WorldWideScience

Sample records for maximum plutonium deposition

  1. Recent trends of plutonium deposition observed in Japan: comparison with naturallithogenic radionuclides, thorium isotopes

    International Nuclear Information System (INIS)

    Hirose, K.; Igarashi, Y.; Aoyama, M.

    2005-01-01

    Plutonium in monthly deposition samples from 2000 to end of 2003 collected to Tsukuba (the Meteorological Research Institute), Japan is reported, together with monthly thorium deposition. The annual deposition of 239,240 Pri during the past 18 years. ranged from 1.7 to 7.8 mBq m -2 y -1 shows no systematic inter-annual variation. However, a maximum annual 239,240 Pu deposition (7.8 mBq m -2 y -1 ) was observed in 2002. On the other hand, monthly 239,240 Pu depositions show a typical seasonal variation with a maximum in spring season (March to April), which corresponds to the seasonal cycle of generation of dust storms in the East Asian arid area. Thorium, which is a typical lithogenic radionuclide, reflects soil-derived particles in the atmospheric dust. The monthly Th deposition showed a typical seasonal trend with a maximum in spring and minimum in summer. The 230 Th/ 232 Th activity ratios in the deposition samples significantly differed from that in surface soils collected in Tsukuba area, which means that a significant part of thorium in deposition samples is not derived from suspension of local soil particles. The result reveals that the resent 239,240 Pu deposition observed in Japan are attributed to resuspension of deposited plutonium; resuspended plutonium originates from the East Asian continent desert and arid areas. These findings suggest that a significant amount of soil dust observed in Tsukuba is attributable to the long-range transport of continental dust from the East Asian arid areas. Plutonium in deposition samples as does thorium would become a proxy of the environmental change in the Asian continent.

  2. Plutonium in uranium deposits

    International Nuclear Information System (INIS)

    Curtis, D.; Fabryka-Martin, J.; Aguilar, R.; Attrep, M. Jr.; Roensch, F.

    1992-01-01

    Plutonium-239 (t 1/2 , 24,100 yr) is one of the most persistent radioactive constituents of high-level wastes from nuclear fission power reactors. Effective containment of such a long-lived constituent will rely heavily upon its containment by the geologic environment of a repository. Uranium ore deposits offer a means to evaluate the geochemical properties of plutonium under natural conditions. In this paper, analyses of natural plutonium in several ores are compared to calculated plutonium production rates in order to evaluate the degree of retention of plutonium by the ore. The authors find that current methods for estimating production rates are neither sufficiently accurate nor precise to provide unambiguous measures of plutonium retention. However, alternative methods for evaluating plutonium mobility are being investigated, including its measurement in natural ground waters. Preliminary results are reported and establish the foundation for a comprehensive characterization of plutonium geochemistry in other natural environments

  3. Comparison of simulated to actual plutonium deposition at the Savannah River Plant

    International Nuclear Information System (INIS)

    Carlson, D.C.; Garrett, A.J.; Gay, D.D.; Murphy, C.E.; Pinder, J.E. III.

    1982-01-01

    Minute amounts of plutonium are released from the Savannah River Plant (SRP) separations facilities and deposited in the surrounding environs. Long-term deposition measurements show that contributions to offsite environmental plutonium by the SRP are negligible compared to fallout from weapons tests. The Savannah River Laboratory (SRL) recently developed a deposition model and compared its predictions to the observed plutonium deposition pattern. The model reproduced the observed range of deposition rates when full and truncated lognormal distributions of particle sizes were used to represent the emissions. Model predictions of total deposition out to 30 km were low by about a factor of two relative to estimates based on integrations of the empirical deposition curves. More measurements are planned, which should reduce uncertainties about model assumptions and the observed deposition rates

  4. Search for plutonium salt deposits in the plutonium extraction batteries of the Marcoule plant (1963)

    International Nuclear Information System (INIS)

    Bouzigues, H.; Reneaud, J.M.

    1963-01-01

    This report describes a method and a special apparatus making it possible to detach the insoluble plutonium salt deposits in the extraction chain of an irradiated fuel treatment plant. The process chosen allows the detection, in the extraction batteries or in the highly active chemical engineering equipment, of plutonium quantities of a few grains. After four years operation it has been impossible to detect measurable quantities of plutonium in any part of the extraction chain. The results have been confirmed by visual examinations carried out with a specially constructed endoscope. (authors) [fr

  5. Deposition and retention of plutonium in the United States general population

    International Nuclear Information System (INIS)

    McInroy, J.F.; Boyd, H.A.; Eutsler, B.C.

    1979-01-01

    Since 1959, a Los Alamos National Laboratory study has analyzed over 5000 tissues from 1100 individuals of the nonoccupationally exposed general population for fallout plutonium. These data have been useful in determining the tissue distributions and the annual baseline levels of environmental plutonium in the United States population. The effects of age, sex, date of death, cause of death and geographic location of resididence on the observed plutonium deposition have been evaluated. Because of the difference in biological turnover times of plutonium in the various organs of the body and the changing concentrations of plutonium in the atmosphere, the plutonium concentration ratios between tissues have changed as a function of time. However, our data indicate that over the past 10 years, the highest concentrations in the general population are found in the tracheobronchial lymph nodes and the liver and the lowest concentrations are in the spleen, gonads and kidney. The median body burdens of plutonium in the US population are estimated to have reached 12 pCi during the 1960's and have declined to about 2 pCi in 1977. Large errors in estimated skeletal burdens of plutonium may exist because of small specimen sample sizes and a lack of knowledge concerning the relative distribution of plutonium among the various bones of the human body

  6. Age difference in deposition of plutonium in organs of rats and the estimation of distribution in humans

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Satoshi; Iida, Haruzo [National Inst. of Radiological Sciences, Chiba (Japan)

    2000-05-01

    Differences in plutonium distribution in various organs, particularly the bones, of rats injected at different ages were examined in order to aid in estimating plutonium distribution in humans. Comparisons were made between rats and humans based on the bone histomorphometric and mineral density data. Male and female rats of three ages (3, 12, and 24 months old), respectively, received an injection of plutonium nitrate by two dose modalities; a fixed amount of plutonium without regard to age, sex, or body weight; per g of body weight. The rats were killed 2 weeks after the injection of plutonium. The amounts of plutonium deposited in the organs varied without regard to the body or organ weight; those in the skeleton increased from 3 to 12 months, reaching a peak at 12 months, but then decreased, along with the age-related changes in the bone surface, volume, and mineral density. Those in the liver, spleen and kidney decreased despite the body weight gain with age in both sexes. Age-related differences in the deposition of plutonium in humans were estimated based on the bone data characteristics obtained from the histomorphometry and bone mineral density for corresponding of ages between rats and humans. The results indicate that age is the most important factor in estimating the distribution of plutonium deposition in the early period after plutonium exposure, and that body or organ weight is not always a useful indicator, particularly in the aged. (author)

  7. Investigation of plutonium (4) hydroxoformates

    International Nuclear Information System (INIS)

    Andryushin, V.G.; Belov, V.A.; Galaktionov, S.V.; Kozhevnikov, P.B.; Matyukha, V.A.; Shmidt, V.S.

    1982-01-01

    Deposition processes of plutonium (4) hydroxoformates in the system Pu(NO 3 ) 4 -HNO 3 -HCoOH-N6 4 OH-H 2 O have been studied in pH range 0.2-10.7 at total plutonium concentration in the system 100 g/l. It is shown that under the conditions plutonium (4) hydrolysis takes place with the formation of hydroxoformates. A local maximum of plutonium (4) hydroxoformate solubility in the range pH=3.8-4.8, which is evidently conditioned by the formation of soluble formate complex of plutonium in the region, is pointed out. The basic plutonium (4) formates of the composition PuOsub(x)(OH)sub(y)(COOH)sub(4-2x-y)xnHsub(2)O, where 1,3 >=x >= 0.7, 1.7 >= y >= 1.0 and n=1.5-7.0, are singled out, their thermal stability being studied. Density of the crystals and plutonium dioxide, formed during their thermal decomposition, is measured. It is established that for plutonium (4) hydroxoformates common regularities of the influence of salt composition (OH - -, CHOO - - and H 2 O-group numbers in the mulecule) on position of temperature decomposition effects and on the density of compounds, which have been previously found during the study of thorium and plutonium hydroxosalts are observed. It is shown that the density of plutonium dioxide decreases with the increase of hydration and hydrolysis degree of the initial plutonium hydroxoformate

  8. Search for plutonium salt deposits in the plutonium extraction batteries of the Marcoule plant (1963); Recherche de depots de sels de plutonium dans les batteries d'extraction du plutonium de l'usine de Marcoule (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Bouzigues, H; Reneaud, J M [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1963-07-01

    This report describes a method and a special apparatus making it possible to detach the insoluble plutonium salt deposits in the extraction chain of an irradiated fuel treatment plant. The process chosen allows the detection, in the extraction batteries or in the highly active chemical engineering equipment, of plutonium quantities of a few grains. After four years operation it has been impossible to detect measurable quantities of plutonium in any part of the extraction chain. The results have been confirmed by visual examinations carried out with a specially constructed endoscope. (authors) [French] Ce rapport decrit une methode et un montage special permettant de detacher les accumulations de sels de plutonium insolubles dans les chaines d'extraction d'une usine de traitement de combustible irradie. Le procede retenu permet de reperer, dans des batteries d'extraction ou dans l'appareillage de genie chimique fortement actif, des masses de plutonium de quelques grammes. Apres quatre annees de fonctionnement, il n'a pas ete possible de deceler des quantites ponderables de plutonium en aucun endroit de la chaine d'extraction. Ces resultats ont ete confirmes par les examens visuels effectues a l'aide d'un endoscope concu specialement pour cet usage. (auteurs)

  9. Deposition of plutonium in the lung of a worker following an accidental inhalation exposure

    International Nuclear Information System (INIS)

    Spitz, H.B.; Robinson, B.

    The deposition of PuO 2 in the lungs of an occupationally exposed worker is characterized by assay for plutonium in excreta samples and from in vivo measurements of 241 Am in the thoracic region. Chelation therapy by intravenous injection of 1 gm Ca-DTPA was initially performed shortly after the incident and repeated using 0.5 gm of the chelate four additional times in subsequent days post intake. Analysis of the air sampler filter retrieved from the site of the exposure identified the isotopic composition and particle size of the plutonium material inhaled by the worker. Chelation with Ca-DTPA did not significantly reduce the magnitude of the lung or systemic deposition as determined from assay of plutonium in urine samples collected from the worker. In vivo measurements for 241 Am verify the retention of the inhaled material in the lung and also indicate the ingrowth of an amount of 241 Am as a daughter product of the 241 Pu initially inhaled

  10. Environmental consequences of postulate plutonium releases from Atomics International's Nuclear Materials Development Facility (NMDF), Santa Susana, California, as a result of severe natural phenomena

    International Nuclear Information System (INIS)

    Jamison, J.D.; Watson, E.C.

    1982-02-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Atomics International's Nuclear Materials Development Facility (NMDF), in the Santa Susana site, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquake, and the 150-mph and 170-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 μCi/m 2 . The deposition values following the 110-mph and the 130-mph tornadoes are below the EPA proposed guideline

  11. Plutonium transport to and deposition and immobility in Irish Sea intertidal sediments

    Energy Technology Data Exchange (ETDEWEB)

    Aston, S R; Stanners, D A [Lancaster Univ. (UK)

    1981-02-12

    The results are presented of an investigation of plutonium in intertidal sediments of the Irish Sea, contaminated with radioactive wastes from the Windscale reprocessing facility. The deposition characteristics and lack of vertical migration of /sup 238/Pu and /sup 239/ and /sup 240/Pu are discussed.

  12. A 32-year medical follow-up of Manhattan project plutonium workers

    International Nuclear Information System (INIS)

    Voelz, G.L.; Hempelmann, L.H.; Lawrence, J.N.P.; Moss, W.D.

    1979-01-01

    Twenty-six male subjects who worked with plutonium during World War 2 under extraordinarily crude conditions have been followed medically for a period of 32 yr. Inhalation was the primary mode of plutonium exposure. Current estimates of the systematic plutonium depositions in these individuals range from 7 to 230 nCi. Eleven individuals have dispositions greater than 40 nCi, the current maximum permissible body burden for workers. Two individuals in the group have died: one due to myocardial infarction and the other due to injuries sustained in an automobile-pedestrian accident. This mortality rate is about 50% of expected deaths based on United States white male rates. All 24 living subjects were re-examined in the period of 1975-78. No cases of cancer were diagnosed in the group except for two skin cancers that have no history or basis that relate them to plutonium exposure. The diseases and physical changes noted in the group are characteristic of a male population in their 50s and 60s. This study yields no evidence suggesting that adverse health effects have resulted from the 32 yr of exposure to the internally deposited plutonium. (author)

  13. Preparation of drop deposited plutonium sources on porcelain support

    International Nuclear Information System (INIS)

    Miguel, M.; Delle Site, A.; Deron, S.; Raab, W.; Swietly, H.

    1984-01-01

    Plutonium alpha spectrometry is of interest in safeguards verification, particular for the characterization of test materials for calorimetric assay of plutonium products and for the assay of spent fuel solutions by isotope dilution alpha spectrometry. Such measurements require 0.1-0.3% precision and accuracy in 238 Pu isotopic assay. The present paper reports experience with an alpha spectrometry procedure intended for routine measurements. Sources of excellent quality are prepared very simply and rapidly by drop deposition on porcelain supports. The method of preparation is described which readily produces sources with resolutions of 16 keV (fwhm). The effect of various measurement parameters, tail correction, 241 Am separation and in-growth, are presented. Results are compared with those of mass spectrometry. The relative bias between the 238 Pu/ 239 Pu isotopic ratio measured by the two techniques is of the order of +- 0.5%, with a standard deviation of 1.0%. The performance of alpha spectrometry is at present limited by the quality of the 241 Am separation. (orig.)

  14. Plutonium-236 traces determination in plutonium-238 by α spectrometry

    International Nuclear Information System (INIS)

    Acena, M.L.; Pottier, R.; Berger, R.

    1969-01-01

    Two methods are described in this report for the determination of plutonium-236 traces in plutonium-238 by a spectrometry using semi-conductor detectors. The first method involves a direct comparison of the areas under the peaks of the α spectra of plutonium-236 and plutonium-238. The electrolytic preparation of the sources is carried out after preliminary purification of the plutonium. The second method makes it possible to determine the 236 Pu/ 238 Pu ratio by comparing the areas of the α peaks of uranium-232 and uranium-234, which are the decay products of the two plutonium isotopes respectively. The uranium in the source, also deposited by electrolysis, is separated from a 1 mg amount of plutonium either by a T.L.A. extraction, or by the use of ion-exchange resins. The report ends with a discussion of the results obtained with plutonium of two different origins. (authors) [fr

  15. The distribution of plutonium-241 in rodents

    International Nuclear Information System (INIS)

    Priest, N.D.

    1977-01-01

    Plutonium-241 citrate solution at pH 6.5 was injected intravenously or intraperitoneally into hamsters and rats at a dose of 50 MBq kg -1 (1.35 mCi kg -1 ). The animals were killed 1 day or 1 week later, and tissues were removed for autoradiography and radiochemical analysis. Plutonium-241 was distributed in rats in the same way as plutonium-239, and is a suitable isotope for high-resolution tissue-section autoradiography. Plutonium deposits in cells consisted of a nuclear and a cytoplasmic component. In the hamster kidney cells, the amount associated with the nucleus was about 55 per cent of the total cellular plutonium at 24 hours after injection. Six days later, it was only about 30 per cent. Plutonium deposits were also characterized in hepatocytes, in the interstitial cells of the testes, in the cells of ovarian follicles, in chondrocytes and in bone cells, including osteoblasts and osteocytes. In bone there appeared to be both an extracellular and intracellular deposit. No evidence was found of substantial incorporation of plutonium into the mineral phase of bone. (author)

  16. PUDEQ: a computer code for calculating dose equivalent from internal deposition of plutonium at Hanford

    International Nuclear Information System (INIS)

    Houston, J.R.; Heid, K.R.

    1975-10-01

    Presented here are the procedures and mathematical models used in developing PUDEQ, a computer program for computing the dose equivalent to body organs from intake of Pu. The program was designed specifically to use the data recorded on the Hanford Internal Exposure (HIE) System magnetic tape as input. Insofar as was possible, the recommendations of the Advisory Committee on Dose from Plutonium and other Transuranics was followed. Some deviations were made where errors, omissions, or inconsistencies were found, after consultation with members of the Committee. In the current version of the program only Pu and its immediate important daughters are considered. The program could, however, be expanded to include other transuranic nuclides. At present, only a few depositions of transuranic nuclides other than plutonium are recorded out of about 450 individuals involved in a total of over 700 plutonium intakes

  17. Determination of the shape of a plutonium deposit from a leaking crucible

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Clarksean, R.

    1993-01-01

    An analytical model was developed which predicts that the leak rate (or drip rate) of molten plutonium onto a substrate must be low in order for plutonium to solidify into a problematical hemispherical shape. The heat transfer to the substrate is the significant factor in how quickly the fuel solidifies. Analysis and experiment show that for a given substrate, the deposit center height is independent of the leakrate. A good conductor, such as copper on the bottom of a fuel casting furnace, will conduct heat away quickly and tend to cause the fuel to form into a hemisphere. A good insulator on the other hand, will keepthe metal molten to allow it to spreads out and solidify as a flat disk. Higher substrate temperatures inhibit the undesirable hemispherical shape. Experiments conducted were in good agreement with the an analytical model

  18. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    International Nuclear Information System (INIS)

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.; Corey, J.C.; Boni, A.L.

    1989-01-01

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 x 10 -5 of a year's atmospheric deposition is transferred to grain. Approximately 6.2 x 10 -9 of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 x 10 -10 of the soil inventory is absorbed by roots and translocated to grains

  19. Erosional losses of fallout plutonium

    International Nuclear Information System (INIS)

    Foster, G.R.; Hakonson, T.E.

    1987-01-01

    Plutonium from fallout after atmospheric explosion of nuclear weapons in the 1950's and 1960s is being redistributed over the landscape by soil erosion and carried on sediment by streams to oceans. Erosion rates computed with the Universal Soil Loss Equation for more than 200,000 sample points on nonfederal land across the US were used to estimate plutonium removal rates by soil erosion. On the average, only about 4% of the eroded sediment reaches the outlet of a major river. The remaining sediment is deposited en route, and because deposition is a selective process, the sediment is enriched in fine particles having the highest concentration of plutonium because of the element's strong association with clay and silt-sized sediment. Estimated enrichment ratios, sediment delivery ratios, and erosion rates were used to estimate annual delivery of fallout plutonium. These estimates ranged from 0.002% of the initial fallout plutonium inventory for the Savannah River basin to 0.01% for the Columbia River basin, to 0.02% for the Hudson and Rio Grande River basins, to 0.08% for the Mississippi River basin. If the deposition of plutonium had been uniformly 1 mCi/km 2 , the estimated plutonium activity on suspended sediment would range from about 7 fCi/g of sediment of the Savannah River basin, to 9 fCi/g for the Mississippi River basin, to 12 fCi/g for the Hudson River basin, to 14 fCi/g for the Columbia and Rio Grande River basins. 45 references, 2 figures, 17 tables

  20. The use of plutonium

    International Nuclear Information System (INIS)

    Marshall, W.

    1980-01-01

    The use of plutonium as a vital energy source producing maximum economic benefit with minimum proliferation risks is discussed. Having considered the production of plutonium, several possible plutonium fuel cycle options are identified and the economic value to be attached to plutonium for each examined. It is shown how the use of plutonium in fast reactors gives an opportunity for a non-proliferation policy not available when plutonium is used only in thermal reactors. From the technical considerations reviewed concerning plutonium and fast reactors it is shown that an economic regime involving international trade in spent thermal reactor fuel is possible which benefits equally those countries with fast reactors and those without and also assists in avoiding the proliferation of nuclear weapons. (U.K.)

  1. Plutonium isotopes in the environment

    International Nuclear Information System (INIS)

    Holm, E.

    1977-12-01

    Determination of plutonium and americium by ion exchange and alpha-spectrometry. Deposition of global fall-out and accumulated area-content of 238 Pu, 239 Pu, 240 Pu, 241 Pu, 242 Pu and 241 Am in central Sweden (62.3 deg N, 12.4 deg E), by using the lichen species Cladonia alpestris as bioindicator. Retention and distribution of plutonium in carpets of lichen and soil. Transfer of plutonium from lichen to reindeer and man. Absorbed dose in reindeer and man from plutonium. Basic studies of plutonium and americium in the western Mediterranean surface waters, with emphases on particulate form of the transuranics. (author)

  2. Plutonium deposits in lung tissues of Filipinos

    International Nuclear Information System (INIS)

    Natera, E.S.; Palad, L.J.H.; Ignacio, L.M.

    1989-01-01

    This initial report on the plutonium concentration in lungs of Filipino adults is based on four samples. The data obtained suggest that the average of concentration in lungs of Filipinos is similar to that observed in other countries. This could be attributed to fallout resulting from nuclear test explosions conducted by neighboring countries. The result of this study will be useful in initiating the establishment of plutonium burden of Filipinos. (ELC). 2 tabs

  3. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Graf, W.L.

    1996-01-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  4. Disturbance of deposition and removal of plutonium

    International Nuclear Information System (INIS)

    Fukuda, Satoshi

    1992-01-01

    The chelation therapy using DTPA (diethylenetriaminepentaacetic acid) and a new drug, CBMIDA [catechol 3, 6-bis (methyleiminodiacetic acid)] showing more effectiveness on removal of plutonium and lower toxicity than DTPA, is available for occupational exposure but is difficult for public exposure, because there are many reluctant problems on their toxicities, administration routes and times, physical conditions of victims etc. We demonstrated that active amino acid calcium (AAACa), a natural product which mixed oyster shell electrolysate and amino acids of seaweeds, could remove plutonium from bone and liver in rats. The removing methods of radionuclides using the bioavailability of AAACa will be utilized for public exposures and resolve the reluctant problems accompanied with a chelation therapy for occupational exposure. (author)

  5. Nondestructive assay of plutonium residue in horizontal storage tanks

    International Nuclear Information System (INIS)

    Marsh, S.F.

    1985-01-01

    Aqueous plutonium recovery and purification processes often involve the temporary storage of plutonium solutions in holding tanks. Because plutonium is known to precipitate from aqueous solutions under certain conditions, there is a continuing need to assay emptied tanks for plutonium residue. A portable gamma spectrometer system, specifically designed for this purpose, provides rapid assay of such plutonium residues in horizontal storage tanks. A means is thus available for the nondestructive analysis of these tanks on a regular schedule to ensure that significant deposits of plutonium are not allowed to accumulate. 5 figs

  6. The calculation of annual limits of intake for plutonium-239 in man using a bone model which allows for plutonium burial and recycling

    International Nuclear Information System (INIS)

    Priest, N.D.; Hunt, B.W.

    1979-01-01

    Values of the annual limit intake (ALI) for plutonium-239 in man have been calculated using committed dose equivalent limits as recommended by ICRP in Publication 26. The calculations were made using a multicompartment bone model which allows for plutonium burial and recycling in the skeleton. In one skeletal compartment, the growing surfaces of cortical bone, it is assumed that plutonium deposits are retained and are not subject to resorption or recycling. In the trabecular bone compartment plutonium is taken to be resorbed with either subsequent redeposition onto bone surfaces or retention in the bone marrow. ALIs for plutonium-239 have been calculated assuming a range of rates of bone accretion (0 to 32 μm yr -1 ), different amounts of plutonium retained in the marrow (0 to 60%) and a 20%, 45% or 70% deposition of plutonium in the skeleton from the blood. The calculations made using this bone model suggest that 750 Bq (20 nCi) is an appropriate ALI for the inhalation of class W and class Y plutonium compounds and that 830 kBq and 5 MBq (23 μCi and 136 μCi) are the appropriate ALIs for the ingestion of soluble and insoluble forms of plutonium respectively. (author)

  7. The calculation of annual limits of intake for plutonium-239 in man using a bone model which allows for plutonium burial and recycling.

    Science.gov (United States)

    Priest, N D; Hunt, B W

    1979-05-01

    Values of the annual limit of intake (ALI) for plutonium-239 in man have been calculated using committed dose equivalent limits as recommended by ICRP in Publication 26. The calculations were made using a multicompartment bone model which allows for plutonium burial and recycling in the skeleton. In one skeletal compartment, the growing surfaces of cortical bone, it is assumed that plutonium deposits are retained and are not subject to resorption or recycling. In the trabecular bone compartment plutonium is taken to be resorbed with either subsequent redeposition onto bone surfaces or retention in the bone marrow. ALIs for plutonium-239 have been calculated assuming a range of rates of bone accretion (0-32 micron yr-1), different amounts of plutonium retained in the marrow (0-60%) and a 20%, 45% or 70% deposition of plutonium in the skeleton from the blood. The calculations made using this bone model suggest that 750 Bq (20 nCi) is an appropriate ALI for the inhalation of class W and class Y plutonium compounds and that 830 kBq and 5 MBq (23 muCi and 136 muCi) are the appropriate ALIs for the ingestion of soluble and insoluble forms of plutonium respectively.

  8. Direct separation of plutonium by thermochromatography from environmental samples

    International Nuclear Information System (INIS)

    Wacker, L.; Kraehenbuehl, U.

    2002-01-01

    A thermochromatographic separation was performed on plutonium from environmental soil samples. This procedure was investigated with the goal to measure low concentrations of plutonium by inductively coupled plasma-mass spectrometry (ICP-MS). The soil sample was chlorinated by thionylchloride as reactive gas at a temperature of 1400 K. The volatile chlorides were separated chromatographically and deposited in a temperature gradient tube filled with quartz grains. Results about the deposition behaviour of the elements were obtained. Two different formalisms based on the thermodynamic functions are used to describe the experimental data. One formula is used to describe the deposition behaviour of microscopic amounts of plutonium (adsorption), the other formula for macroamounts of the main matrix elements (desublimation). The calculated values are in a reasonable agreement with the experimental data. A determination of plutonium content was successfully made for a referenced sea sediment (IAEA-135) after the thermochromatographic sample preparation for ICP-MS. (orig.)

  9. Plutonium recovery from spent reactor fuel by uranium displacement

    Science.gov (United States)

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  10. Plutonium recovery from spent reactor fuel by uranium displacement

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1992-01-01

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished

  11. Experimental study of contamination by a mixture resulting from the combustion of sodium in the presence of plutonium oxide

    International Nuclear Information System (INIS)

    Metivier, H.; Masse, R.; Nenot, J.C.; Nolibe, D.; Lafuma, J.

    1976-01-01

    The introduction into industry of breeder reactors using liquid sodium as the coolant gives rise to fresh radiotoxicological problems; the most likely chemical form in which the plutonium and sodium mixture may be found after a possible accident is a soluble oxide of plutonium(VI) or plutonium(VII). The biological behaviour of such mixtures was analysed in rats and monkeys following parenteral administration. In the case of rats distribution in the organs was analysed from 30 minutes to 30 days following intramuscular contamination. In the monkeys the authors only analysed distribution in the organs after one month. The biological behaviour of the mixture is marked by very high plutonium solubility. The maximum burden in the organs attains roughly 20% of the quantity deposited both in monkeys and rats. The spread of the plutonium proceeds gradually from the day of administration; it indicates that a soluble form of plutonium is present for a long time. Also observed is an increasing osteotropic tendency in the diffusible form. The liver fraction is rapidly removed, if it is assumed that faecal excretion represents biliary excretion. In the experimental conditions selected, the spread of a liquid aerosol of the solution is rapid and constitutes about 10% of the quantity deposited in the airways at the end of inhalation. Treatment with DTPA makes it possible to reduce the body burden, but less efficiently than after contamination by Pu(IV). (author)

  12. Monitoring the risks of plutonium

    International Nuclear Information System (INIS)

    Holliday, B.

    1978-01-01

    The difficulties in monitoring the environment in work areas where plutonium is handled are identified and both continuous and personal air sampling techniques considered. Methods of estimating the amounts of plutonium retained in the body are: (1) Direct external counting over the chest of the 'soft' low energy X-rays and gamma rays emitted by the plutonium deposited in the lungs. (2) Measuring plutonium excreted in urine. (3) Analysing faeces soon after a suspected contamination. Limitation of these techniques are discussed and it is shown that estimating the amount of plutonium in the body, or a specific organ, is extremely difficult, both because of the lack of sensitivity of the measuring techniques (especially chest scanning) and because of the problems in interpreting data, stemming from a lack of knowledge of crucial characteristics of the inhaled plutonium (such as particle size and solubility). Nevertheless it is felt that the judicious integration of all the options creates a level of certainty that no individual technique can possibly inspire. (U.K.)

  13. Using Biomolecules to Separate Plutonium

    Science.gov (United States)

    Gogolski, Jarrod

    Used nuclear fuel has traditionally been treated through chemical separations of the radionuclides for recycle or disposal. This research considers a biological approach to such separations based on a series of complex and interdependent interactions that occur naturally in the human body with plutonium. These biological interactions are mediated by the proteins serum transferrin and the transferrin receptor. Transferrin to plutonium in vivo and can deposit plutonium into cells after interacting with the transferrin receptor protein at the cell surface. Using cerium as a non-radioactive surrogate for plutonium, it was found that cerium(IV) required multiple synergistic anions to bind in the N-lobe of the bilobal transferrin protein, creating a conformation of the cerium-loaded protein that would be unable to interact with the transferrin receptor protein to achieve a separation. The behavior of cerium binding to transferrin has contributed to understanding how plutonium(IV)-transferrin interacts in vivo and in biological separations.

  14. Plutonium use in foreign countries (03)

    International Nuclear Information System (INIS)

    Otagaki, Takao

    2004-03-01

    European countries and Japan had been implementing the strategy of spent fuel reprocessing in order to use nuclear material to the maximum. Plutonium recovered from reprocessing, however, must be recycle on light water reactors (LWRs) because of considerable delay of fast reactor development. In Europe, much of experiences of plutonium recycling have been accumulated until now. Thus, the status of plutonium recycling up to the end of 2003 in France, Germany, The U.K., Belgium, Switzerland and other countries were studied based on the following scope. (1) Basic policy and present status of plutonium recycling in primary countries of France, Germany, The U.K., Belgium, Switzerland, and Sweden which plans to recycle a part of plutonium: Backend policy and the status of spent fuel management were studied, then integrated analysis and evaluation of the position of plutonium recycling in backend and the status of plutonium recycling development were performed. (2) Plan and experience of Mixed Oxide (MOX) fuel fabrication and reprocessing of spent fuels: The data and information on plan and experience of MOX fuel fabrication and reprocessing in foreign countries were collected. (3) Plutonium inventories: The data and information of plutonium inventories of foreign countries were collected. (author)

  15. Measurements of plutonium in environmental samples

    International Nuclear Information System (INIS)

    D'Alberti, F.; Risposi, L.

    1996-01-01

    Within the activities connected with the start up of the PETRA Laboratory (Processo per l'Estrazione di Terre Rare ed Attinidi, i.e. process for extraction of rare earths and actinides), the Radiation Protection Unit of the J.R.C.-Ispra has carried out a well planned set of experimental measurements aimed at evaluating the zero point of the isotopes of plutonium in environmental samples by alfa spectrometry. After the International Moratorium in 1963, no release of plutonium has occurred in the environment apart from the burn up of SNAP 9A satellite in April 1964. Since then the plutonium concentration in air and in fallout samples has been continuously decreasing requiring, therefore, optimization of both instrumentation and experimental measurement procedures in order to obtain better sensibilities. In this work, the experimental methodology followed at the J.R.C.-Ispra for measurements of plutonium concentration in air, deposition and soil is described and the plutonium behaviour in these samples is reported and discussed starting from 1961

  16. Measurements of plutonium in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    D' Alberti, F; Risposi, L [Instituto di Fisica Applicata, University of Milan, Milan (Italy)

    1996-01-01

    Within the activities connected with the start up of the PETRA Laboratory (Processo per l'Estrazione di Terre Rare ed Attinidi, i.e. process for extraction of rare earths and actinides), the Radiation Protection Unit of the J.R.C.-Ispra has carried out a well planned set of experimental measurements aimed at evaluating the zero point of the isotopes of plutonium in environmental samples by alfa spectrometry. After the International Moratorium in 1963, no release of plutonium has occurred in the environment apart from the burn up of SNAP 9A satellite in April 1964. Since then the plutonium concentration in air and in fallout samples has been continuously decreasing requiring, therefore, optimization of both instrumentation and experimental measurement procedures in order to obtain better sensibilities. In this work, the experimental methodology followed at the J.R.C.-Ispra for measurements of plutonium concentration in air, deposition and soil is described and the plutonium behaviour in these samples is reported and discussed starting from 1961.

  17. Plutonium use in foreign countries (01)

    International Nuclear Information System (INIS)

    Otagaki, Takao

    2002-03-01

    European countries and Japan had been implementing the strategy of spent fuel reprocessing in order to use nuclear material to the maximum. Plutonium recovered from reprocessing, however, must be recycle on light water reactors (LWRs) because of considerable delay of fast reactor development. In Europe, much of experience of plutonium recycling have been accumulated until now. Thus, the status of plutonium recycling up to the end of 2001 in France, Germany, The U.K., Belgium, Switzerland and other countries were studied based on the following scope. (1) Basic policy and present status of plutonium recycling in primary countries of France, Germany, The U.K., Belgium, Switzerland, and Sweden which recently appears the move of recycling a part of plutonium. Backend policy and the status of spent fuel management were studied, then integrated analysis and evaluation of the position of plutonium recycling in backend and the status of plutonium recycling development were performed. (2) Plan and experience of Mixed Oxide (MOX) fuel fabrication and reprocessing of spent fuels. The data and information on plan and experience of MOX fuel fabrication and reprocessing in foreign countries were collected. (3) Plutonium inventories. The data and information on plutonium inventories of foreign countries were collected. (author)

  18. Plutonium use in foreign countries (99)

    International Nuclear Information System (INIS)

    Otagaki, Takao

    2000-03-01

    European countries and Japan had been implementing the strategy of spent fuel reprocessing in order to use nuclear material to the maximum. Plutonium recovered from reprocessing, however, must be recycle on light water reactors (LWRs) because of considerable delay of fast reactor development. In Europe, much of experience of plutonium recycling have been accumulated until now. Thus, the status of plutonium recycling up to the end of 1999 in France, Germany, The U.K., Belgium, Switzerland and other countries were studied based on the following scope. (1) Basic policy and present status of plutonium recycling in primary countries of France, Germany, The U.K., Belgium, Switzerland, and Sweden which recently appears the move to recycling a part of plutonium backend policy and the status of spent fuel management were studied, then integrated analysis and evaluation of the position of plutonium recycling in backend and the status of plutonium recycling development were performed. (2) Plan and experience of Mixed Oxide (MOX) fuel fabrication and reprocessing of spent fuels. The data and information on plan and experience of MOX fuel fabrication and reprocessing in foreign countries were collected. (3) Plutonium inventories. The data and information on plutonium inventories of foreign counties were collected. (author)

  19. Plutonium use in foreign countries (02)

    International Nuclear Information System (INIS)

    Otagaki, Takao

    2003-02-01

    European countries and Japan had been implementing the strategy of spent fuel reprocessing in order to use nuclear material to the maximum. Plutonium recovered from reprocessing, however, must be recycle on light water reactors (LWRs) because of considerable delay of fast reactor development. In Europe, much of experience of plutonium recycling have been accumulated until now. Thus, the status of plutonium recycling up to the end of 2002 in France, Germany, The U.K., Belgium, Switzerland and other countries were studied based on the following scope. (1) Basic policy and present status of plutonium recycling in primary countries of France, Germany, The U.K., Belgium, Switzerland, and Sweden which recently appears the move of recycling a part of plutonium. Backend policy and the status of spent fuel management were studied, then integrated analysis and evaluation of the position of plutonium recycling in backend and the status of plutonium recycling development were performed. (2) Plan and experience of Mixed Oside (MOX) fuel fabrication and reprocessing of spent fuels. The data and information on plan and experience of MOX fuel fabrication and reprocessing in foreign countries were collected. (3) Plutonium inventories. The data and information on plutonium inventories of foreign countries were collected. (author)

  20. Plutonium use in foreign countries. (04)

    International Nuclear Information System (INIS)

    Otagaki, Takao

    2005-03-01

    European countries and Japan had been implementing the strategy of spent fuel reprocessing in order to use nuclear material to the maximum. Plutonium recovered from reprocessing, however, must be recycle on light water reactors (LWRs) because of considerable delay of fast reactor development. In Europe, much of experience of plutonium recycling have been accumulated until now. Thus, the status of plutonium recycling up to the end of 2004 in France, Germany, The U.K., Belgium, Switzerland and other countries were studied based on the following scope. (1) Basic policy and present status of plutonium recycling in primary countries of France, Germany, the U.K., Belgium, Switzerland, and Sweden which plans to recycle a limited amount of plutonium: Backend policy and the status of spent fuel management were studied, then integrated analysis and evaluation of the position of plutonium recycling in backend and the status of plutonium recycling development were performed. (2) Plan and experience of Mixed Oxide (MOX) fuel fabrication and reprocessing of spent fuels: The data and information on plan and experience of MOX fuel fabrication and reprocessing in foreign countries were collected. (3) Plutonium inventories: The data and information on plutonium inventories of foreign countries were collected. (author)

  1. Work at Aldermaston on plutonium binding with biological systems

    International Nuclear Information System (INIS)

    Popplewell, D.S.

    1976-01-01

    Over a number of years, the Chemistry Division of AWRE, Aldermaston, studied the nature of plutonium in various biological systems. The object of the work was to identify those natural products of the body which play a part in the transport and deposition of accidental intakes of plutonium. These results should be of value in formulating more effective therapeutic measures for plutonium removal from the body. The paper reviews the work at AWRE on the interaction of plutonium with serum and rat liver. Experiments on the uptake of plutonium into cell cultures are described. The aim of these experiments was to see whether a model system could be set up for testing the efficacy by which chelating agents could remove plutonium from within cells. A simple hypothesis is presented for the mode of transport of plutonium within animals. (author)

  2. Considerations in the assessment of plutonium deposition in man

    International Nuclear Information System (INIS)

    Voelz, G.; Umbarger, J.; McInroy, J.; Healy, J.

    1975-01-01

    Data from human cases of plutonium inhalation are used to illustrate several important problems in the current methods of estimating plutonium body burdens. Individuals exposed to 238 PuO 2 particles in a highly insoluble matrix showed an unusually slow rising urinary excretion curve over 300 to 400 days. In vivo chest counts during the first 6 months estimated lung burdens to be 10 to 30 nCi, but urinary excretion methods calculate residual systematic body burdens of 50 to 100 nCi at 1200 days after exposure. Current assumptions used in the in vivo calibration do not consider possible lung distribution of particulates soon after exposure that could alter the interpretation significantly. Tissue analysis of a lung from another case after recent inhalation exposure shows a significantly lesser concentration of plutonium in the subpleural region--the principal region of plutonium measurement by in vivo chest counting--as compared to distributions found years after exposure. Tissue analyses indicate that urinary excretion estimates of body burden over the long term tend to err on the high side up to a factor of 5 or more. This procedure serves well for the purpose of protection of workers, but high estimates can lead to unnecessary job reassignments for the individual worker and can cause misleading conclusions when such data is used uncritically for reference in health effects studies. Additional research is needed to improve urinary excretion data analysis to reflect newer information derived from tissue data and to seek further understanding of the sources of variation in in vivo counting technology so it can be used with greater confidence

  3. Plutonium-related work and cause-specific mortality at the United States Department of Energy Hanford Site.

    Science.gov (United States)

    Wing, Steve; Richardson, David; Wolf, Susanne; Mihlan, Gary

    2004-02-01

    Health effects of working with plutonium remain unclear. Plutonium workers at the United States Department of Energy (US-DOE) Hanford Site in Washington State, USA were evaluated for increased risks of cancer and non-cancer mortality. Periods of employment in jobs with routine or non-routine potential for plutonium exposure were identified for 26,389 workers hired between 1944 and 1978. Life table regression was used to examine associations of length of employment in plutonium jobs with confirmed plutonium deposition and with cause specific mortality through 1994. Incidence of confirmed internal plutonium deposition in all plutonium workers was 15.4 times greater than in other Hanford jobs. Plutonium workers had low death rates compared to other workers, particularly for cancer causes. Mortality for several causes was positively associated with length of employment in routine plutonium jobs, especially for employment at older ages. At ages 50 and above, death rates for non-external causes of death, all cancers, cancers of tissues where plutonium deposits, and lung cancer, increased 2.0 +/- 1.1%, 2.6 +/- 2.0%, 4.9 +/- 3.3%, and 7.1 +/- 3.4% (+/-SE) per year of employment in routine plutonium jobs, respectively. Workers employed in jobs with routine potential for plutonium exposure have low mortality rates compared to other Hanford workers even with adjustment for demographic, socioeconomic, and employment factors. This may be due, in part, to medical screening. Associations between duration of employment in jobs with routine potential for plutonium exposure and mortality may indicate occupational exposure effects. Copyright 2004 Wiley-Liss, Inc.

  4. Measurement of radiocaesium, radiostrontium, and plutonium in whole diets, following deposition of radioactivity in the UK originating from the Chernobyl power plant accident

    International Nuclear Information System (INIS)

    Mondon, K.J.; Walters, B.

    1990-01-01

    Radionuclide contamination of whole diets as a result of the Chernobyl accident has been measured following the collection of individual diets from adults and children during 1 week in June 1986. The study was conducted in three different parts of the UK, to represent rural areas of both high and low deposition of Chernobyl fallout, and an urban area where the food supply was likely to be derived from a more diverse range of sources. The overall caesium-137 plus caesium-134 concentrations in the diets was less than 5 Bq kg-1 fresh weight, and ranged from less than 0.8 Bq kg-1 to 22 Bq kg-1, the highest levels being found in diets from the high deposition area. The isotopic ratios confirmed contamination to have been predominantly of Chernobyl origin. These levels of radiocaesium would have given rise to an average committed effective dose equivalent to age 70 of less than 0.4 microSv, with a range of less than 0.05 microSv to 1.9 microSv, from intakes in the study week. The opportunity was also taken to analyse the samples for weapons fallout contamination, that is, strontium-89/strontium-90 and plutonium-239/plutonium-240. No diet contained strontium above the reporting level of 0.2 Bq kg-1 but 18% of the diets contained plutonium above the limits of detection (0.1 mBq kg-1), the highest of these being 12 mBq kg-1, found in a diet from one of the low deposition areas

  5. Probability of production of mobile plutonium in environments of soil and sediment

    International Nuclear Information System (INIS)

    Mahara, Y.; Kudo, A.

    1998-01-01

    Mobile plutonium was found in the bottom sediment in the Nishiyama reservoir in Nagasaki after more than 40 years from deposition of local fallout released in the explosion of the A-bomb in 1945. Less than 10% of total deposited plutonium had turned into a mobile form in the bottom environment of the reservoir. The environmental conditions at bottom sediment is expected to be rich organic materials and high bacterial population under anaerobic conditions. Anaerobic bacteria have a high ability to uptake plutonium into cell during their growth. The K d of plutonium to living bacteria is 20 times greater than the dead bacteria under anaerobic conditions. The results of field observations combined with empirical laboratory tests indicate that mobile plutonium in soil and sediment may be affected not only by binding with dissolved natural organic materials but also by the number of living anaerobic bacteria. (orig.)

  6. Plutonium fires; Incendies de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, E.

    1959-06-23

    The author reports an information survey on accidents which occurred when handling plutonium. He first addresses accidents reported in documents. He indicates the circumstances and consequences of these accidents (explosion in glove boxes, fires of plutonium chips, plutonium fire followed by filter destruction, explosion during plutonium chip dissolution followed by chip fire). He describes hazards associated with plutonium fires: atmosphere and surface contamination, criticality. The author gives some advices to avoid plutonium fires. These advices concern electric installations, the use of flammable solvents, general cautions associated with plutonium handling, venting and filtration. He finally describes how to fight plutonium fires, and measures to be taken after the fire (staff contamination control, atmosphere control)

  7. Stop plutonium; Stop plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  8. External radiation exposure and radiotoxicity considerations in plutonium/uranium mixed-oxide fuel fabrication

    International Nuclear Information System (INIS)

    Williams, R.A.; Crosby, E.H.

    1974-01-01

    Nuclear-reactor-produced plutonium emits significant electromagnetic and neutron radiations. In addition, because of its high specific alpha activity and its tendency to deposit in the lung and the soft tissues of the bone, plutonium presents a significant radiotoxicity hazard. Shielding, containment, and dosimetry techniques practiced at the Nuclear Materials and Equipment Corporation (NUMEC) have resulted in exemplary annual safety report statistics relevant to non-remote-handling plutonium operations. Whereas a few employees exceeded the NUMEC external exposure action level, no employee exceeded the Regulatory maximum permissible external exposure. In addition, a few employees were observed to have a lung burden in excess of the minimum sensitivity of an in vivo counting system, and one employee was observed by in vivo counting to have a lung burden in excess of the maximum permissible for a brief period. No employee was observed to have a body burden as indicated by a positive quarterly urinalysis result. Further, there were no serious incidents at the facility requiring immediate Regulatory notification, and there were no moderate incidents at the facility requiring 24-h Regulatory notification. However, there were a few reportable incidents at the facility requiring 30-day Regulatory notification, and there were a few minor incidents at the facility requiring the preparation of a NUMEC Incident Report. Details of this safety record are presented along with the health physics techniques that have contributed to the results

  9. Technique of preparation of plutonium screens for soft x ray spectrography (1963

    International Nuclear Information System (INIS)

    Bersuder, L. de

    1963-01-01

    The present work concerns the preparation of thin layers of pure plutonium (thickness 100 to 10000 A) by thermal vacuum evaporation. The protection of the plutonium against oxidation is obtained by vacuum deposition of aluminium layers under. and above the plutonium layer. The purity of the layers is checked by electron and X ray diffraction which has shown that very thin films of plutonium condense in β form instead of α. (author) [fr

  10. Effects of inhaled plutonium nitrate on bone and liver in dogs

    International Nuclear Information System (INIS)

    Dagle, G.E.; Weller, R.E.; Watson, C.R.; Buschbom, R.L.

    1994-04-01

    The life-span biological effects of inhaled soluble, alpha-emitting radionuclides deposited in the skeleton and liver were studied in 5 groups of 20 beagles exposed to initial lung depositions ranging from 0.48 to 518 Bq/g of lung. Average plutonium amounts in the lungs decreased to approximately 1% of the final body deposition in dogs surviving 5 years or more; more than 90% of the final depositions accumulated in the liver and skeleton. The liver-to-skeletal ratio of deposited plutonium was 0.83. The incidence of bone tumors, primarily osteogenic sarcomas causing early mortality, at final group average skeletal depositions of 15.8, 2.1, and 0.5 Bq/g was, respectively, 85%, 50%, and 5%; there were no bone tumors in exposure groups with mean average depositions lower than 0.5 Bq/g. Elevated serum liver enzyme levels were observed in exposure groups down to 1.3 Bq/g. The incidence of liver tumors at final group average liver depositions of 6.9, 1.3, 0.2, and 0.1 Bq/g, was, respectively, 25%, 15%, 15%, and 15%; one hepatoma occurred among 40 control dogs. The risk of the liver cancer produced by inhaled plutonium nitrate was difficult to assess due to the competing risks of life shortening from lung and bone tumors

  11. Experimental studies to validate model calculations and maximum solubility limits for Plutonium and Americium

    International Nuclear Information System (INIS)

    2017-01-01

    This report focuses on studies of KIT-INE to derive a significantly improved description of the chemical behaviour of Americium and Plutonium in saline NaCl, MgCl 2 and CaCl 2 brine systems. The studies are based on new experimental data and aim at deriving reliable Am and Pu solubility limits for the investigated systems as well as deriving comprehensive thermodynamic model descriptions. Both aspects are of high relevance in the context of potential source term estimations for Americium and Plutonium in aqueous brine systems and related scenarios. Americium and Plutonium are long-lived alpha emitting radionuclides which due to their high radiotoxicity need to be accounted for in a reliable and traceable way. The hydrolysis of trivalent actinides and the effect of highly alkaline pH conditions on the solubility of trivalent actinides in calcium chloride rich brine solutions were investigated and a thermodynamic model derived. The solubility of Plutonium in saline brine systems was studied under reducing and non-reducing conditions and is described within a new thermodynamic model. The influence of dissolved carbonate on Americium and Plutonium solubility in MgCl 2 solutions was investigated and quantitative information on Am and Pu solubility limits in these systems derived. Thermodynamic constants and model parameter derived in this work are implemented in the Thermodynamic Reference Database THEREDA owned by BfS. According to the quality assurance approach in THEREDA, is was necessary to publish parts of this work in peer-reviewed scientific journals. The publications are focused on solubility experiments, spectroscopy of aquatic and solid species and thermodynamic data. (Neck et al., Pure Appl. Chem., Vol. 81, (2009), pp. 1555-1568., Altmaier et al., Radiochimica Acta, 97, (2009), pp. 187-192., Altmaier et al., Actinide Research Quarterly, No 2., (2011), pp. 29-32.).

  12. Nature`s uncommon elements: Plutonium and technetium

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.; Fabryka-Martin, J.; Dixon, P. [Los Alamos National Lab., NM (United States). Chemical Science and Technology Div.; Cramer, J. [Atomic Energy of Canada Ltd., Pinawa, Manitoba (Canada). Whiteshell Lab.

    1998-01-06

    The authors have taken advantage of the extremely sensitive method of thermal ionization mass spectrometry to measure technetium and plutonium concentrations in sample masses that are smaller by as much as three orders of magnitude than those used in the early research efforts. The work reported in this paper extends the understanding of the geochemistry of plutonium and technetium by developing detailed descriptions of their associations in well characterized geologic samples, and by using modern neutron-transport modeling tools to better interpret the meaning of the results. Analyses were conducted on samples from three uranium ore deposits selected for their contrasting geochemical environments. The Cigar Lake deposit is an unweathered, unaltered primary ore in a reducing environment which is expected to closely approximate a system that is closed with respect to uranium and its products. The Koongarra deposit is a shallow system, both altered and weathered, subject to active ground water flow. Finally, a sample from the Beaverlodge deposit is included because it is a commercially-available uranium ore standard that allows demonstration of the precision of the analytical results.

  13. Hazards of plutonium with special reference to the skeleton

    International Nuclear Information System (INIS)

    Spiers, F.W.; Vaughan, J.

    1976-01-01

    In the past attempts have been made to deduce plutonium toxicity in man from studies based on animal experimentation. An alternative method is to use the comparative dosimetry of plutonium and radium in man, with results broadly in agreement with maximum levels set by the International Commission on Radiological Protection. (author)

  14. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    International Nuclear Information System (INIS)

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  15. 50 CFR 259.34 - Minimum and maximum deposits; maximum time to deposit.

    Science.gov (United States)

    2010-10-01

    ... B objective. A time longer than 10 years, either by original scheduling or by subsequent extension... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND...) Minimum annual deposit. The minimum annual (based on each party's taxable year) deposit required by the...

  16. Fifty years of plutonium exposure to the Manhattan Project plutonium workers: an update.

    Science.gov (United States)

    Voelz, G L; Lawrence, J N; Johnson, E R

    1997-10-01

    Twenty-six white male workers who did the original plutonium research and development work at Los Alamos have been examined periodically over the past 50 y to identify possible health effects from internal plutonium depositions. Their effective doses range from 0.1 to 7.2 Sv with a median value of 1.25 Sv. As of the end of 1994, 7 individuals have died compared with an expected 16 deaths based on mortality rates of U.S. white males in the general population. The standardized mortality ratio (SMR) is 0.43. When compared with 876 unexposed Los Alamos workers of the same period, the plutonium worker's mortality rate was also not elevated (SMR = 0.77). The 19 living persons have diseases and physical changes characteristic of a male population with a median age of 72 y (range = 69 to 86 y). Eight of the twenty-six workers have been diagnosed as having one or more cancers, which is within the expected range. The underlying cause of death in three of the seven deceased persons was from cancer, namely cancer of prostate, lung, and bone. Mortality from all cancers was not statistically elevated. The effective doses from plutonium to these individuals are compared with current radiation protection guidelines.

  17. Technique of preparation of plutonium screens for soft x ray spectrography (1963); Technique de preparation d'ecrans de plutonium pour la spectrographie de rayons x mous (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Bersuder, L de [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-07-01

    The present work concerns the preparation of thin layers of pure plutonium (thickness 100 to 10000 A) by thermal vacuum evaporation. The protection of the plutonium against oxidation is obtained by vacuum deposition of aluminium layers under. and above the plutonium layer. The purity of the layers is checked by electron and X ray diffraction which has shown that very thin films of plutonium condense in {beta} form instead of {alpha}. (author) [French] Le present travail concerne la preparation de couches minces (epaisseurs de 100 a 10000 A) de plutonium pur par evaporation thermique sous vide. La protection du plutonium contre l'oxydation par l'air est obtenu grace a des couches d'aluminium deposees sous vide sous et sur la couche de plutonium. La purete des couches est verifiee par diffraction d'electrons et de rayons X ce qui a permis d'observer que les couches tres minces de plutonium se condensent en phase {beta} au lieu de la phase {alpha}. (auteur)

  18. Plutonium contents of field crops in the southeastern US

    International Nuclear Information System (INIS)

    Adriano, D.C.; Corey, J.C.; Dahlman, R.C.

    1980-01-01

    Agricultural crops were grown at the US Department of Energy Savannah River Plant (SRP) and at Oak Ridge National Laboratory (ORNL) on soils at field sites containing plutonium concentrations above background levels from nuclear weapon tests. Major US grain crops were grown adjacent to a reprocessing facility at SRP, which releases low chronic levels of plutonium through an emission stack. Major vegetable crops were grown at the ORNL White Oak Creek floodplain, which received plutonium effluent wastes in 1944 from the Manhattan Project weapon development. In general, the concentration ratios of vegetative parts of crops at SRP were approximately one order of magnitude higher than those at ORNL, which indicates the influence of aerial deposition of plutonium at the SRP site

  19. Bayesian maximum posterior probability method for interpreting plutonium urinalysis data

    International Nuclear Information System (INIS)

    Miller, G.; Inkret, W.C.

    1996-01-01

    A new internal dosimetry code for interpreting urinalysis data in terms of radionuclide intakes is described for the case of plutonium. The mathematical method is to maximise the Bayesian posterior probability using an entropy function as the prior probability distribution. A software package (MEMSYS) developed for image reconstruction is used. Some advantages of the new code are that it ensures positive calculated dose, it smooths out fluctuating data, and it provides an estimate of the propagated uncertainty in the calculated doses. (author)

  20. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    Science.gov (United States)

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  1. Deposition of plutonium isotopes and Cs-137 in sediments of the Ob delta from the beginning of the nuclear age

    International Nuclear Information System (INIS)

    Panteleyev, G.P.; Livingston, H.D.; Sayles, F.L.; Medkova, O.N.

