Sample records for maximum peak discharge

  1. Analysis of the Magnitude and Frequency of Peak Discharge and Maximum Observed Peak Discharge in New Mexico and Surrounding Areas

    Waltemeyer, Scott D.


    Estimates of the magnitude and frequency of peak discharges are necessary for the reliable design of bridges, culverts, and open-channel hydraulic analysis, and for flood-hazard mapping in New Mexico and surrounding areas. The U.S. Geological Survey, in cooperation with the New Mexico Department of Transportation, updated estimates of peak-discharge magnitude for gaging stations in the region and updated regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites by use of data collected through 2004 for 293 gaging stations on unregulated streams that have 10 or more years of record. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 140 of the 293 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge by having a recurrence interval of less than 1.4 years in the probability-density function. Within each of the nine regions, logarithms of the maximum peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics by using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then were applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction, which includes average sampling error and average standard error of regression, ranged from 38 to 93 percent

  2. Adjusting annual maximum peak discharges at selected stations in northeastern Illinois for changes in land-use conditions

    Over, Thomas M.; Saito, Riki J.; Soong, David T.


    The effects of urbanization on annual maximum peak discharges in northeastern Illinois and nearby areas from 1945 to 2009 were analyzed with a two-step longitudinal-quantile linear regression approach. The peak discharges were then adjusted to 2010 land-use conditions. The explanatory variables used were daily precipitation at the time of the peak discharge event and a housing density-based measure of developed land use. The effect of the implementation of stormwater detention was assessed indirectly. Peak discharge records affected by the construction of large reservoirs that affect channel routing were identified and were split into segments at the time of completion of the reservoir. Longitudinal regressions of the peak discharge records on linear and logarithmic transformations of the selected measures of urbanization and precipitation were tested, and the best fitting model was selected for quantile regression and adjustment of the peak discharges.

  3. Estimation of peak discharges of historical floods

    J. Herget


    Full Text Available There is no doubt, that the hazard assessment of future floods especially under consideration of the recent environmental change can be significantly improved by the consideration of historic flood events. While flood frequency inventories on local, regional and even European scale are already developed and published, the estimation of their magnitudes indicated by discharges is still challenging. Such data are required due to significant human impact on river channels and floodplains though historic flood levels cannot be related to recent ones or recent discharges. Based on own experiences from single local key studies the general outline of an approach to estimate the discharge of the previous flood based on handed down flood level and topographic data is presented. The model for one-dimensional steady flow is based on the empirical Manning equation for the mean flow velocity. Background and potential sources of information, acceptable simplifications and data transformation for each element of the model-equation are explained and discussed. Preliminary experiences on the accuracy of ±10% are documented and potential approaches for the validation of individual estimations given. A brief discussion on benefits and limitations including a generalized statement on alternative approaches closes the review presentation of the approach.

  4. Corona discharge ionization of paracetamol molecule: Peak assignment

    Bahrami, H.; Farrokhpour, H.


    Ionization of paracetamol was investigated using ion mobility spectrometry equipped with a corona discharge ionization source. The measurements were performed in the positive ion mode and three peaks were observed in the ion mobility spectrum. Experimental evidence and theoretical calculations were used to correlate the peaks to related ionic species of paracetamol. Two peaks were attributed to protonated isomers of paracetamol and the other peak was attributed to paracetamol fragment ions formed by dissociation of the N-C bond after protonation of the nitrogen atom. It was observed that three sites of paracetamol compete for protonation and their relative intensities, depending on the sample concentration. The ratio of ion products could be predicted from the internal proton affinity of the protonation sites at each concentration.

  5. Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois

    Over, Thomas; Saito, Riki J.; Veilleux, Andrea; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey


    This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, generalized skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at

  6. Choice of routing scheme considerably influences peak river discharge simulation in global hydrological models

    Zhao, Fang; Veldkamp, Ted; Schauberger, Bernhard; Willner, Sven; Yamazaki, Dai


    Global hydrological models (GHMs) have been applied to assess global flood hazards. However, their capacity to capture the timing and amplitude of peak river discharge—which is crucial in flood simulations—has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971-2010) within the ISIMIP2a project. The runoff simulations were used as input for the global river routing model CaMa-Flood. The simulated daily discharges were compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, probably induced by the buffering capacity of floodplain reservoirs. For most river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over more than 60% of the basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not present in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.

  7. The critical role of the routing scheme in simulating peak river discharge in global hydrological models

    Zhao, Fang; Veldkamp, Ted I. E.; Frieler, Katja; Schewe, Jacob; Ostberg, Sebastian; Willner, Sven; Schauberger, Bernhard; Gosling, Simon N.; Müller Schmied, Hannes; Portmann, Felix T.; Leng, Gobias; Huang, Maoyi; Liu, Xingcai; Tang, Qiuhong; Hanasaki, Naota; Biemans, Hester; Gerten, Dieter; Satoh, Yusuke; Pokhrel, Yadu; Stacke, Tobias; Ciais, Philippe; Chang, Jinfeng; Ducharne, Agnes; Guimberteau, Matthieu; Wada, Yoshihide; Kim, Hyungjun; Yamazaki, Dai


    Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge—which is crucial in flood simulations—has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971-2010) within the ISIMIP2a project. The runoff simulations were used as input for the global river routing model CaMa-Flood. The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about 2/3 of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.

  8. Analysis of the maximum discharge of karst springs

    Bonacci, Ognjen


    Analyses are presented of the conditions that limit the discharge of some karst springs. The large number of springs studied show that, under conditions of extremely intense precipitation, a maximum value exists for the discharge of the main springs in a catchment, independent of catchment size and the amount of precipitation. Outflow modelling of karst-spring discharge is not easily generalized and schematized due to numerous specific characteristics of karst-flow systems. A detailed examination of the published data on four karst springs identified the possible reasons for the limitation on the maximum flow rate: (1) limited size of the karst conduit; (2) pressure flow; (3) intercatchment overflow; (4) overflow from the main spring-flow system to intermittent springs within the same catchment; (5) water storage in the zone above the karst aquifer or epikarstic zone of the catchment; and (6) factors such as climate, soil and vegetation cover, and altitude and geology of the catchment area. The phenomenon of limited maximum-discharge capacity of karst springs is not included in rainfall-runoff process modelling, which is probably one of the main reasons for the present poor quality of karst hydrological modelling. Résumé. Les conditions qui limitent le débit de certaines sources karstiques sont présentées. Un grand nombre de sources étudiées montrent que, sous certaines conditions de précipitations extrêmement intenses, il existe une valeur maximale pour le débit des sources principales d'un bassin, indépendante des dimensions de ce bassin et de la hauteur de précipitation. La modélisation des débits d'exhaure d'une source karstique n'est pas facilement généralisable, ni schématisable, à cause des nombreuses caractéristiques spécifiques des écoulements souterrains karstiques. Un examen détaillé des données publiées concernant quatre sources karstiques permet d'identifier les raisons possibles de la limitation de l'écoulement maximal: (1

  9. Quantitative relationship between the maximum streamer length and discharge voltage of a pulsed positive streamer discharge in water

    Wen, Xiaoqiong; Li, Qian; Li, Jingsen; Ren, Chunsheng


    A linear relationship has been realized between the maximum streamer length and discharge voltage of a pulsed positive streamer discharge by measuring the streamer length in water with conductivity of 100 μS cm-1 using high-speed photography. Based on Ohm’s law, a quantitative equation has been derived for the dependence of the maximum streamer length on the discharge voltage of a pulsed positive streamer discharge in water. According to the equation, our results suggest that the streamers spontaneously stop propagating through water due to the voltage at the streamer head dropping below the ignition voltage of a pulsed positive streamer discharge.

  10. Determinants of peak discharge in steep mountain catchments - Case of the Rift Valley escarpment of Northern Ethiopia

    Asfaha, Tesfaalem G.; Frankl, Amaury; Haile, Mitiku; Zenebe, Amanuel; Nyssen, Jan


    Peak discharge is an important hydrological parameter of mountain torrents. However, due to the flashy and destructive nature of their stream flows, it is usually difficult to understand the hydrological behavior of steep mountain catchments through direct measurements of discharges. In this study, 332 daily peak discharge events from 11 steep (0.27-0.65 m m-1) catchments (0.4-25 km2) were measured in three rainy seasons (2012-2014) with the objective of analyzing runoff response of steep mountain catchments in the western Rift Valley escarpment of Northern Ethiopia. Seven rain gauges were installed at different altitudes (1623-2851 m a.s.l.) in and nearby the catchments. Event peak discharges were calculated using the Manning's equation from daily measurements of maximum discharge height at 11 crest stage gauges. Percentages of land cover classes were detected from high resolution (0.6 m) Google Earth Imagery (February 1, 2014). Morphometric characteristics of the catchments were computed both from ASTER digital elevation model (DEM) and topographic maps. Correlation analysis between average daily precipitation (Pd) and peak discharge (Qp) showed strong positive relation (R2 = 0.32-0.94, P concentration (R2 = 0.43, P < 0.05). It was correlated positively with catchment slope gradient (R2 = 0.37, P < 0.05) and index of vegetation distribution (R2 = 0.45, P < 0.05). A stepwise multiple regression analysis revealed that 99% (P < 0.01) of the variability of catchment-specific peak discharge coefficient in the catchments can be predicted by vegetation cover and infiltration number. Overall, this study demonstrates that in reforesting steep mountain catchments, where direct measurement of discharges using the conventional methods is difficult due to the flashy and destructive nature of the stream flows, hydrological variability can easily be understood using simple measurements of daily precipitation and peak discharges. Further, runoff response is determined by

  11. Multi-peaked analytically extended function representing electrostatic discharge (ESD) currents

    Lundengârd, Karl; Rančić, Milica; Javor, Vesna; Silvestrov, Sergei


    A multi-peaked analytically extended function (AEF), previously applied by the authors to modeling of lightning discharge currents, is used in this paper for representation of the electrostatic discharge (ESD) currents. In order to estimate its non-linear parameters, the Marquardt least-squares method (MLSM) is used. ESD currents' modelling is illustrated through an essential example corresponding to approximation of the IEC Standard 61000-4-2 waveshape.

  12. Influence of Curve Number variation on peak discharge of small catchment

    Banasik, Kazimierz; Hejduk, Leszek; Banasik, Jerzy; Rutkowska, Agnieszka


    In this study, we have examined the impact of Curve Number variability on peak discharge, estimated with the use of lumped parametric model SEGMO. Analysis has been conducted for a small (82 km2) agro-forested lowland catchment, located in the center of Poland. Both, the curve number, which is determining runoff depth from rainfall depth, and the IUH characteristics (such as lag time, time to peak, maximum ordinate), which are used to transform the runoff depth into direct runoff hydrograph, have been estimated on the base of recorded in the catchment rainfall-runoff events (Banasik et al. 2011, Banasik et al. 2013). All of them include some stochastic variables, however IUH has been approximated, and used in computation as deterministic. A big variability in CNs has been found, when they were computed from recorded rainfall-runoff data. Next, using the 40 rainfall-runoff data set, the curve numbers were computed again, for each of the ordered pairs, and finally plotted against rainfall depth. Curve numbers were found to approximate an exponential function, varying with storm depth (i.e. decreasing with rainfall increase), and approaches a constant value (CN∞=69.8, which was very close to that value estimated on the base of soil type and land use) at higher rainfalls, what is call a standard behavior (Van Mullem et al. 2002). Standard error of estimation of CN was 1.54. The examination indicated high sensitivity of the flood discharge, estimated as catchment response to 100-year rainfall, to CN changes. Banasik K., Hejduk L. & Oygarden L., 2011. Prediction and reduction of diffuse pollution, solid emission and extreme flows from rural areas - case study of small agricultural catchments. Warsaw University of Life Sciences Press, Warsaw. Banasik K., Hejduk L., Banasik J., 2013. Variation of IUH shapes with size of rainfall-runoff events in a small agricultural catchment. EGU General Assembly, Abstract & Poster. Van Mullem J.A., Woodward D.E., Hawkins R

  13. Suspended particle and pathogen peak discharge buffering by a surface-flow constructed wetland

    Mulling, B.T.M.; van den Boomen, R.M.; van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W.


    Constructed wetlands (CWs) have been shown to improve the water quality of treated wastewater. The capacity of CWs to reduce nutrients, pathogens and organic matter and restore oxygen regime under normal operating conditions cannot be extrapolated to periods of incidental peak discharges. The

  14. Methods for estimating peak discharge and flood boundaries of streams in Utah

    Thomas, B.E.; Lindskov, K.L.


    Equations for estimating 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges and flood depths at ungaged sites in Utah were developed using multiple-regression techniques. Ratios of 500- to 100-year values also were determined. The peak discharge equations are applicable to unregulated streams and the flood depth equations are applicable to the unregulated flow in natural stream channels. The flood depth data can be used to approximate flood prone areas. Drainage area and mean basin elevation are the two basin characteristics needed to use these equations. The standard error of estimate ranges from 38% to 74% for the 100-year peak discharge and from 23% to 33% for the 100-year flood depth. Five different flood mapping methods are described. Streams are classified into four categories as a basis for selecting a flood mapping method. Procedures for transferring flood depths obtained from the regression equations to a flood boundary map are outlined. Also, previous detailed flood mapping by government agencies and consultants is summarized to assist the user in quality control and to minimize duplication of effort. Methods are described for transferring flood frequency data from gaged to ungaged sites on the same stream. Peak discharge and flood depth frequency relations and selected basin characteristics data, updated through the 1980 water year, are tabulated for more than 300 gaging stations in Utah and adjoining states. In addition, weighted estimates of peak discharge relations based on the station data and the regression estimates are provided for each gaging station used in the regression analysis. (Author 's abstract)

  15. Online Reliable Peak Charge/Discharge Power Estimation of Series-Connected Lithium-Ion Battery Packs

    Bo Jiang


    Full Text Available The accurate peak power estimation of a battery pack is essential to the power-train control of electric vehicles (EVs. It helps to evaluate the maximum charge and discharge capability of the battery system, and thus to optimally control the power-train system to meet the requirement of acceleration, gradient climbing and regenerative braking while achieving a high energy efficiency. A novel online peak power estimation method for series-connected lithium-ion battery packs is proposed, which considers the influence of cell difference on the peak power of the battery packs. A new parameter identification algorithm based on adaptive ratio vectors is designed to online identify the parameters of each individual cell in a series-connected battery pack. The ratio vectors reflecting cell difference are deduced strictly based on the analysis of battery characteristics. Based on the online parameter identification, the peak power estimation considering cell difference is further developed. Some validation experiments in different battery aging conditions and with different current profiles have been implemented to verify the proposed method. The results indicate that the ratio vector-based identification algorithm can achieve the same accuracy as the repetitive RLS (recursive least squares based identification while evidently reducing the computation cost, and the proposed peak power estimation method is more effective and reliable for series-connected battery packs due to the consideration of cell difference.

  16. Experimental evaluation of the effect of storm movement on peak discharge

    Jin Liang; Charles S. Melching


    abstract The hypothesis that downstream moving storms with storm length less than watershed length (Ls/L o 1.0) magnify the peak discharges as indicated by kinematic-wave models in previous studies was evaluated in an analysis of the dimensionless peak discharge and dimensionless storm velocity. Previously unpublished experimental data collected for a V-shaped watershed in the Watershed Experimentation System (WES) at the University of Illinois at Urbana–Champaign, were used in comparison with the simulation results of a kinematic-wave model. It is found that downstream moving storms with Ls/L o 1.0 increase the peak discharges to a limited extent compared to stationary storms, and the kinematic-wave model overstates the increase in the peak flows resulting from downstream moving storms with Ls/L o 1.0. To evaluate the importance of the backwater effects in the experimental watershed, the accuracy of kinematic-wave and dynamic-wave models for the simulation of surface runoff resulting from upstream and downstream moving storms was evaluated utilizing the same experimental data. The kinematic-wave model simulates the upstream moving storms pretty well, i.e. Nash–Sutcliffe coefficient of model fit efficiency equal to 0.948 and 0.831 for storms lengths equal to and not equal to the watershed length, respectively. Whereas, the kinematic wave model substantially overestimates the peak discharge of downstream moving storms, and yields generally poorer fits than for upstream moving storm, i.e. NSE equal to 0.867 and 0.674 for storms with lengths equal to and not equal to the watershed length, respectively. The dynamic-wave model simulates the downstream moving storms pretty well, i.e. NSE equal to 0.843 and 0.879 for storms with lengths equal to and not equal to the watershed length, respectively, indicating backwater significantly affects runoff for even this simple experimental watershed. Considering that storm movement did not substantially magnify peak discharge

  17. Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.


    Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean

  18. Peaked density profiles in neon and lithium doped discharges on FTU

    Mazzotta, C., E-mail: [Associazione Euratom-ENEA sulla Fusione, Via E. Fermi 45, 00044 Frascati (Italy); Apicella, M.L.; Botrugno, A.; Gabellieri, L.; Marinucci, M.; Mazzitelli, G.; Pucella, G. [Associazione Euratom-ENEA sulla Fusione, Via E. Fermi 45, 00044 Frascati (Italy); Sozzi, C. [Istituto di Fisica dei Plasmi, CNR, Via R. Cozzi 53, 20125 Milano (Italy); Tudisco, O. [Associazione Euratom-ENEA sulla Fusione, Via E. Fermi 45, 00044 Frascati (Italy)


    Peaked density profiles are observed in FTU discharges when the recycling condition of the chamber is influenced by the action of the liquid lithium limiter (LLL). Turbulence analysis of lithium doped FTU plasmas has shown that the presence of the light impurity modifies the phase between fluctuating fields responsible for transport and consequently leads to an inward deuterium pinch and outward impurity flux. Analogous peaked discharges were produced by Ne-gas puffing in different L mode plasma scenarios that have been recently obtained on FTU with following plasma parameters: I = 360 kA, B = 5–6.5 T, n{sub e0} = 0.2–1 × 10{sup 20} m{sup −3}, T{sub e0} = 1–4 keV, as well as in similar experiments on other machines. In fact the Ne seeded plasmas show an increase of the peaking factor around 30%. UV spectroscopy measurements confirm that the electron-density peaking arises from a convective flow and cannot be attributed to the contribution of the injected Ne alone. The Ne doped discharges analysis together with lithium conditioned ones is useful to extend the interpretative framework of the particle transport. In this work a comparison of the diffusion coefficient and of the pinch velocity of the two cases is conducted. By using a two-colors scanning interferometer providing very high spatial and time resolution, it is indeed possible to estimate the D and U coefficients of a simple model for the particle flux.

  19. DSC “peak temperature” versus “maximum slope temperature” in determining TSSD temperature

    Khatamian, D.


    One of the concerns of the nuclear industry is the deleterious effect of hydrogen on the structural integrity of the reactor core components due to delayed hydride cracking (DHC). The DHC process occurs when hydrogen concentration exceeds the terminal solid solubility (TSS) in the component. Thus, the accurate knowledge of TSS is necessary to predict the lifetime of the components. Differential scanning calorimetry (DSC) is normally used to measure the hydrogen TSS in zirconium alloys. There is a measurable change in the amount of heat absorbed by the specimen when the hydrides dissolve. The hydride dissolution process does not exhibit a well-defined "sharp" change in the heat-flow signal at the transition temperature. A typical DSC heat-flow curve for hydride dissolution has three definite features; "peak temperature" (PT), "maximum slope temperature" (MST) and "completion temperature". The present investigation aims to identify the part of the heat-flow signal that closely corresponds to the TSS temperature for hydride dissolution ( TTSSD). Coupons were cut from a Zr-2.5Nb specimen, which had been previously hydrided using an electrolytic cell to create a surface hydride layer of ˜20 μm thick on all sides of the specimen. The coupons were then annealed isothermally at various temperatures to establish the TTSSD under equilibrium conditions. Subsequently the hydride layer was removed and the coupons were analyzed for TSSD temperature using DSC. The PT and MST for each DSC run were determined and compared to the annealing temperature of the coupon. The results show that the annealing temperature (the equilibrium TTSSD) is much closer to the DSC PT than any other feature of the heat-flow curve.

  20. Estimates of peak flood discharge for 21 sites in the Front Range in Colorado in response to extreme rainfall in September 2013

    Moody, John A.


    Extreme rainfall in September 2013 caused destructive floods in part of the Front Range in Boulder County, Colorado. Erosion from these floods cut roads and isolated mountain communities for several weeks, and large volumes of eroded sediment were deposited downstream, which caused further damage of property and infrastructures. Estimates of peak discharge for these floods and the associated rainfall characteristics will aid land and emergency managers in the future. Several methods (an ensemble) were used to estimate peak discharge at 21 measurement sites, and the ensemble average and standard deviation provided a final estimate of peak discharge and its uncertainty. Because of the substantial erosion and deposition of sediment, an additional estimate of peak discharge was made based on the flow resistance caused by sediment transport effects.Although the synoptic-scale rainfall was extreme (annual exceedance probability greater than 1,000 years, about 450 millimeters in 7 days) for these mountains, the resulting peak discharges were not. Ensemble average peak discharges per unit drainage area (unit peak discharge, [Qu]) for the floods were 1–2 orders of magnitude less than those for the maximum worldwide floods with similar drainage areas and had a wide range of values (0.21–16.2 cubic meters per second per square kilometer [m3 s-1 km-2]). One possible explanation for these differences was that the band of high-accumulation, high-intensity rainfall was narrow (about 50 kilometers wide), oriented nearly perpendicular to the predominant drainage pattern of the mountains, and therefore entire drainage areas were not subjected to the same range of extreme rainfall. A linear relation (coefficient of determination [R2]=0.69) between Qu and the rainfall intensity (ITc, computed for a time interval equal to the time-of-concentration for the drainage area upstream from each site), had the form: Qu=0.26(ITc-8.6), where the coefficient 0.26 can be considered to be an

  1. Difference between the maximum empirical and field measured peak Watt values of thermal power system under highly sufficient solar conditions

    Elhussain, O. A.; Abdel-Magid, T. I. M.


    Mono-Crystalline solar cell module is experimentally conducted in Khartoum, Sudan to study the difference between maximum empirical value of peak Watt and maximum value of thermal power produced in field under highly sufficient solar conditions. Field measurements are recorded for incident solar radiation, produced voltage, current and temperature at several time intervals during sun shine period. The thermal power system has been calculated using fundamental principles of heat transfer. The study shows that solar power for considered module could not attain the empirical peak power irrespective to maximum value of direct incident solar radiation and maximum temperature gained. A loss of about 6% of power can be considered as the difference between field measurements and the manufacturer's indicated empirical value. Solar cell exhibits 94% efficiency in comparison with manufacturer's provided data, and is 3'% more efficient in thermal energy production than in electrical power extraction for hot-dry climate conditions.

  2. Using observed postconstruction peak discharges to evaluate a hydrologic and hydraulic design model, Boneyard Creek, Champaign and Urbana, Illinois

    Over, Thomas M.; Soong, David T.; Holmes, Jr., Robert R.


    Boneyard Creek—which drains an urbanized watershed in the cities of Champaign and Urbana, Illinois, including part of the University of Illinois at Urbana-Champaign (UIUC) campus—has historically been prone to flooding. Using the Stormwater Management Model (SWMM), a hydrologic and hydraulic model of Boneyard Creek was developed for the design of the projects making up the first phase of a long-term plan for flood control on Boneyard Creek, and the construction of the projects was completed in May 2003. The U.S. Geological Survey, in cooperation with the Cities of Champaign and Urbana and UIUC, installed and operated stream and rain gages in order to obtain data for evaluation of the design-model simulations. In this study, design-model simulations were evaluated by using observed postconstruction precipitation and peak-discharge data. Between May 2003 and September 2008, five high-flow events on Boneyard Creek satisfied the study criterion. The five events were simulated with the design model by using observed precipitation. The simulations were run with two different values of the parameter controlling the soil moisture at the beginning of the storms and two different ways of spatially distributing the precipitation, making a total of four simulation scenarios. The simulated and observed peak discharges and stages were compared at gaged locations along the Creek. The discharge at one of these locations was deemed to be critical for evaluating the design model. The uncertainty of the measured peak discharge was also estimated at the critical location with a method based on linear regression of the stage and discharge relation, an estimate of the uncertainty of the acoustic Doppler velocity meter measurements, and the uncertainty of the stage measurements. For four of the five events, the simulated peak discharges lie within the 95-percent confidence interval of the observed peak discharges at the critical location; the fifth was just outside the upper end of

  3. Using observed postconstruction peak discharges to evaluate a hydrologic and hydraulic design model, Boneyard Creek, Champaign and Urbana, Illinois

    Over, Thomas M.; Soong, David T.; Holmes, Jr., Robert R.


    Boneyard Creek—which drains an urbanized watershed in the cities of Champaign and Urbana, Illinois, including part of the University of Illinois at Urbana-Champaign (UIUC) campus—has historically been prone to flooding. Using the Stormwater Management Model (SWMM), a hydrologic and hydraulic model of Boneyard Creek was developed for the design of the projects making up the first phase of a long-term plan for flood control on Boneyard Creek, and the construction of the projects was completed in May 2003. The U.S. Geological Survey, in cooperation with the Cities of Champaign and Urbana and UIUC, installed and operated stream and rain gages in order to obtain data for evaluation of the design-model simulations. In this study, design-model simulations were evaluated by using observed postconstruction precipitation and peak-discharge data. Between May 2003 and September 2008, five high-flow events on Boneyard Creek satisfied the study criterion. The five events were simulated with the design model by using observed precipitation. The simulations were run with two different values of the parameter controlling the soil moisture at the beginning of the storms and two different ways of spatially distributing the precipitation, making a total of four simulation scenarios. The simulated and observed peak discharges and stages were compared at gaged locations along the Creek. The discharge at one of these locations was deemed to be critical for evaluating the design model. The uncertainty of the measured peak discharge was also estimated at the critical location with a method based on linear regression of the stage and discharge relation, an estimate of the uncertainty of the acoustic Doppler velocity meter measurements, and the uncertainty of the stage measurements. For four of the five events, the simulated peak discharges lie within the 95-percent confidence interval of the observed peak discharges at the critical location; the fifth was just outside the upper end of

  4. High-pressure (>1-bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation

    Carman, R J; Mildren, R P; Ward, B K; Kane, D M [Short Wavelength Interactions with Materials (SWIM), Physics Department, Macquarie University, North Ryde, Sydney, NSW 2109 (Australia)


    We have investigated the scaling of peak vacuum ultraviolet output power from homogeneous Xe dielectric barrier discharges excited by short voltage pulses. Increasing the Xe fill pressure above 1-bar provides an increased output pulse energy, a shortened pulse duration and increases in the peak output power of two to three orders of magnitude. High peak power pulses of up to 6 W cm{sup -2} are generated with a high efficiency for pulse rates up to 50 kHz. We show that the temporal pulse characteristics are in good agreement with results from detailed computer modelling of the discharge kinetics.

  5. Maximum Power Point Tracking Controller for Thermoelectric Generators with Peak Gain Control of Boost DC-DC Converters

    Park, Jungyong; Kim, Shiho


    An analog maximum power point tracking (MPPT) circuit for a thermoelectric generator (TEG) is proposed. We show that the peak point of the voltage conversion gain of a boost DC-DC converter with an input voltage source having an internal resistor is the maximum power point of the TEG. The key characteristic of the proposed MPPT controller is that the duty ratio of the input clock pulse to the boost DC-DC converter shifts toward the maximum power point of the TEG by seeking the peak gain point of the boost DC-DC converters. The proposed MPPT technique provides a simple and useful analog MPPT solution, without employing digital microcontroller units.

  6. Early Holocene thermal maximum in western North America: New evidence from Castle Peak, British Columbia

    Clague, John J.; Mathewes, R. W.


    Conifer logs and branches of early Holocene age are common on the surface and in sediments above timberline at Castle Peak in the southeastern Coast Mountains of British Columbia. A study of this wood and associated peat and colluvium has shown that local timberline from 9.1 to 8.2 ka was at least 60 m, and perhaps more than 130 m, higher than today. Mean growing-season temperature at Castle Peak during this period thus may have been 0.4-0.8°C warmer than at present. This is consistent with theoretical considerations based on Milankovitch forcing of climatic change and is supported by other paleoecological data from the southern Canadian Cordillera and adjacent northwestern United States. A generally warm climate may have persisted until about 5-6 ka, followed by late Holocene cooling.

  7. Diagnosing peak-discharge power laws observed in rainfall runoff events in Goodwin Creek experimental watershed

    Furey, Peter R.; Gupta, Vijay K.


    Observations from the Goodwin Creek experimental watershed (GCEW), Mississippi show that peak-discharge Q( A) and drainage area A are related, on average, by a power law or scaling relationship, Q( A) = αAθ, during single rainfall-runoff events. Observations also show that α and θ change between events, and, based on a recent analysis of 148 events, observations indicate that α and θ change because of corresponding changes in the depth, duration, and spatial variability of excess-rainfall. To improve our physical understanding of these observations, a 5-step framework for diagnosing observed power laws, or other space-time patterns in a basin, is articulated and applied to GCEW using a combination of analysis and numerical simulations. Diagnostic results indicate how the power laws are connected to physical conditions and processes. Derived expressions for α and θ show that if excess-rainfall depth is fixed then there is a decreasing concave relationship between α and excess-rainfall duration, and an increasing and slightly convex relationship between θ and excess rainfall duration. These trends are consistent with observations only when hillslope velocity vh is given a physically realistic value near 0.1 m/s. If vh ≫ 0.1 m/s, then the predicted trends deviate from observed trends. Results also suggest that trends in α and θ can be impacted by the dependence of vh and link velocity vl on excess-rainfall rate.

  8. Estimations of One Repetition Maximum and Isometric Peak Torque in Knee Extension Based on the Relationship Between Force and Velocity.

    Sugiura, Yoshito; Hatanaka, Yasuhiko; Arai, Tomoaki; Sakurai, Hiroaki; Kanada, Yoshikiyo


    We aimed to investigate whether a linear regression formula based on the relationship between joint torque and angular velocity measured using a high-speed video camera and image measurement software is effective for estimating 1 repetition maximum (1RM) and isometric peak torque in knee extension. Subjects comprised 20 healthy men (mean ± SD; age, 27.4 ± 4.9 years; height, 170.3 ± 4.4 cm; and body weight, 66.1 ± 10.9 kg). The exercise load ranged from 40% to 150% 1RM. Peak angular velocity (PAV) and peak torque were used to estimate 1RM and isometric peak torque. To elucidate the relationship between force and velocity in knee extension, the relationship between the relative proportion of 1RM (% 1RM) and PAV was examined using simple regression analysis. The concordance rate between the estimated value and actual measurement of 1RM and isometric peak torque was examined using intraclass correlation coefficients (ICCs). Reliability of the regression line of PAV and % 1RM was 0.95. The concordance rate between the actual measurement and estimated value of 1RM resulted in an ICC(2,1) of 0.93 and that of isometric peak torque had an ICC(2,1) of 0.87 and 0.86 for 6 and 3 levels of load, respectively. Our method for estimating 1RM was effective for decreasing the measurement time and reducing patients' burden. Additionally, isometric peak torque can be estimated using 3 levels of load, as we obtained the same results as those reported previously. We plan to expand the range of subjects and examine the generalizability of our results.

  9. Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment.

    Kalantari, Zahra; Lyon, Steve W; Folkeson, Lennart; French, Helen K; Stolte, Jannes; Jansson, Per-Erik; Sassner, Mona


    A physically-based, distributed hydrological model (MIKE SHE) was used to quantify overland runoff in response to four extreme rain events and four types of simulated land use measure in a catchment in Norway. The current land use in the catchment comprises arable lands, forest, urban areas and a stream that passes under a motorway at the catchment outlet. This model simulation study demonstrates how the composition and configuration of land use measures affect discharge at the catchment outlet differently in response to storms of different sizes. For example, clear-cutting on 30% of the catchment area produced a 60% increase in peak discharge and a 10% increase in total runoff resulting from a 50-year storm event in summer, but the effects on peak discharge were less pronounced during smaller storms. Reforestation of 60% of the catchment area was the most effective measure in reducing peak flows for smaller (2-, 5- and 10-year) storms. Introducing grassed waterways reduced water velocity in the stream and resulted in a 28% reduction in peak flow at the catchment outlet for the 50-year storm event. Overall, the results indicate that the specific effect of land use measures on catchment discharge depends on their spatial distribution and on the size and timing of storm events.

