A. rhizogenes and the effectiveness of light – dark conditions and two inoculation methods (immersion and injection were tested. Furthermore, in immersion method, the effects of inoculation time (3, 5 and 7 min on root induction were investigated. In the second part of the study, the hairy root culture of A. foeniculum was studied using different basal culture media (MS, 1/2 MS and B5. Rosmarinic acid content in hairy roots and non- transformed roots was analyzed using high-performance liquid chromatography (HPLC. There was no significant difference between various inoculation methods in the ability of hairy roots induction. Observations showed that percentage of hairy root induction was higher when the explants were immersed for 5 min in bacterial suspension. Light conditions displayed the highest hairy root induction rates compared with dark condition. Various culture media are different in terms of types and amounts of nutrients and have influence on growth rate. The maximum growth rate (1.61 g fr wt/50 ml of hairy roots were obtained in 1/2 MS medium. Rosmarinic acid content in transformed roots (213.42 µg/g dry wt was significantly higher than non-transformed roots (52.28 µg/ g dry wt.

  20. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.

    Science.gov (United States)

    Bakker, M R; Jolicoeur, E; Trichet, P; Augusto, L; Plassard, C; Guinberteau, J; Loustau, D

    2009-02-01

    Effects of fertilization and irrigation on fine roots and fungal hyphae were studied in 13-year-old maritime pine (Pinus pinaster Aït. in Soland), 7 years after the initiation of the treatments. The fertilization trials consisted of a phosphorus treatment, a complete fertilizer treatment (N, P, K, Ca and Mg), and an unfertilized treatment (control). Fertilizers were applied annually and were adjusted according to foliar target values. Two irrigation regimes (no irrigation and irrigation of a set amount each day) were applied from May to October. Root samples to depths of 120 cm were collected in summer of 2005, and the biomass of small roots (diameter 2-20 mm) and fine roots (diameter root morphology were assessed. Biomass and length of hyphae were studied by a mesh ingrowth bag technique. Total fine root biomass in the litter and in the 0-120 cm soil profile ranged between 111 and 296 g m(-2). Results derived from the measurements of biomass and root length, or root area, showed that both fertilizer treatments reduced the size of the fine root system, especially in the top soil layers, but did not affect small roots. Compared with control treatments, fine root morphology was affected by both fertilizer treatments with the fine roots having increased specific root length/area, and irrigation tended to reinforce this finer morphology. The amount of hyphae in the mesh ingrowth bags was higher in the fertilization and irrigation treatments than in the controls, suggesting further extension of the root system (ectomycorrhizal infection) and thus of the uptake system. Irrigation had no significant effect on the size of the fine root system, but resulted in a shallower rooting system. Total root to shoot ratios were unaffected by the treatments, but fine root mass:needle mass and fine root area index:leaf area index ratios decreased with increasing nutrient supply. Overall, compared with the control fine roots, increased nutrient supply resulted in a

  1. Scene depth estimation using a moving camera

    International Nuclear Information System (INIS)

    Sune, Jean-Luc

    1995-01-01

    This thesis presents a solution of the depth-from-motion problem. The movement of the monocular observer is known. We have focused our research on a direct method which avoid the optical flow estimation required by classical approaches. The direct application of this method is not exploitable. We need to define a validity domain to extract the set of image points where it is possible to get a correct depth value. Also, we use a multi-scale approach to improve the derivatives estimation. The depth estimation for a given scale is obtained by the minimisation of an energy function established in the context of statistic regularization. A fusion operator, merging the various spatial and temporal scales, has been used to estimate the final depth map. A correction-prediction schema is used to integrate the temporal information from an image sequence. The predicted depth map is considered as an additional observation and integrated in the fusion process. At each time, an error depth map is associated to the estimated depth map. (author) [fr

  2. Hydrologic controls on equilibrium soil depths

    Science.gov (United States)

    Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2011-04-01

    This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.

  3. Maximum likelihood estimation of the position of a radiating source in a waveguide

    International Nuclear Information System (INIS)

    Hinich, M.J.

    1979-01-01

    An array of sensors is receiving radiation from a source of interest. The source and the array are in a one- or two-dimensional waveguide. The maximum-likelihood estimators of the coordinates of the source are analyzed under the assumptions that the noise field is Gaussian. The Cramer-Rao lower bound is of the order of the number of modes which define the source excitation function. The results show that the accuracy of the maximum likelihood estimator of source depth using a vertical array in a infinite horizontal waveguide (such as the ocean) is limited by the number of modes detected by the array regardless of the array size

  4. Maximum entropy decomposition of quadrupole mass spectra

    International Nuclear Information System (INIS)

    Toussaint, U. von; Dose, V.; Golan, A.

    2004-01-01

    We present an information-theoretic method called generalized maximum entropy (GME) for decomposing mass spectra of gas mixtures from noisy measurements. In this GME approach to the noisy, underdetermined inverse problem, the joint entropies of concentration, cracking, and noise probabilities are maximized subject to the measured data. This provides a robust estimation for the unknown cracking patterns and the concentrations of the contributing molecules. The method is applied to mass spectroscopic data of hydrocarbons, and the estimates are compared with those received from a Bayesian approach. We show that the GME method is efficient and is computationally fast

  5. Maximum power operation of interacting molecular motors

    DEFF Research Database (Denmark)

    Golubeva, Natalia; Imparato, Alberto

    2013-01-01

    , as compared to the non-interacting system, in a wide range of biologically compatible scenarios. We furthermore consider the case where the motor-motor interaction directly affects the internal chemical cycle and investigate the effect on the system dynamics and thermodynamics.......We study the mechanical and thermodynamic properties of different traffic models for kinesin which are relevant in biological and experimental contexts. We find that motor-motor interactions play a fundamental role by enhancing the thermodynamic efficiency at maximum power of the motors...