    1995-01-01

    As an approach to an assessment of the transport of artificial radionuclides through the Ob river system towards the arctic Ocean, results are presented from the analyses of a series of sediment cores collected in the Ob delta and estuary in 1994. These cores, collected in areas of sediment accumulation, contain the depositional history at the Ob mouth of substances associated with sediment particles from the whole river system watershed. Several approaches to dating these sediments permitted the development of a chronology for the deposition of plutonium isotopes and Cs-137, following their first introduction to the environment a half century ago. Some preliminary results for I-129 are also presented. 6 figs

  2. What we have learned about plutonium from human data

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1975-01-01

    Human data of plutonium deposition, internal distribution, and excretion have been obtained by observations after accidental occupational exposures, long-term follow-up studies on plutonium workers, and autopsy tissue analyses. No significant harmful effects have been noted in humans, although a small foreign-body type nodule around dermal implantations of plutonium has been described in eight persons. Methods used to estimate body burdens by urinary excretion values appear to be conservative generally compared to autopsy tissue burdens. Variations in autopsy tissue distribution appear to be related to the conditions of the plutonium exposure including mode of exposure, particle size, chemical composition, solubility in serum or tissue fluids, and time after exposure for internal redistribution. An important conclusion of this human data survey is the recognition of the inestimable value to be gained by continued careful studies on the life history of workers with higher plutonium exposures. (author)

  3. Summary of plutonium terrestrial research studies in the vicinity of a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Corey, J.C.; Boni, A.L.; Andriano, D.C.; Pinder, J.F.; McLeod, K.W.

    1978-01-01

    This paper reports plutonium concentrations of wheat, soybeans, and corn grown (a) on a field adjacent to one of the nuclear reprocessing facilities at the Savannah River Plant (SRP), (b) in a glasshouse, and (c) offsite. The crops on SRP were grown on a field that has been receiving both fallout plutonium and plutonium emitted at low chronic levels from an air exhaust stack since 1955. The crops grown in the glasshouse were raised on soil from the onsite agricultural field. The offsite field has received only fallout plutonium. The crop data indicate that the dose to an individual from ingesting grain grown on the field, although higher than from ingesting grain grown offsite, is still small (the 70-year dose-to-bone from eating 2 X 10 5 g (440 lb) of wheat in a year would be less than one mrem). Crop data from the field and the glasshouse experiment indicate that less than 10% of the total contamination of field-grown crops adjacent to a reprocessing facility was contributed by root uptake, the remainder by deposition on the plant surfaces. The plutonium content of the grain was generally 10 to 100 times less than that of the vegetation, again suggesting that deposition from stack emissions vegetation, again suggesting that deposition from stack emissions on the vegetation increased the plutonium content; whereas the grain, particularly corn and soybeans, was protected by thehusk or pod and contained principally plutonium from the root uptake pathway

  4. Multiple recycling of plutonium in advanced PWRs

    International Nuclear Information System (INIS)

    Kloosterman, J.L.

    1998-04-01

    The influence of the moderator-to-fuel ratio in MOX fueled PWRs on the moderator void coefficient, the fuel temperature coefficient, the moderator temperature coefficient, the boron reactivity worth, the critical boron concentration, the mean neutron generation time and the effective delayed neutron fraction has been assessed. Increasing the moderator-to-fuel ratio to values larger than three, gives a moderator void coefficient sufficiently large to recycle the plutonium at least four times. Scenario studies show that four times recycling of plutonium in PWRs reduces the plutonium mass produced with a factor of three compared with a reference once-through reactor park, but that the americium and curium production triple. If the minor actinides and the remaining plutonium after four times recycling are disposed of, the reduction of the radiotoxicity reaches only a factor of two. This factor increases to five at the maximum when the plutonium is further recycled. Recycling of americium and curium is needed to further reduce the radiotoxicity of the spent fuel. 4 refs

  5. Mortality study of Los Alamos workers with higher exposures to plutonium

    International Nuclear Information System (INIS)

    Voelz, G.L.; Wilkinson, G.S.; Healy, J.W.; McInroy, J.F.; Tietjen, G.L.

    1983-01-01

    A group of white male workers with the highest internal depositions of plutonium at the Los Alamos National Laboratory was selected in 1974 for a study of mortality. This group of 224 persons includes all those with an estimated deposition (in 1974) of 10 nanocuries or more of plutonium, principally 239 Pu but also in some cases 238 Pu. Follow-up of these workers is 100% complete through 1980. Smoking histories were obtained on all persons. Exposure histories for external radiation and plutonium were reviewed for each subject. Standardized mortality ratios (SMR) were calculated using rates for white males in the United States population, adjusted for age and year of death. SMRs are low for all causes of death (56; 95% CI 40, 75) or for all malignant neoplasms (54; 95% CI 23,106). Cancers of interest for plutonium exposures, including cancers of bone, lung, liver, and bone marrow/lymphatic systems, were infrequent or absent. The absence of a detectable excess of cancer deaths is consistent with the low calculated risk to these workers using current radiation risk coefficients. An alternate theory that suggests much higher risk of lung cancer due to synergistic effects of smoking and inhaled insoluble plutonium particles is not supported by this study

  6. The determination of plutonium isotopes in environmental samples

    International Nuclear Information System (INIS)

    Siripirom, Lopchai.

    1983-01-01

    The concentration of plutonium in environmental samples such as soil, water, and surface air in the middle part of Thailand were studied. The surface air were collected only at the fifth floor of the Office of Atomic Energy for Peace (OAEP). Plutonium-242 was used as a tracer. Soil and air samples were dissolved by pyrosulphate fusion, and plutonium was co-precipitated with barium sulfate. Then dissolved the precipitate in perchloric acid. Plutonium was extracted out by using solvent bis-(2-ethylhexyl) phosphoric acid (HDEHP). Plutonium in water samples were coprecipitated with iron (III) hydroxide and were dissolved in 8 M. nitric acid. Then the plutonium was separated out by using anion exchange resin, Dowex 1x4. After the solvent extraction or the anion exchange, plutonium was coprecipitated with cerous hydroxide. The activities of plutonium were measured by a surface barrier detector for about 24 hours. Lower limit of detection for 1,440 minutes is 0.012 pCi. These studies showed that only plutonium-239, 240 was observed. The range of activities of plutonium-239, 240 in soil were 0.002-0.157 pCi/g (dry), in water were 0.1-81 f Ci/l, and in air were 7-330 a Ci/m 3 . However, the plutonium concentrations in these studies are far below the maximum permissible concentration (MPC) recommended by International Commission on Radiological Protection (ICRP) for general population which is equal to 3x10 8 f Ci/l of water and 5x10 6 a Ci/m 3 of air

  7. Post-depositional reactivity of the plutonium in different sediment facies from the English channel - an experimental approach

    International Nuclear Information System (INIS)

    Gouzy, A.; Boust, D.; Klein, A.

    2004-01-01

    The plutonium discharged into sea (in particular resulting from the activity of the reprocessing plants of nuclear fuels) presents a great affinity for the sedimentary particles. In the English Channel, the weakness of the plutonium concentrations met in the natural environment makes very difficult a direct study of the diagenetic phenomena which influences on the behavior of this radionuclide after its incorporation to the sedimentary column. On the scale of the all English Channel, the stock of plutonium immobilized in the sediments is significant (some TBq), this fact justifies the study of its becoming. With this intention, we constructed a set of experiments on series marine sediments with various sedimentological facies, which have been spiked with plutonium. After a one-month incubation period, various parameters describing the behavior of plutonium were given: (1) distribution of plutonium between the particulate phases and the pore waters; (2) quantification of plutonium associated with reactive sulphides; (3) distribution of plutonium between the particles and the seawater during a sediment resuspension episode. (author)

  8. Fuel supply demand balances for future FBR commercialization: impacts on plutonium pricing and reactor design

    International Nuclear Information System (INIS)

    Braun, C.; Zebroski, E.L.

    1985-01-01

    Plutonium supply and demand balances for fast breeder reactor (FBR) commercialization post-2000 were computed to determine: (a) the maximum supportable number of FBRs that could be installed based on plutonium availability considerations and (b) the feasibility of a reasonable FBR capacity growth case assuming slow introduction post-2010 and rapid capacity growth post-2035. The purpose of the analysis was to determine the outer limitation on the maximum future FBR introduction, or the bounds of a possible plutonium-limited introduction rate, and to estimate the reasonableness of a more limited capacity growth case

  9. Measurement of the {sup 240}Pu concentration of a plutonium sample by the spontaneous fission method (1960); Mesure de la teneur d'un plutonium en {sup 240}Pu par la methode des fissions spontanees (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Caizergues, R; Clouet d' Orval, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It is very important to know the plutonium-240 content of the plutonium formed in piles. The method of measurement described here consists in counting the number of spontaneous fissions produced in a known quantity of plutonium. This measurement is carried out in a multiple-plate ionisation chamber, the plutonium being deposited on the plates. The disintegration constant of plutonium-240 by spontaneous fission being known the plutonium-240 content in the sample can be calculated. (author) [French] La connaissance de la teneur en plutonium-240 du plutonium forme dans les piles est une question importante. La methode de mesure presentee ici consiste a compter le nombre de fissions spontanees issues d'une quantite connue de plutonium. Cette mesure est effectuee dans une chambre d'ionisation a plateaux multiples sur lesquels est depose le plutonium. La connaissance de la constante de desintegration du plutonium-240 par fissions spontanees permet de calculer la teneur en plutonium-240. (auteur)

  10. Comments on a paper entitled: Toxicity and carcinogenicity of plutonium-239

    International Nuclear Information System (INIS)

    Stocum, W.E.; Pigg, C.J.

    1978-06-01

    Studies on carcinogenic effects of Pu-239 on animals have been reviewed often in the literature. A summary of these studies, which were done primarily with dogs or rats, shows that the inhalation of Pu-239 results in plutonium being retained in highest concentrations in bone, liver, lung, and lymph nodes. This may result in the induction of specific kinds of cancer, primarily lung and bone carcinomas, and to a lesser extent, bile duct tumors. These animal studies have been extremely useful in the analysis of the limited number of studies available on humans exposed to plutonium and in the prediction of plutonium cancer risk to man. One of the most significant and relevant studies on human exposures to Pu-239 is that of the 1944-45 exposure at Los Alamos Scientific Laboratory. Twenty-five men associated with the Manhattan Project were identified as having had significant plutonium exposures; total initial lung burden across the group was approximately 10 μCi. These individuals have been monitored clinically and in laboratory studies for the past 30 years. None of the individuals has shown cancer incidence and none shows medical findings attributable to internally deposited plutonium. There has been no recorded instance of cancer in man resulting from the internal deposition of any plutonium isotope in the more than three decades in which plutonium has been used. This excellent record illustrates the effectiveness of control measures and safety standards imposed on the handling of radioactive materials. These facts lead to a high level of confidence that the transportation of radioactive materials to and around the WIPP would not have a markedly different record

  11. Studies of plutonium in human tracheobronchial lymph nodes

    International Nuclear Information System (INIS)

    McInroy, J.F.; Stewart, M.W.; Moss, W.D.

    1976-01-01

    Since 1959, tissues from 70 occupationally exposed former employees of the Los Alamos Scientific Laboratory have been examined following autopsy. Exposure in most cases was to inhaled plutonium oxide aerosols. Chemical analyses of selected tissues were performed to determine the amount of plutonium retained in the body at the time of death. On the basis of the measured tissue concentrations of plutonium, extrapolations of total-body burdens were made. Thirty-three of the measured cases had plutonium depositions in the tracheobronchial lymph nodes ranging from 0.1 to 4000 dpm per gram of tissue (0.05 to 1800 pCi/g). The duration of exposures ranged from 4 to 30 years. Microscopic examination of representative sections of these lymph nodes revealed no abnormalities other than those which were directly attributable to the basic disease that caused the demise of the various persons in this study. The size distribution of plutonium particles in nodes from one individual was determined by exposing tissue sections to nuclear track film. The estimated mass median diameter of the particles was 0.3 μm, and the distribution had a geometric standard deviation of 1.6. It is estimated that 95 percent of the individual particles had corresponding plutonium concentrations between 0.001 and 0.22 pCi

  12. Biokinetic study of plutonium and americium associated to the particulates of soil

    International Nuclear Information System (INIS)

    Espinosa, A.; Aragon, A.; Martinez, J.; Iranzo, C.E.

    1996-01-01

    The object of this study is to determine the biokinetic parameters of different Plutonium isotopes and Americium inhaled in the state in which they are found in the environment as a result of their deposition in the soil, from an aviation accident that generated different plutonium oxides. to achieve this objective, two lines of work planned. One was the determination of the mineralogical composition and associations that plutonium and americium present in that soil 22 years after the nuclear accident. Other studies were directed to determine the biokinetic of the plutonium isotopes and americium (contained in the dust) deposited tracheally and inhaled by laboratory animals (rats) and in vitro experiments by pulmonary leaching simulation. The in vivo tests have been developed in NRPB (U.K.) and the in vitro experiment, geochemical associations studies, assessment of internal doses to humans resulting from intake of plutonium and americium bearing dusts present in the contaminated area and establishment of ALIs for inhalation, were carried out in CIEMAT (Spain). In this work only determinations and experiments carried out by CIEMAT are includes as a part of the EU Project ''INHALATION AND INGESTION OF RADIONUCLIDES'' contract: FI3P-CT920064a. (Author) 10 refs

  13. Removal of plutonium from real time waste using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Kumar, R.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Supercritical fluid extraction (SFE) technique was carried out for the recovery of plutonium from cellulose waste matrix using supercritical carbon dioxide (SC-CO 2 ) modified with suitable ligands such as octylphenyl N,N-diisobutyl carbamoylmethyl phosphine oxide (φCMPO), tri-n-butyl phosphate (TBP), acetyl acetone, trifluoro acetyl acetone and theonyltrifluoroacetyl acetone (TTA). The maximum plutonium recovery was found to be 99.8% when SC-CO 2 modified with CMPO was employed. About 15mg of plutonium was recovered from waste. (author)

  14. Plutonium in nature; Le plutonium dans la nature

    Energy Technology Data Exchange (ETDEWEB)

    Madic, C.

    1994-12-31

    Plutonium in nature comes from natural sources and anthropogenic ones. Plutonium at the earth surface comes principally from anthropogenic sources. It is easily detectable in environment. The plutonium behaviour in environment is complex. It seems necessary for the future to reduce releases in environment, to improve predictive models of plutonium behaviour in geosphere, to precise biological impact of anthropogenic plutonium releases.

  15. Long-term behaviour of plutonium in air and deposition and the role of resuspension in a semi-rural environment in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Hoetzl, H.; Winkler, R. [GSF-National Research Center for Environment and Health, Institute of Radiation Protection, Neuherberg (Germany)

    1997-03-05

    Despite a long while since the last surface nuclear weapons test (China, 1980), and since the Chernobyl accident (1986), very small concentrations of plutonium in air and deposition are still observable. The present paper reports and discusses results from our sampling site at Munich-Neuherberg from 1970 to the end of 1991, emphasizing the period since 1985. The methods of sample collection, preparation and radiochemical plutonium analysis are indicated in brief. To obtain Pu values above the detection limit, after 1985 our regular monthly samples were combined to yearly ones, except during the Chernobyl period. The annual mean values of {sup 239+240}Pu air concentration (e.g. 6-2 nBq m{sup -3} between 1987 and 1991) and annual sums of total deposition (e.g. 9-2 mBq m{sup -2} between 1987 and 1991) are reported as well as the Pu specific activities in the top soil layers (0-1, 1-2, 2-5 cm) in 1987 and 1993. The temporal variation of these quantities and the role of resuspension in interpreting the presently observed Pu concentrations are discussed. A practically constant resuspension factor K, 1.20{+-}0.05{center_dot}10{sup -9} m{sup -1}, is obtained for {sup 239+240}Pu from 1989 through 1991, provided the decrease of Pu in the top 0-1 cm soil layer is taken into account.

  16. Long-term behaviour of plutonium in air and deposition and the role of resuspension in a semi-rural environment in Germany

    International Nuclear Information System (INIS)

    Rosner, G.; Hoetzl, H.; Winkler, R.

    1997-01-01

    Despite a long while since the last surface nuclear weapons test (China, 1980), and since the Chernobyl accident (1986), very small concentrations of plutonium in air and deposition are still observable. The present paper reports and discusses results from our sampling site at Munich-Neuherberg from 1970 to the end of 1991, emphasizing the period since 1985. The methods of sample collection, preparation and radiochemical plutonium analysis are indicated in brief. To obtain Pu values above the detection limit, after 1985 our regular monthly samples were combined to yearly ones, except during the Chernobyl period. The annual mean values of 239+240 Pu air concentration (e.g. 6-2 nBq m -3 between 1987 and 1991) and annual sums of total deposition (e.g. 9-2 mBq m -2 between 1987 and 1991) are reported as well as the Pu specific activities in the top soil layers (0-1, 1-2, 2-5 cm) in 1987 and 1993. The temporal variation of these quantities and the role of resuspension in interpreting the presently observed Pu concentrations are discussed. A practically constant resuspension factor K, 1.20±0.05·10 -9 m -1 , is obtained for 239+240 Pu from 1989 through 1991, provided the decrease of Pu in the top 0-1 cm soil layer is taken into account

  17. Electrochemical preparation of uranium and plutonium measuring probes for alpha spectroscopy from organic solutions

    International Nuclear Information System (INIS)

    Gruner, W.; Beutmann, A.

    1980-01-01

    A method for preparation of uranium and plutonium measuring probes for α-spectrometry is described. The method is based on electrodeposition from isopropanol and especially from ethanol and methanol solution. It was shown that a definite additions of a little amount of water lead to an increase of the deposition rate. It is possible to reach a 100% deposition in ethanol after an electrolysis time of 3 minutes for uranium and 30 minutes for plutonium with voltages of 150-200 V. (author)

  18. Plutonium solution storage in plastic bottles: Operational experience and safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1995-01-01

    Computer spread sheet models were developed to gain a better understanding of the factors that lead to pressurization and failure of plastic bottles containing plutonium solutions. These models were developed using data obtained from the literature on gas generation rates for plutonium solutions. Leak rates from sealed plastic bottles were obtained from bottle leak tests conducted at Rocky Flats. Results from these bottle leak tests showed that narrow mouth four liter bottles will seal much better than wide mouth four liter bottles. The gas generation rate and leak rate data were used to develop models for predicting the rate of pressurization and maximum pressures expected in sealed bottles of plutonium solution containing various plutonium and acid concentrations. The computer models were used to develop proposed time limits for storing or transporting plutonium solutions in sealed plastic bottles. For plutonium solutions containing 1.5 g/l plutonium, storage in sealed bottles should not be allowed. However, transportation of higher concentration plutonium solution in sealed bottles is required, and safe transportation times of 1 shift to 6 days are proposed

  19. Decontaminaion of metals containing plutonium and americium

    International Nuclear Information System (INIS)

    Seitz, M.G.; Gerding, T.J.; Steindler, M.J.

    1979-06-01

    Melt-slagging (melt-refining) techniques were evaluated as a decontamination and consolidation step for metals contaminated with oxides of plutonium and americium. Experiments were performed in which mild steel, stainless steel, and nickel contaminated with oxides of plutonium and americium were melted in the presence of silicate slags of various compositions. The metal products were low in contamination, with the plutonium and americium strongly fractionated to the slags. Partition coefficients (plutonium in slag/plutonium in steel) of 7 x 10 6 were measured with boro-silicate slag and of 3 x 10 6 with calcium, magnesium silicate slag. Decontamination of metals containing as much as 14,000 ppM plutonium appears to be as efficient as for metals with plutonium levels of 400 ppM. Staged extraction, that is, a remelting of processed metal with clean slag, results in further decontamination of the metal. The second extraction is effective with either resistance-furnace melting or electric-arc melting. Slag adhering to the metal ingots and in defects within the ingots is in the important contributors to plutonium retained in processed metals. If these sources of plutonium are controlled, the melt-refining process can be used on a large scale to convert highly contaminated metals to homogeneous and compact forms with very low concentrations of plutonium and americium. A conceptual design of a melt-refining process to decontaminate plutonium- and americium-contaminated metals is described. The process includes single-stage refining of contaminated metals to produce a metal product which would have less than 10 nCi/g of TRU-element contamination. Two plant sizes were considered. The smaller conceptual plant processes 77 kg of metal per 8-h period and may be portable.The larger one processes 140 kg of metal per 8-h period, is stationary, and may be near te maximum size that is practical for a metal decontamination process

  20. The determination of Plutonium content in urine using anion exchange resin method

    International Nuclear Information System (INIS)

    Mukh-Syaifudin

    1996-01-01

    The possibility of internal contamination by plutonium is usually determined through urine analysis. The technique involved the co-precipitation of plutonium with rhodizonic acid by the addition of sodium hydroxide, the re-extraction of Pu into concentrated HCl, dissolution of Pu in 8 N HCI + Cl 2 solution, and the purification of plutonium through AGI-X8 anion exchange resin in columns with a diameter of 4 and 7 mm. The eluent was evaporated and the residu was dissolved in 8 N HCI and then deposited directly onto a Lexan slide or electrodeposited onto a stainless steel disc and the alpha emission of Pu was counted by using alpha spectrometry. The results showed that the recoveries of Pu-242 tracer by using column 7 mm and direct deposition and electrodeposition methods were 28.783% and 16.444%, respectively. The recoveries of Pu-242 by using column 4 mm and direct deposition and electrodeposition methods were 64.834% and 55.661%, respectively. From the percentage of recovery, it can be concluded that the direct deposition method was relatively better than the electrodeposition method. The recovery of Pu-242 by using column of 4 mm in diameter was higher than that of column 7 mm

  1. Plutonium waste incineration using pyrohydrolysis

    International Nuclear Information System (INIS)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800 degree C), while plutonium oxides fired at lower decomposition temperatures (400--800 degrees C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density

  2. Long time contamination from plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Fueloep, M; Patzeltova, N; Ragan, P [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia); Matel, L [Comenius Univ., Bratislava (Slovakia). Department of Nuclear Chemistry

    1996-12-31

    Plutonium isotopes in the organism of the patient (who had participated in the liquidation works after the Chernobyl accident; for three month he had stayed in the epicenter, where he acted as a chauffeur driving a radioactive material to the place of destination) from urine were determined. For determination of the concentration of Pu-239, Pu-240 in urine a modified radiochemical method was used. After mineralization the sample was separated as an anion-nitrate complex with contact by the anion form of the resin in the column. The resin was washed by 8 M HNO{sub 3}, the 8 M HCl with 0.3 M HNO{sub 3} for removing the other radionuclides. The solution 0.36 M HCl with 0.01 M HF was used for the elution of plutonium. Using the lanthanum fluoride technique the sample was filtrated through a membrane filter. The plutonium was detected in the dry sample. The Pu-239 tracer was used for the evaluation of the plutonium separation efficiency. The alpha spectrometric measurements were carried out with a large area silicon detector. The samples were measured and evaluated in the energy region 4.98-5.18 MeV. The detection limit of alpha spectrometry measurements has been 0.01 Bq dm{sup -3}. The concentration of plutonium in the 24-hour urine was determined three times in the quarter year intervals. The results are: 54 mBq, 63.2 mBq, 53 mBq, with average 56,7 mBq. From the results of the analyses of plutonium depositions calculated according to ICRP 54 the intake of this radionuclide for the patient was 56.7 kBq. To estimate a committed effective dose (50 years) from the intake of plutonium was used a conversion factor 6.8.10{sup -5} Sv.Bq{sup -1} (class W). So the expressed committed effective dose received from the plutonium intake is 3.8 Sv. This number is relatively high and all the effective dose will be higher, because the patient was exposed to the other radionuclides too. (Abstract Truncated)

  3. Long time contamination from plutonium

    International Nuclear Information System (INIS)

    Fueloep, M.; Patzeltova, N.; Ragan, P.; Matel, L.

    1995-01-01

    Plutonium isotopes in the organism of the patient (who had participated in the liquidation works after the Chernobyl accident; for three month he had stayed in the epicenter, where he acted as a chauffeur driving a radioactive material to the place of destination) from urine were determined. For determination of the concentration of Pu-239, Pu-240 in urine a modified radiochemical method was used. After mineralization the sample was separated as an anion-nitrate complex with contact by the anion form of the resin in the column. The resin was washed by 8 M HNO 3 , the 8 M HCl with 0.3 M HNO 3 for removing the other radionuclides. The solution 0.36 M HCl with 0.01 M HF was used for the elution of plutonium. Using the lanthanum fluoride technique the sample was filtrated through a membrane filter. The plutonium was detected in the dry sample. The Pu-239 tracer was used for the evaluation of the plutonium separation efficiency. The alpha spectrometric measurements were carried out with a large area silicon detector. The samples were measured and evaluated in the energy region 4.98-5.18 MeV. The detection limit of alpha spectrometry measurements has been 0.01 Bq dm -3 . The concentration of plutonium in the 24-hour urine was determined three times in the quarter year intervals. The results are: 54 mBq, 63.2 mBq, 53 mBq, with average 56,7 mBq. From the results of the analyses of plutonium depositions calculated according to ICRP 54 the intake of this radionuclide for the patient was 56.7 kBq. To estimate a committed effective dose (50 years) from the intake of plutonium was used a conversion factor 6.8.10 -5 Sv.Bq -1 (class W). So the expressed committed effective dose received from the plutonium intake is 3.8 Sv. This number is relatively high and all the effective dose will be higher, because the patient was exposed to the other radionuclides too. For example the determination of the rate radionuclides Am-241/Pu-239,Pu-240 was 32-36 % in the fallout after the Chernobyl

  4. The plutonium ban

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    'Nuclear Power Issues and Choices' is the title of a recent report which has been performed by a study group sponsored by the Ford Foundation and administered by the MITRE Corporation. The main concern of this study is to prevent the proliferation of nuclear weapons. Since the reprocessing of spent fuel elements yields among others plutonium of bomb quality, the report of the Ford Foundation comes to the conclusion that the USA should defer the closing of the fuel cycle, defer the reprocessing of spent nuclear fuel, deposit the spent fuel elemenets as a whole, and defer the breeder which can not run without fuel reprocessing. The German attitude however is that we can not relinquish on reprocessing and recycling of nuclear fuel because we are lacking such rich resources of coal, oil and uranium as the USA have. Furthermore, the deposition of spent fuel elements may be more dangerous than the deposition of the radioactive waste from reprocessing plants. (orig.) [de

  5. Microdistribution and Long-Term Retention of 239Pu (NO3)4 in the Respiratory Tracts of an Acutely Exposed Plutonium Worker and Experimental Beagle Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.; McCord, Stacey; Dagle, Gerald E.; James, Anthony C.; Tolmachev, Sergei Y.; Thrall, Brian D.; Morgan, William F.

    2012-11-01

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.

  6. Mortality among plutonium and other workers at Rocky Flats

    International Nuclear Information System (INIS)

    Wilkinson, G.S.; Acquavella, J.F.; Reyes, M.; Tietjen, G.L.; Wiggs, L.d.; Voelz, G.L.

    1985-01-01

    A detailed study of mortality and radiation exposure for Rocky Flats workers was reported at the Sixteenth Mid-Year Topical Symposium of the Health Physics Society in January 1983. Significantly fewer deaths were found than were expected due to all causes, all malignant neoplasms, lung cancer, and cancer of the digestive organs. No bone cancers were observed and cancers commonly associated with radiation exposure were not more frequent than expected. Significantly more deaths than expected were observed for two causes, cancer of the prostate and benign and unspecified neoplasms. Further investigation revealed that the deaths from benign and unspecified neoplasms all involved intracranial tumors. A case control study found no association between these brain tumors and exposure to radiation, including plutonium depositions or type of occupation. The excess deaths from intracranial tumors remain unexplained but do not appear to be associated with employment at Rocky Flats. Relative risks among Rocky Flats workers with cumulative plutonium depositions of 2 nCi or more did not indicate a significantly greater risk of death among workers exposed to plutonium than among unexposed workers. Similar results were found for workers with cumulative radiation exposure of at least 1 rem. 2 references, 3 tables

  7. Experimental studies to validate model calculations and maximum solubility limits for Plutonium and Americium; Experimentelle Arbeiten zur Absicherung von Modellrechnungen und Maximalkonzentrationen fuer Plutonium und Americium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-02-16

    This report focuses on studies of KIT-INE to derive a significantly improved description of the chemical behaviour of Americium and Plutonium in saline NaCl, MgCl{sub 2} and CaCl{sub 2} brine systems. The studies are based on new experimental data and aim at deriving reliable Am and Pu solubility limits for the investigated systems as well as deriving comprehensive thermodynamic model descriptions. Both aspects are of high relevance in the context of potential source term estimations for Americium and Plutonium in aqueous brine systems and related scenarios. Americium and Plutonium are long-lived alpha emitting radionuclides which due to their high radiotoxicity need to be accounted for in a reliable and traceable way. The hydrolysis of trivalent actinides and the effect of highly alkaline pH conditions on the solubility of trivalent actinides in calcium chloride rich brine solutions were investigated and a thermodynamic model derived. The solubility of Plutonium in saline brine systems was studied under reducing and non-reducing conditions and is described within a new thermodynamic model. The influence of dissolved carbonate on Americium and Plutonium solubility in MgCl{sub 2} solutions was investigated and quantitative information on Am and Pu solubility limits in these systems derived. Thermodynamic constants and model parameter derived in this work are implemented in the Thermodynamic Reference Database THEREDA owned by BfS. According to the quality assurance approach in THEREDA, is was necessary to publish parts of this work in peer-reviewed scientific journals. The publications are focused on solubility experiments, spectroscopy of aquatic and solid species and thermodynamic data. (Neck et al., Pure Appl. Chem., Vol. 81, (2009), pp. 1555-1568., Altmaier et al., Radiochimica Acta, 97, (2009), pp. 187-192., Altmaier et al., Actinide Research Quarterly, No 2., (2011), pp. 29-32.).

  8. Relationship between blood flow, bone structure, and 239Pu deposition in the mouse skeleton

    International Nuclear Information System (INIS)

    Humphreys, E.R.; Green, D.; Howells, G.R.; Thorne, M.C.

    1982-01-01

    The rate at which blood is supplied to several bones in female CBA mice was calculated from 18 F measurements in bone and blood. Blood flow measurements were compared with plutonium uptake in whole bone and on endosteal and periosteal bone surfaces. The results showed that: the rate at which blood is supplied to bone determines the rate of deposition of plutonium; there is a threshold rate of blood supply below which plutonium is not deposited; and the rate of blood supply determines the density of plutonium deposition on endosteal but not on periosteal bone surfaces. These results are discussed in the light of the current bone blood supply hypotheses. (orig.)

  9. Plutonium

    International Nuclear Information System (INIS)

    Watson, G.M.

    1976-01-01

    Discovery of the neutron made it easy to create elements which do not exist in nature. One of these is plutonium, and its isotope with mass number 239 has nuclear properties which make it both a good fuel for nuclear power reactors and a good explosive for nuclear weapons. Since it was discovered during a war the latter characteristic was put to use, but it is now evident that use of plutonium in a particular kind of nuclear reactor, the fast breeder reactor, will allow the world's resources of uranium to last for millennia as a major source of energy. Plutonium is very radiotoxic, resembling radium in this respect. Therefore the widespread introduction of fast breeder reactors to meet energy demands can be contemplated only after assurances on two points; that adequate control of the radiological hazard resulting from the handling of very large amounts of plutonium can be guaranteed, and that diversion of plutonium to illicit use can be prevented. The problems exist to a lesser degree already, since all types of nuclear reactor produce some plutonium. Some plutonium has already been dispersed in the environment, the bulk of it from atmospheric tests of nuclear weapons. (author)

  10. Holdup measurements of plutonium in glove box exhausts

    International Nuclear Information System (INIS)

    Glick, J.B.; Haas, F.X.; McKamy, J.N.; Garrett, A.G.

    1991-01-01

    A new measurement technique has been developed to quantify plutonium in process glove box exhausts. The technique implemented at Rocky Flats Plant utiltizes a shielded, collimated 0.5in. x 0.5in. bismuth germanate (BGO) gamma-ray detector. Pairs of measurements are made at one foot intervals along the duct. One measurement is made with the detector viewing the bottom of the duct with the detector crystal approximately 2 inches from the duct surface. The second measurement is made on the top of the exhaust pipe with the detector crystal 2 inches from the top of the duct. When the detector is placed in the bottom assay position, the area of the holdup material is assumed to extend beyond the detector field of view. The concentration of plutonium in g/cm 2 is obtained from this bottom measurement. The deposit width is determined from a model developed to relate the deposit width to the ratio of the count rates measured at the two positions, above and below the duct. Once a deposit width has been calculated, it is multiplied by the concentration determined from the bottom measurement to yield a mass- per-unit-length at the duct location. Total plutonium mass is then determined by multiplying the duct length by the average of the mass- per-unit length assays performed along the duct. The applicability of the technique is presented in a comparison of field measurement data to analysis results on material removed from the ducts. 3 refs., 3 figs., 1 tab

  11. Comparisons between in vivo estimates of systemic Pu deposition and autopsy data

    International Nuclear Information System (INIS)

    Schofield, G.B.

    1982-01-01

    In the UK the radiochemical analyses of autopsy specimens have been undertaken following the death of 30 employees during the period 1964 - 1980 whose work has at some time brought them into contact with plutonium. These workers were routinely monitored during their lifetime and estimates made of their total body content of plutonium. Past experience has shown that the urinary plutonium content bears a marked relationship to the bone and liver deposition levels of plutonium but not to the quantities found in the lungs (1). In this paper therefore the comparisons are made between in vivo estimates of bone and liver plutonium deposition and estimates derived from both the wet and ash weights of autopsy specimens. (author)

  12. How much plutonium does North Korea really have?

    International Nuclear Information System (INIS)

    Dreicer, J.S.

    1997-01-01

    In a previous study, as part of the Global Nuclear Material Control Model effort, the author estimated the maximum quantity of plutonium that could be produced in thermal research reactors in the potential nuclear weapon states (including North Korea), based on their declared power level. D. Albright has estimated the amount of plutonium the North Koreans may have produced since 1986 in the 5-megawatt-electric power reactor at Yongbon. Albright provided an upper-bound estimate of 53 kilograms of weapon-grade plutonium produced cumulatively if the gas-graphite (magnox) reactor had achieved a load factor of 0.80. This cumulative estimate of 53 kilograms ignores the potential plutonium production in the 8-megawatt-thermal research reactor, IRT-DPRK. To better quantify the cumulative North Korean production, the author conducted a study to estimate the amount of plutonium that could have been produced in the IRT-DPRK research reactor operating at the declared power level during the entire period it has operated, including a period it was not safeguarded. The author estimates that, at most, an additional 6 to 33 kilograms of plutonium could have been produced cumulatively in the research reactor operating at the declared power level during the entire period it has operated, including a 12-year period it was not safeguarded, resulting in a total of 13 to 47 kilograms of plutonium possibly produced in both the research and power reactors

  13. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J. [Pacific Northwest Lab., Richland, WA (United States); Nass, R. [Nuclear Fuel Services, Inc. (United States)

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  14. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    International Nuclear Information System (INIS)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage

  15. Plutonium injection cases: an update to 1977

    International Nuclear Information System (INIS)

    Rowland, R.E.; Durbin, P.W.

    1978-01-01

    Several hospitalized individuals of relatively short life expectancy were given intravenous injections of plutonium in 1945 to 1947, and excreta were collected and measured for as long as they remained hospitalized. Following the discovery by Durbin that some of these individuals were still living, she and, subsequently, the Center for Human Radiobiology at the Argonne National Laboratory made an effort to trace all of these unique cases. This search resulted in a published report which documented the doses of plutonium administered, the survival of the recipients, the causes of death, and the doses accumulated by liver and bone in each case. The calculated average organ doses accumulated by the members of this group to death or to 31 July 1977 are tabulated. The causes of death, contributory causes, and durations of illnesses, as determined from death certificates are also tabulated. As far as we can determine, the internally deposited plutonium was not responsible for or related to the death of any of these cases

  16. Pathology associated with inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Park, J.F.; Weller, R.E.; Ragan, H.A.; Stevens, D.L.

    1986-01-01

    The pathology associated with the inhalation of plutonium was studied in beagle dogs given a single exposure to aerosols of 239 PuO 2 , 238 PuO 2 , or 239 Pu(NO 3 ) 4 . The temporal-spatial relationships between plutonium deposition and the development of lesions in dogs were evaluated up to 11 years, 8 years, or 5 years, respectively, after exposures, resulting in initial lung burdens ranging from ∼2 to ∼5500 nCi. Exposure of the lung to high dose levels produced a spectrum of progressively more severe morphological changes, ranging from radiation pneumonitis to fibrosis. Lung tumors occurred at exposure levels that did not result in early death from radiation pneumonitis or fibrosis. Bronchiolar-alveolar carcinomas, papillary adenocarcinomas, epidermoid carcinomas, and combined epidermoid and adenocarcinomas were observed. Sclerosing tracheobronchial lymphadenitis, radiation osteodystrophy, osteosarcoma, and hepatic adenomatous hyperplasia were the principal extrapulmonary lesions resulting from translocation of plutonium. 15 refs., 2 tabs

  17. Guide to good practices at plutonium facilities

    International Nuclear Information System (INIS)

    Faust, L.G.; Brackenbush, L.W.; Carter, L.A.; Endres, G.W.R.; Glenn, R.D.; Jech, J.J.; Selby, J.M.; Smith, R.C.; Waite, D.A.; Walsh, W.P.

    1977-09-01

    This manual establishes guidelines and principles for use in setting up a sound radiation protection program for work with plutonium. The guidance presented is based on the experiences of Energy Research and Development Administration (ERDA) contractors and those portions of private industry concerned with the operation of plutonium facilities, specifically with the fabrication of mixed oxide reactor fuel. The manual is directed primarily to those facilities which have as their sole purpose the handling of large quantities of plutonium for military or industrial uses. It is not intended for use by facilities engaged in reactor or chemical separation operations nor for partial or occasional use by analytical laboratories; while these facilities would find the manual beneficial, it would be incomplete for their needs. The manual addresses good practices that should be observed by management, staff and designers, since the benefits of a good radiation protection program are the result of their joint efforts. Methods for the diagnostic evaluation of internally deposited Pu are included

  18. Current status of life-span studies with inhaled plutonium in beagles at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Park, J.F.; Dagle, G.E.; Ragan, H.A.; Weller, R.E.; Stevens, D.L.

    1986-01-01

    Beagles that inhaled 239 PuO 2 , 238 PuO 2 , or 239 Pu(NO 3 ) 4 , in dose-level groups of 20 dogs, with initial lung burdens of ∼2, 15, 70, 300, 1100, or 5500 nCi, are now 11, 9, or 5 years postexposure. Lung tumors, bone tumors, and radiation pneumonitis, the plutonium-exposure-related causes of death observed to date, have occurred in the two, three, and four highest dose-level groups exposed to 238 PuO 2 , 239 Pu(NO 3 ) 4 , and 239 PuO 2 , respectively. No plutonium-exposure-related deaths have thus far been observed in dose-level groups exposed to less than ∼40 times the current maximum permissible lung dose for a plutonium worker. Plutonium-exposure-related effects not directly related to the cause of death include chronic lymphopenia, chronic neutropenia, sclerosis of the tracheobronchial lymph nodes, focal radiation pneumonitis, adenomatous hyperplasia in the liver, and dystrophic osteolytic lesions in the skeleton. No plutonium-exposure-related effects have thus far been observed in dose-level groups that received less than ∼15 times the current maximum permissible lung dose for a plutonium worker. 10 refs., 5 figs., 4 tabs

  19. Stop plutonium

    International Nuclear Information System (INIS)

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  20. Recommended plutonium release fractions from postulated fires. Final report

    International Nuclear Information System (INIS)

    Kogan, V.; Schumacher, P.M.

    1993-12-01

    This report was written at the request of EG ampersand G Rocky Flats, Inc. in support of joint emergency planning for the Rocky Flats Plant (RFP) by EG ampersand G and the State of Colorado. The intent of the report is to provide the State of Colorado with an independent assessment of any respirable plutonium releases that might occur in the event of a severe fire at the plant. Fire releases of plutonium are of interest because they have been used by EG ampersand G to determine the RFP emergency planning zones. These zones are based on the maximum credible accident (MCA) described in the RFP Final Environmental Impact Statement (FEIS) of 1980, that MCA is assumed to be a large airplane crashing into a RFP plutonium building.The objective of this report was first, to perform a worldwide literature review of relevant release experiments from 1960 to the present and to summarize those findings, and second, to provide recommendations for application of the experimental data to fire release analyses at Rocky Flats. The latter step requires translation between experimental and expected RFP accident parameters, or ''scaling.'' The parameters of particular concern are: quantities of material, environmental parameters such as the intensity of a fire, and the physico-chemical forms of the plutonium. The latter include plutonium metal, bulk plutonium oxide powder, combustible and noncombustible wastes contaminated with plutonium oxide powder, and residues from plutonium extraction processes

  1. Plutonium isotopes in the surface air in Japan

    International Nuclear Information System (INIS)

    Hirose, K.; Sugimura, Y.

    1990-01-01

    Plutonium isotope concentrations in the surface air at Tsukuba, Japan are reported during the period from 1981 to the end of 1986. The 239,240 Pu concentration in the surface air, which showed a marked seasonal variation with a spring maximum and fall minimum, decreased until the end of 1985 according to the stratospheric residence time of 1.15 years. In May 1986, elevated 239,240 Pu concentrations with high 238 Pu/ 239,240 Pu activity ratios were observed. The serial trend of plutonium concentration in the surface air is similar to the concentrations of the Chernobyl-released radionuclides. These findings suggest that a significant part of the plutonium in the surface air in May 1986 was due to the Chernobyl fallout. (author) 15 refs.; 2 figs.; 3 tabs

  2. Airborne plutonium transported during southwesterly winds near the Hanford Prosser Barricade

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1980-01-01

    Airborne plutonium could result from resuspension of nuclear-weapons-testing stratospheric fallout deposition. To determine this possible resuspension at the Hanford site, two field experiments between April 12 to june 29, 1976 and August 12, 1976 to January 11, 1977 were conducted near the Prosser Barricade in the Hanford area about 19 to 22 km southeast (140 0 to 160 0 ) of the fuel-processing areas. The primary objective of these experimentss was to determine if stratospheric fallout resuspension was reflected by airborne plutonium concentrations increasing with increasing wind speed. A secondary objective was to confirm the source of the airborne plutonium by determining the plutonium-240 isotopic content or the plutonium-240/plutonium-239-mass ratio. Stratospheric fallout can be identified by the ratio of 240 Pu to other plutonium isotopes in surface soils. Plutonium was transported during southwesterly winds during the two study periods at the Prosser Barricade. Airborne 239 240 Pu concentrations varied as powers of wind speed (U):U -0 2 to U 7 8 . The airborne solids content ranged from 6 x 10 -8 to 1.7 x 10 -6 μCi/g. The 240 Pu isotopic content ranged from 5.6 to 8.1 atom percent and the 240 Pu/ 239 Pu mass ratio ranged from 0.065 to 0.089. The estimated fraction of stratospheric fallout plutonium in these samples was less than 0.24. The remaining airborne plutonium was probably of Hanford origin. Airborne plutonium probably represents resuspension of plutonium from undetermined sites by mechanisms and events not clear at present. An increasing airborne plutonium concentration with increasing wind speed might be expected for an upwind resuspension source(s). However, the geographical source(s) location was not investigated in this study

  3. The influence of thorium on the temperature reactivity coefficient in a 400 MWth pebble bed high temperature plutonium incinerating reactor

    International Nuclear Information System (INIS)

    Richards, Guy A.; Serfontein, Dawid E.

    2014-01-01

    This article investigates advanced fuel cycles containing thorium and reactor grade plutonium (Pu(PWR)) in a 400 MW th Pebble Bed Modular Reactor (PBMR) Demonstration Power Plant. Results presented were determined from coupled neutronics and thermo-hydraulic simulations of the VSOP 99/05 diffusion codes. In a previous study impressive burn-ups (601 MWd/kg heavy metal (HM)) and thus plutonium destruction rates (69.2 %) were obtained with pure plutonium fuel with mass loadings of 3 g Pu(PWR)/fuel sphere or less. However the safety performance was poor in that the limit on the maximum fuel temperature during equilibrium operation was exceeded and positive Uniform Temperature Reactivity Coefficients (UTCs) were obtained. In the present study fuel cycles containing mixtures of thorium and plutonium achieved negative maximum UTCs. Plutonium only fuel cycles also achieved negative maximum UTCs, provided that much higher mass loadings are used. It is proposed that the lower thermal neutron flux was responsible for this effect. The plutonium only fuel cycle with 12 g Pu(PWR)/fuel sphere also achieved the adopted safety limits for the PBMR DPP-400 in that the maximum fuel temperature and the maximum power density did not exceed 1130°C or 4.5 kW/sphere respectively. This design would thus be licensable and could potentially be economically feasible. However the burn-up was much lower at 181 MWd/kgHM and thus the plutonium destruction fraction was also much lower at 24.5%, which may be sub-optimal with respect to proliferation and waste disposal objectives and therefore further optimisation studies are proposed. (author)

  4. Cancer hazard from inhaled plutonium

    International Nuclear Information System (INIS)

    Gofman, J.W.

    1975-01-01

    The best estimate of the lung cancer potential in humans for inhaled insoluble compounds of plutonium (such as PuO 2 particles) has been grossly underestimated by such authoritative bodies as the International Commission on Radiological Protection and the British Medical Research Council. Calculations are presented of lung cancer induction by 239 Pu as insoluble particles and for deposited reactor-grade Pu. The reason for the gross underestimate of the carcinogenic effects of Pu by ICRP or the British Medical Research Council (BMRC) is their use of a totally unrealistic idealized model for the clearance of deposited Pu from the lungs and bronchi plus their non-recognition of the bronchi as the true site for most human lung cancers. The erroneous model used by such organizations also fails totally to take into account the effect of cigarette-smoking upon the physiological function of human lungs. Plutonium nuclides, such as 239 Pu, or other alpha particle-emitting nuclides, in an insoluble form represent an inhalation cancer hazard in a class some 100,000 times more potent than the potent chemical carcinogens, weight for weight. The already-existing lung cancer data for beagle dogs inhaling insoluble PuO 2 particles is clearly in order of magnitude agreement with calculations for humans

  5. Determination of plutonium in pure plutonium nitrate solutions - Gravimetric method

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate gravimetric method for determining the concentration of plutonium in pure plutonium nitrate solutions and reference solutions, containing between 100 and 300 g of plutonium per litre, in a nitric acid medium. The weighed portion of the plutonium nitrate is treated with sulfuric acid and evaporated to dryness. The plutonium sulfate is decomposed and formed to oxide by heating in air. The oxide is ignited in air at 1200 to 1250 deg. C and weighed as stoichiometric plutonium dioxide, which is stable and non-hygroscopic

  6. Studies on health risks to persons exposed to plutonium

    International Nuclear Information System (INIS)

    Voelz, G.L.; Stebbings, J.H. Jr.; Healy, J.W.; Hempelmann, L.H.

    1979-01-01

    Two studies on Los Alamos workers exposed to plutonium have shown no increase in cancers of the lung, bone, and liver, three principal cancers of interest following plutonium deposition. A clinical study of 26 workers exposed 32 years ago shows no cases of cancer other than two skin cancers that were excised successfully. A mortality study of 224 workers, all persons with estimated deposition of 10 nCi or moe in 1974, showed no excess of mortality due to any cause. No bone or liver cancers were present, while one death due to lung cancer was observed as compared to an expected three cases. These negative findings on such small groups are not able to prove or disprove the validity of commonly used risk estimates as recommended in the 1972 BEIR and 1977 UNSCEAR reports, but the data do indicate that much higher risk estimates are not warranted

  7. Studies on health risks to persons exposed to plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Voelz, G.L.; Stebbings, J.H. Jr.; Healy, J.W.; Hempelmann, L.H.

    1979-01-01

    Two studies on Los Alamos workers exposed to plutonium have shown no increase in cancers of the lung, bone, and liver, three principal cancers of interest following plutonium deposition. A clinical study of 26 workers exposed 32 years ago shows no cases of cancer other than two skin cancers that were excised successfully. A mortality study of 224 workers, all persons with estimated deposition of 10 nCi or moe in 1974, showed no excess of mortality due to any cause. No bone or liver cancers were present, while one death due to lung cancer was observed as compared to an expected three cases. These negative findings on such small groups are not able to prove or disprove the validity of commonly used risk estimates as recommended in the 1972 BEIR and 1977 UNSCEAR reports, but the data do indicate that much higher risk estimates are not warranted.

  8. Hematological effects of inhaled plutonium dioxide in beagles

    International Nuclear Information System (INIS)

    Weller, R.E.; Buschbom, R.L.; Park, J.F.

    1995-01-01

    A life-span study indicated that plutonium activity in the thoracic lymph nodes is a contributor to development of lymphopenia in beagles exposed to 239 PuO 2 . Significant lymphopenia was found in 67 (58%) beagles given a single nose-only exposure to 239 PuO 2 to result in mean initial lung depositions ranging from 0.69 to 213.3 kBq. Lymphoid atrophy and sclerosis of the thoracic lymph nodes and lymphopenia were observed in exposure-level groups with initial lung depositions ≥2.5 kBq. Those dogs with final plutonium concentrations in the thoracic lymph nodes ≥0.4 kBq/g and dose rates ≥0.01 Gy/day developed lymphopenia. Marked differences existed between chronically lymphopenic dogs and intermittently lymphopenic dogs with regard to initial lung deposition, time to lymphopenic events and absolute lymphocyte concentrations. Linear regression analysis revealed moderate correlation between reduction in lymphocyte values and initial lung deposition, in both magnitude and time of appearance after exposure. Cumulative dose and dose rate appeared to act together to produce initial effects on lymphocyte populations, while dose rate alone appeared to be responsible for the maintenance and subsequent cycles of lymphopenia seen over the life span. No primary tumors were associated with the thoracic lymph nodes in this study, although 70% of the lymphopenic dogs developed lung tumors. 28 refs., 2 figs., 7 tabs

  9. Simultaneous radiochemical determination of plutonium, strontium, uranium, and iron nuclides and application to atmospheric deposition and aerosol samples

    International Nuclear Information System (INIS)

    Rosner, G.; Hoetzl, H.; Winkler, R.

    1990-01-01

    A procedure for the sequential radiochemical determination of plutonium, strontium, uranium and iron nuclides is described. The separation is carried out on a single anion exchange column. Pu(IV), U(VI) and Fe(III) are fixed on Bio Rad AG 1-X4 from 9 mol/l HCl, while the sample effluent is used for the determination of radiostrontium. Fe and U are eluted separately with 7 mol/l HNO 3 , and Pu(III) is eluted with 1.2 mol/l HCl containing hydrogen peroxide. Subsequently, Pu and U are electrolysed and counted by alpha spectrometry. Radiostrontium is purified by the nitrate method and counted in a low level beta proportional counter. Fe is purified by extraction and cation exchange and 55 Fe is counted by X-ray spectrometry with a Si(Li) detector. The sample preparation and the application of the procedure to large samples, namely aerosols from 10 5 m 3 of air, and monthly deposition samples from 0.6 m 2 sampling area (10-100 l) are described. Chemical yields are for Pu 70 ± 20, for Sr 80 ± 15, for U 80-90, and for Fe 75 ± 10%. As an example, the maximum airborne radionuclide concentrations determined with that procedure in fortnightly collected samples at Neuherberg after the Chernobyl accident were: 239+240 Pu, 2.58; 238 Pu, 1.40; 238 U, 0.65; 234 U, 0.67; 90 Sr, 7600; and 55 Fe, 990 μBqm -3 . With appropriate changes in sample preparation, the procedure is applicable to other kinds of samples. (orig.)

  10. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    International Nuclear Information System (INIS)

    Esteban, A.; Orosco, E.H.; Cassaniti, P.; Greco, L.; Adelfang, P.

    1989-01-01

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author) [es

  11. Irradiation of the foetus from maternal intakes of plutonium

    International Nuclear Information System (INIS)

    Adams, N.; Stather, J.W.

    1984-01-01

    A brief review is given of published animal data on the initial uptake of activity by the foetal and maternal tissues following entry of plutonium into body fluids at various stages during gestation, on the extent to which activity deposited in maternal tissues is subsequently translocated to the foetus and on its distribution in the tissues of the developing foetus. The limited data available from these animal studies do not readily allow the development of a comprehensive human foetal metabolic model but they do suggest a method for estimating radiation doses to the foetus from maternal intakes of plutonium. (U.K.)

  12. Plutonium controversy

    International Nuclear Information System (INIS)

    Gofman, J.W.

    1976-01-01

    If the world chooses to seek a solution to the energy dilemma through nuclear energy, the element plutonium will become an article of commerce to be handled in quantities of thousands of tonnes annually. Plutonium is a uniquely potent inhalation carcinogen, the potential induction of lung cancer dwarfing other possible toxic effects. For reasons to be presented here, it is the author's opinion that plutonium's carcinogenicity has been very seriously underestimated. If one couples the corrected carcinogenicity with the probable degree of industrial containment of the plutonium, it appears that the commercialization of a plutonium-based energy economy is not an acceptable option for society. Sagan's statement that ''the experience of 30 years supports the contention that plutonium can be used safely'' is manifestly indefensible. No meaningful epidemiological study of plutonium-exposed workers for that 30-year period has ever been done. Since thousands of those possibly exposed have left the industry and are not even available to follow-up, it is doubtful that any meaningful study of ''the experience of 30 years'' will ever be accomplished

  13. Preparation of hexavalent plutonium and its determination in the presence of tetravalent plutonium; Preparation de plutonium hexavalent et dosage en presence de plutonium tetravalent

    Energy Technology Data Exchange (ETDEWEB)

    Corpel, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Corpel, J [Institut du Radium, 75 - Paris (France)

    1958-07-01

    In order to study the eventual reduction of plutonium from the VI-valent state to the IV-valent state, in sulphuric medium, under the influence of its own {alpha} radiation or of the {gamma}-rays from a cobalt-60 source, we have developed a method for preparing pure hexavalent plutonium and two methods for determining solutions containing tetravalent and hexavalent plutonium simultaneously. Hexavalent plutonium was prepared by anodic oxidation at a platinum electrode. Study of the oxidation yield as a function of various factors has made it possible to define experimental conditions giving complete oxidation. For concentrations in total plutonium greater than 1.5 x 10{sup -3} M, determination of the two valencies IV and VI was carried out by spectrophotometry at two wavelengths. For lower concentrations, the determination was done by counting, after separation of the tetravalent plutonium in the form of fluoride in the presence of a carrier. (author) [French] Afin d'etudier l'eventuelle reduction du plutonium de l'etat de valence VI a l'etat de valence IV, en milieu sulfurique sous l'influence de son propre rayonnement {alpha} ou des rayons {gamma} d'une source de cobalt-60, nous avons mis au point une methode de preparation de plutonium hexavalent pur et deux methodes de dosage des solutions contenant simultanement du plutonium tetravalent et du plutonium hexavalent. Nous avons prepare le plutonium hexavalent par oxydation anodique au contact d'une electrode de platine. L'etude de rendement de l'oxydation en fonction des divers facteurs nous a permis de definir des conditions experimentales donnant une oxydation complete. Pour des concentrations en plutonium total superieures a 1,5.10{sup -3} M, le dosage des deux valences IV et VI a ete realise par spectrophotometrie a deux longueurs d'onde. Pour des concentrations inferieures, le dosage a ete effectue par comptage apres separation du plutonium tetravalent sous la forme du fluorure en presence d'un entraineur

  14. Plutonium, its occurrence in environment and methods of detection

    Energy Technology Data Exchange (ETDEWEB)

    Petr, I [Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Jaderna a Fysikalne Inzenyrska

    1977-12-01

    A brief survey is given of the physical properties of plutonium nuclides, their toxicity, values of maximum permissible annual intake, and their occurrence in the environment, and of their determination in water, soil, air and biological objects. The principles are stated of the individual methods of plutonium determination, i.e., the method of radiochemical analysis with subsequent detection or alpha spectrometry, the method of filter sampling of air with subsequent alpha spectrometry, coincidence alpha-beta spectrometry or radiochemical analysis, and the use of X and gamma spectrometry. A comparison of the different methods is presented.