  10. Analyzing the relationship between peak runoff discharge and land-use pattern – a spatial optimization approach

    I.-Y. Yeo


    Full Text Available This paper investigates the impacts of land-use patterns on watershed hydrology and characterizes the nature of this relationship. The approach combines a spatially explicit, process-based hydrological simulation model, a land-use optimization model, the Integrated Hydrological and Land-Use Optimization (IHLUO model, and an extensive GIS database. Numerical experiments are conducted to assess changes in the peak discharge rate under various spatial land-use arrangements, and to delineate the optimal land distribution that minimizes the peak discharge. The area of application is a catchment of the Old Woman Creek watershed in the southwestern coastal area of Lake Erie, OH. The global optimality of the delineated land pattern at a 30-m resolution is evaluated using a combinatorial statistical method. A large number of solutions has been generated from clearly different initial solutions, and these solutions turn out to be very close to each other, strongly supporting the case for a convex relationship between peak discharge and land-use pattern. The Weibull distribution is used to generate a point estimate of the global optimal value and its confidence interval. The peak discharge function is further examined in light of the underlying physics used in the simulation model.

  11. "A not completely satisfactory attempt": peak discharges and rainfall-runoff relations for Javanese rivers between 1880 and 1940

    Ertsen, M.W.


    In the early 19th century, the Dutch colonial power started to build irrigation works. A main problem for Dutch irrigation engineers on Java was how to ensure that the structures they built remained intact. The peak discharge regime of a river was an issue closely related to dam safety. Modifying th

  12. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Wickert, Andrew D.


    Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins - the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  13. Comparative Study of Peak Expiratory Flow Rate and Maximum Voluntary Ventilation Between Smokers and Non-Smokers

    Karia Ritesh M


    Full Text Available Objective: Objectives of this study is to study effect of smoking on Peak Expiratory Flow Rate and Maximum Voluntary Ventilation in apparently healthy tobacco smokers and non-smokers and to compare the result of both the studies to assess the effects of smoking Method: The present study was carried out by computerized software of Pulmonary Function Test named ‘Spiro Excel’ on 50 non-smokers and 50 smokers. Smokers are divided in three gropus. Full series of test take 4 to 5 minutes. Tests were compared in the both smokers and non-smokers group by the ‘unpaired t test’. Statistical significance was indicated by ‘p’ value < 0.05. Results: From the result it is found that actual value of Peak Expiratory Flow Rate and Maximum Voluntary Ventilation are significantly lower in all smokers group than non-smokers. The difference of actual mean value is increases as the degree of smoking increases. [National J of Med Res 2012; 2(2.000: 191-193

  14. Application of time-lagged ensemble approach with auto-regressive processors to reduce uncertainties in peak discharge and timing

    Kyung-Jin Kim


    An accuracy evaluation using observations from 2002 to 2009 found that the time-lagged ensemble approach alone produced significant bias but the AR processor reduced the relative error percentage of the peak discharge from 60% to 10% and also decreased the peak timing error from more than 10 h to less than 3 h, on average. The proposed methodology is easy and inexpensive to implement with the existing products and models and thus can be immediately activated until a new product for forecasted meteorological ensembles is officially issued in Korea.

  15. Assessing the variability of glacier lake bathymetries and potential peak discharge based on large-scale measurements in the Cordillera Blanca, Peru

    Cochachin, Alejo; Huggel, Christian; Salazar, Cesar; Haeberli, Wilfried; Frey, Holger


    Over timescales of hundreds to thousands of years ice masses in mountains produced erosion in bedrock and subglacial sediment, including the formation of overdeepenings and large moraine dams that now serve as basins for glacial lakes. Satellite based studies found a total of 8355 glacial lakes in Peru, whereof 830 lakes were observed in the Cordillera Blanca. Some of them have caused major disasters due to glacial lake outburst floods in the past decades. On the other hand, in view of shrinking glaciers, changing water resources, and formation of new lakes, glacial lakes could have a function as water reservoirs in the future. Here we present unprecedented bathymetric studies of 124 glacial lakes in the Cordillera Blanca, Huallanca, Huayhuash and Raura in the regions of Ancash, Huanuco and Lima. Measurements were carried out using a boat equipped with GPS, a total station and an echo sounder to measure the depth of the lakes. Autocad Civil 3D Land and ArcGIS were used to process the data and generate digital topographies of the lake bathymetries, and analyze parameters such as lake area, length and width, and depth and volume. Based on that, we calculated empirical equations for mean depth as related to (1) area, (2) maximum length, and (3) maximum width. We then applied these three equations to all 830 glacial lakes of the Cordillera Blanca to estimate their volumes. Eventually we used three relations from the literature to assess the peak discharge of potential lake outburst floods, based on lake volumes, resulting in 3 x 3 peak discharge estimates. In terms of lake topography and geomorphology results indicate that the maximum depth is located in the center part for bedrock lakes, and in the back part for lakes in moraine material. Best correlations are found for mean depth and maximum width, however, all three empirical relations show a large spread, reflecting the wide range of natural lake bathymetries. Volumes of the 124 lakes with bathymetries amount to 0

  16. Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge.

    Michel, K; Michaelis, M; Mazzuoli, G; Mueller, K; Vanden Berghe, P; Schemann, M


    Slow changes in [Ca(2+)](i) reflect increased neuronal activity. Our study demonstrates that single-trial fast [Ca(2+)](i) imaging (≥200 Hz sampling rate) revealed peaks each of which are associated with single spike discharge recorded by consecutive voltage-sensitive dye (VSD) imaging in enteric neurones and nerve fibres. Fast [Ca(2+)](i) imaging also revealed subthreshold fast excitatory postsynaptic potentials. Nicotine-evoked [Ca(2+)](i) peaks were reduced by -conotoxin and blocked by ruthenium red or tetrodotoxin. Fast [Ca(2+)](i) imaging can be used to directly record single action potentials in enteric neurones. [Ca(2+)](i) peaks required opening of voltage-gated sodium and calcium channels as well as Ca(2+) release from intracellular stores.

  17. Flood modeling using WMS model for determining peak flood discharge in southwest Iran case study: Simili basin in Khuzestan Province

    Hoseini, Yaser; Azari, Arash; Pilpayeh, Alireza


    It is of high importance to determine the flood discharge of different basins, in studies on water resources. However, it is necessary to use new models to determine flood hydrograph parameters. Therefore, it will be beneficial to conduct studies to calibrate the models, keeping in mind the local conditions of different regions. Therefore, this study was carried out to determine the peak flood discharge of a basin located in Southwest Iran, using the TR-20, TR55, and HEC-1 methods of the WMS model (watershed modeling system). The obtained results were compared with empirical values, as well as those of the soil conservation service (SCS) approach. Based on the results obtained, the TR55 method of the WMS model recorded the highest agreement with empirical values in Southwest Iran.

  18. "A not completely satisfactory attempt" - peak discharges and rainfall-runoff relations for Javanese rivers between 1880 and 1940

    Ertsen, M. W.


    In the early 19th century, the Dutch colonial power started to build irrigation works. A main problem for Dutch irrigation engineers on Java was how to ensure that the structures they built remained intact. The peak discharge regime of a river was an issue closely related to dam safety. Modifying the approach of Swiss engineer Lauterburg (1877), Dutch irrigation engineer Melchior developed a methodology to determine design peak flows of Javanese rivers. The Melchior methodology has been the standard method throughout the colonial period, despite sometimes severe criticisms on its appropriateness. In independent Indonesia, the approach developed by Melchior continues to be applied. This paper discusses and explains the endurance of the method developed by Melchior. The focus is on the scientific interaction between different participants. The paper shows how participants from these circles debated and which arguments they exchanged.

  19. Distribution and air–sea exchange of nitrous oxide in the coastal Bay of Bengal during peak discharge period (southwest monsoon)

    Rao, G.D.; Rao, V.D.; Sarma, V.V.S.S.

    In order to examine the impact of river discharge from the Indian subcontinent on the concentration and air–sea exchange of nitrous oxide (N sub(2)O) a study was conducted during peak discharge period in the coastal Bay of Bengal, The study revealed...

  20. A 3-10 GHz IR-UWB CMOS Pulse Generator With 6-mW Peak Power Dissipation Using A Slow-Charge Fast-Discharge Technique

    Shen, Ming; Yin, Ying-Zheng; Jiang, Hao


    This letter proposes a UWB pulse generator topology featuring low peak power dissipation for applications with stringent instantaneous power requirements. This is accomplished by employing a new slow-charge fast-discharge approach to extend the time duration of the generator's peak current so...

  1. 1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas

    Kawanaka, J.; Shirai, T.; Kubodera, S.; Sasaki, W.


    A 1.5 kW high-peak-power discharge lamp with short emission duration of 140 ns has been developed in the vacuum ultraviolet spectral region. Our numerical calculation ensured that the peak emission at 147 nm was due to singlet excimers (1Σ), which were mainly produced via electron-collisional mixing of triplet excimers (3Σ).


    Simona-Elena MIHĂESCU


    Full Text Available The 2003 -2007 minimum, maximum and medium discharge analysis of the Latoriţa-Lotru water system From a functional point of view, the Lotru and Latoriţa make up a water system by the junction of the two high hydro energetic potential water flows. The Lotru springs from the Parâng Massif with a spring quota of over 1900m and an outfall quota of 298m, which makes for an altitude difference of 1602m; it is the affluent of the Olt River, has a course length of 76 km and a minimum discharge of 20m3/s. Its reception hollow is of 1024 km2. Latoriţa springs from the Latoriţa Mountains, it is a small river with an average discharge of 2.7m3/s and is an affluent of the Lotru. Together, the two make up a high hydro energetic potential system, valorized in the system of lakes which serve the Ciunget Hydro-Electric Power Plant. Galbenu and Petrimanu are two reservoirs built on the Latoriţa River and on the Lotru, we have Vidra reservoir, Balindru, Mălaia and Brădişor. The discharge analysis of these rivers is very important in view of a good risk management, especially consisting in floods and high level waters, even in the case of artificial water flows such as the Latoriţa-Lotru water system.

  3. Verification of maximum radial power peaking factor due to insertion of FPM-LEU target in the core of RSG-GAS reactor

    Setyawan, Daddy; Rohman, Budi


    Verification of Maximum Radial Power Peaking Factor due to insertion of FPM-LEU target in the core of RSG-GAS Reactor. Radial Power Peaking Factor in RSG-GAS Reactor is a very important parameter for the safety of RSG-GAS reactor during operation. Data of radial power peaking factor due to the insertion of Fission Product Molybdenum with Low Enriched Uranium (FPM-LEU) was reported by PRSG to BAPETEN through the Safety Analysis Report RSG-GAS for FPM-LEU target irradiation. In order to support the evaluation of the Safety Analysis Report incorporated in the submission, the assessment unit of BAPETEN is carrying out independent assessment in order to verify safety related parameters in the SAR including neutronic aspect. The work includes verification to the maximum radial power peaking factor change due to the insertion of FPM-LEU target in RSG-GAS Reactor by computational method using MCNP5and ORIGEN2. From the results of calculations, the new maximum value of the radial power peaking factor due to the insertion of FPM-LEU target is 1.27. The results of calculations in this study showed a smaller value than 1.4 the limit allowed in the SAR.

  4. Verification of maximum radial power peaking factor due to insertion of FPM-LEU target in the core of RSG-GAS reactor

    Setyawan, Daddy, E-mail: [Center for Assessment of Regulatory System and Technology for Nuclear Installations and Materials, Indonesian Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada No. 8 Jakarta 10120 (Indonesia); Rohman, Budi [Licensing Directorate for Nuclear Installations and Materials, Indonesian Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada No. 8 Jakarta 10120 (Indonesia)


    Verification of Maximum Radial Power Peaking Factor due to insertion of FPM-LEU target in the core of RSG-GAS Reactor. Radial Power Peaking Factor in RSG-GAS Reactor is a very important parameter for the safety of RSG-GAS reactor during operation. Data of radial power peaking factor due to the insertion of Fission Product Molybdenum with Low Enriched Uranium (FPM-LEU) was reported by PRSG to BAPETEN through the Safety Analysis Report RSG-GAS for FPM-LEU target irradiation. In order to support the evaluation of the Safety Analysis Report incorporated in the submission, the assessment unit of BAPETEN is carrying out independent assessment in order to verify safety related parameters in the SAR including neutronic aspect. The work includes verification to the maximum radial power peaking factor change due to the insertion of FPM-LEU target in RSG-GAS Reactor by computational method using MCNP5and ORIGEN2. From the results of calculations, the new maximum value of the radial power peaking factor due to the insertion of FPM-LEU target is 1.27. The results of calculations in this study showed a smaller value than 1.4 the limit allowed in the SAR.

  5. Observations on the activation energy determination through the peak temperature at the maximum in thermoluminescence (Tl) experiments

    Furetta, C.; Azorin, J.; Rivera, T. [Physics Department, UAM-I, 09340 Mexico D.F. (Mexico)


    The aim of this work is to give, for practical purposes in routine works, an easy way for obtaining approximated values of E which can be useful for testing, in a very quick way, the stability of the trap levels corresponding to the dosimetric peak in thermoluminescent materials used for environmental, personnel and clinical dosimetry applications. Furthermore, the E values obtained with this method can be used as input data for deconvolution procedure. (Author)

  6. Joint modeling of flood peak discharges, volume and duration: a case study of the Danube River in Bratislava

    Bačová Mitková Veronika


    Full Text Available The study is focused on the analysis and statistical evaluation of the joint probability of the occurrence of hydrological variables such as peak discharge (Q, volume (V and duration (t. In our case study, we focus on the bivariate statistical analysis of these hydrological variables of the Danube River in Bratislava gauging station, during the period of 1876-2013. The study presents the methodology of the bivariate statistical analysis, choice of appropriate marginal distributions and appropriate copula functions in representing the joint distribution. Finally, the joint return periods and conditional return periods for some hydrological pairs (Q-V, V-t, Q-t were calculated. The approach using copulas can reproduce a wide range of correlation (nonlinear frequently observed in hydrology. Results of this study provide comprehensive information about flood where a devastating effect may be increased in the case where its three basic components (or at least two of them Q, V and t have the same significance.

  7. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    Alberts, D. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Horvath, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nelis, Th. [LAPLACE, Universite Paul Sabatier, 118 rte de Narbonne, Bat3R2, 31062 Toulouse Cedex (France); CU Jean Francois Champollion, Place de Verdun 81012 Albi Cedex 9 (France); Pereiro, R. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Bordel, N. [Department of Physics, Faculty of Science, University of Oviedo, Calvo Sotelo, 33007 Oviedo (Spain); Michler, J. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Sanz-Medel, A., E-mail: asm@uniovi.e [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)


    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 {mu}s. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 {mu}s, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  8. Determining the Probability Distribution of Hillslope Peak Discharge Using an Analytical Solution of Kinematic Wave Time of Concentration

    Baiamonte, Giorgio; Singh, Vijay P.


    Hillslope hydrology is fundamental for understanding the flood phenomenon and for evaluating the time of concentration. The latter is a key variable for predicting peak discharge at the basin outlet and for designing urban infrastructure facilities. There have been a multitude of studies on the hydrologic response at the hillslope scale, and the time of concentration has been derived for different approaches. One approach for deriving hillslope response utilizes, in a distributed form, the differential equations of unsteady overland flow, specifically developed at the hydrodynamic scale, in order to account for the spatial heterogeneity of soil characteristics, topography, roughness and vegetation cover on the hillslope. Therefore, this approach seemingly mimics the complete hydraulics of flow. However, the very complex patterns generated by spatial heterogeneity can cause considerable error in the prediction even by very sophisticated models. Another approach that directly operates at the hillslope scale is by averaging over the hillslope the soil hydraulics, the topography, and the roughness characteristics. A physically-based lumped model of hillslope response was first proposed by Horton (1938), under the assumption that the flow regime is intermediate between laminar and turbulent regimes (transitional flow regime), by applying the mass conservation equation to the hillslope as a whole and by using the kinematic wave assumption for the friction slope (Singh, 1976, 1996). Robinson et al. (1995) and Robinson and Sivapalan (1996) generalized Horton's approach, suggesting an approximate solution of the overland flow equation that is valid for all flow regimes. Agnese et al. (2001) derived an analytical solution of a nonlinear storage model of hillslope response that is valid for all flow regimes, and the associated time of concentration. Recently, the well-known kinematic wave equation for computing the time of concentration for impervious surfaces has been

  9. Peak discharges in steep mountain catchments in relation to rainfall variability, vegetation cover and geomorphology of the Rift Valley Escarpment of Northern Ethiopia

    Gebreyohannes, Tesfaalem; Frankl, Amaury; Haile, Mitiku; Abraha, Amanuel; Monsieurs, Elise; Nyssen, Jan


    The hydrological characteristics of steep mountain streams are often considered to be mainly influenced by rainfall distribution and topography. In this study, with the objective of analyzing the runoff response of mountain catchments, a total of 340 peak stage discharges were recorded in three rainy seasons (2012-2014) in 11 sloping (27-65%) mountain catchments (0.4 - 25 km²) of the marginal western Rift Valley escarpment of Northern Ethiopia. Daily rainfall data were collected using 7 rain gauges installed at different altitudes (1623 - 2851 m a.s.l) in and nearby the catchments, and used to calculate weighted average daily rain depths over the catchments. Event peak discharges were calculated from daily measurements by 11 crest stage gauges using the Manning's equation. Percentages of land use and cover classes were detected from high resolution (0.6 m) Google Earth imagery (February 1, 2014). Morphometric characteristics of the catchments were computed from ASTER digital elevation model and topographic maps. Correlation analysis between daily rainfall and peak discharge showed direct relationship (R² = 0.5-0.94, Pfloods in mountain catchments is not only influenced by the morphometric characteristics of the catchments and by rainfall, but more importantly even by vegetation cover (forest and grasses).

  10. Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration

    Ahmad, S.; Lajis, M. A.


    This experimental work is an attempt to investigate the performance of Copper electrode when EDM of Nickel Based Super Alloy, Inconel 718 is at higher peak current and pulse duration. Peak current, Ip and pulse duration (pulse on-time), ton are selected as the most important electrical pulse parameters. In addition, their influence on material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) are experimentally investigated. The ranges of 10 mm diameter of Copper electrode are used to EDM of Inconel 718. After the experiments, MRR, EWR, and Ra of the machined surfaces need to be measured in order to evaluate the performance of the EDM process. In order to obtain high MRR, higher peak current in range of 20A to 40A and pulse duration in range of 200μs to 400μs were used. Experimental results have shown that machining at a highest peak current used of 40A and the lowest pulse duration of 200μs used for the experiment yields the highest material removal rate (MRR) with value 34.94 mm3/min, whereas machining at a peak current of 20A and pulse duration of 400μs yields the lowest electrode wear rate (EWR) with value -0.0101 mm3/min. The lowest surface roughness (Ra) is 8.53 μm achieved at a lowest peak current used of 20A and pulse duration of 200μs.

  11. Peak Discharge, Flood Profile, Flood Inundation, and Debris Movement Accompanying the Failure of the Upper Reservoir at the Taum Sauk Pump Storage Facility near Lesterville, Missouri

    Rydlund, Jr., Paul H.


    The Taum Sauk pump-storage hydroelectric power plant located in Reynolds County, Missouri, uses turbines that operate as pumps and hydraulic head generated by discharging water from an upper to a lower reservoir to produce electricity. A 55-acre upper reservoir with a 1.5- billion gallon capacity was built on top of Proffit Mountain, approximately 760 feet above the floodplain of the East Fork Black River. At approximately 5:16 am on December 14, 2005, a 680-foot wide section of the upper reservoir embankment failed suddenly, sending water rushing down the western side of Proffit Mountain and emptying into the floodplain of East Fork Black River. Flood waters from the upper reservoir flowed downstream through Johnson's Shut-Ins State Park and into the lower reservoir of the East Fork Black River. Floods such as this present unique challenges and opportunities to analyze and document peak-flow characteristics, flood profiles, inundation extents, and debris movement. On December 16, 2005, Light Detection and Ranging (LiDAR) data were collected and used to support hydraulic analyses, forensic failure analyses, damage extent, and mitigation of future disasters. To evaluate the impact of sedimentation in the lower reservoir, a bathymetric survey conducted on December 22 and 23, 2005, was compared to a previous bathymetric survey conducted in April, 2005. Survey results indicated the maximum reservoir capacity difference of 147 acre-feet existed at a pool elevation of 730 feet. Peak discharge estimates of 289,000 cubic feet per second along Proffit Mountain and 95,000 cubic feet per second along the East Fork Black River were determined through indirect measurement techniques. The magnitude of the embankment failure flood along the East Fork Black River was approximately 4 times greater than the 100-year flood frequency estimate of 21,900 cubic feet per second, and approximately 3 times greater than the 500-year flood frequency estimate of 30,500 cubic feet per second

  12. Maximum acceptable weight of lift reflects peak lumbosacral extension moments in a functional capacity evaluation test using free style, stoop and squat lifting.

    Kuijer, P P F M; van Oostrom, S H; Duijzer, K; van Dieën, J H


    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques--free style, stoop and squat lifting from knee to waist level--using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic parameters increased with the load mass lifted, and whether the magnitudes of the kinetic parameters were consistent across techniques when lifting MAWL. MAWL was significantly different between techniques (p = 0.03). The peak lumbosacral extension moment met both criteria: it had the highest association with the load masses lifted (r > 0.9) and was most consistent between the three techniques when lifting MAWL (ICC = 0.87). In conclusion, MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. Tests of maximum acceptable weight of lift (MAWL) from knee to waist height are used to assess work capacity of individuals with low-back disorders. This article shows that the MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. This suggests that standardisation of lifting technique used in tests of the MAWL would be indicated if the aim is to assess the capacity of the low back.

  13. High-pressure dielectric barrier discharge Xenon lamps generating short pulses of high-peak-power VUV radiation (172nm) with high pulse-to-pulse reproducibility.

    Carman, Robert; Ward, Barry; Mildren, Richard; Kane, Deborah


    Dielectric barrier discharges (DBDs) are used to efficiently generate radiation in the ultraviolet and vacuum-ultraviolet spectral regions (88nm-350nm) by forming rare-gas and rare-gas halide excimers in a transient plasma. Usually, DBD lamps generate the light output quasi-continuously or in bursts with a high degree of stochastic or random variability in the instantaneous UV/VUV intensity. However, regular pulses of high-peak-power UV/VUV, with high pulse-to-pulse reproducibility, are of interest for applications in biology, surface treatment and cleaning, and time-resolved fluorescence spectroscopy. Such pulses can be generated from spatially homogeneous plasmas in a Xe DBD when the discharge is driven by uni-polar voltage pulses of short duration ( 100ns)^1. In the present study, we will report Xe DBD lamp performance and VUV output pulse characteristics for gas pressures up to 2.5bar and excitation conditions tailored for high-peak-power output. The experimental results will be compared to theoretical results from a detailed 1-D computer model of the spatio-temporal evolution of the plasma kinetics and Xe species population densities. ^1R.P.Mildren and R.J.Carman, J.Phys.D, 34, L1-L6, (2001)

  14. Estimating the magnitude of annual peak discharges with recurrence intervals between 1.1 and 3.0 years for rural, unregulated streams in West Virginia

    Wiley, Jeffrey B.; Atkins, John T.; Newell, Dawn A.


    Multiple and simple least-squares regression models for the log10-transformed 1.5- and 2-year recurrence intervals of peak discharges with independent variables describing the basin characteristics (log10-transformed and untransformed) for 236 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions in West Virginia designated as East, North, and South. Regional equations for the 1.1-, 1.2-, 1.3-, 1.4-, 1.5-, 1.6-, 1.7-, 1.8-, 1.9-, 2.0-, 2.5-, and 3-year recurrence intervals of peak discharges were determined by generalized least-squares regression. Log10-transformed drainage area was the most significant independent variable for all regions. Equations developed in this study are applicable only to rural, unregulated streams within the boundaries of West Virginia. The accuracies of estimating equations are quantified by measuring the average prediction error (from 27.4 to 52.4 percent) and equivalent years of record (from 1.1 to 3.4 years).

  15. Reconstruction of peak water levels, peak discharges and long-term occurrence of extreme- as well as smaller pre-instrumental flood events of river Aare, Limmat, Reuss, Rhine and Saane in Switzerland. Part I

    Wetter, Oliver; Tuttenuj, Daniel


    Part I: Dr. Oliver Wetter. (Oeschger Centre for Climate Change Research, University of Bern, Switzerland) Part II: PhD student Daniel Tuttenuj (Oeschger Centre of Climate Change Research, University of Bern, Switzerland) The methodology developed by Wetter et al. (2011) combines different documentary and instrumental sources, retaining relevant information for the reconstruction of extreme pre-instrumental flood events. These include hydrological measurements (gauges), historic river profiles (cross and longitudinal profiles), flood marks, historic city maps, documentary flood evidence (reports in chronicles and newspapers) as well as paintings and drawings. It has been shown that extreme river Rhine flood events of the pre-instrumental period can be reconstructed in terms of peak discharges for the last 750 years by applying this methodology to the site of Basel. Pfister & Wetter (2011) furthermore demonstrated that this methodology is also principally transferable to other locations and rivers. Institutional documentary evidence has not been systematically analysed in the context of historical hydrology in Switzerland so far. The term institutional documentary evidence generally outlines sources that were produced by governments or other (public) bodies including the church, hospitals, and the office of the bridge master. Institutional bodies were typically not directly interested in describing climate or hydrological events but they were obliged to document their activities, especially if they generated financial costs (bookkeeping), and in doing so they often indirectly recorded climatologic or hydrological events. The books of weekly expenditures of Basel ("Wochenausgabenbücher der Stadt Basel") were first analysed by Fouquet (1999). He found recurring records of wage expenditures for a squad of craftsmen that was called up onto the bridge with the task of preventing the bridge from being damaged by fishing out drifting logs from the flood waters. Fouquet

  16. Reconstruction of peak water levels, peak discharges and long-term occurrence of extreme- as well as smaller pre-instrumental flood events of river Aare, Limmat, Reuss, Rhine and Saane in Switzerland. Part II.

    Tuttenuj, Daniel; Wetter, Oliver


    The methodology developed by Wetter et al. (2011) combines different documentary and instrumental sources, retaining relevant information for the reconstruction of extreme pre-instrumental flood events. These include hydrological measurements (gauges), historic river profiles (cross and longitudinal profiles), flood marks, historic city maps, documentary flood evidence (reports in chronicles and newspapers) as well as paintings and drawings. It has been shown that extreme river Rhine flood events of the pre-instrumental period can be reconstructed in terms of peak discharges for the last 750 years by applying this methodology to the site of Basel. Pfister & Wetter (2011) furthermore demonstrated that this methodology is also principally transferable to other locations and rivers in Switzerland. Institutional documentary evidence has not been systematically analysed in the context of historical hydrology in Switzerland so far. The term institutional documentary evidence generally outlines sources that were produced by governments or other (public) bodies including the church, hospitals, and the office of the bridge master. Institutional bodies were typically not directly interested in describing climate or hydrological events but they were obliged to document their activities, especially if they generated financial costs (bookkeeping), and in doing so they often indirectly recorded climatologic or hydrological events. The books of weekly expenditures of Basel ("Wochenausgabenbücher der Stadt Basel") were first analysed by Fouquet (1999). He found recurring records of wage expenditures for a squad of craftsmen that was called up onto the bridge with the task of preventing the bridge from being damaged by fishing out drifting logs from the flood waters. Fouquet systematically analysed the period from 1446-1542 and could prove a large number of pre-instrumental flood events of river Rhine, Birs, Birsig and Wiese in Basel. All in all the weekly led account books

  17. The effectiveness of polder systems on peak discharge capping of floods along the middle reaches of the Elbe River in Germany

    S. Huang


    Full Text Available In flood modelling, many one-dimensional (1-D hydrodynamic models are too restricted in capturing the spatial differentiation of processes within a polder or system of polders and two-dimensional (2-D models are very demanding in data requirements and computational resources. The latter is an important consideration when uncertainty analyses using the Monte Carlo techniques are to complement the modelling exercises. This paper describes the development of a quasi-2-D modeling approach, which still calculates the dynamic wave in 1-D but the discretisation of the computational units is in 2-D, allowing a better spatial representation of the flow in polders and avoiding large additional expenditure on data pre-processing and computational time. The model DYNHYD (1-D hydrodynamics from the WASP5 modeling package was used as a basis for the simulations and extended to incorporate the quasi-2-D approach. A local sensitive analysis shows the sensitivity of parameters and boundary conditions on the filling volume of polders and capping of the peak discharge in the main river system. Two flood events on the Elbe River, Germany were used to calibrate and test the model. The results show a good capping effect on the flood peak by the proposed systems. The effect of capping reduces as the flood wave propagates downstream from the polders (up to 0.5 cm of capping is lost for each additional kilometer from the polders.


    Ahmad Cahyadi


    during 1994 and 2001, and (2 determine the impact of land use changes on the size of the peak discharge occurring in the Garang watershed. The data used in this study were the 1994 Landsat TM, Landsat ETM 2001, and Citra Alos AVNIR 2008, Garang watershed soil map, slope map of Garang watershed stream network, and daily rainfall data at Ungaran Station of 1952 until 2009. It was found that developed land has been increasing more than doubled from 2001 to 2008, agricultural land increased by nearly 50% and the forest area were decreased from year to year. However, the peak discharge at the Garang watershed has not increased to the extreme though there was a slight change.

  19. Development of a contour map showing generalized skew coefficients of annual peak discharges of rural, unregulated streams in New York, excluding Long Island

    Lumia, Richard; Baevsky, Yvonne H.


    Flood-frequency relations that are developed by fitting the logarithms of annual peak discharges to a Pearson Type-III distribution are sensitive to skew coefficients. Estimates of population skew for a site are improved when computed from the weighted average of (1) the sample (station) skew, and (2) an unbiased, generalized skew estimate. A weighting technique based on the number of years of record at each of 226 sites was used to develop a contour map of unbiased, generalized skew coefficients for New York. An attempt was made to group (regionalize) the station skew coefficients into five hydrologically similar areas of New York, but the statewide version proved to be as accurate as the regionalized version and therefore was adopted as the final generalized skew-coefficient map for New York. An error analysis showed the statewide contour map to have lower MSE?s (mean square errors) than those computed from (1) the five regional skewcoefficient contour maps, (2) a previously used (1982) nationwide skew coefficient map, and (3) the weighted mean of skew coefficients for sites within each of five hydrologically uniform, but distinct areas of New York.

  20. Towards prediction of suspended sediment yield from peak discharge in small erodible mountainous catchments (0.45-22 km2) of France, Mexico and Spain

    Duvert, C.; Nord, G.; Gratiot, N.; Navratil, O.; Nadal-Romero, E.; Mathys, N.; Némery, J.; Regüés, D.; García-Ruiz, J. M.; Gallart, F.; Esteves, M.