  6. Maximum entropy method in momentum density reconstruction

    International Nuclear Information System (INIS)

    Dobrzynski, L.; Holas, A.

    1997-01-01

    The Maximum Entropy Method (MEM) is applied to the reconstruction of the 3-dimensional electron momentum density distributions observed through the set of Compton profiles measured along various crystallographic directions. It is shown that the reconstruction of electron momentum density may be reliably carried out with the aid of simple iterative algorithm suggested originally by Collins. A number of distributions has been simulated in order to check the performance of MEM. It is shown that MEM can be recommended as a model-free approach. (author). 13 refs, 1 fig

  7. On the maximum drawdown during speculative bubbles

    Science.gov (United States)

    Rotundo, Giulia; Navarra, Mauro

    2007-08-01

    A taxonomy of large financial crashes proposed in the literature locates the burst of speculative bubbles due to endogenous causes in the framework of extreme stock market crashes, defined as falls of market prices that are outlier with respect to the bulk of drawdown price movement distribution. This paper goes on deeper in the analysis providing a further characterization of the rising part of such selected bubbles through the examination of drawdown and maximum drawdown movement of indices prices. The analysis of drawdown duration is also performed and it is the core of the risk measure estimated here.

  8. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  9. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  10. Dynamical maximum entropy approach to flocking.

    Science.gov (United States)

    Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco; Mora, Thierry; Piovani, Duccio; Tavarone, Raffaele; Walczak, Aleksandra M

    2014-04-01

    We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.

  11. Maximum Temperature Detection System for Integrated Circuits

    Science.gov (United States)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  12. Maximum entropy PDF projection: A review

    Science.gov (United States)

    Baggenstoss, Paul M.

    2017-06-01

    We review maximum entropy (MaxEnt) PDF projection, a method with wide potential applications in statistical inference. The method constructs a sampling distribution for a high-dimensional vector x based on knowing the sampling distribution p(z) of a lower-dimensional feature z = T (x). Under mild conditions, the distribution p(x) having highest possible entropy among all distributions consistent with p(z) may be readily found. Furthermore, the MaxEnt p(x) may be sampled, making the approach useful in Monte Carlo methods. We review the theorem and present a case study in model order selection and classification for handwritten character recognition.

  13. Multiperiod Maximum Loss is time unit invariant.

    Science.gov (United States)

    Kovacevic, Raimund M; Breuer, Thomas

    2016-01-01

    Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant.

  14. Maximum a posteriori decoder for digital communications

    Science.gov (United States)

    Altes, Richard A. (Inventor)

    1997-01-01

    A system and method for decoding by identification of the most likely phase coded signal corresponding to received data. The present invention has particular application to communication with signals that experience spurious random phase perturbations. The generalized estimator-correlator uses a maximum a posteriori (MAP) estimator to generate phase estimates for correlation with incoming data samples and for correlation with mean phases indicative of unique hypothesized signals. The result is a MAP likelihood statistic for each hypothesized transmission, wherein the highest value statistic identifies the transmitted signal.

  15. Improved Maximum Parsimony Models for Phylogenetic Networks.

    Science.gov (United States)

    Van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2018-05-01

    Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.

  16. Ancestral sequence reconstruction with Maximum Parsimony

    OpenAIRE

    Herbst, Lina; Fischer, Mareike

    2017-01-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference as well as for ancestral sequence inference is Maximum Parsimony (...

  17. Human action recognition with depth cameras

    CERN Document Server

    Wang, Jiang; Wu, Ying

    2014-01-01

    Action recognition technology has many real-world applications in human-computer interaction, surveillance, video retrieval, retirement home monitoring, and robotics. The commoditization of depth sensors has also opened up further applications that were not feasible before. This text focuses on feature representation and machine learning algorithms for action recognition from depth sensors. After presenting a comprehensive overview of the state of the art, the authors then provide in-depth descriptions of their recently developed feature representations and machine learning techniques, includi

  18. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress 1

    Science.gov (United States)

    Cornish, Katrina; Zeevaart, Jan A. D.

    1985-01-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv `Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots. Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium. Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed. PMID:16664467

  19. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1985-11-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv ;Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots.Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium.Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed.

  20. Mechanical solution of the maximum point of dynamic abutment pressure under deep long-wall working face

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, F.; Ma, Q. [Shandong University of Science and Technology, Tai' an (China). College of Resource and Environmental Engineering

    2002-06-01

    The paper studies the dynamic relationship between abutment pressure and overburden collapse precess with advancing of working face. The result shows that the abutment pressure reaches its maximum value when the working face dimension is 1.27 times of the mining depth. This result confirms the statistical result from the strata movement surveys that overburden reaches its full movement stage when extracting dimension reaches 1.2 1.4 times of the mining depth. 12 refs., 2 figs.

  1. Determination of linear defect depths from eddy currents disturbances

    Science.gov (United States)

    Ramos, Helena Geirinhas; Rocha, Tiago; Pasadas, Dário; Ribeiro, Artur Lopes

    2014-02-01

    One of the still open problems in the inspection research concerns the determination of the maximum depth to which a surface defect goes. Eddy current testing being one of the most sensitive well established inspection methods, able to detect and characterize different type of defects in conductive materials, is an adequate technique to solve this problem. This paper reports a study concerning the disturbances in the magnetic field and in the lines of current due to a machined linear defect having different depths in order to extract relevant information that allows the determination of the defect characteristics. The image of the eddy currents (EC) is paramount to understand the physical phenomena involved. The EC images for this study are generated using a commercial finite element model (FLUX). The excitation used produces a uniform magnetic field on the plate under test in the absence of defects and the disturbances due to the defects are compared with those obtained from experimental measurements. In order to increase the limited penetration depth of the method giant magnetoresistors (GMR) are used to lower the working frequency. The geometry of the excitation planar coil produces a uniform magnetic field on an area of around the GMR sensor, inducing a uniform eddy current distribution on the plate. In the presence of defects in the material surface, the lines of currents inside the material are deviated from their uniform direction and the magnetic field produced by these currents is sensed by the GMR sensor. Besides the theoretical study of the electromagnetic system, the paper describes the experiments that have been carried out to support the theory and conclusions are drawn for cracks having different depths.