  15. Plutonium in nature

    International Nuclear Information System (INIS)

    Madic, C.

    1994-01-01

    Plutonium in nature comes from natural sources and anthropogenic ones. Plutonium at the earth surface comes principally from anthropogenic sources. It is easily detectable in environment. The plutonium behaviour in environment is complex. It seems necessary for the future to reduce releases in environment, to improve predictive models of plutonium behaviour in geosphere, to precise biological impact of anthropogenic plutonium releases

  16. SEPARATION OF PLUTONIUM

    Science.gov (United States)

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  17. Estimation of risks to humans following intake of plutonium

    International Nuclear Information System (INIS)

    Dolphin, G.W.

    1979-01-01

    The lung cancer in humans induced by plutonium intake usually starts in bronchial epithelium. The main types of lung cancer are epidermoid or squamous cell carcinoma, small cell anaplastic carcinoma, carcinoid types and bronchio-loalveolar cell carcinoma. The data on cancer in the patients given intravascular injections of Thorotrast are the only source of data from which risk estimates can be made for liver cancer. In the beagles injected with plutonium citrate, the only type of liver tumors observed in cholangiosarcoma, and if this were the case for humans, then the appropriate risk estimate is 3 times lower in human patients. Bone sarcoma and the cancer of the epithelial surfaces close to bones have been reported extensively in workers and patients exposed to radium-226 and radium-224. In the case of plutonium, it is assumed for the purpose of risk estimates that the cancer of the epithelial surfaces near bones does not occur. Plutonium passes through guts following ingestion or following the clearance of particles initially deposited in respiratory tracts. In the case of all long-lived radionuclides, lower large intestines are the region which receive the greatest dose from the activity passing through guts. It is assumed that plutonium accumulates in bone marrows through the action of macrophages engulfing the plutonium resorbed from bone surfaces. The main uncertainty in estimating the annual limit of intake probably lies in the metabolic and dosimetric models, and to a lesser extent, in the estimate of risk. (Yamashita, S.)

  18. Biological transfer of plutonium via in vivo labeled goat's milk. Final report

    International Nuclear Information System (INIS)

    Sutton, W.W.; Mullen, A.A.; Lloyd, S.R.; Mosley, R.E.

    1976-03-01

    The long physical and biological half-life and high relative toxicity have dictated that considerable effort be devoted to quantifying plutonium transport through the various trophic levels. Despite the fact that biological transport of plutonium has been studied for many years, quantitative values for its transfer to milk, and its subsequent uptake by suckling animals have not been established. Three lactating goats were given intravenous injections of citrate-buffered plutonium nitrate at a rate of 75 microcuries per animal per day for three consecutive days. In all three goats approximately one percent of the total plutonium dose was transferred to the milk by the fifth post-treatment day. Plutonium retained by the tissues was deposited primarily in the liver and bone. In vitro plutonium-labeled milk was also fed to groups of rats and juvenile goats. Tissue concentrations of plutonium from juvenile goats which had received either in vivo or in vitro labeled milk were somewhat variable. Due possibly to this, within group variability and the small number of animals per group (two) there were no clearly discernible differences between treatments. The only comparison point to show a consistent trend was the observation that, as expected, juvenile rats retained more of the ingested dose than the adult animals

  19. Sources of plutonium to the great Miami River

    International Nuclear Information System (INIS)

    Bartelt, G.E.; Kennedy, C.W.; Bobula, C.M. III.

    1978-01-01

    Progress is reported in the study of 238 Pu, in the Great Miami River watershed the contribution of various sources to the total 238 Pu transported by the river. Periodic discharges of industrial wastewater from Mound Laboratory from 1973 to 1975 have released approximately 20 mCi of 238 Pu each year to the Great Miami River. Changes in the wastewater treatment system in 1976 have reduced the annual discharge to less than 3 mCi/year. However, despite this sevenfold reduction of plutonium in the wastewater discharge, the annual flux of 238 Pu down the river has remained relatively constant and is approximately 10 times greater than can be accounted for by the reported effluent discharges. Therefore, other sources of the 238 Pu in the Great Miami River exist. A second possible source of plutonium is the resuspension of sediments enriched by earlier waste water releases and deposited in the river. However, since there appear to be few areas where large accumulations of sediment could occur, it seems improbable that resuspension of earlier sediment deposits would continue to be a significant contributor to the annual flux of plutonium. A much more likely source is the continuing erosion of soil from a canal and stream system contaminated with approx. 5 Ci of 238 Pu, 7 which connects directly to the river 6.9 km upstream from Franklin. Results from samples analyzed in 1978 show the average concentration of 238 Pu in suspended sediments from the canal to be approximately 10 3 times greater than suspended sediment concentrations in the river and waste water effluent.Thus the main contributor to the total amount of plutonium transported by the Great Miami River appears to be highly enriched sediment from the canal, which is eroded into the river where it is then diluted by uncontaminated sediments

  20. Plutonium, americium, and uranium concentrations in Nevada Test Site soil profiles

    International Nuclear Information System (INIS)

    Essington, E.H.; Gilbert, R.O.; Eberhardt, L.L.; Fowler, E.B.

    1975-01-01

    Many soil profile samples were collected by the Nevada Applied Ecology Group from five nuclear safety test sites on the Nevada Test Site and Tonopah Test Range in Nevada, U.S.A. The profile samples were analyzed for 239 Pu, 240 Pu, 241 Am, and in some cases 235 U and 238 U, in order to estimate the depth of radionuclide penetration and level of contamination at specific sampling depths after an extended period of time since deposition on the surface. Nearly 70 individual profiles were examined. About one-half of the profiles exhibited a smooth leaching pattern with more than 95 percent of the plutonium in the top 5 cm. Other profile patterns are discussed relative to mechanical disturbance of the profile after the initial deposition, accumulation of plutonium in specific zones within the soil profile, and occurrence of large amounts of plutonium in the deepest parts of the soil profile. The implications of these observations are discussed with respect to redistribution of radioactivity by wind, water, and burrowing animals, ingestion by burrowing and grazing animals, uptake by vegetation, and cleanup operations. (auth)

  1. Trace analysis of plutonium in environmental samples by resonance ionization mass spectroscopy (RIMS)

    International Nuclear Information System (INIS)

    Erdmann, N.; Herrmann, G.; Huber, G.; Koehler, S.; Kratz, J.V.; Mansel, A.; Nunnemann, M.; Passler, G.; Trautmann, N.; Waldek, A.

    1997-01-01

    Trace amounts of plutonium in the environment can be detected by resonance ionization mass spectroscopy (RIMS). An atomic beam of plutonium is produced after its chemical separation and deposition on a filament. The atoms are ionized by a three-step excitation using pulsed dye-lasers. The ions are mass-selectively detected in a time-of-flight (TOF) mass spectrometer. With this setup a detection limit of 1·10 6 atoms of plutonium has been achieved. Furthermore, the isotopic composition can be determined. Different samples, including soil from the Chernobyl area, IAEA-certified sediments from the Mururoa Atoll and urine, have been investigated. copyright 1997 American Institute of Physics

  2. Hold-up monitoring system for plutonium process tanks

    International Nuclear Information System (INIS)

    Zhu Rongbao; Jin Huimin; Tan Yajun

    1994-01-01

    The development of hold-up monitoring system for plutonium process tanks and a calculation method for α activities deposited in containers and inner walls of pipe are described. The hardware of monitoring system consists of a portable HPGe detector, a φ50 mm x 60 mm NaI(Tl) detector, γ-ray tungsten collimators, ORTEC92X Spectrum Master and an AST-286 computer. The software of system includes Maestro Tm for Window3 and a PHOUP1 hold-up application software for user. The Monte-Carlo simulation calculation supported by MCNP software is performed for the probability calculation of all the unscattering γ-rays reaching to the detection positions from the source terms deposited in the complicated tanks. A measurement mean value for different positions is used to minimize the effect of heterogeneous distribution of source term. The sensitivity is better than 3.7 x 10 6 Bq/kg (steel) for a plutonium simulation source on a 3-8 mm thick steel plate surrounded by 0.8 x 10 -10 C/kg·s γ field from long-life fission products

  3. Optimisation of deep burn incineration of reactor waste plutonium in a PBMR DPP-400 core

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2014-01-01

    In this article an original set of coupled neutronics and thermo-hydraulic simulation results for the VSOP 99/05 diffusion code are presented for advanced fuel cycles for the incineration of weapons-grade plutonium, reactor-grade plutonium and reactor-grade plutonium with its associated Minor Actinides in the 400 MW th Pebble Bed Modular Reactor Demonstration Power Plant. These results are also compared to those of the standard 9.6 wt% enriched 9 g/fuel sphere U/Pu fuel cycle. The weapons-grade and reactor-grade plutonium fuel cycles produced good burn-ups. However, the addition of the Minor Actinides to the reactor-grade plutonium caused a large decrease in the burn-up and thus an unacceptable increase in the heavy metal (HM) content in the spent fuel, which was intended for direct disposal in a deep geological repository, without chemical reprocessing. All the plutonium fuel cycles failed the adopted safety limits used in the PBMR400 in that either the maximum fuel temperature of 1130 °C during normal operation, or the maximum power density of 4.5 kW/sphere was exceeded. All the plutonium fuel cycles also produced positive uniform temperature reactivity coefficients, i.e. the reactivity coefficient where the temperatures of the fuel and the graphite moderator in the fuel spheres were varied together. These unacceptable positive coefficients were experienced at low temperatures, typically below 700 °C. This was due to the influence of the thermal fission cross-section resonances of 239 Pu and 241 Pu. Weapons-grade plutonium produced the worst safety performance. The safety performance of the reactor-grade plutonium also deteriorated when the HM loading was reduced from 3 g/sphere to 2 g or 1 g

  4. Optimisation of deep burn incineration of reactor waste plutonium in a PBMR DPP-400 core

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School for Mechanical and Nuclear Engineering, North West University, PUK-Campus, Private Bag X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [School for Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)

    2014-05-01

    In this article an original set of coupled neutronics and thermo-hydraulic simulation results for the VSOP 99/05 diffusion code are presented for advanced fuel cycles for the incineration of weapons-grade plutonium, reactor-grade plutonium and reactor-grade plutonium with its associated Minor Actinides in the 400 MW{sub th} Pebble Bed Modular Reactor Demonstration Power Plant. These results are also compared to those of the standard 9.6 wt% enriched 9 g/fuel sphere U/Pu fuel cycle. The weapons-grade and reactor-grade plutonium fuel cycles produced good burn-ups. However, the addition of the Minor Actinides to the reactor-grade plutonium caused a large decrease in the burn-up and thus an unacceptable increase in the heavy metal (HM) content in the spent fuel, which was intended for direct disposal in a deep geological repository, without chemical reprocessing. All the plutonium fuel cycles failed the adopted safety limits used in the PBMR400 in that either the maximum fuel temperature of 1130 °C during normal operation, or the maximum power density of 4.5 kW/sphere was exceeded. All the plutonium fuel cycles also produced positive uniform temperature reactivity coefficients, i.e. the reactivity coefficient where the temperatures of the fuel and the graphite moderator in the fuel spheres were varied together. These unacceptable positive coefficients were experienced at low temperatures, typically below 700 °C. This was due to the influence of the thermal fission cross-section resonances of {sup 239}Pu and {sup 241}Pu. Weapons-grade plutonium produced the worst safety performance. The safety performance of the reactor-grade plutonium also deteriorated when the HM loading was reduced from 3 g/sphere to 2 g or 1 g.

  5. Plutonium in intertidal coastal and estuarine sediments in the Northern Irish Sea

    International Nuclear Information System (INIS)

    Aston, S.R.; Assinder, D.J.; Kelly, M.

    1985-01-01

    Surface intertidal sediments from 35 sites in the Irish Sea have been analysed for their 238 Pu and sup(239,240)Pu activities, together with an intensive study of plutonium in sediments of the Esk Estuary (NW England). The range of plutonium activities for the whole survey were 0.14-4118 and 1.3-16 026 Bq kg -1 for 238 Pu and sup(239,240)Pu, respectively. The levels of Pu activity, derived from the Sellafield nuclear fuel reprocessing effluents, in sediments are controlled by lithological factors and the influence of transport and post-depositional processes. Grain size distribution is particularly important, the major part of plutonium activity being in the mud fraction of all sediments. The data suggest that over the Irish Sea coastline, dynamic mixing of sediment grains by reworking and resuspension and/or by dispersion in tidal currents are important in determining plutonium distributions. The exponential decrease in sediment plutonium activities away from the Sellafield source is attributed to the progressive mixing with older contaminated and uncontaminated sediments. (author)

  6. The use of the average plutonium-content for criticality evaluation of boiling water reactor mixed oxide-fuel transport and storage packages

    International Nuclear Information System (INIS)

    Mattera, C.

    2003-01-01

    Currently in France, criticality studies in transport configurations for Boiling Water Reactor Mixed Oxide fuel assemblies are based on conservative hypothesis assuming that all rods (Mixed Oxide (Uranium and Plutonium), Uranium Oxide, Uranium and (Gadolinium Oxide rods) are Mixed Oxide rods with the same Plutonium-content, corresponding to the maximum value. In that way, the real heterogeneous mapping of the assembly is masked and covered by an homogenous Plutonium-content assembly, enriched at the maximum value. As this calculation hypothesis is extremely conservative, Cogema Logistics (formerly Transnucleaire) has studied a new calculation method based on the use of the average Plutonium-content in the criticality studies. The use of the average Plutonium-content instead of the real Plutonium-content profiles provides a highest reactivity value that makes it globally conservative. This method can be applied for all Boiling Water Reactor Mixed Oxide complete fuel assemblies of type 8 x 8, 9 x 9 and 10 x 10 which Plutonium-content in mass weight does not exceed 15%; it provides advantages which are discussed in the paper. (author)

  7. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  8. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  9. Plutonium-aerosol emission rates and human pulmonary deposition calculations for Nuclear Site 201, Nevada Test Site

    International Nuclear Information System (INIS)

    Shinn, J.H.; Homan, D.N.

    1982-01-01

    This study determined the plutonium-aerosol fluxes from the soil to quantify (1) the extent of potential human exposure by deep-lung retention of alpha-emitting particles; (2) the source term should there be any significant, long-term, transport of plutonium aerosols; and (3) the resuspension factor and rate so that, for the first time at any nuclear site, one may calculate how long it will take for wind erosion to carry away a significant amount of the contaminated soil. High-volume air samplers and cascade impactors were used to characterize the plutonium aerosols. Meteorological flux-profile methods were used to calculate dust and plutonium aerosol emission rates. A floorless wind tunnel (10-m long) was used to examine resuspension under steady-state, high wind speed. The resuspension factor was two orders of magnitude lower than the other comparable sites at NTS and elsewhere, and the average resuspension rate of 5.3 x 10 -8 /d was also very low, so that the half-time for resuspension by wind erosion was about 36,000 y

  10. Stability of plutonium contaminated sediments in the Miami--Erie Canal

    International Nuclear Information System (INIS)

    Farmer, B.M.; Carfagno, D.G.

    1978-01-01

    This study was conducted to evaluate the stability of plutonium-contaminated sediment in the Miami-Erie Canal. Correlations were sought to relate concentrations at air sampling stations to plutonium-238 concentrations in air and stack emissions, wind direction, particulate loading, rainfall, and construction activities. There appears to be some impact on airborne concentrations at air sampling stations 122 and 123 from the contaminated sediment in the canal and ponds area. For purposes of this evaluation, it was assumed that the plutonium-238 found in the air samples came from the contaminated sediment in the canal/ponds area. To complete the evaluation of the inhalation pathway, dose calculations were performed using actual airborne concentrations of plutonium-238 measured at sampler 123. The dose equivalent to an individual in that area was calculated for 1 yr and 70 yr. Dose calculations were also performed on potential uptake of contaminated vegetation from that area for 1 yr and 70 yr. This study indicates that, although the contaminated sediments in the canal and pond area appear to contribute to airborne plutonium-238, the observed maximum monthly concentration of plutonium-238 in air is a small fraction of the DOE Radioactivity Concentration Guide (RCG) and the nine-month average concentration of plutonium-238 in air observed thus far during 1977 is less than 1% of the RCG. Dose equivalents, conservatively calculated from these actual data, are well within existing DOE standards and proposed EPA guidance

  11. Simultaneous radiochemical determination of plutonium, strontium, uranium, and iron nuclides and application to atmospheric deposition and aerosol samples

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Hoetzl, H.; Winkler, R. (Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Strahlenschutz)

    1990-11-01

    A procedure for the sequential radiochemical determination of plutonium, strontium, uranium and iron nuclides is described. The separation is carried out on a single anion exchange column. Pu(IV), U(VI) and Fe(III) are fixed on Bio Rad AG 1-X4 from 9 mol/l HCl, while the sample effluent is used for the determination of radiostrontium. Fe and U are eluted separately with 7 mol/l HNO{sub 3}, and Pu(III) is eluted with 1.2 mol/l HCl containing hydrogen peroxide. Subsequently, Pu and U are electrolysed and counted by alpha spectrometry. Radiostrontium is purified by the nitrate method and counted in a low level beta proportional counter. Fe is purified by extraction and cation exchange and {sup 55}Fe is counted by X-ray spectrometry with a Si(Li) detector. The sample preparation and the application of the procedure to large samples, namely aerosols from 10{sup 5} m{sup 3} of air, and monthly deposition samples from 0.6 m{sup 2} sampling area (10-100 l) are described. Chemical yields are for Pu 70 {plus minus} 20, for Sr 80 {plus minus} 15, for U 80-90, and for Fe 75 {plus minus} 10%. As an example, the maximum airborne radionuclide concentrations determined with that procedure in fortnightly collected samples at Neuherberg after the Chernobyl accident were: {sup 239+240}Pu, 2.58; {sup 238}Pu, 1.40; {sup 238}U, 0.65; {sup 234}U, 0.67; {sup 90}Sr, 7600; and {sup 55}Fe, 990 {mu}Bqm{sup -3}. With appropriate changes in sample preparation, the procedure is applicable to other kinds of samples. (orig.).

  12. Plutonium

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Plutonium, which was obtained and identified for the first time in 1941 by chemist Glenn Seaborg - through neutron irradiation of uranium 238 - is closely related to the history of nuclear energy. From the very beginning, because of the high radiotoxicity of plutonium, a tremendous amount of research work has been devoted to the study of the biological effects and the consequences on the environment. It can be said that plutonium is presently one of the elements, whose nuclear and physico-chemical characteristics are the best known. The first part of this issue is a survey of the knowledge acquired on the subject, which emphasizes the sanitary effects and transfer into the environment. Then the properties of plutonium related to energy generation are dealt with. Fissionable, like uranium 235, plutonium has proved a high-performance nuclear fuel. Originally used in breeder reactors, it is now being more and more widely recycled in light water reactors, in MOX fuel. Reprocessing, recycling and manufacturing of these new types of fuel, bound of become more and more widespread, are now part of a self-consistent series of operations, whose technical, economical, industrial and strategical aspects are reviewed. (author)

  13. Learning more about plutonium

    International Nuclear Information System (INIS)

    2005-01-01

    This document offers chemical, metallurgical and economical information on the plutonium, a hard white radioelement. It deals also on the plutonium formation in the earth, the plutonium use in the nuclear industry, the plutonium in the environment and the plutonium toxicity. (A.L.B.)

  14. A survey of the Maralinga atomic weapons testing range for residual plutonium contamination

    International Nuclear Information System (INIS)

    Ellis, W.R.

    1979-06-01

    Residual plutonium levels in soil, flora, fauna and the air of the Maralinga (South Australia) Atomic Weapons Testing Range are presented and discussed. It is shown that only on rare occasions (and possibly never) would the plutonium concentration in air from wind resuspended dust exceed the maximum allowable concentration for continuous exposure of the general public. In the case of artificially resuspended dust, this maximum concentration could be exceeded for short periods, but the accompanying dust level would be such that working conditions would be uncomfortable, if not intolerable. Potential hazards from other possible exposure routes are so low that they are of no consequence

  15. Estimation of environmental transfer of plutonium and the dose to man

    International Nuclear Information System (INIS)

    1981-09-01

    The need to examine the behaviour of individual radionuclides in the environment is stressed. Sometimes unique pathways of exposure exist and more specialized methods of dose estimation could be considered. The toxicity of the alpha emitting plutonium isotopes is of concern and their long half-lives lead to persistence in the environment and long-term potential for exposing man. Some formulas are therefore presented for making preliminary estimates of environmental transfer and dose for the radioisotopes of the element plutonium. Exposure of man to plutonium in the environment may occur by inhalation or ingestion - the inhalation and ingestion intake rates for which specific pathways have been considered are listed. The primary pathway to man is the inhalation intake; the most important ingestion intake is the consumption of plant foods due to the greater concentration achieved and the higher consumption rates of these foods. Also discussed is plutonium in the nuclear fuel cycle, the release of plutonium from current nuclear installations, the occurrence of plutonium from weapons fallout, airborne releases of plutonium (concentration in the air, deposition rate, resuspension, transfer to plants - foliar and root uptake - transfer to milk, etc.), liquid release (concentration in water, transfer to drinking water, to fish, to plants by irrigation, to milk, to meat). The importance of the release situation and local environment conditions including land and water utilization, population factors and habits for any further investigation is pointed out

  16. Plutonium mobilization from sedimentary sources to solution in the marine environment

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.

    1979-01-01

    Inventories of plutonium radionuclides greatly in excess of global fallout levels persists in the benthic environments of Bikini and Eniwetok Atolls. It now appears that the atolls have reached a chemical steadystate condition with respect to the partitioning of 239+240 Pu between solution and solid phases of the environment. The mobilized 239+240 Pu has solute-like characteristics, passes rapidly and readily through dialysis membranes, has adsorption characteristics similar to those of fallout plutonium in the open ocean, and exists in solution primarily as some oxidized +5 or +6 chemical species. Water-column profiles of 239+240 Pu taken outside the atolls show a plutonium excess in the deep water mass. This remobilized 239+240 Pu possibly originates from the contaminated sediments previously deposited on the outer slopes of the atolls and surrounding basins

  17. Airborne plutonium-239 and americium-241 concentrations measured from the 125-meter Hanford Meteorological Tower

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Airborne plutonium-239 and americium-241 concentrations and fluxes were measured at six heights from 1.9 to 122 m on the Hanford meteorological tower. The data show that plutonium-239 was transported on nonrespirable and small particles at all heights. Airborne americium-241 concentrations on small particles were maximum at the 91 m height

  18. Decorporation approach following rat lung contamination with a moderately soluble compound of plutonium using local and systemic Ca-DTPA combined chelation

    International Nuclear Information System (INIS)

    Gremy, Olivier; Bruel, Sylvie; Renault, Daniel; Van der Meeren, Anne; Tsapis, Nicolas

    2012-01-01

    Decorporation efficacy of prompt pulmonary delivery of DTPA dry powder was assessed following lung contamination with plutonium nitrate and compared to an intravenous injection of DTPA solution and a combined administration of both DTPA compounds. In addition, efficacy of a delayed treatment was assessed. In case of either early or late administration, insufflated DTPA was more efficient than intravenously injected DTPA in reducing the plutonium lung burden due to its high local concentration. Prompt treatment with DTPA powder was also more effective in limiting extrapulmonary deposits by removing the early transportable fraction of plutonium from lungs prior its absorption into blood. Translocation of DTPA from lungs to blood may also contribute to the decrease in extrapulmonary retention, as shown by reduced liver deposit after delayed pulmonary administration of DTPA. Efficacy of DTPA dry powder was further increased by the combined intravenous administration of DTPA solution for reducing extrapulmonary deposits of plutonium and promoting its urinary excretion. According to our results, the most effective treatment protocol for plutonium decorporation was the early pulmonary delivery of DTPA powder supplemented by an intravenous injection of DTPA solution. Following inhalation of plutonium as nitrate chemical form, this combined chelation therapy should provide a more effective method of treatment than conventional intravenous injection alone. At later stages following lung contamination, pulmonary administration of DTPA should also be considered as the treatment of choice for decreasing the lung burden. (authors)

  19. Civil plutonium management

    International Nuclear Information System (INIS)

    Sicard, B.; Zaetta, A.

    2004-01-01

    During 1960 and 1970 the researches on the plutonium recycling in fast neutrons reactors were stimulated by the fear of uranium reserves diminishing. At the beginning of 1980, the plutonium mono-recycling for water cooled reactors is implementing. After 1990 the public opinion concerning the radioactive wastes management and the consequences of the disarmament agreements between Russia and United States, modified the context. This paper presents the today situation and technology associated to the different options and strategical solutions of the plutonium management: the plutonium use in the world, the neutronic characteristics, the plutonium effect on the reactors characteristics, the MOX behavior in the reactors, the MOX fabrication and treatment, the possible improvements to the plutonium use, the concepts performance in a nuclear park. (A.L.B.)

  20. Beiological behaviour of plutonium 239

    International Nuclear Information System (INIS)

    Lafuma, J.

    1976-01-01

    Plutonium is scarcely incorporated from the environment into the food chain because of its unability to penetrate biological membranes. Workers can be contaminated through inhalation or deposition in wounds. Pu present in the pulmonary alveoles or incorporated in wounds is redistributed in the organism either through cellular transport resulting in an important accumulation in the lymphatic ganglia either by blood transport as dissolved Pu bound to proteins. This mechanism results in a progressive accumulation of the radioelement in liver and bone. It is estimated that about 40% of the Pu present in the blood is deposited in the liver from which one half is eliminated every ten years. 50% is deposited in bone from which the elimination takes much longer and 10% is eliminated with the urines. Intravenous injection of DIPA is very useful for Pu elimination immediately after contamination. For elimination of pulmonary Pu the technique of ''pulmonary washing'' is suggested. This method reduces the pulmonary contamination in laboratory aniamls by a factor 10. (author)

  1. The plutonium society

    International Nuclear Information System (INIS)

    Mez, L.; Richter, M.

    1981-01-01

    The lectures of an institute are reported on, which took place between 25th and 27th January 1980 in Berlin. The subsequent public panel discussion with representations from the political parties is then documentated in a few press-reports. The themes of the 8 lectures are: views and facts on plutonium, plutonium as an energy resource, military aspects of the production of plutonium, economic aspects of the plutonium economy, the position of the trade unions on the industrial reconversion, the alleged inevitability of a plutonium society and the socio-political alternatives and perspectives of nuclear waste disposal. (UA) [de

  2. Calibration for plutonium-238 lung counting at Mound Laboratory

    International Nuclear Information System (INIS)

    Tomlinson, F.K.

    1976-01-01

    The lung counting facility at Mound Laboratory was calibrated for making plutonium-238 lung deposition assessments in the fall of 1969. Phoswich detectors have been used since that time; however, the technique of calibration has improved considerably. The current technique of calibrating the lung counter is described as well as the method of error analysis and determination of the minimum detectable activity. A Remab hybrid phantom is used along with an attenuation curve which is derived from plutonium loaded lungs and ground beef absorber measurements. The errors that are included in an analysis as well as those that are excluded are described. The method of calculating the minimum detectable activity is also included

  3. Plutonium and the Rio Grande: Environmental change and contamination in the nuclear age

    International Nuclear Information System (INIS)

    Graf, W.L.

    1994-01-01

    An attempt is made to analyze questions concerning the issue of plutonium in the Rio Grande. The author describes in great detail how he arrived at the conclusions. The objective has been to produce research that is absolutely transparent, so that its results can be fairly evaluated and duplicated by anyone. The results of this work show that plutonium from Los Alamos National Laboratory and atmospheric fallout has been deposited along the Rio Grande in small, though detectable, quantities in certain predictable places

  4. What is plutonium stabilization, and what is safe storage of plutonium?

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1995-01-01

    The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ''What is required for safe, multidecade, plutonium storage?'' The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided

  5. Digital pile-up rejection for plutonium experiments with solution-grown stilbene

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, M.M., E-mail: mmbourne@umich.edu; Clarke, S.D., E-mail: clarkesd@umich.edu; Paff, M., E-mail: mpaff@umich.edu; DiFulvio, A., E-mail: difulvio@umich.edu; Norsworthy, M., E-mail: marknors@umich.edu; Pozzi, S.A., E-mail: pozzisa@umich.edu

    2017-01-11

    A solution-grown stilbene detector was used in several experiments with plutonium samples including plutonium oxide, mixed oxide, and plutonium metal samples. Neutrons from different reactions and plutonium isotopes are accompanied by numerous gamma rays especially by the 59-keV gamma ray of {sup 241}Am. Identifying neutrons correctly is important for nuclear nonproliferation applications and makes neutron/gamma discrimination and pile-up rejection necessary. Each experimental dataset is presented with and without pile-up filtering using a previously developed algorithm. The experiments were simulated using MCNPX-PoliMi, a Monte Carlo code designed to accurately model scintillation detector response. Collision output from MCNPX-PoliMi was processed using the specialized MPPost post-processing code to convert neutron energy depositions event-by-event into light pulses. The model was compared to experimental data after pulse-shape discrimination identified waveforms as gamma ray or neutron interactions. We show that the use of the digital pile-up rejection algorithm allows for accurate neutron counting with stilbene to within 2% even when not using lead shielding.

  6. Studies of plutonium and the lymphatic system: six years of progress at Colorado State University

    International Nuclear Information System (INIS)

    Lebel, J.L.; Bistline, R.W.; Schallberger, J.A.; Dagle, G.E.; Gomez, L.S.

    1976-01-01

    Air-oxidized PuO 2 , high-fired (850 0 C) PuO 2 , Pu(NO 3 ) 4 , PuF 4 , and PuCl 3 , all of which had known amounts of 241 Am, were implanted over the left metacarpus of beagles. The concentration of plutonium and 241 Am in various tissues was measured as a function of time. The effect of diethylenetriaminepentaacetate (DTPA) therapy on organ deposition was studied. Significant differences in the translocation dynamics of air-oxidized PuO 2 , high-fired PuO 2 , and Pu(NO 3 ) 4 in the left superficial cervical lymph node (LSCLN) were observed by in vivo measurement and radiochemical analysis. A 3 percent buildup of plutonium was observed 2 weeks after implantation of air-oxidized PuO 2 , with an exponential buildup to 17 percent at 1 year. With Pu(NO 3 ) 4 and high-fired PuO 2 , the activity accumulation built up to a peak of 31 and 20 percent, respectively, at 30 and 60 days after implantation, followed by a gradual regression. At the implant site 1 year postimplant, a 70 percent reduction in activity was observed with Pu(NO 3 ) 4 , a 90 percent reduction with PuO 2 (high-fired), and only a 20 percent reduction with air-oxidized PuO 2 . The effect of larger particle size on the movement of plutonium from a wound site was speculated. Chemical form and physical form appear to change the rate of translocation and relative depositions of plutonium and americium in various organs.Particle size was not found to be an important factor in the total movement of plutonium in afferent and efferent lymph. More plutonium moves in the cellular fraction of afferent and efferent lymph regardless of particle size. The clearance of plutonium particles from the lymph nodes was associated with necrosis of macrophages. The effect of DTPA therapy on plutonium concentration was greater for the nitrate than for the other chemical forms

  7. Reanalysis of gastrointestinal absorption factors for plutonium and other actinide elements

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Larsen, R.P.; Toohey, R.E.; Moretti, E.S.; Oldham, R.D.; Spaletto, M.I.; Engel, M.C.

    1981-01-01

    This project studies the gastrointestinal absorption of plutonium and other actinide elements relevant to nuclear power production, at concentrations at or below their respective maximum permissible concentrations (MPC's) in drinking water, using high specific activity isotopes. The gastrointestinal absorption of plutonium is measured in mice, rats, and dogs exposed to plutonium either via drinking water or by gavage. Plutonium concentrations are determined in liver and eviscerated carcass at 6 days (mice and rats) or 4 weeks (dogs). Administered solutions are 1 x 10 -10 M in Pu (the molar concentration at MPC for 239 Pu) and contain one of several high specific activity isotopes ( 237 Pu, 47-day half-life; 236 Pu, 2.8-year half-life; 238 Pu, 86-year half-life). Fasted mice and rats, administered plutonium solutions that are: (1) low in concentration (10- 10 M); and (2) carefully prepared to assure a given oxidation state and to avoid hydrolysis and polymes, and major policy issues. The first HEED for near-term battery energy storage systems (lead/acid, nickel/zinc, and nickel/iron) astention being paid to potential releases of radionuclides at relatively short times after disposal

  8. Concentration and purification of plutonium solutions by means of ion-exchange columns

    Energy Technology Data Exchange (ETDEWEB)

    Durham, R W; Aikin, A M

    1953-02-15

    Equilibrium experiments using Dowex 50 ion-exchange resin and nitric acid solutions of Pu{sup 3+}, UO{sub 2}{sup 2+}, Fe{sup 2+} cations have yielded values for the absorption affinities for these ions. Trivalent plutonium was found to be far more strongly absorbed than UO{sub 2}{sup 2+} and Fe{sup 2+}. Column studies have shown that uranium can be completely separated from plutonium even when the initial concentration of uranium is very much greater than that of the plutonium. A plutonium concentration increase of about fifty-fold can be obtained from solutions about 10{sup -3} M in plutonium and 1.0M in nitric acid. The equation K{sub Pu}{sup 3+} = X{sub R} (1-X{sub S}){sup 3} C{sub S}{sup 2}/X{sub S} (1-X{sub R}){sup 3} C{sub R}{sup 2} for estimating the maximum amount of plutonium taken up by a column of resin of unit volume from a solution of total equivalent concentration, C{sub S} , has been shown to hold for values of C{sub S} up to 3 equivalents per litre. X{sub R}, the equivalent fraction of plutonium on the resin, is the number of equivalents of plutonium absorbed by the resin divided by the total capacity of the column. X{sub S}, the equivalent fraction of plutonium in solution, is the equivalent concentration of plutonium divided by the total equivalent concentration of cations in solution. C{sub R} is the total capacity of the resin in milli-equivalents per gram of dry resin. Recommendations have been made for the application and operation of ion-exchange columns in the Plutonium-Extraction Plant. (author)

  9. Distribution of radium and plutonium in human bone

    International Nuclear Information System (INIS)

    Schlenker, R.A.

    1985-01-01

    This review covers studies of the microdistribution of radium and plutonium in human bone, conducted at Argonne with emphasis on the alpha-spectrometric method of measurement. Alpha spectrometry offers high spatial resolution and is well suited to the measurement of radionuclide concentrations near bone surfaces. With these techniques surface deposit thicknesses have been measured to be about 1 μm thick for isotopes of lead, radium and the actinides, and volume deposits of 226 Ra have been found to be quite nonuniform near bone surfaces, leading to endosteal tissue dose rates that are higher than expected under the assumption of uniform volume concentration normally used in radiation protection calculations. With autoradiography, the bony septa of the mastoid air cell system have been found to be depleted in radium relative to the bone tissue surrounding them; this is expected to have a significant influence on the dosimetry of the mastoid epithelia. A combination of autoradiographic and morphometric measurements indicates that specific activities in the axial skeleton are higher than in the appendicular skeleton, primarily because the former has higher bone surface-to-volume ratios and higher bone surface concentrations of plutonium. 19 references, 14 figures, 6 tables

  10. Plutonium solubilities

    International Nuclear Information System (INIS)

    Puigdomnech, I.; Bruno, J.

    1991-02-01

    Thermochemical data has been selected for plutonium oxide, hydroxide, carbonate and phosphate equilibria. Equilibrium constants have been evaluated in the temperature range 0 to 300 degrees C at a pressure of 1 bar to T≤100 degrees C and at the steam saturated pressure at higher temperatures. Measured solubilities of plutonium that are reported in the literature for laboratory experiments have been collected. Solubility data on oxides, hydroxides, carbonates and phosphates have been selected. No solubility data were found at temperatures higher than 60 degrees C. The literature solubility data have been compared with plutonium solubilities calculated with the EQ3/6 geochemical modelling programs, using the selected thermodynamic data for plutonium. (authors)

  11. Radioecological studies on plutonium and iodine-129 in the surroundings of the Karlsruhe reprocessing plant

    International Nuclear Information System (INIS)

    Schuettelkopf, H.; Pimpl, M.

    1982-01-01

    Plutonium and 129 I are emitted from the Karlsruhe Reprocessing Plant (WAK) together with exhaust air and liquid effluents. Plutonium dispersion in the environment was used to calculate the dispersion factors, to determine the rates of deposition on grass and of the total deposition rates, to measure the distribution at depth of plutonium in the soil and to evaluate the contamination of plants and animals in the environment of the Karlsruhe Reprocessing Plant. The plutonium emissions with the liquid effluents were studied to deepen understanding of the process of sedimentation in a river system. Sediments, water samples, aerosols and living organisms from the Altrhein were examined. Factors of transfer to various organisms living in the Altrhein were measured. Most of the 129 I release from WAK goes via the exhaust air: this even applies after installation of an iodine filter into the exhaust air stack. The 129 I contamination of the environmental air, the soil, thyroids and milk was measured. Regarding the milk/air concentration ratio, a mean value of 210 was determined with a scattering range of 50 to 1480. Soil contamination was studied very thoroughly. Iodine-129 is transported into lower soil layers at a very slow rate only, if at all. The contamination of the soil with 129 I remained largely constant during the three years of investigations. The low rates of deposition of 0.02 to 0.05 cm/s indicate that 129 I is released to the environmental air again from plants undergoing the process of rotting. (author)

  12. Conversion of metal plutonium to plutonium dioxide by pyrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Panov, A.V.; Subbotin, V.G. [Russian Federal Nuclear Center, ALL-Russian Science and Research Institute of Technical Physics, Snezhinsk (Russian Federation); Mashirev, V.P. [ALL-Russian Science and Research Institute of Chemical Technology, Moscow (Russian Federation)

    2000-07-01

    Report contains experimental results on metal plutonium of weapon origin samples conversion to plutonium dioxide by pyrochemical method. Circuits of processes are described. Their advantages and shortcomings are shown. Parameters of plutonium dioxide powders (phase and fraction compositions, poured density) manufactured by pyrochemical method in RFNC-VNIITF are shown as well. (authors)

  13. Properties of plutonium

    International Nuclear Information System (INIS)

    Ahn, Jin Su; Yoon, Hwan Ki; Min, Kyung Sik; Kim, Hyun Tae; Ahn, Jong Sung; Kwag, Eon Ho; Ryu, Keon Joong

    1996-03-01

    Plutonium has unique chemical and physical properties. Its uniqueness in use has led to rare publications, in Korea. This report covers physical aspects of phase change of metal plutonium, mechanical properties, thermal conductivity, etc, chemical aspects of corrosion, oxidation, how to produce plutonium from spent fuels by describing various chemical treatment methods, which are currently used and were used in the past. It also contains characteristics of the purex reprocessing process which is the most widely used nowadays. And show processes to purify and metalize from recovered plutonium solution. Detection and analysis methods are introduced with key pints for handling, critical safety, toxicity, and effects on peoples. This report gives not only a general idea on what plutonium is, rather than deep technical description, but also basic knowledge on plutonium production and safeguards diversion from the view point of nonproliferation. 18 refs. (Author) .new

  14. Properties of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jin Su; Yoon, Hwan Ki; Min, Kyung Sik; Kim, Hyun Tae; Ahn, Jong Sung; Kwag, Eon Ho; Ryu, Keon Joong [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-03-01

    Plutonium has unique chemical and physical properties. Its uniqueness in use has led to rare publications, in Korea. This report covers physical aspects of phase change of metal plutonium, mechanical properties, thermal conductivity, etc, chemical aspects of corrosion, oxidation, how to produce plutonium from spent fuels by describing various chemical treatment methods, which are currently used and were used in the past. It also contains characteristics of the purex reprocessing process which is the most widely used nowadays. And show processes to purify and metalize from recovered plutonium solution. Detection and analysis methods are introduced with key pints for handling, critical safety, toxicity, and effects on peoples. This report gives not only a general idea on what plutonium is, rather than deep technical description, but also basic knowledge on plutonium production and safeguards diversion from the view point of nonproliferation. 18 refs. (Author) .new.

  15. Plutonium-238 and plutonium-239 metabolism in dairy cows following ingestion of mixed oxides

    International Nuclear Information System (INIS)

    Patzer, R.G.; Mullen, A.A.; Sutton, W.W.; Potter, G.D.; Mosley, R.E.; Efurd, D.W.; Stalnaker, N.D.

    1985-01-01

    Dairy cows were given oral dosage of plutonium-238 and plutonium-239 dioxide particles in a study to determine the relative gastrointestinal absorption and tissue distribution of the nuclides. Two cows were given particles in which the two isotopes were homogeneously mixed within the particles. A third cow was given two batches of particles which contained either plutonium-238 or plutonium-239. Results indicate that, when the two isotopes of plutonium are homogeneous within the particles, there is no difference between plutonium-238 and plutonium-239 in the relative gastrointestinal absorption and tissue distribution

  16. High-temperature enthalpies of plutonium monocarbide and plutonium sesquicarbide

    International Nuclear Information System (INIS)

    Oetting, F.L.

    1979-01-01

    The high-temperature enthalpies of plutonium monocarbide and plutonium sesquicarbide have been determined with a copper-block calorimeter of the isoperibol type. The experimental enthalpy data, which was measured relative to 298 K, covered the temperature range from 400 to 1500 K. The calculation of the temperature rise of the calorimeter takes into account the added heat evolution from the radioactive decay of the plutonium samples. These enthalpy results, combined with the heat capacity and entropy of the respective carbide at 298 K available from the literature, has made it possible to generate tables of thermodynamic functions for the plutonium carbides. The behavior of the heat capacity of both of the plutonium carbides, i.e., a relatively steep increase in the heat capacity as the temperature increases, may be attributed to a premelting effect with the formation of vacancies within the crystal lattice although a theoretical treatment of this phenomenon is not given

  17. Modelling the transport of sediments and plutonium from the Mururoa lagoon

    International Nuclear Information System (INIS)

    Rajar, R.; Zagar, D.

    1999-01-01

    The paper deals with the three-dimensional simulation of resuspension and transport of sediments from the Mururoa lagoon into the Pacific Ocean. These sediments were contaminated mainly by plutonium during French nuclear tests (from 1966 to 1996). Two cases were simulated: 'Normal conditions', taking into account permanent action of trade winds and tides and 'storm conditions', where the effect of a tropical cyclone with maximum wind velocity of 150 km/h and with a frequency of 1 storm per 10 years is simulated. The final results show, that the normal conditions cause an annual outflow of 8 x 10 4 tons of sediment and 8 GBq of plutonium, while one tropical cyclone would cause outflow of 3.9 x 10 6 tons of sediment and about 0.7 TBq of plutonium. (author)

  18. Plutonium

    International Nuclear Information System (INIS)

    Koelzer, W.

    1989-03-01

    This report contains with regard to 'plutonium' statements on chemistry, occurrence and reactions in the environment, handling procedures in the nuclear fuel cycle, radiation protection methods, biokinetics, toxicology and medical treatment to make available reliable data for the public discussion on plutonium especially its use in nuclear power plants and its radiological assessment. (orig.) [de

  19. Plutonium

    International Nuclear Information System (INIS)

    Mueller-Christiansen, K.; Wollesen, M.

    1979-01-01

    As emotions and fear of plutonium are neither useful for the non-professionals nor for the political decision makers and the advantages and disadvantages of plutonium can only put against each other under difficulties, the paper wants to present the most essential scientific data of plutonium in a generally understandable way. Each of the individual sections is concluded and they try to give an answer to the most discussed questions. In order to make understanding easier, the scientific facts are only brought at points where it cannot be done without for the correctness of the presentation. Many details were left out knowingly. On the other hand, important details are dealt with several times if it seems necessary for making the presentation correct. The graphical presentations and the figures in many cases contain more than said in the text. They give the interested reader hints to scientific-technical coherences. The total material is to enable the reader to form his own opinion on plutonium problems which are being discussed in public. (orig./HP) [de

  20. The comparative distribution of thorium and plutonium in human tissues

    International Nuclear Information System (INIS)

    Singh, Narayani P.; Shawki Amin Ibrahim; Cohen, Norman; Wrenn, McDonald E.

    1978-01-01

    Thorium is the most chemically and biologically similar natural element to the manmade element plutonium. Both are actinides, and for both the most stable valency state is +4, and solubility in natural body fluids is low. They are classified together in ICRP Lung Model. The present paper deals with the question of whether or not the analogy between the two actinides in terms of deposition and retention in human tissues is a good one. Preliminary results on the thorium contents ( 228,230 Th and 232 Th) of three sets of human tissues from a western U.S. town containing a uranium tailings pile are compared with the reported values of plutonium content of human tissues from the general populations who are exposed to environmental plutonium from fallout of nuclear detonations. Samples were taken at autopsy where sudden death had occurred. For the three isotopes of thorium, the ratio of the content of each (pCi/organ, normalized by organ weight to ICRP Reference Man) in lung to lymph nodes varies from 2-25 for individuals with a mean of 8; this is similar to that we infer from the literature for 239 , 240 Pu which suggests a ratio of lung to lymph nodes with a mean of approximately 7. However, the relative thorium contents of lung and liver are dissimilar, lung/liver for thorium being 3.5 and for plutonium 0.2 to 0.1. Similarly, the ratios of thorium and plutonium content of liver and bone vary significantly; the ratio for thorium is 0.1 and for plutonium 0.8 to 0.5. The most significant observation at this stage is that the relative accumulation of thorium in human liver is much less than that of plutonium. Some of the plausible reasons will be discussed. (author)

  1. PRODUCTION OF PLUTONIUM METAL

    Science.gov (United States)

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  2. Plutonium storage phenomenology

    International Nuclear Information System (INIS)

    Szempruch, R.

    1995-12-01

    Plutonium has been produced, handled, and stored at Department of Energy (DOE) facilities since the 1940s. Many changes have occurred during the last 40 years in the sources, production demands, and end uses of plutonium. These have resulted in corresponding changes in the isotopic composition as well as the chemical and physical forms of the processed and stored plutonium. Thousands of ordinary food pack tin cans have been used successfully for many years to handle and store plutonium. Other containers have been used with equal success. This paper addressees the exceptions to this satisfactory experience. To aid in understanding the challenges of handling plutonium for storage or immobilization the lessons learned from past storage experience and the necessary countermeasures to improve storage performance are discussed

  3. Supported extractant membranes for americium and plutonium recovery

    International Nuclear Information System (INIS)

    Muscatello, A.C.; Navratil, J.D.; Killion, M.E.; Price, M.Y.

    1987-01-01

    Solid supported liquid membranes(SLM) are useful in transferring and concentrating americium and plutonium from nitrate solutions. Specifically, DHDECMP(dihexyl-N,N-diethylcarbamoylmethylphosphonate) supported on Accurel or Celgard polypropylene hollow fibers assembled in modular form transfers >95% of the americium and >70% of the plutonium from high nitrate (6.9 M), low acid (0.1 M) feeds into 0.25 M oxalic acid stripping solution. Membranes supporting TBP (tri-n-butylphosphate) also transfer these metal ions. Maximum permeabilities were observed to be 1 x 10 -3 cm sec -1 , similar to the values for other systems. The feed:strip volume ratio shows an inverse relationship to the fraction of metal ion transferred. Cation exchangers may be used to concentrate americium from the strip solution

  4. Long term management of wastes contaminated by plutonium

    International Nuclear Information System (INIS)

    Marque, Y.

    1983-01-01

    For the different categories of wastes, the evolution of the cumulated production until the year 2000 is described by curves and the general situation of production points is presented, all that in France. The storage conditions are specified according to the type of wastes, category A, B, or C; the threshold under which the waste is classified in A category being fixed by the safety authorities at 2.10 4 CMA (maximum permissible concentration), that is to say for plutonium 1Ci/m 3 . The knowledge of waste activity is another basic element of the management of such wastes, the fixing of the threshold, above which wastes contaminated by plutonium have to be stored underground, still keeping to be specified [fr

  5. Stack released plutonium in the environment of a nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Horton, J.H.; Sanders, S.M.; Corey, J.C.

    1979-01-01

    Chemical separations facilities at the Savannah River Plant have released very small quantities of plutonium to the environment since 1955. Characterization studies of airborne particulates from the process stack show that the plutonium is nearly always attached to nonradioactive particles. The geometric mean diameter of plutonium-bearing particulates in the stack gas is 5.43 μm. Most of the particles contain less than 10 -15 Ci of 239 Pu. Studies with cascade impactors 1.1 m above the ground indicated that the average annual air concentration was 612 x 10 -18 Ci/m 3 (less than 0.1% of the maximum permissible concentration recommended by the ICRP). Cropping studies showed plutonium concentrations of 3 x 10 -3 pCi/g in wheat, 5.5 x 10 -4 in soybeans, and 1.7 x 10 -4 in corn. The 70-year dose-to-bone from ingesting 10 5 g of grain would be less than 1 mrem

  6. Plutonium controversy

    International Nuclear Information System (INIS)

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated

  7. Perspective on plutonium

    International Nuclear Information System (INIS)

    Sun, L.S.

    1993-01-01

    This paper is intended as a brief overview on the element plutonium. Plutonium is the first primarily man-made element to play a significant role not only in technological development, but also in the economic growth of many countries. The importance of plutonium centers around its enormous energy making it ideal for wide-scale use in reactors, while the nuclear industry continues to work toward improving safety and efficiency of plutonium as a reactor fuel politicians and the public still debate over the safety and benefits of nuclear power. (30 refs.)

  8. Plutonium controversy

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  9. Effect of change in diet on excretion of plutonium-239 from organism

    International Nuclear Information System (INIS)

    Ivanova, N.P.

    1987-01-01

    To check supposition on milk effect on plutonium-239 excretion from organism the portable water for rats, contained in individual metabolic cages permitting separate excretion analysis, was replaced by milk. Some days later milk was excluded from diet. 24-hourly rate of radionuclide with feces and urine excretion from organism was determined. On the basis of preliminary data analysis it is supposed that interaction of some milk components with biocomponents of blood and deposition organ tissues violate 239 Pu steady equilibrium distribution in organism, affecting its metabolism through the intermediary of blood system. It results in increased plutonium excretion

  10. Plutonium, nuclear fuel; Le plutonium, combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires, Saclay

    1960-07-01

    A review of the physical properties of metallic plutonium, its preparation, and the alloys which it forms with the main nuclear metals. Appreciation of its future as a nuclear fuel. (author) [French] Apercu sur les proprietes physiques du plutonium metallique, sa preparation, ses alliages avec les principaux metaux nucleaires. Consideration sur son avenir en tant que combustible nucleaire. (auteur)

  11. Ten years' experience in determining internal contamination among plutonium laboratory workers

    International Nuclear Information System (INIS)

    Deworm, J.; Fieuw, G.

    1976-01-01

    Glove boxes in plutonium laboratories are fitted with ''sniffers'' (air samplers), which evaluate atmospheric contamination. The results of the measurements over a ten-year period of operation are available, and cases of detection in this way of air contamination exceeding the maximum permissible concentrations are exceptional. During contamination aerodynamic particle diameters of 1 - 4 μm were measured. The concentration and characteristics of the aerosol have made it possible to ascertain the inhalable fraction and to estimate the pulmonary and systemic burden in workers. The workers exposed in the laboratories undergo a urine test each month. The results obtained show that there is little risk of internal contamination without the person concerned being aware of an abnormal situation. In the majority of cases it is possible to take proper precautions and to collect the data necessary for evaluating the body burden. Three cases of specific contamination are examined in detail: contamination by plutonium and americium from a non-identified source, detected by routine urine analysis; contamination by inhalation of plutonium; an injury to the left forefinger, accompanied by plutonium contamination. (author)

  12. Biological behaviour of plutonium given as a trilaurylamine complex. Comparison with plutonium-tributylphosphate

    International Nuclear Information System (INIS)

    Nolibe, D.; Duserre, C.; Gil, I.; Rateau, G.; Metivier, H.

    1989-01-01

    The biokinetics of plutonium (Pu) were compared in rats after its administration by inhalation or intramuscular injection as Pu-trilaurylamine (Pu-TLA) or Pu-tri-n-butylphosphate (Pu-TBP). To study the mass effect, 238 Pu and 239 Pu were used. Translocation from the lungs and injection site was faster for 238 Pu than 239 Pu, and faster for Pu-TLA than Pu-TBP. The skeleton was always the main organ of deposition of the transferable Pu fraction. At 50 days after inhalation, the skeletal content, in per cent of the body content at death was 10% for 239 Pu-TBP, 54% for 238 Pu-TBP, 24% for 239 Pu-TLA and 62% for 238 Pu-TLA. The amounts in the liver were respectively 2, 6, 3, and 10% of the body content. Thirty days after intramuscular injection of 239 Pu-TLA, more Pu was translocated than after 239 Pu-TBP (26% versus 16%) and the skeletal deposit was 10 times the deposit in the liver. DTPA therapy after inhalation or injection of 238 Pu-TLA reduced the skeletal content by 35-58% with a corresponding increase in urinary excretion. (author)

  13. Ingestion Pathway Transfer Factors for Plutonium and Americium

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    Overall transfer factors for major ingestion pathways are derived for plutonium and americium. These transfer factors relate the radionuclide concentration in a given foodstuff to deposition on the soil. Equations describing basic relationships consistent with Regulatory Guide 1.109 are followed. Updated values and coefficients from IAEA Technical Reports Series No. 364 are used when a available. Preference is given to using factors specific to the Savannah River Site

  14. Calculation of keff for plutonium in high-level waste packages

    International Nuclear Information System (INIS)

    Zielinski, P.R.; Culbreth, W.G.

    1994-01-01

    The proposed national high-level nuclear waste repository will be designed to store approximately 70,000 tons of commercial spent fuel, but other forms of waste will also be considered for ultimate storage at this site. Plutonium in the form of PuO 2 may be added to borosilicate glass for ultimate disposal in the repository. The maximum amount of this fissile that may be added to a glass ''log'' will be limited by its ability to sustain a chain reaction. In this study, the removal of neutron absorbers from a glass log and the subsequent possibility of water infiltration were studied to find corresponding neutron multiplication factors. Weight fractions of 1%, 2%, and 3% PuO 2 were analyzed in the study. The results show the maximum amount of plutonium fissile that may be safely added to a glass log under conditions that lead to leaching of the principal neutron absorbers from the glass

  15. Fused salt processing of impure plutonium dioxide to high-purity plutonium metal

    International Nuclear Information System (INIS)

    Mullins, L.J.; Christensen, D.C.; Babcock, B.R.

    1982-01-01

    A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool

  16. Standard test method for plutonium assay by plutonium (III) diode array spectrophotometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method describes the determination of total plutonium as plutonium(III) in nitrate and chloride solutions. The technique is applicable to solutions of plutonium dioxide powders and pellets (Test Methods C 697), nuclear grade mixed oxides (Test Methods C 698), plutonium metal (Test Methods C 758), and plutonium nitrate solutions (Test Methods C 759). Solid samples are dissolved using the appropriate dissolution techniques described in Practice C 1168. The use of this technique for other plutonium-bearing materials has been reported (1-5), but final determination of applicability must be made by the user. The applicable concentration range for plutonium sample solutions is 10–200 g Pu/L. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropria...