    SummaryThe erosion and transport of fine-grained sediment in small mountainous catchments involve complex processes occurring at different scales. The suspended sediment yields (SSYs) delivered downstream are difficult to accurately measure and estimate because they result from the coupling of all these processes. Using high frequency discharge and suspended sediment data collected in eight small mountainous catchments (0.45-22 km2) from four distinct regions, we studied the relationships between event-based SSY and a set of other variables. In almost all the catchments, the event peak discharge (Qmax) proved to be the best descriptor of SSY, and the relations were approximated by single power laws of the form SSY=αQmaxβ. The β exponents ranged between 0.9 and 1.9 across the catchments, while variability in α was much higher, with coefficients ranging between 25 and 5039. The broad distribution of α was explained by a combination of site-specific physical factors, such as the percentage of degraded areas and hillslope gradient. Further analysis of the factors responsible for data dispersion in each catchment was carried out. Seasonality had a significant influence on variability; but overall, most of the scattering in the SSY-Qmax regressions was explained by the short-lasting memory effects occurring between successive events (i.e. in-channel temporary storage and remobilization of sediment; antecedent moisture conditions). The predictability of SSY-Qmax models was also assessed. Simulations of SSY per event and of annual SSY were conducted by using the computed regressions and the measured Qmax. Estimates of SSY per event were very uncertain. In contrast, annual SSY estimates based on the site-specific models were reasonably accurate in all the catchments, with interquartile ranges remaining in the ±50% error interval. The prediction quality of SSY-Qmax relations was partly attributed to the statistical compensation that likely occurred between extreme

  1. Slope-Area Computation Program Graphical User Interface 1.0—A Preprocessing and Postprocessing Tool for Estimating Peak Flood Discharge Using the Slope-Area Method

    Bradley, D. Nathan


    The slope-area method is a technique for estimating the peak discharge of a flood after the water has receded (Dalrymple and Benson, 1967). This type of discharge estimate is called an “indirect measurement” because it relies on evidence left behind by the flood, such as high-water marks (HWMs) on trees or buildings. These indicators of flood stage are combined with measurements of the cross-sectional geometry of the stream, estimates of channel roughness, and a mathematical model that balances the total energy of the flow between cross sections. This is in contrast to a “direct” measurement of discharge during the flood where cross-sectional area is measured and a current meter or acoustic equipment is used to measure the water velocity. When a direct discharge measurement cannot be made at a gage during high flows because of logistics or safety reasons, an indirect measurement of a peak discharge is useful for defining the high-flow section of the stage-discharge relation (rating curve) at the stream gage, resulting in more accurate computation of high flows. The Slope-Area Computation program (SAC; Fulford, 1994) is an implementation of the slope-area method that computes a peak-discharge estimate from inputs of water-surface slope (from surveyed HWMs), channel geometry, and estimated channel roughness. SAC is a command line program written in Fortran that reads input data from a formatted text file and prints results to another formatted text file. Preparing the input file can be time-consuming and prone to errors. This document describes the SAC graphical user interface (GUI), a crossplatform “wrapper” application that prepares the SAC input file, executes the program, and helps the user interpret the output. The SAC GUI is an update and enhancement of the slope-area method (SAM; Hortness, 2004; Berenbrock, 1996), an earlier spreadsheet tool used to aid field personnel in the completion of a slope-area measurement. The SAC GUI reads survey data

  2. Peak discharge evaluation of five exceptional winter flash floods of 2004-2008 in Central-East Sardinian karst areas and their geomorphological effectiveness (Italy)

    Cossu, Q. A.; de Waele, J.; Bodini, A.; Sanna, L.; Cabras, S.


    In five subsequent winters (2004-2008) extreme meteorological events have occurred in karst areas of Central East Sardinia, leading to flash floods in several watersheds. Codula Ilune and Flumineddu experienced the most severe flash flood in December 2004, Codula Fuili in December 2006 and Codula Sisine in December 2008. The scars of these flash floods are still well visible in the river bed morphology, caused by the huge quantities of water that have passed the river reaches during these extreme floods. Since no gauges are present in none of these watersheds, the only possible way of estimating the peak flow is a combination of geomorphological and hydraulic observations. Three different methods for the estimation of peak flow velocity have been applied in several river reaches of 4 karstic watersheds (Codula Ilune, Codula Fuili and Codula Sisine in the Gulf of Orosei and Riu Flumineddu in Supramonte), using the Manning's equation, the similar Jarrett's formula and the Costa's method (1983) that make use of the mean diameter of the biggest by the flood water transported boulders. These estimates allow to quantify the peak flow of the floods in different river reaches, and also to have an idea of where and how much water penetrates into the karst aquifer, thus feeding the underground karst river network. Based on measurements from raingauges close to the study area, a statistical analysis of the rainfalls that have caused these flash floods has been also carried out. Total volume of water has been estimated for these four watersheds in the 5 events.

  3. Peakfitter — an integrated Excel-based Visual Basic program for processing multiple skewed and shifting Gaussian-like spectral peaks simultaneously: application to radio frequency glow discharge ion trap mass spectrometry

    Eanes, Ritchie C.; Marcus, R. Kenneth


    This article is an electronic publication in Spectrochimica Acta Electronica (SAE), a section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by an electronic archive, stored on the SAE homepage at ( The archive contains program and data files. The main article discusses the scientific spectroscopic and instrumental aspects of the subject and explains the purpose of the program and data files. The work deals with a Microsoft Excel Visual Basic program, Peakfitter, which can process multiple Gaussian-shaped spectral peaks quickly and easily. The program employs Microsoft Excel Solver to process any Gaussian-like spectra that can be opened in Microsoft Excel 97. Up to three peaks in one to 225 spectra, each containing up to 2000 data points can be processed per data file to give background corrected peak areas for both raw data and its associated fit data as calculated by the trapezoidal method or by simple successive addition of channel intensities across each peak. Concurrently output also includes fit peak heights for Gaussian-shaped spectral peaks. Use of other statistical distributions such as the Lorentzian model requires only slight modification to a template file. Hence, Peakfitter was actually written as two application programs, 'Gaussfitter' and 'Lorenfitter' to accommodate spectra of Gaussian or Lorentzian character, respectively. Written initially to process data from a radio frequency glow discharge ion trap mass spectrometer (rf-GD/ITMS), the program is useful for processing sequentially acquired spectra, which have a limited number of data points across each peak. The user may examine and manipulate program variables in cases where the raw data is skewed with respect to the fit data. An assessment of Peakfitter is given using rf-GD/ITMS elemental analysis and ion-molecule reaction data. Peakfitter's (i.e. 'Gaussfitter's) utility in processing rf-GD/ITMS spectra is characterized by a slight

  4. PeakWorks


    The PeakWorks software is designed to assist in the quantitative analysis of atom probe tomography (APT) generated mass spectra. Specifically, through an interactive user interface, mass peaks can be identified automatically (defined by a threshold) and/or identified manually. The software then provides a means to assign specific elemental isotopes (including more than one) to each peak. The software also provides a means for the user to choose background subtraction of each peak based on background fitting functions, the choice of which is left to the users discretion. Peak ranging (the mass range over which peaks are integrated) is also automated allowing the user to chose a quantitative range (e.g. full-widthhalf- maximum). The software then integrates all identified peaks, providing a background-subtracted composition, which also includes the deconvolution of peaks (i.e. those peaks that happen to have overlapping isotopic masses). The software is also able to output a 'range file' that can be used in other software packages, such as within IVAS. A range file lists the peak identities, the mass range of each identified peak, and a color code for the peak. The software is also able to generate 'dummy' peak ranges within an outputted range file that can be used within IVAS to provide a means for background subtracted proximity histogram analysis.


    Ruan Fangming; Fujiwara Osamu; Gao Yougang


    Characteristic measurement of contact discharge currents are made through a hand-held metal rod from charged human body. Correlation coefficients are obtained, through Statistic Package for Social Science (SPSS), for various charge voltages, which is based on the effect test of electrode contact approach speeds on discharge current parameters of current peaks, maximum rising slope and spark lengths. Discharge parameters at charge voltage 300V are independent on approach speed. For charge voltages equal to and higher than 500V, the contact approach speed has strong positive correlation with discharge parameters of the peak current and the maximum rising slope, whereas has strong negative correlation with the spark length.

  6. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.


    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  7. Simulação do deflúvio e vazão de pico em microbacia hidrográfica com escoamento efêmero Surface runoff and peak discharge simulation in ephemeral watershed

    Carlos R. Mello


    Full Text Available A predição da resposta hidrológica em microbacias hidrográficas a partir de diferentes usos do solo é de fundamental importância para nortear ações de manejo ambiental, razão por que se objetivou, neste trabalho, desenvolver, em primeira mão, uma modelagem hidrológica para predizer o deflúvio total e a vazão de pico em uma microbacia hidrográfica experimental, de escoamento efêmero, ocupada por eucalipto e pastagem, e após esta etapa, aplicá-la a diferentes cenários de ocupação da microbacia por ambas as coberturas vegetais, estimando-se as respostas hidrológicas das situações simuladas. O monitoramento hidrológico foi realizado entre novembro/02 e abril/03, por meio de estação meteorológica e calha Parshall, conjugada a linígrafo automático. A umidade do solo foi monitorada a cada 2 dias, em 3 profundidades (20, 50 e 80 cm, em 8 pontos na área ocupada por pastagem e 4 na área com eucalipto. A modelagem mostrou-se precisa e eficaz aos objetivos propostos de predição em diferentes cenários de uso e ocupação do solo. Verificou-se que, se a microbacia for ocupada por 80% de eucalipto, haverá redução do deflúvio em 29%, constatando-se ainda, redução substancial da vazão de pico; verificou-se também que a umidade do solo é fundamental no processo, especialmente para pequenas vazões, no início e no final do período chuvoso e após veranicos e que, para vazões mais elevadas, as características da precipitação são determinantes.The prediction of hydrological responses in a microbasin from different soil uses is of fundamental importance to develop actions to minimize environmental impacts. This work aimed to develop and to apply hydrological modeling for predicting surface runoff and peak discharge in experimental tropical ephemeral watershed occupied by eucalyptus and grasses, creating different soil use scenarios. Hydrological monitoring was performed between November/2002 and April/2003, using

  8. Joint modelling of flood peaks and volumes: A copula application for the Danube River

    Papaioannou George


    Full Text Available Flood frequency analysis is usually performed as a univariate analysis of flood peaks using a suitable theoretical probability distribution of the annual maximum flood peaks or peak over threshold values. However, other flood attributes, such as flood volume and duration, are necessary for the design of hydrotechnical projects, too. In this study, the suitability of various copula families for a bivariate analysis of peak discharges and flood volumes has been tested. Streamflow data from selected gauging stations along the whole Danube River have been used. Kendall’s rank correlation coefficient (tau quantifies the dependence between flood peak discharge and flood volume settings. The methodology is applied to two different data samples: 1 annual maximum flood (AMF peaks combined with annual maximum flow volumes of fixed durations at 5, 10, 15, 20, 25, 30 and 60 days, respectively (which can be regarded as a regime analysis of the dependence between the extremes of both variables in a given year, and 2 annual maximum flood (AMF peaks with corresponding flood volumes (which is a typical choice for engineering studies. The bivariate modelling of the extracted peak discharge - flood volume couples is achieved with the use of the Ali-Mikhail-Haq (AMH, Clayton, Frank, Joe, Gumbel, Hüsler-Reiss, Galambos, Tawn, Normal, Plackett and FGM copula families. Scatterplots of the observed and simulated peak discharge - flood volume pairs and goodness-of-fit tests have been used to assess the overall applicability of the copulas as well as observing any changes in suitable models along the Danube River. The results indicate that for the second data sampling method, almost all of the considered Archimedean class copula families perform better than the other copula families selected for this study, and that for the first method, only the upper-tail-flat copulas excel (except for the AMH copula due to its inability to model stronger relationships.

  9. Role of spatial variability of rainfall intensity: improve- ment of Eagleson's classical model to explain the rela- tionship between the coefficient of variation of annual maximum discharge and catchment size

    Kuzuha, Yasuhisa; Sivapalan, Murugesu; Tomosugi, Kunio; Kishii, Tokuo; Komatsu, Yosuke


    Eagleson's classical regional flood frequency model is investigated. Our intention was not to improve the model, but to reveal previously unidentified important and dominant hydrological processes in it. The change of the coefficient of variation (CV) of annual maximum discharge with catchment area can be viewed as representing the spatial variance of floods in a homogeneous region. Several researchers have reported that the CV decreases as the catchment area increases, at least for large areas. On the other hand, Eagleson's classical studies have been known as pioneer efforts that combine the concept of similarity analysis (scaling) with the derived flood frequency approach. As we have shown, the classical model can reproduce the empirical relationship between the mean annual maximum discharge and catchment area, but it cannot reproduce the empirical decreasing CV-catchment area curve. Therefore, we postulate that previously unidentified hydrological processes would be revealed if the classical model were improved to reproduce the decreasing of CV with catchment area. First, we attempted to improve the classical model by introducing a channel network, but this was ineffective. However, the classical model was improved by introducing a two-parameter gamma distribution for rainfall intensity. What is important is not the gamma distribution itself, but those characteristics of spatial variability of rainfall intensity whose CV decreases with increasing catchment area. Introducing the variability of rainfall intensity into the hydrological simulations explains how the CV of rainfall intensity decreases with increasing catchment area. It is difficult to reflect the rainfall-runoff processes in the model while neglecting the characteristics of rainfall intensity from the viewpoint of annual flood discharge variances.

  10. A statistical model for estimation of peak flood discharge in Italian rivers; Un modello statistico per la stima indiretta delle portate di piena dei corsi d'acqua italiani

    Maione, U.; Pessarelli, N.; Tomirotti, M. [Milan Politecnico, Milan (Italy). Dipt. di Ingegneria, Idraulica, Ambientale e del Rilevamento


    In this paper a regional model for the estimation of peak flood discharges of the Italian rivers is presented. Assuming a two parameter distribution for such variable, formulas for the regional estimation of the average and standard deviation of the distribution are obtained as functions of suitable geomorphoclimatic parameters of the river basins. The regions of validity of the formulas cover a relevant part of the territory of the Italian country: Po basin, Emilia and Marches, Liguria and Tuscany, Campania, Calabria, Basilicata and Puglia. The bounds of applicability of the model are then defined, picking out the river basins which for their specificity need particular investigations. [Italian] Viene presentato un modello di stima regionale delle portate al colmo di piena per i corsi d'acqua italiani. Assumendo che la funzione di distribuzione di tale variabile sia a due parametri, vengono ricavate formule di stima regionale della media e dello scarto quadratico medio della distribuzione in funzione di opportuni indici geomorfologici dei bacini. Le regioni di validita' delle formule coprono una parte rilevante del territorio nazionale: bacino del Po, Umbria, Marche, Liguria, Toscana, Emilia, Basilicata, Campania, Calabria, Puglia. Vengono poi discussi i limiti di applicabilita' del modello, individuando le caratteristiche dei bacini che per la loro specificita' necessitano di indagini particolari.

  11. Early Stage of Pulsed Discharge in Water

    卢新培; 潘垣; 刘克富; 刘明海; 张寒虹


    The bubble radius at the early stage of discharge in water is investigated using high-speed photography. Some simulation results on the bubble radius are presented, which are in agreement with the experimental results, with a maximum difference of about 10%. The reasons why the peak pressure of the first shock wave is only related to the energy released in the bubble during the first half period are addressed. The energy released in the bubble after the first half period increases the bubble pulsation period, but it produces no more than 10% under the peak pressure of the second shock wave.

  12. Excimer emission from cathode boundary layer discharges

    Moselhy, Mohamed; Schoenbach, Karl H.


    The excimer emission from direct current glow discharges between a planar cathode and a ring-shaped anode of 0.75 and 1.5 mm diameter, respectively, separated by a gap of 250 μm, was studied in xenon and argon in a pressure range from 75 to 760 Torr. The thickness of the "cathode boundary layer" plasma, in the 100 μm range, and a discharge sustaining voltage of approximately 200 V, indicates that the discharge is restricted to the cathode fall and the negative glow. The radiant excimer emittance at 172 nm increases with pressure and reaches a value of 4 W/cm2 for atmospheric pressure operation in xenon. The maximum internal efficiency, however, decreases with pressure having highest values of 5% for 75 Torr operation. When the discharge current is reduced below a critical value, the discharge in xenon changes from an abnormal glow into a mode showing self-organization of the plasma. Also, the excimer spectrum changes from one with about equal contributions from the first and second continuum to one that is dominated by the second continuum emission. The xenon excimer emission intensity peaks at this discharge mode transition. In the case of argon, self-organization of the plasma was not seen, but the emission of the excimer radiation (128 nm) again shows a maximum at the transition from abnormal to normal glow. As was observed with xenon, the radiant emittance of argon increases with pressure, and the efficiency decreases. The maximum radiant emittance is 1.6 W/cm2 for argon at 600 Torr. The maximum internal efficiency is 2.5% at 200 Torr. The positive slope of the current-voltage characteristics at maximum excimer emission in both cases indicates the possibility of generating intense, large area, flat excimer lamps.

  13. Modelo de Transformador de Distribución Trifásico para Estudios de Máximos de Tensión (Peaks Ocasionados por Descargas Atmosféricas Model of a Three-Phase Transformer for Studies of Voltage Surges (Peaks due to Lighting Discharges

    A.G Kanashiro


    Full Text Available Este trabajo se presenta una metodología para modelar transformadores de distribución trifásico para el estudio de los máximos (peaks de tensión transferidos al secundario, en el caso de descargas atmosféricas directas o indirectas. La validación del modelo fue realizada a través de comparaciones entre simulaciones computacionales y resultados de ensayos obtenidos en el laboratorio. Los resultados mostraron que las tensiones transferidas presentadas por el modelo y por el transformador son mucho más próximas cuando se consideran los impulsos de tensión con formas de onda normalizada (1.2/40m s y típicas de tensiones inducidas. El modelo es simple y representa razonablemente bien el transformador, permitiendo el análisis de las tensiones transferidas en las redes secundarias.This paper presents a methodology for modeling three-phase distribution transformers for the analysis of the voltage surges transferred to the secondary networks when direct or indirect lightning discharges occur. The validation of the model was reached through comparisons between computer simulations and results of tests performed in the laboratory. The results showed that the voltages transferred presented by the model and by the transformer are quite similar when the voltage impulses with both standard (1.2/50m s and typical waveforms of induced voltages are considered. The model is simple and represents the transformer reasonably well, permitting the analysis of the voltages transferred in the secondary networks.

  14. Pancreatitis - discharge

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  15. Stereotactic radiosurgery - discharge

    Gamma knife - discharge; Cyberknife - discharge; Stereotactic radiotherapy - discharge; Fractionated stereotactic radiotherapy - discharge; Cyclotrons - discharge; Linear accelerator - discharge; Lineacs - ...

  16. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    Yang, Aijun; Wang, Xiaohua, E-mail:, E-mail:; Liu, Dingxin; Rong, Mingzhe, E-mail:, E-mail: [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Kong, Michael G. [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)


    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  17. Maximum Fidelity

    Kinkhabwala, Ali


    The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...

  18. Providing peak river flow statistics and forecasting in the Niger River basin

    Andersson, Jafet C. M.; Ali, Abdou; Arheimer, Berit; Gustafsson, David; Minoungou, Bernard


    Flooding is a growing concern in West Africa. Improved quantification of discharge extremes and associated uncertainties is needed to improve infrastructure design, and operational forecasting is needed to provide timely warnings. In this study, we use discharge observations, a hydrological model (Niger-HYPE) and extreme value analysis to estimate peak river flow statistics (e.g. the discharge magnitude with a 100-year return period) across the Niger River basin. To test the model's capacity of predicting peak flows, we compared 30-year maximum discharge and peak flow statistics derived from the model vs. derived from nine observation stations. The results indicate that the model simulates peak discharge reasonably well (on average + 20%). However, the peak flow statistics have a large uncertainty range, which ought to be considered in infrastructure design. We then applied the methodology to derive basin-wide maps of peak flow statistics and their associated uncertainty. The results indicate that the method is applicable across the hydrologically active part of the river basin, and that the uncertainty varies substantially depending on location. Subsequently, we used the most recent bias-corrected climate projections to analyze potential changes in peak flow statistics in a changed climate. The results are generally ambiguous, with consistent changes only in very few areas. To test the forecasting capacity, we ran Niger-HYPE with a combination of meteorological data sets for the 2008 high-flow season and compared with observations. The results indicate reasonable forecasting capacity (on average 17% deviation), but additional years should also be evaluated. We finish by presenting a strategy and pilot project which will develop an operational flood monitoring and forecasting system based in-situ data, earth observations, modelling, and extreme statistics. In this way we aim to build capacity to ultimately improve resilience toward floods, protecting lives and

  19. Peak Oil, Peak Coal and Climate Change

    Murray, J. W.


    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  20. Amplification of postwildfire peak flow by debris

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.


    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  1. On the trail of double peak hydrographs

    Martínez-Carreras, Núria; Hissler, Christophe; Gourdol, Laurent; Klaus, Julian; Juilleret, Jérôme; François Iffly, Jean; McDonnell, Jeffrey J.; Pfister, Laurent


    A double peak hydrograph features two peaks as a response to a unique rainfall pulse. The first peak occurs at the same time or shortly after the precipitation has started and it corresponds to a fast catchment response to precipitation. The delayed peak normally starts during the recession of the first peak, when the precipitation has already ceased. Double peak hydrographs may occur for various reasons. They can occur (i) in large catchments when lag times in tributary responses are large, (ii) in urban catchments where the first peak is often caused by direct surface runoff on impervious land cover, and the delayed peak to slower subsurface flow, and (iii) in non-urban catchments, where the first and the delayed discharge peaks are explained by different runoff mechanisms (e.g. overland flow, subsurface flow and/or deep groundwater flow) that have different response times. Here we focus on the third case, as a formal description of the different hydrological mechanisms explaining these complex hydrological dynamics across catchments with diverse physiographic characteristics is still needed. Based on a review of studies documenting double peak events we have established a formal classification of catchments presenting double peak events based on their regolith structure (geological substratum and/or its weathered products). We describe the different hydrological mechanisms that trigger these complex hydrological dynamics across each catchment type. We then use hydrometric time series of precipitation, runoff, soil moisture and groundwater levels collected in the Weierbach (0.46 km2) headwater catchment (Luxembourg) to better understand double peak hydrograph generation. Specifically, we aim to find out (1) if the generation of a double peak hydrograph is a threshold process, (2) if the hysteretic relationships between storage and discharge are consistent during single and double peak hydrographs, and (3) if different functional landscape units (the hillslopes

  2. Bronchiolitis - discharge

    RSV bronchiolitis - discharge; Respiratory syncytial virus bronchiolitis - discharge ... Your child has bronchiolitis , which causes swelling and mucus to build up in the smallest air passages of the lungs. In the hospital, ...

  3. RAPID COMMUNICATION: Enhanced performance of a dielectric barrier discharge lamp using short-pulsed excitation

    Mildren, R. P.; Carman, R. J.


    We observe marked increases in the time-averaged intensity, peak intensity, efficiency and spectral purity of the VUV output from an Xe excimer barrier discharge lamp when using short-pulse (~150 ns FWHM (full width half maximum)) excitation. Intensity increases with Xe pressure up to 600 Torr with a maximum output 2.6 times higher and an efficiency 3.2 times higher than the same lamp excited by conventional ac excitation (i.e. sinusoidal voltage waveform). The output occurs in regular short pulses (pulsed discharge appears diffuse (i.e. glow-like), even at the higher pressures at which the ac discharge is filamentary. It is concluded that the enhanced performance results largely from the ability for pulsed excitation to generate a discharge at near atmospheric pressures with a much lower electron density than that possible using ac.

  4. Capacitor discharge pulse analysis.

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary


    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  5. 基于模拟退火粒子群优化的光伏多峰最大功率跟踪算法%Multi-peak maximum power point tracking algorithm based on simulated annealing particle swarm optimization for PV systems

    杨洁; 蒋林; 蹇清平; 张勇军; 李永德


    To solve the problem of the Perturbation and Observation ( P and O ) method for tracking a long time and Particle Swarm Optimization ( PSO) algorithm having big perturbation in the Maximum Power Point Tracking ( MPPT) of the PV ( Photo Voltaics) array multi-peak, a Simulated Annealing Particle Swarm Optimization ( SA-PSO) algorithm was designed and applied to maximum power point tracking of photovoltaic generation system. The method was introduced into the contraction factor of particle velocity and the global best particle roulette strategy disturbance, effectively avoided falling into local maximum power and fast tracked to the global maximum power. The dynamic response and steady state accuracy can be guaranteed for the photovoltaic power generation system when light intensity and temperature changes. Under the same conditions, the three kinds of maximum power point tracking algorithms were simulated and comparatively analyzed for PV systems in the no-load and load of system. The results show that the proposed method has better real-time performance and robustness.%在光伏发电系统多峰最大功率跟踪中,针对采用干扰观察法跟踪时间长和粒子群优化算法扰动较大等问题,设计了基于模拟退火粒子群优化( SA-PSO)的最大功率跟踪算法。该方法引入粒子速度收缩因子和最优粒子的轮盘赌策略的扰动,有效避免陷入局部最大功率并快速跟踪到全局最大功率,保证了光伏发电系统在光照强度和温度变化时的动态响应和稳态精度。在相同条件下,对3种光伏发电系统最大功率跟踪方法进行仿真对比分析,其结果表明所提方法具有更好的实时性和鲁棒性。

  6. Paniek over Peak Food

    Koning, N.B.J.


    Het kon niet uitblijven. De groei van de voedselproductie stagneert en na Peak Oil dreigt nu Peak Food. Onzin, vindt Niek Koning, die zogenaamde peak is een van de toppen in een langjarige golfbeweging op de landbouwmarkten. Toch zijn er genoeg redenen om je zorgen te maken over de wereldvoedselvoor

  7. Methods for accurate estimation of net discharge in a tidal channel

    Simpson, M.R.; Bland, R.


    Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three

  8. Electronic Excitation Temperature in DC Positive Streamer Discharge

    WANG Xiaochen; WANG Ninghui; DING Zhenfeng


    The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential future applications. It was remarkable that the electronic excitation temperature (Texc) did not vary monotonically with the discharge current, but demonstrated a peak at a certain position. In a mixture of oxygen and argon (80% oxygen), the maximum Texc reached about 6300 K at an average current of 600 μA. Both the positive ions accumulation in the discharge region and the increase of the local temperature around the streamer channel caused by Joule heating are considered to be the main reasons for the variations of Texc.

  9. Modes of Homogeneous Barrier Discharge at Atmospheric Pressure in Helium

    WANG Yan-Hui; WANG De-Zhen


    @@ The discharge modes of a homogeneous barrier discharge at atmospheric pressure in helium are investigated with a one-dimensional fluid model It is found that, either in single peak discharge or in multipeak discharge, there are two discharge modes: glow and Townsend modes. The structure and features of the two modes are compared.The conditions forming the two modes are discussed.

  10. Are Bragg Peaks Gaussian?

    Hammouda, Boualem


    It is common practice to assume that Bragg scattering peaks have Gaussian shape. The Gaussian shape function is used to perform most instrumental smearing corrections. Using Monte Carlo ray tracing simulation, the resolution of a realistic small-angle neutron scattering (SANS) instrument is generated reliably. Including a single-crystal sample with large d-spacing, Bragg peaks are produced. Bragg peaks contain contributions from the resolution function and from spread in the sample structure. Results show that Bragg peaks are Gaussian in the resolution-limited condition (with negligible sample spread) while this is not the case when spread in the sample structure is non-negligible. When sample spread contributes, the exponentially modified Gaussian function is a better account of the Bragg peak shape. This function is characterized by a non-zero third moment (skewness) which makes Bragg peaks asymmetric for broad neutron wavelength spreads. PMID:26601025


    T. N. Bukharova


    Full Text Available According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%.

  12. Peak Experience Project

    Scott, Daniel G.; Evans, Jessica


    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  13. Peak Experience Project

    Scott, Daniel G.; Evans, Jessica


    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  14. Discharge Dialogue

    Horsbøl, Anders


    less attention has been given to medical patients, who are often elderly and suffer from multiple diseases. This paper addresses the latter issue with a case study of a local initiative to improve transition from hospital to home (care) for medical patients at a Danish hospital, in which a discharge...... coordinator, employed at the hospital, is supposed to anticipate discharge and serve as mediator between the hospital and the municipal home care system. Drawing on methods from discourse and interaction analysis, the paper studies the practice of the discharge coordinator in two encounters between patients...

  15. The impact of overland flow on the variation of discharge and hydroehemistry of karst spring in peak cluster%峰丛洼地岩溶泉流量和水化学变化过程中地面径流的作用

    常勇; 吴吉春; 姜光辉; 于奭


    峰丛洼地地区分布大量封闭洼地,暴雨过程中洼地内产生的地面径流通过落水洞进入岩溶管道,最终组成岩溶泉的一部分。本文选取典型的峰丛洼地地貌区——桂林丫吉试验场为研究区,通过修建径流小区监测地面径流量,结合示踪试验等手段探讨暴雨期间岩溶泉S31流量和水化学变化过程中这部分地面径流的作用。2010年径流小区监测结果显示当日降雨量大于64.4mm/d时研究区才产生地面径流,地面径流系数在O.48%-0.71%之间。选取5月19日降雨径流过程进行水均衡分析和离子质量守恒计算。S31泉域水均衡分析显示地面径流仅占S31泉总流量0.65%,不能显著影响S31泉流量变化。离子质量守恒模型结果表明暴雨期间S31泉电导率变化主要由裂隙水造成,虽然地面径流含有大量雨水,但对S31泉电导率影响有限。因地面径流的产生条件高和比例小,在适当降雨条件下可以忽略岩溶泉流量和水化学变化中地面径流的作用。%Many closed depressions distribute in peak cluster area. The overland flow occurring in the closed depression enters the conduit though sink holes during storms and finally becomes a part of karst spring. In this paper, the typical peak cluster depression landscape-Yaji experimental site was selected to study the role of overland flow in discharge and hydrochemistry of karst spring though monitoring the quantity of overland flow and tracer experiment. The monitoring results of runoff plot show that overland flow occurred when rainfall was more than 64.4mm/day with low discharge in 2010. The overland flow coefficients were between 0.48% and 0.71%. The rainfall-runoff process of 19 May was chose to do water balance and ions mass conservation. Though the water balance analysis of catchment of Spring $31, overland flow only accounted for 0.63% of total discharge of spring. Overland flow could hardly

  16. The geomorphic structure of the runoff peak

    R. Rigon


    Full Text Available This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  17. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    Früngel, Frank B A


    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  18. Ileostomy - discharge

    ... foods that may block your stoma are raw pineapple, nuts and seeds, celery, popcorn, corn, dried fruits ( ... ask your doctor Living with your ileostomy Low-fiber diet Small bowel resection - discharge Total colectomy or ...

  19. Gallstones - discharge

    ... this page: // Gallstones - discharge To use the sharing features on this page, please enable JavaScript. You have gallstones. These are hard, pebble-like deposits that formed ...

  20. The central peak revisited

    Shirane, G.


    The central peak in SrTiO{sub 3} was first observed by Riste and his collaborators in 1971. This was one of the key discoveries leading to an understanding of the dynamics of phase transitions. The most recent discovery of two length scales in SrTiO{sub 3} motivated a reinvestigation of the soft phonon and associated central peak by neutron scattering. These recent experiments shed new light on the nature of the central peak. It is now well established to be strongly sample dependent and it originates from defects in bulk crystals.