  2. A New Anatomically Based Nomenclature for the Roots and Root Canals—Part 1: Maxillary Molars

    OpenAIRE

    Kottoor, Jojo; Albuquerque, Denzil Valerian; Velmurugan, Natanasabapathy

    2012-01-01

    Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequen...

  3. Effects of irrigation solutions and Calcium hydroxide dressing on root canal treatments of periapical lesions

    Directory of Open Access Journals (Sweden)

    Vita Nirmala

    2006-03-01

    Full Text Available The preparation of root canal in endodontic treatment plays an important role in treating non vital teeth with periapical lesion. Some factors influence the success of root canal treatment in short and long terms are the irrigation of root canal using antiseptic solution and the use of root canal medicament. The aim of this literature study is to determined the effect of irrigation solution and Calcium hydroxide dressing in root canal treatment of periapical lesions. The use of root canal medicament during the endodontic treatment could sterilized and decreased the number of pathogenic microorganism of root canal. An effective root canal irrigation solution must be able to dissolve organic and anorganic debris, lubricate endodontic instruments, disinfect microorganisms, non toxic and economical. The best irrigation solution has maximum antimicrobial effect with minimum toxicity. Division of calcium hydroxide into Calcium and hydroxyl ions is responsible for alkalinization of cavity, subsequently it makes the condition of cavity to be inappropriate for bacterial endotoxin in vitro as well as in vivo, and considered as the only clinically effective medicament in inactivating bacterial endotoxin. Calcium hydroxide is the only medication which has the ability to clinically inactive bacterial endotoxin in vitro in vivo and accepted as the best of root canal medication.

  4. Forest Transpiration: Resolving Species-Specific Root Water Uptake Patterns

    Science.gov (United States)

    Blume, T.; Heidbuechel, I.; Simard, S.; Guntner, A.; Weiler, M.; Stewart, R. D.

    2016-12-01

    Transpiration and its spatio-temporal variability are still not fully understood, despite their importance for the global water cycle. This is in part due to our inability to measure transpiration comprehensively. Transpiration is usually either estimated with empirical equations based on climatic variables and crop factors, by measuring sap velocities, estimating sap wood area and scaling up to the forest stand based on a number of assumptions or by measuring the integral signal across a footprint with eddy flux towers. All these methods are focused on the cumulated loss of water to the atmosphere and do not provide information on where this water is coming from. In this study, spatio-temporal variability of root water uptake was investigated in a forest in the northeastern German lowlands. The soils are sandy and the depth of the unsaturated zone ranges from 1 to 30 m. We estimated root water uptake from different soil depths, from 0.1 m down to 2 m, based on diurnal fluctuations in soil moisture content during rain-free days. The 15 field sites cover different topographic positions and forest stands: 4 pure stands of both mature and young beech and pine and 9 mixed stands. The resulting daily data set of root water uptake shows that the forest stands differ in total amounts as well as in uptake depth distributions. Temporal dynamics of signal strength within the profile suggest a locally shifting spatial distribution of uptake that changes with water availability. The relationship of these depth-resolved uptake rates to overall soil water availability varies considerably between tree species. Using the physically-based soil hydrological model HYDRUS we investigated to what extent the observed patterns in uptake can be related to soil physical relationships alone and where tree species-specific aspects come into play. We furthermore used the model to test assumptions and estimate uncertainties of this soil moisture based estimation of plant water uptake. The

  5. Objective Bayesianism and the Maximum Entropy Principle

    Directory of Open Access Journals (Sweden)

    Jon Williamson

    2013-09-01

    Full Text Available Objective Bayesian epistemology invokes three norms: the strengths of our beliefs should be probabilities; they should be calibrated to our evidence of physical probabilities; and they should otherwise equivocate sufficiently between the basic propositions that we can express. The three norms are sometimes explicated by appealing to the maximum entropy principle, which says that a belief function should be a probability function, from all those that are calibrated to evidence, that has maximum entropy. However, the three norms of objective Bayesianism are usually justified in different ways. In this paper, we show that the three norms can all be subsumed under a single justification in terms of minimising worst-case expected loss. This, in turn, is equivalent to maximising a generalised notion of entropy. We suggest that requiring language invariance, in addition to minimising worst-case expected loss, motivates maximisation of standard entropy as opposed to maximisation of other instances of generalised entropy. Our argument also provides a qualified justification for updating degrees of belief by Bayesian conditionalisation. However, conditional probabilities play a less central part in the objective Bayesian account than they do under the subjective view of Bayesianism, leading to a reduced role for Bayes’ Theorem.