  17. Use of a moving-bed ion-exchange column for plutonium purification; Utilisation d'une colonne echangeuse d'ions a lit mobile pour la purification du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Sabatier, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    When large amounts of fissile matter have to be purified on ion exchange resins, it is difficult to use a fixed bed because of its limiting maximum size. With a moving bed it is possible to ensure a continuous production which can easily be integrated into a purification line on account of its large production capacity. The installation described in this report is derived from an American prototype designed for uranium separation. As a result of many modifications, it is suitable for the purification of plutonium several such columns will shortly be operating in various French centres. The moving bed column, which has a diameter of 25 mm, was first tried with the uranium-thorium mixture; then, after modifications on the plutonium-uranium mixture. The production capacity will depend on the plutonium concentration which can be tolerated in the effluents. It is possible to treat 150 gm/day of plutonium alone; the effluents obtained have a concentration of around of 1 mg/l. The plutonium-uranium separation is improved by a 5 N acidic rinsing as well as by a temperature increase. The decontamination factor increased from 14 in 7 N nitric acid solution to 115 in 5 N nitric acid solution. A temperature increase of about 20 C leads to a decontamination factor of over 500. This result is sufficient encouraging for the possibility of future installations operating in optimum temperature conditions, i.e. 60-65 C, to be considered. (author) [French] Des que l'on desire purifier sur resine echangeuse d'ions des quantites importantes de matieres fissiles, le lit fixe devient difficilement exploitable par suite des dimensions maximum possibles. Le lit mobile permet une production continue pouvant s'integrer facilement par sa capacite de traitement dans une chaine de purification. L'installation decrite dans ce rapport est derivee d'un prototype americain destine a la separation de l'uranium. De nombreuses modifications en font un ensemble utilisable pour la purification du

  18. Plutonium storage criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D. [Scientech, Inc., Germantown, MD (United States); Ascanio, X. [Dept. of Energy, Germantown, MD (United States)

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  19. A controlled potential coulometer for the estimation of plutonium

    International Nuclear Information System (INIS)

    Ponkshe, M.R.; Samuel, J.K.

    1974-01-01

    A transistorized, controlled potential coulometer developed in Radiochemistry Division of the Bhabha Atomic Research Centre, Bombay (India), is described. The instrument features maximum possible use of indigenously available circuit components. Experimental results obtained so far indicate that quantitative estimation of plutonium can be done with the unit to an accuracy of +- 0.2%. (author)

  20. Toxicology of plutonium

    International Nuclear Information System (INIS)

    Bair, W.J.

    1974-01-01

    Data are reviewed from studies on the toxicity of Pu in experimental animals. Of the several plutonium isotopes, only 238 Pu and 239 Pu have been studied well. Sufficient results have been obtained to show that the behavior of 238 Pu in biological systems and the resulting biological effects cannot be precisely predicted from studies of 239 Pu. This probably applies also to other radiologically important plutonium isotopes which have half-lives ranging from 45 days to 10 7 years and decay by β-emission, electron capture, and spontaneous fission, as well as by emission of α-particles. All the biological effects of plutonium described in this review are attributed to alpha-particle radiation emitted by the plutonium. However, since plutonium is a chemically active heavy metal, one cannot ignore the possibility of chemical toxicity of the low-specific-activity isotopes, 239 Pu, 242 Pu, and 244 Pu. The preponderance of our knowledge of plutonium toxicology has come from short-term studies of relatively high dosage levels in several animal species. The consequences of high-level internal exposures can be predicted with confidence in experimental animals and probably also in man. However, considering the care with which plutonium is handled in the nuclear industry, a high-level contamination event is unlikely. Considerably less is known about the long-term effects of low levels of contamination. (250 references) (U.S.)

  1. Cycle downstream: the plutonium question; Aval du cycle la question du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Zask, G [Electricite de France, EDF/DAC, 75 - Paris (France); Rome, M [Electricite de France, EDF, Service Etudes et Projets Thermiques et Nucleaires, 92 - Courbevoie (France); Delpech, M [CEA Cadarache, Dept. d' Etudes des Reacteurs/SPRC, 13 - Saint-Paul-lez-Durance (France); and others

    1998-06-29

    This day, organized by the SFEN, took place at Paris the 4 june 1998. Nine papers were presented. They take stock on the plutonium physics and its utilization as a nuclear fuel. This day tried to bring information to answer the following questions: do people have to keep the plutonium in the UOX fuel or in the MOX fuel in order to use it for future fast reactors? Do people have to continue obstinately the plutonium reprocessing in the MOX for the PWR type reactors? Will it be realized a underground disposal? Can it be technically developed plutonium incinerators and is it economically interesting? The plutonium physics, the experimental programs and the possible solutions are presented. (A.L.B.)

  2. Swiss R and D on uranium-free LWR fuels for plutonium incineration

    International Nuclear Information System (INIS)

    Stanculescu, A.; Chawla, R.; Degueldre, C.; Kasemeyer, U.; Ledergerber, G.; Paratte, J.M.

    1999-01-01

    The most efficient way to enhance the plutonium consumption in LWRs is to eliminate plutonium production altogether. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. The inert matrix material studied at PSI is zirconium oxide. For reactivity control reasons, adding a burnable poison to this fuel proves to be necessary. The studies performed at PSI have identified erbium oxide as the most suitable candidate for this purpose. With regard to material technology aspects, efforts have concentrated on the evaluation of fabrication feasibility and on the determination of the physicochemical properties of the chosen single phase zirconium/ erbium/plutonium oxide material stabilised as a cubic solution by yttrium. The results to-date, obtained for inert matrix samples containing thorium or cerium as plutonium substitute, confirm the robustness and stability of this material. With regard to reactor physics aspects, our studies indicate the feasibility of uranium-free, plutonium-fuelled cores having operational characteristics quite similar to those of conventional UO 2 -fuelled ones, and much higher plutonium consumption rates, as compared to 100% MOX loadings. The safety features of such cores, based on results obtained from static neutronics calculations, show no cliff edges. However, the need for further detailed transient analyses is clearly recognised. Summarising, PSI's studies indicate the feasibility of a uranium-free plutonium fuel to be considered in 'maximum plutonium consumption LWRs' operating in a 'once-through' mode. With regard to reactor physics, future efforts will concentrate on strengthening the safety case of uranium-free cores, as well as on improving the integral data base for validation of the neutronics calculations. Material technology studies will be continued to investigate the physico-chemical properties of the inert matrix fuel containing plutonium and will focus on the planning and evaluation of

  3. Plutonium and tracer particle resuspension: an overview of selected Battelle-Northwest experiments

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1977-01-01

    Plutonium resuspension at Rocky Flats was determined in July 1973, by measuring airborne plutonium as a function of sampling height and of wind speed. The maximum airborne plutonium-239 concentration was 3700 aCi/m 3 . The maximum plutonium-239 activity per gram of collected airborne soil was 50 pCi/g. Airborne plutonium concentrations were shown to increase as the sixth power of wind speed, but the data were very imprecise. In measurement of fallout resuspension caused by burning vegetation, the 137 Cs concentration in a forest fire smoke plume was 22 times the concentration in ambient air. Resuspension rates for a man walking across a tracer area on an asphalt surface ranged from 1 x 10 -5 to 7 x 10 -4 fraction of tracer resuspended/pass. For vehicular traffic driven on a tracer lane, resuspension rates from the asphalt surface ranged from 10 -4 to 10 -2 fraction resuspended/pass. When the vehicle was driven on the lane adjacent to the tracer lane, resuspension rates were smaller, ranging from 10 -5 to 10 -3 fraction resuspended/pass. Resuspension rates decreased when the tracer had been on the ground for several days. In comparison to the asphalt surface, vehicle-caused tracer resuspension rates from a cheat grass area were lower, ranging from 10 -5 to 10 -4 fraction resuspended/pass. Wind caused tracer resuspension rates were on the order of 10 -11 fraction resuspended/sec for nonrespirable particles. Resuspension rates for respirable particles increased as the 4.8th power of wind speed, ranging from 10 -11 to 10 -7 fraction resuspended/sec. In another study, airborne respirable soil concentrations measured as a function of wind speed increased as the 0.6 to 3.2 power of wind speed

  4. The handling of plutonium hexafluoride (1962); Manipulation de l'hexafluorure de plutonium (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Berard, Ph [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1961-11-15

    The major problem posed in this work is the instability of plutonium hexafluoride. The influence of various factors on the decomposition of the fluoride has been studied: physical aspect of the walls, nature of the metal and its pretreatment, influence of the temperature. A means of detecting plutonium-239 in a metallic apparatus by {gamma}-ray counting has been developed; the sensitivity is of the order of half a milligram, but the precision is very low (about 50 per cent). Yields of over 95 per cent have been obtained for the transfer of plutonium during the preparation and sublimation of the hexafluoride. This study confirms the possibility of using plutonium hexafluoride for the extraction of plutonium from irradiated fuel elements by a dry method. (author) [French] Le probleme majeur de cette etude a ete l'instabilite de l'hexafluorure de plutonium. Nous avons etudie l'influence de divers facteurs sur la decomposition de l'hexafluorure: aspect physique des parois, nature du metal et de son pretraitement, influence de la temperature. Nous avons mis au point un mode de detection du plutonium-239 dans un appareillage metallique par comptage du rayonnement {gamma}; la sensibilite est de l'ordre du demi-milligramme, mais la precision est tres faible (50 pour cent environ). Nous avons obtenu des rendements depassant 95 pour cent dans le transfert du plutonium au cours de la fabrication et de la sublimation de l'hexafluorure. Cette etude confirme la possibilite d'utiliser l'hexafluorure de plutonium dans l'extraction du plutonium des combustibles irradies par voie seche. (auteur)

  5. Measurement of electro-sprayed 238 and 239+240 plutonium isotopes using 4π-alpha spectrometry. Application to environmental samples

    International Nuclear Information System (INIS)

    Charmoille-Roblot, M.

    1999-01-01

    A new protocol for plutonium deposition using the electro-spray technique coupled with 4π-α spectrometry is proposed to improve the detection limit, shorten the counting time. In order to increase the detection efficiency, it was proposed to measure 238 and 239+240 plutonium isotopes electro-sprayed deposit simultaneously on both sides of the source support, that must be as transparent as possible to alpha-emissions, in a two-alpha detectors chamber. A radiochemical protocol was adapted to electro-spray constraints and a very thin carbon foil was selected for 4π -alpha spectrometry. The method was applied to a batch of sediment samples and gave the same results as an electrodeposited source measured using conventional alpha spectrometry with a 25 % gain on counting time and 10 % on plutonium 238 detection limit. Validation and application of the technique have been made on reference samples. (author)

  6. Plutonium re-cycle in HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J. A.

    1974-03-15

    The study of plutonium cycles in HTRs using reprocessed plutonium from Magnox and AGR fuel cycles has shown that full core plutonium/uranium loadings are in general not feasible, burn-up is limited due the need for lower loadings of plutonium to meet reload core reactivity limits, on-line refueling is not practicable due to the need for higher burnable poison loadings, and low conversion rates in the plutonium-uranium cycles cannot be mitigated by axial loading schemes so that fissile make-up is needed if HTR plutonium recycle is desired.

  7. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  8. Supporting information for the estimation of plutonium oxide leak rates through very small apertures

    International Nuclear Information System (INIS)

    Schwendiman, L.C.

    1977-01-01

    Information is presented from which an estimate can be made of the release of plutonium oxide from shipping containers. The leak diameter is estimated from gas leak tests of the container and an estimate is made of gas leak rate as a function of pressure over the time of interest in the accident. These calculations are limited in accuracy because of assumptions regarding leak geometry and the basic formulations of hydrodynamic flow for the assumed conditions. Sonic flow is assumed to be the limiting gas flow rate. Particles leaking from the air space above the powder will be limited by the low availability of particles due to rapid settling, the very limited driving force (pressure buildup) during the first minute, and the deposition in the leak channel. Equations are given to estimate deposition losses. Leaks of particles occurring below the level of the bulk powder will be limited by mechanical interference when leaks are of dimension smaller than particle sizes present. Some limiting cases can be calculated. When the leak dimension is large compared to the particle sizes present, maximum particle releases can be estimated, but will be very conservative

  9. Optimization and plutonium equilibrium

    International Nuclear Information System (INIS)

    Silver, G.L.

    1976-01-01

    The sequential simplex method has been used to estimate the extent of disproportionation of tetravalent plutonium in dilute acid. A method for simulating potentiometric titrations is proposed, and this method suggests that the stoichiometric end point and the inflection point may not always correspond in the potentiometric titration of plutonium. A possible characteristic equation for the nitrite-plutonium reaction is illustrated, and the method of proportional equations is extended to the iron-plutonium reaction

  10. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    International Nuclear Information System (INIS)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition

  11. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    Energy Technology Data Exchange (ETDEWEB)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  12. Assesment of Plutonium 238 and Plutonium 239+240 in soils of different agricultural regions of Guatemala

    International Nuclear Information System (INIS)

    Gutierrez Martinez, E.A.

    1998-02-01

    In this report an assesment and measurement of PLUTONIUM 238, PLUTONIUM 239, and PLUTONIUM 240 are made. Samples of cultivated soils in 15 provinces of Guatemala were taken. To separate plutonium isotopes a radiochemical method was made using extraction, precipitation and ionic interchange. By electrodeposition the plutonium was measured using an alpha spectroscopy by PIPS method. The radioactivity ranges from 2.84 mBq/Kg to 36.38 mBq/Kg for plutonium 238, and 8.46 mBq/Kg to 26.61 mBq/Kg for plutonium 239+240

  13. Analysis of pressurization of plutonium oxide storage vials during a postulated fire

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.; Kesterson, M.; Hensel, S.

    2015-02-10

    The documented safety analysis for the Savannah River Site evaluates the consequences of a postulated 1000 °C fire in a glovebox. The radiological dose consequences for a pressurized release of plutonium oxide powder during such a fire depend on the maximum pressure that is attained inside the oxide storage vial. To enable evaluation of the dose consequences, pressure transients and venting flow rates have been calculated for exposure of the storage vial to the fire. A standard B vial with a capacity of approximately 8 cc was selected for analysis. The analysis compares the pressurization rate from heating and evaporation of moisture adsorbed onto the plutonium oxide contents of the vial with the pressure loss due to venting of gas through the threaded connection between the vial cap and body. Tabulated results from the analysis include maximum pressures, maximum venting velocities, and cumulative vial volumes vented during the first 10 minutes of the fire transient. Results are obtained for various amounts of oxide in the vial, various amounts of adsorbed moisture, different vial orientations, and different surface fire exposures.

  14. HB-Line Plutonium Oxide Data Collection Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R. [Savannah River Nuclear Solutions; Varble, J. [Savannah River Nuclear Solutions; Jordan, J. [Savannah River Nuclear Solutions

    2015-05-26

    HB-Line and H-Canyon will handle and process plutonium material to produce plutonium oxide for feed to the Mixed Oxide Fuel Fabrication Facility (MFFF). However, the plutonium oxide product will not be transferred to the MFFF directly from HB-Line until it is packaged into a qualified DOE-STD-3013-2012 container. In the interim, HB-Line will load plutonium oxide into an inner, filtered can. The inner can will be placed in a filtered bag, which will be loaded into a filtered outer can. The outer can will be loaded into a certified 9975 with getter assembly in compliance with onsite transportation requirement, for subsequent storage and transfer to the K-Area Complex (KAC). After DOE-STD-3013-2012 container packaging capabilities are established, the product will be returned to HB-Line to be packaged into a qualified DOE-STD-3013-2012 container. To support the transfer of plutonium oxide to KAC and then eventually to MFFF, various material and packaging data will have to be collected and retained. In addition, data from initial HB-Line processing operations will be needed to support future DOE-STD-3013-2012 qualification as amended by the HB-Line DOE Standard equivalency. As production increases, the volume of data to collect will increase. The HB-Line data collected will be in the form of paper copies and electronic media. Paper copy data will, at a minimum, consist of facility procedures, nonconformance reports (NCRs), and DCS print outs. Electronic data will be in the form of Adobe portable document formats (PDFs). Collecting all the required data for each plutonium oxide can will be no small effort for HB-Line, and will become more challenging once the maximum annual oxide production throughput is achieved due to the sheer volume of data to be collected. The majority of the data collected will be in the form of facility procedures, DCS print outs, and laboratory results. To facilitate complete collection of this data, a traveler form will be developed which

  15. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    Kaoua, Th.; Lenain, R.

    2004-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  16. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    N'kaoua, Th.; Lenain, R.

    2002-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  17. Late excretion of plutonium following acquisition of known amounts

    International Nuclear Information System (INIS)

    Rundo, J.

    1981-01-01

    The urinary and fecal excretion rates of plutonium 10,000 days after intravenous injection of known amounts are compared with the predictions of various models. Both Langham's and Durbin's equations underestimated the urinary excretion by about an order of magnitude; the observed fecal excretion rates were also higher than the predictions. The total excretion rate predicted by the ICRP model was in quite good agreement with the observed rate, but it overestimated it at early times ( 239 Pu of former Manhattan Project plutonium workers, as calculated from the measured urinary excretion an application of Langham's equation. In one of these subjects the urinary excretion rate started to increase at about 6000 days, reached a maximum at about 9500 days, and declined for the next 2700 days

  18. Plutonium roundtable discussion

    International Nuclear Information System (INIS)

    Penneman, R.A.

    1982-01-01

    The roundtable discussion began with remarks by the chairman who pointed out the complicated nature of plutonium chemistry. Judging from the papers presented at this symposium, he noticed a pattern which indicated to him the result of diminished funding for investigation of basic plutonium chemistry and funding focused on certain problem areas. Dr. G.L. silver pointed to plutonium chemists' erroneous use of a simplified summary equation involving the disproportionation of Pu(EV) and their each of appreciation of alpha coefficients. To his appreciation of alpha coefficients. To his charges, Dr. J.T. Bell spoke in defense of the chemists. This discussion was followed by W.W. Schulz's comments on the need for experimental work to determine solubility data for plutonium in its various oxidation states under geologic repository conditions. Discussion then turned to plutonium pyrachemical process with Dana C. Christensen as the main speaker. This paper presents edited versions of participants' written version

  19. Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase; Diffusion dans le systeme uranium-plutonium et autodiffusion du plutonium epsilon

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, M [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in {alpha} uranium (15 per cent at 565 C) and the uranium one in {zeta} phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10{sup 12} cm{sup 2} s{sup -1}, and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and {alpha} autoradiography. Self-diffusion of plutonium in {epsilon} phase (bcc) obeys Arrhenius law: D = 2. 10{sup -2} exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals ({beta}Zr, {beta}Ti, {beta}Hf, U{sub {gamma}}). (author) [French] Une etude du diagramme d'equilibre uranium-plutonium conduit a confirmer les resultats anglo-saxons relatifs a la solubilite du plutonium dans l'uranium {alpha} (15 pour cent a 565 C) et de l'uranium dans la phase {zeta} (74 pour cent a 565 C). Les coefficients de diffusion chimique, pour des concentrations inferieures a 15 pour cent ont ete determines a des temperatures comprises entre 410 et 640 C. Ils se situent entre 0.2 et 6. 10{sup 12} cm{sup 2} s{sup -1}. L'energie d'activation varie entre 13 et 20 kcal/mole. La diffusion intergranulaire du plutonium dans l'uranium a a ete mise en evidence par micrographie, microanalyse X et autoradiographie {alpha}. L' autodiffusion du plutonium {beta} cubique centree obeit a la loi d'Arrhenius D = 2. 10{sup -2} exp - (18500)/RT. Son energie d'activation n'obeit pas aux lois empiriques generalement admises pour les autres metaux. Elle possede des analogies avec les cubiques centres ''anormaux'' (Zr{beta}, Ti{beta}, Hf{beta}, U{gamma}). (auteur)

  20. A method for the gravimetric determination of plutonium in pure plutonium nitrate concentrate solution

    International Nuclear Information System (INIS)

    Mair, M.A.; Savage, D.J.

    1986-12-01

    Plutonium nitrate solution is treated with sulphuric acid before being heated and finally ignited. The stoichiometric plutonium dioxide so formed is weighed and hence the plutonium content is calculated. (author)

  1. F. Biological hazards of plutonium

    International Nuclear Information System (INIS)

    1976-01-01

    Plutonium is an unavoidable result of present nuclear power programmes. Its predominant isotopes are extremely long-lived and very toxic if absorbed in the body. In view of the increasing potential for plutonium and man to come into contact, the consequences of any plutonium release into the environment should be scientifically examined. This report is an attempt to place in one document a fully referenced account of the on-going work in many areas. There are three sections. Part 1 deals with the amounts of plutonium available in the fuel cycle, its properties and the probability of routine or accidental release. Part 2 examines the ways in which plutonium can reach man, in particular through food chains or inhalation. Part 3 details the biological effects of plutonium once it is absorbed into the body, assesses the amounts likely to be harmful and discusses the adequacy of present standards for plutonium burdens. There are two appendices. The likely differences between Pu-239, the most studied isotope, and other plutonium isotopes or transuranic nuclides are outlined in Appendix A. Appendix B contains a fuller account of the ways in which the fate of ingested or inhaled plutonium have been determined

  2. Consideration of the effect of lymph-node deposition upon the measurement of plutonium and americium in the lungs

    International Nuclear Information System (INIS)

    Falk, R.B.; Lagerquist, C.R.

    1975-01-01

    Measurement of an inhaled radionuclide by external photon counting includes quantities which may be contained in lymph nodes, as well as quantities in the lungs. An overestimate of the lung burden can result, if a portion of the radionuclide were present in the lymph nodes. This problem is analyzed with respect to the measurement of inhaled plutonium containing plutonium-241 and americium-241, when americium-241 has been used as a tracer for the plutonium. Equations are derived which yield the amounts of americium and of plutonium in the lungs and in the lymph nodes as a function of time after exposure and for various translocation and retention parameters. Count histories (count profiles) of actual exposure cases are compared with calculated count profiles in order to gain insight into possible values of the translocation and retention parameters. Comparison is also made with calculated count profiles using values of translocation and retention parameters recommended by the International Commission on Radiological Protection (ICRP) for use with the Task Group Lung Model. The magnitude of the possible overestimate (error factor) was calculated for combinations o []parameters which yielded matches to the observed count histories. (auth)

  3. Test Plan to Determine the Maximum Surface Temperatures for a Plutonium Storage Cubicle with Horizontal 3013 Canisters

    International Nuclear Information System (INIS)

    HEARD, F.J.

    2000-01-01

    A simulated full-scale plutonium storage cubicle with 22 horizontally positioned and heated 3013 canisters is proposed to confirm the effectiveness of natural circulation. Temperature and airflow measurements will be made for different heat generation and cubicle door configurations. Comparisons will be made to computer based thermal Hydraulic models

  4. Use of plutonium for power production

    International Nuclear Information System (INIS)

    1965-01-01

    The panel reviewed available information on various aspects of plutonium utilization, such as physics of plutonium, technology of plutonium fuels in thermal and fast reactors, behaviour of plutonium fuel under reactor irradiation, technological and economic aspects of plutonium fuel cycle. Refs, figs and tabs

  5. World status report: plutonium

    International Nuclear Information System (INIS)

    Dircks, W.

    1992-01-01

    In a recent speech in Japan, the Deputy Director General of the International Atomic Energy Agency (IAEA) said that the economic case for reprocessing spent nuclear fuel had been severely eroded. An edited version of the speech is given. The changed prospects for nuclear energy is given as the reason why the demand for plutonium has declined sharply. The oil crisis of the 1970s reduced the demand for electric power and the economic justification for the use of recycled plutonium. The stockpile of isolated plutonium is growing rapidly giving rise to worries about its security. From this point of view, isolated plutonium is best kept in reactor fuel not separated out. In this connection the IAEA has offered to help in the storage of plutonium so that vigorous safety and security requirements are met. In Japan there is a debate about the plutonium which is dependent on the future of the fast breeder reactor programme. (UK)

  6. Historical reconstruction of Plutonium contamination in the Swiss-Italian Alps

    Directory of Open Access Journals (Sweden)

    Gabrieli J.

    2013-04-01

    Full Text Available Plutonium is present in the environment as a consequence of atmospheric nuclear tests carried out in the 1960s, nuclear weapons production and releases by the nuclear industry over the past 50 years. Approximately 6 tons of 239Pu have been released into the environment as a result of 541 atmospheric weapon tests Nuclear Pu fallout has been studied in various environmental archives, such as sediments, soil and herbarium grass. Mid-latitude ice cores have been studied as well, on Mont Blanc, the Western Alps and on Belukha Glacier, Siberian Altai. We present a Pu record obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (M. Rosa, 4450 m a.s.l., dating from 1945 to 1991. The 239Pu signal was recorded directly, without preliminary cleaning or preconcentration steps, using an high resolution inductively plasma mass spectrometer equipped with a desolvation system. The 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak lasted from 1954/55 to 1958 and was caused by the first testing period reaching a maximum in 1958. Despite a temporary halt of testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak due to long atmospheric residence times. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963. After the signing of the “Limited Test Ban Treaty” between USA and USSR in 1964, Pu deposition decreased very sharply reaching a minimum in 1967. The third period (1967-1975 is characterized by irregular Pu concentrations with smaller peaks which might be related to the deposition of Saharan dust contaminated by the French nuclear tests of the 1960s.

  7. Plutonium Finishing Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Plutonium Finishing Plant, also known as PFP, represented the end of the line (the final procedure) associated with plutonium production at Hanford.PFP was also...

  8. The toxicity of plutonium

    International Nuclear Information System (INIS)

    Ramsden, D.; Johns, T.F.

    1977-01-01

    Reference is made to recent publications concerned with the radiotoxicity of inhaled insoluble Pu compounds. The publications are a paper by Thorne and Vennart (Nature 263:555 (1976)), a report entitled 'The Toxicity of Plutonium', (London (HMSO), 1975), and the 'Sixth Report of the Royal Commission on Environmental Pollution', (Cmnd. 6618, London (HMSO), 1976). Thorne and Vennart concluded that the previously accepted value for the maximum permissible annual intake (MPAI) of such compounds may be too high by a factor of about five, and a similar conclusion was reached in the other two publications. It is thought by the present authors that the methods which have been used to suggest new values for the MPAI are unduly pessimistic for high-fired PuO 2 ; calculations have been based on the lung model of ICRP Publication 19 'The Metabolism of Compounds of Plutonium and the Other Actinides', (International Commission of Radiological Protection, 1972). This involves concluding that the risks to bone and liver are comparable to those for lung. This is discussed and it is thought that the previously established idea that the lung is the critical organ remains substantially correct for the case of high-fired PuO 2 . (U.K.)

  9. Double shell tanks plutonium inventory assessment

    International Nuclear Information System (INIS)

    Tusler, L.A.

    1995-01-01

    This report provides an evaluation that establishes plutonium inventory estimates for all DSTs based on known tank history information, the DST plutonium inventory tracking system, tank characterization measurements, tank transfer records, and estimated average concentration values for the various types of waste. These estimates use data through December 31, 1994, and give plutonium estimates as of January 1, 1995. The plutonium inventory values for the DSTs are given in Section 31. The plutonium inventory estimate is 224 kg for the DSTs and 854 kg for the SSTs for a total of 1078 kg. This value compares favorably with the total plutonium inventory value of 981 kg obtained from the total plutonium production minus plutonium recovery analysis estimates

  10. Determination of plutonium in environment

    International Nuclear Information System (INIS)

    Sakanoue, Masanobu

    1978-01-01

    Past and present methods of determining the amount of plutonium in the environment are summarized. Determination of the amount of plutonium in uranium ore began in 1941. Plutonium present in polluted environments due to nuclear explosions, nuclear power stations, etc. was measured in soil and sand in Nagasaki in 1951 and in ash in Bikini in 1954. Analytical methods of measuring the least amount of plutonium in the environment were developed twenty years later. Many studies on and reviews of these methods have been reported all over the world, and a standard analytical procedure has been adopted. A basic analytical method of measurement was drafted in Japan in 1976. The yield, treatment of samples, dissolution, separation, control of measurable ray sources determination by α spectrometry, cross-check determination, and treatment of samples containing hardly soluble plutonium were examined. At present, the amount of plutonium can be determined by all of these methods. The presence of plutonium was studied further, and the usefulness of determination of the plutonium isotope ratio is discussed. (Kumagai, S.)

  11. Multi-generational stewardship of plutonium

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1997-01-01

    The post-cold war era has greatly enhanced the interest in the long-term stewardship of plutonium. The management of excess plutonium from proposed nuclear weapons dismantlement has been the subject of numerous intellectual discussions during the past several years. In this context, issues relevant to long-term management of all plutonium as a valuable energy resource are also being examined. While there are differing views about the future role of plutonium in the economy, there is a recognition of the environmental and health related problems and proliferation potentials of weapons-grade plutonium. The long-term management of plutonium as an energy resource will require a new strategy to maintain stewardship for many generations to come

  12. Plutonium in the marine environment

    International Nuclear Information System (INIS)

    Jarvis, N.V.; Linder, P.W.; Wade, P.W.

    1994-01-01

    The shipping of plutonium from Europe to Japan around the Cape is a contentious issue which has raised public concern that South Africa may be at risk to plutonium exposure should an accident occur. The paper describes the containers in which the plutonium (in the form of plutonium oxide, PuO 2 ) is housed and consequences of the unlikely event of these becoming ruptured. Wind-borne pollution is considered not to be a likely scenario, with the plutonium oxide particles more likely to remain practically insoluble and sediment. Plutonium aqueous and environmental chemistry is briefly discussed. Some computer modelling whereby plutonium oxide is brought into contact with seawater has been performed and the results are presented. The impact on marine organisms is discussed in terms of studies performed at marine dump sites and after the crash of a bomber carrying nuclear warheads in Thule, Greenland in 1968. Various pathways from the sea to land are considered in the light of studies done at Sellafield, a reprocessing plant in the United Kingdom. Some recent debates in the popular scientific press, such as that on the leukemia cluster at Sellafield, are described. Plutonium biochemistry and toxicity are discussed as well as medical histories of workers exposed to plutonium. 35 refs., 2 tabs., 1 fig

  13. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Plutonium resuspension results are summarized for experiments conducted by the author at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were far below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in μCi/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10 -4 to 10 4 . This uncertainty in the equality between plutonium concentrations per gram on airborne and surface soils is caused by only a fraction of the collected airborne soil being transported from offsite rather than all being resuspended from each study site and also by the great variabilities in surface contamination. Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same four orders of magnitude from 10 -7 to 10 -3 μCi/(m 2 day) for 239 Pu and 10 -8 to 10 -5 μCi/(m 2 day) for 238 Pu. Airborne respirable 239 Pu concentrations increased with wind speed for a southwest wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, 240 Pu/ 239 240 Pu, similar to weapons grade plutonium rather than fallout plutonium

  14. Plutonium Training Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Galya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wolkov, Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-26

    This report was created to examine the current state of plutonium training in the United States and to discover ways in which to ensure that the next generation of plutonium workers are fully qualified.

  15. Problems and progress in the preparation of sources for the alpha spectrometry of plutonium

    International Nuclear Information System (INIS)

    Miguel, M.; Deron, S.; Swietly, H.; Heinonen, O.J.

    1981-01-01

    The interpretation of non-destructive measurements of plutonium materials require more accurate determinations of the isotopic abundance of Pu-238 than conventional chemical assays. The requirements of calorimetry, passive neutron and conventional chemical assays are presented and compared. When Pu-238 is measured by alpha spectrometry, these requirements define how well the plutonium must be separated from americium, and what should be the accuracy of the spectrometry. The latter can strongly depend upon the resolution of the alpha spectrum. The authors describe a procedure to produce sources by drop deposition which ensure a resolution of 17 keV with commercial instrumentation

  16. Optimizing Plutonium stock management

    International Nuclear Information System (INIS)

    Niquil, Y.; Guillot, J.

    1997-01-01

    Plutonium from spent fuel reprocessing is reused in new MOX assemblies. Since plutonium isotopic composition deteriorates with time, it is necessary to optimize plutonium stock management over a long period, to guarantee safe procurement, and contribute to a nuclear fuel cycle policy at the lowest cost. This optimization is provided by the prototype software POMAR

  17. Assessment of plutonium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-12-31

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

  18. Treatment of plutonium contaminations

    International Nuclear Information System (INIS)

    Lafuma, J.

    1983-01-01

    Three kinds of plutonium contaminations were considered: skin contamination; contaminated wounds; contamination by inhalation. The treatment of these contaminations was studied for insoluble (oxide and metal forms) and soluble plutonium (complexes). The use of DTPA and therapeutic problems encountered with stable plutonium complexes were analyzed. The new possibilities of internal decontamination using Puchel and LICAM were evaluated [fr

  19. Plutonium uptake by plants from soil containing plutonium-238 dioxide particles. Final report

    International Nuclear Information System (INIS)

    Brown, K.W.; McFarlane, J.C.

    1977-05-01

    Three plant species--alfalfa, lettuce, and radishes were grown in soils contaminated with plutonium-238 dioxide (238)PuO2 at concentrations of 23, 69, 92, and 342 nanocuries per gram (nCi/g). The length of exposure varied from 60 days for the lettuce and radishes to 358 days for the alfalfa. The magnitude of plutonium incorporation as indicated by the discrimination ratios for these species, after being exposed to the relatively insoluble PuO2, was similar to previously reported data using different chemical forms of plutonium. Evidence indicates that the predominant factor in plutonium uptake by plants may involve the chelation of plutonium contained in the soils by the action of compounds such as citric acid and/or other similar chelating agents released from the plant roots

  20. The first metallurgical tests on plutonium; Premiers essais metallurgiques sur le plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E; Abramson, R; Anselin, F; Monti, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Metallic plutonium was first prepared in France in January 1956, as soon as we had access to quantities of the order of several grams of plutonium, which had been extracted from the rods of the pile EL2 at Saclay. Since up to the present this reactor, of thermal power 2 000 kW, has been our only source of plutonium, we have so far only worked on experimental quantities sufficient for the basic tests but not for tests on a scale of possible applications. It is this work, carried out during this phase of preliminary research, which is described below. With the starting up of the plutonium extraction plant at Marcoule, where the reactor G1 has been operating at power for more than a year, we shall go on next to a another order of magnitude which will allow the manufacture and experimentation of prototype fuel elements. (author) [French] La premiere elaboration de plutonium metallique en France fut faite en janvier 1956, des que nous pumes disposer de quantites de plutonium de l'ordre de quelques grammes, qui avaient ete retires des barreaux de la pile EL2 de Saclay. Ce reacteur, d'une puissance thermique de 2 000 kW, ayant ete jusqu'a present notre seule source de plutonium, nous n'avons encore travaille que sur des quantites experimentales suffisantes pour les essais de base, mais non pour des essais a l'echelle d'applications possibles. Ce sont les travaux effectues pendant cette phase de recherches preliminaires qui seront evoques ci-dessous. Avec la mise eu route de l'usine d'extraction de plutonium de Marcoule, ou le reacteur G1 fonctionne en puissance depuis plus d'un an, nous allons passer prochainement a un autre ordre de grandeur, qui nous permettra la fabrication et l'experimentation d'elements combustibles prototypes. (auteur)

  1. Collector for recovering gallium from weapons plutonium

    International Nuclear Information System (INIS)

    Philip, C.V.; Anthony, R.G.; Chokkaram, S.

    1998-09-01

    Currently, the separation of gallium from weapons plutonium involves the use of aqueous processing using either solvent extraction of ion exchange. However, this process generates significant quantities of liquid radioactive wastes. A Thermally Induced Gallium Removal process, or TIGR, developed by researchers at Los Alamos National Laboratories, is a simpler alternative to aqueous processing. This research examined this process, and the behavior of gallium suboxide, a vapor that is swept away by passing hydrogen/argon over gallium trioxide/plutonium oxide heated at 1100 C during the TIGR process. Through experimental procedures, efforts were made to prevent the deposition of corrosive gallium onto furnace and vent surfaces. Experimental procedures included three options for gallium removal and collection: (1) collection of gallium suboxide through use of a cold finger; (2) collection by in situ air oxidation; and (3) collection of gallium on copper. Results conclude all three collection mechanisms are feasible. In addition, gallium trioxide exists in three crystalline forms, and each form was encountered during each experiment, and that each form will have a different reactivity

  2. Seismic safety of the LLL plutonium facility (Building 332)

    International Nuclear Information System (INIS)

    Torkarz, F.J.; Shaw, G.

    1980-01-01

    This report states the basis for the Lawrence Livermore Laboratory's assurance to the public that the plutonium operations at the Laboratory pose essentially no risk to anyone's health or safety, either under normal circumstances or in the event of an earthquake or a fire. The report is intended for a general audience, and so for the most part it is not highly technical. It summarizes the steps taken to ensure the seismic safety of the plutonium facility (Bldg. 332). It describes plutonium and its potential hazard and how the facility copes with that hazard. It recounts the geologic investigations and interpretations that led to the design-basis earthquake (DBE) for the Livermore site, and presents a summary analysis of the facility structure in relation to the DBE. An appendix presents a quantitative calculation of the health risk to the public associated with the worst-case hypothetical fire. The document supports the conclusions that the facility will continue to function safely after the maximum earthquake ground motion to which it may be subjected and that there is no evidence of a potential for surface offset under it

  3. Plutonium uptake by a soil fungus and transport to its spores

    International Nuclear Information System (INIS)

    Beckert, W.F.; Au, F.H.F.

    1976-01-01

    Three concentrations of plutonium-238 nitrate, citrate and dioxide were each added to separate plates of malt agar buffered to pH 2.5 and 5.5 to determine the uptake of plutonium from these chemical forms and concentrations by a common soil fungus, Aspergillus niger. After inoculation and incubation, the aerial spores of Aspergillus niger were collected using a technique that excluded the possibility of cross-contamination of the spores by the culture media or by mycelial fragments. 238 Pu was taken up from all three chemical forms and transported to the aerial spores of Aspergillus niger at each concentration and at both pH levels. The specific activities of the spores grown at pH 5.5 were generally at least twice those of the spores grown at pH 2.5. The uptake of plutonium from the dioxide form was about one-third of that from the nitrate and citrate forms at both pH levels. The term 'transport factor' is used as a means to compare the transport of plutonium from the media to the fungal spores; the concentration-independent transport factor is defined as the specific activity of the spores divided by the specific activity of the dry culture medium. Though the transport factors were less than 1, which indicates discrimination against the transport of 238 Pu from the culture media to the spores, these findings suggest that this common soil fungus may be solubilizing soil-deposited plutonium and rendering it more biologically available for higher plants and animals. (author)

  4. Plutonium oxides and uranium and plutonium mixed oxides. Carbon determination

    International Nuclear Information System (INIS)

    Anon.

    Determination of carbon in plutonium oxides and uranium plutonium mixed oxides, suitable for a carbon content between 20 to 3000 ppm. The sample is roasted in oxygen at 1200 0 C, the carbon dioxide produced by combustion is neutralized by barium hydroxide generated automatically by coulometry [fr

  5. Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Freiboth, Cameron J.; Gibbs, Frank E.

    2000-01-01

    This report documents the position that the concentration of Uranium-233 ( 233 U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The 233 U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ( 233 U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns

  6. Cigarette smoke and plutonium

    International Nuclear Information System (INIS)

    Filipy, R.E.

    1985-01-01

    Autoradiographic techniques with liquid photographic emulsion and cellulose nitrate track-etch film are being used to investigate the spatial distribution of inhaled plutonium in the lungs of beagle dogs exposed to cigarette smoke or to the plutonium aerosol only. More plutonium than expected was detected on the inner surfaces of bronchi, and particles were observed beneath the bronchial mucosa. 2 figures, 2 tables

  7. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sehmel, G.A.

    1978-01-01

    Plutonium resuspension results are summarized for experiments conducted by the author at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were far below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in ..mu..Ci/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10/sup -4/ to 10/sup 4/. This uncertainty in the equality between plutonium concentrations per gram on airborne and surface soils is caused by only a fraction of the collected airborne soil being transported from offsite rather than all being resuspended from each study site and also by the great variabilities in surface contamination. Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same four orders of magnitude from 10/sup -7/ to 10/sup -3/ ..mu..Ci/(m/sup 2/ day) for /sup 239/Pu and 10/sup -8/ to 10/sup -5/ ..mu..Ci/(m/sup 2/ day) for /sup 238/Pu. Airborne respirable /sup 239/Pu concentrations increased with wind speed for a southwest wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, /sup 240/Pu//sup 239/ /sup 240/Pu, similar to weapons grade plutonium rather than fallout plutonium.

  8. Plutonium and other transuranics in small vertebrates: a review

    International Nuclear Information System (INIS)

    Bradley, W.G.; Moor, K.S.; Naegle, S.R.

    1977-01-01

    The published data relevant to transuranics in small vertebrates inhabiting terrestrial environments is reviewed. Experimental results indicate that atomic size and valence state affect rates of absorption, transportation, and excretion of transuranics in living systems. Whereas there is a marked tendency for transuranics to hydrolyze to insoluble colloidal products at physiological pH, complexing agents and chelation enhance solubility and transportability. The natural modes of uptake of transuranics by vertebrates include absorption from the gut, the intact or damaged skin, and inhalation. Absorption from the gut into the bloodstream is very low. Potential hazards may exist if complexing or chelating agents are present, if absorption is continuous, or if exposure involves young animals. The intact skin provides an effective barrier to absorption of transuranics. Relatively high levels of absorption may occur when transuranics are administered subcutaneously or intramuscularly, particularly with increased acidity and solubility of the compounds. Inhalation is probably the most hazardous natural route of uptake. Insoluble transuranic compounds are retained in the lung and soluble compounds are transported rapidly via the blood to bone, liver, and other organs. Deposition of plutonium in mammalian gonads resulting in a decrease in spermatogenesis, ovarian damage, and reduced fecundity is documented. The current knowledge of the behavior of transuranics in terrestrial environments is limited. Plutonium and americium uptake by small mammals has been documented. Plutonium body burdens were related to depressed leukocyte count on a statistical basis. Reduced rodent populations in areas of high plutonium concentrations illustrate the problems of evaluating uptake by mobile animals

  9. Hazards of plutonium and fuel reprocessing

    International Nuclear Information System (INIS)

    Watson, G.M.

    1978-01-01

    Apart from the possibility that civil plutonium may be diverted to military use the main argument against the introduction of a plutonium economy seems to be the supposedly unmanageable biological risk attached to plutonium itself. The author points out weaknesses in many of the opponents' arguments against the increased use of plutonium and argues that current safety practices are more than adequate in handling plutonium and other radioactive materials

  10. Plutonium spectrophotometric analysis

    International Nuclear Information System (INIS)

    Esteban, A.; Cassaniti, P.; Orosco, E.H.

    1990-01-01

    Plutonium ions in solution have absorption spectra so different that it is possible to use them for analytical purposes. Detailed studies have been performed in nitric solutions. Some very convenient methods for the determination of plutonium and its oxidation states, especially the ratios Pu(III):Pu(IV) and Pu(IV):Pu(VI) in a mixture of both, have been developed. These methods are described in this paper, including: a) Absorption spectra for plutonium (III), (IV), (VI) and mixtures. b) Relative extinction coefficients for the above mentioned species. c) Dependences of the relative extinction coefficients on the nitric acid concentration and the plutonium VI deviation from the Beer-Lambert law. The developed methods are simple and rapid and then, suitable in process control. Accuracy is improved when relative absorbance measurements are performed or controlled the variables which have effect on the spectra and extinction coefficients. (Author) [es

  11. Plutonium safe handling

    International Nuclear Information System (INIS)

    Tvehlov, Yu.

    2000-01-01

    The abstract, prepared on the basis of materials of the IAEA new leadership on the plutonium safe handling and its storage (the publication no. 9 in the Safety Reports Series), aimed at presenting internationally acknowledged criteria on the radiation danger evaluation and summarizing the experience in the safe management of great quantities of plutonium, accumulated in the nuclear states, is presented. The data on the weapon-class and civil plutonium, the degree of its danger, the measures for provision of its safety, including the data on accident radiation consequences with the fission number 10 18 , are presented. The recommendations, making it possible to eliminate the super- criticality danger, as well as ignition and explosion, to maintain the tightness of the facility, aimed at excluding the radioactive contamination and the possibility of internal irradiation, to provide for the plutonium security, physical protection and to reduce irradiation are given [ru

  12. Some of the properties of plutonium and the aluminium-plutonium alloy; Quelques proprietes du plutonium et de l'alliage aluminium-plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Abramson, R; Boucher, R; Fabre, R; Monti, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    1- Study of the physical properties of plutonium. 1) Study of the allotropy of plutonium. a) Thermal analysis: the apparatus used and the measurement technique are briefly described. The transition point temperatures and the corresponding heats of transformation have been determined. Finally, the results of the particular study of certain transition points are given. b) Dilatometry. The dilatometric analysis of the phase changes of plutonium has been carried out by means of the Chevenard dilatometer with photographic recording. The testing conditions (heating and cooling speeds, isotherm plateaux) have been varied in order to determine accurately the characteristics of each transition, particularly the {delta} {yields} {gamma} transition on cooling. 2) Micrography of plutonium. For the accurate preparation of metallographic samples the electrolytic polishing must be rapid, which implies a mechanical polishing of excellent quality. Information is given on new attacking reagents which show the structure of the metal very clearly. 2- Study of aluminium-plutonium alloys. Comparative study of Al-Pu and Al-U alloys rich in aluminium. a) Thermal analysis. The liquids and fusion temperatures of the eutectic Al-XAl{sub 4}, have been accurately determined. From the measurement of the heats of fusion the exact composition of the eutectic alloy has been determined. b) Thermal treatments. The eutectic coalescence kinetics have been studied by a micrographic method and by following the evolution of hardness. The results obtained show that the phenomenon is more rapid in Al-Pu alloys than in Al-U alloys. c) Micrographic study of the transition XAl{sub 3} {yields} XAl{sub 4}. The peritectic reaction XAl{sub 3} + liq. {yields} XAl{sub 4} has been suppressed by quenching. The transformation of the XAl{sub 3} phase to the solid phase has been studied as well as the effect of small additions of silicon on the kinetics of this reaction. (author) [French] 1- Etude des proprietes

  13. Burning weapons-grade plutonium in reactors

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-06-01

    As a result of massive reductions in deployed nuclear warheads, and their subsequent dismantlement, large quantities of surplus weapons- grade plutonium will be stored until its ultimate disposition is achieved in both the US and Russia. Ultimate disposition has the following minimum requirements: (1) preclude return of plutonium to the US and Russian stockpiles, (2) prevent environmental damage by precluding release of plutonium contamination, and (3) prevent proliferation by precluding plutonium diversion to sub-national groups or nonweapons states. The most efficient and effective way to dispose of surplus weapons-grade plutonium is to fabricate it into fuel and use it for generation of electrical energy in commercial nuclear power plants. Weapons-grade plutonium can be used as fuel in existing commercial nuclear power plants, such as those in the US and Russia. This recovers energy and economic value from weapons-grade plutonium, which otherwise represents a large cost liability to maintain in safeguarded and secure storage. The plutonium remaining in spent MOX fuel is reactor-grade, essentially the same as that being discharged in spent UO 2 fuels. MOX fuels are well developed and are currently used in a number of LWRs in Europe. Plutonium-bearing fuels without uranium (non-fertile fuels) would require some development. However, such non-fertile fuels are attractive from a nonproliferation perspective because they avoid the insitu production of additional plutonium and enhance the annihilation of the plutonium inventory on a once-through fuel cycle

  14. Process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide

    International Nuclear Information System (INIS)

    Heremanns, R.H.; Vandersteene, J.J.

    1983-01-01

    The invention concerns a process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide in the form of PuO 2 . Mixed fuels consisting of uranium oxide and plutonium oxide are being used more and more. The plants which prepare these mixed fuels have around 5% of the total mass of fuels as fabrication residue, either as waste or scrap. In view of the high cost of plutonium, it has been attempted to recover this plutonium from the fabrication residues by a process having a purchase price lower than the price of plutonium. The problem is essentially to separate the plutonium, the uranium and the impurities. The residues are fluorinated, the UF 6 and PuF 6 obtained are separated by selective absorption of the PuF 6 on NaF at a temperature of at least 400 0 C, the complex obtained by this absorption is dissolved in nitric acid solution, the plutonium is precipitated in the form of plutonium oxalate by adding oxalic acid, and the precipitated plutonium oxalate is calcined

  15. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    Science.gov (United States)

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  16. On the substantion of permissible concentrations of plutonium isotopes in the water of fresh water and sea water NPP cooling reservoirs

    International Nuclear Information System (INIS)

    Grachev, M.I.; Gusev, D.I.; Stepanova, V.D.

    1985-01-01

    Substantiation of maximum permissible concentration (PC) of plutonium isotopes ( 238 Pu, 239 Pu, 240 Pu) in fresh and sea water cooling reservoirs of NPP with fast neutron reactors is given. The main criterion when calculating permissible plutonium content in water of surface reservoirs is the requirement not to exceed the established limits for radiation doses to persons resulted from water use. Data on coefficients of plutonium concentration in sea and fresh water hydrobionts are presented as well as on plutonium PC in water of fresh and sea water cooling reservoirs and bottom sediments of sea water cooling reservoirs. It is shown that doses to critical groups of population doesn't exceed potentially hazardous levels due to plutonium intake through food chains. But the calculation being carried out further should be corrected

  17. Plutonium Plant, Trombay

    International Nuclear Information System (INIS)

    Yadav, J.S.; Agarwal, K.

    2017-01-01

    The journey of Indian nuclear fuel reprocessing started with the commissioning of Plutonium Plant (PP) at Trombay on 22"n"d January, 1965 with an aim to reprocess the spent fuel from research reactor CIRUS. The basic process chosen for the plant was Plutonium Uranium Reduction EXtraction (PUREX) process. In seventies, the plant was subjected to major design modifications and replacement of hardware, which later met the additional demand from research reactor DHRUVA. The augmented plutonium plant has been operating since 1983. Experience gained from this plant was very much helpful to design future reprocessing plant in the country

  18. The toxicity of plutonium

    International Nuclear Information System (INIS)

    Crouse, P.L.

    1994-01-01

    Shipments of plutonium occasionally pass around the Cape coastal waters on its way to Japan from Europe. This invariably leads to a great deal of speculation of the dangers involved and of the extreme toxicity of plutonium, with the media and environmental groups claiming that (a) plutonium is the most toxic substance known to man, and that (b) a few kilograms of plutonium ground finely and dispersed in the atmosphere could kill every human being on earth. Comparisons with other poisons are drawn, e.g. common inorganic chemicals and biological agents. The original scare around the extraordinary toxicity of Pu seems to have started in 1974 with the claims of Tamplin and Cochran's hot particle theory about plutonium lodging in the sensitive portions of the lungs in small concentrated aggregates where they are much more effective in producing cancers. This theory, however, is regarded as thoroughly discredited by the experts in the field of radiotoxicity. 8 refs

  19. Cigarette smoke and plutonium

    International Nuclear Information System (INIS)

    Filipy, R.E.

    1983-01-01

    The major objective of this project is to obtain experimental data that are directly applicable to resolving the question of whether cigarette smokers are at greater risk than nonsmokers to potential health effects of inhaled plutonium. Because cigarette smokers constitute a large fraction of the population, a synergistic effect of plutonium and cigarette smoke might influence estimates of the health risk for plutonium and other transuranics released to the environment

  20. Cycle downstream: the plutonium question

    International Nuclear Information System (INIS)

    Zask, G.; Rome, M.; Delpech, M.

    1998-01-01

    This day, organized by the SFEN, took place at Paris the 4 june 1998. Nine papers were presented. They take stock on the plutonium physics and its utilization as a nuclear fuel. This day tried to bring information to answer the following questions: do people have to keep the plutonium in the UOX fuel or in the MOX fuel in order to use it for future fast reactors? Do people have to continue obstinately the plutonium reprocessing in the MOX for the PWR type reactors? Will it be realized a underground disposal? Can it be technically developed plutonium incinerators and is it economically interesting? The plutonium physics, the experimental programs and the possible solutions are presented. (A.L.B.)

  1. Aqueous Solution Chemistry of Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Clark, David L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-28

    Things I have learned working with plutonium: Chemistry of plutonium is complex; Redox equilibria make Pu solution chemistry particularly challenging in the absence of complexing ligands; Understanding this behavior is key to successful Pu chemistry experiments; There is no suitable chemical analog for plutonium.

  2. Plutonium Proliferation: The Achilles Heel of Disarmament

    International Nuclear Information System (INIS)

    Leventhal, Paul

    2001-01-01

    Plutonium is a byproduct of nuclear fission, and it is produced at the rate of about 70 metric tons a year in the world's nuclear power reactors. Concerns about civilian plutonium ran high in the 1970s and prompted enactment of the Nuclear Non-Proliferation Act of 1978 to give the United States a veto over separating plutonium from U.S.-supplied uranium fuel. Over the years, however, so-called reactor-grade plutonium has become the orphan issue of nuclear non-proliferation, largely as a consequence of pressures from plutonium-separating countries. The demise of the fast breeder reactor and the reluctance of utilities to introduce plutonium fuel in light-water reactors have resulted in large surpluses of civilian, weapons-usable plutonium, which now approach in size the 250 tons of military plutonium in the world. Yet reprocessing of spent fuel for recovery and use of plutonium proceeds apace outside the United States and threatens to overwhelm safeguards and security measures for keeping this material out of the hands of nations and terrorists for weapons. A number of historical and current developments are reviewed to demonstrate that plutonium commerce is undercutting efforts both to stop the spread of nuclear weapons and to work toward eliminating existing nuclear arsenals. These developments include the breakdown of U.S. anti-plutonium policy, the production of nuclear weapons by India with Atoms-for-Peace plutonium, the U.S.-Russian plan to introduce excess military plutonium as fuel in civilian power reactors, the failure to include civilian plutonium and bomb-grade uranium in the proposed Fissile Material Cutoff Treaty, and the perception of emerging proliferation threats as the rationale for development of a ballistic missile defense system. Finally, immobilization of separated plutonium in high-level waste is explored as a proliferation-resistant and disarmament-friendly solution for eliminating excess stocks of civilian and military plutonium.

  3. Gamma ray NDA assay system for total plutonium and isotopics in plutonium product solutions

    International Nuclear Information System (INIS)

    Cowder, L.R.; Hsue, S.T.; Johnson, S.S.; Parker, J.L.; Russo, P.A.; Sprinkle, J.K.; Asakura, Y.; Fukuda, T.; Kondo, I.

    1979-01-01

    A LASL-designed gamma-ray NDA instrument for assay of total plutonium and isotopics of product solutions at Tokai-Mura is currently installed and operating. The instrument is, optimally, a densitometer that uses radioisotopic sources for total plutonium measurements at the K absorption edge. The measured transmissions of additional gamma-ray lines from the same radioisotopic sources are used to correct for self-attenuation of passive gamma rays from plutonium. The corrected passive data give the plutonium isotopic content of freshly separated to moderately aged solutions. This off-line instrument is fully automated under computer control, with the exception of sample positioning, and operates routinely in a mode designed for measurement control. A one-half percent precision in total plutonium concentration is achieved with a 15-minute measurement

  4. An autoradiographical method using an imaging plate for the analyses of plutonium contamination in a plutonium handling facility

    International Nuclear Information System (INIS)

    Takasaki, Koji; Sagawa, Naoki; Kurosawa, Shigeyuki; Mizuniwa, Harumi

    2011-01-01

    An autoradiographical method using an imaging plate (IP) was developed to analyze plutonium contamination in a plutonium handling facility. The IPs were exposed to ten specimens having a single plutonium particle. Photostimulated luminescence (PSL) images of the specimens were taken using a laser scanning machine. One relatively large spot induced by α-radioactivity from plutonium was observed in each PSL image. The plutonium-induced spots were discriminated by a threshold derived from background and the size of the spot. A good relationship between the PSL intensities of the spots and α-radioactivities measured using a radiation counter was obtained by least-square fitting, taking the fading effect into consideration. This method was applied to workplace monitoring in an actual uranium-plutonium mixed oxide (MOX) fuel fabrication facility. Plutonium contaminations were analyzed in ten other specimens having more than two plutonium spots. The α-radioactivities of plutonium contamination were derived from the PSL images and their relative errors were evaluated from exposure time. (author)

  5. Recovery of plutonium by pyroredox processing

    International Nuclear Information System (INIS)

    McNeese, J.A.; Bowersox, D.F.; Christensen, D.C.