  1. Vazões máximas e mínimas para bacias hidrográficas da região alto Rio Grande, MG Maximum and minimum discharges for Alto Rio Grande region basins, Minas Gerais state, Brazil

    Carlos Rogério de Mello


    Full Text Available Vazões máximas são grandezas hidrológicas aplicadas a projetos de obras hidráulicas e vazões mínimas são utilizadas para a avaliação das disponibilidades hídricas em bacias hidrográficas e comportamento do escoamento subterrâneo. Neste estudo, objetivou-se à construção de intervalos de confiança estatísticos para vazões máximas e mínimas diárias anuais e sua relação com as características fisiográficas das 6 maiores bacias hidrográficas da região Alto Rio Grande à montante da represa da UHE-Camargos/CEMIG. As distribuições de probabilidades Gumbel e Gama foram aplicadas, respectivamente, para séries históricas de vazões máximas e mínimas, utilizando os estimadores de Máxima Verossimilhança. Os intervalos de confiança constituem-se em uma importante ferramenta para o melhor entendimento e estimativa das vazões, sendo influenciado pelas características geológicas das bacias. Com base nos mesmos, verificou-se que a região Alto Rio Grande possui duas áreas distintas: a primeira, abrangendo as bacias Aiuruoca, Carvalhos e Bom Jardim, que apresentaram as maiores vazões máximas e mínimas, significando potencialidade para cheias mais significativas e maiores disponibilidades hídricas; a segunda, associada às bacias F. Laranjeiras, Madre de Deus e Andrelândia, que apresentaram as menores disponibilidades hídricas.Maximum discharges are applied to hydraulic structure design and minimum discharges are used to characterize water availability in hydrographic basins and subterranean flow. This study is aimed at estimating the confidence statistical intervals for maximum and minimum annual discharges and their relationship wih the physical characteristics of basins in the Alto Rio Grande Region, State of Minas Gerais. The study was developed for the six (6 greatest Alto Rio Grande Region basins at upstream of the UHE-Camargos/CEMIG reservoir. Gumbel and Gama probability distribution models were applied to the

  2. Interstitial lung disease - adults - discharge

    Diffuse parenchymal lung disease - discharge; Alveolitis - discharge; Idiopathic pulmonary pneumonitis - discharge; IPP - discharge; Chronic interstitial lung - discharge; Chronic respiratory interstitial lung - discharge; Hypoxia - interstitial lung - discharge

  3. Pikes Peak, Colorado

    Brunstein, Craig; Quesenberry, Carol; Davis, John; Jackson, Gene; Scott, Glenn R.; D'Erchia, Terry D.; Swibas, Ed; Carter, Lorna; McKinney, Kevin; Cole, Jim


    For 200 years, Pikes Peak has been a symbol of America's Western Frontier--a beacon that drew prospectors during the great 1859-60 Gold Rush to the 'Pikes Peak country,' the scenic destination for hundreds of thousands of visitors each year, and an enduring source of pride for cities in the region, the State of Colorado, and the Nation. November 2006 marks the 200th anniversary of the Zebulon M. Pike expedition's first sighting of what has become one of the world's most famous mountains--Pikes Peak. In the decades following that sighting, Pikes Peak became symbolic of America's Western Frontier, embodying the spirit of Native Americans, early explorers, trappers, and traders who traversed the vast uncharted wilderness of the Western Great Plains and the Southern Rocky Mountains. High-quality printed paper copies of this poster are available at no cost from Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  4. Peak of Achievement


    China’s first inland research station on the highest peak of Antarctic progresses smoothly China will complete the construction of its first inland Antarctic research station at Dome A,the highest polar icecap peak at 4,093 meters above sea level,next year,according to a south pole scientist involved in the project. "The preparatory work for the new sta-

  5. Influência do alongamento dos músculos isquiostibial e retofemoral no pico de torque e potência máxima do joelho Influence of stretching hamstring and quadriceps femoral muscles on knee peak torque and maximum power

    Gabriel Peixoto Leão Almeida


    Full Text Available O alongamento muscular é utilizado nas práticas desportivas para aumentar a flexibilidade muscular e amplitude articular, mas estudos mostram que pode produzir efeitos deletérios na produção de força muscular. A proposta deste estudo foi verificar a influência imediata e tardia do alongamento dos músculos isquiostibiais e retofemoral, por meio da facilitação neuromuscular proprioceptiva (FNP, no pico de torque e potência máxima do joelho. Quinze jovens sedentárias foram distribuídas em três grupos: GA, submetidas a 12 sessões de alongamento durante quatro semanas; GB, a apenas uma sessão de alongamento imediatamente antes da avaliação final; e GC, à mobilização articular passiva do joelho, de forma a não alongar. Todas as participantes foram avaliadas quanto à amplitude de movimento (ADM de flexão e extensão do joelho, e à dinamometria isocinética, antes e após a intervenção, mensurando-se ADM, pico de torque (PT e potência máxima (PM do joelho. Observou-se diferença entre as médias dos três grupos na ADM após a intervenção (p0,05. Os grupos GA e GB apresentaram melhoras na ADM e apenas o grupo GC apresentou melhora significativa em todas as variáveis isocinéticas (pMuscle stretching is often used in sports practice in order to increase muscle flexibility and joint range of motion. However, many studies have shown that muscle torque production may be reduced after stretching. The purpose of this work was to assess immediate and late effects of stretching, by proprioceptive neuromuscular facilitation (PNF techniques, on knee peak torque and maximum power. Fifteen young sedentary female subjects were evenly distributed into three groups: AG, submitted to 12 PNF stretching sessions along four weeks; BG, submitted to only one stretching session just before the final evaluation; and GC, submitted to passive knee mobilization so as not to produce muscle stretching. All of them were assessed, before and after

  6. Pressões respiratórias máximas de pico e sustentada na avaliação da força muscular respiratória de crianças Maximum peak and sustained respiratory pressures in the assessment of respiratory muscular strength in children

    Laise Chaves de Oliveira


    analyzed using SPSS 17.0 and was attributed a significance level of 5%. RESULTS: the following findings were produced bythe study: 78.53 ± 22.53 cmH2O for PIpeak and 72.95 ± 21.22 cmH2O and 86.25 ± 21.8 cmH2O for PIsust and PEsust respectively. The values obtained throughpeak respiratory pressures (PIpeak and PEpeak were significantly higher than the measurements obtained for sustained respiratory pressures (PIsust and PEsustregardless of gender or age assessment (p=0.001. CONCLUSIONS: the use of measures in assessing peak maximum respiratory pressure, more easily obtained in clinical practice, may undermine the real measurements of respiratory muscle strength in children between 7 and 11 years of age.

  7. Discharge Dialogue

    Horsbøl, Anders


    For several years, efforts have been made to strengthen collaboration between health professionals with different specializations and to improve patient transition from hospital to home (care). In the Danish health care system, these efforts have concentrated on cancer and heart diseases, whereas...... less attention has been given to medical patients, who are often elderly and suffer from multiple diseases. This paper addresses the latter issue with a case study of a local initiative to improve transition from hospital to home (care) for medical patients at a Danish hospital, in which a discharge...... coordinator, employed at the hospital, is supposed to anticipate discharge and serve as mediator between the hospital and the municipal home care system. Drawing on methods from discourse and interaction analysis, the paper studies the practice of the discharge coordinator in two encounters between patients...

  8. Correlation-Peak Imaging

    Ziegler, A.; Metzler, A.; Köckenberger, W.; Izquierdo, M.; Komor, E.; Haase, A.; Décorps, M.; von Kienlin, M.


    Identification and quantitation in conventional1H spectroscopic imagingin vivois often hampered by the small chemical-shift range. To improve the spectral resolution of spectroscopic imaging, homonuclear two-dimensional correlation spectroscopy has been combined with phase encoding of the spatial dimensions. From the theoretical description of the coherence-transfer signal in the Fourier-transform domain, a comprehensive acquisition and processing strategy is presented that includes optimization of the width and the position of the acquisition windows, matched filtering of the signal envelope, and graphical presentation of the cross peak of interest. The procedure has been applied to image the spatial distribution of the correlation peaks from specific spin systems in the hypocotyl of castor bean (Ricinus communis) seedlings. Despite the overlap of many resonances, correlation-peak imaging made it possible to observe a number of proton resonances, such as those of sucrose, β-glucose, glutamine/glutamate, lysine, and arginine.

  9. Reducing Peak Power in Automated Weapon Laying


    The values used are determined based on a number of factors including available power, maximum motor speed , maximum safe slewing speeds , peak...METHODS, ASSUMPTIONS, AND PROCEDURES Conventions and Variable Definitions Before describing the formulas to solve the aforementioned problems, it is...These two formulas are set equal to each other in equation 9 and then solved for t2 in equation 10. Note that the negative value of α2 results in a

  10. Peak-interviewet

    Raalskov, Jesper; Warming-Rasmussen, Bent

    Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...

  11. Peak-interviewet

    Raalskov, Jesper; Warming-Rasmussen, Bent

    Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...

  12. Impact Crater with Peak


    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  13. Respostas da freqüência cardíaca de pico em testes máximos de campo e laboratório Respuestas de la frecuencia cardíaca de pico en tests máximos de campo y de laboratorio Peak heart rate responses in maximum laboratory and field tests

    Alexandre Lima dos Santos


    atletismo y protocolos maximos en rampa de laboratorio. Todos los tests fueron hechos en intervalos de dos semanas en un orden alternado para cada individuo. antes de cada test eran asignadas la humedad de aire y temperatura ambiente. En las 48 horas precedentes los individuos fueron instruidos a no realizar ninguna actividad fisica. Posibles diferencias en la fc pico, en condindiones ambientales (temperatura y humedad relativa del aire en campo y en laboratorio fueron testeados por el test t de Student emparejado y simple respectivamente (p BACKGROUND AND OBJECTIVE: The peak heart rate (HRpeak assessed in maximum laboratory tests has been used to determine the aerobic exercise intensity in field situations. However, HRpeak values may differ in field and laboratory situations, which can influence the relative intensity of the prescribed workloads. The objective of this study was to measure the HRpeak responses in laboratory and field maximum tests, analyzing their influence in the exercise prescription. METHODS: Twenty-five physically active men aged 21-51 yrs (28.9 ± 8 yrs executed a 2,400 m field test in a running track and an individualized maximum treadmill ramp protocol. All tests were performed within two weeks, in a counterbalanced order. Before each test, the temperature and air humidity were checked, and the subjects were told no to engage in any physical activity 48 hours before. Differences between HRpeak and environmental conditions (temperature and humidity in field and laboratory situations were respectively tested by paired and simple Student's t tests (p < 0.05. RESULTS: HRpeak values were significant higher in the field test than in the laboratory protocol, reaching 10 beats per minute in some cases. These differences may be partially accounted for a significant higher temperature and air humidity in the field conditions. CONCLUSION: In conclusion, maximum field tests seem to elicit higher HRpeak values than laboratory protocols, suggesting that the former

  14. Angioplasty and stent - heart - discharge

    Drug-eluting stents - discharge; PCI - discharge; Percutaneous coronary intervention - discharge; Balloon angioplasty - discharge; Coronary angioplasty - discharge; Coronary artery angioplasty - discharge; Cardiac ...

  15. If the Dark Ages solar peak c.525CE caused a c.5m sea-level rise 50-100y later ("ocean memory"), the stronger 1958 solar "Grand maximum" presages a >5m rise by 2058: literature review by an impartial geologist

    Higgs, Roger


    The 255 authors of IPCC's "Climate Change 2013: The Physical Science Basis" include no sedimentary geologists, specialists in ever-changing sea level (SL). According to IPCC the 0.3m SL rise(1) since tide-gauge records began (c.1700CE, Little Ice Age[LIA] acme) is unprecedented in >2ky, implicating mankind's CO2 emissions. On the contrary, a c.5m SL rise and fall between c.400CE and 1700 are indicated independently by three lines of evidence: British archaeology(2,3); worldwide raised-shoreline benchmarks(4); and Red Sea foraminifera O18 fluctuations(5). The c.5m fall is attributable to 590-1640CE cooling (ice growth) shown by a global proxy temperature graph(6; cf.7). This 1ky-long cooling and ensuing 1850-2017 warming, both sawtooth-style, in turn mimic a 1ky solar decline then rise(8), moreso after aligning the 590CE peak temperature(6) with the c.525CE solar "Grand maximum" (GM) or near-GM(8). This 65y lag reflects hitherto-neglected ocean-conveyor-belt circulation, i.e. downwelling Atlantic surface water, variably solar-warmed (depending on solar-governed cloudiness[9]), upwells decades later beside Antarctica, returning northward to affect continental air temperatures. The conveyor slowed in the LIA (c.150y offset between 1280-1700CE cluster of solar Grand minima[8] and 1430-1850 cool phase[6]). Lately the lag, obvious from visual cross-matching of 1850-2012 instrumental-temperature peaks and troughs(10) versus the 1700-2016 sunspot chart (Google images), is c.85y (1890 solar trough matches 1975 temperature trough). Similarly, SL(1) clearly lags temperature(10) by 15y (1964 and 1976 temperature troughs match 1979 and 1991 SL troughs). Thus the total SL-solar lag is 100y (85+15). Appreciating the 85y and 100y lags enables vital predictions: sunspots increased (sawtooth-style) from c.1890 until the 1958 GM (the only definite GM in >2ky[8]), therefore ongoing warming will peak c.2043 (1958+85), and SL c.2058. How high will SL rise? The 1958 solar GM exceeded (95

  16. Discharge cleaning and wall conditioning in a Novillo Tokamak

    Valencia, R; Camps, E; Contreras, G; Muhl, S


    Our Novillo Tokamak is a small toroidal device magnetically confined defined by the main design parameters: R sub o =0.23 m, a sub v =0.08 m, a sub p =0.06 m, B sub T =0.05-0.47 T, I sub p =1-12 kA, n sub e =1-2x10 sup 1 sup 3 cm sup - sup 3 , T sub e =150 eV, T sub i =50 eV. For the initial discharge chamber cleaning we have often used vacuum baking up to 100 deg. C and then conditioning using Taylor discharge cleaning (TDC) in H sub 2 and He. In this work we report that vacuum baking is effective for obtaining a final total pressure of the order of 1.6x10 sup - sup 7 Torr. We have found that a single parameter, the performance parameter (PP), can be used to optimize the TDC method. This parameter represents the quantity of electron and ion energy incident on the chamber wall during the Taylor discharge, it is equal to (I sub p tau), where I sub p is the peak-to-peak plasma current and tau is the plasma current duration. In graphs of PP versus the gas pressure for different oscillator powers, the maximum val...

  17. Discharge processes of UV pre-ionized electric-discharge pulsed DF laser

    Pan, Qikun; Xie, Jijiang; Shao, Chunlei; Wang, Chunrui; Shao, Mingzhen; Guo, Jin


    The discharge processes of ultraviolet (UV) pre-ionized electric-discharge pulsed DF laser operating with a SF6-D2 gas mixture are studied. A mathematical model based on continuity equation of electrons and Kirchhoff equations for discharge circuit is established to describe the discharge processes. Voltage and current waveforms of main discharge and voltage waveforms of pre-ionization are solved numerically utilizing the model. The calculations correctly display some physical processes, such as the delay time between pre-ionization and main discharge, breakdown of the main electrode and self-sustained volume discharge (SSVD). The results of theory are consistent with the experiments, which are performed in our non-chain pulsed DF laser. Then the delay inductance and peak capacitance are researched to analyze their influences on discharge processes, and the circuit parameters of DF laser are given which is useful to improve the discharge stability.

  18. Glow and pseudo-glow discharges in a surface discharge generator

    Li Xue-Chen; Dong Li-Fang; Wang Long


    The glow discharge in flowing argon at one atmospheric pressure is realized in a surface discharge generator. The discharge current presents one peak per half-cycle of the applied voltage. The duration of the discharge pulse is more than 1μs when the frequency of the applied voltage is 60kHz. For the glow discharge in argon, the power consumption increases with the increase of voltage or the decrease of gas pressure.This relation is explained qualitatively based on the theory of the Townsend breakdown mechanism. In contrast, the discharge current in one atmospheric pressure air gives many spikes in each half-cycle, and correspondingly this kind of discharge is called pseudo-glow discharge. Every current spike oscillates with high-frequency damping. The pseudo-glow discharge in one atmospheric pressure air might result from the streamer breakdown mechanism.

  19. Discharge current and current of supershort avalanche E-beam at volume nanosecond discharge in non-uniform electric field

    Tarasenko, Victor F.; Rybka, Dmitrii V.; Baksht, Evgenii H.; Kostyrya, Igor'D.; Lomaev, Mikhail I.


    The gas diode current-voltage characteristics at the voltage pulses applied from the RADAN and SM-3NS pulsers, and generation of an supershort avalanche electron beam (SAEB) have been studied experimentally in an inhomogeneous electric field upon a nanosecond breakdown in an air gap at atmospheric pressure. Displacement currents with amplitude over 1 kA have been observed and monitored. It is shown that the displacement current amplitude gets increased due to movement of the dense plasma front and charging of a "capacitor" formed between plasma and anode. The SAEB generation time relatively to the discharge current pulses and the gap voltage were determined in the experiments. It is shown that the SAEB current maximum at the pulser voltages of hundreds kV is registered on the discharge current pulse front, before the discharge current peak of the gas diode capacitance, and the delay time of these peaks is determined by the value of an interelectrode spacing. The delay time in case of a gap of 16 mm and air breakdown at atmospheric pressure was ~100 ps, and in case of 10 mm it was less than 50 ps.

  20. Ulcerative colitis - discharge

    Inflammatory bowel disease - ulcerative colitis - discharge; Ulcerative proctitis - discharge; Colitis - discharge ... were in the hospital because you have ulcerative colitis. This is a swelling of the inner lining ...

  1. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...

  2. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering



    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

  3. Plasma-density evolution in compact polyacetal capillary discharges

    Tomasel, F.G.; Rocca, J.J.; Cortazar, O.D.; Szapiro, B.T. (Electrical Engineering Department, Colorado State University, Fort Collins, Colorado 80523 (United States)); Lee, R.W. (Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))


    We have measured the temporal evolution of the electron density of plasmas produced in polyacetal capillaries with diameters between 0.5 and 1.5 mm excited by 110-ns full-width-at-half-maximum discharge pulses with currents between 13 and 42 kA. The electron density was determined from Stark-broadened line profiles of the 4[ital f]-3[ital d] O VI transition taking into account opacity effects. The electron density was found to increase continuously during the rise of the current pulse, and to decrease near the end of the current pulse, when a drop in plasma temperature causes the degree of ionization of the plasma to decrease. The peak plasma density in a 1-mm capillary excited by a 24-kA pulse was measured to be 5[times]10[sup 19] cm[sup [minus]3]. The plasma density was observed to increase linearly with discharge energy from 7.5[times]10[sup 18] cm[sup [minus]3] for a 5-J discharge to 5[times]10[sup 19] cm[sup [minus]3] for a 30-J discharge in a 1.5-mm-diam. capillary.

  4. Microhollow Cathode Discharge Excimer Lamps

    Schoenbach, K. H.


    character. Reducing the diameter of the cathode hole in a hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode gas discharges up to atmospheric pressure. The large concentration of high-energy electrons generated in the cathode fall, in combination with the high neutral gas density favors three-body processes such as excimer formation. Excimer emission in xenon discharges peaking at 172 nm, was observed with efficiencies between 6% and 9% at pressures of several hundred Torr. Typical forward voltages are 200 V at dc currents up to 8 mA. Pulsed operation allowed us to extend the current range to 80 mA with corresponding linear increase in optical power. Spatially resolved measurements showed that the source of the excimer radiation at atmospheric pressure and currents of less than 8 mA is confined to the cathode opening. The radiative emittance at 8 mA and atmospheric pressure is approximately 20 W/cm^2. With reduced pressure and increased current, respectively, the excimer source extends into the area outside the cathode hole. Besides in xenon, excimer emission in argon at a peak wavelength of 128 nm has been recorded. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1% ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of a single ArF discharge at 700 Torr was measured as 150 mW at an efficiency of 3%. Parallel operation of these discharges by means of a resistive anode, which has recently been demonstrated for argon discharges, offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated power densities exceeding 10 W/cm^2. abstract

  5. Pediatric heart surgery - discharge

    ... discharge; Heart valve surgery - children - discharge; Heart surgery - pediatric - discharge; Heart transplant - pediatric - discharge ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 434. ...

  6. Lung surgery - discharge

    ... Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - discharge ... milk) for 2 weeks after video-assisted thoracoscopic surgery and 6 to 8 weeks after open surgery. ...

  7. Refractive corneal surgery - discharge

    Nearsightedness surgery - discharge; Refractive surgery - discharge; LASIK - discharge; PRK - discharge ... You had refractive corneal surgery to help improve your vision. This surgery uses a laser to reshape your cornea. It corrects mild-to-moderate nearsightedness, ...

  8. Geyser Peak Cabernet Sauvignon


    <正>年份:2000产地:美国加州Sonoma County售价:$196 Geyser Peak(盖世峰)成立于1880年,是美国军有的过百岁葡萄酒庄。可惜美国酿制葡萄酒的技术在近三四十年才有突破,历史再悠久也没有太多帮助近二十年Geyser Peak就努力改进,希望迎头赶上其它加州新秀的水平,1989年,他们就聘请了澳洲Penfolds酒庄的酿酒师Daryl Groom,让旗下出品多了一份澳洲式的"霎眼娇"风格。2003年,Geyser Peak更在International Wine & Spirit Competition赢得"最佳美国葡萄酒生产商"大奖。

  9. Hanford Site peak gust wind speeds

    Ramsdell, J.V.


    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site.

  10. The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation

    Felder, Guido; Zischg, Andreas; Weingartner, Rolf


    Deterministic rainfall-runoff modelling usually assumes stationary hydrological system, as model parameters are calibrated with and therefore dependant on observed data. However, runoff processes are probably not stationary in the case of a probable maximum flood (PMF) where discharge greatly exceeds observed flood peaks. Developing hydrodynamic models and using them to build coupled hydrologic-hydrodynamic models can potentially improve the plausibility of PMF estimations. This study aims to assess the potential benefits and constraints of coupled modelling compared to standard deterministic hydrologic modelling when it comes to PMF estimation. The two modelling approaches are applied using a set of 100 spatio-temporal probable maximum precipitation (PMP) distribution scenarios. The resulting hydrographs, the resulting peak discharges as well as the reliability and the plausibility of the estimates are evaluated. The discussion of the results shows that coupling hydrologic and hydrodynamic models substantially improves the physical plausibility of PMF modelling, although both modelling approaches lead to PMF estimations for the catchment outlet that fall within a similar range. Using a coupled model is particularly suggested in cases where considerable flood-prone areas are situated within a catchment.

  11. A review of the regional maximum flood and rational formula using ...



    Jul 3, 2004 ... flood peak estimates to flow rates of shorter return periods; the applicability of the modified ... parameter of interest, namely the flood peak discharge, and avoids ... in flood prediction from converting rainfall inputs into flood.

  12. Multivariate regression methods for estimating velocity of ictal discharges from human microelectrode recordings

    Liou, Jyun-you; Smith, Elliot H.; Bateman, Lisa M.; McKhann, Guy M., II; Goodman, Robert R.; Greger, Bradley; Davis, Tyler S.; Kellis, Spencer S.; House, Paul A.; Schevon, Catherine A.


    Objective. Epileptiform discharges, an electrophysiological hallmark of seizures, can propagate across cortical tissue in a manner similar to traveling waves. Recent work has focused attention on the origination and propagation patterns of these discharges, yielding important clues to their source location and mechanism of travel. However, systematic studies of methods for measuring propagation are lacking. Approach. We analyzed epileptiform discharges in microelectrode array recordings of human seizures. The array records multiunit activity and local field potentials at 400 micron spatial resolution, from a small cortical site free of obstructions. We evaluated several computationally efficient statistical methods for calculating traveling wave velocity, benchmarking them to analyses of associated neuronal burst firing. Main results. Over 90% of discharges met statistical criteria for propagation across the sampled cortical territory. Detection rate, direction and speed estimates derived from a multiunit estimator were compared to four field potential-based estimators: negative peak, maximum descent, high gamma power, and cross-correlation. Interestingly, the methods that were computationally simplest and most efficient (negative peak and maximal descent) offer non-inferior results in predicting neuronal traveling wave velocities compared to the other two, more complex methods. Moreover, the negative peak and maximal descent methods proved to be more robust against reduced spatial sampling challenges. Using least absolute deviation in place of least squares error minimized the impact of outliers, and reduced the discrepancies between local field potential-based and multiunit estimators. Significance. Our findings suggest that ictal epileptiform discharges typically take the form of exceptionally strong, rapidly traveling waves, with propagation detectable across millimeter distances. The sequential activation of neurons in space can be inferred from clinically

  13. Peak mass and dynamical friction

    Del Popolo, A


    We show how the results given by several authors relatively to the mass of a density peak are changed when small scale substructure induced by dynamical friction are taken into account. The peak mass obtained is compared to the result of Peacock \\& Heavens (1990) and to the peak mass when dynamical friction is absent to show how these effects conspire to reduce the mass accreted by the peak.

  14. Peak capacity in unidimensional chromatography.

    Neue, Uwe Dieter


    The currently existing knowledge about peak capacity in unidimensional separations is reviewed. The majority of the paper is dedicated to reversed-phase gradient chromatography, covering specific techniques as well as the subject of peak compression. Other sections deal with peak capacity in isocratic chromatography, size-exclusion chromatography and ion-exchange chromatography. An important topic is the limitation of the separation power and the meaning of the concept of peak capacity for real applications.

  15. Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure

    Li Xue-Chen; Niu Dong-Ying; Xu Long-Fei; Jia Peng-Ying; Chang Yuan-Yuan


    The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one-dimensional fluid model.Under some discharge conditions,the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low,while a glow-like discharge occurs at high voltage.For the one discharge pulse per half voltage cycle,the maximum of electron density appears near the anode at the beginning of the discharge,which corresponds to a Townsend discharge mode.The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent,which indicates the formation of a cathode-fall region.Therefore,the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse,which is consistent with previous experimental results.

  16. Compact Intracloud Discharges

    Smith, David A. [Univ. of Colorado, Boulder, CO (United States)


    thunderstorms in the southwestern United States (US). The events occurred at altitudes between 8 and 11 km above mean sea level (MSL). Radar reflectivity data from two of the storms showed that CIDS occurred in close spatial proximity to thunderstorm cores with peak radar reflectivities of 47 to 58 dBZ. Over one hundred CIDS were also recorded from tropical cyclone Fausto off the coast of Mexico. These events occurred at altitudes between 15 and 17 km MSL. CIDS are singular discharges that usually occur in temporal isolation from other thunderstorm radio emissions on time scales of at least a few milliseconds. Calculations show that the discharges are vertically oriented and 300 to 1000 m in spatial extent. They produce average currents of several tens to a couple hundred kA for time periods of approximately 15 ps. Based on the results of a charge distribution model, the events occur in thunderstorm regions with charge densities on the order of several tens of nC/m3 and peak electric fields that are greater than 1 x 106 V/m. Both of these values are an order of magnitude greater than values previously measured orinfemed frominsitu thunderstom measurements. Theunique radio emissions from CIDS, in combination with their unprecedented physical characteristics, clearly distinguish the events from other types of previously observed thunderstorm electrical processes.

  17. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...

  18. Concussion - adults - discharge

    Brain injury - concussion - discharge; Traumatic brain injury - concussion - discharge; Closed head injury - concussion - discharge ... Getting better from a concussion takes days to weeks or even months. ... have trouble concentrating, or be unable to remember things. ...

  19. Tennis elbow surgery - discharge

    ... epicondylitis surgery - discharge; Lateral tendinosis surgery - discharge; Lateral tennis elbow surgery - discharge ... long as you are told. This helps ensure tennis elbow will not return. You may be prescribed a ...

  20. Asthma - child - discharge

    Pediatric asthma - discharge; Wheezing - discharge; Reactive airway disease - discharge ... Your child has asthma , which causes the airways of the lungs to swell and narrow. In the hospital, the doctors and nurses helped ...

  1. Eye muscle repair - discharge

    ... Lazy eye repair - discharge; Strabismus repair - discharge; Extraocular muscle surgery - discharge ... You or your child had eye muscle repair surgery to correct eye muscle ... term for crossed eyes is strabismus. Children most often ...

  2. Neck dissection - discharge

    Radical neck dissection - discharge; Modified radical neck dissection - discharge; Selective neck dissection - discharge ... 659-665. Robbins KT, Samant S, Ronen O. Neck dissection. In: Flint PW, Haughey BH, Lund V, et ...

  3. Helicon plasma thruster discharge model

    Lafleur, T., E-mail: [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau, France and ONERA - The French Aerospace Lab, 91120 Palaiseau (France)


    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.

  4. Microhollow cathode discharge excimer lamps

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.


    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ˜400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ˜2% for argon fluoride.

  5. ACL reconstruction - discharge

    Anterior cruciate ligament reconstruction - discharge; ACL reconstruction - discharge ... had surgery to reconstruct your anterior cruciate ligament (ACL). The surgeon drilled holes in the bones of ...

  6. Some nonlinear parameters of PP intervals of pulse main peaks


    The PP intervals of pulse main peaks from healthy and unhealthy people (arrhythmia) have different nonlinear characteristics. In this paper, the extraction of PP intervals of pulse main peaks is achieved by picking up P peaks of pulse wave with wavelet transform. Furthermore, several nonlinear parameters (correlative dimensions, maximum Lyapunov exponents, complexity and approximate entropy) of the PP intervals of pulse main peaks extracted from normal and unhealthy pulse signals are calculated, with the results showing that these nonlinear parameters calculated from the main wave interval signals are helpful for analyzing human's health state and diagnosing heart diseases.

  7. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...



    The main thrust of this paper is peak shaving with a Stochastic hydro model. In peak sharing, the amount of ... Fuel cost at a conventional hydro plant is nil. On the other hand, the ... s(k) = spill at the hydro plant in period k. I(k) = loss due to ...

  9. Discharge analysis and electrical modeling for the development of efficient dielectric barrier discharge

    Pal, U. N.; Kumar, M.; Tyagi, M. S.; Meena, B. L.; Khatun, H.; Sharma, A. K.


    Dielectric-barrier discharges (DBDs) are characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an AC/pulse power supply. The dielectric layers covering the electrodes act as current limiters and prevent the transition to an arc discharge. DBDs exist usually in filamentary mode, based on the streamer nature of the discharges. The main advantage of this type of electrical discharges is that nonequilibrium and non-thermal plasma conditions can be established at atmospheric pressure. VUV/UV sources based on DBDs are considered as promising alternatives of conventional mercury-based discharge plasmas, producing highly efficient VUV/UV radiation. The experiments have been performed using two coaxial quartz double barrier DBD tubes, which are filled with Xe/Ar at different pressures. A sinusoidal voltage up to 2.4 kV peak with frequencies from 20 to 100 kHz has been applied to the discharge electrodes for the generation of microdischarges. A stable and uniform discharge is produced in the gas gap between the dielectric barrier electrodes. By comparisons of visual images and electrical waveforms, the filamentary discharges for Ar tube while homogeneous discharge for Xe tube at the same conditions have been confirmed. The electrical modeling has been carried out to understand DBD phenomenon in variation of applied voltage waveforms. The simulated discharge characteristics have been validated by the experimental results.

  10. How to use your peak flow meter

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... If your airways are narrowed and blocked due to asthma, your peak flow values drop. You can ...

  11. Maximum information photoelectron metrology

    Hockett, P; Wollenhaupt, M; Baumert, T


    Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...

  12. Doppler peaks from active perturbations

    Magueijo, J; Coulson, D; Ferreira, P; Magueijo, Joao; Albrecht, Andreas; Coulson, David; Ferreira, Pedro


    We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss how perturbations can be ``active'' or ``passive'' and ``incoherent'' or ``coherent'', and show how causality and scale invariance play rather different roles in these various cases. We find that the existence of secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic properties.

  13. Maximum floodflows in the conterminous United States

    Crippen, John R.; Bue, Conrad D.


    Peak floodflows from thousands of observation sites within the conterminous United States were studied to provide a guide for estimating potential maximum floodflows. Data were selected from 883 sites with drainage areas of less than 10,000 square miles (25,900 square kilometers) and were grouped into regional sets. Outstanding floods for each region were plotted on graphs, and envelope curves were computed that offer reasonable limits for estimates of maximum floods. The curves indicate that floods may occur that are two to three times greater than those known for most streams.

  14. Make peak flow a habit!

    ... asthma - peak flow References Durrani SR, Busse WW. Management of asthma in adolescents and adults. In: Adkinson NF Jr, Bochner BS, Burks AW, et al, eds. Middleton's Allergy Principles and Practice . 8th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap ...

  15. Discharge coefficient of small sonic nozzles

    Yin Zhao-Qin


    Full Text Available The purpose of this investigation is to understand flow characteristics in mini/micro sonic nozzles, in order to precisely measure and control miniscule flowrates. Experimental and numerical simulation methods have been used to study critical flow Venturi nozzles. The results show that the nozzle’s size and shape influence gas flow characteristics which leading the boundary layer thickness to change, and then impact on the discharge coefficient. With the diameter of sonic nozzle throat decreasing, the discharge coefficient reduces. The maximum discharge coefficient exits in the condition of the inlet surface radius being double the throat diameter. The longer the diffuser section, the smaller the discharge coefficient becomes. Diffuser angle affects the discharge coefficient slightly.