  6. Efficient heuristics for maximum common substructure search.

    Science.gov (United States)

    Englert, Péter; Kovács, Péter

    2015-05-26

    Maximum common substructure search is a computationally hard optimization problem with diverse applications in the field of cheminformatics, including similarity search, lead optimization, molecule alignment, and clustering. Most of these applications have strict constraints on running time, so heuristic methods are often preferred. However, the development of an algorithm that is both fast enough and accurate enough for most practical purposes is still a challenge. Moreover, in some applications, the quality of a common substructure depends not only on its size but also on various topological features of the one-to-one atom correspondence it defines. Two state-of-the-art heuristic algorithms for finding maximum common substructures have been implemented at ChemAxon Ltd., and effective heuristics have been developed to improve both their efficiency and the relevance of the atom mappings they provide. The implementations have been thoroughly evaluated and compared with existing solutions (KCOMBU and Indigo). The heuristics have been found to greatly improve the performance and applicability of the algorithms. The purpose of this paper is to introduce the applied methods and present the experimental results.

  7. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster

    OpenAIRE

    Danjon, Frédéric; Caplan, Joshua S.; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account ...

  8. Controls on Ecosystem and Root Respiration in an Alaskan Peatland

    Science.gov (United States)

    McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.

    2010-12-01

    Boreal ecosystems cover 14% of the vegetated surface on earth and account for 25-30% of the world’s soil carbon (C), mainly due to large carbon stocks in deep peat and frozen soil layers. While peatlands have served as historical sinks of carbon, global climate change may trigger re-release of C to the atmosphere and may turn these ecosystems into net C sources. Rates of C release from a peatland are determined by regional climate and local biotic and abiotic factors such as vegetation cover, thaw depth, and peat thickness. Soil CO2 fluxes are driven by both autotrophic (plant) respiration and heterotrophic (microbial) respiration. Thus, changes in plant and microbial activity in the soil will impact CO2 emissions from peatlands. In this study, we explored environmental and vegetation controls on ecosystem respiration and root respiration in a variety of wetland sites. The study was conducted at the Alaskan Peatland Experiment (APEX; www.uoguelph.ca/APEX) sites in the Bonanza Creek Experimental Forest located 35 km southwest of Fairbanks Alaska. We measured ecosystem respiration, root respiration, and monitored a suite of environmental variables along a vegetation and soil moisture gradient including a black spruce stand with permafrost, a shrubby site with permafrost, a tussock grass site, and a herbaceous open rich fen. Within the rich fen, we have been conducting water table manipulations including a control, lowered, and raised water table treatment. In each of our sites, we measured total ecosystem respiration using static chambers and root respiration by harvesting roots from the uppermost 20 cm and placing them in a root cuvette to obtain a root flux. Ecosystem respiration (ER) on a μmol/m2/sec basis varied across sites. Water table was a significant predictor of ER at the lowered manipulation site and temperature was a strong predictor at the control site in the rich fen. Water table and temperature were both significant predictors of ER at the raised

  9. Live cell imaging of Arabidopsis root hairs

    NARCIS (Netherlands)

    Ketelaar, T.

    2014-01-01

    Root hairs are tubular extensions from the root surface that expand by tip growth. This highly focused type of cell expansion, combined with position of root hairs on the surface of the root, makes them ideal cells for microscopic observation. This chapter describes the method that is routinely used

  10. Overgroups of root groups in classical groups

    CERN Document Server

    Aschbacher, Michael

    2016-01-01

    The author extends results of McLaughlin and Kantor on overgroups of long root subgroups and long root elements in finite classical groups. In particular he determines the maximal subgroups of this form. He also determines the maximal overgroups of short root subgroups in finite classical groups and the maximal overgroups in finite orthogonal groups of c-root subgroups.

  11. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  12. Effects of fluoridated milk on root dentin remineralization.

    Directory of Open Access Journals (Sweden)

    Wolfgang H Arnold

    Full Text Available The prevalence of root caries is increasing with greater life expectancy and number of retained teeth. Therefore, new preventive strategies should be developed to reduce the prevalence of root caries. The aim of this study was to investigate the effects of fluoridated milk on the remineralization of root dentin and to compare these effects to those of sodium fluoride (NaF application without milk.Thirty extracted human molars were divided into 6 groups, and the root cementum was removed from each tooth. The dentin surface was demineralized and then incubated with one of the following six solutions: Sodium chloride NaCl, artificial saliva, milk, milk+2.5 ppm fluoride, milk+10 ppm fluoride and artificial saliva+10 ppm fluoride. Serial sections were cut through the lesions and investigated with polarized light microscopy and quantitative morphometry, scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDS. The data were statistically evaluated using a one-way ANOVA for multiple comparisons.The depth of the lesion decreased with increasing fluoride concentration and was the smallest after incubation with artificial saliva+10 ppm fluoride. SEM analysis revealed a clearly demarcated superficial remineralized zone after incubation with milk+2.5 ppm fluoride, milk+10 ppm fluoride and artificial saliva+10 ppm fluoride. Ca content in this zone increased with increasing fluoride content and was highest after artificial saliva+10 ppm fluoride incubation. In the artificial saliva+10 ppm fluoride group, an additional crystalline layer was present on top of the lesion that contained elevated levels of F and Ca.Incubation of root dentin with fluoridated milk showed a clear effect on root dentin remineralization, and incubation with NaF dissolved in artificial saliva demonstrated a stronger effect.

  13. Monocular depth effects on perceptual fading.

    Science.gov (United States)

    Hsu, Li-Chuan; Kramer, Peter; Yeh, Su-Ling

    2010-08-06

    After prolonged viewing, a static target among moving non-targets is perceived to repeatedly disappear and reappear. An uncrossed stereoscopic disparity of the target facilitates this Motion-Induced Blindness (MIB). Here we test whether monocular depth cues can affect MIB too, and whether they can also affect perceptual fading in static displays. Experiment 1 reveals an effect of interposition: more MIB when the target appears partially covered by, than when it appears to cover, its surroundings. Experiment 2 shows that the effect is indeed due to interposition and not to the target's contours. Experiment 3 induces depth with the watercolor illusion and replicates Experiment 1. Experiments 4 and 5 replicate Experiments 1 and 3 without the use of motion. Since almost any stimulus contains a monocular depth cue, we conclude that perceived depth affects perceptual fading in almost any stimulus, whether dynamic or static. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Depth to Bedrock: Isopach of Unconsolidated Materials

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This vector dataset gives the approximate depth to bedrock (in feet) from Iowa's current land surface. This 50 foot isopach data was derived from the Digital...