    1985-09-01

    Using pyrochemical oxidation and reduction, we have developed a process to recover the plutonium in impure scrap with less than 95% plutonium. This plutonium metal was further purified by pyrochemical electrorefining. During development of the procedures, depleted electrorefining anodes were processed, and over 80% of the plutonium was recovered as high-purity metal in one electrorefining cycle. Over 40 kg of plutonium has been recovered from 55 kg of impure anodes with our procedures. 6 refs., 7 figs., 4 tabs

  6. Recovery of plutonium by pyroredox processing

    International Nuclear Information System (INIS)

    McNeese, J.A.; Bowersox, D.F.; Christensen, D.C.

    1985-01-01

    Using pyrochemical oxidation and reduction, we have developed a process to recover the plutonium in impure scrap with less than 95% plutonium. This plutonium metal was further purified by pyrochemical electrorefining. During development of the procedures, depleted electrorefining anodes were processed, and over 80% of the plutonium was recovered as high-purity metal in one electrorefining cycle. Over 40 kg of plutonium has been recovered from 55 kg of impure anodes with our procedures. 6 refs., 2 figs., 5 tabs

  7. The use of calorimetry for plutonium assay

    International Nuclear Information System (INIS)

    Mason, J.A.

    1982-12-01

    Calorimetry is a technique for measuring the thermal power of heat-producing substances. The technique may be applied to the measurement of plutonium-bearing materials which evolve heat as a result of alpha and beta decay. A calorimetric measurement of the thermal power of a plutonium sample, combined with a knowledge or measurement of the plutonium isotopic mass ratios of the sample provides a convenient and accurate, non-destructive measure of the total plutonium mass of the sample. The present report provides a description, and an assessment of the calorimetry technique applied to the assay of plutonium-bearing materials. Types and characteristics of plutonium calorimeters are considered, as well as calibration and operating procedures. The instrumentation used with plutonium calorimeters is described and the use of computer control for calorimeter automation is discussed. A critical review and assessment of plutonium calorimetry literature since 1970 is presented. Both fuel element and plutonium-bearing material calorimeters are considered. The different types of plutonium calorimeters are evaluated and their relative merits are discussed. A combined calorimeter and gamma-ray measurement assay system is considered. The design principles of plutonium assay calorimeters are considered. An automatic, computer-based calorimeter control system is proposed in conjunction with a general plutonium assay calorimeter design. (author)

  8. Analytic determination of plutonium in the environment; Determination analytique du plutonium dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Ballada, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    The work described in this report was undertaken with a view to determining the plutonium content in the fall-out from nuclear explosions. In the first part are described in turn the importance of the problems due to the plutonium, the physico-chemical properties of the radioelement and the biological dangers which it presents. A detailed and critical analysis is made of the radio-toxicological determination of the plutonium as reported in the literature prior to this report. The second part consists in the presentation of a judicious choice of techniques making it possible to determine plutonium in air, rain-water, soils and ash. After a detailed description of the measurement equipment and the operational techniques which have been developed, a justification of these techniques is given with particular reference to their sensitivity and specificity. After a brief conclusion concerning the preceding chapters, the results are presented. These are then discussed in the ease of each element in which the plutonium has been determined. This discussion is concluded by a consideration of the importance of the occurrence of fall-out plutonium on problems relating to public health. From a consideration of 200 analyses carried out, it is concluded that the contribution of plutonium to the exposure of populations is still very small compared to that of natural radiation and that due to such fission products as strontium 90. The report includes 63 literature references, 26 figures and 11 tables. (author) [French] Les travaux decrits dans ce memoire ont ete entrepris et eflectues dans le but de mettre en evidence le plutonium des retombees radioactives consecutives aux explosions nucleaires. Dans la premiere partie nous etudions successivement l'importance des problemes poses par le plutonium puis les proprietes physicochimiques du radioelement et les dangers qu'il presente du point de vue biologique. Nous effectuons une analyse detaillee et critique des techniques

  9. Plutonium and americium behavior in coral atoll environments

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Jokela, T.A.; Brunk, J.L.; Eagle, R.J.

    1984-01-01

    Inventories of 239+240 Pu and 241 Am greatly in excess of global fallout levels persist in the benthic environments of Bikini and Enewetak Atolls. Quantities of 239+240 Pu and lesser amounts of 241 Am are continuously mobilizing from these sedimentary reservoirs. The amount of 239+240 Pu mobilized to solution at any time represents 0.08 to 0.09% of the sediment inventories to a depth of 16 cm. The mobilized 239+240 Pu has solute-like characteristics and different valence states coexist in solution - the largest fraction of the soluble plutonium is in an oxidized form (+V,VI). The adsorption of plutonium to sediments is not completely reversible because of changes that occur in the relative amounts of the mixed oxidation states in solution with time. Further, any characteristics of 239+240 Pu described at one location may not necessarily be relevant in describing its behavior elsewhere following mobilization and migration. The relative amounts of 241 Am to 239+240 Pu in the sedimentary deposits at Enewetak and Bikini may be altered in future years because of mobilization and radiological decay. Mobilization of 239+240 Pu is not a process unique to these atolls, and quantities in solution derived from sedimentary deposits can be found at other global sites. These studies in the equatorial Pacific have significance in assessing the long-term behavior of the transuranics in any marine environment. 22 references, 1 figure, 13 tables

  10. Weapons-grade plutonium dispositioning. Volume 4

    International Nuclear Information System (INIS)

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO 2 -ZrO 2 -CaO) with the addition of thorium oxide (ThO 2 ) or a burnable poison such as erbium oxide (Er 2 O 3 ) or europium oxide (Eu 2 O 3 ) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl 4 -Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams

  11. Performance of multiple HEPA filters against plutonium aerosols

    International Nuclear Information System (INIS)

    Gonzales, M.; Elder, J.C.; Tillery, M.I.; Ettinger, H.J.

    1976-11-01

    Performance of multiple stages of high-efficiency particulate air (HEPA) filters has been verified against plutonium aerosols similar in size characteristics to those challenging the air-cleaning systems of plutonium-processing facilities. An experimental program was conducted to test each filter in systems of three HEPA filters operated in series against 238 PuO 2 aerosols as high as 3.3 x 10 10 dis/s . m 3 in activity concentration and ranging from 0.22 μm to 1.6 μm in activity median aerodynamic diameter (amad). Mean penetration (ratio of downstream to upstream concentration) of each of the three filters in series was below 0.0002, but it apparently increased at each successive filter. Penetration vs size measurements showed that maximum penetration of 238 PuO 2 occurred for sizes between 0.4- and 0.7-μm aerodynamic diameter (D/sub ae/). HEPA filter penetration at half of rated flow differed little from full-flow penetration

  12. Recovery studies for plutonium machining oil coolant

    International Nuclear Information System (INIS)

    Navratil, J.D.; Baldwin, C.E.

    1977-01-01

    Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tetrachloride. Appropriate methods then could be developed to remove the plutonium and to recycle the oil and carbon tetrachloride. Studies showed that the mixtures of spent oil and carbon tetrachloride contained particulate plutonium and plutonium species that are soluble in water or in oil and carbon tetrachloride. The particulate plutonium was removed by filtration; the nonfilterable plutonium was removed by adsorption on various materials. Laboratory-scale tests indicated the lathe-coolant oil mixture could be separated by distilling the carbon tetrachloride to yield recyclable products

  13. Portable gamma-ray holdup and attributes measurements of high- and variable-burnup plutonium

    International Nuclear Information System (INIS)

    Wenz, T.R.; Russo, P.A.; Miller, M.C.; Menlove, H.O.; Takahashi, S.; Yamamoto, Y.; Aoki, I.

    1991-01-01

    High burnup-plutonium holdup has been assayed quantitatively by low resolution gamma-ray spectrometry. The assay was calibrated with four plutonium standards representing a range of fuel burnup and 241 Am content. Selection of a calibration standard based on its qualitative spectral similarity to gamma-ray spectra of the process material is partially responsible for the success of these holdup measurements. The spectral analysis method is based on the determination of net counts in a single spectral region of interest (ROI). However, the low-resolution gamma-ray assay signal for the high-burnup plutonium includes unknown amounts of contamination from 241 Am. For most needs, the range of calibration standards required for this selection procedure is not available. A new low-resolution gamma-ray spectral analysis procedure for assay of 239 Pu has been developed. The procedure uses the calculated isotope activity ratios and the measured net counts in three spectral ROIs to evaluate and remove the 241 Am contamination from the 239 Pu assay signal on a spectrum-by-spectrum basis. The calibration for the new procedure requires only a single plutonium standard. The procedure also provides a measure of the burnup and age attributes of holdup deposits. The new procedure has been demonstrated using portable gamma-ray spectroscopy equipment for a wide range of plutonium standards and has also been applied to the assay of 239 Pu holdup in a mixed oxide fuel fabrication facility. 10 refs., 5 figs., 3 tabs

  14. Laboratory-scale evaluations of alternative plutonium precipitation methods

    International Nuclear Information System (INIS)

    Martella, L.L.; Saba, M.T.; Campbell, G.K.

    1984-01-01

    Plutonium(III), (IV), and (VI) carbonate; plutonium(III) fluoride; plutonium(III) and (IV) oxalate; and plutonium(IV) and (VI) hydroxide precipitation methods were evaluated for conversion of plutonium nitrate anion-exchange eluate to a solid, and compared with the current plutonium peroxide precipitation method used at Rocky Flats. Plutonium(III) and (IV) oxalate, plutonium(III) fluoride, and plutonium(IV) hydroxide precipitations were the most effective of the alternative conversion methods tested because of the larger particle-size formation, faster filtration rates, and the low plutonium loss to the filtrate. These were found to be as efficient as, and in some cases more efficient than, the peroxide method. 18 references, 14 figures, 3 tables

  15. The plutonium danger

    International Nuclear Information System (INIS)

    Ruiter, W. de

    1983-01-01

    Nobody can ignore the fact that plutonium is potentially very dangerous and the greatest danger concerning it lies in the spreading of nuclear weapons via nuclear energy programmes. The following seven different attitudes towards this problem are presented and discussed: 1) There is no connection between peaceful and military applications; 2) The problem cannot be prevented; 3) A technical solution must be found; 4) plutonium must be totally inaccessible to countries involved in acquiring nuclear weapons; 5) The use of plutonium for energy production should only occur in one multinational centre; 6) Dogmas in the nuclear industry must be enfeebled; 7) All developments in this area should stop. (C.F.)

  16. Physics studies of weapons plutonium disposition in the IFR closed fuel cycle

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Liaw, J.R.; Fujita, E.K.

    1994-01-01

    The core performance impact of weapons plutonium introduction into the IFR closed fuel cycle is investigated by comparing three disposition scenarios: a power production mode, a moderate destruction mode, and a maximum destruction mode all at a constant heat rating of 840 MWt. For each scenario, two fuel cycle models are evaluated: cores using weapons material as the sole source of transuranics in a once-through mode, and recycle corns using weapons material only as required for a make-up feed. Calculated results include mass flows, detailed isotopic distributions, neutronic performance characteristics, and reactivity feedback coefficients. In general, it is shown that weapons plutonium feed does not have an adverse impact on IFR core performance characteristics

  17. Estimation of aerosol plutonium transport by the dust-flux method: a perspective on application of detailed data

    International Nuclear Information System (INIS)

    Shinn, J.H.

    1976-01-01

    Two methods of dust-flux measurements are discussed which have been utilized to estimate aerosol plutonium deposition and resuspension. In previous studies the methods were found to be sufficiently detailed to permit parameterization of dust-flux to the erodibility of the soil, and a seventh-power dependency of dust-flux (or plutonium flux) to wind speed was observed in worst case conditions. The eddy-correlation method is technically more difficult, requires high-speed data acquisition, and requires an instrument response time better than one second, but the eddy-correlation method has been shown feasible with new fast-response sensors, and it is more useful in limited areas because it can be used as a probe. The flux-gradient method is limited by critical assumptions and is more bulky, but the method is more commonly used and accepted. The best approach is to use both methods simultaneously. It is suggested that several questions should be investigated by the methods, such as saltation stimulation of dust-flux, simultaneous suspension and deposition, foliar deposition and trapping, erodibility of crusted surfaces, and horizontally heterogeneous erodibility

  18. The combined effects of plutonium and cigarette smoke on the production of lung tumours

    International Nuclear Information System (INIS)

    Priest, N.D.; Moores, S.R.; Black, A.; Talbot, R.; Morgan, A.

    1989-01-01

    An experiment was conducted to determine the effect of exposure to cigarette smoke on the incidence of plutonium induced lung tumours in mice. Approximately 130 female CBA/H mice were used. These were exposed to plutonium-239 dioxide to give an initial alveolar deposit of 100 Bq, then treated in one of three ways. One third received no further treatment and were held for a period of 18 months. The remainder were either sham-exposed or exposed to mainstream cigarette smoke for one year then held for a further 6 months. After this all the animals were killed. The control mice - that had received only plutonium -contained more tumours than mice that were also either sham-exposed or exposed to cigarette smoke. The lowest number of tumours was found in the group exposed to smoke. These results indicate that, under some circumstances, the effects of cigarette smoke and of alpha-irradiation of the lung can be antagonistic, contrasting with a common expectation of synergy. (author)

  19. A case of internal contamination with plutonium oxide

    International Nuclear Information System (INIS)

    Breuer, F.; Clemente, G.F.; Strambi, E.; Testa, C.

    1980-01-01

    A case is described of internal contamination caused by the accidental explosion of a glove box, whereby a technician was wounded in his right cheek and inhaled insoluble PuO 2 . Immediate washing of the wound with a DTPA solution and the performance of a small surgical toilet reduced the wound contamination a hundred times. Intravenous injection of DPTA was started and continued for nine days. The ''in vivo'' determination of plutonium and Am-241 lung content was performed immediately after the accident and several other times thereafter. Plutonium was determined periodically in urine and fecal samples for five months. The large Esub(f)/Esub(u) ratio and the steep slope of the Esub(f) curve in the first days indicated that the inhaled material was very insoluble and that the suspended powder particles were large. This conclusion was confirmed by the lung clearance ''in vivo'' during the first few days. The initial lung burden, calculated by the fecal excretion of plutonium in the first five days, was in very good agreement with the direct measurement of the lung content; the residual lung burden and the systemic burden were derived respectively U by the fecal and urinary excretion 100 days after the intake. The committed doses to lungs, bone, liver and kidneys were calculated and were found to be considerably lower than the maximum permissible levels. (H.K.)

  20. Measurement of electro-sprayed 238 and 239+240 plutonium isotopes using 4{pi}-alpha spectrometry. Application to environmental samples; Spectrometrie alpha 4{pi} de sources d'actinides realisees par electronebulisation. Developpement et optimisation d'un protocole applique au mesurage des isotopes 238 et 239+240 du plutonium dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Charmoille-Roblot, M. [CEA/Fontenay-aux-Roses, Dept. de Protection de l' Environnement (DPRE), 92 (France)]|[Paris-11 Univ., 91 - Orsay (France)

    1999-07-01

    A new protocol for plutonium deposition using the electro-spray technique coupled with 4{pi}-{alpha} spectrometry is proposed to improve the detection limit, shorten the counting time. In order to increase the detection efficiency, it was proposed to measure 238 and 239+240 plutonium isotopes electro-sprayed deposit simultaneously on both sides of the source support, that must be as transparent as possible to alpha-emissions, in a two-alpha detectors chamber. A radiochemical protocol was adapted to electro-spray constraints and a very thin carbon foil was selected for 4{pi} -alpha spectrometry. The method was applied to a batch of sediment samples and gave the same results as an electrodeposited source measured using conventional alpha spectrometry with a 25 % gain on counting time and 10 % on plutonium 238 detection limit. Validation and application of the technique have been made on reference samples. (author)

  1. Studies on O/M ratio determination in uranium oxide, plutonium oxide and uranium-plutonium mixed oxide

    International Nuclear Information System (INIS)

    Sampath, S.; Chawla, K.L.

    1975-01-01

    Thermogravimetric studies were carried out in unsintered and sintered samples of uranium oxide, plutonium oxide and uranium-plutonium mixed oxide under different atmospheric conditions (air, argon and moist argon/hydrogen). Moisture loss was found to occur below 200 0 C for uranium dioxide samples, upto 700 0 C for sintered plutonium dioxide and negligible for sintered samples. The O/M ratios for non-stoichiometric uranium dioxide (sintered and unsintered), plutonium dioxide and mixed uranium and plutonium oxides (sintered) could be obtained with a precision of +- 0.002. Two reference states UOsub(2.000) and UOsub(2.656) were obtained for uranium dioxide and the reference state MOsub(2.000) was used for other cases. For unsintered plutonium dioxide samples, accurate O/M ratios could not be obtained of overlap of moisture loss with oxygen loss/gain. (author)

  2. The plutonium challenge for the future

    International Nuclear Information System (INIS)

    Gray, L.W.

    2000-01-01

    In this paper author deal with the weapons-usable plutonium and with the possibilities of their managing. Russia has not disclosed the amount of plutonium produced, but various estimates indicate that the production was about 130 tonnes. Production has been curtailed in Russia; three dual-purpose reactors still produce weapons-grade plutonium - two at Tomsk-7 (renamed Seversk) and one at Krasnoyarsk-26 (renamed Zheleznogorsk Mining and Chemical Combine). In a 1994 United States-Russian agreement that has yet to enter into force, Russia agreed to close the remaining operating reactors by the year 2000. Treaties between the United States and Russia have already cut the number of nuclear warheads from more than 10,000 to about 6,000 under START 1, which has been ratified, and to about 3,500 under START 2, which still awaits approval. If Russia and the United States conclude START 3, that number could drop to between 2,000 and 2,500. On September 2, 1998, the Presidents of the United States and Russia signed the 'Joint statement of principles for Management and Disposition of Plutonium, Designated as No Longer Required for Defense Purposes.' In this joint statement the Presidents affirm the intention of each country to remove by stages approximately 50 metric tons of plutonium and to convert the nuclear weapons programs, and to convert this material so that it can never be used in nuclear weapons. These 100 tonne of plutonium must be managed in proper way such that it becomes neither a proliferation for an environmental risk. The United States has proposed that it manage it's 50 tonnes by a dual approach-once through MOX burning of a portion of the plutonium and immobilization in a ceramic matrix followed by en- casement in high level waste glass. Russia has proposed that it manage its full 50 tonnes by burning in a reactor. The MOX program in the United States would bum the cleaner plutonium metal and residues. Weapons components would be converted to plutonium oxide

  3. Method to manufacture a nuclear fuel from uranium-plutonium monocarbide or uranium-plutonium mononitride

    International Nuclear Information System (INIS)

    Krauth, A.; Mueller, N.

    1977-01-01

    Pure uranium carbide or nitride is converted with plutonium oxide and carbon (all in powder form) to uranium-plutonium monocarbide or mononitride by cold pressing and sintering at about 1600 0 C. Pure uranium carbide or uranium nitride powder is firstly prepared without extensive safety measures. The pure uranium carbide or nitride powder can also be inactivated by using chemical substances (e.g. stearic acid) and be handled in air. The sinterable uranium carbide or nitride powder (or also granulate) is then introduced into the plutonium line and mixed with a nonstoichiometrically adjusted, prereacted mixture of plutonium oxide and carbon, pressed to pellets and reaction sintered. The surface of the uranium-plutonium carbide (higher metal content) can be nitrated towards the end of the sinter process in a stream of nitrogen. The protective layer stabilizes the carbide against the water and oxygen content in air. (IHOE) [de

  4. Progress on plutonium stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, D. [Defense Nuclear Facilities Safety Board, Washington, DC (United States)

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  5. Progress on plutonium stabilization

    International Nuclear Information System (INIS)

    Hurt, D.

    1996-01-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE's stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities

  6. Excess Weapons Plutonium Immobilization in Russia

    International Nuclear Information System (INIS)

    Jardine, L.; Borisov, G.B.

    2000-01-01

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R and D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R and D on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the

  7. Plutonium use - Present status and prospects

    International Nuclear Information System (INIS)

    Dievoet, J. van; Fossoul, E.; Jonckheere, E.; Bemden, E. van den

    1977-01-01

    The use of plutonium in thermal and fast reactors is a demonstrated, if not proven, technology. Moreover, plutonium is being produced in increasing quantities. Evaluation of this production on a world scale shows that it would be theoretically possible to construct numerous breeders and thus to make the best use of plutonium, while considerably reducing uranium consumption. This source of plutonium is nevertheless dependent on the reprocessing of irradiated fuel. Long delays in installing and adequate world reprocessing capacity are weakening the prospects for introducing breeders. Furthermore, the critical situation regarding reprocessing may delay the development of complementary reprocessing methods for fuels with a high plutonium content and high burnup. The recycling of plutonium is now a well-known technique and any objections to it hardly bear analysis. Utilization of plutonium offers an appreciable saving in terms of uranium and separative work units; and it can also be shown that immediate reprocessing of the recycling fuel is not essential for the economics of the concept. Temporary storage of recycled fuel is a particularly safe form of concentrating plutonium, namely in irradiated plutonium-bearing fuel assemblies. Finally, recycling offers such flexibility that it represents no obstacle to fuel management at power plants with light-water reactors. These strategic considerations imply that the technology of using plutonium for fabricating thermal or fast reactor fuels is both technically reliable and economically viable. The methods used in industrial facilities are fully reassuring in this respect. Although various unsolved problems exist, none seems likely to impede current developments, while the industrial experience gained has enabled the economics and reliability of the methods to be improved appreciably. Apart from the techno-economic aspects, the plutonium industry must face extremely important problems in connection with the safety of personnel

  8. Plutonium recovery from carbonate wash solutions

    International Nuclear Information System (INIS)

    Gray, J.H.; Reif, D.J.; Chostner, D.F.; Holcomb, H.P.

    1991-01-01

    540Periodically higher than expected levels of plutonium are found in carbonate solutions used to wash second plutonium cycle solvent. The recent accumulation of plutonium in carbonate wash solutions has led to studies to determine the cause of that plutonium accumulation, to evaluate the quality of all canyon solvents, and to develop additional criteria needed to establish when solvent quality is acceptable. Solvent from three canyon solvent extraction cycles was used to evaluate technology required to measure tributyl phosphate (TBP) degradation products and was used to evaluate solvent quality criteria during the development of plutonium recovery processes. 1 fig

  9. Solubility of plutonium from rumen contents of cattle grazing on plutonium-contaminated desert vegetation in in vitro bovine gastrointestinal fluids

    International Nuclear Information System (INIS)

    Barth, J.

    1975-01-01

    Rumen contents of cattle grazing on plutonium-contaminated desert vegetation at the Nevada Test Site were incubated in simulated bovine gastrointestinal fluids to study the alimentary solubility of plutonium. Trials were run during November 1973, and during February, May, July and August 1974. During the May and July trials, a large increase in plutonium solubility accompanied by a marked reduction in plutonium concentration of the rumen contents was observed concurrently with a reduction in intake of Eurotia lanata and an increase in the intake of Oryzopsis hymenoides or Sitanion jubatum. However, during the November, February, and August trials, comparatively high concentration of plutonium, but low plutonium solubility, was associated with high levels of Eurotia lanata in the rumen contents. Plutonium-238 was generally more soluble than plutonium-239 in these fluids. Ratios of the percentage of soluble plutonium-238 to the percentage of soluble plutonium-239 varied fro []1:1 to 18:1 on a radioactivity basis. (auth)

  10. Plutonium metal burning facility

    International Nuclear Information System (INIS)

    Hausburg, D.E.; Leebl, R.G.

    1977-01-01

    A glove-box facility was designed to convert plutonium skull metal or unburned oxide to an oxide acceptable for plutonium recovery and purification. A discussion of the operation, safety aspects, and electrical schematics are included

  11. A literature study of the behaviour of cesium, strontium and plutonium in the soil-plant ecosystem

    International Nuclear Information System (INIS)

    Nielsen, B.; Strandberg, M.

    1988-07-01

    Literature on the occurrence of radiocesium (primarily 137CS) in the soil-plant system with emphasis on the influence of treatment on its root uptake, was reviewed. The aim was to study root uptake of radiocesium in order to estimate the applicability of suitable counter measures in cases of contamination of arable land with plutonium, radiostrontium and, in particular, radiocesium. To what extent 136CS is available to, and absorbed by, the plant and how it is distributed and absorbed in the soil is described. The physiological uptake of plutonium from soil through roots to plant parts lying above ground constitutes minor health hazards to population from the ingestion of vegetables. Extensive use of root fruits, might indicate that there is a risk present in areas of high plutonium soil concentration, because plutonium is adsorbed to root molecules, especially if soil and peel are not discarded. Another risk lies in the resuspension of plutonium deposited on the soil surface. As mentioned above, the impact of the leakage of plutonium from the Chernobyl accident was negligible in distant areas. The effects in the vicinity of the reactor, might have been important. In small areas with high levels of plutonium contamination removal of the top soil layer will be effective. Because of the high toxity and long half-life of plutonium, the risk involved merely in isolating such an area will be to high, because the plutonium may be further dispersed. In larger areas, deep ploughing to a depth of 30-40 cm or more, if feasible, is a possibility. Local factors have to be considered, e.g. position of bedrock, groundwater, soil parameters etc. Deep ploughing combined with previous dispersion of clay minerals, lime or humus or a combination, might be a solution, and should be followed by limiting crops to those with roots concentrated in the surface layer and with smallest attainable concentration ratios for plutonium. Cereals might fill this demand. 188 refs. (AB)

  12. Study on plutonium distribution in Palomares ecosystem after an accidental aerosol release of transuranic radionuclides

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1990-01-01

    A discharge of plutonium and transuranic elements accidentally ocurred near Palomares (Almeria, Spain) in 1966. After decontamining operations, about 10 g of finely dispersed plutonium remained on the soil and was spreaded on the sorroundings and into Mediterranean sea. An analytical study including a 34 sampling sites of marine sediments, chemical clean-up, analytical methods for isolating plutonium from interfering radionuclides in the alfa-spectra was carried out. The detection limit level reached for the 239 u+ 240 Pu was 10 mBq/Kg one of the lowest cited in the Spanish analytical literature until now. These results were attained following a careful electroplating Pu deposition method developed by our laboratory as result of the high signal/noise rates measured and a 20 KeV resolution. Several analytical assurance quality procedures specially developed for the Palomares ecological system were applied to the results, at the CIEMAT laboratories using reference standard certified samples. The values were unbiased and with no differences statistically significants between them. Interlaboratory comparisons were carried out. After 20 years of plutonium traces environmental transport their concentration were from two at three times the leves of radionuclides in the fallout of the zone studied. The plutonium concentration range in surface sediments was 0.3-5.0 Bq/Kg. The highest values corresponding in the coastal sediments and the lowest in the deep sea. Plutonium concentrations are highly correlated with the sediments structure, grain size composition and distance from the mouth of Almanzora river. The most important contribution at the transport from the land into sea could be the freshet occured at 1973. For this reason the plutonium ecologycal path has been from Palomares sorroundings into the sea. Sites in the Mediterranean sea not affected by plutonium apportation from Almanzora river showed Pu levels approximately the same as the mean value for the whole

  13. Analytic determination of plutonium in the environment; Determination analytique du plutonium dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Ballada, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    The work described in this report was undertaken with a view to determining the plutonium content in the fall-out from nuclear explosions. In the first part are described in turn the importance of the problems due to the plutonium, the physico-chemical properties of the radioelement and the biological dangers which it presents. A detailed and critical analysis is made of the radio-toxicological determination of the plutonium as reported in the literature prior to this report. The second part consists in the presentation of a judicious choice of techniques making it possible to determine plutonium in air, rain-water, soils and ash. After a detailed description of the measurement equipment and the operational techniques which have been developed, a justification of these techniques is given with particular reference to their sensitivity and specificity. After a brief conclusion concerning the preceding chapters, the results are presented. These are then discussed in the ease of each element in which the plutonium has been determined. This discussion is concluded by a consideration of the importance of the occurrence of fall-out plutonium on problems relating to public health. From a consideration of 200 analyses carried out, it is concluded that the contribution of plutonium to the exposure of populations is still very small compared to that of natural radiation and that due to such fission products as strontium 90. The report includes 63 literature references, 26 figures and 11 tables. (author) [French] Les travaux decrits dans ce memoire ont ete entrepris et eflectues dans le but de mettre en evidence le plutonium des retombees radioactives consecutives aux explosions nucleaires. Dans la premiere partie nous etudions successivement l'importance des problemes poses par le plutonium puis les proprietes physicochimiques du radioelement et les dangers qu'il presente du point de vue biologique. Nous effectuons une analyse detaillee et critique des techniques

  14. Solvent anode for plutonium purification

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Fife, K.W.; Christensen, D.C.

    1986-01-01

    The purpose of this study is to develop a technique to allow complete oxidation of plutonium from the anode during plutonium electrorefining. This will eliminate the generation of a ''spent'' anode heel which requires further treatment for recovery. Our approach is to employ a solvent metal in the anode to provide a liquid anode pool throughout electrorefining. We use molten salts and metals in ceramic crucibles at 700 0 C. Our goal is to produce plutonium metal at 99.9% purity with oxidation and transfer of more than 98% of the impure plutonium feed metal from the anode into the salt and product phases. We have met these criteria in experiments on the 100 to 1000 g scale. We plan to scale our operations to 4 kg of feed plutonium and to optimize the process parameters

  15. Plutonium isotopic measurements by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Haas, F.X.; Lemming, J.F.

    1976-01-01

    A nondestructive technique is described for calculating plutonium-238, plutonium-240, plutonium-241 and americium-241 relative to plutonium-239 from measured peak areas in the high resolution gamma-ray spectra of solid plutonium samples. Gamma-ray attenuation effects were minimized by selecting sets of neighboring peaks in the spectrum whose components are due to the different isotopes. Since the detector efficiencies are approximately the same for adjacent peaks, the accuracy of the isotopic ratios is dependent on the half-lives, branching intensities, and measured peak areas. The data presented describe the results obtained by analyzing gamma-ray spectra in the energy region from 120 to 700 keV. Most of the data analyzed were obtained from plutonium material containing 6 percent plutonium-240. Sample weights varied from 0.25 g to approximately 1.2 kg. The methods were also applied to plutonium samples containing up to 23 percent plutonium-240 with weights of 0.25 to 200 g. Results obtained by gamma-ray spectroscopy are compared to chemical analyses of aliquots taken from the bulk samples

  16. Analysis of plutonium-239 in occupationally exposed personnel

    International Nuclear Information System (INIS)

    Hernandez M, H.

    2017-10-01

    Apart from radiometric techniques, several mass spectrometry (Ms) techniques can be used to evaluate the incorporation of plutonium-239 in occupationally exposed personnel, among which we can consider mass spectrometry with inductively coupled plasma source (Icp-Ms); mass spectrometry with accelerators (AMS); thermal ionization mass spectrometry (TIMS) and secondary ion mass spectrometry (Sims). In this work we evaluated analytical methods to measure isotopes of plutonium-239 in urine samples from occupationally exposed personnel, using alpha spectroscopy (As), magnetic sector mass spectrometry with inductively coupled plasma source (Icp-SFMS) and AMS. The samples were collected during 24 h were acidified with HNO 3 at 5% in v/v. The processes used in the preparation of the samples were: a) co-precipitation, b) acid digestion, c) radiochemical separation and d) electro deposition. The results obtained in terms of minimum detectable activity of plutonium-239 were 0.1 μBq (∼ 0.4 fg per sample), 5.1 μBq (∼ 2 fg per sample), 30.1 μBq (∼ 13 fg per sample) and 0.1 μBq (∼ 51 fg per sample) for AMS, Aridus-Icp-SFMS, Icp, SFMS and As, respectively. On the other hand, samples previously analyzed by As were re-evaluated by Aridus-Icp-SFMS and AMS. The results show that extraction with 60 ml of 5% HNO 3 at 60 degrees Celsius and for 2.5 h is enough to extract 90% of Pu electrodeposited on the planchette. In conclusion, AMS is an ultra-sensitive technique for determining isotope ratios of Pu, especially when is desired to validate a method to measure plutonium-239. Additionally, Icp-SFMS is a rapid analysis technique and can be used as a screening technique in situations of radiological incidents or accidents with Pu in the occupationally exposed personnel. Regarding alpha spectroscopy has been considered as the technique of excellence in the routine analysis to measure plutonium-239 in occupationally exposed personnel, due to the low cost. Finally, Icp-SFMS and AMS

  17. Americium and plutonium in water, biota, and sediment from the central Oregon coast

    International Nuclear Information System (INIS)

    Nielsen, R.D.

    1982-06-01

    Plutonium-239, 240 and americium-241 were measured in the mussel Mytilus californianus from the region of Coos Bay, OR. The flesh of this species has a plutonium concentration of about 90 fCi/kg, and an Am-241/Pu-239, 240 ratio that is high relative to mixed fallout, ranging between two and three. Transuranic concentrations in sediment, unfiltered water, and filterable particulates were also measured; none of these materials has an Am/Pu ratio as greatly elevated as the mussels, and there is no apparent difference in the Am/Pu ratio of terrestrial runoff and coastal water. Sediment core profiles do not allow accumulation rates or depositional histories to be identified, but it does not appear that material characterized by a high Am/Pu ratio has ever been introduced to this estuary. Other bivalves (Tresus capax and Macoma nasuta) and a polychaete (Abarenicola sp.) do not have an elevated Am/Pu ratio, although the absolute activity of plutonium in the infaunal bivalves is roughly four times that in the mussels

  18. Bibliography on plutonium and its compounds; Bibliographie sur le plutonium et ses composes

    Energy Technology Data Exchange (ETDEWEB)

    Dirian, J; Choquet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Collection of bibliographical references on plutonium and its principal compounds from 1942 to end of 1957. (author) [French] Compilation de references bibliographiques sur le plutonium et ses principaux composes de 1942 a fin 1957. (auteur)

  19. Plutonium speciation affected by environmental bacteria

    International Nuclear Information System (INIS)

    Neu, M.P.; Icopini, G.A.; Boukhalfa, H.

    2005-01-01

    Plutonium has no known biological utility, yet it has the potential to interact with bacterial cellular and extracellular structures that contain metal-binding groups, to interfere with the uptake and utilization of essential elements, and to alter cell metabolism. These interactions can transform plutonium from its most common forms, solid, mineral-adsorbed, or colloidal Pu(IV), to a variety of biogeochemical species that have much different physico-chemical properties. Organic acids that are extruded products of cell metabolism can solubilize plutonium and then enhance its environmental mobility, or in some cases facilitate plutonium transfer into cells. Phosphate- and carboxylate-rich polymers associated with cell walls can bind plutonium to form mobile biocolloids or Pu-laden biofilm/mineral solids. Bacterial membranes, proteins or redox agents can produce strongly reducing electrochemical zones and generate molecular Pu(III/IV) species or oxide particles. Alternatively, they can oxidize plutonium to form soluble Pu(V) or Pu(VI) complexes. This paper reviews research on plutonium-bacteria interactions and closely related studies on the biotransformation of uranium and other metals. (orig.)

  20. Plutonium vulnerability issues at Hanford's Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Feldt, E.; Templeton, D.W.; Tholen, E.

    1995-01-01

    The Plutonium Finishing Plant (PFP) at the Hanford, Washington Site was operated to produce plutonium (Pu) metal and oxide for national defense purposes. Due to the production requirements and methods utilized to meet national needs and the abrupt shutdown of the plant in the late 1980s, the plant was left in a condition that poses a risk of radiation exposure to plant workers, of accidental radioactive material release to the environment, and of radiation exposure to the public. In early 1994, an Environmental Impact Statement (EIS) to determine the best methods for cleaning out and stabilizing Pu materials in the PFP was started. While the EIS is being prepared, a number of immediate actions have been completed or are underway to significantly reduce the greatest hazards in the PFP. Recently, increased attention his been paid to Pu risks at Department of Energy (DOE) facilities resulting in the Department-wide Plutonium Vulnerability Assessment and a recommendation by the Defense Nuclear Facilities Safety Board (DNFSB) for DOE to develop integrated plans for managing its nuclear materials

  1. Physics of Plutonium Recycling in Thermal Reactors

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1967-01-01

    A substantial programme of experimental reactor physics work with plutonium fuels has been carried out in the UK; the purpose of this paper is to review the experimental and theoretical work, with emphasis on plutonium recycling in thermal reactors. Although the main incentive for some of the work may have been to study plutonium build-up in uranium-fuelled reactors, it is nevertheless relevant to plutonium recycling and no distinction is drawn between build-up and enrichment studies. A variety of techniques have been for determining reactivity, neutron spectrum and reaction rates in simple assemblies of plutonium-aluminium fuel with water, graphite and beryllia moderators. These experiments give confidence in the basic data and methods of calculation for near-homogeneous mixtures of plutonium and moderator. In the practical case of plutonium recycling it is necessary to confirm that satisfactory predictions can be made for heterogeneous lattices enriched with plutonium. In this field, experiments have been carried out with plutonium-uranium metal and oxide-cluster fuels in graphite-moderated lattices and in SGHW lattices, and the effects of 240 Pu have been studied by perturbation measurements with single fuel elements. The exponential and critical experiments have used tonne quantities of fuel with plutonium contents ranging from 0.25 to 1.2% and the perturbation experiments have extended both the range of plutonium contents and the range of isotopic compositions of plutonium. In addition to reactivity and reactivity coefficients, such as the temperature coefficients, attention has been concentrated on relative reaction rate distributions which provide evidence for variations of neutron spectrum. .Theoretical comparisons, together with similar comparisons for non-uniform lattices, establish the validity of methods of calculation which have been used to study the feasibility of plutonium recycling in thermal reactors. (author)

  2. Physics of Plutonium Recycling in Thermal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kinchin, G. H. [Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1967-09-15

    A substantial programme of experimental reactor physics work with plutonium fuels has been carried out in the UK; the purpose of this paper is to review the experimental and theoretical work, with emphasis on plutonium recycling in thermal reactors. Although the main incentive for some of the work may have been to study plutonium build-up in uranium-fuelled reactors, it is nevertheless relevant to plutonium recycling and no distinction is drawn between build-up and enrichment studies. A variety of techniques have been for determining reactivity, neutron spectrum and reaction rates in simple assemblies of plutonium-aluminium fuel with water, graphite and beryllia moderators. These experiments give confidence in the basic data and methods of calculation for near-homogeneous mixtures of plutonium and moderator. In the practical case of plutonium recycling it is necessary to confirm that satisfactory predictions can be made for heterogeneous lattices enriched with plutonium. In this field, experiments have been carried out with plutonium-uranium metal and oxide-cluster fuels in graphite-moderated lattices and in SGHW lattices, and the effects of {sup 240}Pu have been studied by perturbation measurements with single fuel elements. The exponential and critical experiments have used tonne quantities of fuel with plutonium contents ranging from 0.25 to 1.2% and the perturbation experiments have extended both the range of plutonium contents and the range of isotopic compositions of plutonium. In addition to reactivity and reactivity coefficients, such as the temperature coefficients, attention has been concentrated on relative reaction rate distributions which provide evidence for variations of neutron spectrum. .Theoretical comparisons, together with similar comparisons for non-uniform lattices, establish the validity of methods of calculation which have been used to study the feasibility of plutonium recycling in thermal reactors. (author)

  3. Cigarette smoke and plutonium

    International Nuclear Information System (INIS)

    Filipy, R.E.

    1982-01-01

    The major objective of this project is to obtain experimental data that are directly applicable to resolving the question of whether cigarette smokers are at greater risk than nonsmokers to potential health effects of inhaled plutonium. Progress was made on two fronts during the past year. The autoradiographic technique developed from detection of plutonium on the interior surface of pulmonary airways (Annual Report, 1978) has been adapted to routine use in examining tracheas and bronchi of rats. Also, dogs exposed to cigarette smoke for over a year after inhalation of plutonium were killed and necropsied

  4. Plutonium inventories for stabilization and stabilized materials

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials within 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.

  5. Primary pulmonary sarcoma in a rhesus monkey after inhalation of plutonium dioxide

    International Nuclear Information System (INIS)

    Hahn, F.F.; Brooks, A.L.; Mewhinney, J.A.

    1987-01-01

    A pulmonary fibrosarcoma of bronchial origin was discovered in a Rhesus monkey that died of pulmonary fibrosis 9 years after inhalation of plutonium-239 dioxide and with a radiation dose to lung of 1400 rad (14 Gy). It grew around the major bronchus of the right cardiac lung lobe and extended into the bronchial lumen and into surrounding pulmonary parenchyma. It also readily invaded muscular pulmonary arteries, resulting in infarction and scarring in the right cardiac lobe. Despite this aggressive growth, the tumor did not metastasize. The primary cause of death was severe pulmonary fibrosis involving the alveolar septa and and perivascular and peribronchial interstitium. Bullous or pericitrical emphysema was prominent. The initial lung burden of plutonium in this monkey was 270 nCi (10 kBq) which is equivalent to approximately 500 times the maximum permissible lung burden for man on a radioactivity per unit body weight basis. The time-dose relationship for survival is consistent with that of dogs and baboons that inhaled plutonium dioxide and died with lung tumors

  6. MIS High-Purity Plutonium Oxide Hydride Product 5501579 (SSR124): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Narlesky, Joshua Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinex, Max A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carillo, Alex [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-08

    A high-purity plutonium dioxide material from the Material Identification and Surveillance (MIS) Program inventory has been studied with regard to gas generation and corrosion in a storage environment. Sample 5501579 represents process plutonium oxides from hydride oxide from Rocky Flats that are currently stored in 3013 containers. After calcination to 950°C, the material contained 87.42% plutonium with no major impurities. This study followed over time, the gas pressure of a sample with nominally 0.5 wt% water in a sealed container with an internal volume scaled to 1/500th of the volume of a 3013 container. Gas compositions were measured periodically over a six year period. The maximum observed gas pressure was 124 kPa. The increase over the initial pressure of 70 kPa was primarily due to generation of nitrogen and carbon dioxide gas. Hydrogen and oxygen were minor components of the headspace gas. At the completion of the study, the internal components of the sealed container showed signs of corrosion.

  7. MIS High-Purity Plutonium Oxide Metal Oxidation Product TS707001 (SSR123): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Narlesky, Joshua Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Max A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carillo, Alex [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-09

    A high-purity plutonium dioxide material from the Material Identification and Surveillance (MIS) Program inventory has been studied with regard to gas generation and corrosion in a storage environment. Sample TS707001 represents process plutonium oxides from several metal oxidation operations as well as impure and scrap plutonium from Hanford that are currently stored in 3013 containers. After calcination to 950°C, the material contained 86.98% plutonium with no major impurities. This study followed over time, the gas pressure of a sample with nominally 0.5 wt% water in a sealed container with an internal volume scaled to 1/500th of the volume of a 3013 container. Gas compositions were measured periodically over a six year period. The maximum observed gas pressure was 138 kPa. The increase over the initial pressure of 80 kPa was primarily due to generation of nitrogen and carbon dioxide gas in the first six months. Hydrogen and oxygen were minor components of the headspace gas. At the completion of the study, the internal components of the sealed container showed signs of corrosion, including pitting.

  8. Interference from radon-thoron daughters in plutonium channel of a continuous plutonium-in-air monitor

    International Nuclear Information System (INIS)

    Pendharkar, K.A.; Krishnamony, S.

    1983-01-01

    This paper summarises the results of a study conducted to define the extent of interference from the daughter products of radon/thoron to the plutonium channel of a continuous plutonium-in-air monitor. The effect on the detection limits of the instrument due to chemical form (transportable or non-transportable) and isotopic composition of plutonium aerosol are briefly discussed. (author)

  9. Compositions of airborne plutonium-bearing particles from a plutonium finishing operation

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1976-11-01

    The elemental composition of 111 plutonium-bearing particles was determined (using an electron microprobe) as part of a program to investigate the origin and behavior of the long-lived transuranic radionuclides released from fuel reprocessing facilities at the Savannah River Plant. These particles, collected from wet-cabinet and room-air exhausts from the plutonium finishing operation (JB-Line), were between 0.4 and 36 μm in diameter. Ninety-nine of the particles were found to be aggregates of various minerals and metals, six were quartz, and six were small (less than 2-μm-diameter) pieces of iron oxide. Collectively, these particles contained less minerals and more metals than natural dusts contain. The metallic constituents included elements normally not found in dusts, e.g., chromium, nickel, copper, and zinc. Concentrations of aluminum and iron exceeded those normally found in minerals. Elemental concentrations in individual particles covered a wide range: one 2-μm-diameter particle contained 97 percent NiO, a 9-μm-diameter particle contained 72 percent Cr 2 O 3 . Although the particles were selected because they produced plutonium fission tracks, the plutonium concentration was too low to be estimated by microprobe analysis in all but a 1-μm-diameter particle. This plutonium-bearing particle contained 73 percent PuO 2 by weight in combination with Fe 2 O 3 and mica; its activity was estimated at 0.17 pCi of 239 Pu

  10. Plutonium use - present status and perspectives

    International Nuclear Information System (INIS)

    Dievoet, J. van; Fossoul, E.; Jonckheere, E.; Bemden, E. van den

    1977-01-01

    Plutonium is being produced in increasing quantities in the so-called proven reactors, which are mostly of the light-water type. Evaluation of this production on a world scale shows that it would be theoretically possible to construct a large number of breeders and thus to make the best use of the intrinsic qualities of plutonium as a fissionable material, while considerably reducing the consumption of uranium. This source of plutonium is nevertheless dependent on an essential stage of the fuel cycle, namely reprocessing of irradiated fuel. The long delays in installing an adequate world reprocessing capacity are substantially weakening the prospects for the introduction of breeders. Furthermore, the critical situation as regards reprocessing may delay the development of complementary reprocessing methods for fuels with a high plutonium content and high burn-up. When it is recalled that fast reactors themselves may suffer some delay in their technological development, if only because of the intention to build power plants of very high unit capacity immediately, it must be concluded that another use will have to be considered for the plutonium available in future -use in thermal reactors, i.e. recycling. The recycling of plutonium is a well-known technique today and the objections which could be raised against it hardly stand up to analysis. Utilization of plutonium offers an appreciable saving in terms of uranium and separative work units, the consumption being of a low order of magnitude in comparison with the total amount of plutonium needed for the eventual fabrication of the first fast reactor cores. It can also be shown that immediate reprocessing of the recycling fuel is not essential for the economics of the concept. Temporary storage of recycled fuel has the advantage of concentrating plutonium in a particularly safe form, namely in irradiated plutonium-bearing fuel assemblies. Lastly, recycling offers such flexibility that it does not in practice represent

  11. Plutonium biokinetics in humans

    International Nuclear Information System (INIS)

    Popplewell, D.; Ham, G.; McCarthy, W.; Lands, C.

    1994-01-01

    By using an 'unusual' isotope it is possible to carry out experiments with plutonium in volunteers at minimal radiation dose levels. Measurements have been made of the gut transfer factor and the urinary excretion of plutonium after intravenous injection. (author)

  12. Cigarette smoke and plutonium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The overall objective of this study is to determine whether cigarette smoking increases the probability of plutonium-induced lung cancer. Initial experiments, designed to characterize the effect of chronic cigarette smoke exposure on pulmonary clearance of plutonium aerosols, are described

  13. Determination and behaviour of plutonium emitted with liquid effluents and exhaust air into the environment of the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Schuettelkopf, H.; Pimpl, M.

    1986-01-01

    The plutonium concentrations in the surroundings of the Karlsruhe Nuclear Research Centre (KfK) are in the range of variation of the global plutonium contamination caused by fallout of atmospheric nuclear tests. Exclusively in the sediments of the Old River Rhine, which serves as main canal for the liquid effluents, higher plutonium concentrations could be detected. The dose exposure of the population living in the environment of the KfK caused by the measured plutonium concentrations is negligible low. From the Karlsruhe Reprocessing Plant (WAK) and the facilities needed to decontaminate radioactive wastes 0.48 GBq (13 mCi) plutonium alpha activity has been emitted within 11 years of operation until 1982 - 1/3 with the liquid effluents and 2/3 with the exhaust air. Following the pathway with the exhaust air, plutonium concentrations in the environment of the Karlsruhe Reprocessing Plant were measured in groundlevel air, in soil, in plants, in food and in animal tissues. Radioecological parameters like dispersion factors, deposition velocities, migration velocities in soil and transfer soil-to-plant were investigated. Following the pathway with the liquid effluents, plutonium concentrations were measured in surface waters, sediments, water plants, plankton and animals. Dilution and sedimentation behaviour were studied as well as the transfer water-to-plant and water-to-animals. (orig.) [de

  14. Polarographic study of the electrochemical properties of plutonium; Etude polarographique des proprietes electrochimiques du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    The behaviour of the different degrees of oxidation of plutonium have been studied using a falling drop mercury electrode in a non-complexing medium: dilute perchloric acid. In this medium it is possible to carry out the polarographic determination of plutonium using the reduction step situated at - 0.54 V/ECS which corresponds to the passage from the degree of oxidation(V) to the degree(III). The modifications brought about by a complexing ion, acetate, are then observed and interpreted. The existence of two plutonium(IV) acetic complexes has been shown; one is a polymerized substance. (author) [French] Le comportement des differents degres d'oxydation du plutonium est etudie a l'electrode a gouttes de mercure dans un milieu non complexant: l'acide perchlorique dilue. Il est possible dans ce milieu d'effectuer le dosage polarographique du plutonium en utilisant la vague de reduction situee a - 0.54 V/ECS qui correspond au passage du degre d'oxydation(V) au degre(III). Les modifications apportees par un ion complexant, l'acetate, sont ensuite observees et interpretees. Deux complexes acetiques du plutonium(IV) ont ete mis en evidence, dont l'un est un compose polymerise. (auteur)

  15. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume I: Summary

    International Nuclear Information System (INIS)

    1994-11-01

    At the conclusion of the Cold War, the Department of Energy (DOE) stopped plutonium processing for nuclear weapons production. Facilities used for that purpose now hold significant quantities of plutonium in various forms. Unless properly stored and handled, plutonium can present environment, safety and health (ES ampersand H) hazards. Improperly stored plutonium poses a variety of hazards. When containers or packaging fail to fully protect plutonium metal from exposure to air, oxidation can occur and cause packaging failures and personnel contamination. Contamination can also result when plutonium solutions leak from bottles, tanks or piping. Plutonium in the form of scrap or residues generated by weapons production are often very corrosive, chemically reactive and difficult to contain. Buildings and equipment that are aging, poorly maintained or of obsolete design contribute to the overall problem. Inadvertent accumulations of plutonium of any form in sufficient quantities within facilities can result in nuclear criticality events that could emit large amounts of radiation locally. Contamination events and precursors of criticality events are causing safety and health concerns for workers at the Department's plutonium facilities. Contamination events also potentially threaten the public and the surrounding environment

  16. A World made of Plutonium?

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    This lecture by Engelbert Broda was written for the 26th Pugwash Conference in Mühlhausen, Germany, 26 – 31 August 1976: Public doubts about nuclear energy are generally directed at the problems of routine emissions of radionuclides, of catastrophic accidents, and of terminal waste disposal. Curiously, the most important problem is not being given sufficient attention: The use of plutonium from civilian reactors fpr weapons production. According to current ideas about a nuclear future, 5000 tons (order of magnitude) of plutonium are to be made annually by year 2000, and about 10 000 tons will all the time be in circulation (transport, reprocessing, reproduction of fuel elements, etc.). It is a misconception that plutonium from power reactors is unsuitable as a nuclear explosive. 5000 tons are enough for several hundred thousand (!) of bombs, Nagasaki type. By the year 2000 maybe 40 – 50 countries will have home-made plutonium. Plutonium production and proliferation are the most serious problems in a nuclear world. (author)

  17. Plutonium in the environment - bibliographic study and quantification; Impacts environnemental et sanitaire des isotopes du plutonium, etude bibliographique et quantification

    Energy Technology Data Exchange (ETDEWEB)

    Guetat, Ph; Monfort, M; Ansoborlo, E [CEA Marcoule, Dir. de l' Energie Nucleaire, 30 (France); Bion, L; Moulin, V; Reiller, P; Vercouter, Th [CEA Saclay, Dir. de l' Energie Nucleaire, 91 - Gif sur Yvette (France); Boucher, L; Jourdain, F; Van Dorpe, F [CEA Cadarache, Dir. de l' Energie Nucleaire, 13 - Saint Paul lez Durance (France); Comte, A; Flury Heard, A; Fritsch, P; Menetrier, F [CEA Fontenay-aux-Roses, Dir. des Sciences du Vivant, 92 (France)

    2008-07-01

    This document deals with the different isotopes of plutonium. It intends to summarize the main features of plutonium behaviour from sources inside installation to the environment and man, and is expected to report the current knowledge about the different parameters used in the models for environmental and radiological impact assessment. The objective is to gather scientific information useful for deciders in case of accident or for regulation purposes. It gives main information on radiological and chemical characteristics which are necessary to understand transfers between compartments. Then it reports information on normal and accidental historical sources and present releases. The next part deals with transfer parameters in the installations and in environment. Parameters that influence its behaviour are examined, inside installations (physico-chemical forms and events that lead to releases), and outside in the environment for deposition to soils and transfer to plants, and animal products. A full chapter is dedicated to presentation of typical assessments, for each isotope and for mixture, and correspondence between activity, mass and dose reference levels are presented and discussed. Transfer and behaviour in man and effects on health are finally presented. (author)

  18. The absorption of plutonium by anion resins

    Energy Technology Data Exchange (ETDEWEB)

    Durham, R. W.; Mills, R.

    1961-10-15

    Equilibrium experiments have shown Pu{sup +4} to be absorbed from nitric acid onto an anion resin as a complex anion Pu(NO{sub 3}){sub 6}{sup -2}. The amount of absorption is dependent on the plutonium and nitric acid concentrations in the equilibrium solution with a maximum at 7N to 8N HNO{sub 3}. A low cross-linked resin has a higher capacity and reaches equilibrium more rapidly than the normally supplied resin. Saturation capacity of one per cent cross-linked Nalcite SBR (Dowex 1), 50 -- 100 mesh, is 385 mg Pu/gram dry resin. (author)

  19. Continuous precipitation process of plutonium salts; Procede continu de precipitation des sels de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-03-01

    This work concerns the continuous precipitation process of plutonium oxalate. Investigations about the solubility of different valence states in nitric-oxalic and in nitric-sulfuric-oxalic medium lead to select the precipitation process of tetravalent plutonium oxalate. Settling velocity and granulometry of tetravalent oxalate plutonium have been studied with variation of several precipitation parameters such as: temperature, acidity, excess of oxalic acid and aging time. Then are given test results of some laboratory continuous apparatus. Conditions of operation with adopted tubular apparatus are defined in conclusion. A flow-sheet is given for a process at industrial scale. (author) [French] Cette etude porte sur la precipitation continue de l'oxalate de plutonium. L'etude de la solubilite des differentes valences du plutonium dans des milieux acides nitrique-oxalique, puis nitrique-sulfurique-oxalique conduit a choisir la precipitation de l'oxalate de plutonium tetravalent. L'etude porte ensuite sur la sedimentation et la granulometrie de l'oxalate de Pu{sup 4+} obtenue en faisant varier differents parametres de la precipitation : la temperature, l'acidite, l'exces oxalique et le temps de murissement. La derniere partie traite des resultats obtenus avec plusieurs types d'appareils continus essayes au laboratoire. En conclusion sont donnees les conditions de marche de l'appareil tubulaire adopte, ainsi qu'une extrapolation a l'echelle industrielle sous forme d'un flow-sheet. (auteur)

  20. Plutonium helps probe protein, superconductor

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Scientists are finding that plutonium can be a useful research tool that may help them answer important questions in fields as diverse as biochemistry and solid-state physics. This paper reports that U.S. research involving plutonium is confined to the Department of Energy's national laboratories and centers around nuclear weapons technology, waste cleanup and disposal, and health effects. But at Los Alamos National Laboratory, scientists also are using plutonium to probe the biochemical behavior of calmodulin, a key calcium-binding protein that mediates calcium-regulated processes in biological systems. At Argonne National Laboratory, another team is trying to learn how a superconductor's properties are affected by the 5f electrons of an actinide like plutonium

  1. Technological alternatives for plutonium transport

    International Nuclear Information System (INIS)

    1978-12-01

    This paper considers alternative transport modes (air, sea, road, rail) for moving (1) plutonium from a reprocessing plant to a store or a fuel fabrication facility, and (2) MOX fuel from the latter to a reactor. These transport modes and differing forms of plutonium are considered in terms of: their proliferation resistance and safeguards; environmental and safety aspects; and economic aspects. It is tentatively proposed that the transport of plutonium could continue by air or sea where long distances are involved and by road or rail over shorter distances; this would be acceptable from the non-proliferation, environmental impact and economic aspects - there may be advantages in protection if plutonium is transported in the form of mixed oxide

  2. Gamma spectrometric methods for measuring plutonium

    International Nuclear Information System (INIS)

    Gunnink, R.