  16. Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation

    Troughton, S. C.; Nominé, A.; Nominé, A. V.; Henrion, G.; Clyne, T. W.


    Synchronised electrical current and high speed video information are presented from individual discharges on Al substrates during PEO processing. Exposure time was 8 μs and linear spatial resolution 9 μm. Image sequences were captured for periods of 2 s, during which the sample surface was illuminated with short duration flashes (revealing bubbles formed where the discharge reached the surface of the coating). Correlations were thus established between discharge current, light emission from the discharge channel and (externally-illuminated) dimensions of the bubble as it expanded and contracted. Bubbles reached radii of 500 μm, within periods of 100 μs, with peak growth velocity about 10 m/s. It is deduced that bubble growth occurs as a consequence of the progressive volatilisation of water (electrolyte), without substantial increases in either pressure or temperature within the bubble. Current continues to flow through the discharge as the bubble expands, and this growth (and the related increase in electrical resistance) is thought to be responsible for the current being cut off (soon after the point of maximum radius). A semi-quantitative audit is presented of the transformations between different forms of energy that take place during the lifetime of a discharge.

  17. Maximum Likelihood Associative Memories

    Gripon, Vincent; Rabbat, Michael


    Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...

  18. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....


    Klaus Fraedrich; Xiuhua Zhu


    We present a review on studies focusing on memories in hydrological time series in the Yangtze Basin based on observational and reconstructed historical data.Memory appears as scaling of power spectra,S(f)~f-β,with 0 <β≤ 1.The presence of scaling is noteworthy in daily river discharge time series:1)from weeks to a couple of years,power spectra follow flicker noise,that is β≈ 1;2)beyond years,spectral scaling appraaclTes β≈0.3.In historical time series of floods and draughts,power spectra also shows scaling with β≈ 0.38 ~0.52.Furthermore,a 70-year peak is detected in historical maritime events series,which also appears in other past climate indicators.Presence of memory in these hydrological time series implies clustering of extremes and scaling of their recurrence times,therefore,probabilistic forecast potential for extremes can be derived.On the other hand,although several physical processes,for example,soil moisture storage and high intermittency of precipitation,have been suggested to be the possible candidates contributing to the presence of long term memory,they remain open for future research.

  20. Peak Oil and other threatening peaks-Chimeras without substance

    Radetzki, Marian, E-mail: [Lulea University of Technology (Sweden)


    The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth.

  1. Peak Oil and other threatening peaks. Chimeras without substance

    Radetzki, Marian [Luleaa University of Technology (Sweden)


    The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth. (author)

  2. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Pavel Skarvada


    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  3. Thermally induced atmospheric pressure gas discharges using pyroelectric crystals

    Johnson, Michael J.; Linczer, John; Go, David B.


    Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach.

  4. Maximum Entropy Fundamentals

    F. Topsøe


    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  5. Foot amputation - discharge

    Amputation - foot - discharge; Trans-metatarsal amputation - discharge ... You have had a foot amputation. You may have had an accident, or your foot may have had an infection or disease and doctors could not save ...

  6. Regularized maximum correntropy machine

    Wang, Jim Jing-Yan


    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  7. Estimation of Discharge from Breached Earthfill Levee with Elapsed Time

    Kim, Sooyoung; Yang, Jiro; Song, Chang Geun; Lee, Seung Oh


    Lack of the freeboard of levee has been occurred due to abnormally peaked flood events. Thus, the risk from overtopping of earthfill levee has been remarkably increased. When overflow on levee starts to occur, the breaching gap suddenly grows up at initial stage. As the breach width is extended, the discharge from breached section is also nonlinearly increased. Moreover, if the levee is located through multiple cities, the related damage cannot be predictable. However, researches about the breach mechanism have been focused on the breached shape of levee on the equilibrium state and the study on the development of levee breach is not enough to utilize the prediction of damage itself and select its countermeasure. In this study, the formula for breach discharge was presented to be able to predict that based on hydraulic experimental results. All experiments have been conducted with the movable levee which was the crown width of 0.3 m, the height of 0.3 m, the landside slope of 2:1 (H:V). Breach was induced by the lateral overflow for Froude numbers in main channel from 0.15 to 0.35 with the increment of 0.05. Based on the dimensional analysis with significant parameters such as main channel depth, breach width and discharge coefficient, temporal variation of each parameter was estimated with 25 experimental cases. Finally, the formula for prediction of breach flow due to overtopping failure of levee was presented considering the elapsed time for each Froude number after combing all significant parameters. When Froude number was less than 0.3, the breach discharge occurred to increase with Froude number while it became decreased with Froude number exceeding 0.3, which means the maximum breach discharge was occurred at Froude number = 0.3. It would be explained with the flow diversion caused by the collision of breach flow on the breached section downstream, which decreased the breach discharge into landside for higher Froude number of 0.3. As a future works, when the

  8. Simulation of Peak Flows Using Remote Sensing Systems

    Magaña Hernández, F.; Ba, K. M.; Guerra-Cobián, V.


    In this study we utilized remotely sensed data (radar and satellite precipitation products) to simulate the peak discharges of some storm events of the Escondido River. This is a poorly gauged watershed located in Northern Mexico, in the State of Coahuila and is a sub-basin of Rio Bravo, known also as Río Grande. The radar data are from NOAA (Radar KDFX located in Laughlin Air Force Base, Texas). We used two satellite product estimates PERSIANN and CMORPH. These three estimated precipitation products have been compared using the hydrologic model HEC-HMS to simulate the peak discharge. The results of the simulations show the importance of the use of this type of data in hydrologic modeling.

  9. Significance Tests for Periodogram Peaks

    Frescura, F A M; Frank, B S


    We discuss methods currently in use for determining the significance of peaks in the periodograms of time series. We discuss some general methods for constructing significance tests, false alarm probability functions, and the role played in these by independent random variables and by empirical and theoretical cumulative distribution functions. We also discuss the concept of "independent frequencies" in periodogram analysis. We propose a practical method for estimating the significance of periodogram peaks, applicable to all time series irrespective of the spacing of the data. This method, based on Monte Carlo simulations, produces significance tests that are tailor-made for any given astronomical time series.

  10. Pressure dependence of the Boson peak in poly(butadiene)

    Frick, B


    Variation of pressure and temperature in inelastic neutron scattering experiments allows us to separate density and thermal energy contributions. We summarise briefly the influence of pressure and temperature on the dynamic scattering law of the polymer glass former poly(butadiene) far below the glass transition. We also show the advantage of using a liquid-niobium pressure cell in such studies. The effect of pressure on the boson peak is to shift the peak towards higher energies and to reduce the low-frequency modes more strongly below the boson-peak maximum than above. A decrease in the Debye-Waller factor with increasing pressure is observed. (orig.)

  11. Impact of Smart Grid Technologies on Peak Load to 2050



    The IEA's Smart Grids Technology Roadmap identified five global trends that could be effectively addressed by deploying smart grids. These are: increasing peak load (the maximum power that the grid delivers during peak hours), rising electricity consumption, electrification of transport, deployment of variable generation technologies (e.g. wind and solar PV) and ageing infrastructure. Along with this roadmap, a new working paper -- Impact of Smart Grid Technologies on Peak Load to 2050 -- develops a methodology to estimate the evolution of peak load until 2050. It also analyses the impact of smart grid technologies in reducing peak load for four key regions; OECD North America, OECD Europe, OECD Pacific and China. This working paper is a first IEA effort in an evolving modelling process of smart grids that is considering demand response in residential and commercial sectors as well as the integration of electric vehicles.

  12. Mobile electric vehicles online charging and discharging

    Wang, Miao; Shen, Xuemin (Sherman)


    This book examines recent research on designing online charging and discharging strategies for mobile electric vehicles (EVs) in smart grid. First, the architecture and applications are provided. Then, the authors review the existing works on charging and discharging strategy design for EVs. Critical challenges and research problems are identified. Promising solutions are proposed to accommodate the issues of high EV mobility, vehicle range anxiety, and power systems overload. The authors investigate innovating charging and discharging potentials for mobile EVS based on real-time information collections (via VANETS and/or cellular networks) and offer the power system adjustable load management methods.  Several innovative charging/discharging strategy designs to address the challenging issues in smart grid, i.e., overload avoidance and range anxiety for individual EVs, are presented. This book presents an alternative and promising way to release the pressure of the power grid caused by peak-time EV charging ...

  13. Hubbert's Peak -- A Physicist's View

    McDonald, Richard


    Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  14. Equalized near maximum likelihood detector


    This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.

  15. Generalized Maximum Entropy

    Cheeseman, Peter; Stutz, John


    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  16. Discriminate Modelling of Peak and Off-Peak Motorway Capacity

    Hashim Mohammed Alhassan


    Full Text Available Traffic theory is concerned with the movement of discrete objects in real time over a finite network in 2 Dimensions. It is compatible with or dependent on fundamental diagram of traffic. Without question traffic flow is an essential quantitative parameter that is used in planning, designs and roadway improvements.  Road capacity is significant because it is an important indicator of road performance and can point road managers in the right road maintenance and traffic management direction. In this paper four direct empirical capacity measurement methods have been considered. To test the efficacy of each method, data for peak period, off-peak and transition to peak have been used. The headway and the volume methods lack predictive capability and are suitable only for current assessment of flow rates.  The product limit method is weak in its predictive capability in view of the arbitrariness in the selection of the capacity value. It is also an extreme value method; hence not all volume data can be used with this method. The fundamental diagram method has good predictive capability and furnishes capacity values consistent with the standard of the facility. Unlike other methods, it does not rely on bottleneck conditions to deliver the capacity value.  The paper concluded that each method is uniquely suited to prevailing conditions and can be so employed.

  17. Numerical investigation of dielectric barrier discharges

    Li, Jing


    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  18. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    Rhodes, Christopher J


    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.

  19. Modeled future peak streamflows in four coastal Maine rivers

    Hodgkins, Glenn A.; Dudley, Robert W.


    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As

  20. Longitudinal peak detected Schottky spectrum

    Shaposhnikova, E


    The "peak detected Schottky" spectrum is a diagnostic used since the late seventies for beam observation in the SPS and now already applied to the LHC. This tool was always believed, however without proof, to give a good picture of the particle distribution in synchrotron frequencies similar to the longitudinal Schottky spectrum of unbunched beam for revolution frequencies.In this paper an analysis of this measurement technique is presented both in a general form and for the particular realisation in the SPS. In addition the limitations of the present experimental set-up are discussed together with possible improvements. The analysis shows that for an optimised experimental set-up the spectrum of the peak detected signal is very close to the synchrotron frequency distribution inside the bunch - much closer than that given by the traditional longitudinal bunched-beam Schottky spectrum.

  1. Evidence of equilibrium peak runoff rates in steep tropical terrain on the island of Dominica during Tropical Storm Erika, August 27, 2015

    Ogden, Fred L.


    Tropical Storm Erika was a weakly organized tropical storm when its center of circulation passed more than 150 km north of the island of Dominica on August 27, 2015. Hurricane hunter flights had difficulty finding the center of circulation as the storm encountered a high shear environment. Satellite and radar observations showed gyres imbedded within the broader circulation. Radar observations from Guadeloupe show that one of these gyres formed in convergent mid-level flow triggered by orographic convection over the island of Dominica. Gauge-adjusted radar rainfall data indicated between 300 and 750 mm of rainfall on Dominica, most of it over a four hour period. The result was widespread flooding, destruction of property, and loss of life. The extremity of the rainfall on steep watersheds covered with shallow soils was hypothesized to result in near-equilibrium runoff conditions where peak runoff rates equal the watershed-average peak rainfall rate minus a small constant loss rate. Rain gauge adjusted radar rainfall estimates and indirect peak discharge (IPD) measurements from 16 rivers at watershed areas ranging from 0.9 to 31.4 km2 using the USGS Slope-Area method allowed testing of this hypothesis. IPD measurements were compared against the global envelope of maximum observed flood peaks versus drainage area and against simulations using the U.S. Army Corps of Engineers Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model to detect landslide-affected peak flows. Model parameter values were estimated from the literature. Reasonable agreement was found between GSSHA simulated peak flows and IPD measurements in some watersheds. Results showed that landslide dam failure affected peak flows in 5 of the 16 rivers, with peak flows significantly greater than the envelope curve values for the flood of record for like-sized watersheds on the planet. GSSHA simulated peak discharges showed that the remaining 11 peak flow values were plausible. Simulations of an

  2. External validation of the discharge of hip fracture patients score

    Vochteloo, Anne J. H.; Flikweert, Elvira R.; Tuinebreijer, Wim E.; Maier, Andrea B.; Bloem, Rolf M.; Pilot, Peter; Nelissen, Rob G. H. H.

    This paper reports the external validation of a recently developed instrument, the Discharge of Hip fracture Patients score (DHP) that predicts discharge location on admission in patients living in their own home prior to hip fracture surgery. The DHP (maximum score 100 points) was applied to 125

  3. Chronic obstructive pulmonary disease - adults - discharge

    COPD - adults - discharge; Chronic obstructive airways disease - adults - discharge; Chronic obstructive lung disease - adults - discharge; Chronic bronchitis - adults - discharge; Emphysema - adults - discharge; Bronchitis - ...

  4. Drivers of peak sales for pharmaceutical brands

    Fischer, Marc; Leeflang, Peter S. H.; Verhoef, Peter C.


    Peak sales are an important metric in the pharmaceutical industry. Specifically, managers are focused on the height-of-peak-sales and the time required achieving peak sales. We analyze how order of entry and quality affect the level of peak sales and the time-to-peak-sales of pharmaceutical brands.

  5. Investigation of Nanosecond Pulsed Discharge and Its Audio Characteristics in Atmospheric-pressure Air

    REN Chengyan; RAN Huijuan; WANG Jue; WANG Tao; YAN Ping


    There was no well-resolved mechanism of audible noise caused by corona discharge on UHV transmission lines.Hence we measured the sound pressure of pulsed discharges between needle-plane electrodes under different discharge conditions in air,for revealing the intrinsic relationship between discharge and its audible noise(AN).The relationship between discharge parameters and audio characteristics was drawn from the analysis of the electric and sound signals obtained in experiments.Experiment results showed that nanosecond pulsed discharges produce the sound pressure with a microsecond pulse lagging behind the discharge pulse in their waveforms.The peak value of the sound pulse decreases and its high frequency component gradually attenuates,when the measuring distance from discharges increases.The sound pulses correlate with the discharge current and voltage significantly,especially the current.The audible noise produced by repetitive pulsed discharge increases with the strength,duration,and pulse repetition rate of discharge.

  6. Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride

    Shimizu, T.; Villamayor, M.; Lundin, D.; Helmersson, U.


    A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar-N2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf-N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail.

  7. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.


    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  8. Discharging dynamics in an electrolytic cell

    Feicht, Sarah E.; Frankel, Alexandra E.; Khair, Aditya S.


    We analyze the dynamics of a discharging electrolytic cell comprised of a binary symmetric electrolyte between two planar, parallel blocking electrodes. When a voltage is initially applied, ions in the electrolyte migrate towards the electrodes, forming electrical double layers. After the system reaches steady state and the external current decays to zero, the applied voltage is switched off and the cell discharges, with the ions eventually returning to a uniform spatial concentration. At voltages on the order of the thermal voltage VT=kBT /q ≃25 mV, where kB is Boltzmann's constant, T is temperature, and q is the charge of a proton, experiments on surfactant-doped nonpolar fluids observe that the temporal evolution of the external current during charging and discharging is not symmetric [V. Novotny and M. A. Hopper, J. Electrochem. Soc. 126, 925 (1979), 10.1149/1.2129195; P. Kornilovitch and Y. Jeon, J. Appl. Phys. 109, 064509 (2011), 10.1063/1.3554445]. In fact, at sufficiently large voltages (several VT), the current during discharging is no longer monotonic: it displays a "reverse peak" before decaying in magnitude to zero. We analyze the dynamics of discharging by solving the Poisson-Nernst-Planck equations governing ion transport via asymptotic and numerical techniques in three regimes. First, in the "linear regime" when the applied voltage V is formally much less than VT, the charging and discharging currents are antisymmetric in time; however, the potential and charge density profiles during charging and discharging are asymmetric. The current evolution is on the R C timescale of the cell, λDL /D , where L is the width of the cell, D is the diffusivity of ions, and λD is the Debye length. Second, in the (experimentally relevant) thin-double-layer limit ɛ =λD/L ≪1 , there is a "weakly nonlinear" regime defined by VT≲V ≲VTln(1 /ɛ ) , where the bulk salt concentration is uniform; thus the R C timescale of the evolution of the current magnitude

  9. How important are sediments in the flood peaks generated by a Mediterranean catchment?

    Puertes, Cristina; Francés, Félix


    this, taking into account the land use changes. The historical event simulation demonstrated that the influence of sediments in flood peaks was not very important in the city: the contribution to the flood peaks was a 12% in the first flood wave and a 5% during the second one, with a maximum of 13%. But it must be underlined that the city is on the coast. In fact, upstream the maximum contribution was a 31%. In addition, soil erosion was higher than 53 hm3, sediments deposited volume in the catchment was 34.4 hm3, sediment discharge in the outlet was 18.7 hm3, and water discharge was 192 hm3. In conclusion, although the incorporation of sediment simulation to the hydrological model was not crucial in the flood simulation in the city of Valencia, it can be in other situations and, in any case, from the point of view of sociologic and economic damages, it is not negligible.

  10. The effects of electrode size and discharged power on micro-electro-discharge machining drilling of stainless steel

    Gianluca D’Urso


    Full Text Available This article is about the measurement of actual micro-electro-discharge machining parameters and the statistical analysis of their influence on the process performances. In particular, the discharged power was taken into account as a comprehensive variable able to represent the effect of peak current and voltage on the final result. Thanks to the dedicated signal acquisition system, a correlation among the discharged power and the indexes representing the process parameters was shown. Finally, linear and non-linear regression approaches were implemented in order to obtain predictive equations for the most important aspects of micro-electro-discharge machining, such as the machining time and the electrode wear.

  11. Predicting tile drainage discharge

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes;

    of the water load coming from the tile drainage system is therefore essential. This work aims at predicting tile drainage discharge using dynamic as well as a statistical predictive models. A large dataset of historical tile drain discharge data, daily discharge values as well as yearly average values were......More than 50 % of Danish agricultural areas are expected to be artificial tile drained. Transport of water and nutrients through the tile drain system to the aquatic environment is expected to be significant. For different mitigation strategies such as constructed wetlands an exact knowledge...... used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...


    Luce, J.S.; Smith, L.P.


    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.




    This paper presents a procedure for calculating the effective discharge for rivers with alluvial channels.An alluvial river adjusts the bankfull shape and dimensions of its channel to the wide range of flows that mobilize the boundary sediments. It has been shown that time-averaged river morphology is adjusted to the flow that, over a prolonged period, transports most sediment. This is termed the effective discharge.The effective discharge may be calculated provided that the necessary data are available or can be synthesized. The procedure for effective discharge calculation presented here is designed to have general applicability, have the capability to be applied consistently, and represent the effects of physical processes responsible for determining the channel, dimensions. An example of the calculations necessary and applications of the effective discharge concept are presented.

  14. Micro-Discharge Micro-Thruster


    breakdown at the maximum applied voltage (900 V) in Argon. The back side of the Paschen curve for Ar occurs at a pressure-length (P·d) product of less than...significant capacitance to ground from either lead (~ 100 nF). As small as this is, it had a profound effect on the discharge (see next section). A more space... effect in most thrusters even in the 100 Watt class. For a micro-discharge, even a stray coupling capacitance 50 pF observed for the power leads

  15. Cycle Average Peak Fuel Temperature Prediction Using CAPP/GAMMA+

    Tak, Nam-il; Lee, Hyun Chul; Lim, Hong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    In order to obtain a cycle average maximum fuel temperature without rigorous efforts, a neutronics/thermo-fluid coupled calculation is needed with depletion capability. Recently, a CAPP/GAMMA+ coupled code system has been developed and the initial core of PMR200 was analyzed using the CAPP/GAMMA+ code system. The GAMMA+ code is a system thermo-fluid analysis code and the CAPP code is a neutronics code. The General Atomics proposed that the design limit of the fuel temperature under normal operating conditions should be a cycle-averaged maximum value. Nonetheless, the existing works of Korea Atomic Energy Research Institute (KAERI) only calculated the maximum fuel temperature at a fixed time point, e.g., the beginning of cycle (BOC) just because the calculation capability was not ready for a cycle average value. In this work, a cycle average maximum fuel temperature has been calculated using CAPP/GAMMA+ code system for the equilibrium core of PMR200. The CAPP/GAMMA+ coupled calculation was carried out for the equilibrium core of PMR 200 from BOC to EOC to obtain a cycle average peak fuel temperature. The peak fuel temperature was predicted to be 1372 .deg. C near MOC. However, the cycle average peak fuel temperature was calculated as 1181 .deg. C, which is below the design target of 1250 .deg. C.

  16. Filament Discharge Phenomena in Fingerprint Acquisition by Dielectric Barrier Discharge

    WENG Ming; XU Weijun; LIU Qiang


    In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information.

  17. Capacitor discharge engineering

    Früngel, Frank B A


    High Speed Pulse Technology, Volume III: Capacitor Discharge Engineering covers the production and practical application of capacitor dischargers for the generation and utilization of high speed pulsed of energy in different forms. This nine-chapter volume discusses the principles of electric current, voltage, X-rays, gamma rays, heat, beams of electrons, neutrons and ions, magnetic fields, sound, and shock waves in gases and liquids. Considerable chapters consider the applications of capacitor discharges, such as impulse hardening of steel, ultrapulse welding of precision parts, X-ray flash t

  18. Discharge characteristics of motor units during long-duration contractions.

    Pascoe, Michael A; Holmes, Matthew R; Stuart, Douglas G; Enoka, Roger M


    The purpose of the study was to determine how long humans could sustain the discharge of single motor units during a voluntary contraction. The discharge of motor units in first dorsal interosseus of subjects (27.8 ± 8.1 years old) was recorded for as long as possible. The task was terminated when the isolated motor unit stopped discharging action potentials, despite the ability of the individual to sustain the abduction force. Twenty-three single motor units were recorded. Task duration was 21.4 ± 17.8 min. When analysed across discharge duration, mean discharge rate (10.6 ± 1.8 pulses s(-1)) and mean abduction force (5.5 ± 2.8% maximum) did not change significantly (discharge rate, P = 0.119; and abduction force, P = 0.235). In contrast, the coefficient of variation for interspike interval during the initial 30 s of the task was 22.2 ± 6.0% and increased to 31.9 ± 7.0% during the final 30 s (P < 0.001). All motor units were recruited again after 60 s of rest. Although subjects were able to sustain a relatively constant discharge rate, the cessation of discharge was preceded by a gradual increase in discharge variability. The findings also showed that the maximal duration of human motor unit discharge exceeds that previously reported for the discharge elicited in motor neurons by intracellular current injection in vitro.

  19. Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges

    Pan, Jie; Li, Li; Wang, Yunuan; Xiu, Xianwu; Wang, Chao; Song, Yuzhi


    Atmospheric-pressure argon plasmas have received increasing attention due to their high potential in many industrial and biomedical applications. In this paper, a 1-D fluid model is used for studying the particle density characteristics of the argon plasmas generated by the pulsed dielectric barrier discharges. The temporal evolutions of the axial particle density distributions are illustrated, and the influences of changing the main discharge conditions on the averaged particle densities are researched by independently varying the various discharge conditions. The calculation results show that the electron density and the ion density reach two peaks near the momentary cathodes during the rising and the falling edges of the pulsed voltage. Compared with the charged particle densities, the densities of the resonance state atom Arr and the metastable state atom Arm have more uniform axial distributions, reach higher maximums and decay more slowly. During the platform of the pulsed voltage and the time interval between the pulses, the densities of the excited state atom Ar* are far lower than those of the Arr or the Arm. The averaged particle densities of the different considered particles increase with the increases of the amplitude and the frequency of the pulsed voltage. Narrowing the discharge gap and increasing the relative dielectric constant of the dielectric also contribute to the increase of the averaged particle densities. The effects of reducing the discharge gap distance on the neutral particle densities are more significant than the influences on the charged particle densities. supported by Natural Science Foundation of Shandong Province, China (No. ZR2015AQ008), and Project of Shandong Province Higher Educational Science and Technology Program of China (No. J15LJ04)

  20. Peak loads and network investments in sustainable energy transitions

    Blokhuis, Erik, E-mail: [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands); Brouwers, Bart [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands); Putten, Eric van der [Endinet, Gas and Electricity Network Operations, P.O. Box 2005, 5600CA Eindhoven (Netherlands); Schaefer, Wim [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands)


    Current energy distribution networks are often not equipped for facilitating expected sustainable transitions. Major concerns for future electricity networks are the possibility of peak load increases and the expected growth of decentralized energy generation. In this article, we focus on peak load increases; the effects of possible future developments on peak loads are studied, together with the consequences for the network. The city of Eindhoven (the Netherlands) is used as reference city, for which a scenario is developed in which the assumed future developments adversely influence the maximum peak loads on the network. In this scenario, the total electricity peak load in Eindhoven is expected to increase from 198 MVA in 2009 to 591-633 MVA in 2040. The necessary investments for facilitating the expected increased peak loads are estimated at 305-375 million Euros. Based upon these projections, it is advocated that - contrary to current Dutch policy - choices regarding sustainable transitions should be made from the viewpoint of integral energy systems, evaluating economic implications of changes to generation, grid development, and consumption. Recently applied and finished policies on energy demand reduction showed to be effective; however, additional and connecting policies on energy generation and distribution should be considered on short term. - Highlights: > Sustainable energy transitions can result in major electricity peak load increases. > Introduction of heat pumps and electrical vehicles requires network expansion. > Under worst case assumptions, peak loads in Eindhoven increase with 200% until 2040. > The necessary investment for facilitating this 2040 peak demand is Euro 305-375 million. > Future policy choices should be made from the viewpoint of the integral energy system.

  1. Neurofeedback training for peak performance

    Marek Graczyk


    Full Text Available [b]aim[/b]. One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneous EEG and event related potentials (ERPs. [b]case study[/b]. The case is presented of an Olympic athlete who has lost his performance confidence after injury in sport. He wanted to resume his activities by means of neurofeedback training. His QEEG/ERP parameters were assessed before and after 4 intensive sessions of neurotherapy. Dramatic and statistically significant changes that could not be explained by error measurement were observed in the patient. [b]conclusion[/b]. Neurofeedback training in the subject under study increased the amplitude of the monitoring component of ERPs generated in the anterior cingulate cortex, accompanied by an increase in beta activity over the medial prefrontal cortex. Taking these changes together, it can be concluded that that even a few sessions of neurofeedback in a high performance brain can significantly activate the prefrontal cortical areas associated with increasing confidence in sport performance.

  2. Peak Detection Using Wavelet Transform

    Omar Daoud


    Full Text Available A new work based-wavelet transform is designed to o vercome one of the main drawbacks that found in the present new technologies. Orthogonal Frequency Divi sion Multiplexing (OFDMis proposed in the literature to enhance the multimedia resolution. Ho wever, the high peak power (PAPR values will obstr uct such achievements. Therefore, a new proposition is found in this work, making use of the wavelet transforms methods, and it is divided into three ma in stages; de-noising stage, thresholding stage and then the replacement stage. In order to check the system stages validity; a mat hematical model has been built and its checked afte r using a MATLAB simulation. A simulated bit error ra te (BER achievement will be compared with our previously published work, where an enhancement fro m 8×10 -1 to be 5×10 -1 is achieved. Moreover, these results will be compared to the work found in the l iterature, where we have accomplished around 27% PAPR extra reduction. As a result, the BER performance has been improved for the same bandwidth occupancy. Moreover and due to the de-noise stage, the verification rate ha s been improved to reach 81%. This is in addition t o the noise immunity enhancement.

  3. Abdominal radiation - discharge

    Radiation - abdomen - discharge; Cancer - abdominal radiation; Lymphoma - abdominal radiation ... When you have radiation treatment for cancer, your body goes through changes. About 2 weeks after radiation treatment starts, you might notice changes ...

  4. Chest radiation - discharge

    Radiation - chest - discharge; Cancer - chest radiation; Lymphoma - chest radiation ... When you have radiation treatment for cancer, your body goes through changes. About 2 weeks after your first treatment: It may be hard ...

  5. Breast radiation - discharge

    Radiation - breast - discharge ... away around 4 to 6 weeks after the radiation treatment is over. You may notice changes in ... breast looks or feels (if you are getting radiation after a lumpectomy). These changes include: Soreness or ...

  6. Corneal transplant - discharge

    ... page: // Corneal transplant - discharge To use the sharing features on this page, please enable JavaScript. You had a corneal transplant. Most of the tissue of your cornea (the ...

  7. Brain radiation - discharge

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  8. Pneumonia - children - discharge

    ... this page: // Pneumonia in children - discharge To use the sharing features ... this page, please enable JavaScript. Your child has pneumonia, which is an infection in the lungs. In ...

  9. Pneumonia - adults - discharge

    ... this page: // Pneumonia in adults - discharge To use the sharing features on this page, please enable JavaScript. You have pneumonia, which is an infection in your lungs. In ...

  10. Inguinal hernia - discharge

    ... page: // Inguinal hernia repair - discharge To use the sharing features on ... your child had surgery to repair an inguinal hernia caused by a weakness in the abdominal wall ...

  11. Cosmetic breast surgery - discharge

    ... this page: // Cosmetic breast surgery - discharge To use the sharing features on this page, please enable JavaScript. You had cosmetic breast surgery to change the size or shape ...

  12. Pectus excavatum - discharge

    ... this page: // Pectus excavatum - discharge To use the sharing features on this ... You or your child had surgery to correct pectus excavatum. This is a deformity of the front of ...

  13. Hip fracture - discharge

    ... this page: // Hip fracture - discharge To use the sharing features on this page, please enable JavaScript. Hip fracture surgery is done to repair a break in ...

  14. Pelvic radiation - discharge

    Radiation of the pelvis - discharge; Cancer treatment - pelvic radiation; Prostate cancer - pelvic radiation; Ovarian cancer - pelvic radiation; Cervical cancer - pelvic radiation; Uterine cancer - pelvic radiation; Rectal cancer - pelvic radiation

  15. Effect of air flow on the micro-discharge dynamics in an array of integrated coaxial microhollow dielectric barrier discharges

    Nayak, Gaurav; Du, Yanjun; Brandenburg, Ronny; Bruggeman, Peter J.


    The micro-discharge properties and evolution in a 2D array of integrated coaxial microhollow dielectric barrier discharges are studied by using highly time-resolved electrical and optical diagnostics. The study is focused on the effect of the gas flow rate and gas residence time on discharge properties. The investigated integrated coaxial microhollow discharge geometry allows operating the discharge at exceptionally small residence times, which can be equal to or even smaller than the discharge period, at reasonable gas flow rates. The gas flow has an impact on gas heating, residual humidity, pre-ionization density and the densities of excited and reactive species produced by previous discharges. A unique voltage–charge plot is obtained with elongated periods without discharge activity. A very significant effect of flow on NO emission is observed that relates to the impact of flow on the NO production in these micro-discharges. Using the emission intensities of molecular bands of the second positive system of nitrogen and the first negative system of the nitrogen ion, effective reduced electric field strengths are obtained with a maximum equal to 870 Td. The reduced electric field decreases with increasing gas flow rate. This behavior is consistent with the reduction of the overall discharge intensity due to a reduced amount of charges present in the discharge gap. Both the flow rate and a reduction in water impurity changing the ion mobility can be responsible for the different effective electric field distributions at the highest and no flow conditions.

  16. Identifying discharge practice training needs.

    Lees, L; Emmerson, K

    A training needs analysis tool was developed to identify nurses' discharge training needs and to improve discharge practice. The tool includes 49 elements of discharge practice subdivided into four areas: corporate, operational, clinical and nurse-led discharge. The tool was disseminated to 15 wards on two hospital sites with assistance from the practice development team. Analysis of discharge training is important to assess discharge training needs and to identify staff who may assist with training.