  15. FINANCIAL DEPTH AND FINANCIAL ACCESS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Sigit Setiawan

    2015-05-01

    Full Text Available This study is intended to analyze the current levels of financial depth and financial access in Indonesia and to analyze the factors affecting them. The analysis method used was a combination of descriptive quantitative, benchmarking, and literature reviews. The conclusion is that the financial depth in Indonesia has not shown a satisfactory level since it was the lowest, or the second lowest ranked country among the sampled countries. Meanwhile, the financial access in Indonesia is relatively better than its financial depth, especially for financial markets, in which Indonesia ranks in the lower average group. From literature reviews, it can be inferred that the main factor driving the poor financial depth in Indonesia is non-competitiveness of the institutions; whereas the driving force of poor financial access in Indonesia are geographical constraints, poverty, a high income gap, and a less than effective national financial development policy.

  16. Sputtering as a means of depth profiling

    International Nuclear Information System (INIS)

    Whitton, J.L.

    1978-01-01

    Probably the most common technique for determination of depth profiles by sputtering is that of secondary ion mass spectrometry. Many problems occur in the important step of converting the time (of sputtering) scale to a depth scale and these problems arise before the secondary ions are ejected. An attempt is made to present a comprehensive list of the effects that should be taken into consideration in the use of sputtering as a means of depth profiling. The various parameters liable to affect the depth profile measurements are listed in four sections: beam conditions; target conditions; experimental environment; and beam-target interactions. The effects are discussed and where interplay occurs, cross-reference is made and examples are provided where possible. (B.R.H.)

  17. Rand Corporation Mean Monthly Global Snow Depth

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — All available monthly snow depth climatologies were integrated by the Rand Corporation, in the early 1980s, into one global (excluding Africa and South America)...

  18. The Beryllium 7 Depth Distribution Study

    International Nuclear Information System (INIS)

    Jalal Sharib; Zainudin Othman; Dainee Nor Fardzila Ahmad Tugi

    2014-01-01

    The aim of this paper is to study the evolution of 7Be depth distribution in a soil profile. The soil samples have been collected by using plastic core in bare area in Bangi, Malaysia. Each of the soil core samples has been sectioned into 2 mm increments to a depth of 4 cm and the samples are subsequently oven dried at 45°C and gently disaggregated. The sample is passed through a < 2 mm sieve and packed into plastic pot for 7Be analysis using gamma spectrometry with a 24 hour count time. From the findings, show the 7Be depth penetration from this study decreases exponentially with depth and is confined within the top few centimeters and similar with other works been reported. The further discussion for this findings will be presented in full paper. (author)

  19. Capturing Motion and Depth Before Cinematography.

    Science.gov (United States)

    Wade, Nicholas J

    2016-01-01

    Visual representations of biological states have traditionally faced two problems: they lacked motion and depth. Attempts were made to supply these wants over many centuries, but the major advances were made in the early-nineteenth century. Motion was synthesized by sequences of slightly different images presented in rapid succession and depth was added by presenting slightly different images to each eye. Apparent motion and depth were combined some years later, but they tended to be applied separately. The major figures in this early period were Wheatstone, Plateau, Horner, Duboscq, Claudet, and Purkinje. Others later in the century, like Marey and Muybridge, were stimulated to extend the uses to which apparent motion and photography could be applied to examining body movements. These developments occurred before the birth of cinematography, and significant insights were derived from attempts to combine motion and depth.

  20. Site Specific Probable Maximum Precipitation Estimates and Professional Judgement

    Science.gov (United States)

    Hayes, B. D.; Kao, S. C.; Kanney, J. F.; Quinlan, K. R.; DeNeale, S. T.

    2015-12-01

    State and federal regulatory authorities currently rely upon the US National Weather Service Hydrometeorological Reports (HMRs) to determine probable maximum precipitation (PMP) estimates (i.e., rainfall depths and durations) for estimating flooding hazards for relatively broad regions in the US. PMP estimates for the contributing watersheds upstream of vulnerable facilities are used to estimate riverine flooding hazards while site-specific estimates for small water sheds are appropriate for individual facilities such as nuclear power plants. The HMRs are often criticized due to their limitations on basin size, questionable applicability in regions affected by orographic effects, their lack of consist methods, and generally by their age. HMR-51 for generalized PMP estimates for the United States east of the 105th meridian, was published in 1978 and is sometimes perceived as overly conservative. The US Nuclear Regulatory Commission (NRC), is currently reviewing several flood hazard evaluation reports that rely on site specific PMP estimates that have been commercially developed. As such, NRC has recently investigated key areas of expert judgement via a generic audit and one in-depth site specific review as they relate to identifying and quantifying actual and potential storm moisture sources, determining storm transposition limits, and adjusting available moisture during storm transposition. Though much of the approach reviewed was considered a logical extension of HMRs, two key points of expert judgement stood out for further in-depth review. The first relates primarily to small storms and the use of a heuristic for storm representative dew point adjustment developed for the Electric Power Research Institute by North American Weather Consultants in 1993 in order to harmonize historic storms for which only 12 hour dew point data was available with more recent storms in a single database. The second issue relates to the use of climatological averages for spatially