    1978-01-01

    Nondestructive analyses of plutonium can be made by detecting and measuring the gamma rays emitted by a sample. Although qualitative and semiquantitative assays can be performed with relative ease, only recently have methods been developed, using computer analysis techniques, that provide quantitative results. This paper reviews some new techniques developed for measuring plutonium. The features of plutonium gamma-ray spectra are reviewed and some of the computer methods used for spectrum analysis are discussed. The discussion includes a description of a powerful computer method of unfolding complex peak multiplets that uses the standard linear least-squares techniques of data analysis. This computer method is based on the generation of response profiles for the isotopes composing a plutonium sample and requires a description of the peak positions, relative intensities, and line shapes. The principles that plutonium isotopic measurements are based on are also developed, followed by illustrations of the measurement procedures as applied to the quantitative analysis of plutonium liquid and solid samples

  3. Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Miner, William N

    1964-01-01

    This pamphlet discusses plutonium from discovery to its production, separation, properties, fabrication, handling, and uses, including use as a reactor fuel and use in isotope power generators and neutron sources.

  4. Plutonium Vulnerability Management Plan

    International Nuclear Information System (INIS)

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy's response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department's Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B

  5. Preparation of plutonium hexafluoride. Recovery of plutonium from waste dross (1962); Preparation de l'hexafluorure de plutonium. Recuperation du plutonium des scories d'elaboration (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Gendre, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    The object of this work is to study the influence of various physical factors on the rate of fluorination of solid plutonium tetrafluoride by fluorine. In a horizontal oven with a circulation for pure fluorine at atmospheric pressure and 520 deg. C, at a fluorine rate of 9 litres/hour, it is possible to transform 3 g of tetrafluoride to hexafluoride with about 100 per cent transformation and a recovery yield of over 90 per cent, in 4 to 5 hours. The fluorination rate is a function of the temperature, of the fluorine flow-rate, of the crucible surface, of the depth of the tetrafluoride layer and of the reaction time. It does not depend on the diffusion of the fluorine into the solid but is determined by the reaction at the gas-solid interface and obeys the kinetic law (1 - T{sub T}){sup 1/3} = kt + 1. The existence of intermediate fluorides, in particular Pu{sub 4} F{sub 17}, is confirmed by a break in the Arrhenius plot at about 370 deg. C, by differences in the fluorination rates inside the tetrafluoride layer, and by reversible colour changes. The transformation to hexafluoride occurs with a purification with respect of the foreign elements present in the initial plutonium. Recovery of plutonium from waste dross: The study is based on the transformation of occluded plutonium particles to gaseous hexafluoride which is then decomposed thermally to the tetrafluoride which can be reintroduced directly in the production circuit. Under the conditions considered this process is not applicable industrially. After milling, it is possible to separate the dross into enriched (75 per cent Pu in 2.6 per cent by weight of dross) and depleted portions. By prolonged fluorination (16 hours) of the various fractions it is possible to recover about 80 per cent of the plutonium. A treatment plant using fluidization, as described at the end of this study, should make it possible to substantially improve the yield. (author) [French] L'objet de l'etude est l'influence des differents

  6. Surplus plutonium disposition draft environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel

  7. Modeling of Diffusion of Plutonium in Other Metals and of Gaseous Species in Plutonium-Based Systems

    International Nuclear Information System (INIS)

    Cooper, Bernard R.; Gayanath W. Fernando; Beiden, S.; Setty, A.; Sevilla, E.H.

    2004-01-01

    Establish standards for temperature conditions under which plutonium, uranium, or neptunium from nuclear wastes permeates steel, with which it is in contact, by diffusion processes. The primary focus is on plutonium because of the greater difficulties created by the peculiarities of face-centered-cubic-stabilized (delta) plutonium (the form used in the technology generating the waste)

  8. Prospects for the Use of Plutonium in Reactors; Prospective d'Utilisation du Plutonium dans les Reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Fossoul, E.; Haubert, P. [BELGONUCLEAIRE (Belgium); Hirschberg, D.; Morlet, E. [International Business Machines of Belgium, Bruxelles (Belgium)

    1967-09-15

    The introduction, at an increasing rate, of power reactors using slightly enriched uranium will inevitably lead to the production of considerable quantities of plutonium over the next decade. Fast reactors will not be capable of absorbing this material before 1980. The question thus arises of whether one should store the plutonium far future use in fast reactors, recycle it in existing thermal reactors, or try to sell it. The problem has been studied for an electric power generating system that does not foresee selling the plutonium produced by its reactors and does not buy plutonium outside, which enables a good approximation to be made and eliminates the major unknown quantity represented by the future market price of plutonium. Assuming within this system a programme that provides for the construction of power reactors of a given type and capacity at specific dates, the utilization of the plutonium produced can be optimized by linear programming techniques so as to minimize the discounted total cost of the power generated over a given period. A later stage consists in optimizing, by various techniques, not only the utilization but also the production of plutonium by appropriate selection of the power reactor types to be constructed. (author) [French] L'implantation, a un rythme croissant, de centrales nucleaires a uranium legerement enrichi entrainera la production ineluctable d'une quantite importante de plutonium au cours de la prochaine decennie. Les reacteurs a neutrons rapides ne seront capables d'absorber cette production qu'apres 1980. La question se pose donc de savoir s'il est preferable de stocker le plutonium en vue de son utilisation ulterieure dans les reacteurs a neutrons rapides plutot que de le recycler dans les reacteurs actuels a neutrons thermiques ou d'essayer de le vendre. Ce probleme a ete etudie dans le cadre d'un systeme de production d'energie electrique qui ne prevoirait pas la vente du plutonium produit par ses reacteurs nucleaires ni

  9. Radiological safety aspects of handling plutonium

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2016-01-01

    Department of Atomic Energy in its scheme of harnessing the nuclear energy for electrical power generation and strategic applications has given a huge role to utilization of plutonium. In the power production programme, fast reactors with plutonium as fuel are expected to play a major role. This would require establishing fuel reprocessing plants to handle both thermal and fast reactor fuels. So in the nuclear fuel cycle facilities variety of chemical, metallurgical, mechanical operations have to be carried out involving significant inventories of "2"3"9 Pu and associated radionuclides. Plutonium is the most radiotoxic radionuclide and therefore any facility handling it has to be designed and operated with utmost care. Two problems of major concern in the protection of persons working in plutonium handling facilities are the internal exposure to the operating personnel from uptake of plutonium and transplutonic nuclides as they are highly radiotoxic and the radiation exposure of hands and eye lens during fuel fabrication operations especially while handling recycled high burn up plutonium. In view of the fact that annual limit for intake is very small for "2"3"9Pu and its radiation emission characteristics are such that it is a huge challenge for the health physicists to detect Pu in air and in workers. This paper discusses the principles and practices followed in providing radiological surveillance to workers in plutonium handling areas. The challenges in protecting the workers from receiving exposures to hands and eye lens in handling high burn up plutonium are also discussed. The sites having Pu fuel cycle facilities should have trained medical staff to handle cases involving excessive intake of plutonium. (author)

  10. Plutonium-induced lymphadenitis in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Park, J.F.

    1976-01-01

    Plutonium oxide particles accumulate in the tracheobronchial lymph nodes of beagles exposed by inhalation and in the popliteal lymph nodes after subcutaneous injection in the hind paws. The sequence of histopathologic changes after phagocytosis of particles included necrosis, increased numbers of macrophages, and fibroplasia. Scar tissue eventually replaced the normal architecture of the lymph nodes and sequestered the plutonium particles from surrounding parenchyma. Electron microscopy showed that plutonium particles were aggregated in phagolysosomes of macrophages

  11. Guidelines for international plutonium management: Overview and implications

    International Nuclear Information System (INIS)

    Bryson, M.C.; Fitzgerald, C.P.; Kincaid, C.

    1998-01-01

    In September, 1997, nine of the world's plutonium-using countries agreed to a set of guidelines for international plutonium management, with acceptances to be submitted to the International Atomic Energy Agency on December 1. Following three years of discussion, the guidelines provide a unified package of accepted rules for the storage, handling, and transportation of civil plutonium as well as military plutonium that has been declared as no longer required for defense purposes. New requirements include a formal declaration of national plutonium strategies, which will recognize the environmental, economic, and proliferation concerns and the consequent importance of balancing plutonium supply and demand. Nations will also make annual declaration of their non-military stockpiles of unirradiated plutonium, together with estimates of the plutonium content in spent reactor fuel. These guidelines represent the first formally accepted recognition of the need for plutonium management of this scope and could thus provide a partial basis for future monitoring and policy regimes

  12. Expected behavior of plutonium in the IFR fuel cycle

    International Nuclear Information System (INIS)

    Steunenberg, R.K.; Johnson, I.

    1985-01-01

    The Integral Fast Reactor (IFR) is a metal-fueled, sodium-cooled reactor that will consist initially of a U-Zr alloy core in which the enriched uranium will be replaced gradually by plutonium bred in a uranium blanket. The plutonium is concentrated to the required level by extraction from the molten blanket material with a CaCl 2 -BaCl 2 salt containing MgCl 2 as an oxidant (halide slagging). The CaCl 2 -BaCl 2 salt containing dissolved PuCl 3 and UCl 3 is added to the core process where fission products are removed by electrorefining, using a liquid cadmium anode, a metal cathode, and a LiCl-NaCl-CaCl 2 -BaCl 2 molten salt electrolyte. The product is recovered as a metallic deposit on the cathode. The halide slagging step is operated at about 1250 0 and the electrorefining step at about 450 0 C. These processes are expected to give low fission-product decontamination factors of the order of 100

  13. Six-kilogram-scale electrorefining of plutonium metal

    International Nuclear Information System (INIS)

    Mullins, L.J.; Morgan, A.N.; Apgar, S.A. III; Christensen, D.C.

    1982-09-01

    The electrorefining of metallic plutonium scrap to produce high purity metal has been an established procedure at Los Alamos since 1964. This is a batch process and was limited to 4-kg plutonium because of criticality safety considerations. Improvements in critical mass measurements have permitted us to develop a process for 6-kg plutonium. The 6-kg process is now operational. The increased size of the process, together with other improvements which have been made, makes plutonium electrorefining the principal industrial tool for processing and purifying metallic plutonium scrap

  14. Plutonium story

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope 238 Pu) and the demonstration of its fissionability with slow neutrons (isotope 239 Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements

  15. Studies of environmental radioactivity in Cumbria. Part 4 Caesium-137 and plutonium in soils of Cumbria and the Isle of Man

    International Nuclear Information System (INIS)

    Cawse, P.A.

    1980-08-01

    A network of soil sampling sites covering an area of some 2500 km 2 in Cumbria and the whole of the Isle of Man was selected and sampled in 1978. Soils from permanent grassland, coniferous woodland and deciduous woodland were examined, to a depth of 30 cm. The spatial distribution of sampling points is based on a grid of 10 km side. The objective of the study is to provide information on the integrated deposition of Cs-137, Pu-239+240 and Pu-238 from the atmosphere, and to determine the distribution of possible emissions from the nuclear establishment at Windscale in the presence of radioactivity deposited from nuclear weapons fallout, that is superimposed upon the natural background of radioactivity in soil. Results from soil samples collected in 1978 in Cumbria and the Isle of Man are compared with the average integrated deposition for UK soils from nuclear fallout. In the Isle of Man no radioactivity is observed in excess of nuclear weapons fallout, but in Cumbria excess levels of plutonium are detected in coastal lowland areas under permanent grassland probably due to the transport of radioactive material from sea to land. At three sampling sites on grassland and woodland within 2.3 km of the Windscale stacks, the excess plutonium and Cs-137 in soil could be attributed mainly to atmospheric discharges from Windscale. The observed deposition of radioactivity has little radiological significance, based on assessment of risk by inhalation of soil dust that contains plutonium. (author)

  16. Aerial deposition of plutonium in mixed forest stands from nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Adriano, D.C.; Pinder, J.E. III

    1977-01-01

    Concentrations of 238 Pu and 239 , 240 Pu were determined in bark, organic matter, and soil samples collected in the summer of 1975 from pine (Pinus taeda) and hardwood (Quercus falcata; Carya tormentosa) stands near a nuclear fuel reprocessing plant at the U.S. Energy Res. and Dev. Admin.'s Savannah River Plant near Aiken, S.C. The results indicated that tree crowns intercepted fallout Pu (Pu-bearing particles) and produced higher Pu concentrations in the organic matter and soil under tree crowns. Higher 239 , 240 Pu concentrations were found under pines than under hardwoods. Plutonium concentrations in the O1 (litter, A 00 ) and O2 (organic matter, A 0 ) layers were higher than those in mineral soil, but most of the Pu was contained in the mineral soil. Higher contents of 239 , 240 Pu were observed near the tree stems than in locations outside of the tree crowns. In pines these values were 163 and 80 nCi 239 , 240 Pu/m 2 , and in hardwoods, 122 and 80 nCi 239 , 240 Pu/m 2 , for the respective locations, from the litter to the 15-cm depth. The proportion of 238 Pu contained in foliage, litter, and organic matter was greater than for 239 , 240 Pu. However, the latter radionuclides had a greater proportion contained in the mineral soil. This observation is consistent with the more recent releases containing a higher percentage of 238 Pu from reprocessing operation. Plutonium concentrations in the 5 to 15 cm depth indicated limited Pu mobility in soil, but 238 , 240 Pu concentrations at this depth were higher near tree stems, suggesting greater mobility perhaps as a result of stem flow

  17. Plutonium research and related activities at the Amarillo National Resource Center for Plutonium

    International Nuclear Information System (INIS)

    Hartley, R.S.; Beard, C.A.; Barnes, D.L.

    1998-01-01

    With the end of the Cold War, the US and Russia are reducing their nuclear weapons stockpiles. What to do with the materials from thousands of excess nuclear weapons is an important international challenge. How to handle the remaining US stockpile to ensure safe storage and reliability, in light of the aging support infrastructure, is an important national challenge. To help address these challenges and related issues, the Amarillo National Resource Center for Plutonium is working on behalf of the State of Texas with the US Department of Energy (DOE). The center directs three major programs that address the key aspects of the plutonium management issue: (1) the Communications, Education, Training and Community Involvement Program, which focuses on informing the public about plutonium and providing technical education at all levels; (2) the Environmental, Safety, and Health (ES and H) Program, which investigates the key ES and H impacts of activities related to the DOE weapons complex in Texas; and (3) the Nuclear and Other Materials Program, which is aimed at minimizing safety and proliferation risks by helping to develop and advocate safe stewardship, storage, and disposition of nuclear weapons materials. This paper provides an overview of the center's nuclear activities described in four broad categories of international activities, materials safety, plutonium storage, and plutonium disposition

  18. Determination of Plutonium Activity Concentrations and 240Pu/239Pu Atom Ratios in Brown Algae (Fucus distichus) Collected from Amchitka Island, Alaska

    International Nuclear Information System (INIS)

    Hamilton, T F; Brown, T A; Marchetti, A A; Martinelli, R E; Kehl, S R

    2005-01-01

    Plutonium-239 ( 239 Pu) and plutonium-240 ( 240 Pu) activity concentrations and 240 Pu/ 239 Pu atom ratios are reported for Brown Algae (Fucus distichus) collected from the littoral zone of Amchitka Island (Alaska) and at a control site on the Alaskan peninsula. Plutonium isotope measurements were performed in replicate using Accelerator Mass Spectrometry (AMS). The average 240 Pu/ 239 Pu atom ratio observed in dried Fucus d. collected from Amchitka Island was 0.227 ± 0.007 (n=5) and compares with the expected 240 Pu/ 239 Pu atom ratio in integrated worldwide fallout deposition in the Northern Hemisphere of 0.1805 ± 0.0057 (Cooper et al., 2000). In general, the characteristically high 240 Pu/ 239 Pu content of Fucus d. analyzed in this study appear to indicate the presence of a discernible basin-wide secondary source of plutonium entering the marine environment. Of interest to the study of plutonium source terms within the Pacific basin are reports of elevated 240 Pu/ 239 Pu atom ratios in fallout debris from high-yield atmospheric nuclear tests conducted in the Marshall Islands during the 1950s (Diamond et al., 1960), the wide range of 240 Pu/ 239 Pu atom ratio values (0.19 to 0.34) observed in sea water, sediments, coral and other environmental media from the North Pacific Ocean (Hirose et al., 1992; Buesseler, 1997) and updated estimates of the relative contributions of close-in and intermediate fallout deposition on oceanic inventories of radionuclidies, especially in the Northern Pacific Ocean (Hamilton, 2004)

  19. An Improved Plutonium Trifluoride Precipitation Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    2001-06-26

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process.

  20. An Improved Plutonium Trifluoride Precipitation Flowsheet

    International Nuclear Information System (INIS)

    Harmon, H.D.

    2001-01-01

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process

  1. Plutonium valence state distributions

    International Nuclear Information System (INIS)

    Silver, G.L.

    1974-01-01

    A calculational method for ascertaining equilibrium valence state distributions of plutonium in acid solutions as a function of the plutonium oxidation number and the solution acidity is illustrated with an example. The method may be more practical for manual use than methods based upon polynomial equations. (T.G.)

  2. PRISM reactor. An option for plutonium disposition?

    Energy Technology Data Exchange (ETDEWEB)

    Fehlinger, Sebastian; Friess, Friederike; Kuett, Moritz [IANUS, Technische Universitaet Darmstadt (Germany)

    2015-07-01

    The Power Reactor Innovative Small Module (PRISM) is sodium cooled fast reactor model. The energy output depends on the core configuration, however with an energy output of approximately 300 MWe, the PRISM reactor belongs to the class of small modular reactors. Beside using the reactor as a breeder reactor or for the transmutation of nuclear waste, it might also be used as a burner reactor for separated plutonium. This includes for example U.S.-American excess weapon-grade plutonium as well as separated reactor-grade plutonium. Recently, there has been an ongoing discussion in GB to use the PRISM reactor to dispose their excess civilian plutonium. Depending on the task, the core configuration varies slightly. We will present different layouts and the matching MCNP models, these models can then be used to conduct depletion calculations. From these results, analysis of the change in the plutonium isotopics in the spent fuel, the amount of fissioned plutonium, and the possible annual plutonium throughputs is possible.

  3. The first milligrams of plutonium

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1996-01-01

    This paper relates the discovery of the different plutonium chemical extraction processes in their historical context. The first experiments started during the second world war in 1942 with the American ''Metallurgical Laboratory'' project which brought together Arthur Compton, Enrico Fermi and Glenn Seaborg. During the same period, a competitive English-Canadian project, the ''Montreal Project'', was carried out to test different plutonium solvent extraction techniques. The author participated in both projects and joined the CEA in 1946, where he was in charge of the uranium and plutonium chemistry. By the end of 1949, his team could isolate the first milligrams of French plutonium from uranium oxide pellets of the ZOE reactor. In the beginning of 1952 he developed with his team the PUREX process. (J.S.)

  4. Chloride removal from plutonium alloy

    International Nuclear Information System (INIS)

    Holcomb, H.P.

    1983-01-01

    SRP is evaluating a program to recover plutonium from a metallic alloy that will contain chloride salt impurities. Removal of chloride to sufficiently low levels to prevent damaging corrosion to canyon equipment is feasible as a head-end step following dissolution. Silver nitrate and mercurous nitrate were each successfully used in laboratory tests to remove chloride from simulated alloy dissolver solution containing plutonium. Levels less than 10 ppM chloride were achieved in the supernates over the precipitated and centrifuged insoluble salts. Also, less than 0.05% loss of plutonium in the +3, +4, or +6 oxidation states was incurred via precipitate carrying. These results provide impetus for further study and development of a plant-scale process to recover plutonium from metal alloy at SRP

  5. Plutonium production and utilization forecasts in Europe

    International Nuclear Information System (INIS)

    Haijtink, B.

    1976-01-01

    The planned accelerated growth of nuclear energy generation in the near future will lead to a large production of plutonium in the thermal reactors. Therefore, up to 1985, the major part of the available plutonium will be plutonium recovered from spent uranium-metal, particularly in the United Kingdom and in France. Because of the low demand for fuelling the fast breeder reactors within the near future, a surplus of fissile plutonium will be accumulated in Europe. Even if the planned availability of the oxide reprocessing capacity will be delayed with two or three years, a plutonium surplus will still exist in Europe, e.g.; in 1985: 25-20 tons. On longer term, up to 2000, the plutonium production in thermal reactors will be sufficient to meet the estimated demand for fast breeder reactors at their commercial introduction foreseen for the nineties. That means that all the plutonium surplus needs not to be stocked for use in fast breeder reactors later on but could be recycled in thermal reactors. The magnitude of the available fissionable materials give an idea of the importance to promote, on an industrial scale, the plutonium recycling technology

  6. Plutonium in the environment - bibliographic study and quantification

    International Nuclear Information System (INIS)

    Guetat, Ph.; Monfort, M.; Ansoborlo, E.; Bion, L.; Moulin, V.; Reiller, P.; Vercouter, Th.; Boucher, L.; Jourdain, F.; Van Dorpe, F.; Comte, A.; Flury Heard, A.; Fritsch, P.; Menetrier, F.

    2008-01-01

    This document deals with the different isotopes of plutonium. It intends to summarize the main features of plutonium behaviour from sources inside installation to the environment and man, and is expected to report the current knowledge about the different parameters used in the models for environmental and radiological impact assessment. The objective is to gather scientific information useful for deciders in case of accident or for regulation purposes. It gives main information on radiological and chemical characteristics which are necessary to understand transfers between compartments. Then it reports information on normal and accidental historical sources and present releases. The next part deals with transfer parameters in the installations and in environment. Parameters that influence its behaviour are examined, inside installations (physico-chemical forms and events that lead to releases), and outside in the environment for deposition to soils and transfer to plants, and animal products. A full chapter is dedicated to presentation of typical assessments, for each isotope and for mixture, and correspondence between activity, mass and dose reference levels are presented and discussed. Transfer and behaviour in man and effects on health are finally presented. (author)

  7. Strategies for the plutonium utilization

    International Nuclear Information System (INIS)

    Zouain, D.M.; Lima, J.O.V.; Sakamoto, L.H.

    1981-11-01

    A review of the activities involving plutonium (its recycle, utilization and technological status and perspectives) is done. These informations are useful for an economic viability study for the plutonium utilization in thermal reactors (recycling) and in fast breeders reactor (FBR), trying to collect the major number of informations about these subjects. The initial phase describes the present status and projections of plutonium accumulation and requirements. Then, the technological process are described and some strategies are analyzed. (E.G.) [pt

  8. Plutonium in the desert environment of the Nevada Test Site and the Tonopah Test Range

    International Nuclear Information System (INIS)

    Romney, E.M.; Essington, E.H.; Fowler, E.B.; Tamura, T.; Gilbert, R.O.

    1987-01-01

    Several safety shot tests were conducted in the desert environment of the Nevada Test Site and the Tonopah Test Range during the period 1955 to 1963. Follow-up studies were conducted in fallout areas resulting from these tests to investigate the distribution in soils and the availability to animals and plants of plutonium (and americium) after residence times of 10 to 20 years. Soil profile studies disclosed that more than 95% of the plutonium (and americium) dispersed as fallout to the environment had remained in the top 5 cm of soil in undisturbed areas. Significant amounts had been redistributed into blow-sand mounds formed underneath clumps of vegetation. That redistribution should be expected because the contaminant was associated primarily with the coarse silt and fine sand particle size fractions. Resuspension factors were calculated that varied from 9.1 x 10 -11 m -1 to 5.4 x 10 -9 m -1 with geometric mean and arithmetic averages of 2.9 x 10 -10 m -1 and 6.8 x 10 -10 m -1 , respectively; however, the plutonium essentially remained in place when the soil surface was left undisturbed. Vegetation in the fallout areas was contaminated primarily by resuspendable material deposited on the surface of plant foliage; plutonium concentration ratios ranged from 10 -3 to 10 0 . Carcass samples of small vertebrate animals collected from fallout areas contained only trace amounts of plutonium compared to the environmental exposure levels. Furthermore, only trace amounts of plutonium (and americium) were found in muscle and organ tissues of grazing cattle during a 3-year on-site residence experiment. 36 references, 4 figures

  9. Plutonium titration by controlled potential coulometry; Dosage du plutonium par coulometrie a potentiel impose

    Energy Technology Data Exchange (ETDEWEB)

    Leguay, N.

    2011-07-01

    The LAMMAN (Nuclear Materials Metrology Laboratory) is the support laboratory of the CETAMA (Analytical Method Committee), whose two main activities are developing analytic methods, and making and characterizing reference materials. The LAMMAN chose to develop the controlled potential coulometry because it is a very accurate analytical technique which allows the connection between the quantity of element electrolysed to the quantity of electricity measured thanks to the Faraday's law: it does not require the use of a chemical standard. This method was first used for the plutonium titration and was developed in the Materials Analysis and Metrology Laboratory (LAMM), for upgrading its performances and developing it to the titration of other actinides. The equipment and the material used were developed to allow the work in confined atmosphere (in a glove box), with all the restrictions involved. Plutonium standard solutions are used to qualify the method, and in particular to do titrations with an uncertainty better than 0.1 %. The present study allowed making a bibliographic research about controlled potential coulometry applied to the actinides (plutonium, uranium, neptunium, americium and curium). A full procedure was written to set all the steps of plutonium titration, from the preparation of samples to equipments storage. A method validation was done to check the full procedure, and the experimental conditions: working range, uncertainty, performance... Coulometric titration of the plutonium from pure solution (without interfering elements) was developed to the coulometric titration of the plutonium in presence of uranium, which allows to do accurate analyses for the analyses of some parts of the reprocessing of the spent nuclear fuel. The possibility of developing this method to other actinides than plutonium was highlighted thanks to voltammetric studies, like the coulometric titration of uranium with a working carbon electrode in sulphuric medium. (author)

  10. Production of Plutonium Metal from Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Orth, D.A.

    2003-01-16

    The primary separation of plutonium from irradiated uranium by the Purex solvent extraction process at the Savannah River Plant produces a dilute plutonium solution containing residual fission products and uranium. A cation exchange process is used for concentration and further decontamination of the plutonium, as the first step in the final preparation of metal. This paper discusses the production of plutonium metal from the aqueous solutions.

  11. Automation of plutonium spectrophotometry

    International Nuclear Information System (INIS)

    Perez, J.J.; Boisde, G.; Goujon de Beauvivier, M.; Chevalier, G.; Isaac, M.

    1980-01-01

    Instrumentation was designed and constructed for automatic control of plutonium by molecular absorption spectrophotometry, on behalf of the reprocessing facilities, to meet two objectives: on-line measurement, of the valency state of plutonium, on by-pass, with the measured concentration covering the process concentration range up to a few mg.l -1 ; laboratory measurement of plutonium adjusted to valency VI, with operation carried out using a preparative system meeting the required containment specifications. For this two objectives, the photometer, optical cell connections are made by optical fibers resistant to β, γ radiation. Except this characteristic the devices are different according to the quality required for result [fr

  12. Civil plutonium amounts in the world

    International Nuclear Information System (INIS)

    Naudet, G.

    1994-01-01

    The experience of plutonium reprocessing in water reactors is positive and today the use of this nuclear fuel is at industrial level. Plutonium quantities in spent fuel go on increasing, plutonium stock coming from reprocessing can be controlled: according to conjuncture, it will evolve by stabilization or decreasing at the beginning of next century

  13. Geomorphology of plutonium in the Northern Rio Grande

    Energy Technology Data Exchange (ETDEWEB)

    Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

  14. Geomorphology of plutonium in the Northern Rio Grande

    International Nuclear Information System (INIS)

    Graf, W.L.

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi

  15. Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes

    International Nuclear Information System (INIS)

    Ochsenfeld, W.; Schmieder, H.

    1976-01-01

    Fast breeder fuel elements which have been highly burnt-up are reprocessed by extracting uranium and plutonium into an organic solution containing tributyl phosphate. The tributyl phosphate degenerates at least partially into dibutyl phosphate and monobutyl phosphate, which form stable complexes with tetravalent plutonium in the organic solution. This tetravalent plutonium is released from its complexed state and stripped into aqueous phase by contacting the organic solution with an aqueous phase containing tetravalent uranium. 6 claims, 1 drawing figure

  16. Experimental Studies on Plutonium Kinetics in Marine Biota

    International Nuclear Information System (INIS)

    Fowler, S.; Heyraud, M.; Beasley, T.M.

    1976-01-01

    Laboratory experiments were undertaken to measure plutonium flux through marine organisms and to clarify the pathways by which this important element is cycled in the marine environment. The use of a specially prepared isotope, plutonium-237, allowed measurements to be made with standard Nal(Tl) scintillation techniques. Mussels, shrimp and worms were allowed to accumulate plutonium-237 from sea water for up to 25 days. Accumulation by shrimp was relatively slow and the degree of uptake was strongly influenced by moulting. Cast moults contained large fractions of the shrimps ' plutonium content, indicating the high affinity of plutonium for surface areas. Only small amounts of the isotope in the moult are lost to water; hence, moulting is considered to be an important biological parameter in the biogeochemical cycling of plutonium. Mussels attained higher concentration factors than shrimp with most of the accumulated isotope (> 80%) located in the shell. Byssus threads often contained large fractions of the mussels' plutonium-237 content and reached concentration factors as high as 4100. Worms readily accumulated plutonium-237 in either the +4 or +6 state, reaching concentration factors of approximately 200, Retention studies indicated a relatively slow loss of plutonium-237 from all animals studied. In the case of mussels, a computed half-time for a large fraction of the animals plutonium content was of the order of 2 years. The more rapid loss from shrimp (Tb 1/2 = 1.5 months) was due principally to the large fraction of plutonium lost at moult. Food chain studies with shrimp indicated that tissue build-up via plutonium ingestion would be a slow process. Total excretion was not entirely a result of passing contaminated food through the gut; approximately 15% of the ingested plutonium was removed from the contaminated food and subsequently excreted by processes other than defaecation of labelled food. Ratios of four different plutonium isotopes used in

  17. Experimental studies on plutonium kinetics in marine biota

    International Nuclear Information System (INIS)

    Fowler, S.; Heyraud, M.; Beasley, T.M.

    1975-01-01

    Laboratory experiments were undertaken to measure plutonium flux through marine organisms and to clarify the pathways by which this important element is cycled in the marine environment. The use of a specially prepared isotope, plutonium-237, allowed measurements to be made with standard NaI(Tl) scintillation techniques. Mussels, shrimp and worms were allowed to accumulate plutonium-237 from seawater for up to 25 days. Accumulation by shrimp was relatively slow and the degree of uptake was strongly influenced by moulting. Cast moults contained large fractions of the shrimps' plutonium content, indicating the high affinity of plutonium for surface areas. Only small amounts of the isotope in the moult are lost to water; hence, moulting is considered to be an important biological parameter in the biogeochemical cycling of plutonium. Mussels attained higher concentration factors than shrimp with most of the accumulated isotope (>80%) located in the shell. Byssus threads often contained large fractions of the mussels' plutonium-237 content and reached concentration factors as high as 4100. Worms readily accumulated plutonium-237 in either the +4 or +6 state, reaching concentration factors of approximately 200. Retention studies indicated a relatively slow loss of plutonium-237 from all animals studied. In the case of mussels, a computed half-time for a large fraction of the animals' plutonium content was of the order of 2 years. The more rapid loss from shrimp (Tbsub(1/2)=1.5 months) was due principally to the large fraction of plutonium lost at moult. Food chain studies with shrimp indicated that tissue build-up via plutonium ingestion would be a slow process. Total excretion was not entirely a result of passing contaminated food through the gut; approximately 15% of the ingested plutonium was removed from the contaminated food and subsequently excreted by processes other than defaecation of labelled food. Ratios of four different plutonium isotopes used in the

  18. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Samuel [University of Siena, Graduate School in Polar Sciences, Siena (Italy); University of Milano-Bicocca, Department of Environmental Sciences, Milano (Italy); Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, NY (United States); Mahowald, Natalie M. [Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, NY (United States); Delmonte, Barbara; Maggi, Valter [University of Milano-Bicocca, Department of Environmental Sciences, Milano (Italy); Winckler, Gisela [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Columbia University, Department of Earth and Environmental Sciences, New York, NY (United States)

    2012-05-15

    Mineral dust aerosols represent an active component of the Earth's climate system, by interacting with radiation directly, and by modifying clouds and biogeochemistry. Mineral dust from polar ice cores over the last million years can be used as paleoclimate proxy, and provide unique information about climate variability, as changes in dust deposition at the core sites can be due to changes in sources, transport and/or deposition locally. Here we present results from a study based on climate model simulations using the Community Climate System Model. The focus of this work is to analyze simulated differences in the dust concentration, size distribution and sources in current climate conditions and during the Last Glacial Maximum at specific ice core locations in Antarctica, and compare with available paleodata. Model results suggest that South America is the most important source for dust deposited in Antarctica in current climate, but Australia is also a major contributor and there is spatial variability in the relative importance of the major dust sources. During the Last Glacial Maximum the dominant source in the model was South America, because of the increased activity of glaciogenic dust sources in Southern Patagonia-Tierra del Fuego and the Southernmost Pampas regions, as well as an increase in transport efficiency southward. Dust emitted from the Southern Hemisphere dust source areas usually follow zonal patterns, but southward flow towards Antarctica is located in specific areas characterized by southward displacement of air masses. Observations and model results consistently suggest a spatially variable shift in dust particle sizes. This is due to a combination of relatively reduced en route wet removal favouring a generalized shift towards smaller particles, and on the other hand to an enhanced relative contribution of dry coarse particle deposition in the Last Glacial Maximum. (orig.)

  19. Specification analysis of plutonium fuels : a potentiometric method for the determination of plutonium

    International Nuclear Information System (INIS)

    Vaidyanathan, S.; Natarajan, P.R.

    1977-01-01

    A potentiometric method for the routine determination of plutonium in the specification analysis of plutonium fuels is described. Plutonium is oxidized to Pu(VI) with AgO and Pu(VI) is reduced with Fe(II) after the destruction of excess AgO with sulphamic acid. The excess Fe(II) is titrated potentiometrically against K 2 Cr 2 O 7 , the titration being carried out by adding a concentrated titrant solution from a weight burette and a suitably diluted solution from another weight burette near the end. The overall relative standard deviation obtained in 326 analyses of a working standard solution by eight experimenters is 0.14 percent. (author)

  20. Optimum Condition for Plutonium Electrodeposition Process in Radiochemistry and Environment Laboratory, Nuclear Malaysia

    International Nuclear Information System (INIS)

    Yii, Mei-Wo; Abdullah Siddiqi Ismail

    2014-01-01

    Determination of alpha emitting plutonium radionuclides such as Pu-238, Pu-239 and Pu-240 concentrations inside a sample require lots of radiochemistry purification process to separate them from other interfering alpha emitters. These pure isotopes are then been electrodeposited onto a stainless steel disc and quantified using alpha spectrometry counter. In Radiochemistry and Environment Laboratory (RAS), Nuclear Malaysia, the quantification is done by comparing these isotopes with the recovery of known amount plutonium tracer, Pu-242, that been added into the sample prior analysis. This study been conducted to find the optimum conditions for the electrolysis process used at RAS. Four variable parameters that may interfere the percentage recovery of tracer hence the current, cathode to anode distance, pH and electrolysis duration had been identify and studied. Study was carry out using Pu-242 standard solution and the deposition disc was counted using Zinc Sulphite (silver) counter. Studies outcome suggested that the optimum conditions to reduce plutonium ion happens at 1-1.1 ampere of current, 3-5 mm of electrodes distance, pH 2.2-2.5 and a minimal electrolysis duration of 2 hours. (author)

  1. Plutonium distribution in various components of natural organic matters and their role in plutonium migration in soils

    Energy Technology Data Exchange (ETDEWEB)

    Pavlotskaya, F.I.; Goryachenkova, T.A.

    1987-09-01

    The purpose of this work was to ascertain the links of plutonium with various components of the organic matter of different types of soils and their role in its migration in soils. The test objects were typical soils of forest and forest-steppe zones: sod-podzolic, gray forest, and leached chernozem contaminated with plutonium under laboratory conditions and stored in the air-dried state for three years, as also chernozem leached from an experimental site where agricultural plants were grown for a long time. The plutonium content in the fractions isolated from the contaminated soils was determined by its direct coprecipitation with microgram quantities of cerium hydroxide. The chemical yield of plutonium was determined by adding to a solution aliquot, equal to the analysis aliquot in volume, a known amount of plutonium and by its isolation under identical conditions. The ..gamma..-radiation of plutonium isolated on a nuclear filter with a pore size less than or equal to 15 ..mu..m was measured on a Protoka type gas flow counter.

  2. Immobilization of uranium and plutonium into boro-basalt, pyroxene and andradite mineral-like compositions

    International Nuclear Information System (INIS)

    Matyunin, Y.I.; Smelova, T.V.

    2000-01-01

    The immobilization of plutonium-containing wastes with the manufacturing of stable solid compositions is one of the problems that should be solved in the disposal of radioactive wastes. The works on the choice, preparation with the use of the cold crucible induction melter (CCIM) technology, and investigation of materials that are most suitable for immobilizing plutonium-containing wastes of different origin have been carried out at the All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) and the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences in the framework of the agreements with Lawrence Livermore National Laboratory (LLNL, USA) on the material and technical support. This paper presents the data on the synthesis of cerium-, uranium-, and plutonium-containing materials based on boro-basalt, pyroxene, and andradite compositions in the muffle furnace and by using the CCIM method. The compositions containing up to 15 - 18 wt % cerium oxide, 8 - 11 wt % uranium oxide, and 4.6 - 5.7 wt % plutonium oxide were obtained in laboratory facilities installed in glove boxes. Comparison studies of the materials synthesized in the muffle furnace and CCIM demonstrate the advantages of using the CCIM method. The distribution of components in the materials synthesized are investigated, and their certain physicochemical properties are determined. (authors)

  3. Electrochemistry of plutonium in molten halides

    International Nuclear Information System (INIS)

    McCurry, L.E.; Moy, G.M.M.; Bowersox, D.F.

    1987-01-01

    The electrochemistry of plutonium in molten halides is of technological importance as a method of purification of plutonium. Previous authors have reported that plutonium can be purified by electrorefining impure plutonium in various molten haldies. Work to eluciate the mechanism of the plutonium reduction in molten halides has been limited to a chronopotentiometric study in LiCl-KCl. Potentiometric studies have been carried out to determine the standard reduction potential for the plutonium (III) couple in various molten alkali metal halides. Initial cyclic voltammetric experiments were performed in molten KCL at 1100 K. A silver/silver chloride (10 mole %) in equimolar NaCl-KCl was used as a reference electrode. Working and counter electrodes were tungsten. The cell components and melt were contained in a quartz crucible. Background cyclic voltammograms of the KCl melt at the tungsten electrode showed no evidence of electroactive impurities in the melt. Plutonium was added to the melt as PuCl/sub 3/, which was prepared by chlorination of the oxide. At low concentrations of PuCl/sub 3/ in the melt (0.01-0.03 molar), no reduction wave due to the reduction of Pu(III) was observed in the voltammograms up to the potassium reduction limit of the melt. However on scan reversal after scanning into the potassium reduction limit a new oxidation wave was observed

  4. The Plutonium Temperature Effect Experimental Program

    Energy Technology Data Exchange (ETDEWEB)

    Haeck, Wim; Leclaire, Nicolas; Letang, Eric [IRSN, Fontenay-aux-Roses (France); Girault, Emmanuel; Fouillaud, Patrick [CEA, VALDUC (France)

    2008-07-01

    Various theoretical studies have shown that highly diluted plutonium solutions could have a positive temperature effect but (up to now) no experimental program has confirmed this effect. The main goal of the French Plutonium Temperature Effect Experimental Program (or PU+ in short) is to effectively show that such a positive temperature effect exists for diluted plutonium solutions. The experiments were conducted in the 'Apparatus B' facility at the CEA Valduc research centre in France and involved several sub-critical approach type of experiments using plutonium nitrate solutions with concentrations of 14.3, 15 and 20 g/l at temperatures ranging from 20 to 40 deg. C. A total number of 14 phase I experiments (consisting of independent subcritical approaches) have been performed (5 at 20 g/l, 4 at 15 g/l and 5 at 14.3 g/l) between 2006 and 2007. The impact of the uncertainties on the solution acidity and the plutonium concentration makes it difficult to clearly demonstrate the positive temperature effect, requiring an additional phase II experiment (in which the use of the same plutonium solution was ensured) from 22 to 28 deg. C performed in July 2007. This experiment has shown the existence of a positive temperature effect approx +2 pcm/deg. C (from 22 to 28 deg. C for a plutonium concentration of 14.3 g/l). (authors)

  5. Plutonium Speciation, Solubilization and Migration in Soils

    International Nuclear Information System (INIS)

    Neu, M.; Runde, W.

    1999-01-01

    This report summarizes research completed in the first half of a three-year project. As outlined in the authors' proposal they are focusing on (1) characterizing the plutonium at an actinide contaminated site, RFETS, including determining the origin, dispersion, and speciation of the plutonium, (2) studying environmentally important plutonium complexes, primarily hydroxides and carbonates, and (3) examining the interactions of plutonium species with manganese minerals. In the first year the authors focused on site based studies. This year they continue to characterize samples from the RFETS, study the formation and structural and spectroscopic features of environmentally relevant Pu species, and begin modeling the environmental behavior of plutonium

  6. Estimation of initial lung deposition of inhaled 238PuO2 in beagles

    International Nuclear Information System (INIS)

    Stevens, D.L.; Park, J.F.

    1986-01-01

    Studies to determine the life-span dose-effect relationship of inhaled 238 PuO 2 in dogs require an estimate of initial lung deposition (ILD) to calculate the radiation dose to several organs. Ideally, this estimate of ILD is obtained by a summation of plutonium body burden at death plus all the plutonium excreted during the life of the dog. However, the high costs of excreta collection and of plutonium analyses for all excreta from each dog made it necessary to approximate the ILD by other less expensive methods. These methods could introduce error into the estimate of ILD and, consequently, into the radiation dose calculation. The objective of this work was to evaluate the potential error for several methods of estimating ILD. Thirteen beagle dogs were given a single 5- to 30-min exposure to 238 PuO 2 aerosols, resulting in estimated ILD of 0.85 to 11.7 μCi of plutonium-238. Plutonium analyses of the tissues at death and of all excreta from these dogs were used for this evaluation. The estimate of ILD, obtained by summation of the plutonium body burden at death plus all the plutonium excreted, was compared to the estimated ILD obtained by the plutonium whole-body retention function for each dog, using all excreta data; the mean plutonium whole-body retention function for each dog, using all excreta data; the plutonium whole-body retention function for each dog, using partial excreta data; and a mean plutonium whole-body retention function for all dogs, using partial excreta data. 4 refs., 3 figs., 4 tabs

  7. Probing phonons in plutonium

    International Nuclear Information System (INIS)

    Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing

    2010-01-01

    ) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the Λ point are: C 11 = 35.3 ± 1.4 GPa, C 12 = 25.5 ± 1.5 GPa and C 44 = 30.53 ± 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure (delta)-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C(prime), a Kohn-like anomaly in the T 1 [011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for (delta)-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C(prime), a Kohn-like anomaly in the T 1 [011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which (delta)-Pu is a classic example. However, quantitative differences remain. These are the position of the Kohn anomaly along the T 1 [011] branch, the energy maximum of the T[111] mode s

  8. Recent trends of plutonium facilities and their control

    Energy Technology Data Exchange (ETDEWEB)

    Muto, T [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1974-02-01

    Much interest has been focussed on Pu recycle since the oil crisis because of an expected shortage of enriched uranium. Plutonium handling techniques and plutonium fuel fabricating facilities should be developed to meet the future demand of plutonium, but the radioactive property of plutonium to be reprocessed from spent fuel and recycled plutonium is remarkably different, and it has to be handled safely. Technical criteria for plutonium facilities are specified in the USAEC regulatory guides and other rules. Some of these criteria are location condition, quality of confinement, protection against accidents and so on. The control conditions for plutonium facilities are exposure control, criticality control, measurement control and new system of safeguard. These problems are under development to meet the future requirement for the safe handling of Pu material.

  9. Plutonium Oxide Process Capability Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    Meier, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  10. Weapons-grade plutonium dispositioning. Volume 1: Executive summary

    International Nuclear Information System (INIS)

    Parks, D.L.; Sauerbrun, T.J.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate dispositioning options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) assisted NAS in this evaluation by investigating the technical aspects of the dispositioning options and their capability for achieving plutonium annihilation levels greater than 90%. Additionally, the INEL investigated the feasibility of using plutonium fuels (without uranium) for disposal in existing light water reactors and provided a preconceptual analysis for a reactor specifically designed for destruction of weapons-grade plutonium. This four-volume report was prepared for NAS to document the findings of these studies. Volume 2 evaluates 12 plutonium dispositioning options. Volume 3 considers a concept for a low-temperature, low-pressure, low-power-density, low-coolant-flow-rate light water reactor that quickly destroys plutonium without using uranium or thorium. This reactor concept does not produce electricity and has no other mission than the destruction of plutonium. Volume 4 addresses neutronic performance, fabrication technology, and fuel performance and compatibility issues for zirconium-plutonium oxide fuels and aluminum-plutonium metallic fuels. This volumes gives summaries of Volumes 2--4

  11. Plutonium gastrointestinal absorption by adults baboons

    International Nuclear Information System (INIS)

    Lataillade, G.; Madic, C.; Willemot, J.M.; Germain, P.; Colle, C.; Metivier, H.

    1991-01-01

    Gastrointestinal absorption of plutonium was investigated in baboons after ingestion of plutonium solution (oxidation states III; IV; V; VI), and plutonium incorporated in soya bean and winkles. We studied the effects of oxidation state and ingested mass for masses ranging from 0.35 μg to 51.6 x 10 +3 μg (4 x 10 -2 to 7776 μg of plutonium per kg of body weight). No clear increase in plutonium retention was shown for concentrations of plutonium smaller than 1 μg/kg. From 1 μg/kg to 1 mg/kg no effects of mass or oxidation state was observed and the mean fractional retention value was 10 -4 . For ingested masses higher than 1 mg/kg the fractional retention values respectively increased for Pu(V) and Pu(III) to (0.9 + 0.2) x 10 -2 and (7.4 + 4.1) x 10 -4 of the ingested mass. This increase might be due to the weak hydrolysis of these oxidation states which would increase gastrointestinal absorption by decrease of hydroxide formation. The fraction of plutonium retained after ingestion of soya bean was (3.0 + 0.5) x 10 -4 about 3 fold higher than the value for 238 Pu nitrate solution. No clear increase in plutonium retention was shown after ingestion of winkles containing 238 Pu. In conclusion, except for high masses of ingested Pu, the retention of which could reach 1% of the ingested dose, our results show that the gastrointestinal transfer factor of 10 -4 proposed by ICRP for gastrointestinal absorption of soluble form of Pu is acceptable, but 10 -3 would provide better safety margin [fr

  12. Disposing of the world's excess plutonium

    International Nuclear Information System (INIS)

    McCormick, J.M.; Bullen, D.B.

    1998-01-01

    The authors undertake three key objectives in addressing the issue of plutonium disposition at the end of the Cold War. First, the authors estimate the total global inventory of plutonium both from weapons dismantlement and civil nuclear power reactors. Second, they review past and current policy toward handling this metal by the US, Russia, and other key countries. Third, they evaluate the feasibility of several options (but especially the vitrification and mixed oxide fuel options announced by the Clinton administration) for disposing of the increasing amounts of plutonium available today. To undertake this analysis, the authors consider both the political and scientific problems confronting policymakers in dealing with this global plutonium issue. Interview data with political and technical officials in Washington and at the International Atomic Energy Agency in Vienna, Austria, and empirical inventory data on plutonium from a variety of sources form the basis of their analysis

  13. Selecting a plutonium vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, A. [Centre d`Etudes de la Vallee du Rhone, Bagnols sur Ceze (France)

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  14. Plutonium Disposition Now exclamation point

    International Nuclear Information System (INIS)

    Buckner, M.R.

    1995-01-01

    A means for use of existing processing facilities and reactors for plutonium disposition is described which requires a minimum capital investment and allows rapid implementation. The scenario includes interim storage and processing under IAEA control, and fabrication into MOX fuel in existing or planned facilities in Europe for use in operating reactors in the two home countries. Conceptual studies indicate that existing Westinghouse four-loop designs can safety dispose of 0.94 MT of plutonium per calendar year. Thus, it would be possible to consume the expected US excess stockpile of about 50 MT in two to three units of this type, and it is highly likely that a comparable amount of the FSU excess plutonium could be deposed of in a few VVER-1000's. The only major capital project for this mode of plutonium disposition would be the weapons-grade plutonium processing which could be done in a dedicated international facility or using existing facilities in the US and FSU under IAEA control. This option offers the potential for quick implementation at a very low cost to the governments of the two countries

  15. Plutonium in depleted uranium penetrators

    International Nuclear Information System (INIS)

    McLaughlin, J.P.; Leon-Vintro, L.; Smith, K.; Mitchell, P.I.; Zunic, Z.S.

    2002-01-01

    Depleted Uranium (DU) penetrators used in the recent Balkan conflicts have been found to be contaminated with trace amounts of transuranic materials such as plutonium. This contamination is usually a consequence of DU fabrication being carried out in facilities also using uranium recycled from spent military and civilian nuclear reactor fuel. Specific activities of 239+240 Plutonium generally in the range 1 to 12 Bq/kg have been found to be present in DU penetrators recovered from the attack sites of the 1999 NATO bombardment of Kosovo. A DU penetrator recovered from a May 1999 attack site at Bratoselce in southern Serbia and analysed by University College Dublin was found to contain 43.7 +/- 1.9 Bq/kg of 239+240 Plutonium. This analysis is described. An account is also given of the general population radiation dose implications arising from both the DU itself and from the presence of plutonium in the penetrators. According to current dosimetric models, in all scenarios considered likely ,the dose from the plutonium is estimated to be much smaller than that due to the uranium isotopes present in the penetrators. (author)

  16. Assay of low-level plutonium effluents

    International Nuclear Information System (INIS)

    Hsue, S.T.; Hsue, F.; Bowersox, D.F.

    1981-01-01

    In the plutonium recovery section at the Los Alamos National Laboratory, an effluent solution is generated that contains low plutonium concentration and relatively high americium concentration. Nondestructive assay of this solution is demonstrated by measuring the passive L x-rays following alpha decay. Preliminary results indicate that an average deviation of 30% between L x-ray and alpha counting can be achieved for plutonium concentrations above 10 mg/L and Am/Pu ratios of up to 3; for plutonium concentrations less than 10 mg/L, the average deviation is 40%. The sensitivity of the L x-ray assay is approx. 1 mg Pu/L

  17. Light water breeder reactor using a uranium-plutonium cycle

    International Nuclear Information System (INIS)

    Radkowsky, A.; Chen, R.

    1990-01-01

    This patent describes a light water receptor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: a prebreeder section having plutonium fuel containing a Pu-241 component, the prebreeder section being operable to produce enriched plutonium having an increased Pu-241 component; and a breeder section for receiving the enriched plutonium from the prebreeder section, the breeder section being operable for breeding fissile material from the enriched plutonium fuel. This patent describes a method of operating a light water nuclear reactor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: operating the prebreeder to produce enriched plutonium fuel having an increased Pu-241 component; fueling a breeder section with the enriched plutonium fuel to breed the fissile material

  18. Plutonium contaminated materials research programme

    International Nuclear Information System (INIS)

    Higson, S.G.

    1986-01-01

    The paper is a progress report for 1985 from the Plutonium Contaminated Materials Working Party (PCMWP). The PCMWP co-ordinates research and development on a national basis in the areas of management, treatment and immobilisation of plutonium contaminated materials, for the purpose of waste management. The progress report contains a review of the development work carried out in eight areas, including: reduction of arisings, plutonium measurement, sorting and packaging, washing of shredded combustible PCM, decommissioning and non-combustible PCM treatment, PCM immobilisation, treatment of alpha bearing liquid wastes, and engineering objectives. (UK)

  19. Nuclear legacy. Democracy in a plutonium economy

    International Nuclear Information System (INIS)

    Barnaby, F.

    1997-01-01

    There have already been a few hundred known incidents of nuclear smuggling, mostly of small quantities not close to weapons grade material - but one gram of plutonium is more than sufficient to cause significant harm and to pose a substantial threat. The potential for further thefts is growing as the world produces ever more quantities of plutonium, not only from the dismantling of nuclear weapons but also from the separation out of plutonium from spent uranium nuclear reactor fuel elements. Trying to prevent the theft of gram quantities of plutonium would require levels of protection and surveillance unacceptably high in a democratic society. It is unlikely, therefore, that democracy could survive in a plutonium economy

  20. NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Reno, NV (United States); Campbell, Scott [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-02-01

    Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. The emphasis of the work is on collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans that are being developed, which will facilitate the appropriate closure design and post-closure monitoring. In 2011, DRI installed two meteorological monitoring stations south (station #1) and north (station #2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters are recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during fiscal year (FY) 2015.

  1. Use of archived tissues for studies of plutonium-induced lung tumors

    International Nuclear Information System (INIS)

    Sanders, C.L.; McDonald, K.E.; Lauhala, K.E.; Frazier, M.E.

    1988-10-01

    Previous lifespan studies in rats exposed to plutonium-239 aerosols indicated that lung tumor incidence might be increased at radiation doses to the lung comparable to doses received by humans from a maximum permissible occupational lung deposition of 0.6 kBq 239 Pu. A total of 3,192 young adults, female, SPF, Wistar rats were used in the initial lifespan study: 2,134 were exposed to 239 PuO 2 at initial lung burdens (ILB) ranging from 0.009 to 6.7 kBq, and 1,058 were sham-exposed controls. Histopathological analyses have been completed on 1707 of the 3,192 rats, including 54 sham-exposed control sand 1153 exposed animals. Cell kinetics, autoradiographic and morphometric techniques are being used to evaluate the spatial-temporal dose-distribution patterns and the cellular events leadings up to lung tumor formation in 140 serially sacrificed female, Wistar rats given a single exposure to 239 PuO 2 (ILB, 3.9 kBq). Protooncogene activation, growth factors and growth factor receptors, DNA cell content (by cell flow cytometry and microspectrophotometry) and cell proliferation (by 3 H-TdR nuclear labeling) are being examined in archival paraffin-block sections. 27 refs., 2 figs

  2. Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase

    International Nuclear Information System (INIS)

    Dupuy, M.