  17. Electric-discharge-pumped nitrogen ion laser

    Laudenslager, J. B.; Pacala, T. J.; Wittig, C.


    The routine operation is described of an N2(+) laser oscillating on the first negative band system of N2(+) which is produced in a preionized transverse discharge device. The discharge design incorporates features which favor the efficient production of the excitation transfer reaction of He2(+) with N2. A capacitive discharge switched by means of a high-current grounded grid thyratron is used to meet the design requirement of a volumetric discharge in high-pressure gas mixtures where the electric discharge need not have an ultrafast rise time (greater than 10 nsec) but should be capable of transferring large quantities of stored electric energy to the gas. A peak power of 180 kW in an 8-nsec laser pulse was obtained with a 0.1% mixture of N2 in helium at a total pressure of 3 atm. The most intense laser oscillations were observed on the (0,1) vibrational transition at 427.8 microns.

  18. Surface micro-discharges on spacecraft dielectrics

    Balmain, K. G.; Cuchanski, M.; Kremer, P. C.


    Extensive measurements on Teflon and Kapton in a scanning electron microscope indicate the existence of a well-defined family of surface micro-discharges characteristic of the dielectric material. For a given small region exposed to the 16-20 kV electron beam, the strongest discharge pulses are similar in shape and amplitude. For Teflon, typical pulse durations are 2-3 ns, rise and fall times are sometimes as low as 0.2 ns, current amplitudes are approximately 100 mA flowing down to the pedestal and the pulses are unidirectional with no ringing. The use of a rapid-scan electron microscope with a secondary-electron imaging system reveals complex charge distributions resembling Lichtenberg figures on a supposedly flat homogeneous dielectric surface. These patterns undergo extensive alteration at each micro-discharge pulse and indicate that both the charging and discharging processes are highly nonuniform over the dielectric surface. The use of floodbeam causes the occurrence of a large-scale macro-discharges, in which a typical peak current is 40 A with a duration of 120 ns.

  19. Evaluation of global land-to-ocean fresh water discharge and evapotranspiration using space-based observations

    Seo, Ki-Weon; Waliser, Duane E.; Tian, Baijun; Famiglietti, James S.; Syed, Tajdarul H.


    SummaryWe estimate global fresh water discharge from land-to-oceans ( Q) and evapotranspiration ( ET) on monthly time scales using a number of complimentary hydrologic data sets. This estimate is possible due to the new capability of measuring oceanic and land water mass changes from GRACE as well as the space-based measurements of oceanic and land precipitation ( P l) and oceanic evaporation. Monthly time series of Q show peaks in July and January, and those of ET show peaks in March, May and August. Our estimates of Q and ET are correlated with P l indicating qualitatively that our estimates capture temporal patterns of Q and ET reasonably well. Comparison of our Q with two other previous estimates based on the Global Runoff Data Centre (GRDC) river gauges network shows that our maximum peak in Q occurs about a month later than previous estimates. In addition, we compare our estimation of Q and ET to 20th century simulations from the WCRP CMIP3 multi-model archive assessed in the IPCC 4th Assessment Report. Runoff ( R) and ET from AOGCMs tend to only exhibit the annual cycle, but the Q estimated in this study exhibits additional semi-annual variations that exists in P l as well. In addition, R from the models shows a maximum peak 2 months earlier than the estimated Q, which is due partly to the river discharge time lag that most AOGCMs do not take into account. These results indicate that current AOGCMs exhibit basic shortcomings in simulating Q and ET accurately. The new method developed here can be a useful constraint on these models and can be useful to close budget of global water balance.

  20. Peak ground acceleration produced by local earthquakes in volcanic areas of Campi Flegrei and Mt. Vesuvius

    S. Petrosino


    Full Text Available The scaling law of the seismic spectrum experimentally calculated at Mt. Vesuvius and Campi Flegrei is used to constrain the estimate of the maximum expected peak acceleration of ground motion.

  1. A simple multi-scale Gaussian smoothing-based strategy for automatic chromatographic peak extraction.

    Fu, Hai-Yan; Guo, Jun-Wei; Yu, Yong-Jie; Li, He-Dong; Cui, Hua-Peng; Liu, Ping-Ping; Wang, Bing; Wang, Sheng; Lu, Peng


    Peak detection is a critical step in chromatographic data analysis. In the present work, we developed a multi-scale Gaussian smoothing-based strategy for accurate peak extraction. The strategy consisted of three stages: background drift correction, peak detection, and peak filtration. Background drift correction was implemented using a moving window strategy. The new peak detection method is a variant of the system used by the well-known MassSpecWavelet, i.e., chromatographic peaks are found at local maximum values under various smoothing window scales. Therefore, peaks can be detected through the ridge lines of maximum values under these window scales, and signals that are monotonously increased/decreased around the peak position could be treated as part of the peak. Instrumental noise was estimated after peak elimination, and a peak filtration strategy was performed to remove peaks with signal-to-noise ratios smaller than 3. The performance of our method was evaluated using two complex datasets. These datasets include essential oil samples for quality control obtained from gas chromatography and tobacco plant samples for metabolic profiling analysis obtained from gas chromatography coupled with mass spectrometry. Results confirmed the reasonability of the developed method.

  2. Facility Location with Double-peaked Preferences

    Filos-Ratsikas, Aris; Li, Minming; Zhang, Jie


    We study the problem of locating a single facility on a real line based on the reports of self-interested agents, when agents have double-peaked preferences, with the peaks being on opposite sides of their locations. We observe that double-peaked preferences capture real-life scenarios and thus...... complement the well-studied notion of single-peaked preferences. We mainly focus on the case where peaks are equidistant from the agents’ locations and discuss how our results extend to more general settings. We show that most of the results for single-peaked preferences do not directly apply to this setting...

  3. Analysis of Peak-to-Peak Current Ripple Amplitude in Seven-Phase PWM Voltage Source Inverters

    Gabriele Grandi


    Full Text Available Multiphase systems are nowadays considered for various industrial applications. Numerous pulse width modulation (PWM schemes for multiphase voltage source inverters with sinusoidal outputs have been developed, but no detailed analysis of the impact of these modulation schemes on the output peak-to-peak current ripple amplitude has been reported. Determination of current ripple in multiphase PWM voltage source inverters is important for both design and control purposes. This paper gives the complete analysis of the peak-to-peak current ripple distribution over a fundamental period for multiphase inverters, with particular reference to seven-phase VSIs. In particular, peak-to-peak current ripple amplitude is analytically determined as a function of the modulation index, and a simplified expression to get its maximum value is carried out. Although reference is made to the centered symmetrical PWM, being the most simple and effective solution to maximize the DC bus utilization, leading to a nearly-optimal modulation to minimize the RMS of the current ripple, the analysis can be readily extended to either discontinuous or asymmetrical modulations, both carrier-based and space vector PWM. A similar approach can be usefully applied to any phase number. The analytical developments for all different sub-cases are verified by numerical simulations.

  4. Modelling groundwater discharge areas using only digital elevation models as input data

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science


    geomorphometric model so that elevation ridges or peaks were given a maximum distribution without overlapping discharge points, the areas classified as 'probably recharge areas'. The hydrological model (ArcGis Hydrological modelling extension) predicted lakes and waterways; these areas were classified as 'probably discharge areas'. The topographic wetness index (TWI) was calculated for the entire calibration area. Statistics for the distribution of TWI areas for 'most likely recharge areas' and 'most likely discharge areas' were calculated. Hitherto unclassified areas with TWI values lower than the 3rd quartile for 'most likely recharge area' were classified as 'probably recharge areas' and areas with higher TWI values than the 1st quartile for 'most likely discharge areas' were classified as 'probably discharge areas'. The remaining areas were classified as 'undefined'. The model was validated with the same DEM, the localities map's wetlands and lakes (discharge areas), and soil map's exposed bedrock exposures (recharge areas) for the area immediately to the east of the calibration area. The models were run with the parameters the calibration gave and a map with five classifications was generated of the validation area. Another 500 randomly distributed points were assigned as discharge areas (lakes and wetlands) and the points were linked to the model map. The results showed that only 1.2% of the points were incorrectly classified, 3.4% were undefined, and 95.4% were correctly classified. Validation with exposed bedrock (recharge areas) gave lower results. 1.0% of the points were incorrectly classified, 13.8% were undefined, and 85.2% were correctly classified. The conclusion is that topography has a significant influence on the distribution of recharge and discharge areas in the landscape.

  5. OECD Maximum Residue Limit Calculator

    With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.

  6. Efficient generation of highly ionized calcium and titanium plasma columns for collisionally excited soft-x-ray lasers in a fast capillary discharge

    Rocca, J.J.; Cortazar, O.D.; Tomasel, F.G.; Szapiro, B.T. (Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States))


    Fast discharges through 1.5-mm-diam capillaries have produced dense Ca and Ti plasma columns with an abundance of Ne-like ions, which are of interest for the development of small-scale, collisionally excited soft-x-ray lasers. Current pulses of 30 ns full width at half maximum and peak currents of less than 70 kA produced plasmas with line emission from ions with charge up to the F-like state. Line emission at the wavelengths of the 3[ital p]-3[ital s] and 3[ital d]-3[ital p] transitions of the Ne-like ions has been observed.

  7. A method for interpolating asymmetric peak shapes in multiplet γ-ray spectra

    WANG Si-Guang; MAO Ya-Jun; TANG Pei-Jia; ZHU Bo; LIANG Yu-Tie


    The peak shapes ofT-rays at various energies must be known before unfolding the multiplet spectra obtained by using semiconductor or scintillation detectors. Traditional methods describe isolated peaks with multi-parameter fitting functions, and assume that most of these parameters do not vary with energy because it is rare to find a spectrum with enough isolated peaks to constrain their dependence. We present an algorithm for interpolating the T-ray profile at any intermediate energy given a pair of isolated T-ray peaks from the spectrum under consideration. The algorithm is tested on experimental data and leads to a good agreement between the interpolated profile and the fitting function. This method is more accurate than the traditional approach, since all aspects of the peak shape are allowed to vary with energy. New definitions of Left-Half Width at Half Maximum, and Right-Half Width at Half Maximum for peak shape description are introduced in this paper.

  8. 27 CFR 9.140 - Atlas Peak.


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Atlas Peak. 9.140 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.140 Atlas Peak. (a) Name. The name of the viticultural area described in this section is “Atlas Peak.”...

  9. Shaping of steel mold surface of lens array by electrical discharge machining with spherical ball electrode.

    Takino, Hideo; Hosaka, Takahiro


    We propose a method for fabricating a spherical lens array mold by electrical discharge machining (EDM) with a ball-type electrode. The electrode is constructed by arranging conductive spherical balls in an array. To fundamentally examine the applicability of the proposed EDM method to the fabrication of lens array molds, we use an electrode having a single ball to shape a lens array mold made of stainless steel with 16 spherical elements, each having a maximum depth of 0.5 mm. As a result, a mold surface is successfully shaped with a peak-to-valley shape accuracy of approximately 10 μm, and an average surface roughness of 0.85 μm.

  10. Microwave Discharge Ion Sources

    Celona, L


    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  11. Artificially triggered lightning and its characteristic discharge parameters in two severe thunderstorms


    The lightning-induced-damages in the mid-latitude regions are usually caused during severe thunder-storms. But the discharge parameters of natural lightning are difficult to be measured. Five lightning flashes have been artificially triggered with the rocket-wire technique during the passage of two severe thunderstorms. The discharge current and close electric field of return stroke in artificially triggered lightning have been obtained in microsecond time resolution by using current measuring systems and electric field change sensors. The results show that the five triggered lightning flashes include 1 to 10 return strokes, and the average return stroke current is 11.9 kA with a maximum of 21.0 kA and a mini-mum of 6.6 kA, similar to the subsequent return strokes in natural lightning. The half peak width of the current waveform is 39 μs, which is much larger than the usual result. The peak current of stroke Ip (kA) and the neutralized charge Q(C) has a relationship of Ip = 18.5Q0.65. The radiation field of return stroke is 5.9 kV·m-1 and 0.39 kV·m-1 at 60 m and 550 m, respectively. The radiation field decreases as r -1.119 with increase of horizontal distance r from the discharge channel. Based on the well-accepted transmission line model, the speed of return stroke is estimated to be about 1.4×108 m·s-1, with a variation range of (1.1―1.6)×108 m·s-1. Because of the similarities of the triggered lightning and natural lightning, the results in this article can be used in the protection design of natural lightning.

  12. Maximum Spectral Luminous Efficacy of White Light

    Murphy, T W


    As lighting efficiency improves, it is useful to understand the theoretical limits to luminous efficacy for light that we perceive as white. Independent of the efficiency with which photons are generated, there exists a spectrally-imposed limit to the luminous efficacy of any source of photons. We find that, depending on the acceptable bandpass and---to a lesser extent---the color temperature of the light, the ideal white light source achieves a spectral luminous efficacy of 250--370 lm/W. This is consistent with previous calculations, but here we explore the maximum luminous efficacy as a function of photopic sensitivity threshold, color temperature, and color rendering index; deriving peak performance as a function of all three parameters. We also present example experimental spectra from a variety of light sources, quantifying the intrinsic efficacy of their spectral distributions.

  13. Peak earthquake response of structures under multi-component excitations

    Jianwei Song; Zach Liang; Yi-Lun Chu; George C.Lee


    Accurate estimation of the peak seismic responses of structures is important in earthquake resistant design.The internal force distributions and the seismic responses of structures are quite complex,since ground motions are multidirectional.One key issue is the uncertainty of the incident angle between the directions of ground motion and the reference axes of the structure.Different assumed seismic incidences can result in difierent peak values within the scope of design spectrum analysis for a given structure and earthquake ground motion record combination.Using time history analysis to determine the maximum structural responses excited by a given earthquake record requires repetitive calculations to determine the critical incident angle.This paper presents a transformation approach for relatively accurate and rapid determination of the maximum peak responses of a linear structure subjected to three-dimensional excitations within all possible seismic incident angles.The responses can be deformations,internal forces,strains and so on.An irregular building structure model is established using SAP2000 program.Several typical earthquake records and an artificial white noise are applied to the structure model to illustrate the variation of the maximum structural responses for different incident angles.Numerical results show that for many structural parameters,the variation can be greater than 100%.This method can be directly applied to time history analysis of structures using existing computer software to determine the peak responses without carrying out the analyses for all possible incident angles.It can also be used to verify and/or modify aseismic designs by using response spectrum analysis.

  14. Connection between ozone concentration and atmosphere circulation at peak Moussala

    Nojarov, Peter; Ivanov, Peter; Kalapov, Ivo; Penev, Ilia; Drenska, Mirolujba


    Connection between ozone concentration and atmosphere circulation is investigated based on measurements at BEO station, peak Moussala (2,925 m a.s.l.), for the period 09 August 2006 to 29 January 2008. Ozone concentration data are collected with UV-analyzer “Environnement O3 42” and meteo data with weather station “Vaisala”. There are measurements of 7Be. Data from NOAA HYSPLIT model for particle trajectories are also used. Eight wind directions and three ranges of wind velocities are employed in the analysis. A comparison of ozone concentrations in upward and downward air transport according to HYSPLIT model is made. The number of cases with ozone concentration above 63 ppb has been counted. Mann-Whitney nonparametric test is employed as a basic statistical method. Correlation between atmosphere pressure and tropospheric ozone content is made. The same is done for 7Be and ozone. The main conclusion is that there is not any local or regional pollution effect detectable at peak Moussala, but most of the ozone measured is due to emissions of hydrocarbons and NO x over a larger region. There could be some regional sources of ozone building substances in southwest direction from peak Moussala. Air transported from the north quarter has higher ozone concentrations compared to the south quarter. In vertical direction, upward transport of air masses shows higher values of ozone concentration. Higher wind velocity is associated with low ozone concentrations at peak Moussala. The annual course of ozone concentration has summer maximum and winter minimum. There is right connection between air pressure and ozone concentration. The same is valid for the correlation between 7Be and ozone. Diurnal ozone course shows daytime maximum in winter and nighttime maximum in summer.

  15. Maximum margin Bayesian network classifiers.

    Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian


    We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

  16. Maximum Entropy in Drug Discovery

    Chih-Yuan Tseng


    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  17. Numerical Simulation of Unsteady Discharge Flow with Fluctuation in Positive Discharge Blower

    LIU Zhengxian; WANG Dou; XU Lianhuan


    The operating performance of positive discharge blower/s markedly influenced by the pulsation of the discharge flow, but difficult to be measured with experimental methods. The internal and discharge flow of positive discharge blower with involute type three-lobe are numerically investigated, both in air cooling and countercurrent cooling conditions by means of computational fluid dynamics (CFD). The unsteady compressible flow equations are solved using RNG κ-ε turbulent model. The finite difference method and the second order upwind difference scheme are applied into discrete equations. In the numerical simulation, the dynamic mesh techniques are used to approach the rotating displacement of cell cubage and the alterability of inlet, outlet flow area. The non-uniform mesh is applied to the rotor-stator coupled area. The reliability of the numerical method is verified by simulating the inner flow and comparing with the semi-empirical theory. The flow flux curves and the distributing of velocity vector showed obvious vortex motion in all the discharge process, both in air cooling and countercurrent cooling conditions. These vortexes with different positions, intension and numbers at different rotating angles have remarkable influences on the discharge flux. For air cooling, the vortex produced a second pulsation with big-amplitude in a cycle, and led to the early appearance of maximum of backflow. For countercurrent cooling, the frequency of pulsation increased due to the pre-inflow, but the hackflow at the outlet is prevented, also the pulsation strength has greatly decreased.

  18. Evaluation of energy transfer and utilization efficiency of azo dye removal by different pulsed electrical discharge modes

    SHEN YongJun; LEI LeCheng; ZHANG XingWang


    The degradation of an azo dye, acid orange 7 (AO7), caused by different high voltage pulsed electrical discharge modes (spark, streamer and corona discharge) induced by the various initial conductivities was investigated. A new type of pulsed high voltage source with thyratron switch and Blumlein pulse forming net (BPFN) was used. The typical discharge waveforms of voltage, current, power, pulse en-ergy and the pictures of spark, streamer and corona discharge modes were presented. The results in-dicated that pulsed electrical discharges led to complete decolorization and substantial decrease of the chemical oxygen demand (COD) of the dye solution. The main intermediate products were monitored by GC-MS. The discharge modes changed from spark to streamer and to corona discharge, and the streamer length decreased with the liquid conductivity increasing. At a constant input power, the peak voltage, peak current, peak power and energy per pulse of the three discharge modes ranked in the following order: spark > streamer > corona. The effective energy transfer efficiency of AO7 removal was higher for spark discharge (57.2%) than for streamer discharge (40.4%) and corona discharge (27.6%). Moreover, the energy utilization efficiency of AO7 removal for spark discharge was 1.035×109 mol/J, and for streamer and corona discharge they were 0.646×10-8 and 0.589×10-9mol/J. Both the energy transfer efficiency and the energy utilization efficiency of spark discharge were the highest.

  19. Simple DCM or CRM analog peak current controller for HV capacitor charge-discharge applications

    Trintis, Ionut; Dimopoulos, Emmanouil; Munk-Nielsen, Stig


    This paper presents a simple analog current controller suitable for buck and boost converter topologies. The controller operates in DCM or CRM, depending on the setup. The experimental results are presented to validate the proposed controller functionality for a high voltage capacitor charge...

  20. 76 FR 35215 - Notice of EPA Workshop on Sanitary Sewer Overflows and Peak Wet Weather Discharges


    ... Pennsylvania Avenue, NW. FOR FURTHER INFORMATION CONTACT: For further information about this notice, contact... or e-mail: . SUPPLEMENTARY INFORMATION: I. Background Properly designed..., line breaks, sewer defects that allow storm water and groundwater to overload the system, lapses in...



    Vaginal infection is one of the top 25 reasons for women to consult doctors in the. USA. The 3 most common ... VAGINAL DISCHARGE IN POSTMENOPAUSAL WOMEN. In this age group, the .... More than one host fac- tor may be involved and ...

  2. Novel Molecular Discharges

    Hilbig, R.; Koerber, A.; Schwan, S.; Hayashi, D.


    A systematic investigation into halides and ~oxides showed the high potential of transition metal oxides as visible radiators for highly efficient gas discharge light sources. Zirconium monoxide (ZrO) has been identified as most promising candidate combining highly attractive green and red emission

  3. Electrical Discharge Machining.

    Montgomery, C. M.

    The manual is for use by students learning electrical discharge machining (EDM). It consists of eight units divided into several lessons, each designed to meet one of the stated objectives for the unit. The units deal with: introduction to and advantages of EDM, the EDM process, basic components of EDM, reaction between forming tool and workpiece,…

  4. Flight Model Discharge System


    Dielectric Sensor ................................... 12 5 ESA S/N 001 ......................................... 24 6 Preliminary Test Sequence...71 28 Optical Transmission Loss of Contamination "Witness" Slide 3 .................................. 72 29 Apparatus used in FMDS Spectroscopic...Monitor ( TPU ). This sensor detects the electromagnetic pulses generated by the onset of arcing. (2) An active discharge device (plasma source). (3) A

  5. Impact of the definition of peak standardized uptake value on quantification of treatment response.

    Vanderhoek, Matt; Perlman, Scott B; Jeraj, Robert


    PET-based treatment response assessment typically measures the change in maximum standardized uptake value (SUV(max)), which is adversely affected by noise. Peak SUV (SUV(peak)) has been recommended as a more robust alternative, but its associated region of interest (ROI(peak)) is not uniquely defined. We investigated the impact of different ROI(peak) definitions on quantification of SUV(peak) and tumor response. Seventeen patients with solid malignancies were treated with a multitargeted receptor tyrosine kinase inhibitor resulting in a variety of responses. Using the cellular proliferation marker 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT), whole-body PET/CT scans were acquired at baseline and during treatment. (18)F-FLT-avid lesions (∼2/patient) were segmented on PET images, and tumor response was assessed via the relative change in SUV(peak). For each tumor, 24 different SUV(peaks) were determined by changing ROI(peak) shape (circles vs. spheres), size (7.5-20 mm), and location (centered on SUV(max) vs. placed in highest-uptake region), encompassing different definitions from the literature. Within each tumor, variations in the 24 SUV(peaks) and tumor responses were measured using coefficient of variation (CV), standardized deviation (SD), and range. For each ROI(peak) definition, a population average SUV(peak) and tumor response were determined over all tumors. A substantial variation in both SUV(peak) and tumor response resulted from changing the ROI(peak) definition. The variable ROI(peak) definition led to an intratumor SUV(peak) variation ranging from 49% above to 46% below the mean (CV, 17%) and an intratumor SUV(peak) response variation ranging from 49% above to 35% below the mean (SD, 9%). The variable ROI(peak) definition led to a population average SUV(peak) variation ranging from 24% above to 28% below the mean (CV, 14%) and a population average SUV(peak) response variation ranging from only 3% above to 3% below the mean (SD, 2%). The size of ROI(peak

  6. Estimating ground water discharge by hydrograph separation.

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E


    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives.

  7. Influence of Climate Change on River Discharge in Austria

    Robert A. Goler


    Full Text Available The effect of climate change on the river discharge characteristics in four catchment basins within Austria is investigated using a hydrological model. Input for the model are daily climate data generated from three regional climate models (RCMs over the time period 1951–2100 using the A1B emission scenario. Due to the complex terrain of the basins, the climate data has been downscaled to a resolution of 1km×1km$1\\,\\text{km}\\times1\\,\\text{km}$. The hydrological model includes processes such as meltwater from snow and glaciers; surface, subsurface, and groundwater flows; and evapotranspiration. The modelling results show that, although only one RCM exhibits a significant reduction in the mean annual discharge towards the end of the 21st century, all RCMs exhibit significant changes in the seasonal distribution of the discharge. In particular, for basins whose discharge is dependent on water stored as snow, there will be a shift in the time of maximum river discharge to earlier in the year as the snow and ice melt earlier. During the winter months the discharge is forecasted to be higher than at present, which would lead to the number of days of low discharge being reduced. However, the earlier snow melt means that the available water for the summer months will be reduced, leading to lower discharges than present, and thus an increase in the number of low discharge days.

  8. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    Pham, T.H.; Rosea, B.; Wilkins, S.


    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  9. An experimental system for controlled exposure of biological samples to electrostatic discharges.

    Marjanovič, Igor; Kotnik, Tadej


    Electrostatic discharges occur naturally as lightning strokes, and artificially in light sources and in materials processing. When an electrostatic discharge interacts with living matter, the basic physical effects can be accompanied by biophysical and biochemical phenomena, including cell excitation, electroporation, and electrofusion. To study these phenomena, we developed an experimental system that provides easy sample insertion and removal, protection from airborne particles, observability during the experiment, accurate discharge origin positioning, discharge delivery into the sample either through an electric arc with adjustable air gap width or through direct contact, and reliable electrical insulation where required. We tested the system by assessing irreversible electroporation of Escherichia coli bacteria (15 mm discharge arc, 100 A peak current, 0.1 μs zero-to-peak time, 0.2 μs peak-to-halving time), and gene electrotransfer into CHO cells (7 mm discharge arc, 14 A peak current, 0.5 μs zero-to-peak time, 1.0 μs peak-to-halving time). Exposures to natural lightning stroke can also be studied with this system, as due to radial current dissipation, the conditions achieved by a stroke at a particular distance from its entry are also achieved by an artificial discharge with electric current downscaled in magnitude, but similar in time course, correspondingly closer to its entry.

  10. The Maximum Density of Water.

    Greenslade, Thomas B., Jr.


    Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)

  11. Abolishing the maximum tension principle

    Dabrowski, Mariusz P


    We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^2/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  12. Abolishing the maximum tension principle

    Mariusz P. Da̧browski


    Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  13. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    Ou, Linjun; Cao, Jian


    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  14. Localized bedrock aquifer distribution explains discharge from a headwater catchment

    Kosugi, Ken'ichirou; Fujimoto, Masamitsu; Katsura, Shin'ya; Kato, Hiroyuki; Sando, Yoshiki; Mizuyama, Takahisa


    Understanding a discharge hydrograph is one of the leading interests in catchment hydrology. Recent research has provided credible information on the importance of bedrock groundwater on discharge hydrographs from headwater catchments. However, intensive monitoring of bedrock groundwater is rare in mountains with steep topography. Hence, how bedrock groundwater controls discharge from a steep headwater catchment is in dispute. In this study, we conducted long-term hydrological observations using densely located bedrock wells in a headwater catchment underlain by granitic bedrock. The catchment has steep topography affected by diastrophic activities. Results showed a fairly regionalized distribution of bedrock aquifers within a scale of tens of meters, consisting of upper, middle, and lower aquifers, instead of a gradual and continuous decline in water level from ridge to valley bottom. This was presumably attributable to the unique bedrock structure; fault lines developed in the watershed worked to form divides between the bedrock aquifers. Spatial expanse of each aquifer and the interaction among aquifers were key factors to explain gentle and considerable variations in the base flow discharge and triple-peak discharge responses of the observed hydrograph. A simple model was developed to simulate the discharge hydrograph, which computed each of the contributions from the soil mantle groundwater, from the lower aquifer, and from the middle aquifer to the discharge. The modeling results generally succeeded in reproducing the observed hydrograph. Thus, this study demonstrated that understanding regionalized bedrock aquifer distribution is pivotal for explaining discharge hydrograph from headwater catchments that have been affected by diastrophic activities.

  15. Discharge pulse phenomenology

    Frederickson, A. R.


    A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.

  16. A numerical study of planar discharge motion

    Benkhaldoun F.


    Full Text Available Presented paper describes a numerical study of discharge plasma motion. This non-stationary phenomenon with steep gradients and sharp peaks in unknowns is described as a coupled problem of convection-diffusion equation with source term for electron, ion densities and Poisson’s equation for electric potential. The numerical method is 2nd order of accuracy in space and time and it uses dynamical adaptation of unstructured triangular mesh. Results of numerical studies included size of computational domain, type of boundary conditions and numerical convergence test are presented.

  17. Analysis of radiofrequency discharges in plasma

    Kumar, Devendra; McGlynn, Sean P.


    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition.

  18. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.


    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  19. The Maximum Energy of Wavelet Decomposition Approximation -Related Adaptive Wavelet De-Nosing for Partial Discharge UHF Pulse in GIS%基于小波分解尺度系数能量最大原则的GIS局部放电超高频信号自适应小波去噪

    李化; 杨新春; 李剑; 陈娇; 程昌奎


    抑制干扰是GIS局部放电在线监测的关键技术之一。尽管局部放电超高频检测方法能够有效避开低频干扰,但来自测量系统的白噪声仍然为准确测量局部放电带来困难。为有效抑制白噪声,提高局部放电超高频法的测量精度,本文提出一种用于GIS局部放电超高频信号的自适应小波分解去噪算法,该算法基于每层小波分解尺度系数能量最大的原则,逐层自适应选取最优的小波进行分解,并结合Donoho提出的软阈值法进行去噪。对人工绝缘缺陷产生的四种GIS超高频信号的去噪结果证明了该算法较其他小波算法能更好地去除白噪声且去噪后信号波形畸变较小,具有很好的应用前景。%Interference suppression was one of the key technologies in on-line partial discharge(PD) monitoring of gas insulated switchgear(GIS). Although ultra-high-frequency (UHF) is qualified to avoid low-frequency noises, the system white noise from the high voltage transmission line still make it difficult to accurately measure the level of PD. For active inhibition of the white noise interference and improving the precision of the UHF detection methods, this paper presents a adaptive de-noising scheme, which is suitable for de-noising UHF signal detected by the UHF detection system of PD in GIS. The method utilizes various basic wavelet to decompose a signal, and calculate and compare the signal energies caused by decomposition using different wavelets in each scale. The basic wavelet corresponding to the maximum signal energy is considered as the optimum wavelet in the current scale, thus the optimum wavelets family of all the scales is obtained, and the soft threshold function presented by Donoho is used to de-nosing. The result of de-noising a UHF signal generated by an artificial insulation defect convinces that the adaptive wavelet de-noising method is more effective to suppress the white noise mixed in

  20. Electrostatic Discharge Training Manual



  1. Electrochemical Discharge Machining Process

    Anjali V. Kulkarni


    Full Text Available Electrochemical discharge machining process is evolving as a promising micromachiningprocess. The experimental investigations in the present work substantiate this trend. In the presentwork, in situ, synchronised, transient temperature and current measurements have been carriedout. The need for the transient measurements arose due to the time-varying nature of the dischargeformation and time varying circuit current. Synchronised and transient measurements revealedthe discrete nature of the process. It also helped in formulating the basic mechanism for thedischarge formation and the material removal in the process. Temperature profile on workpieceand in electrochemical discharge machining cell is experimentally measured using pyrometer,and two varieties of K-type thermocouples. Surface topography of the discharge-affected zoneson the workpiece has been carried out using scanning electron microscope. Measurements andsurface topographical studies reveal the potential use of this process for machining in micronregime. With careful experimental set-up design, suitable supply voltage and its polarity, theprocess can be applied for both micromachining and micro-deposition. It can be extended formachining and or deposition of wide range of materials.

  2. Microhollow cathode discharges

    Schoenbach, K. H.; Moselhy, M.; Shi, W.; Bentley, R.


    By reducing the dimensions of hollow cathodes into the hundred micrometer range, stable, direct current, high (atmospheric) pressure glow discharges in rare gases, rare gas-halide mixtures and in air could be generated. The electron energy distribution in these microdischarges is non-Maxwellian, with a pronounced high-energy tail. The high electron energy together with the high gas density, which favors three-body collisions, is the reason for an efficient excimer generation in these microplasmas. Excimer efficiencies from 1% to 9% have been measured for argon, xenon, argon fluoride, and xenon chloride direct current excimer emitters, with a radiant excimer emittance of up to 2 W/cm2 for xenon. Adding small amounts of oxygen to argon has allowed us to generate vacuum ultraviolet line radiation at 130.5 nm with an efficiency approaching 1%. Pulsing xenon discharges with nanosecond electrical pulses has led to an increase in intensity to 15 W/cm2 and to a simultaneous increase in efficiency to more than 20%. Operating the discharges in an abnormal glow mode has allowed us to generate microdischarge arrays without individual ballast. Applications of these plasma arrays are excimer lamps and plasma reactors.