  1. Wavefield Extrapolation in Pseudo-depth Domain

    KAUST Repository

    Ma, Xuxin

    2011-12-11

    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential

  2. The effects of Vexar® seedling protectors on the growth and development of lodgepole pine roots

    Science.gov (United States)

    Engeman, Richard M.; Anthony, R. Michael; Krupa, Heather W.; Evans, James

    1997-01-01

    The effects on the growth and development of lodgepole pine roots from the Vexar® tubes used to protect seedlings from pocket gopher damage were studied in the Targhee National Forest, Idaho and the Deschutes National Forest, Oregon. At each site, Vexar-protected and unprotected seedlings, with and without above-ground gopher damage were examined after six growing seasons for root deformities and growth. Undamaged seedlings exhibited greater growth, reflecting the importance of non-lethal gopher damage as a deterrent to tree growth. Protected seedlings with similar damage history as unprotected seedlings had greater root depth than unprotected seedlings, although unprotected seedlings with no above-ground damage generally had the greatest root weight. In general, the percent of seedlings with root deformities was greater for the unprotected seedlings than for the Vexar-protectd seedlings, although this could be largely due to the greater care required to plant protected seedlings. Acute deformities were more common for unprotected seedlings, whereas root deformities with less severe bending were more common for protected seedlings. The incidence of crossed roots was similar for protected and unprotected seedlings on the Deschutes site, where enough occurrences of this deformity permitted analyses. Protected seedlings were similar in root abundance, root distribution, root size and vigor to the unprotected seedlings, with some indication from the Deshutes study site that root distribution was improved with Vexar protection.

  3. Can differences in root responses to soil drying and compaction explain differences in performance of trees growing on landfill sites?

    Science.gov (United States)

    Liang, Jiansheng; Zhang, Jianhua; Chan, Gilbert Y. S.; Wong, M. H.

    1999-07-01

    Two tropical woody species, Acacia confusa Merrill and Litsea glutinosa (Lour.) C.B. Robinson, were grown under controlled conditions in PVC pipes filled with John Innes No. 2 soil. To investigate root distribution, physiological characteristics and hydraulic conductivity, four soil treatments were imposed-well-watered and noncompacted (control), well-watered and compacted; unwatered and noncompacted, and unwatered and compacted. In L. glutinosa, rooting depth and root elongation were severely restricted when soil bulk density increased from around 1.12 to 1.62 g cm(-3), whereas soil compaction had little effect on these parameters in A. confusa. As soil drying progressed, root water potential and osmotic potential declined more slowly in L. glutinosa than in A. confusa. Both the soil drying and compaction treatments significantly stimulated the accumulation of root abscisic acid (ABA) in both species. Soil drying damaged the root cell membrane of A. confusa, but had little influence on the root cell membrane of L. glutinosa. Soil drying had a greater effect on root hydraulic conductivity (L(p)) in L. glutinosa than in A. confusa, whereas the effect of soil compaction on L(p) was less in L. glutinosa than in A. confusa. Soil drying enhanced the effects of soil compaction on root L(p). We conclude that soil drying and compaction have large species-specific effects on the distribution, growth and physiology of roots. The relationships of these root properties to the species' ability to tolerate unfavorable soil conditions were examined.

  4. Development of root morphology traits of the Czech lucerne varieties in chernozem over a three year period

    Directory of Open Access Journals (Sweden)

    Josef Hakl

    2012-01-01

    Full Text Available The root system of plants is generally in relation to important agronomic and ecological characteristics. The aim of this study was to investigate differences in root morphology development of Czech lucerne varieties under chernozem soil conditions. In spring 2007, a field experiment with ten Czech lucerne varieties was established with a regular space of 125 mm between the rows. During the 2008–2010 period, the plants were sampled every autumn after the last cut in five blocks per each variety; the size of the sampling area was 50 × 50 cm and average depth of sampling was 0.25 m. All varieties provided similar trend in root morphology development but some differences could be detected in the rate of this development. From all evaluated root traits, these differences were connected mainly with tap-root diameter, intensity of root branching and lateral root number. Advisable varieties should provide higher density of plant together with higher root diameter and branching which is resulted to higher root weight per m2 and consequently to higher stand productivity. The root-branched plants achieved a significantly higher tap-root diameter of 10.7 mm in comparison with unbranched-root plants with 7.1 mm. Except of plant age, the stand density and tap-root diameter could be considered as a parameter to drive lucerne root morphology development. Within a year, the increase of tap-root diameter was connected with increase of root branching at root-branched plants whilst decrease of plant density caused the beginning of the process of root branching at tap-rooted plants. The range of root traits influenced themselves so their joint presentation is advisable. It must be remembered that soil conditions are a factor which strongly modified the root morphology traits; therefore, these results must be completed with other experiments under various soil conditions. The knowledge of root morphology traits could contribute to the assessment of

  5. Naturalistic depth perception and binocular vision

    OpenAIRE

    Maiello, G.

    2017-01-01

    Humans continuously move both their eyes to redirect their foveae to objects at new depths. To correctly execute these complex combinations of saccades, vergence eye movements and accommodation changes, the visual system makes use of multiple sources of depth information, including binocular disparity and defocus. Furthermore, during development, both fine-tuning of oculomotor control as well as correct eye growth are likely driven by complex interactions between eye movements, accommodation,...

  6. Generators for finite depth subfactor planar algebras

    Indian Academy of Sciences (India)

    The main result of Kodiyalam and Tupurani [3] shows that a subfactor planar algebra of finite depth is singly generated with a finite presentation. If P is a subfactor planar algebra of depth k, it is shown there that a single 2k-box generates P. It is natural to ask what the smallest s is such that a single s-box generates P. While ...