    1967-07-01

    A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in α uranium (15 per cent at 565 C) and the uranium one in ζ phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10 12 cm 2 s -1 , and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and α autoradiography. Self-diffusion of plutonium in ε phase (bcc) obeys Arrhenius law: D = 2. 10 -2 exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals (βZr, βTi, βHf, U γ ). (author) [fr

  3. Atomic energy policy of Japan, especially plutonium utilization policy

    International Nuclear Information System (INIS)

    Moriguchi, Y.

    1993-01-01

    The necessity of plutonium use in Japan is discussed. Basic policy regarding plutonium use and future plutonium utilization programme is described including such an aspect as management of plutonium from dismantled nuclear weapons

  4. Solubility of plutonium dioxide aerosols, in vitro

    International Nuclear Information System (INIS)

    Newton, G.J.; Kanapilly, G.M.

    1976-01-01

    Solubility of plutonium aerosols is an important parameter in establishing risk estimates for industrial workers who might accidentally inhale these materials and in evaluating environmental health impacts associated with Pu. In vitro solubility of industrial plutonium aerosols in a simulated lung fluid is compared to similar studies with ultrafine aerosols from laser ignition of delta phase plutonium metal and laboratory-produced spherical particles of 238 PuO 2 and 239 PuO 2 . Although relatively insoluble, industrial plutonium-mixed oxide aerosols were much more soluble than laboratory-produced plutonium dioxide particles. Chain agglomerate aerosols from laser ignition of metallic Pu indicated in vitro dissolution half-times of 10 and 50 days for activity median aerodynamic diameter (AMAD) of 0.7 and 2.3 μm, respectively. Plutonium-containing mixed oxide aerosols indicated dissolution half-times of 40 to 500 days for particles formed by industrial powder comminution and blending. Centerless grinding of fuel pellets yielded plutonium-containing aerosols with dissolution half-times of 1200 to 8000 days. All mixed oxide particles were in the size range 1.0 μm to 2.5 μm AMAD

  5. Ultra-small plutonium oxide nanocrystals: an innovative material in plutonium science.

    Science.gov (United States)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Janssen, Arne; Manara, Dario; Griveau, Jean-Christophe; Colineau, Eric; Vitova, Tonya; Prüssmann, Tim; Wang, Di; Kübel, Christian; Meyer, Daniel

    2014-08-11

    Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.2±0.9 nm) and highly crystalline plutonium oxide (PuO2 ) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2 (NO3 )2 ]⋅3 H2 O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X-ray diffraction (PXRD), X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Current status of the plutonium hot particle problem

    International Nuclear Information System (INIS)

    Richmond, C.R.

    1975-01-01

    Information now available on the question of lung irradiation from particulate plutonium is reviewed. Careful consideration of the available data shows that particulate plutonium is not more hazardous than the same amount of plutonium distributed uniformly. The data also suggest that the potential hazard from plutonium increases as the dispersion throughout the lung becomes more uniform

  7. Appraisal of BWR plutonium burners for energy centers

    International Nuclear Information System (INIS)

    Williamson, H.E.

    1976-01-01

    The design of BWR cores with plutonium loadings beyond the self-generation recycle (SGR) level is investigated with regard to their possible role as plutonium burners in a nuclear energy center. Alternative plutonium burner approaches are also examined including the substitution of thorium for uranium as fertile material in the BWR and the use of a high-temperature gas reactor (HTGR) as a plutonium burner. Effects on core design, fuel cycle facility requirements, economics, and actinide residues are considered. Differences in net fissile material consumption among the various plutonium-burning systems examined were small in comparison to uncertainties in HTGR, thorium cycle, and high plutonium-loaded LWR technology. Variation in the actinide content of high-level wastes is not likely to be a significant factor in determining the feasibility of alternate systems of plutonium utilization. It was found that after 10,000 years the toxicity of actinide high-level wastes from the plutonium-burning fuel cycles was less than would have existed if the processed natural ores had not been used for nuclear fuel. The implications of plutonium burning and possible future fuel cycle options on uranium resource conservation are examined in the framework of current ERDA estimates of minable uranium resources

  8. Tabulated Neutron Emission Rates for Plutonium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shores, Erik Frederick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-24

    This work tabulates neutron emission rates for 80 plutonium oxide samples as reported in the literature. Plutonium-­238 and plutonium-­239 oxides are included and such emission rates are useful for scaling tallies from Monte Carlo simulations and estimating dose rates for health physics applications.

  9. Model of plutonium dynamics in a deciduous forest ecosystem

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Gardner, R.H.; Dahlman, R.C.

    1980-01-01

    A linear compartment model with donor-controlled flows between compartments was designed to describe and simulate the behavior of plutonium ( 239 240 Pu) in a contaminated forest ecosystem at Oak Ridge, TN. At steady states predicted by the model, less than 0.25% of the plutonium in the ecosystem resides in biota. Soil is the major repository of plutonium in the forest, and exchanges of plutonium between soil and litter or soil and tree roots were dominant transfers affecting the ecosystem distribution of plutonium. Variation in predicted steady-state amounts of plutonium in the forest, given variability in the model parameters, indicates that our ability to develop models of plutonium transport in ecosystems should improve with greater precision in data from natural environments and a better understanding of sources of variation in plutonium data

  10. Plutonium recycle. In-core fuel management

    International Nuclear Information System (INIS)

    Vincent, F.; Berthet, A.; Le Bars, M.

    1985-01-01

    Plutonium recycle in France will concern a dozen of PWR 900 MWe controlled in gray mode till 1995. This paper presents the main characteristics of fuel management with plutonium recycle. The organization of management studies will be copied from this developed for classical management studies. Up these studies, a ''feasibility report'' aims at establishing at each stage of the fuel cycle, the impact of the utilization of fuel containing plutonium [fr

  11. The plutonium-oxygen and uranium-plutonium-oxygen systems: A thermochemical assessment

    International Nuclear Information System (INIS)

    1967-01-01

    The report of a panel of experts convened by the IAEA in Vienna in March 1964. It reviews the structural and thermodynamic data for the Pu-O and U-Pu-O systems and presents the conclusions of the panel. The report gives information on preparation, phase diagrams, thermodynamic and vaporization behaviour of plutonium oxides, uranium-plutonium oxides and PuO 2 -MeO x (Me=Be, Mg, Al, Si, W, Th, Eu, Zr, Ce) systems. 167 refs, 27 figs, 17 tabs

  12. Qualitative chemical analysis of plutonium by Alpha spectroscopy

    International Nuclear Information System (INIS)

    Ramirez G, J Qumica.J.

    1994-01-01

    In this work the separation and purification of plutonium from irradiated uranium was done. The plutonium, produced by the irradiation of uranium in a nuclear reactor and the β decay of 239 Np, was stabilized to Pu +4 with sodium nitrite. Plutonium was separated from the fission products and uranium by ion exchange using the resin Ag 1 X 8. It was electrodeposited on stainless steel discs and the alpha radioactivity of plutonium was measured in a surface barrier detector. The results showed that plutonium was separated with a radiochemical purity higher than 99 %. (Author)

  13. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    Science.gov (United States)

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  14. International shipment of plutonium by air

    International Nuclear Information System (INIS)

    Mercado, J.E.; McGrogan, J.P.

    1995-05-01

    In support of the United States (US) Government's decision to place excess plutonium oxide at the US Department of Energy's (DOE) Hanford Site under International Atomic Energy Agency (IAEA) safeguards, the Department of State notified the Congress that a plutonium storage vault at the Plutonium Finishing Plant at the Hanford Site would be added to the eligible facilities list. As part of the preparations to transfer the plutonium oxide under IAEA safeguards, samples of the powder were taken from the inventory to be shipped to the IAEA headquarters in Vienna, Austria, for laboratory analysis. The analysis of these samples was of high priority, and the IAEA requested that the material be shipped by aircraft, the most expeditious method

  15. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  16. Plutonium safety training course

    International Nuclear Information System (INIS)

    Moe, H.J.

    1976-03-01

    This course seeks to achieve two objectives: to provide initial safety training for people just beginning work with plutonium, and to serve as a review and reference source for those already engaged in such work. Numerous references have been included to provide information sources for those wishing to pursue certain topics more fully. The first part of the course content deals with the general safety approach used in dealing with hazardous materials. Following is a discussion of the four properties of plutonium that lead to potential hazards: radioactivity, toxicity, nuclear properties, and spontaneous ignition. Next, the various hazards arising from these properties are treated. The relative hazards of both internal and external radiation sources are discussed, as well as the specific hazards when plutonium is the source. Similarly, the general hazards involved in a criticality, fire, or explosion are treated. Comments are made concerning the specific hazards when plutonium is involved. A brief summary comparison between the hazards of the transplutonium nuclides relative to 239 Pu follows. The final portion deals with control procedures with respect to contamination, internal and external exposure, nuclear safety, and fire protection. The philosophy and approach to emergency planning are also discussed

  17. Disposal of Surplus Weapons Grade Plutonium

    International Nuclear Information System (INIS)

    Alsaed, H.; Gottlieb, P.

    2000-01-01

    The Office of Fissile Materials Disposition is responsible for disposing of inventories of surplus US weapons-usable plutonium and highly enriched uranium as well as providing, technical support for, and ultimate implementation of, efforts to obtain reciprocal disposition of surplus Russian plutonium. On January 4, 2000, the Department of Energy issued a Record of Decision to dispose of up to 50 metric tons of surplus weapons-grade plutonium using two methods. Up to 17 metric tons of surplus plutonium will be immobilized in a ceramic form, placed in cans and embedded in large canisters containing high-level vitrified waste for ultimate disposal in a geologic repository. Approximately 33 metric tons of surplus plutonium will be used to fabricate MOX fuel (mixed oxide fuel, having less than 5% plutonium-239 as the primary fissile material in a uranium-235 carrier matrix). The MOX fuel will be used to produce electricity in existing domestic commercial nuclear reactors. This paper reports the major waste-package-related, long-term disposal impacts of the two waste forms that would be used to accomplish this mission. Particular emphasis is placed on the possibility of criticality. These results are taken from a summary report published earlier this year

  18. Pulmonary carcinogenesis from plutonium-containing particles

    International Nuclear Information System (INIS)

    Thomas, R.G.; Smith, D.M.; Anderson, E.C.

    1980-01-01

    Induction of lung tumors by various types of radiation is of paramount concern to the nuclear industry. The data presented were obtained by exposing the pulmonary system of Syrian hamsters to particles of zirconium oxide containing various amounts of either plutonium-238 or -239 as the alpha radiation source. These particles were injected intravenously and lodged permanently in the capillary bed of the lung. When less than 20% of the lung tissue was irradiated, simulating the ''hot particle'' mode, tumors were not evident with lung burdens up to 500 nCi plutonium. More diffuse irradiation significantly increased the tumor incidence, with lung burdens of 50 to 150 nCi. When plutonium-laden microspheres were administered intratracheally, tumor production was considerably increased and the addition of 3 mg of iron oxide intratracheally further increased the incidence. Using the zirconium oxide matrix for the carrier of plutonium in aerosol particles produced tumor incidences of up to 50% in Syrian hamsters exposed by inhalation. Initial pulmonary (alveolar) burdens reached 100 nCi of plutonium. Similar inhalation studies using plutonium dioxide alone (no matrix) failed to produce any increase in lung tumorigenesis. The results are discussed in terms of possible mechanisms necessary for lung carcinogenesis. (H.K.)

  19. Verification station for Sandia/Rockwell Plutonium Protection system

    International Nuclear Information System (INIS)

    Nicholson, N.; Hastings, R.D.; Henry, C.N.; Millegan, D.R.

    1979-04-01

    A verification station has been designed to confirm the presence of plutonium within a container module. These container modules [about 13 cm (5 in.) in diameter and 23 cm (9 in.) high] hold sealed food-pack cans containing either plutonium oxide or metal and were designed by Sandia Laboratories to provide security and continuous surveillance and safety. After the plutonium is placed in the container module, it is closed with a solder seal. The verification station discussed here is used to confirm the presence of plutonium in the container module before it is placed in a carousel-type storage array inside the plutonium storage vault. This measurement represents the only technique that uses nuclear detectors in the plutonium protection system

  20. Modified titrimetric determination of plutonium using photometric end-point detection

    International Nuclear Information System (INIS)

    Baughman, W.J.; Dahlby, J.W.

    1980-04-01

    A method used at LASL for the accurate and precise assay of plutonium metal was modified for the measurement of plutonium in plutonium oxides, nitrate solutions, and in other samples containing large quantities of plutonium in oxidized states higher than +3. In this modified method, the plutonium oxide or other sample is dissolved using the sealed-reflux dissolution method or other appropriate methods. Weighed aliquots, containing approximately 100 mg of plutonium, of the dissolved sample or plutonium nitrate solution are fumed to dryness with an HC1O 4 -H 2 SO 4 mixture. The dried residue is dissolved in dilute H 2 SO 4 , and the plutonium is reduced to plutonium (III) with zinc metal. The excess zinc metal is dissolved with HCl, and the solution is passed through a lead reductor column to ensure complete reduction of the plutonium to plutonium (III). The solution, with added ferroin indicator, is then titrated immediately with standardized ceric solution to a photometric end point. For the analysis of plutonium metal solutions, plutonium oxides, and nitrate solutions, the relative standard deviation are 0.06, 0.08, and 0.14%, respectively. Of the elements most likely to be found with the plutonium, only iron, neptunium, and uranium interfere. Small amounts of uranium and iron, which titrate quantitatively in the method, are determined by separate analytical methods, and suitable corrections are applied to the plutonium value. 4 tables, 4 figures

  1. The economics of plutonium recycle

    International Nuclear Information System (INIS)

    James, R.A.

    1977-11-01

    The individual cost components and the total fuel cycle costs for natural uranium and uranium-plutonium mixed oxide fuel cycles for CANDU-PHW reactors are discussed. A calculation is performed to establish the economic conditions under which plutonium recycle would be economically attractive. (auth)

  2. Plutonium uniqueness

    International Nuclear Information System (INIS)

    Silver, G.L.

    1984-01-01

    A standard is suggested against which the putative uniqueness of plutonium may be tested. It is common folklore that plutonium is unique among the chemical elements because its four common oxidation states can coexist in the same solution. Whether this putative uniqueness appears only during transit to equilibrium, or only at equilibrium, or all of the time, is not generally made clear. But while the folklore may contain some truth, it cannot be put to test until some measure of 'uniqueness' is agreed upon so that quantitative comparisons are possible. One way of measuring uniqueness is as the magnitude of the product of the mole fractions of the element at equilibrium. A 'coexistence index' is defined and discussed. (author)

  3. Use of plutonium and minor actinides as fuel in high temperature pebble bed reactors for waste minimization

    International Nuclear Information System (INIS)

    Meier, Astrid; Bernnat, Wolfgang; Lohnert, Guenther

    2009-01-01

    Energy production by nuclear fission gives rise to longlived radionuclides, such as plutonium and americium. The ''PuMA'' (Plutonium and Minor Actinides Waste Management) research project within the 6th Framework Program of the European Union serves to minimize waste arisings and transmute plutonium and minor actinides from spent LWR fuel elements by means of modular high-temperature reactors (HTR). Coating the fuel, which consists of kernels approx. 250 μm in radius and surrounded by graphite as the moderator material, allows very high operating and accident temperatures and very high burnups. One point examined is whether the inherent safety characteristics known for uranium oxide also exist for (PuO 2 + MAO 2 ) fuel. On the basis of a reference reactor similar to the South African PBMR-400, various loading strategies at maximum burnup are considered with a view to the inherent safety of the HTR. (orig.)

  4. Determination of plutonium in soils by mass spectrometry

    International Nuclear Information System (INIS)

    Storms, H.A.; Carlson, D.C.; Hunter, F.F.

    1974-01-01

    A procedure is described in which mass spectrometry is utilized for the determination of plutonium in soils. Using this procedure we have measured plutonium isotopic compositions at concentrations as low as 2 x 10 -14 grams Pu per gram soil. A thermal ionization source with canoe-shaped rhenium filament, is utilized in the mass spectrometer. The plutonium, when loaded onto the filament, is contained in a single Dowex-1 resin bead which is about 350 micrometers in diameter. Concentrating the plutonium within this single bead is a key step in the procedure and produces a relatively clean plutonium fraction. The resin bead also serves as an effective diffusion barrier such that the plutonium is prevented from being removed with the lower boiling impurities. The Pu remains in the bead until the temperature is sufficiently high for efficient production of Pu + ions. Plutonium ionization efficiencies as high as 2.5 percent have been measured

  5. Surplus plutonium disposition draft environmental impact statement. Volume 2

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. Volume 2 contains the appendices to the report and describe the following: Federal Register notices; contractor nondisclosure statement; adjunct melter

  6. Addressing mixed waste in plutonium processing

    International Nuclear Information System (INIS)

    Christensen, D.C.; Sohn, C.L.; Reid, R.A.

    1991-01-01

    The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed

  7. Magnetic separation as a plutonium residue enrichment process

    International Nuclear Information System (INIS)

    Avens, L.R.; Gallegos, U.F.; McFarlan, J.T.

    1990-01-01

    Several plutonium contaminated residues have been subjected to Open Gradient Magnetic Separation (OGMS) on an experimental scale. OGMS experiments on graphite and bomb reduction residues resulted in a plutonium rich fraction and a plutonium lean fraction. Values for the bulk quantity rejected to the lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the lean fraction plutonium content was too high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. 6 refs., 1 fig., 9 tabs

  8. Measurements of α-emitting plutonium and americium in the intertidal sands of west Cumbria, UK

    International Nuclear Information System (INIS)

    Eakins, J.D.; Morgan, A.; Baston, G.M.N.; Pratley, F.W.; Strange, L.P.; Burton, P.J.

    1990-01-01

    Samples of surface sand and sand cores were collected from intertidal regions of west Cumbria between Silloth and Walney Island (including the Duddon Estuary) between 1982 and 1984 and analysed for 238 Pu, 239+240 Pu and 241 Am. Generally, more than 95% of the α-emitting transuranic nuclides were associated with the sand and less than 5% with entrained silt. The greatest concentrations of both plutonium and americium were found at Braystones. Concentrations declined with distance from the Sellafield Works. The largest actinide deposits occurred at Drigg (320 and 720 kBq m -2 of 239+240 Pu and 241 Am respectively). The integrated deposits in intertidal sand between Silloth and Walney Island were about 4.2 and 7.0 TBq respectively, which represent about 1% of the total α-emitting activity discharged to sea from Sellafield Works up to 1982. The corresponding value for the Duddon Estuary is about 0.3%. Only on beaches close to Sellafield did levels of man-made α-emitters exceed those of natural α-emitting nuclides. The radiological consequences of the intertidal inventory of plutonium and americium are shown to be very small and much less than from the seafood pathway. (author)

  9. Spectrographic analysis of plutonium (1960); L'analyse spectrographique du plutonium (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, J; Chaput, M; Robichet, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Various possibilities for the spectrographic determination of impurities in plutonium are considered. The application of the 'copper spark' method, of sparking on graphite and of fractional distillation in the arc are described and discussed in some detail (apparatus, accessories, results obtained). (author) [French] On examine diverses possibilites pour le dosage spectrographique des impuretes dans le plutonium. On decrit et discute plus particulierement de l'application des methodes 'copper spark', de l'etincelage sur graphite et de la distillation fractionnee dans l'arc (montages, accessoires, resultats obtenus). (auteur)

  10. Monitoring of wastes containing plutonium. Necessity and method

    International Nuclear Information System (INIS)

    Sousselier, Y.; Pottier, P.

    1979-01-01

    Importance of problems set by wastes containing plutonium is rapidly growing. Plutonium is not a waste, recycling limits heavily the quantity of plutonium to be stored with wastes. Optimized waste management must take definitive storage and economical limits of plutonium recovery into account. Waste monitoring is a must for safety, economy and waste management. Methods used require reliability, simplicity, sensibility and accuracy particularly for threshold detection [fr

  11. Determination of Plutonium by ICP-MS in environmental samples of Casaccia site: a comparison with Alpha spectroscopy

    International Nuclear Information System (INIS)

    Cozzella, M.L.; Gianquillo, G.; Pettirossi, R.

    2002-01-01

    The total inventory of plutonium (Pu) in the word is estimated to be around 20 PBq since 1950. The total fallout is estimated to be in the 1-10 MBq km -2 order of magnitude with a maximum at the latitude 40 o -50 o North

  12. Plutonium in the ocean environment. Its distributions and behavior

    International Nuclear Information System (INIS)

    Hirose, Katsumi

    2009-01-01

    Marine environments have been extensively contaminated by plutonium as a result of global fallout due to atmospheric nuclear-weapons testing. Knowledge of the levels and behavior of plutonium in marine environments is necessary to assess the radiological and ecological effects of plutonium. Such analytical techniques as radiochemical analysis, α-spectrometry, and mass spectrometry have been developed to analyze the plutonium in seawater over the past five decades. Because of complex chemical properties (e.g. high reactivity to particles), plutonium in the ocean exhibits more complicated behavior than other long-lived anthropogenic radionuclides, such as 137 Cs. In the present study. In reviewed the research history of plutonium in the ocean, including spatial and temporal changes of plutonium levels and distributions, and its oceanographic behavior. (author)

  13. Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory

    International Nuclear Information System (INIS)

    Yeh, H.C.; Newton, G.J.; Teague, S.V.

    1976-01-01

    The inhalation toxicity of potentially toxic aerosols may be affected by the electrostatic charge on the particles. Charge may influence the deposition site during inhalation and therefore its subsequent clearance and dose patterns. The electrostatic charge distributions on plutonium-containing aerosols were measured with a miniature, parallel plate, aerosol electrical mobility spectrometer. Two aerosols were studied: a laboratory-produced 238 PuO 2 aerosol (15.8 Ci/g) and a plutonium mixed-oxide aerosol (PU-MOX, natural UO 2 plus PuO 2 , 0.02 Ci/g) formed during industrial centerless grinding of mixed-oxide reactor fuel pellets. Plutonium-238 dioxide particles produced in the laboratory exhibited a small net positive charge within a few minutes after passing through a 85 Kr discharger due to alpha particle emission removal of valence electrons. PU-MOX aerosols produced during centerless grinding showed a charge distribution essentially in Boltzmann equilibrium. The gross alpha aerosol concentrations (960-1200 nCi/l) within the glove box were sufficient to provide high ion concentrations capable of discharging the charge induced by mechanical and/or nuclear decay processes

  14. Measurement of photon mass attenuation coefficients of plutonium from 60 to 2615 keV

    International Nuclear Information System (INIS)

    Rettschlag, M.; Berndt, R.; Mortreau, P.

    2007-01-01

    Measurements have been made to determine plutonium photon mass attenuation coefficients by using a collimated-beam transmission method in the energy range from 60 to 2615 keV. These experimental results were compared with previous experimental and theoretical data. Good agreements are observed in the 240-800 keV energy range, whereas differences up to maximum 10% are observed out of these limits

  15. Extraction and purification of plutonium by a tertiary amine; Extraction et purification du plutonium par une amine tertiaire

    Energy Technology Data Exchange (ETDEWEB)

    Trentinian, M de; Chesne, A [Commissariat a l' Energie Atomique, Fontenay aux Roses, Section de Chimie des Actimides (France).Centre d' Etudes Nucleaires; Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Trilaurylamine diluted with a paraffinic solvent (dodecane) was studied as part of the research dealing with the separation and purification of plutonium. The physical properties (solubility of nitrates in the amine as a function of temperature) and the resistance to radiations of this substance were examined. The extraction characteristics of nitric solutions of plutonium, uranium and certain fission products are given as a function of the following factors: concentration of the various ions in solution, valency states. A method of plutonium purification based on these results is presented. (author) [French] La trilaurylamine diluee par un solvant paraffinique (dodecane) a ete etudiee dans le cadre des recherches concernant la separation et la purification du plutonium. Une etude des caracteres physiques (solubilite des nitrates dans l'amine en fonction de la temperature) s'ajoute a celle de la tenue aux radiations de ce corps. Les caracteristiques d'extraction de solutions nitriques de plutonium, uranium, et certains produits de fission, sont donnes en fonction des facteurs suivants: concentration des differents ions en solution, etats de valence. On presente une methode de purification du plutonium basee sur ces resultats. (auteur)

  16. Evaluation of plutonium at Enewetak Atoll

    International Nuclear Information System (INIS)

    Wilson, D.W.; Ng, Y.C.; Robison, W.L.

    1975-01-01

    An extensive survey was carried out in 1972 to 1973 to assess the current radiological status of Enewetok Atoll. The radionuclides detected in the Atoll environment were studied for their potential contributions to the dose commitment of the returning population according to several pathways of exposure. Plutonium was detected in air and in the terrestrial and aquatic environment at concentrations that varied from background levels due to world-wide fallout to levels several orders-of-magnitude above. The dose commitments from plutonium via the terrestrial food chain and inhalation vary according to the postulated living pattern. The dosages via marine foods can be expected to be insensitive to living pattern and to exceed those via terrestrial foods. Plutonium would contribute nearly all of the dosage via inhalation, but this pathway ranks low in overall importance compared with the food-chain and external-dose pathways. Although the potential dose from plutonium via all pathways is low relative to that from 60 Co, 90 Sr and 137 Cs, plutonium will still remain in the Atoll environment after the other makor isotopes have decayed away. (author)

  17. Long-term plutonium storage: Design concepts

    International Nuclear Information System (INIS)

    Wilkey, D.D.; Wood, W.T.; Guenther, C.D.

    1994-01-01

    An important part of the Department of Energy (DOE) Weapons Complex Reconfiguration (WCR) Program is the development of facilities for long-term storage of plutonium. The WCR design goals are to provide storage for metals, oxides, pits, and fuel-grade plutonium, including material being held as part of the Strategic Reserve and excess material. Major activities associated with plutonium storage are sorting the plutonium inventory, material handling and storage support, shipping and receiving, and surveillance of material in storage for both safety evaluations and safeguards and security. A variety of methods for plutonium storage have been used, both within the DOE weapons complex and by external organizations. This paper discusses the advantages and disadvantages of proposed storage concepts based upon functional criteria. The concepts discussed include floor wells, vertical and horizontal sleeves, warehouse storage on vertical racks, and modular storage units. Issues/factors considered in determining a preferred design include operational efficiency, maintenance and repair, environmental impact, radiation and criticality safety, safeguards and security, heat removal, waste minimization, international inspection requirements, and construction and operational costs

  18. Toxicity of uranium and plutonium to the developing embryos of fish

    International Nuclear Information System (INIS)

    Till, J.E.; Kaye, S.V.; Trabalka, J.R.

    1976-07-01

    The radiological and chemical toxicity of plutonium and uranium to the developing embryos of fish was investigated using eggs from carp, Cyprinus carpio, and fathead minnows, Pimephales promelas. Freshly fertilized eggs were developed in solutions containing high specific activity 238 Pu or 232 U or low specific activity 244 Pu, 235 U, or 238 U. Quantitative tests to determine the penetration of these elements through the chorion indicated that plutonium accumulated in the contents of carp eggs reaching a maximum concentration factor of approximately 3.0 at hatching. Autoradiographs of 16 μ egg sections showed that plutonium was uniformly distributed in the egg volume. Uranium localized in the yolk material, and the concentration factor in the yolk sac remained constant during development at approximately 3.3. Doses from 238 Pu which affected hatchability of the eggs were estimated to be 1.6 x 10 4 rads and 9.7 x 10 3 rads for C. carpio and P. promelas, respectively; doses from 232 U were 1.3 x 10 4 rads for C. carpio and 2.7 x 10 3 rads for P. promelas. A greater number of abnormal larvae than in control groups was produced by 238 Pu doses of 4.3 x 10 3 rads to carp and 5.7 x 10 2 rads to fathead minnows; 3.2 x 10 3 rads and 2.7 x 10 2 rads were estimated from 232 U. Eggs that were incubated in 20 ppM 244 Pu did not hatch. This mortality may have been the result of chemical toxicity of plutonium. Concentrations of 60 ppM of 235 U and 238 U did not affect egg hatching. Based on these data, concentrations in fish eggs were calculated for representative concentrations of uranium and plutonium in natural waters and the corresponding dose levels are below those levels at which observable effects begin to occur

  19. Toxicity of uranium and plutonium to the developing embryos of fish

    International Nuclear Information System (INIS)

    Till, J.E.

    1976-01-01

    The radiological and chemical toxicity of plutonium and uranium to the developing embryos of fish was investigated using eggs from carp, Cyprinus carpio, and fathead minnows, Pimephales promelas. Freshly fertilized eggs were developed in solutions containing high specific activity 238 Pu or 232 U or low specific activity 244 Pu, 235 U, or 238 U. Quantitative tests to determine the penetration of these elements through the chorion indicated that plutonium accumulated in the contents of carp eggs reached a maximum concentration factor of approximately 3.0 at hatching. Autoradiographs of 16 μ egg sections showed that plutonium was uniformly distributed in the egg volume. Uranium localized in the yolk material, and the concentration factor in the yolk sac remained constant during development at approximately 3.3. Doses from 238 Pu which affected hatchability of the eggs were estimated to be 1.6 x 10 4 rads and 9.7 x 10 3 rads for C. carpio and P. promelas, respectively; doses from 232 U were 1.3 x 10 4 rads for C. carpio and 2.7 x 10 3 rads for P. promelas. A greater number of abnormal larvae than in control groups was produced by 238 Pu doses of 4.3 x 10 3 rads to carp and 5.7 x 10 2 rads to fathead minnows; 3.2 x 10 3 rads and 2.7 x 10 2 rads were estimated from 232 U. Eggs that were incubated in 20 ppM 244 Pu did not hatch. This mortality may have been the result of chemical toxicity of plutonium. Concentrations of 60 ppM of 235 U and 238 U did not affect egg hatching. Based on these data, concentrations in fish eggs were calculated for representative concentrations of uranium and plutonium in waste waters and the corresponding dose levels are below those levels at which observable effects begin to occur

  20. Technical considerations and policy requirements for plutonium management

    International Nuclear Information System (INIS)

    Christensen, D.C.; Dinehart, S.M.; Yarbro, S.L.

    1995-01-01

    The goals for plutonium management have changed dramatically over the past few years. Today, the challenge is focused on isolating plutonium from the environment and preparing it for permanent disposition. In parallel, the requirements for managing plutonium are rapidly changing. For example, there is a significant increase in public awareness on how facilities operate, increased attention to environmental safety and health (ES and H) concerns, greater interest in minimizing waste, more emphasis on protecting material from theft, providing materials for international inspection, and a resurgence of interest in using plutonium as an energy source. Of highest concern, in the immediate future, is protecting plutonium from theft or diversion, while the national policy on disposition is debated. These expanded requirements are causing a broadening of responsibilities within the Department of Energy (DOE) to include at least seven organizations. An unavoidable consequence is the divergence in approach and short-term goals for managing similar materials within each organization. The technology base does exist, properly, safely, and cost effectively to extract plutonium from excess weapons, residues, waste, and contaminated equipment and facilities, and to properly stabilize it. Extracting the plutonium enables it to be easily inventoried, packaged, and managed to minimize the risk of theft and diversion. Discarding excess plutonium does not sufficiently reduce the risk of diversion, and as a result, long-term containment of plutonium from the environment may not be able to be proven to the satisfaction of the public

  1. On-line monitoring of low-level plutonium concentrations

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Huff, G.A.; Rebagay, T.V.

    1979-10-01

    An on-line monitor has been developed to assay plutonium in nitric acid solutions. The performance of the monitor has been assessed by a laboratory experimentation program using solutions with plutonium concentrations from 0.1 to 10 g/l. These conditions are typical of the plutonium solutions in an input stream to a plutonium-purification cycle in a reprocessing plant following uranium/plutonium partitioning. The monitoring system can be fully automated and shows great promise for detecting and quantifying plutonium in situ, thus minimizing the reliance on traditional sampling and laboratory-analysis techniques. The total concentration and isotopic abundance of plutonium are determined by measuring the absolute intensities of the low-energy gamma rays characteristics of 238 Pu, 239 Pu, and 240 Pu nuclides by direct gamma-ray spectroscopy and computer analysis of the spectral data. The addition of a monitoring system of this type to the input stream of a plutonium-purification cycle along with other suitable monitors on the waste streams and on the product stream provides the basis for a near real-time materials control and inventory system. Results of the laboratory-evaluation program employing plutonium in solutions with isotopic compositions typical of those involved in processing light water reactor fuels are presented. The detailed design of a monitoring cell and detection system is given. The precision and accuracy of the results relative to those measured by mass spectrometry and controlled potential coulometry are also summarized

  2. Technical considerations and policy requirements for plutonium management

    International Nuclear Information System (INIS)

    Christensen, D.C.; Dinehart, S.M.; Yarbro, S.L.

    1996-01-01

    The goals for plutonium management have changed dramatically over the past few years. Today, the challenge is focused on isolating plutonium from the environment and preparing it for permanent disposition. In parallel, the requirements for managing plutonium are rapidly changing. For example, there is a significant increase in public awareness on how facilities operate, increased attention to environmental safety and health (ES and H) concerns, greater interest in minimizing waste, more emphasis on protecting material from theft, providing materials for international inspection, and a resurgence of interest in using plutonium as an energy source. Of highest concern, in the immediate future, is protecting plutonium from theft or diversion, while the national policy on disposition is debated. These expanded requirements are causing a broadening of responsibilities within the Department of Energy (DOE) to include at least seven organizations. An unavoidable consequence is the divergence in approach and short-term goals for managing similar materials within each organization. The technology base does exist, properly, safely, and cost effectively to extract plutonium from excess weapons, residues, waste, and contaminated equipment and facilities, and to properly stabilize it. Extracting the plutonium enables it to be easily inventoried, packaged, and managed to minimize the risk of theft and diversion. Discarding excess plutonium does not sufficient reduce the risk of diversion, and as a result, long-term containment of plutonium from the environment may not be able to be proven to the satisfaction of the public

  3. Plutonium again (smuggling and movements)

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A link is discounted between nuclear proliferation and the recently discovered smuggled plutonium from the former Soviet Union at Munich airport and other places in Germany. It is argued that governments wishing to obtain nuclear materials to develop a weapons programme would not arrange to have it smuggled in a suitcase. Instead, it is speculated that a link exists between the plutonium smuggling incidents and the desire to promote the production of mixed oxide (MOX) fuel. Such incidents, by further raising public anxiety, may be intended to turn public opinion in favour of MOX fuel production as a sensible way of getting rid of surplus plutonium. (UK)

  4. Safe handling of plutonium: a panel report

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    This guide results from a meeting of a Panel of Experts held by the International Atomic Energy Agency on 8 to 12 November 1971. It is directed to workers in research laboratories handling plutonium in gram amounts. Contents: aspects of the physical and chemical properties of plutonium; metabolic features of plutonium; facility design features for safe handling of plutonium (layout of facility, working zones, decontamination room, etc.); glove boxes; health surveillance (surveillance of environment and supervision of workers); emergencies; organization. Annexes: types of glove boxes; tables; mobile ..cap alpha.. air sampler; aerosol monitor; bio-assay limits of detection; examples of contamination control monitors.

  5. Plutonium disposition via immobilization in ceramic or glass

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  6. Preparation of plutonium hexafluoride. Recovery of plutonium from waste dross (1962)

    International Nuclear Information System (INIS)

    Gendre, R.

    1962-01-01

    The object of this work is to study the influence of various physical factors on the rate of fluorination of solid plutonium tetrafluoride by fluorine. In a horizontal oven with a circulation for pure fluorine at atmospheric pressure and 520 deg. C, at a fluorine rate of 9 litres/hour, it is possible to transform 3 g of tetrafluoride to hexafluoride with about 100 per cent transformation and a recovery yield of over 90 per cent, in 4 to 5 hours. The fluorination rate is a function of the temperature, of the fluorine flow-rate, of the crucible surface, of the depth of the tetrafluoride layer and of the reaction time. It does not depend on the diffusion of the fluorine into the solid but is determined by the reaction at the gas-solid interface and obeys the kinetic law (1 - T T ) 1/3 = kt + 1. The existence of intermediate fluorides, in particular Pu 4 F 17 , is confirmed by a break in the Arrhenius plot at about 370 deg. C, by differences in the fluorination rates inside the tetrafluoride layer, and by reversible colour changes. The transformation to hexafluoride occurs with a purification with respect of the foreign elements present in the initial plutonium. Recovery of plutonium from waste dross: The study is based on the transformation of occluded plutonium particles to gaseous hexafluoride which is then decomposed thermally to the tetrafluoride which can be reintroduced directly in the production circuit. Under the conditions considered this process is not applicable industrially. After milling, it is possible to separate the dross into enriched (75 per cent Pu in 2.6 per cent by weight of dross) and depleted portions. By prolonged fluorination (16 hours) of the various fractions it is possible to recover about 80 per cent of the plutonium. A treatment plant using fluidization, as described at the end of this study, should make it possible to substantially improve the yield. (author) [fr

  7. Plutonium decontamination studies using Reverse Osmosis

    International Nuclear Information System (INIS)

    Plock, C.E.; Travis, T.N.

    1980-01-01

    Water in batches of 45 gallons each, from a creek crossing the Rocky Flats Plant, was transferred to the Reverse Osmosis (RO) laboratory for experimental testing. The testing involved using RO for plutonium decontamination. For each test, the water was spiked with plutonium, had its pH adjusted, and was then processed by RO. At a water recovery level of 87%, the plutonium decontamination factors ranged from near 100 to 1200, depending on the pH of the processed water

  8. Uranium-plutonium fuel for fast reactors

    International Nuclear Information System (INIS)

    Antipov, S.A.; Astafiev, V.A.; Clouchenkov, A.E.; Gustchin, K.I.; Menshikova, T.S.

    1996-01-01

    Technology was established for fabrication of MOX fuel pellets from co-precipitated and mechanically blended mixed oxides. Both processes ensure the homogeneous structure of pellets readily dissolvable in nitric acid upon reprocessing. In order to increase the plutonium charge in a reactor-burner a process was tested for producing MOX fuel with higher content of plutonium and an inert diluent. It was shown that it is feasible to produce fuel having homogeneous structure and the content of plutonium up to 45% mass

  9. Elaboration and characterisation of plutonium waste reference materials

    International Nuclear Information System (INIS)

    Perolat, J.P.

    1990-01-01

    The Analysis Methods Establishment Commission (CETAMA) has set up a program for the elaboration and characterisation of plutonium waste reference materials. The object of this program is to give laboratories the possibility to test and calibrate apparatus used in non-destructive methods for the analysis of plutonium waste. The different parameters of this program are presented: - characterisation of plutonium, - type and number of containers, - plutonium distribution inside the different containers, - description of the matrix

  10. The extraction of plutonium with triethylene glycol dichloride

    International Nuclear Information System (INIS)

    Aikin, A.M.; Moss, M.; Bruce, T.

    1951-03-01

    The extraction of plutonium by triethylene glycol dichloride (trigly) has been investigated briefly. The effect of (1) the valence state of the plutonium, (2) the concentration of nitric acid, (3) the concentration of ammonium nitrate and (4) the conditioning of the trigly was measured. The solubility of plutonium IV in trigly was found to be 70 mgms/ml. Solutions of plutonium in trigly and in concentrated nitric acid solutions have been examined spectrophotometrically. (author)

  11. The extraction of plutonium with triethylene glycol dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, A M; Moss, M; Bruce, T

    1951-03-15

    The extraction of plutonium by triethylene glycol dichloride (trigly) has been investigated briefly. The effect of (1) the valence state of the plutonium, (2) the concentration of nitric acid, (3) the concentration of ammonium nitrate and (4) the conditioning of the trigly was measured. The solubility of plutonium IV in trigly was found to be 70 mgms/ml. Solutions of plutonium in trigly and in concentrated nitric acid solutions have been examined spectrophotometrically. (author)

  12. Study of plutonium multi-recycle in high moderation LWR cores

    International Nuclear Information System (INIS)

    Iwata, Yutaka; Yamamoto, Toru; Ueji, Masao; Hibi, Koki; Aoyama, Motoo; Sakurada, Koichi

    2000-01-01

    Nuclear Power Engineering Corporation (NUPEC) has been studying advanced cores that are dedicated to enhance the plutonium consumption per recycling for effective use of plutonium. In this study, a fissile plutonium consumption rate is adopted as an index of the effective use of plutonium, which is defined as a ratio of consumption to loading of fissile plutonium in a core. High moderation core concepts have been studied in order to increase this index based on full MOX cores in the latest designs of LWRs in Japan that are the Advanced Boiling Water Reactor (ABWR) and the Advanced Pressurized Water Reactor (APWR). As a part of this study, core performance in the case of plutonium multi-recycling has been surveyed with these higher moderation cores aiming further effective use of plutonium. The design and analyses for equilibrium cores show that nuclear and thermal hydraulics parameters satisfy design criteria, and a fissile plutonium consumption rate increases up to 20% for ABWRs and 30% for APWRs even in plutonium multi-recycling condition. It was confirmed that the high moderation cores are feasible from a viewpoint of nuclear and thermal hydraulics, safety and plutonium consumption in the condition of plutonium multi-recycling. (author)

  13. Standard practice for preparation and dissolution of plutonium materials for analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice is a compilation of dissolution techniques for plutonium materials that are applicable to the test methods used for characterizing these materials. Dissolution treatments for the major plutonium materials assayed for plutonium or analyzed for other components are listed. Aliquants of the dissolved samples are dispensed on a weight basis when one of the analyses must be highly reliable, such as plutonium assay; otherwise they are dispensed on a volume basis. 1.2 The treatments, in order of presentation, are as follows: Procedure Title Section Dissolution of Plutonium Metal with Hydrochloric Acid 9.1 Dissolution of Plutonium Metal with Sulfuric Acid 9.2 Dissolution of Plutonium Oxide and Uranium-Plutonium Mixed Oxide by the Sealed-Reflux Technique 9.3 Dissolution of Plutonium Oxide and Uranium-Plutonium Mixed Oxides by Sodium Bisulfate Fusion 9.4 Dissolution of Uranium-Plutonium Mixed Oxides and Low-Fired Plutonium Oxide in Beakers 9.5 1.3 The values stated in SI units are to be re...

  14. Civil plutonium held in France in December 31, 2000

    International Nuclear Information System (INIS)

    2002-02-01

    Spent fuels comprise about 1% of plutonium which is separated during the reprocessing and recycled to prepare the mixed uranium-plutonium fuel (MOX), which in turn is burnt in PWRs. Plutonium can be in a non-irradiated or separated form, or in an irradiated form when contained in the spent fuel. Each year, in accordance with the 1997 directives relative to the management of plutonium, France has to make a status of its civil plutonium stock and communicate it to the IAEA using a standard model form. This short document summarizes the French plutonium stocks at the end of 1999 and 2000. (J.S.)

  15. Plutonium determination by isotope dilution

    International Nuclear Information System (INIS)

    Lucas, M.

    1980-01-01

    The principle is to add to a known amount of the analysed solution a known amount of a spike solution consisting of plutonium 242. The isotopic composition of the resulting mixture is then determined by surface ionization mass spectrometry, and the plutonium concentration in the solution is deduced, from this measurement. For irradiated fuels neutronic studies or for fissile materials balance measurements, requiring the knowledge of the ratio U/Pu or of concentration both uranium and plutonium, it is better to use the double spike isotope dilution method, with a spike solution of known 233 U- 242 Pu ratio. Using this method, the ratio of uranium to plutonium concentration in the irradiated fuel solution can be determined without any accurate measurement of the mixed amounts of sample and spike solutions. For fissile material balance measurements, the uranium concentration is determined by using single isotope dilution, and the plutonium concentration is deduced from the ratio Pu/U and U concentration. The main advantages of isotope dilution are its selectivity, accuracy and very high sensitivity. The recent improvements made to surface ionization mass spectrometers have considerably increased the precision of the measurements; a relative precision of about 0.2% to 0.3% is obtained currently, but it could be reduced to 0.1%, in the future, with a careful control of the experimental procedures. The detection limite is around 0.1 ppb [fr

  16. Plutonium and americium separation from salts

    International Nuclear Information System (INIS)

    Hagan, P.G.; Miner, F.J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution

  17. Dosage of plutonium by isotopic dilution in irradiated fuels; Dosage du plutonium par dilution isotopique dans les combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    collaboration entre SECACI (Section d'Etudes Chimique et Analytique des Combustibles Irradies) et SSM (Section de Spectrometrie de Masse). SECACI a mis a notre disposition les locaux et le materiel necessaire dans ses laboratoires de Fontenay. Cette etude a mis en evidence l'importance du cycle de valence celui-ci doit permettre d'obtenir une repartition isotopique homogene dans les melanges echantillon-traceur et une separation U/Pu convenable. Or, nous avons constate que la presence d'un exces d'uranium modifie profondement la cinetique des reactions d'oxydo-reduction du plutonium. Nous avons donc ete amenes a changer certains points de la technique operatoire pour rendre ce cycle efficace et ameliorer de ce fait la separation U/Pu; la stabilite de l'emission thermoionique du plutonium, liee a la quantite d'uranium residuaire, a du meme coup ete amelioree, et, nous obtenons maintenant des analyses isotopiques plus precises. D'autre part, nous nous sommes efforces d'eliminer au maximum les contaminations isotopiques en employant un mode operatoire plus rationnel; le materiel utilise a fait l'objet d'une etude particuliere. Les evaporations sont conduites de facon a interdire l'existence de vapeurs saturantes a l'interieur des boites a gants. Le materiel qui ne peut etre change a chaque operation est soigneusement nettoye a chaque changement d'echantillons. Avec cette technique, un second etalonnage du traceur T{sub 2} a ete entrepris au moyen d'une nouvelle solution etalon. Preparee tres soigneusement, par pesee d'uranium et de plutonium de purete chimique connue, nous pensons que cette solution offre des garanties suffisantes pour servir de reference. La valeur du rapport {sup 233}U/{sup 242}Pu du traceur a ete obtenue avec une precision relative de 0,5 pour cent. Cette methode modifiee est appliquee actuellement a l'analyse des barreaux irradies dans G-3. (auteur)

  18. Distribution coefficient of plutonium between sediment and seawater

    International Nuclear Information System (INIS)

    Duursma, E.K.; Parsi, P.

    1974-01-01

    Using plutonium 237 as a tracer, a series of experiments were conducted to determine the distribution coefficient of plutonium onto sediments both under oxic and anoxic conditions, where the plutonium was added to seawater in three different valence states: III, IV and VI

  19. HENC performance evaluation and plutonium calibration

    International Nuclear Information System (INIS)

    Menlove, H.O.; Baca, J.; Pecos, J.M.; Davidson, D.R.; McElroy, R.D.; Brochu, D.B.

    1997-10-01

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996

  20. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Grison, J [Compagnie Generale des Matieres Nucleaires (COGEMA), Centre de la Hague, 50 - Cherbourg (France)

    1980-10-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis.

  1. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Grison, J.

    1980-01-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis [fr

  2. Plutonium recycle in PWR reactors (Brazilian Nuclear Program)

    International Nuclear Information System (INIS)

    Rubini, L.A.

    1978-02-01

    An evaluation is made of the material requirements of the nuclear fuel cycle with plutonium recycle. It starts from the calculation of a reference reactor and allows the evaluation of demand under two alternatives of nuclear fuel cycle for Pressurized Water Reactors (PWR): without plutonium recycle; and with plutonium recycle. Calculations of the reference reactor have been carried out with the CELL-CORE codes. For plutonium recycle, the concept of uranium and plutonium homogeneous mixture has been adopted, using self-produced plutonium at equilibrium, in order to get minimum neutronic perturbations in the reactor core. The refueling model studied in the reference reactor was the 'out-in' scheme with a constant number of changed fuel elements (approximately 1/3 of the core). Variations in the material requirements were studied considering changes in the installed nuclear capacity of PWR reactors, the capacity factor of these reactors, and the introduction of fast breeders. Recycling plutonium produced inside the system can reach economies of about 5%U 3 O 8 and 6% separative work units if recycle is assumed only after the 5th operation cycle of the thermal reactors. The cumulative amount of fissile plutonium obtained by the Brazilian Nuclear Program of PWR reactors by 1991 should be sufficient for a fast breeder with the same capacity as Angra 2. For the proposed fast breeder programs, the fissile plutonium produced by thermal reactors is sufficient to supply fast breeder initial necessities. Howewer, U 3 O 8 and SWU economy with recycle is not significant when the proposed fast breeder program is considered. (Author) [pt

  3. Plutonium in a grassland ecosystem

    International Nuclear Information System (INIS)

    Little, C.A.

    1976-01-01

    This study was concerned with plutonium contamination of grassland at the U.S. Energy Research and Development Administration Rocky Flats plant northwest of Denver, Colorado. Of interest were: the definition of major plutonium-containing ecosystem compartments; the relative amounts in those compartments; how those values related to studies done in other geogrphical areas; whether or not the predominant isotopes, 238 Pu and 239 Pu, behaved differently; and what mechanisms might have allowed for the observed patterns of contamination. Samples of soil, litter, vegetation, arthropods, and small mammals were collected for plutonium analysis and mass determination from each of two macroplots. Small aliquots (5 g or less) were analyzed by a rapid liquid scintillation technique and by alpha spectrometry. Of the compartments sampled, greater than 99% of the total plutonium was contained in the soil. The concentrations of plutonium in soil were significantly inversely correlated with distance from the contamination source, depth of the sample, and particle size of the sieved soil samples. The soil data suggested that the distribution of contamination largely resulted from physical transport processes. A mechanism of agglomerated submicron plutonium oxide particles and larger (1-500 μm) host soil particles was proposed. Concentrations of Pu in litter and vegetation were inversely correlated to distance from the source and directly correlated to soil concentrations at the same location. Comparatively high concentration ratios of vegetation to soil suggested wind resuspension of contamination as an important transport mechanism. Arthropod and small mammal samples were highly skewed, kurtotic, and quite variable, having coefficients of variation (standard deviation/mean) as high as 600%. Bone Pu concentrations were lower than other tissues. Hide, GI, and lung were generally not higher in Pu than kidney, liver and muscle

  4. Work surface for soluble plutonium

    International Nuclear Information System (INIS)

    Silver, G.L.

    2005-01-01

    A three-dimensional work surface for aqueous plutonium is illustrated. It is constructed by means of estimating work as a function of the ambient pH and redox potential in a plutonium solution. The surface is useful for illustrating the chemistry of disproportionation reactions. Work expressions are easier to use than work integrals. (author)

  5. Oxidation-state maxima in plutonium chemistry

    International Nuclear Information System (INIS)

    Silver, G.L.

    2013-01-01

    Maxima in the fractions of the trivalent and hexavalent oxidation states of plutonium are inherent in the algebra of its disproportionation reactions. The maxima do not support overall disproportionation equations as satisfactory representations of aqueous plutonium. (author)

  6. Plutonium recycling and the problem of nuclear proliferation

    International Nuclear Information System (INIS)

    Albright, D.; Feiveson, H.S.

    1988-01-01

    A typical 1-gigawatt light water reactor (LWR), the dominant commercial power reactor type today, operating at 70% capacity factor, generates approximately 250 kilograms of plutonium annually. This plutonium, which is produced in the reactor through neutron capture by uranium-238, is then discharged from the reactor along with the other constituents of the spent fuel. About 70% of the plutonium, or 175 kilograms, consists of fissile (odd-numbered) plutonium isotopes. As long as the plutonium discharged from the reactor is left intermixed with the highly radioactive fission products also contained in the spent fuel, it cannot readily be used for power or for weapons. However, upon chemical separation from the radioactive fission products and other components of the spent reactor fuel, the plutonium produced each year in a gigawatt reactor could be used, either in recycled fuel (to replace about 175 kilograms of U-235 in a power reactor) or to provide the fissile material for more than 25 nuclear warheads. Commercial separation of plutonium and the introduction of nuclear fuel cycles using recycled plutonium, which are now impending in several countries, force one to balance the probable increased risks of nuclear proliferation due to these activities against various economic and other motives that have been forwarded in their defense. The authors undertake an assessment of this balancing in this article

  7. Risk analysis of fatal and incidental lung tumors in wister rats after inhalation of plutonium dioxide

    International Nuclear Information System (INIS)

    Kai, M.; Akahane, K.; Ogiso, Y.

    2000-01-01

    Cancer risk analysis was done in animal studies for inhalation of plutonium dioxide. Female Wister rats were exposed to an aerosol of plutonium with AMAD of 0.4-0.5 μm and followed up until they died. We made some model analyses using their likelihood function. This approach enables us to consider temporal variation in dose-response analysis. Each rat contributes to the total likelihood depending on fatal or incidental tumors. In Weibul model analysis, the logarithm of the hazard function can be linearly modeled with the term of log (dose), log-L model, and additional term of the square of log (dose), log-LQ model. The likelihood ratio statistics gave a significantly better fit of the log-LQ model. However, if data more than 4 Gy were excluded, there was no significant difference between both models. The ratio of hazard function at 1 Gy and 0 Gy, the excess relative risk, showed 30 for total tumors. This result was much different from those in PNL data (Sanders et al.). The difference of pulmonary deposition depending upon particle size would cause different tumor incidence. Our studies indicated significant increase of occurrence of fatal lung cancer at an average dose of 0.5 Gy and thus did not suggest that a life-span effective threshold for death was about 1 Gy to the lung, which is shown in some papers. In contrast PNL, the incidence of adenoma showing the maximum at 0.5 Gy decreased with increasing lung dose from 1.5 Gy or higher, where malignant tumors such as adenocarcinomas increased. This phenomenon was analyzed with carcinogenesis models. (author)

  8. The use of plutonium rapides surregenerateurs aspects techniques et economiques

    International Nuclear Information System (INIS)

    Guillet, H.; Delayre, R.; Mougniot, J.C.; Ferrari, A.

    1977-01-01

    Nuclear energy production utilizing U 235 and U 238 inevitably results in the formation of plutonium. Some of this is directly used by the reactor in power production. Some reactors, e.g. the Candu type, burn most of their plutonium ''in situ''. However the surplus quantity of plutonium produced is increasing, and by 1990 the world stock of plutonium is predicted to be about 1000 tons (300 tons in Europe and 400 in the USA). This represents approximately 0.1 Q of potential power, where Q=10 21 joules. Proposals for dealing with this plutonium include its storage, either as irradiated fuel or as a refined substance (plutonium nitrate or oxide); its use in thermal reactors as a substitute for U 235 ; its use in fast breeder reactors which can act as consumers of plutonium as well as producers and which can therefore regulate the world's plutonium stocks. Leaving aside the question of storage, certain technical conditions must be fulfilled. It is essential that reprocessing plants should be operational and available in adequate numbers. An industry able to make use of plutonium should be developed with large capacity units. There seem to be no problems with plutonium use in reactors: conclusive experiments have proved the accuracy of calculations regarding plutonium recycling in thermal reactors and a number of fast breeders have proved the possibility of using plutonium in them. Experience acquired during the past ten years permits us to deal with the safety and safeguards problem of using plutonium. Many economic questions remain, however, including questions affecting the utilization of plutonium, such as the cost of regenerating irradiated fuel and of making fuel, and questions affecting the strategy of using plutonium in different ways, such as the price at which it should be sold. Also the cost of producing electricity using plutonium is not yet clear. It is unavoidable that plutonium will be used in nuclear power development. The technical and economic problems

  9. Plutonium Finishing Plant safety evaluation report

    International Nuclear Information System (INIS)

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE's independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91

  10. Recommendations for plutonium colloid size determination

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.