  3. Modeling electronegative plasma discharge

    Lichtenberg, A.J.; Lieberman, M.A. [Univ. of California, Berkley, CA (United States)


    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.

  4. Maximum Genus of Strong Embeddings

    Er-ling Wei; Yan-pei Liu; Han Ren


    The strong embedding conjecture states that any 2-connected graph has a strong embedding on some surface. It implies the circuit double cover conjecture: Any 2-connected graph has a circuit double cover.Conversely, it is not true. But for a 3-regular graph, the two conjectures are equivalent. In this paper, a characterization of graphs having a strong embedding with exactly 3 faces, which is the strong embedding of maximum genus, is given. In addition, some graphs with the property are provided. More generally, an upper bound of the maximum genus of strong embeddings of a graph is presented too. Lastly, it is shown that the interpolation theorem is true to planar Halin graph.

  5. D(Maximum)=P(Argmaximum)

    Remizov, Ivan D


    In this note, we represent a subdifferential of a maximum functional defined on the space of all real-valued continuous functions on a given metric compact set. For a given argument, $f$ it coincides with the set of all probability measures on the set of points maximizing $f$ on the initial compact set. This complete characterization lies in the heart of several important identities in microeconomics, such as Roy's identity, Sheppard's lemma, as well as duality theory in production and linear programming.

  6. Spleen removal - open - adults - discharge

    Splenectomy - adult - discharge; Spleen removal - adult - discharge ... You had surgery to remove your spleen. This operation is called splenectomy . The surgeon made a cut (incision) in the middle of your belly or on the left side ...

  7. Theory of gas discharge plasma

    Smirnov, Boris M


    This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.

  8. The Testability of Maximum Magnitude

    Clements, R.; Schorlemmer, D.; Gonzalez, A.; Zoeller, G.; Schneider, M.


    Recent disasters caused by earthquakes of unexpectedly large magnitude (such as Tohoku) illustrate the need for reliable assessments of the seismic hazard. Estimates of the maximum possible magnitude M at a given fault or in a particular zone are essential parameters in probabilistic seismic hazard assessment (PSHA), but their accuracy remains untested. In this study, we discuss the testability of long-term and short-term M estimates and the limitations that arise from testing such rare events. Of considerable importance is whether or not those limitations imply a lack of testability of a useful maximum magnitude estimate, and whether this should have any influence on current PSHA methodology. We use a simple extreme value theory approach to derive a probability distribution for the expected maximum magnitude in a future time interval, and we perform a sensitivity analysis on this distribution to determine if there is a reasonable avenue available for testing M estimates as they are commonly reported today: devoid of an appropriate probability distribution of their own and estimated only for infinite time (or relatively large untestable periods). Our results imply that any attempt at testing such estimates is futile, and that the distribution is highly sensitive to M estimates only under certain optimal conditions that are rarely observed in practice. In the future we suggest that PSHA modelers be brutally honest about the uncertainty of M estimates, or must find a way to decrease its influence on the estimated hazard.

  9. Alternative Multiview Maximum Entropy Discrimination.

    Chao, Guoqing; Sun, Shiliang


    Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on maximum entropy and maximum margin principles, and can produce hard-margin support vector machines under some assumptions. Recently, the multiview version of MED multiview MED (MVMED) was proposed. In this paper, we try to explore a more natural MVMED framework by assuming two separate distributions p1( Θ1) over the first-view classifier parameter Θ1 and p2( Θ2) over the second-view classifier parameter Θ2 . We name the new MVMED framework as alternative MVMED (AMVMED), which enforces the posteriors of two view margins to be equal. The proposed AMVMED is more flexible than the existing MVMED, because compared with MVMED, which optimizes one relative entropy, AMVMED assigns one relative entropy term to each of the two views, thus incorporating a tradeoff between the two views. We give the detailed solving procedure, which can be divided into two steps. The first step is solving our optimization problem without considering the equal margin posteriors from two views, and then, in the second step, we consider the equal posteriors. Experimental results on multiple real-world data sets verify the effectiveness of the AMVMED, and comparisons with MVMED are also reported.

  10. Do dark matter halos explain lensing peaks?

    Zorrilla Matilla, José Manuel; Haiman, Zoltán; Hsu, Daniel; Gupta, Arushi; Petri, Andrea


    We have investigated a recently proposed halo-based model, Camelus, for predicting weak-lensing peak counts, and compared its results over a collection of 162 cosmologies with those from N-body simulations. While counts from both models agree for peaks with S /N >1 (where S /N is the ratio of the peak height to the r.m.s. shape noise), we find ≈50 % fewer counts for peaks near S /N =0 and significantly higher counts in the negative S /N tail. Adding shape noise reduces the differences to within 20% for all cosmologies. We also found larger covariances that are more sensitive to cosmological parameters. As a result, credibility regions in the {Ωm,σ8} are ≈30 % larger. Even though the credible contours are commensurate, each model draws its predictive power from different types of peaks. Low peaks, especially those with 2 important cosmological information in N-body data, as shown in previous studies, but Camelus constrains cosmology almost exclusively from high significance peaks (S /N >3 ). Our results confirm the importance of using a cosmology-dependent covariance with at least a 14% improvement in parameter constraints. We identified the covariance estimation as the main driver behind differences in inference, and suggest possible ways to make Camelus even more useful as a highly accurate peak count emulator.

  11. Degradation of the Bragg peak due to inhomogeneities.

    Urie, M; Goitein, M; Holley, W R; Chen, G T


    The rapid fall-off of dose at the end of range of heavy charged particle beams has the potential in therapeutic applications of sparing critical structures just distal to the target volume. Here we explored the effects of highly inhomogeneous regions on this desirable depth-dose characteristic. The proton depth-dose distribution behind a lucite-air interface parallel to the beam was bimodal, indicating the presence of two groups of protons with different residual ranges, creating a step-like depth-dose distribution at the end of range. The residual ranges became more spread out as the interface was angled at 3 degrees, and still more at 6 degrees, to the direction of the beam. A second experiment showed little significant effect on the distal depth-dose of protons having passed through a mosaic of teflon and lucite. Anatomic studies demonstrated significant effects of complex fine inhomogeneities on the end of range characteristics. Monoenergetic protons passing through the petrous ridges and mastoid air cells in the base of skull showed a dramatic degradation of the distal Bragg peak. In beams with spread out Bragg peaks passing through regions of the base of skull, the distal fall-off from 90 to 20% dose was increased from its nominal 6 to well over 32 mm. Heavy ions showed a corresponding degradation in their ends of range. In the worst case in the base of skull region, a monoenergetic neon beam showed a broadening of the full width at half maximum of the Bragg peak to over 15 mm (compared with 4 mm in a homogeneous unit density medium). A similar effect was found with carbon ions in the abdomen, where the full width at half maximum of the Bragg peak (nominally 5.5 mm) was found to be greater than 25 mm behind gas-soft-tissue interfaces. We address the implications of these data for dose computation with heavy charged particles.

  12. Numerical and experimental investigations of submarine groundwater discharge to a coastal lagoon

    Haider, Kinza

    The main goal of this study is to understand and estimate the amount of submarine groundwater discharge into Ringkøbing Fjord from shallow and deep aquifer systems at the Eastern shoreline from Ringkøbing catchment in Western Denmark. In order to accomplish this objective, the study was initiated...... of the groundwater discharge occurred near the shoreline of the lagoon, but also off-shore discharge from deep confined aquifers system occurred at places where confining clay layers are eroded by buried valleys. The simulated fresh groundwater discharge was a non-negligible component, 59 % of recharge on the lagoon...... discharge pattern and brackish water – freshwater interface movement on the same transects. Groundwater discharge distribution showed a non-exponential pattern from shoreline to offshore with a small peak around the shoreline and two larger peaks farther offshore, contrary to existing literature...

  13. Electrocapillary instability of magnetic fluid peak

    Mkrtchyan, Levon; Dikansky, Yuri


    The paper presents an experimental study of the capillary electrostatic instability occurring under effect of a constant electric field on a magnetic fluid individual peak. The peaks under study occur at disintegration of a magnetic fluid layer applied on a flat electrode surface under effect of a perpendicular magnetic field. The electrocapillary instability shows itself as an emission of charged drops jets from the peak point in direction of the opposing electrode. The charged drops emission repeats periodically and results in the peak shape pulsations. It is shown that a magnetic field affects the electrocapillary instability occurrence regularities and can stimulate its development. The critical electric and magnetic field strengths at which the instability occurs have been measured; their dependence on the peak size is shown. The hysteresis in the system has been studied; it consists in that the charged drops emission stops at a lesser electric (or magnetic) field strength than that of the initial occurr...

  14. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu


    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  15. Measurement of radiation and temperature of cathod spots in excimer laser discharge; Ekishima reza reiki hodennai ni fukumareru inkyoku kiten no kogakuteki kansoku to ondo no sokutei

    Minamitani, Y.; Nakatani, H. [Mitsubishi Electric Corp., Tokyo (Japan)


    Excimer laser is used in various fields such as luminous source for steppers, annealing treatment, ablation process, nuclear fusion and so on. In this paper, the radiation timing and gas temperature of cathode spots, streamer discharges and glow discharges in KrF excimer are measured by observing the radiating spectra thereof. The following conclusions are obtained from the results of the present study. Cathode spots begin to radiate at about 20ns after the discharge initiation, then the first and second radiation peaks are observed respectively when the discharge current reversing after passing zero point and the reserved discharged current approaching zero point. Streamer discharge makes flashover between electrodes at the second radiation peak of cathode spots, while the glow discharges almost disappear when streamer discharges occurring. The temperatures of cathode spots and glow discharge as 5500K and 2600K respectively are almost constant and independent upon the discharging voltage of laser. 14 refs., 12 figs.

  16. Ordinary High Flows and the Stage-Discharge Relationship in the Arid West Region


 Figure 12. Daily instantaneous peak discharge percent greater than the daily mean discharge at Agua Fria...45
 Figure 35. Agua Fria...Moenkopi Wash, Dry Beaver Creek, Agua Fria River, and New River Semiarid; Potential evaporation exceeds precipitation; Temperature above

  17. Forecasting the Peak of the Present Solar Activity Cycle

    Hamid, Rabab; Marzouk, Beshir


    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.


    L.S. Yevdoshenko


    Full Text Available Operation of two designs of compact multigap dischargers has been investigated in a high-frequency switching mode. It is experimentally revealed that the rational length of single discharge gaps in the designs is 0.3 mm, and the maximum switching frequency is 27000 discharges per second under long-term stable operation of the dischargers. It is shown that in pulsed corona discharge reactors, the pulse front sharpening results in increasing the operating electric field strength by 1.3 – 1.8 times.

  19. Cacti with maximum Kirchhoff index

    Wang, Wen-Rui; Pan, Xiang-Feng


    The concept of resistance distance was first proposed by Klein and Randi\\'c. The Kirchhoff index $Kf(G)$ of a graph $G$ is the sum of resistance distance between all pairs of vertices in $G$. A connected graph $G$ is called a cactus if each block of $G$ is either an edge or a cycle. Let $Cat(n;t)$ be the set of connected cacti possessing $n$ vertices and $t$ cycles, where $0\\leq t \\leq \\lfloor\\frac{n-1}{2}\\rfloor$. In this paper, the maximum kirchhoff index of cacti are characterized, as well...

  20. Generic maximum likely scale selection

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo


    The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...... on second order moments of multiple measurements outputs at a fixed location. These measurements, which reflect local image structure, consist in the cases considered here of Gaussian derivatives taken at several scales and/or having different derivative orders....

  1. The Origin of Weak Lensing Convergence Peaks

    Liu, Jia


    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on $\\Omega_m$ and $\\sigma_8$ are improved by a factor of up to ~ 2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg$^2$ Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height $\\kappa$ >3.5 $\\sigma_\\kappa$, where $\\sigma_\\kappa$ is the r.m.s. of the convergence $\\kappa$) are typically due to one single massive halo of ~$10^{15}M_\\odot$, low peaks ($\\kappa$ ~ their virial radii), compared with ~0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our fi...

  2. Statistical extremes and peak factors in wind-induced vibration of tall buildings

    Ming-feng HUANG; Chun-man CHAN; Wen-juan LOU; Kenny Chung-Siu KWOK


    In the structural design of tall buildings,peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations.Vanmarcke's peak factor is directly related to an explicit measure of structural reliability against a Gaussian response process.We review the use of this factor for time-variant reliability design by comparing it to the conventional Davenport's peak factor.Based on the asymptotic theory of statistical extremes,a new closed-form peak factor,the so-called Gamma peak factor,can be obtained for a non-Gaussian resultant response characterized by a Rayleigh distribution process.Using the Gamma peak factor,a combined peak factor method was developed for predicting the expected maximum resultant responses of a building undergoing lateral-torsional vibration.The effects of the standard deviation ratio of two sway components and the inter-component correlation on the evaluation of peak resultant response were also investigated.Utilizing wind tunnel data derived from synchronous multi-pressure measurements,we carried out a wind-induced time history response analysis of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building to validate the applicability of the Gamma peak factor to the prediction of the peak resultant acceleration.Results from the building example indicated that the use of the Gamma peak factor enables accurate predictions to be made of the mean extreme resultant acceleration responses for dynamic serviceability performance design of modern tall buildings.

  3. An experimental study of high power microwave pulsed discharge in nitrogen

    Mesko, M; Bonaventura, Z; Vasina, P; Kudrle, V; Talsky, A; Trunec, D; Frgala, Z; Janca, J [Department of Physical Electronics, Masaryk University, Kotlarska 2, CZ-61137 Brno (Czech Republic)


    We investigated a plasma excited by high power pulsed microwaves (MWs) (pulse duration 2.5 {mu}s, repetition rate 400 Hz, peak power 10{sup 5} W, frequency 9.4 GHz) in nitrogen at reduced pressure (pressure range 10-2000 Pa) with the aim of a better understanding of such types of discharge. The construction of the experimental device suppresses the plasma-wall interactions and therefore the volume processes are predominant. To obtain the temporal evolution of the electron density we used two MW interferometers at frequencies of 15 and 35 GHz with dielectric rod waveguides which gives them the capability of localized measurements. We estimated the effective collision frequency from the absorption of a measurement beam. Time resolved optical emission spectroscopy of the 1st negative system and the 2nd positive system was carried out, too. Due to a high power input the discharge dynamics was fast and the steady state was typically reached in 1 {mu}s. We found that the effective collision frequency has the same temporal behaviour as the 2nd positive system of N{sub 2}, including a characteristic maximum at the beginning of the pulse.

  4. Continuous pile discharging machine

    Smith, Phillips P.


    A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug.

  5. The evolution and present status of the study on peak oil in China

    Pang Xiongqi; Zhao Lin; Feng Lianyong; Meng Qingyang; Tang Xu; Li Junchen


    Peak oil theory is a theory concerning long-term oil reserves and the rate of oil production.Peak oil refers to the maximum rate of the production of oil or gas in any area under consideration.Its inevitability is analyzed from three aspects.The factors that influence peak oil and their mechanisms are discussed.These include the amount of resources, the discovery maturity of resources, the depletion rate of reserves and the demand for oil.The advance in the study of peak oil in China is divided into three stages.The main characteristics, main researchers, forecast results and research methods are described in each stage.The progress of the study of peak oil in China is summarized and the present problems are analyzed.Finally three development trends of peak oil study in China are presented.

  6. Peak load arrangements : Assessment of Nordel guidelines


    Two Nordic countries, Sweden and Finland, have legislation that empowers the TSO to acquire designated peak load resources to mitigate the risk for shortage situations during the winter. In Denmark, the system operator procures resources to maintain a satisfactory level of security of supply. In Norway the TSO has set up a Regulation Power Option Market (RKOM) to secure a satisfactory level of operational reserves at all times, also in winter with high load demand. Only the arrangements in Finland and Sweden fall under the heading of Peak Load Arrangements defined in Nordel Guidelines. NordREG has been invited by the Electricity Market Group (EMG) to evaluate Nordel's proposal for 'Guidelines for transitional Peak Load Arrangements'. The EMG has also financed a study made by EC Group to support NordREG in the evaluation of the proposal. The study has been taken into account in NordREG's evaluation. In parallel to the EMG task, the Swedish regulator, the Energy Markets Inspectorate, has been given the task by the Swedish government to investigate a long term solution of the peak load issue. The Swedish and Finnish TSOs have together with Nord Pool Spot worked on finding a harmonized solution for activation of the peak load reserves in the market. An agreement accepted by the relevant authorities was reached in early January 2009, and the arrangement has been implemented since 19th January 2009. NordREG views that the proposed Nordel guidelines have served as a starting point for the presently agreed procedure. However, NordREG does not see any need to further develop the Nordel guidelines for peak load arrangements. NordREG agrees with Nordel that the market should be designed to solve peak load problems through proper incentives to market players. NordREG presumes that the relevant authorities in each country will take decisions on the need for any peak load arrangement to ensure security of supply. NordREG proposes that such decisions should be

  7. Economics and Maximum Entropy Production

    Lorenz, R. D.


    Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.

  8. Impact of discharge data uncertainty on nutrient load uncertainty

    Westerberg, Ida; Gustavsson, Hanna; Sonesten, Lars


    Uncertainty in the rating-curve model of the stage-discharge relationship leads to uncertainty in discharge time series. These uncertainties in turn affect many other analyses based on discharge data, such as nutrient load estimations. It is important to understand how large the impact of discharge data uncertainty is on such analyses, since they are often used as the basis to take important environmental management decisions. In the Baltic Sea basin, nutrient load estimates from river mouths are a central information basis for managing and reducing eutrophication in the Baltic Sea. In this study we investigated rating curve uncertainty and its propagation to discharge data uncertainty and thereafter to uncertainty in the load of phosphorous and nitrogen for twelve Swedish river mouths. We estimated rating curve uncertainty using the Voting Point method, which accounts for random and epistemic errors in the stage-discharge relation and allows drawing multiple rating-curve realisations consistent with the total uncertainty. We sampled 40,000 rating curves, and for each sampled curve we calculated a discharge time series from 15-minute water level data for the period 2005-2014. Each discharge time series was then aggregated to daily scale and used to calculate the load of phosphorous and nitrogen from linearly interpolated monthly water samples, following the currently used methodology for load estimation. Finally the yearly load estimates were calculated and we thus obtained distributions with 40,000 load realisations per year - one for each rating curve. We analysed how the rating curve uncertainty propagated to the discharge time series at different temporal resolutions, and its impact on the yearly load estimates. Two shorter periods of daily water quality sampling around the spring flood peak allowed a comparison of load uncertainty magnitudes resulting from discharge data with those resulting from the monthly water quality sampling.

  9. Estimation of the Probable Maximum Flood for a Small Lowland River in Poland

    Banasik, K.; Hejduk, L.


    The planning, designe and use of hydrotechnical structures often requires the assesment of maximu flood potentials. The most common term applied to this upper limit of flooding is the probable maximum flood (PMF). The PMP/UH (probable maximum precipitation/unit hydrograph) method has been used in the study to predict PMF from a small agricultural lowland river basin of Zagozdzonka (left tributary of Vistula river) in Poland. The river basin, located about 100 km south of Warsaw, with an area - upstream the gauge of Plachty - of 82 km2, has been investigated by Department of Water Engineering and Environmenal Restoration of Warsaw University of Life Sciences - SGGW since 1962. Over 40-year flow record was used in previous investigation for predicting T-year flood discharge (Banasik et al., 2003). The objective here was to estimate the PMF using the PMP/UH method and to compare the results with the 100-year flood. A new relation of depth-duration curve of PMP for the local climatic condition has been developed based on Polish maximum observed rainfall data (Ozga-Zielinska & Ozga-Zielinski, 2003). Exponential formula, with the value of exponent of 0.47, i.e. close to the exponent in formula for world PMP and also in the formula of PMP for Great Britain (Wilson, 1993), gives the rainfall depth about 40% lower than the Wilson's one. The effective rainfall (runoff volume) has been estimated from the PMP of various duration using the CN-method (USDA-SCS, 1986). The CN value as well as parameters of the IUH model (Nash, 1957) have been established from the 27 rainfall-runoff events, recorded in the river basin in the period 1980-2004. Varibility of the parameter values with the size of the events will be discussed in the paper. The results of the analyse have shown that the peak discharge of the PMF is 4.5 times larger then 100-year flood, and volume ratio of the respective direct hydrographs caused by rainfall events of critical duration is 4.0. References 1.Banasik K

  10. Impact of agricultural practices on runoff and glyphosate peaks in a small vineyard catchment

    Amiot, Audrey; La Jeunesse, Isabelle; Jadas-Hécart, Alain; Landry, David; Sourice, Stéphane; Communal, Pierre-Yves; Ballouche, Aziz


    The Layon River, a tributary of the Loire River, does frequently not comply with water quality standards because of pesticides. Vineyard is generally denounced. The aim of this project is to explain the transfer of pesticides during runoff events and its interaction with erosion. Pesticides and suspended particulate matter (SPM) concentrations are monitored at the outlet of the vineyards catchment each 2 minutes during floods to follow peaks. The results of three different hydrological years (2009, 2011, 2012) are exposed. The 2.2ha catchment is composed of two main vineyards plots managed by two independent farmers. Mean slopes are of 8% and can reach 40% in terraces. A gauging station has been installed at the end of the slope with a calibrated Venturi channel. The measurement station is composed of (a) an approach channel of 10 meters long for the establishment of a stable water surface, (b) a trapezoidal long-throated flume to assess the flow rate with the water level measured with (c) a bubbler sensor, (d) an automatic rain gauge, (e) an automatic sampler, (f) a modem and (g) a logosens OTT® data logger. 2009 was an average year, 2011 was particularly dry and 2012 particularly wet. Quantities of glyphosate applied were respectively 1087, 645 and 720g. Maximum discharges in the gauging station were 5, 12 and 25L.s-1. Minimum and maximum concentrations of glyphosate in runoff waters were 1-449.1 µg.L-1 in 2009, 0.62-13.6 µg.L-1 in 2011 and 0.1-3.7 µg.L-1 in 2012. Minimum and maximum concentrations of SPM were 14-1261mg.L-1 in 2009, 108- 6454 mg.L-1 in 2011 and 9-1541 mg.L-1 in 2012. While flows, quantities of glyphosate applied and peaks of concentrations observed in 2011 are more important in 2009, SPM generated in the runoff waters are lower than 2011 and 2012, even though 2012 has particularly been a wet year. Also, maximum runoff coefficients are 7% in 2009 and 2011 and 57% in 2012. In fact, this latest explains differences between years better than

  11. An ultra miniature pinch-focus discharge

    Soto, L.; Pavez, C.; Moreno, J. [Comision Chilena de Energia Nuclear, Santiago (Chile); Pavez, C. [Universidad de Concepcion (Chile); Barbaglia, M.; Clausse, A. [Universidad Nacional del Centro, Pladema-CNEA-Conicet, Tandil (Argentina)


    As a way to investigate the minimum energy to produce a pinch plasma focus discharge, an ultra miniature device has been designed and constructed (nano focus NF: 5 nF, 5-10 kV, 5-10 kA, 60-250 mJ, 16 ns time to peak current). Sub-millimetric anode radius covered by a coaxial insulator were used for experiments in hydrogen. Evidence of pinch was observed in electrical signals in discharges operating at 60 mJ. A single-frame image converter camera (4 ns exposure) was used to obtain plasma images in the visible range. The dynamics observed from the photographs is consistent with: a) formation of a plasma sheath close to the insulator surface, b) fast axial motion of the plasma sheath, c) radial compression over the anode, and d) finally the plasma is detached from the anode in the axial direction. The total time since stage a) to d) was observed to be about 30 ns. X ray and neutron emission is being studied. Neutron yield of the order of 10{sup 3} neutrons per shot is expected for discharges operating in deuterium at 10 kA. (authors)

  12. Bayesian peak picking for NMR spectra.

    Cheng, Yichen; Gao, Xin; Liang, Faming


    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein-DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  13. Osteoporosis: Peak Bone Mass in Women

    ... not supported by your browser. Home Osteoporosis Women Osteoporosis: Peak Bone Mass in Women Publication available in: ... drug products. NIH Pub. No. 15-7891 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 ...

  14. Bayesian Peak Picking for NMR Spectra

    Cheng, Yichen


    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  15. Peak Vegetation Growth 2000 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2000 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  16. Peak Vegetation Growth 2004 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2004 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  17. Peak Vegetation Growth 1999 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1999 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  18. Peak Vegetation Growth 1993 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1993 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  19. Peak Vegetation Growth 1994 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1994 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  20. Peak Vegetation Growth 1995 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1995 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  1. Peak Vegetation Growth 1998 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1998 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  2. Peak Vegetation Growth 2001 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2001 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  3. Peak Vegetation Growth 2003 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2003 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  4. Peak Vegetation Growth 1997 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1997 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  5. Peak Vegetation Growth 1990 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1990 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  6. Peak Vegetation Growth 1996 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1996 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  7. Peak Vegetation Growth 2005 - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2005 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  8. Tectonics, Climate and Earth's highest peaks

    Robl, Jörg; Prasicek, Günther; Hergarten, Stefan


    Prominent peaks characterized by high relief and steep slopes are among the most spectacular morphological features on Earth. In collisional orogens they result from the interplay of tectonically driven crustal thickening and climatically induced destruction of overthickened crust by erosional surface processes. The glacial buzz-saw hypothesis proposes a superior status of climate in limiting mountain relief and peak altitude due to glacial erosion. It implies that peak altitude declines with duration of glacial occupation, i.e., towards high latitudes. This is in strong contrast with high peaks existing in high latitude mountain ranges (e.g. Mt. St. Elias range) and the idea of peak uplift due to isostatic compensation of spatially variable erosional unloading an over-thickened orogenic crust. In this study we investigate landscape dissection, crustal thickness and vertical strain rates in tectonically active mountain ranges to evaluate the influence of erosion on (latitudinal) variations in peak altitude. We analyze the spatial distribution of serval thousand prominent peaks on Earth extracted from the global ETOPO1 digital elevation model with a novel numerical tool. We compare this dataset to crustal thickness, thickening rate (vertical strain rate) and mean elevation. We use the ratios of mean elevation to peak elevation (landscape dissection) and peak elevation to crustal thickness (long-term impact of erosion on crustal thickness) as indicators for the influence of erosional surface processes on peak uplift and the vertical strain rate as a proxy for the mechanical state of the orogen. Our analysis reveals that crustal thickness and peak elevation correlate well in orogens that have reached a mechanically limited state (vertical strain rate near zero) where plate convergence is already balanced by lateral extrusion and gravitational collapse and plateaus are formed. On the Tibetan Plateau crustal thickness serves to predict peak elevation up to an altitude

  9. Cosmic Microwave Background Acoustic Peak Locations

    Pan, Zhen; Mulroe, Brigid; Narimani, Ali


    The Planck collaboration has measured the temperature and polarization of the cosmic microwave background well enough to determine the locations of eight peaks in the temperature (TT) power spectrum, five peaks in the polarization (EE) power spectrum and twelve extrema in the cross (TE) power spectrum. The relative locations of these extrema give a striking, and beautiful, demonstration of what we expect from acoustic oscillations in the plasma; e.g., that EE peaks fall half way between TT peaks. We expect this because the temperature map is predominantly sourced by temperature variations in the last scattering surface, while the polarization map is predominantly sourced by gradients in the velocity field, and the harmonic oscillations have temperature and velocity 90 degrees out of phase. However, there are large differences in expectations for extrema locations from simple analytic models vs. numerical calculations. Here we quantitatively explore the origin of these differences in gravitational potential tr...

  10. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.


    OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection

  11. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.


    OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection

  12. Do dark matter halos explain lensing peaks?

    Matilla, José Manuel Zorrilla; Hsu, Daniel; Gupta, Arushi; Petri, Andrea


    We have investigated a recently proposed halo-based model, Camelus, for predicting weak-lensing peak counts, and compared its results over a collection of 162 cosmologies with those from N-body simulations. While counts from both models agree for peaks with $\\mathcal{S/N}>1$ (where $\\mathcal{S/N}$ is the ratio of the peak height to the r.m.s. shape noise), we find $\\approx 50\\%$ fewer counts for peaks near $\\mathcal{S/N}=0$ and significantly higher counts in the negative $\\mathcal{S/N}$ tail. Adding shape noise reduces the differences to within $20\\%$ for all cosmologies. We also found larger covariances that are more sensitive to cosmological parameters. As a result, credibility regions in the $\\{\\Omega_m, \\sigma_8\\}$ are $\\approx 30\\%$ larger. Even though the credible contours are commensurate, each model draws its predictive power from different types of peaks. Low peaks, especially those with $23)$. Our results confirm the importance of using a cosmology-dependent covariance with at least a 14\\% improveme...

  13. Objects of maximum electromagnetic chirality

    Fernandez-Corbaton, Ivan


    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.

  14. Maximum mutual information regularized classification

    Wang, Jim Jing-Yan


    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  15. The strong maximum principle revisited

    Pucci, Patrizia; Serrin, James

    In this paper we first present the classical maximum principle due to E. Hopf, together with an extended commentary and discussion of Hopf's paper. We emphasize the comparison technique invented by Hopf to prove this principle, which has since become a main mathematical tool for the study of second order elliptic partial differential equations and has generated an enormous number of important applications. While Hopf's principle is generally understood to apply to linear equations, it is in fact also crucial in nonlinear theories, such as those under consideration here. In particular, we shall treat and discuss recent generalizations of the strong maximum principle, and also the compact support principle, for the case of singular quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear operators and the nonlinearities involved. Our principal interest is in necessary and sufficient conditions for the validity of both principles; in exposing and simplifying earlier proofs of corresponding results; and in extending the conclusions to wider classes of singular operators than previously considered. The results have unexpected ramifications for other problems, as will develop from the exposition, e.g. two point boundary value problems for singular quasilinear ordinary differential equations (Sections 3 and 4); the exterior Dirichlet boundary value problem (Section 5); the existence of dead cores and compact support solutions, i.e. dead cores at infinity (Section 7); Euler-Lagrange inequalities on a Riemannian manifold (Section 9); comparison and uniqueness theorems for solutions of singular quasilinear differential inequalities (Section 10). The case of p-regular elliptic inequalities is briefly considered in Section 11.

  16. Dilution and volatilization of groundwater contaminant discharges in streams

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Sonne, Anne Thobo;


    An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different...... distributions of the contaminant plume concentration (Gaussian, homogeneous or heterogeneous distribution) are considered. The model considering the plume discharged through the bank of the river, with a uniform concentration distribution was the most appropriate for risk assessment due to its simplicity...... and limited data requirements. The dilution and volatilization model is able to predict the entire concentration field, and thus the mixing zone, maximum concentration and fully mixed concentration in the stream. It can also be used to identify groundwater discharge zones from in-stream concentration...

  17. Martial arts striking hand peak acceleration, accuracy and consistency.

    Neto, Osmar Pinto; Marzullo, Ana Carolina De Miranda; Bolander, Richard P; Bir, Cynthia A


    The goal of this paper was to investigate the possible trade-off between peak hand acceleration and accuracy and consistency of hand strikes performed by martial artists of different training experiences. Ten male martial artists with training experience ranging from one to nine years volunteered to participate in the experiment. Each participant performed 12 maximum effort goal-directed strikes. Hand acceleration during the strikes was obtained using a tri-axial accelerometer block. A pressure sensor matrix was used to determine the accuracy and consistency of the strikes. Accuracy was estimated by the radial distance between the centroid of each subject's 12 strikes and the target, whereas consistency was estimated by the square root of the 12 strikes mean squared distance from their centroid. We found that training experience was significantly correlated to hand peak acceleration prior to impact (r(2)=0.456, p =0.032) and accuracy (r(2)=0. 621, p=0.012). These correlations suggest that more experienced participants exhibited higher hand peak accelerations and at the same time were more accurate. Training experience, however, was not correlated to consistency (r(2)=0.085, p=0.413). Overall, our results suggest that martial arts training may lead practitioners to achieve higher striking hand accelerations with better accuracy and no change in striking consistency.