  7. FINANCIAL DEPTH AND FINANCIAL ACCESS IN INDONESIA

    OpenAIRE

    Sigit Setiawan

    2015-01-01

    This study is intended to analyze the current levels of financial depth and financial access in Indonesia and to analyze the factors affecting them. The analysis method used was a combination of descriptive quantitative, benchmarking, and literature reviews. The conclusion is that the financial depth in Indonesia has not shown a satisfactory level since it was the lowest, or the second lowest ranked country among the sampled countries. Meanwhile, the financial access in Indonesia is relativel...

  8. Optimising the image of the intradural nerve root: the value of MR radiculography

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, P.A.M. [Department of Diagnostic Radiology, University Hospital Maastricht (Netherlands); Wilmink, J.T. [Department of Diagnostic Radiology, University Hospital Maastricht (Netherlands)

    1996-10-01

    We evaluated the additional value of MR radiculography for increasing the sensitivity and specificity of MRI with regard to nerve root compression in patients with sciatica. The single slices of a heavily T 2-weighted oblique coronal image set were reformatted with a maximum intensity projection protocol. This image resembles a classical contrast radiculogram and shows the intradural nerve root and its sleeve. In 43 patients studied with a standard MRI examination there was a need for further assessment of nerve root compression in 19 (44 %). In 13 (68 %) of these, MR radiculography made a definite verdict possible. (orig.). With 4 figs., 2 tabs.

  9. Optimising the image of the intradural nerve root: the value of MR radiculography

    International Nuclear Information System (INIS)

    Hofman, P.A.M.; Wilmink, J.T.

    1996-01-01

    We evaluated the additional value of MR radiculography for increasing the sensitivity and specificity of MRI with regard to nerve root compression in patients with sciatica. The single slices of a heavily T 2-weighted oblique coronal image set were reformatted with a maximum intensity projection protocol. This image resembles a classical contrast radiculogram and shows the intradural nerve root and its sleeve. In 43 patients studied with a standard MRI examination there was a need for further assessment of nerve root compression in 19 (44 %). In 13 (68 %) of these, MR radiculography made a definite verdict possible. (orig.). With 4 figs., 2 tabs

  10. Impairment of the DNA synthesis in roots of γ-irradiated seedlings, and the restorative processes

    International Nuclear Information System (INIS)

    Golikova, O.P.; Mironyuk, T.J.

    1976-01-01

    Degradation of a prelabelled H 3 -DNA and post-irradiation incorporation of 2-C 14 -thymidine into root DNA of mung beans, peas, and horse beans, have been studied as a function of a radiation dose. A marked dose-dependent decrease in the activity of H 3 -DNA has been detected in γ-irradiated roots. As the radiation dose increases, the specific activity of 2-C 14 -DNA also increases in roots of beans and mung beans. A maximum increase is registered at a dose of 1500 rads. The effects observed are thought to be due to the restorative processes

  11. A brain electrophysiological correlate of depth perception

    International Nuclear Information System (INIS)

    Akay, Ahmet; Celebi, Gurbuz

    2009-01-01

    To investigate brain electrical activity accompanying depth perception using random-dot stereograms. Additional experiments were conducted to ascertain the specificity of this potential to depth perception. In the present study, we performed 3 different and independent experiments on 34 subjects to establish the relationship between depth perception and its cortical electrophysiological correlate. Visual evoked potentials in response to visual stimulation by random-dot stereograms were recorded. To achieve this goal, a data acquisition and analysis system, different from common visual evoked potential recording systems, consisting of 2 personal computers, was used. One of the computers was used to generate the visual stimulus patterns and the other to record and digitally average the potentials evoked by the stimuli. This study was carried out at the Department of Biophysics of Ege University Medical School, Izmir, Turkey, from April to December, 2006. A negative potential component, which is thought to arise in association with depth perception, was recorded from the occipital region from 30 of the 34 subjects. Typically, it had a mean latency of 211.46 ms and 6.40 micron V amplitude. The negative potential is related to depth perception, as this component is present in the responses to stimulus, which carries disparity information but is absent when the stimulus is switched to no disparity information. Additional experiments also showed that the specificity of this component to depth perception becomes evident beyond doubt. (author)

  12. Total Variation Depth for Functional Data

    KAUST Repository

    Huang, Huang

    2016-11-15

    There has been extensive work on data depth-based methods for robust multivariate data analysis. Recent developments have moved to infinite-dimensional objects such as functional data. In this work, we propose a new notion of depth, the total variation depth, for functional data. As a measure of depth, its properties are studied theoretically, and the associated outlier detection performance is investigated through simulations. Compared to magnitude outliers, shape outliers are often masked among the rest of samples and harder to identify. We show that the proposed total variation depth has many desirable features and is well suited for outlier detection. In particular, we propose to decompose the total variation depth into two components that are associated with shape and magnitude outlyingness, respectively. This decomposition allows us to develop an effective procedure for outlier detection and useful visualization tools, while naturally accounting for the correlation in functional data. Finally, the proposed methodology is demonstrated using real datasets of curves, images, and video frames.

  13. Radiopacity of root filling materials

    International Nuclear Information System (INIS)

    Beyer-Olsen, E.M.