    1984-02-01

    This report presents recommendations for plutonium colloid size determination and summarizes a literature review, discussions with other researchers, and comments from equipment manufacturers. Four techniques suitable for plutonium colloid size characterization are filtration and ultrafiltration, gel permeation chromatography, diffusion methods, and high-pressure liquid chromatography (conditionally). Our findings include the following: (1) Filtration and ultrafiltration should be the first methods used for plutonium colloid size determination because they can provide the most rapid results with the least complicated experimental arrangement. (2) After expertise has been obtained with filtering, gel permeation chromatography should be incorporated into the colloid size determination program. (3) Diffusion methods can be used next. (4) High-pressure liquid chromatography will be suitable after appropriate columns are available. A plutonium colloid size characterization program with filtration/ultrafiltration and gel permeation chromatography has been initiated

  11. Analytic determination of plutonium in the environment

    International Nuclear Information System (INIS)

    Ballada, J.

    1967-01-01

    The work described in this report was undertaken with a view to determining the plutonium content in the fall-out from nuclear explosions. In the first part are described in turn the importance of the problems due to the plutonium, the physico-chemical properties of the radioelement and the biological dangers which it presents. A detailed and critical analysis is made of the radio-toxicological determination of the plutonium as reported in the literature prior to this report. The second part consists in the presentation of a judicious choice of techniques making it possible to determine plutonium in air, rain-water, soils and ash. After a detailed description of the measurement equipment and the operational techniques which have been developed, a justification of these techniques is given with particular reference to their sensitivity and specificity. After a brief conclusion concerning the preceding chapters, the results are presented. These are then discussed in the ease of each element in which the plutonium has been determined. This discussion is concluded by a consideration of the importance of the occurrence of fall-out plutonium on problems relating to public health. From a consideration of 200 analyses carried out, it is concluded that the contribution of plutonium to the exposure of populations is still very small compared to that of natural radiation and that due to such fission products as strontium 90. The report includes 63 literature references, 26 figures and 11 tables. (author) [fr

  12. The uranium-plutonium breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Salmon, A.; Allardice, R.H.

    1979-01-01

    All power-producing systems have an associated fuel cycle covering the history of the fuel from its source to its eventual sink. Most, if not all, of the processes of extraction, preparation, generation, reprocessing, waste treatment and transportation are involved. With thermal nuclear reactors more than one fuel cycle is possible, however it is probable that the uranium-plutonium fuel cycle will become predominant; in this cycle the fuel is mined, usually enriched, fabricated, used and then reprocessed. The useful components of the fuel, the uranium and the plutonium, are then available for further use, the waste products are treated and disposed of safely. This particular thermal reactor fuel cycle is essential if the fast breeder reactor (FBR) using plutonium as its major fuel is to be used in a power-producing system, because it provides the necessary initial plutonium to get the system started. In this paper the authors only consider the FBR using plutonium as its major fuel, at present it is the type envisaged in all, current national plans for FBR power systems. The corresponding fuel cycle, the uranium-plutonium breeder reactor fuel cycle, is basically the same as the thermal reactor fuel cycle - the fuel is used and then reprocessed to separate the useful components from the waste products, the useful uranium and plutonium are used again and the waste disposed of safely. However the details of the cycle are significantly different from those of the thermal reactor cycle. (Auth.)

  13. Plutonium peroxide precipitation: review and current research

    International Nuclear Information System (INIS)

    Hagan, P.G.; Miner, F.J.

    1980-01-01

    Increasing the HNO 3 concentration decreases the filtration time but increases the plutonium concentration in the filtrate. A compromise was therefore necessary. If a minimum plutonium concentration is required in the filtrate, the acidity could be lowered to 1.9M with an approximate doubling in the filtration time. The H 2 O 2 concentration has little effect on filtration time. However, the higher the H 2 O 2 concentration, the less plutonium lost to the filtrate. Concentrations higher than the 22 moles/mole Pu recommended (at least up to 30 molar which was the highest investigated) would be beneficial if reagent costs are not excessive and production capacity exists for destroying the excess H 2 O 2 in the filtrate. Although the effect is not large, filtration time is shorter and the plutonium concentration in the filtrate is lower if metallic impurities are present. The slowest rate of H 2 O 2 addition investigated gives a plutonium peroxide precipitate with the fastest filtration time. The rate of addition has very little effect on the plutonium concentration in the filtrate. The temperature has little effect on the filtration time. 14 0 C is recommended since decomposition of H 2 O 2 would be slower at 14 0 C than at 22 0 C (min. Pu content in the filtrate). The effect of digestion time on both the filtration time and the plutonium content in the filtrate is minor, so the shortest digestion time investigated is recommended

  14. Fluorescent determination of neptunium in plutonium

    International Nuclear Information System (INIS)

    Alexandruk, V.M.; Babaev, A.S.; Dem'yanova, T.A.; Stepanov, A.V.

    1991-01-01

    This paper describes a new procedure for direct determination of Neptunium in Plutonium using laser induced time resolved fluorescence method. The procedure based on measurement of fluorescence intensity of Neptunium followed its concentration in effective layer of pellet of calcium fluoride. Detection limit of determination of Neptunium is 2 10 -12 g. At the level of Neptunium content in Plutonium more than 5 ppm relative standard deviation is equal 0.08-0.12. For carrying out of single measurement it is necessary neither more nor less 5 mkg Plutonium

  15. Plutonium Immobilization Can Loading Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  16. Plutonium Immobilization Can Loading Conceptual Design

    International Nuclear Information System (INIS)

    Kriikku, E.

    1999-01-01

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  17. New developments in the air transport of plutonium

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1978-01-01

    A new package for the air transport of plutonium has been developed in response to a United States Public Law which restricts the US air transport of plutonium except for small medical devices. This new package, called PAT-1 for plutonium air transportable package model 1, is the result of the NRC-sponsored PARC (plutonium accident resistant container) project at Sandia Laboratories, Albuquerque. The PAT-1 package is designed to meet or exceed new criteria specified in NUREG-0360. These include a severe test sequence of impact (greater than 250 KTS) on an unyielding target, crush, puncture, slash, a large JP-4 fire for 1 hour, followed by water immersion, with stringent acceptance standards on plutonium release, nuclear shielding, and nuclear criticality. The PAT-1 package design features a high energy absorption capability with high-level fire protection. It weighs approximately 227 kg (500 lb) when loaded with 2 kg PuO 2 , and can accommodate up to 25 watts thermal energy from the plutonium load

  18. The Lawrence Livermore National Laboratory DOE-STD-3013 Surveillance Program for the Storage of Plutonium Packages

    International Nuclear Information System (INIS)

    Riley, D

    2005-01-01

    This document presents a site-specific DOE-STD-3013 (3013) surveillance program for 3013 material stored at Lawrence Livermore National Laboratory (LLNL) in the B332 Plutonium Facility. The 3013 standard requires the development of a surveillance program to assure the long-term safety of plutonium storage in 3013 compliant containers. A complex-wide Integrated Surveillance Program in Support of Long-Term Storage of Plutonium-Bearing Materials (ISP)(LA-UR-00-3246, Revision 1, March 2001) has been developed to give guidance on an acceptable surveillance approach and to set up a mechanism to integrate surveillance activities and facilitate the sharing of lessons learned. This LLNL 3013 surveillance program has been developed following guidelines established for Storage Sites in the ISP and is sufficient for the storage in the LLNL Plutonium Facility. The LLNL 3013 surveillance program must be coupled with the DOE complex wide Materials Identification and Surveillance (MIS) program and the ISP led by Savannah River Site (SRS). These programs support the technical basis for continuing safe storage of plutonium packages and provide the technical basis for the limited scope of the site-specific LLNL 3013 surveillance program. The LLNL 3013 surveillance program calls for surveillance of 3013 packages to begin approximately three years after packaging of the first oxide. One percent of the stored packages per year will be randomly selected and nondestructively examined (NDE) by LLNL per the guidelines of the ISP. Additional packages may be selected for NDE if recommended by the ISP Steering Committee and agreed upon by the MIS Working Group. One selected package will be shipped to SRS for destructive analysis each year starting when SRS can receive them. This is expected to be in FY2007. We expect to store a maximum of 400 3013 packages. This would result in an expected maximum of 4 surveillances per year. The activities outlined in the program evolved from the current

  19. Contamination of living environment and human organism with plutonium

    International Nuclear Information System (INIS)

    Benes, J.

    1981-01-01

    The applicability of 239 Pu in nuclear power is discussed. The radiotoxic properties of plutonium, its tissue distribution and the effects of internal and external contamination are described. The contamination of the atmosphere, water, and soil with plutonium isotopes is discussed. Dosimetry is described of plutonium in the living and working environments as is plutonium determination in the human organism. (H.S.)

  20. Plutonium Chemistry in the UREX+ Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

    2009-10-01

    The project "Plutonium Chemistry in the UREX+ Separation Processes” is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  1. Constitutional problems in the handling of plutonium

    International Nuclear Information System (INIS)

    Witt, S. de.

    1989-01-01

    Reprocessing and final storage involve two different systems of nuclear energy utilization: with or without the use of plutonium. There is a choice available between these two systems. The paper discusss the constitutional implications of this choice. The permission of the use of plutonium as nuclear fuel by the Atomic Energy Law is irreconcilable with the Basic Law, i.e. the Constitution. If the corresponding provisions of the Atomic Energy Law are repealed, then only the plutonium-related branch will be revoked and not the legal permission of nuclear energy as a whole. The fact is not ignored that the Atomic Energy law does not permit the construction and operation of a plant or the handling of plutonium if this were to violate a basic right. However, the plutonium-related branch of nculear energy utilization inevitably results in such basic right violations; hence the Atomic Energy law is unconstitutional in this respect. (orig./HSCH) [de

  2. Assessment of PWR plutonium burners for nuclear energy centers

    International Nuclear Information System (INIS)

    Frankel, A.J.; Shapiro, N.L.

    1976-06-01

    The purpose of the study was to explore the performance and safety characteristics of PWR plutonium burners, to identify modifications to current PWR designs to enhance plutonium utilization, to study the problems of deploying plutonium burners at Nuclear Energy Centers, and to assess current industrial capability of the design and licensing of such reactors. A plutonium burner is defined to be a reactor which utilizes plutonium as the sole fissile addition to the natural or depleted uranium which comprises the greater part of the fuel mass. The results of the study and the design analyses performed during the development of C-E's System 80 plant indicate that the use of suitably designed plutonium burners at Nuclear Energy Centers is technically feasible

  3. Biological behaviour of plutonium inhaled by baboons as plutonium n-tributylphosphate complex. Comparison with ICRP models

    International Nuclear Information System (INIS)

    Metivier, H.; Duserre, C.; Rateau, G.; Legendre, N.; Masse, R.; Piechowski, J.; Menoux, B.

    1989-01-01

    In order to devise a model capable of calculating committed doses for workers contaminated by inhalation of plutonium tributylphosphate complex during reprocessing, we investigated the biokinetics of plutonium in baboons after inhalation of this chemical form. The animals were killed 0.6, 3, 15, 30, 90 and 365 days post inhalation. Urine and faeces were collected daily. After killing, the main organs were collected for chemical analysis. In order to improve our knowledge of the behaviour of systemic plutonium, three baboons were given an intravenous injection of Pu-TBP and were respectively killed 2, 30 and 365 days post injection. We observed that Pu-TBP could be classified as a W compound, with a half-time for lung clearance of 150 days. Urinary Pu excretion was 3 times higher than was expected from Durbin's model, suggesting that Pu introduced as Pu-TBP, is extremely mobile, and that the complex formed with blood proteins differs from the one formed after inhalation of plutonium nitrate. (author)

  4. High-purity germanium detection system for the in vivo measurement of americium and plutonium

    International Nuclear Information System (INIS)

    Tyree, W.H.; Falk, R.B.; Wood, C.B.; Liskey, R.W.

    1976-01-01

    A high-purity germanium (HPGe) array, photon-counting system has been developed for the Rocky Flats Plant Body-Counter Medical Facility. The newly improved system provides exceptional resolutions of low-energy X-ray and gamma-ray spectra associated with the in vivo deposition of plutonium and americium. Described are the operational parameters of the system and some qualitative results illustrating detector performance for the photon emissions produced from the decay of plutonium and americium between energy ranges from 10 to 100 kiloelectron volts. Since large amounts of data are easily generated with the system, data storage, analysis, and computer software developments continue to be an essential ingredient for processing spectral data obtained from the detectors. Absence of quantitative data is intentional. The primary concern of the study was to evaluate the effects of the various physical and electronic operational parameters before adding those related entirely to a human subject

  5. Spectrophotometers for plutonium monitoring in HB-line

    Energy Technology Data Exchange (ETDEWEB)

    Lascola, R. J. [Savannah River Site (SRS), Aiken, SC (United States); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States); Kyser, E. A. [Savannah River Site (SRS), Aiken, SC (United States); Immel, D. M. [Savannah River Site (SRS), Aiken, SC (United States); Plummer, J. R. [Savannah River Site (SRS), Aiken, SC (United States); Evans, E. V. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-12

    This report describes the equipment, control software, calibrations for total plutonium and plutonium oxidation state, and qualification studies for the instrument. It also provides a detailed description of the uncertainty analysis, which includes source terms associated with plutonium calibration standards, instrument drift, and inter-instrument variability. Also included are work instructions for instrument, flow cell, and optical fiber setup, work instructions for routine maintenance, and drawings and schematic diagrams.

  6. Plutonium contaminated materials research programme. Progress Report for 1983/84 from the Plutonium Contaminated Materials Working Party

    International Nuclear Information System (INIS)

    Higson, S.G.

    1984-01-01

    Plutonium contaminated material (PCM) is a generic term applied to a wide variety of materials which have become contaminated by plutonium compounds, by virtue of their use inside the primary containment of fuel cycle plants, but which generally have low beta gamma content. The report falls under the headings: introduction; organisation and role of the PCMWP; management practices; 1983/84 progress report (a) reduction of arisings; (b) plutonium measurement; (c) treatment of solid PCM; (d) treatment of alpha bearing liquid wastes; (e) actinide chemistry; (f) engineering objectives. (U.K.)

  7. The radiological hazard of plutonium isotopes and specific plutonium mixtures

    International Nuclear Information System (INIS)

    Heindel, G.; Clow, J.; Inkret, W.; Miller, G.

    1995-11-01

    The US Department of Energy defines the hazard categories of its nuclear facilities based upon the potential for accidents to have significant effects on specific populations and the environment. In this report, the authors consider the time dependence of hazard category 2 (significant on-site effects) for facilities with inventories of plutonium isotopes and specific weapons-grade and heat-source mixtures of plutonium isotopes. The authors also define relative hazard as the reciprocal of the hazard category 2 threshold value and determine its time dependence. The time dependence of both hazard category 2 thresholds and relative hazards are determined and plotted for 10,000 years to provide useful information for planning long-term storage or disposal facilities

  8. Study of the reaction of uranium and plutonium with bone char

    International Nuclear Information System (INIS)

    Silver, G.L.; Koenst, J.W.

    1977-01-01

    A study of the reaction of plutonium with a commercial bone char indicates that this bone char has a high capacity for removing plutonium from aqueous wastes. The adsorption of plutonium by bone char is pH dependent, and for plutonium(IV) polymer appears to be maximized near pH 7.3 for plutonium concentrations typical of some waste streams. Adsorption is affected by dissolved salts, especially calcium and phosphate salts. Freundlich isotherms representing the adsorption of uranium and plutonium have been prepared. The low potential imposed upon aqueous solutions by commercial bone char is adequate for reduction of hexavalent plutonium to a lower plutonium oxidation state

  9. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    Science.gov (United States)

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  10. Investigation of plutonium abundance and age analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huailong, Wu; Jian, Gong; Fanhua, Hao [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2007-06-15

    Based on spectra analysis software, all of the plutonium material peak counts are analyzed. Relatively efficiency calibration is done by the non-coupling peaks of {sup 239}Pu. By using the known isotopes half life and yield, the coupling peaks counts are allocated by non-coupling peaks, consequently the atom ratios of each isotope are gotten. The formula between atom ratio and abundance or age is deduced by plutonium material isotopes decay characteristic. And so the abundance and age of plutonium material is gotten. After some re- peat measurements for a plutonium equipment are completed, a comparison between our analysis results and PC-FRAM and the owner's reference results are done. (authors)

  11. Plutonium in the arctic marine environment--a short review.

    Science.gov (United States)

    Skipperud, Lindis

    2004-06-18

    Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.

  12. Radiation damage and annealing in plutonium tetrafluoride

    Science.gov (United States)

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; Sweet, Lucas; McNamara, Bruce; Delegard, Calvin; Jevremovic, Tatjana

    2017-12-01

    A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analyses reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. During the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. The following commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.

  13. Radiation damage and annealing in plutonium tetrafluoride

    International Nuclear Information System (INIS)

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey

    2017-01-01

    A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analyses reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. And during the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. This commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.

  14. Reclamation of plutonium from pyrochemical processing residues

    International Nuclear Information System (INIS)

    Gray, L.W.; Gray, J.H.; Holcomb, H.P.; Chostner, D.F.

    1987-04-01

    Savannah River Laboratory (SRL), Savannah River Plant (SRP), and Rocky Flats Plant (RFP) have jointly developed a process to recover plutonium from molten salt extraction residues. These NaCl, KCL, and MgCl 2 residues, which are generated in the pyrochemical extraction of 241 Am from aged plutonium metal, contain up to 25 wt % dissolved plutonium and up to 2 wt % americium. The overall objective was to develop a process to convert these residues to a pure plutonium metal product and discardable waste. To meet this objective a combination of pyrochemical and aqueous unit operations was used. The first step was to scrub the salt residue with a molten metal (aluminum and magnesium) to form a heterogeneous ''scrub alloy'' containing nominally 25 wt % plutonium. This unit operation, performed at RFP, effectively separated the actinides from the bulk of the chloride salts. After packaging in aluminum cans, the ''scrub alloy'' was then dissolved in a nitric acid - hydrofluoric acid - mercuric nitrate solution at SRP. Residual chloride was separated from the dissolver solution by precipitation with Hg 2 (NO 3 ) 2 followed by centrifuging. Plutonium was then separated from the aluminum, americium and magnesium using the Purex solvent extraction system. The 241 Am was diverted to the waste tank farm, but could be recovered if desired

  15. Plutonium in coniferous forests

    International Nuclear Information System (INIS)

    Rantavaara, A.; Kostiainen, E.

    2002-01-01

    Our aim was to study the uptake of plutonium by trees, undervegetation and some wild foods. The ratio of 238 Pu/ 239,240 Pu in soil samples was determined for comparisons of the fallout origin. In twelve years the Chernobyl derived plutonium has not reached the mineral soil. This refers to a very slow downward migration in podsolic soil. The study confirmed also the low Pu uptake by vegetation and an insignificant contribution to human doses through wild foods. (au)

  16. The first metallurgical tests on plutonium

    International Nuclear Information System (INIS)

    Grison, E.; Abramson, R.; Anselin, F.; Monti, H.

    1958-01-01

    Metallic plutonium was first prepared in France in January 1956, as soon as we had access to quantities of the order of several grams of plutonium, which had been extracted from the rods of the pile EL2 at Saclay. Since up to the present this reactor, of thermal power 2 000 kW, has been our only source of plutonium, we have so far only worked on experimental quantities sufficient for the basic tests but not for tests on a scale of possible applications. It is this work, carried out during this phase of preliminary research, which is described below. With the starting up of the plutonium extraction plant at Marcoule, where the reactor G1 has been operating at power for more than a year, we shall go on next to a another order of magnitude which will allow the manufacture and experimentation of prototype fuel elements. (author) [fr

  17. Plutonium and U-233 mines

    International Nuclear Information System (INIS)

    Milgram, M.S.

    1983-08-01

    A comparison is made among second generation reactor systems fuelled primarily with fissile plutonium and/or U-233 in uranium or thorium. This material is obtained from irradiated fuel from first generation CANDU reactors fuelled by natural or enriched uranium and thorium. Except for plutonium-thorium reactors, second generation reactors demand similar amounts of reprocessing throughput, but the most efficient plutonium burning systems require a large prior allocation of uranium. Second generation reactors fuelled by U-233 make more efficient use of resources and lead to more flexible fuelling strategies, but require development of first generation once-through thorium cycles and early demonstration of the commercial viability of thorium fuel reprocessing. No early implementation of reprocessing technology is required for these cycles

  18. Measurements of. alpha. -emitting plutonium and americium in the intertidal sands of west Cumbria, UK

    Energy Technology Data Exchange (ETDEWEB)

    Eakins, J.D.; Morgan, A.; Baston, G.M.N.; Pratley, F.W.; Strange, L.P.; Burton, P.J. (UKAEA Harwell Lab. (UK). Environmental and Medical Science Div.)

    1990-01-01

    Samples of surface sand and sand cores were collected from intertidal regions of west Cumbria between Silloth and Walney Island (including the Duddon Estuary) between 1982 and 1984 and analysed for {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am. Generally, more than 95% of the {alpha}-emitting transuranic nuclides were associated with the sand and less than 5% with entrained silt. The greatest concentrations of both plutonium and americium were found at Braystones. Concentrations declined with distance from the Sellafield Works. The largest actinide deposits occurred at Drigg (320 and 720 kBq m{sup -2} of {sup 239+240}Pu and {sup 241}Am respectively). The integrated deposits in intertidal sand between Silloth and Walney Island were about 4.2 and 7.0 TBq respectively, which represent about 1% of the total {alpha}-emitting activity discharged to sea from Sellafield Works up to 1982. The corresponding value for the Duddon Estuary is about 0.3%. Only on beaches close to Sellafield did levels of man-made {alpha}-emitters exceed those of natural {alpha}-emitting nuclides. The radiological consequences of the intertidal inventory of plutonium and americium are shown to be very small and much less than from the seafood pathway. (author).

  19. Investigation on the attribute detection of plutonium oxide

    International Nuclear Information System (INIS)

    Liu Suping; Hao Fanhua; Gong Jian; Wu Huailong; Hu Guangchun; Hu Yongbo

    2006-01-01

    A long-term detection of the 871 keV gamma-ray emitted from two PuO 2 samples (100 g recovered powder and 8 g pure powder) has been conduced with a high resolution HPGe spectrometer in a lead-shielded chamber. An on-site detection of the 871 keV gamma-ray emitted from 200 g recovered PuO 2 powder has also been performed. Although the 871 keV peak can be observed in all 3 samples, other characteristic gamma-rays related to the existence of oxygen are not seen. The 871 keV peak is absent in spectra acquired from metal plutonium samples, which can answer whether the plutonium material in a sealed container is metal plutonium or plutonium oxide, i.e. the 871 keV gamma-ray can be an evidence for the absence of metal plutonium. The 871 keV peak is strong in the spectrum of 200 g recovered PuO 2 sample. A software of plutonium abundance and age analysis developed by ourselves can identify the 871 keV peak from a spectrum of 10 min. If the system is appropriately improved, it can be used to detect attribute of plutonium oxide through identifying 871 keV gamma-ray peak. (authors)

  20. Physics of plutonium recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The commercial recycling of plutonium as PuO 2 /UO 2 mixed-oxide (MOX) fuel is an established practice in pressurised water reactors (PWRs) in several countries, the main motivation being the consumption of plutonium arising from spent fuel reprocessing. Although the same motivating factors apply in the case of boiling water reactors (BWRs), they have lagged behind PWRs for various reasons, and MOX utilisation in BWRs has been implemented in only a few reactors to date. One of the reasons is that the nuclear design of BWR MOX assemblies (or bundles) is more complex than that of PWR assemblies. Recognizing the need and the timeliness to address this issue at the international level, the OECD/NEA Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR) conducted a physics code benchmark test for a BWR assembly. This volume reports on the benchmark results and conclusions that can be drawn from it. (authors)

  1. Plutonium in the environment

    International Nuclear Information System (INIS)

    Kudo, A.

    2001-01-01

    The first volume of the new series, Radioactivity in the Environment, focuses on the environmental occurrence, the speciation, the behaviour, the fate, the applications and the health consequences of that much-feared and much-publicised element, plutonium. Featuring a collection of selected, peer-reviewed, up-to-date papers by leading researchers in the field, this work provides a state-of-the-art description of plutonium in the environment. This title helps to explain where present frontiers are drawn in our continuing efforts to understand the science of environmental plutonium and will help to place widespread concerns into perspective. As a whole this new book series on environmental radioactivity addresses, at academic research level, the key aspects of this socially important and complex interdisciplinary subject. Presented objectively and with the ultimate authority gained from the many contributions by the world's leading experts, the negative and positive consequences of having a radioactive world around us will be documented and given perspective. refs

  2. A 42-y medical follow-up of Manhattan Project plutonium workers.

    Science.gov (United States)

    Voelz, G L; Lawrence, J N

    1991-08-01

    Twenty-six white male subjects, who worked with plutonium (239Pu) during World War II at Los Alamos, have been given medical examinations periodically over a period of 42 y to identify potential health effects. Inhalation was the primary mode of Pu exposures. The latest examinations, including urine bioassay and in-vivo measurements for radioactivity, were performed in late 1986 and 1987. The average age of the 22 living subjects in 1986 was 66 y. The diseases and physical changes noted in these persons are characteristic of a male population in their 60s. Estimates of individual Pu depositions, including lung burdens, as of 1987 or at time of death range from 52 to 3180 Bq (1.4 to 86 nCi) with a median value of 500 Bq (13.5 nCi). Four persons from the original group had died as of 1987. The causes of death were lung cancer, myocardial infarction, accidental injury, and respiratory failure due to pneumonia/congestive heart failure. Expected deaths based on U.S. death rates of white males, adjusted for age and calendar year, are 9.2 based on U.S. rates (standardized mortality ratio = 0.41). Subsequent to 1987, three additional deaths occurred from atherosclerotic heart disease, lung cancer, and osteogenic sarcoma. The bone sarcoma case is discussed in terms of Pu exposure, the natural incidence of this disease, anatomical location of the tumor, and bone tumors observed in Pu-exposed dogs. Plutonium deposition in this man is estimated to have been below current radiation protection guidelines.

  3. Recovery of plutonium from pyrolysis and incineration residues

    International Nuclear Information System (INIS)

    Isaacs, J.W.; McDonald, L.A.; Roberts, W.G.; Sutcliffe, P.W.; Wilkins, J.D.

    1981-01-01

    The effect of ashes prepared from typical plutonium-handling, glove box, combustible wastes on the dissolution of PuO 2 is described. Synthetic ashes have been prepared by doping inactively-prepared ashes with various plutonium-containing compounds, followed by heating at temperatures in the range 550-1200 0 C. The resulting ashes have been leach-tested in order to provide information on the relationship between leachability, the nature of the ashes, the type of plutonium contamination and temperature of thermal treatment. Optimum temperatures for the recovery of plutonium and for the production of inert ''slag'' -type residues have been identified. A furnace for producing model incinerator ashes and pyrolysis chars under carefully controlled conditions is described. Preliminary results on the leaching of these plutonium-active ashes and chars are discussed. (author)

  4. Continuous precipitation process of plutonium salts

    International Nuclear Information System (INIS)

    Richard, P.

    1967-03-01

    This work concerns the continuous precipitation process of plutonium oxalate. Investigations about the solubility of different valence states in nitric-oxalic and in nitric-sulfuric-oxalic medium lead to select the precipitation process of tetravalent plutonium oxalate. Settling velocity and granulometry of tetravalent oxalate plutonium have been studied with variation of several precipitation parameters such as: temperature, acidity, excess of oxalic acid and aging time. Then are given test results of some laboratory continuous apparatus. Conditions of operation with adopted tubular apparatus are defined in conclusion. A flow-sheet is given for a process at industrial scale. (author) [fr

  5. Nondestructive analysis of plutonium contaminated soil

    International Nuclear Information System (INIS)

    Smith, H.E.; Taylor, L.H.

    1977-01-01

    Plutonium contaminated soil is currently being removed from a covered liquid waste disposal trench near the Pu Processing facility on the Hanford Project. This soil with the plutonium is being mined using remote techniques and equipment. The mined soil is being packaged for placement into retrievable storage, pending possible recovery. To meet the requirements of criticality safety and materials accountability, a nondestructive analysis program has been developed to determine the quantity of plutonium in each packing-storage container. This paper describes the total measurement program: equipment systems, calibration techniques, matrix assumption, instrument control program and a review of laboratory operating experience

  6. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    Stafford, R.G.; DeVore, R.K.

    1977-01-01

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  7. Effect of compositional variation in plutonium on process shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.H.

    1997-11-01

    Radiation dose rate from plutonium with high {sup 239}Pu content varies with initial nuclidic content, radioactive decay time, and impurity elemental content. The two idealized states of old plutonium and clean plutonium, whose initial compositions are given, provide approximate upper and lower bounds on dose rate variation. Whole-body dose rates were calculated for the two composition states, using unshielded and shielded plutonium spheres of varying density. The dose rates from these variable density spheres are similar to those from expanded plutonium configurations encountered during processing. The dose location of 40 cm from the sphere center is representative of operator standoff for direct handling of plutonium inside a glove box. The results have shielding implications for glove boxes with only structurally inherent shielding, especially for processing of old plutonium in an expanded configuration. Further reduction in total dose rate by using lead to reduce photon dose rate is shown for two density cases representing compact and expanded plutonium configurations.

  8. Effect of compositional variation in plutonium on process shielding design

    International Nuclear Information System (INIS)

    Brown, T.H.

    1997-11-01

    Radiation dose rate from plutonium with high 239 Pu content varies with initial nuclidic content, radioactive decay time, and impurity elemental content. The two idealized states of old plutonium and clean plutonium, whose initial compositions are given, provide approximate upper and lower bounds on dose rate variation. Whole-body dose rates were calculated for the two composition states, using unshielded and shielded plutonium spheres of varying density. The dose rates from these variable density spheres are similar to those from expanded plutonium configurations encountered during processing. The dose location of 40 cm from the sphere center is representative of operator standoff for direct handling of plutonium inside a glove box. The results have shielding implications for glove boxes with only structurally inherent shielding, especially for processing of old plutonium in an expanded configuration. Further reduction in total dose rate by using lead to reduce photon dose rate is shown for two density cases representing compact and expanded plutonium configurations

  9. Safe disposal of surplus plutonium

    Science.gov (United States)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  10. Management of Russian military plutonium

    International Nuclear Information System (INIS)

    Zaleski, C.P.

    1996-01-01

    The objective of this paper is to propose and discuss a solution which enables storing as quickly as possible all weapons-grade plutonium from Russian military program in a way which would prevent diversion. Two main conditions apply to this solution. First, it should be achieved in a manner acceptable to Russian government, notably by preserving plutonium for possible future energy production, and second, the economics of the total system should be good enough to ensure no charge or limited charge for the storage of plutonium. A proposal is made to store plutonium in a specially designed fast reactor or specially designed reactor core. This solution could be favorable in comparison to other solutions applying the above mentioned goal and conditions. Additionally the proposed solution would have the following side advantages: utilizing available personnel and installations of the Russian nuclear complex; providing possible basis for decommissioning of older and less safe Russian reactors; giving experience of construction and operation of a series of sodium-cooled fast reactors. The major problem however is the need for large capital investment with the risk of getting no adequate return on investment due to difficult political and economic situation in Russia

  11. Economic analysis of self-generated plutonium recycling in light water reactor

    International Nuclear Information System (INIS)

    Deguchi, Morimoto; Hirabayashi, Fumio; Yumoto, Ryozo

    1978-01-01

    This paper describes on the economics of plutonium recycle to light water reactors (LWRs). In the situation that plutonium market does not exist, it is realistic for utilities to recycle the self-generated plutonium to their own reactors. The economic incentive to recycle self-generated plutonium, plutonium fuel fabrication penalty, and the dependence of fuel cycle cost on fuel cycle cost parameters are considered. In recycling self-generated plutonium, two alternatives for fuel element design are feasible. Those are the all-plutonium design and the island design. In the present analysis, the all-plutonium design was chosen for PWRs. The calculation of reactivity variation along with burnup for both uranium fuel and plutonium fuel was done with LASER-PNC code. Plutonium inventory and other nuclear data were calculated with CHAIN code. It is expected that equilibrium composition is reached after 5 or 6 times of recycling. For the calculation of fuel cycle cost, MITCOST code was used. The recent increase in the prices of uranium ore, enrichment and reprocessing services was taken into account. The fuel cycle cost of plutonium recycle is lower than that of uranium fuel cycle within a certain limit of plutonium fabrication penalty. It is shown that the fabrication penalty of about 1250 dollar/kgHM for each plutonium successive recycle reduces the cost difference to zero. The change in other cost components affects break-even fabrication penalty, in which the fuel cycle cost of plutonium recycle is equal to that of uranium cycle. (Kato, T.)

  12. Physics of plutonium recycling: volume V. Plutonium recycling in fast reactors

    International Nuclear Information System (INIS)

    1996-01-01

    As part of a programme proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed. In this report, the multi-recycle performance of the metal-fuelled benchmark is evaluated. Benchmark results assess the reactor performance and toxicity behaviour in a closed nuclear fuel cycle for a parametric variation of the conversion ratio between 0.5 and 1.0. Results indicate that a fast burner reactor closed fuel cycle can be utilised to significantly reduce the radiotoxicity originating in the LWR cycle which would otherwise be destined for burial. (Author). tabs., figs., refs

  13. Contamination smoke: a simulation of heavy metal containing aerosols from fires in plutonium glove boxes: part II

    International Nuclear Information System (INIS)

    Buijs, K.; Chavane de Dalmassy, B.; Baumgaertner, E.

    1992-01-01

    The study of the dispersion of plutonium bearing aerosols during glove box fires on a laboratory scale has been, in part I of this work, focussed on fires of polymethylmethacrylate (PMMA - the major glove box construction material) whose surfaces were contaminated with cerium-europium oxide powder as a substitute for plutonium-uranium oxide. The present part II completes the study with comparative fire experiments involving contaminated samples of various glove box materials burning in or exposed to the flames of the standardized 0.6 MW fire source previously developed. Beyond spreading of the Ce-Eu-oxide powder as mentioned above, the other important surface contamination process is used, i.e. deposition and subsequent drying of droplets from acid cerium-europium solutions. It is shown that, among the tested materials, and with the exception of synthetic glove rubber, burning PMMA spreads the most radioactive contamination. On the other hand, this potential risk is much lower for fires involving materials contaminated from solution deposition than from powder or pellets. Attempts to measure the airborne contaminant particle sizes did not yield conclusive results. They suggest, however, that contamination from solutions leads to smaller heavy-metal containing aerosol particles than contamination with powder

  14. Decontamination of Battelle-Columbus' Plutonium Facility. Final report

    International Nuclear Information System (INIS)

    Rudolph, A.; Kirsch, G.; Toy, H.L.

    1984-01-01

    The Plutonium Laboratory, owned and operated by Battelle Memorial Institute's Columbus Division, was located in Battelle's Nuclear Sciences area near West Jefferson, Ohio, approximately 17 miles west of Columbus, Ohio. Originally built in 1960 for plutonium research and processing, the Plutonium Laboratory was enlarged in 1964 and again in 1967. With the termination of the Advanced Fuel Program in March, 1977, the decision was made to decommission the Plutonium Laboratory and to decontaminate the building for unrestricted use. Decontamination procedures began in January, 1978. All items which had come into contact with radioactivity from the plutonium operations were cleaned or disposed of through prescribed channels, maintaining procedures to ensure that D and D operations would pose no risk to the public, the environment, or the workers. The entire program was conducted under the cognizance of DOE's Chicago Operations Office. The building which housed the Plutonium Laboratory has now been decontaminated to levels allowing it to house ordinary laboratory and office operations. A ''Finding of No Significant Impact'' (FNSI) was issued in May, 1980

  15. New developments in the air transport of plutonium

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1978-01-01

    A new package for the air transport of plutonium has been developed in response to a United States Public Law which restricts the U.S. air transport of plutonium except for small medical devices. This new package, called PAT-1 for plutonium air transportable package model 1, is the result of the NRC-sponsored (NRC=U.S. Nuclear Regulatory Commission.) PARC (plutonium accident resistant container) project at Sandia Laboratories, Albuquerque. The PAT-1 package is designed to meet or exceed new criteria specified in NUREG-0360. These inclued a severe test sequence of impact (>250 knots) on an unyielding target, crush, puncture, slash, a large JP-4 fire for 1 hour, followed by water immersion, with stringent acceptance standards on plutonium release, nuclear shielding, and nuclear criticality. The PAT-1 package design features a high energy absorption capability with high-level fire protection. It weighs approximately 227 kg (500 lb) when loaded with 2 kg PuO 2 , and can accommodate up to 25 watts thermal energy from the plutonium load

  16. Waste minimization at a plutonium processing facility

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    As part of Los Alamos National Laboratory's (LANL) mission to reduce the nuclear danger throughout the world, the plutonium processing facility at LANL maintains expertise and skills in nuclear weapons technologies as well as leadership in all peaceful applications of plutonium technologies, including fuel fabrication for terrestrial and space reactors and heat sources and thermoelectric generators for space missions. Another near-term challenge resulted from two safety assessments performed by the Defense Nuclear Facilities Safety Board and the U.S. Department of Energy during the past two years. These assessments have necessitated the processing and stabilization of plutonium contained in tons of residues so that they can be stored safely for an indefinite period. This report describes waste streams and approaches to waste reduction of plutonium management

  17. Plutonium Chemistry in the UREX Separation Processes

    International Nuclear Information System (INIS)

    Paulenova, Alena; Vandegrift, George F. III; Czerwinski, Kenneth R.

    2009-01-01

    The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  18. Fuel cycles using adulterated plutonium

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; Bigelow, J.E.; Campbell, D.O.; Kitts, F.G.; Lindauer, R.B.

    1978-01-01

    Adjustments in the U-Pu fuel cycle necessitated by decisions made to improve the nonproliferation objectives of the US are examined. The uranium-based fuel cycle, using bred plutonium to provide the fissile enrichment, is the fuel system with the highest degree of commercial development at the present time. However, because purified plutonium can be used in weapons, this fuel cycle is potentially vulnerable to diversion of that plutonium. It does appear that there are technologically sound ways in which the plutonium might be adulterated by admixture with 238 U and/or radioisotopes, and maintained in that state throughout the fuel cycle, so that the likelihood of a successful diversion is small. Adulteration of the plutonium in this manner would have relatively little effect on the operations of existing or planned reactors. Studies now in progress should show within a year or two whether the less expensive coprocessing scheme would provide adequate protection (coupled perhaps with elaborate conventional safeguards procedures) or if the more expensive spiked fuel cycle is needed as in the proposed civex pocess. If the latter is the case, it will be further necessary to determine the optimum spiking level, which could vary as much as a factor of a billion. A very basic question hangs on these determinations: What is to be the nature of the recycle fuel fabrication facilities. If the hot, fully remote fuel fabrication is required, then a great deal of further development work will be required to make the full cycle fully commercial

  19. Determination of uranium and plutonium by sequential potentiometric titration

    International Nuclear Information System (INIS)

    Kato, Yoshiharu; Takahashi, Masao

    1976-01-01

    The determination of uranium and plutonium in mixed oxide fuels has been developed by sequential potentiometric titration. A weighed sample of uranium and plutonium oxides is dissolved in a mixture of nitric and hydrofluoric acids and the solution is fumed with sulfuric acid. After the reduction of uranium and plutonium to uranium(IV) and plutonium(III) by chromium(II) sulfate, 5 ml of buffer solution (KCl-HCl, pH 1.0) is added to the solution. Then the solution is diluted to 30 ml with water and the pH of the solution is adjusted to 1.0 -- 1.5 with 1 M sodium hydroxide. The solution is stirred until the oxidation of the excess of chromium(II) by air is completed. After the removal of dissolved oxygen by bubbling nitrogen through the solution for 10 minutes, uranium (IV) is titrated with 0.1 N cerium(IV) sulfate. Then, plutonium is titrated by 0.02 N cerium(IV) sulfate. When a mixture of uranium and plutonium is titrated with 0.1 N potassium dichromate potentiometrically, the potential change at the end point of plutonium is very small and the end point of uranium is also unclear when 0.1 N potassium permanganate is used as a titrant. In the present method, nitrate, fluoride and copper(II) interfere with the determination of plutonium and uranium. Iron interferes quantitatively with the determination of plutonium but not of uranium. Results obtained in applying the proposed method to 50 mg of mixtures of plutonium and uranium ((7.5 -- 50))% Pu were accurate to within 0.15 mg of each element. (auth.)

  20. Remote handling in the Plutonium Immobilization Project: Plutonium conversion and first stage immobilization

    International Nuclear Information System (INIS)

    Brault, J.R.

    2000-01-01

    Since the break up of the Soviet Union at the end of the Cold War, the United States and Russia have been negotiating ways to reduce their nuclear stockpiles. Economics is one of the reasons behind this, but another important reason is safeguarding these materials from unstable organizations and countries. With the downsizing of the nuclear stockpiles, large quantities of plutonium are being declared excess and must be safely disposed of. The Savannah River Site (SRS) has been selected as the site where the immobilization facility will be located. Conceptual design and process development commenced in 1998. SRS will immobilize excess plutonium in a ceramic waste form and encapsulate it in vitrified high level waste in the Defense Waste Processing Facility (DWPF) canister. These canisters will then be interred in the national repository at Yucca Mountain, New Mexico. The facility is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. This paper will discuss the first two operations

  1. Safe handling of plutonium in research laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ''Protection of Workers'' at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  2. Safe handling of plutonium in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ``Protection of Workers`` at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  3. Inhaled plutonium oxide in dogs

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This project is concerned with long-term experiments to determine the life-span dose-effect relationships of inhaled 239 PuO 2 and 238 PuO 2 in beagles. The data will be used to estimate the health effects of inhaled transuranics. The tissue distribution of plutonium, radiation effects in the lung and hematologic changes in plutonium-exposed beagles with lung tumors were evaluated

  4. Reduction of uranium and plutonium oxides by aluminum. Application to the recycling of plutonium; Reduction des oxydes d'uranium et de plutonium par l'aluminium application au recyclage du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Gallay, J [Commissariat a l' Energie Atomique, Valduc (France). Centre d' Etudes

    1968-07-01

    A process for treating plutonium oxide calcined at high temperatures (1000 to 2000 deg. C) with a view to recovering the metal consists in the reduction of this oxide dissolved in a mixture of aluminium, sodium and calcium fluorides by aluminium at about 1180 deg. C. The first part of the report presents the results of reduction tests carried out on the uranium oxides UO{sub 2} and U{sub 3}O{sub 8}; these are in agreement with the thermodynamic calculations of the exchange reaction at equilibrium. The second part describes the application of this method to plutonium oxides. The Pu-Al alloy obtained (60 per cent Pu) is then recycled in an aqueous medium. (author) [French] Un procede de traitement de l'oxyde de plutonium calcine a haute temperature (1000 deg. C a 2000 deg. C), en vue de la recuperation du metal, consiste a reduire cet oxyde dissous dans un melange de fluorures d'aluminium, de sodium et de calcium, par l'aluminium vers 1180 deg. C. Une premiere partie du rapport presente les resultats des essais de reduction des oxydes d'uranium UO{sub 2} et U{sub 3}O{sub 8}, en accord avec les resultats du calcul thermodynamique de la reaction d'echange a l'equilibre. Une seconde partie rend compte de l'application de cette methode a l'oxyde de plutonium. L'alliage Pu-Al obtenu (60 pour cent Pu) est ensuite recycle par voie aqueuse. (auteur)

  5. Surplus plutonium disposition draft environmental impact statement. Volume 1, Part A

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. This volume includes background information; purpose of and need for the proposed action; alternatives for disposition of surplus weapons useable plutonium; and

  6. Transuranic elements in nature - plutonium all around us

    International Nuclear Information System (INIS)

    Keller, C.; Baptista de Alleluia, I.

    1979-01-01

    At first the transuranic element plutonium was thought to be an artificial element which was formed during nuclear reactions. However, in the earth's crust traces of plutonium have also been found which has constantly been renewing itself ever since the birth of our solar system. But it is the quantities of artificially produced plutonium which make up the bulk of this element on our planet. Part of it has spread fairly equally over the whole of the earth. Plutonium can be proved to exist on every field an in every sample of air today. (orig.) [de

  7. Safety aspects with regard to plutonium vitrification techniques

    International Nuclear Information System (INIS)

    Gray, L.W.; Kan, T.

    1995-01-01

    Substantial inventories of excess plutonium are expected to result from dismantling US and Russian nuclear weapons. Disposition of this material should be a high priority in both countries. Various disposition options are under consideration. One option is to vitrify the plutonium with the addition of 137 Cs or high-level waste to act as a deterrent to proliferation. The primary safety problem associated with vitrification of plutonium is to avoid criticality in form fabrication and in the final repository over geologic time. Recovery should be as difficult (costly) as the recovery of plutonium from spent fuel

  8. Political influences in plutonium recycling

    International Nuclear Information System (INIS)

    Patak, H.N.

    1982-01-01

    The history of plutonium safeguards is one of political error and misunderstandings, as well as a lack of technical knowledge. Although there was widespread support for preventing the proliferation of nuclear explosives, with over 100 nations signing the Nonproliferation Treaty of 1969, India's 1974 nuclear test brought renewed political activity to prevent another such occurrence. Opposition has been directed only at how to pursue this goal, but the status of four major experiments aimed at minimizing weapons proliferation is one of failure, intensified by a weakening of the International Atomic Energy Agency (IAEA). If the link between plutonium power and weapons production can be broken through on-site reprocessing, the situation could improve. One course would be for the nuclear power industry to adopt its own system for safe guarding plutonium

  9. Shielding calculational system for plutonium

    International Nuclear Information System (INIS)

    Zimmerman, M.G.; Thomsen, D.H.

    1975-08-01

    A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)

  10. Japan-U.S. cooperation in transport of plutonium

    International Nuclear Information System (INIS)

    Takeda, Yu

    2012-01-01

    Japan's effort to utilize plutonium for peaceful purpose since 1950s was caught in a cross fire after the end of the Cold War. Maritime transport of plutonium from France to Japan in 1993, for instance, was criticized by U.S. Congress, nonproliferation specialists and environmental activists. U.S. government, however, compiled with Japan-US Nuclear Cooperation Agreement and cooperated to ship plutonium. This paper focuses on why Washington was supportive for the sealift of plutonium despite of opposition against it. By solving the puzzle, this research will contribute to studies of Japan's plutonium policy and Japan-U.S. nuclear relations. Based on newspaper articles, memoirs and official documents, this paper examines backgrounds and features of controversy surrounding the transport. The analyses show the causes of U.S. cooperation to the transport, such as Japan's efforts toward nuclear nonproliferation. (author)

  11. Optimal management of weapons plutonium through MOX recycling

    International Nuclear Information System (INIS)

    McMurphy, M.A.; Bastard, G. le

    1995-01-01

    Beyond the satisfaction of witnessing the end of the nuclear arms race, the availability of large quantities of plutonium from the dismantlement of nuclear weapons in Russia and the US can be perceived as a challenge and an opportunity. A challenge because poor management of this material would maintain a problematic situation in terms of proliferation; an opportunity because such plutonium represents a high value energy source that the civilian industry is capable of using efficiently, actually turning it from swords to plowshares. The object of this paper is to describe the main characteristics of the use of weapons plutonium in the civilian cycle to produce electricity through the use of mixed uranium-plutonium oxide (MOX), or moxification. A comparison with the main alternate solution--plutonium vitrification--is offered, in particular with regard to industrial availability, energy resource management, economy, environment and proliferation

  12. Plutonium Disposition by Immobilization

    International Nuclear Information System (INIS)

    Gould, T.; DiSabatino, A.; Mitchell, M.

    2000-01-01

    The ultimate goal of the Department of Energy (DOE) Immobilization Project is to develop, construct, and operate facilities that will immobilize between 17 to 50 tonnes (MT) of U.S. surplus weapons-usable plutonium materials in waste forms that meet the ''spent fuel'' standard and are acceptable for disposal in a geologic repository. Using the ceramic can-in-canister technology selected for immobilization, surplus plutonium materials will be chemically combined into ceramic forms which will be encapsulated within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2008 and be completed within 10 years. In support of this goal, the DOE Office of Fissile Materials Disposition (MD) is conducting development and testing (D and T) activities at four DOE laboratories under the technical leadership of Lawrence Livermore National Laboratory (LLNL). The Savannah River Site has been selected as the site for the planned Plutonium Immobilization Plant (PIP). The D and T effort, now in its third year, will establish the technical bases for the design, construction, and operation of the U. S. capability to immobilize surplus plutonium in a suitable and cost-effective manner. Based on the D and T effort and on the development of a conceptual design of the PIP, automation is expected to play a key role in the design and operation of the Immobilization Plant. Automation and remote handling are needed to achieve required dose reduction and to enhance operational efficiency

  13. Complementary technologies for verification of excess plutonium

    International Nuclear Information System (INIS)

    Langner, D.G.; Nicholas, N.J.; Ensslin, N.; Fearey, B.L.; Mitchell, D.J.; Marlow, K.W.; Luke, S.J.; Gosnell, T.B.

    1998-01-01

    Three complementary measurement technologies have been identified as candidates for use in the verification of excess plutonium of weapons origin. These technologies: high-resolution gamma-ray spectroscopy, neutron multiplicity counting, and low-resolution gamma-ray spectroscopy, are mature, robust technologies. The high-resolution gamma-ray system, Pu-600, uses the 630--670 keV region of the emitted gamma-ray spectrum to determine the ratio of 240 Pu to 239 Pu. It is useful in verifying the presence of plutonium and the presence of weapons-grade plutonium. Neutron multiplicity counting is well suited for verifying that the plutonium is of a safeguardable quantity and is weapons-quality material, as opposed to residue or waste. In addition, multiplicity counting can independently verify the presence of plutonium by virtue of a measured neutron self-multiplication and can detect the presence of non-plutonium neutron sources. The low-resolution gamma-ray spectroscopic technique is a template method that can provide continuity of knowledge that an item that enters the a verification regime remains under the regime. In the initial verification of an item, multiple regions of the measured low-resolution spectrum form a unique, gamma-radiation-based template for the item that can be used for comparison in subsequent verifications. In this paper the authors discuss these technologies as they relate to the different attributes that could be used in a verification regime

  14. Chemical species of plutonium in Hanford radioactive tank waste

    International Nuclear Information System (INIS)

    Barney, G.S.

    1997-01-01

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  15. Neutronic design of a plutonium-thorium burner small nuclear reactor

    International Nuclear Information System (INIS)

    Hartanto, Donny

    2010-02-01

    A small nuclear reactor using thorium and plutonium fuel has been designed from the neutronic point of view. The thermal power of the reactor is 150 MWth and it is proposed to be used to supply electricity in an island in Indonesia. Thorium and plutonium fuel was chosen because in recent years the thorium fuel cycle is one of the promising ways to deal with the increasing number of plutonium stockpiles, either from the utilization of uranium fuel cycle or from nuclear weapon dismantling. A mixed fuel of thorium and plutonium will not generate the second generation of plutonium which will be a better way to incinerate the excess plutonium compared with the MOX fuel. Three kinds of plutonium grades which are the reactor grade (RG), weapon grade (WG), and spent fuel grade (SFG) plutonium, were evaluated as the thorium fuel mixture in the 17x17 Westinghouse PWR Fuel assembly. The evaluated parameters were the multiplication factor, plutonium depletion, fissile buildup, neutron spectrum, and temperature reactivity feedback. An optimization was also done to increase the plutonium depletion by changing the Moderator to Fuel Ratio (MFR). The computer codes TRITON (coupled NEWT and ORIGEN-S) in SCALE version 6 were used as the calculation tool for this assembly level. From the evaluation and optimization of the fuel assembly, the whole core was designed. The core was consisted of 2 types of thorium fuel with different plutonium grade and it followed the checkerboard loading pattern. A new concept of enriched burnable poison was also introduced to the core. The core life is 6.4 EFPY or 75 GWd/MTHM. It can burn up to 58% of its total mass of initial plutonium. VENTURE was used as the calculation tool for the core level

  16. Potentiometric titration of plutonium

    International Nuclear Information System (INIS)

    Silver, G.L.

    1978-01-01

    In the potentiometric titration of plutonium(III), it has been customary to take the equivalence point as the inflection point on a plot of potential vs. volume of titrant. It have not been, however, demonstrated, that the stoichiometric end point corresponds to the inflection point. Suggestions are made according to which these points may not correspond in the potentiometric titration of plutonium(III), as these titrations are ordinarily concluded in a period of time which is short compared to the time required for valence state rearrangement through disproportionation. (T.G.)

  17. Accountability methods for plutonium and uranium: the NRC manuals

    Energy Technology Data Exchange (ETDEWEB)

    Gutmacher, R.G.; Stephens, F.B.

    1977-09-28

    Four manuals containing methods for the accountability of plutonium nitrate solutions, plutonium dioxide, uranium dioxide and mixed uranium-plutonium oxide have been prepared by us and issued by the U.S. Nuclear Regulatory Commission. A similar manual on methods for the accountability of uranium and plutonium in reprocessing plant dissolver solutions is now in preparation. In the present paper, we discuss the contents of the previously issued manuals and give a preview of the manual now being prepared.

  18. Accountability methods for plutonium and uranium: the NRC manuals

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Stephens, F.B.

    1977-01-01

    Four manuals containing methods for the accountability of plutonium nitrate solutions, plutonium dioxide, uranium dioxide and mixed uranium-plutonium oxide have been prepared by us and issued by the U.S. Nuclear Regulatory Commission. A similar manual on methods for the accountability of uranium and plutonium in reprocessing plant dissolver solutions is now in preparation. In the present paper, we discuss the contents of the previously issued manuals and give a preview of the manual now being prepared

  19. Concentration of plutonium in desert plants from contaminated area

    International Nuclear Information System (INIS)

    Xu Hui; Jin Yuren; Tian Mei; Li Weiping; Zeng Ke; Wang Yaoqin; Wang Yu

    2012-01-01

    The investigation of plutonium in desert plants from contaminated sites contributes to the evaluation of its pollution situation and to the survey of plutonium hyper accumulator. The concentration of 239 Pu in desert plants collected from a contaminated site was determined, and the influence factors were studied. The concentration of 239 Pu in plants was (1.8±4.9) Bq/kg in dry weight, and it means that the plants were contaminated, moreover, the resuspension results in dramatic plutonium pollution of plant surface. The concentration of plutonium in plants depends on species, live stages and the content of plutonium in the rhizosphere soil. The concentration of plutonium in herbage is higher than that in woody plant, and for the seven species of desert plants investigated, it decreases in the order of Hexinia polydichotoma, Phragmites australis, Halostashys caspica, Halogeton arachnoideus, Lycium ruthenicum, Tamarix hispida and Calligonum aphyllum. (authors)

  20. Study of plutonium cycle in marine ecosystems

    International Nuclear Information System (INIS)

    Merino Pareja, J.; Sanchez Cabeza, J. A.; Molero Savall, J.; Masque Barri, P.

    1998-01-01

    The distribution, transport and accumulation mechanisms of transuranics (and other radionuclides) in the marine environment depend on the source term, biogeochemical cycles, transport with the water masses, sedimentation processes and transfer mechanisms in the trophic chain. The biogeochemical behaviour of plutonium, which has been the focus of our work, was studied using the following approaches: determination of the physico-chemical speciation of plutonium in marine waters, vertical flux in the water column, uptake by marine organisms (phytoplankton and zooplankton) and distribution in dements cores. A preliminary model of the accumulation and distribution of plutonium in the first levels of the marine food chain in the Irish Sea has also been formulated. All this information allowed us to obtain an integrated view of the behaviour of plutonium in the marine environment. (Author) 14 refs