    1983-01-01

    A method for measuring the radiopacity of root filling materials is described. Direct measurements were made of the optic density values of the materials in comparison with a standard curve relating optic density to the thickness of an aluminium step wedge exposed simultaneously. By proper selection of film and conditions for exposure and development, it was possible to obtain a near-linear standard curve which added to the safety and reproducibility of the method. The technique of radiographic assessment was modified from clinical procedures in evaluating the obturation in radiographs, and it was aimed at detecting slits or voids between the dental wall and the filling material. This radiographic assessment of potensial leakage was compared with actual in vitro lekage of dye (basic fuchsin) into the roots of filled teeth. The result of the investigation show that root filling materials display a very wide range of radiopacity, from less than 3 mm to more than 12 mm of aluminium. It also seem that tooth roots that appear to be well obturated by radiographic evaluation, stand a good chance of beeing resistant to leakage in vitro, and that the type of filling material rather than its radiographic appearance, determines the susceptibility of the filled tooth to leakage in vitro. As an appendix the report contains a survey of radiopaque additives in root filling materials

  14. Depth enhancement of S3D content and the psychological effects

    Science.gov (United States)

    Hirahara, Masahiro; Shiraishi, Saki; Kawai, Takashi

    2012-03-01

    Stereoscopic 3D (S3D) imaging technologies are widely used recently to create content for movies, TV programs, games, etc. Although S3D content differs from 2D content by the use of binocular parallax to induce depth sensation, the relationship between depth control and the user experience remains unclear. In this study, the user experience was subjectively and objectively evaluated in order to determine the effectiveness of depth control, such as an expansion or reduction or a forward or backward shift in the range of maximum parallactic angles in the cross and uncross directions (depth bracket). Four types of S3D content were used in the subjective and objective evaluations. The depth brackets of comparison stimuli were modified in order to enhance the depth sensation corresponding to the content. Interpretation Based Quality (IBQ) methodology was used for the subjective evaluation and the heart rate was measured to evaluate the physiological effect. The results of the evaluations suggest the following two points. (1) Expansion/reduction of the depth bracket affects preference and enhances positive emotions to the S3D content. (2) Expansion/reduction of the depth bracket produces above-mentioned effects more notable than shifting the cross/uncross directions.

  15. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012

    Science.gov (United States)

    Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Kang; Zheng, Lei; Hu, Yuantao; Wang, Huijuan

    2018-01-01

    Snow depth is one of the key physical parameters for understanding land surface energy balance, soil thermal regime, water cycle, and assessing water resources from local community to regional industrial water supply. Previous studies by using in situ data are mostly site specific; data from satellite remote sensing may cover a large area or global scale, but uncertainties remain large. The primary objective of this study is to investigate spatial variability and temporal change in snow depth across the Eurasian continent. Data used include long-term (1966-2012) ground-based measurements from 1814 stations. Spatially, long-term (1971-2000) mean annual snow depths of >20 cm were recorded in northeastern European Russia, the Yenisei River basin, Kamchatka Peninsula, and Sakhalin. Annual mean and maximum snow depth increased by 0.2 and 0.6 cm decade-1 from 1966 through 2012. Seasonally, monthly mean snow depth decreased in autumn and increased in winter and spring over the study period. Regionally, snow depth significantly increased in areas north of 50° N. Compared with air temperature, snowfall had greater influence on snow depth during November through March across the former Soviet Union. This study provides a baseline for snow depth climatology and changes across the Eurasian continent, which would significantly help to better understanding climate system and climate changes on regional, hemispheric, or even global scales.

  16. Hydraulic Limits on Maximum Plant Transpiration

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  17. Analogue of Pontryagin's maximum principle for multiple integrals minimization problems

    OpenAIRE

    Mikhail, Zelikin

    2016-01-01

    The theorem like Pontryagin's maximum principle for multiple integrals is proved. Unlike the usual maximum principle, the maximum should be taken not over all matrices, but only on matrices of rank one. Examples are given.

  18. Lake Basin Fetch and Maximum Length/Width

    Data.gov (United States)

    Minnesota Department of Natural Resources — Linear features representing the Fetch, Maximum Length and Maximum Width of a lake basin. Fetch, maximum length and average width are calcuated from the lake polygon...

  19. A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination.

    Science.gov (United States)

    Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A

    2018-02-08

    Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods.

  20. Interspecies Interactions in Relation to Root Distribution Across the Rooting Profile in Wheat-Maize Intercropping Under Different Plant Densities

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2018-04-01

    Full Text Available In wheat-maize intercropping systems, the maize is often disadvantageous over the wheat during the co-growth period. It is unknown whether the impaired growth of maize can be recovered through the enhancement of the belowground interspecies interactions. In this study, we (i determined the mechanism of the belowground interaction in relation to root growth and distribution under different maize plant densities, and (ii quantified the “recovery effect” of maize after wheat harvest. The three-year (2014–2016 field experiment was conducted at the Oasis Agriculture Research Station of Gansu Agricultural University, Wuwei, Northwest China. Root weight density (RWD, root length density (RLD, and root surface area density (RSAD, were measured in single-cropped maize (M, single-cropped wheat (W, and three intercropping systems (i wheat-maize intercropping with no root barrier (i.e., complete belowground interaction, IC, (ii nylon mesh root barrier (partial belowground interaction, IC-PRI, and (iii plastic sheet root barrier (no belowground interaction, IC-NRI. The intercropped maize was planted at low (45,000 plants ha−1 and high (52,000 plants ha−1 densities. During the wheat/maize co-growth period, the IC treatment increased the RWD, RLD, and RSAD of the intercropped wheat in the 20–100 cm soil depth compared to the IC-PRI and IC-NRI systems; intercropped maize had 53% lower RWD, 81% lower RLD, and 70% lower RSAD than single-cropped maize. After wheat harvest, the intercropped maize recovered the growth with the increase of RWD by 40%, RLD by 44% and RSAD by 11%, compared to the single-cropped maize. Comparisons among the three intercropping systems revealed that the “recovery effect” of the intercropped maize was attributable to complete belowground interspecies interaction by 143%, the compensational effect due to root overlap by 35%, and the compensational effect due to water and nutrient exchange (CWN by 80%. The higher maize plant