  18. Response of bankfull discharge of the Inner Mongolia Yellow River to flow and sediment factors

    Suzhen Hou; Ping Wang; Yan Guo; Ting Li


    Bankfull discharge is a comprehensive factor reflecting the channel-forming capability of water flow and the flood and sediment transport capacity of a river channel. It is based on the interaction of the flow, sediment, and river channel, of which flow and sediment conditions play crucial roles. Using data recorded since the 1950s, this paper analyses statistically, the characteristics and variations of bankfull discharge at two stations on the Inner Mongolian reaches of the upper Yellow River. Results indicate that flood season variations in bankfull discharge are nonlinear and are governed by flood peak discharge, mean discharge, and the mean incoming sediment coefficients. Variation in bankfull discharge is related not only to the flow and sediment conditions of the current year but also to those of previous years. The 10-year moving average of flow and sediment conditions can be representative of present and previous years. By considering flood season peak discharge and incoming sediment coefficients as independent impact factors, a formula is derived to determine bankfull discharge. The results can be used to predict the bankfull discharge of the Yellow River channel in Inner Mongolia under specific flow and sediment conditions and provide reference for the purpose of further study related to restoring and maintaining the basic functions of the river channel regarding flood discharge and sediments.

  19. Trends in peak flows of selected streams in Kansas

    Rasmussen, T.J.; Perry, C.A.


    The possibility of a systematic change in flood potential led to an investigation of trends in the magnitude of annual peak flows in Kansas. Efficient design of highway bridges and other flood-plain structures depends on accurate understanding of flood characteristics. The Kendall's tau test was used to identify trends at 40 stream-gaging stations during the 40-year period 1958-97. Records from 13 (32 percent) of the stations showed significant trends at the 95-percent confidence level. Only three of the records (8 percent) analyzed had increasing trends, whereas 10 records (25 percent) had decreasing trends, all of which were for stations located in the western one-half of the State. An analysis of flow volume using mean annual discharge at 29 stations in Kansas resulted in 6 stations (21 percent) with significant trends in flow volumes. All six trends were decreasing and occurred in the western one-half of the State. The Kendall's tau test also was used to identify peak-flow trends over the entire period of record for 54 stream-gaging stations in Kansas. Of the 23 records (43 percent) showing significant trends, 16 (30 percent) were decreasing, and 7 (13 percent) were increasing. The trend test then was applied to 30-year periods moving in 5-year increments to identify time periods within each station record when trends were occurring. Systematic changes in precipitation patterns and long-term declines in ground-water levels in some stream basins may be contributing to peak-flow trends. To help explain the cause of the streamflow trends, the Kendall's tau test was applied to total annual precipitation and ground-water levels in Kansas. In western Kansas, the lack of precipitation and presence of decreasing trends in ground-water levels indicated that declining water tables are contributing to decreasing trends in peak streamflow. Declining water tables are caused by ground-water withdrawals and other factors such as construction of ponds and terraces. Peak

  20. On ULF Signatures of Lightning Discharges

    Bösinger, T.; Shalimov, S. L.


    Recent works on magnetic signatures due to distant lightning discharges are reviewed. Emphasis is laid on magnetic signatures in the ULF range (in the old definition from less than 1 mHz up to 1 Hz), that is in the frequency range below the Schumann resonance. These signatures are known to be of importance for the excitation of the ionospheric Alfvén resonator (IAR) which works only at night time conditions. This emphasizes the difference between night and day time ULF signatures of lightning. The IAR forms a link between the atmosphere and magnetosphere. Similarities and differences of this link in the VLF (Trimpi effect) and ULF range are worked out. A search for a unique signature of sprite-associated positive cloud-to-ground (+CG) lightning discharges ended with a negative result. In this context, however, a new model of lightning-associated induced mesospheric currents was built. Depending on mesospheric condition it can produce magnetic signatures in the entire frequency range from VLF, ELF to ULF. In the latter case it can explain signatures known as the Ultra Slow Tail of +CG lightning discharges. A current problem on the magnetic background noise intensity has been solved by taking more seriously the contribution of +CG lightning discharges to the overall background noise. Their low occurrence rate is more than compensated by their large and long lasting continuing currents. By superposed epoch analysis it could be shown that the ULF response to -CG is one to two orders smaller that in case of +CG with similar peak current values of the return stroke.

  1. Reactor-specific spent fuel discharge projections, 1984 to 2020

    Heeb, C.M.; Libby, R.A.; Holter, G.M.


    The original spent fuel utility data base (SFDB) has been adjusted to produce agreement with the EIA nuclear energy generation forecast. The procedure developed allows the detail of the utility data base to remain intact, while the overall nuclear generation is changed to match any uniform nuclear generation forecast. This procedure adjusts the weight of the reactor discharges as reported on the SFDB and makes a minimal (less than 10%) change in the original discharge exposures in order to preserve discharges of an integral number of fuel assemblies. The procedure used in developing the reactor-specific spent fuel discharge projections, as well as the resulting data bases themselves, are described in detail in this report. Discussions of the procedure cover the following topics: a description of the data base; data base adjustment procedures; addition of generic power reactors; and accuracy of the data base adjustments. Reactor-specific discharge and storage requirements are presented. Annual and cumulative discharge projections are provided. Annual and cumulative requirements for additional storage are shown for the maximum at-reactor (AR) storage assumption, and for the maximum AR with transshipment assumption. These compare directly to the storage requirements from the utility-supplied data, as reported in the Spent Fuel Storage Requirements Report. The results presented in this report include: the disaggregated spent fuel discharge projections; and disaggregated projections of requirements for additional spent fuel storage capacity prior to 1998. Descriptions of the methodology and the results are included in this report. Details supporting the discussions in the main body of the report, including descriptions of the capacity and fuel discharge projections, are included. 3 refs., 6 figs., 12 tabs.

  2. Dependence of Nanoparticles Synthesis Energy Consumption in the Gas Spark Discharge on Circuit Parameters

    D.A. Mylnikov


    Full Text Available In this paper, we study the specific energy of titanium dioxide nanoparticles synthesis in a spark discharge in the air by varying the parameters of a discharge circuit. The dependence shows a maximum at a capacitor voltage of about 2 kV and a monotonic decrease with increasing voltage.

  3. Pulsed microhollow cathode discharge excimer sources

    Moselhy, Mohamed; Shi, Wenhui; Strak, Robert H.; Schoenbach, Karl H.


    Microhollow cathode discharges (MHCDs) are non-equilibrium, high-pressure gas discharges between perforated electrodes separated by a dielectric layer. Typical dimensions for the electrode foil thickness and hole diameter are 100 μm. Direct current experiments in xenon, argon, neon, helium, argon fluoride, and xenon chloride [1,2] have been performed. The excimer efficiency varies between 1 % and 9 %. Pulsed operation allowed us to increase the current from 8 mA (dc) to approximately 80 mA (pulsed with a pulse width of 700 μs), limited by the onset of instabilities. The total excimer power was found to increase linearly with current, however, the radiant emittance and efficiency stayed constant. Reducing the pulse duration into the nanosecond range allowed us to increase the current into the ampere range. The maximum measured excimer power was 2.75 W per microdischarge. The maximum radiant emittance was 15 W/cm^2 and the efficiency reached values of 20 %. This effect is assumed to be due to non-equilibrium electron heating in the high-pressure plasma [3]. This work was supported by the National Science Foundation under grant # CTS0078618. 1. Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, and Robert H. Stark, Physics of Plasmas 7, 2186 (2000). 2. P. Kurunczi, J. Lopez, H. Shah, and K. Becker, Int. J. Mass Spectrom. 205, 277 (2001). 3. Robert H. Stark and Karl H. Schoenbach, J. Appl. Phys. 89, 3568 (2001).

  4. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots.

    Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C


    The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Maximum entropy production in daisyworld

    Maunu, Haley A.; Knuth, Kevin H.


    Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.

  6. Maximum stellar iron core mass

    F W Giacobbe


    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly different from a more typical Chandrasekhar mass limit approach. This technique produced a maximum stellar iron core mass value of 2.69 × 1030 kg (1.35 solar masses). This mass value is very near to the typical mass values found for neutron stars in a recent survey of actual neutron star masses. Although slightly lower and higher neutron star masses may also be found, lower mass neutron stars are believed to be formed as a result of enhanced iron core compression due to the weight of non-ferrous matter overlying the iron cores within large stars. And, higher mass neutron stars are likely to be formed as a result of fallback or accretion of additional matter after an initial collapse event involving an iron core having a mass no greater than 2.69 × 1030 kg.

  7. Maximum Matchings via Glauber Dynamics

    Jindal, Anant; Pal, Manjish


    In this paper we study the classic problem of computing a maximum cardinality matching in general graphs $G = (V, E)$. The best known algorithm for this problem till date runs in $O(m \\sqrt{n})$ time due to Micali and Vazirani \\cite{MV80}. Even for general bipartite graphs this is the best known running time (the algorithm of Karp and Hopcroft \\cite{HK73} also achieves this bound). For regular bipartite graphs one can achieve an $O(m)$ time algorithm which, following a series of papers, has been recently improved to $O(n \\log n)$ by Goel, Kapralov and Khanna (STOC 2010) \\cite{GKK10}. In this paper we present a randomized algorithm based on the Markov Chain Monte Carlo paradigm which runs in $O(m \\log^2 n)$ time, thereby obtaining a significant improvement over \\cite{MV80}. We use a Markov chain similar to the \\emph{hard-core model} for Glauber Dynamics with \\emph{fugacity} parameter $\\lambda$, which is used to sample independent sets in a graph from the Gibbs Distribution \\cite{V99}, to design a faster algori...

  8. 76 FR 1504 - Pipeline Safety: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure...


    ...: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure Using Record Evidence, and... facilities of their responsibilities, under Federal integrity management (IM) regulations, to perform... system, especially when calculating Maximum Allowable Operating Pressure (MAOP) or Maximum Operating...

  9. Optical characteristics for capacitively and inductively radio frequency discharge and post-discharge of helium

    Tanışlı, Murat, E-mail:; Şahin, Neslihan [Department of Physics, Anadolu University, Yunusemre Campus 26470 Eskişehir (Turkey)


    The optical properties for radiofrequency (RF) post-discharge of pure helium (He) with two different methods as capacitively and inductively have been presented using the modified Boltzmann method in comparison. Optical emission spectroscopy (OES) is often used in the diagnosis of laboratory plasma, such as gas discharge plasma. OES is a very useful method for calculating of the electron temperature in the plasma and the determination of different atoms and molecules. In this study, OES is applied for characterizations of capacitively and inductively RF He plasma at pressures between 0.62 and 2.2 mbar for newly reactor type. Plasmas are generated with an RF power generator at a frequency of 13.56 MHz and output powers of 100, 160, and 200 W. Spectra have been evaluated in the range 200–1200 nm by an optical spectrometer. At low pressure, the main spectral features reported are the wavelengths of the atomic He transitions at 388.87 and 728.13 nm. The atomic emission intensities showed a maximum in inductive system when the pressure is about 0.62 mbar. OES of capacitive discharge and inductive discharge is compared in detail. The transition for 587.56 nm is shown to be increased in time.

  10. Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits

    Maldonado, Delis [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program


    included increasing the time horizon beyond 1,050 years (yr), and using the radionuclide concentrations provided by the DOE-PPPO as inputs into the codes. The deterministic peak doses were evaluated within time horizons of 70 yr (for the Landfill Worker and Trespasser), 1,050 yr, 10,000 yr and 100,000 yr (for the Resident Farmer [onsite], Resident Gardener, Recreational User, Outdoor Worker and Offsite Resident Farmer) at the request of the DOE-PPPO. The time horizons of 10,000 yr and 100,000 yr were used at the request of the DOE-PPPO for informational purposes only. The probabilistic peak of the mean dose assessment was performed for the Offsite Resident Farmer using Technetium-99 (Tc-99) and a time horizon of 1,050 yr. The results of the deterministic analyses indicate that among all receptors and time horizons evaluated, the highest projected dose, 2,700 mrem/yr, occurred for the Resident Farmer (onsite) at 12,773 yr. The exposure pathways contributing to the peak dose are ingestion of plants, external gamma, and ingestion of milk, meat and soil. However, this receptor is considered an implausible receptor. The only receptors considered plausible are the Landfill Worker, Recreational User, Outdoor Worker and the Offsite Resident Farmer. The maximum projected dose among the plausible receptors is 220 mrem/yr for the Outdoor Worker and it occurs at 19,045 yr. The exposure pathways contributing to the dose for this receptor are external gamma and soil ingestion. The results of the probabilistic peak of the mean dose analysis for the Offsite Resident Farmer indicate that the average (arithmetic mean) of the peak of the mean doses for this receptor is 0.98 mrem/yr and it occurs at 1,050 yr. This dose corresponds to Tc-99 within the time horizon of 1,050 yr.

  11. The PEAK experience in South Carolina



    The PEAK Institute was developed to provide a linkage for formal (schoolteachers) and nonformal educators (extension agents) with agricultural scientists of Clemson University`s South Carolina Agricultural Experiment Station System. The goal of the Institute was to enable teams of educators and researchers to develop and provide PEAK science and math learning experiences related to relevant agricultural and environmental issues of local communities for both classroom and 4-H Club experiences. The Peak Institute was conducted through a twenty day residential Institute held in June for middle school and high school teachers who were teamed with an Extension agent from their community. These educators participated in hands-on, minds-on sessions conducted by agricultural researchers and Clemson University Cooperative Extension specialists. Participants were given the opportunity to see frontier science being conducted by scientists from a variety of agricultural laboratories.

  12. Negative hydrogen ion production in multicusp volume source with a pulsed discharge (abstract)a)

    Bacal, M.; Belchenko, Yu. I.


    The pulsed operation of a negative ion volume source has been investigated, both with a magnetic filter present and without it, under conditions of full-scale acceleration of the extracted negative hydrogen ion beam. We report the observation of three afterglow negative ion peaks. As the negative ion current during the discharge pulse, each of the afterglow peaks can be optimized by varying the pressure, the plasma electrode bias and the extraction voltage. Under optimum conditions, the negative ion current during the discharge pulse exceeds the afterglow peaks.

  13. A tropospheric ozone maximum over the equatorial Southern Indian Ocean

    L. Zhang


    Full Text Available We examine the distribution of tropical tropospheric ozone (O3 from the Microwave Limb Sounder (MLS and the Tropospheric Emission Spectrometer (TES by using a global three-dimensional model of tropospheric chemistry (GEOS-Chem. MLS and TES observations of tropospheric O3 during 2005 to 2009 reveal a distinct, persistent O3 maximum, both in mixing ratio and tropospheric column, in May over the Equatorial Southern Indian Ocean (ESIO. The maximum is most pronounced in 2006 and 2008 and less evident in the other three years. This feature is also consistent with the total column O3 observations from the Ozone Mapping Instrument (OMI and the Atmospheric Infrared Sounder (AIRS. Model results reproduce the observed May O3 maximum and the associated interannual variability. The origin of the maximum reflects a complex interplay of chemical and dynamic factors. The O3 maximum is dominated by the O3 production driven by lightning nitrogen oxides (NOx emissions, which accounts for 62% of the tropospheric column O3 in May 2006. We find the contribution from biomass burning, soil, anthropogenic and biogenic sources to the O3 maximum are rather small. The O3 productions in the lightning outflow from Central Africa and South America both peak in May and are directly responsible for the O3 maximum over the western ESIO. The lightning outflow from Equatorial Asia dominates over the eastern ESIO. The interannual variability of the O3 maximum is driven largely by the anomalous anti-cyclones over the southern Indian Ocean in May 2006 and 2008. The lightning outflow from Central Africa and South America is effectively entrained by the anti-cyclones followed by northward transport to the ESIO.

  14. Elbe river flood peaks and postwar agricultural land use in East Germany.

    van der Ploeg, R R; Schweigert, P


    Collectivization of farmland since the 1950s has changed the agricultural land use in former East Germany. Single fields on the collective farms became increasingly large and were cultivated with increasingly heavy farm equipment. This led to large-scale physical degradation of arable soils, enhancing the formation of surface runoff in periods with prolonged and excessive precipitation. The extent to which this development may have affected the discharge behavior of the main East German river, the Elbe, has so far not been studied. We analyzed the flood peaks of the Elbe during the past century (1900-2000). The flood discharge behavior of the Elbe has apparently changed significantly since the 1950s. Although climate changes may be involved, we conclude that the Elbe flood peaks, recorded since 1950, are related to the changes in postwar agricultural land use in former East Germany. To restore the degraded farmland soils, a change in agricultural land use may be necessary.

  15. Variations in tropical cyclone-related discharge in four watersheds near Houston, Texas

    Laiyin Zhu


    Full Text Available We examined a 60-year record of daily precipitation and river discharge related to tropical cyclones (TCs in four watersheds undergoing land use and land cover change near Houston, Texas. Results show that TCs are responsible for ∼20% of the annual maximum discharge events in the four selected watersheds. Although there are no trends in TC precipitation, increasing trends were observed in daily extreme discharge and TC-related discharge. The more developed watersheds (Whiteoak Bayou and Brays Bayou, tend to have higher extreme discharge and steeper trends in extreme discharge than the less developed watersheds (Cypress Creek. Increases in TC-related extreme discharges correspond with increases in developed land and decreases in vegetated land between 1980 and 2006. Therefore, changes in land cover/use in watersheds near Houston are a major cause of the increased flooding risk in recent years.

  16. The Sherpa Maximum Likelihood Estimator

    Nguyen, D.; Doe, S.; Evans, I.; Hain, R.; Primini, F.


    A primary goal for the second release of the Chandra Source Catalog (CSC) is to include X-ray sources with as few as 5 photon counts detected in stacked observations of the same field, while maintaining acceptable detection efficiency and false source rates. Aggressive source detection methods will result in detection of many false positive source candidates. Candidate detections will then be sent to a new tool, the Maximum Likelihood Estimator (MLE), to evaluate the likelihood that a detection is a real source. MLE uses the Sherpa modeling and fitting engine to fit a model of a background and source to multiple overlapping candidate source regions. A background model is calculated by simultaneously fitting the observed photon flux in multiple background regions. This model is used to determine the quality of the fit statistic for a background-only hypothesis in the potential source region. The statistic for a background-plus-source hypothesis is calculated by adding a Gaussian source model convolved with the appropriate Chandra point spread function (PSF) and simultaneously fitting the observed photon flux in each observation in the stack. Since a candidate source may be located anywhere in the field of view of each stacked observation, a different PSF must be used for each observation because of the strong spatial dependence of the Chandra PSF. The likelihood of a valid source being detected is a function of the two statistics (for background alone, and for background-plus-source). The MLE tool is an extensible Python module with potential for use by the general Chandra user.

  17. Vestige: Maximum likelihood phylogenetic footprinting

    Maxwell Peter


    Full Text Available Abstract Background Phylogenetic footprinting is the identification of functional regions of DNA by their evolutionary conservation. This is achieved by comparing orthologous regions from multiple species and identifying the DNA regions that have diverged less than neutral DNA. Vestige is a phylogenetic footprinting package built on the PyEvolve toolkit that uses probabilistic molecular evolutionary modelling to represent aspects of sequence evolution, including the conventional divergence measure employed by other footprinting approaches. In addition to measuring the divergence, Vestige allows the expansion of the definition of a phylogenetic footprint to include variation in the distribution of any molecular evolutionary processes. This is achieved by displaying the distribution of model parameters that represent partitions of molecular evolutionary substitutions. Examination of the spatial incidence of these effects across regions of the genome can identify DNA segments that differ in the nature of the evolutionary process. Results Vestige was applied to a reference dataset of the SCL locus from four species and provided clear identification of the known conserved regions in this dataset. To demonstrate the flexibility to use diverse models of molecular evolution and dissect the nature of the evolutionary process Vestige was used to footprint the Ka/Ks ratio in primate BRCA1 with a codon model of evolution. Two regions of putative adaptive evolution were identified illustrating the ability of Vestige to represent the spatial distribution of distinct molecular evolutionary processes. Conclusion Vestige provides a flexible, open platform for phylogenetic footprinting. Underpinned by the PyEvolve toolkit, Vestige provides a framework for visualising the signatures of evolutionary processes across the genome of numerous organisms simultaneously. By exploiting the maximum-likelihood statistical framework, the complex interplay between mutational

  18. Achievable peak electrode voltage reduction by neurostimulators using descending staircase currents to deliver charge.

    Halpern, Mark


    This paper considers the achievable reduction in peak voltage across two driving terminals of an RC circuit when delivering charge using a stepped current waveform, comprising a chosen number of steps of equal duration, compared with using a constant current over the total duration. This work has application to the design of neurostimulators giving reduced peak electrode voltage when delivering a given electric charge over a given time duration. Exact solutions for the greatest possible peak voltage reduction using two and three steps are given. Furthermore, it is shown that the achievable peak voltage reduction, for any given number of steps is identical for simple series RC circuits and parallel RC circuits, for appropriate different values of RC. It is conjectured that the maximum peak voltage reduction cannot be improved using a more complicated RC circuit.

  19. "Politically-Incorrect" Electron Behavior in Low Pressure RF Discharges

    Godyak, Valery; Kolobov, Vladimir


    The main interaction of plasma electrons with electromagnetic fields for bounded plasma of an rf discharge occurs in the vicinity of its boundaries (in the rf sheath of a capacitive rf discharge and in the skin layer of an inductive one). On the other hand, due to plasma inhomogeneity, a dc ambipolar field is always present in the bounded plasma. in low pressure discharges the ambipolar potential well captures low energy electrons within the discharge center while high energy electrons freely overcome the ambipolar potential and reach the plasma boundaries where heating takes place. Being segregated in space, low energy electrons are discriminated from participation in the heating process. When Coulomb interaction between low and high energy electron groups is weak, their temperatures appear to be essentially different ( a low energy peak on the EEDF). In this presentation we present theoretical and experimental evidence of such an apartheid in the low and high energy electron populations of the EEDF in rf discharge and we outline discharge conditions where such abnormal EEDF behavior is possible.

  20. R-Peak Time: An Electrocardiographic Parameter with Multiple Clinical Applications.

    Pérez-Riera, Andrés Ricardo; de Abreu, Luiz Carlos; Barbosa-Barros, Raimundo; Nikus, Kjell C; Baranchuk, Adrian


    In the 12-lead electrocardiogram (ECG), the time from the onset of the QRS complex (Q or R wave) to the apex or peak of R or to R' (when present), using indirect or semidirect surface unipolar precordial leads, bipolar limb leads or unipolar limb leads, is called ventricular activation time (VAT), R wave peak time (RWPT), R-peak time or intrinsicoid deflection (ID). The R-peak time in a specific ECG lead is the interval from the earliest onset of the QRS complex, preferably determined from multiple simultaneously recorded leads, to the peak (maximum) of the R wave or R' if present. Irrespective of the relative height of the R and R' waves, the R-peak time is measured to the second peak. The parameter corresponds to the time of the electrical activation occurring from the endocardium to the epicardium as reflected by the recording electrode located at a variable distance on the body surface, depending on the lead type: a unipolar precordial lead, a bipolar or unipolar limb lead. In normal conditions, the R-peak time for the thinner-walled right ventricle is measured from lead V1 or V2 and its upper limit of normal is 35 ms. The R-peak time for the left ventricle (LV) is measured from leads V5 to V6 and 45 ms is considered the upper limit of normal. In this manuscript, we review the clinical applications of this parameter.

  1. Electrosurgical Plasma Discharges

    Stalder, K. R.; Woloszko, J.


    Electrosurgical instruments employing plasmas to volumetrically ablate tissue are now enjoying widespread use in medical applications. We have studied several commercially available instruments in which luminous plasma discharges are formed near electrodes immersed in saline solutions when sufficiently large amplitude bipolar voltage waveforms are applied. Different aqueous salt solutions have been investigated, including isotonic NaCl solution as well as solutions of KCl, and BaCl_2. With strong driving voltage applied, a vapor layer is formed as well as visible and UV optical emissions. Spectroscopic measurements reveal the predominant emissions are from the low ionization potential salt species, but significant emissions from electron impact dissociated water fragments such as OH and H-atoms also are observed. The emissions also coincide with negative bias on the active electrode. These optical emissions are consistent with an electron density of about 10^12cm-3 and an electron temperature of about 4 eV. Experimental results and model calculations of the vapor layer formation process and plasma formation in the high-field region will be discussed.

  2. Some Phenomenological Aspects of the Peak Experience

    Rosenblatt, Howard S.; Bartlett, Iris


    This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…

  3. Some Phenomenological Aspects of the Peak Experience

    Rosenblatt, Howard S.; Bartlett, Iris


    This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…

  4. Real estate price peaks: a comparative overview

    Röhner, B M


    First, we emphasize that the real estate price peaks which are currently under way in many industrialized countries (one important exception is Japan) share many of the characteristics of previous historical price peaks. In particular, we show that: (i) In the present episode real price increases are, at least for now, of the same order of magnitude as in previous episodes, typically of the order of 80 percent to 100 percent. (ii) Historically, price peaks turned out to be symmetrical with respect to the peak; soft landing, i.e. an upgoing phase followed by a plateau, has rarely (if ever) been observed. (iii) The inflated demand is mainly boosted by investors and high-income buyers. (iv) In the present as well as in previous episodes, the main engines in the upgoing phase have been the hot markets which developed in major cities such as London, Los Angeles, New York, Paris, San Francisco or Sydney. In our conclusion, we propose a prediction for real estate prices in the West of the United States over the peri...

  5. Modelling Discharge Inception in Thunderstorms

    Rutjes, Casper; Dubinova, Anna; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia Thi Ngoc


    The electric fields in thunderstorms can exceed the breakdown value locally near hydrometeors. But are fields high enough and the regions large enough to initiate a streamer discharge? And where would a sufficient density of free electrons come from to start the discharge in the humid air that rapid

  6. [Redesigning the hospital discharge process].

    Martínez-Ramos, M; Flores-Pardo, E; Uris-Sellés, J


    The aim of this article is to show that the redesign and planning process of hospital discharge advances the departure time of the patient from a hospital environment. Quasi-experimental study conducted from January 2011 to April 2013, in a local hospital. The cases analysed were from medical and surgical nursing units. The process was redesigned to coordinate all the professionals involved in the process. The hospital discharge improvement process improvement was carried out by forming a working group, the analysis of retrospective data, identifying areas for improvement, and its redesign. The dependent variable was the time of patient administrative discharge. The sample was classified as pre-intervention, inter-intervention, and post-intervention, depending on the time point of the study. The final sample included 14,788 patients after applying the inclusion and exclusion criteria. The mean discharge release time decreased significantly by 50 min between pre-intervention and post-intervention periods. The release time in patients with planned discharge was one hour and 25 min less than in patients with unplanned discharge. Process redesign is a useful strategy to improve the process of hospital discharge. Besides planning the discharge, it is shown that the patient leaving the hospital before 12 midday is a key factor. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  7. Spanish Peaks, Sangre de Cristo Range, Colorado


    The Spanish Peaks, on the eastern flank of the Sangre de Cristo range, abruptly rise 7,000 feet above the western Great Plains. Settlers, treasure hunters, trappers, gold and silver miners have long sighted on these prominent landmarks along the Taos branch of the Santa Fe trail. Well before the westward migration, the mountains figured in the legends and history of the Ute, Apache, Comanche, and earlier tribes. 'Las Cumbres Espanolas' are also mentioned in chronicles of exploration by Spaniards including Ulibarri in 1706 and later by de Anza, who eventually founded San Francisco (California). This exceptional view (STS108-720-32), captured by the crew of Space Shuttle mission STS108, portrays the Spanish Peaks in the context of the southern Rocky Mountains. Uplift of the Sangre de Cristo began about 75 million years ago and produced the long north-trending ridges of faulted and folded rock to the west of the paired peaks. After uplift had ceased (26 to 22 million years ago), the large masses of igneous rock (granite, granodiorite, syenodiorite) that form the Peaks were emplaced (Penn, 1995-2001). East and West Spanish Peaks are 'stocks'-bodies of molten rock that intruded sedimentary layers, cooled and solidified, and were later exposed by erosion. East Peak (E), at 12,708 ft is almost circular and is about 5 1/2 miles long by 3 miles wide, while West Peak (W), at 13,623 ft is roughly 2 3/4 miles long by 1 3/4 miles wide. Great dikes-long stone walls-radiate outward from the mountains like spokes of a wheel, a prominent one forms a broad arc northeast of East Spanish Peak. As the molten rock rose, it forced its way into vertical cracks and joints in the sedimentary strata; the less resistant material was then eroded away, leaving walls of hard rock from 1 foot to 100 feet wide, up to 100 feet high, and as long as 14 miles. Dikes trending almost east-west are also common in the region. For more information visit: The Spanish Peaks (accessed January 16

  8. Estimating the maximum potential revenue for grid connected electricity storage :

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.


    The valuation of an electricity storage device is based on the expected future cash flow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the

  9. The practice of terminal discharge.

    Radha Krishna, Lalit Kumar; Murugam, Vengadasalam; Quah, Daniel Song Chiek


    'Terminal discharges' are carried out in Singapore for patients who wish to die at home. However, if due diligence is not exercised, parallels may be drawn with euthanasia. We present a theoretical discussion beginning with the definition of terminal discharges and the reasons why they are carried out in Singapore. By considering the intention behind terminal discharges and utilising a multidisciplinary team to deliberate on the clinical, social and ethical intricacies with a patient- and context-specific approach, euthanasia is avoided. It is hoped that this will provide a platform for professionals in palliative medicine to negotiate challenging issues when arranging a terminal discharge, so as to avoid the pitfall of committing euthanasia in a country such as Singapore where euthanasia is illegal. It is hoped that a set of guidelines for terminal discharges may someday be realised to assist professionals in Singapore and around the world.

  10. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    Xiong, Zhongmin; Kushner, Mark J.


    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  11. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge

    Zhang, Shuai; Wang, Wen-chun; Jiang, Peng-chao; Yang, De-zheng; Jia, Li; Wang, Sen


    In this paper, atmospheric pressure air discharge plasma in quartz tube is excited by 15 ns high-voltage nanosecond pulsed discharge (HVNPD) and sinusoidal alternating current discharge (SACD), respectively, and a comparison study of these two kinds of discharges is made through visual imaging, electrical characterization, optical detection of active species, and plasma gas temperature. The peak voltage of the power supplies is kept at 16 kV while the pulse repetition rate of nanosecond pulse power supply is 100 Hz, and the frequency of sinusoidal power supply is 10 kHz. Results show that the HVNPD is uniform while the SACD presents filamentary mode. For exciting the same cycles of discharge, the average energy consumption in HVNPD is about 1/13 of the SACD. However, the chemical active species generated by the HVNPD is about 2-9 times than that excited by the SACD. Meanwhile, the rotational and vibrational temperatures have been obtained via fitting the simulated spectrum of N2 (C3Πu → B3Πg, 0-2) with the measured one, and the results show that the plasma gas temperature in the HVNPD remains close to room temperature whereas the plasma gas temperature in the SACD is about 200 K higher than that in HVNPD in the initial phase and continually increases as discharge exposure time goes on.

  12. Mitigation of maximum world oil production: Shortage scenarios

    Hirsch, Robert L. [Management Information Services, Inc., 723 Fords Landing Way, Alexandria, VA 22314 (United States)


    A framework is developed for planning the mitigation of the oil shortages that will be caused by world oil production reaching a maximum and going into decline. To estimate potential economic impacts, a reasonable relationship between percent decline in world oil supply and percent decline in world GDP was determined to be roughly 1:1. As a limiting case for decline rates, giant fields were examined. Actual oil production from Europe and North America indicated significant periods of relatively flat oil production (plateaus). However, before entering its plateau period, North American oil production went through a sharp peak and steep decline. Examination of a number of future world oil production forecasts showed multi-year rollover/roll-down periods, which represent pseudoplateaus. Consideration of resource nationalism posits an Oil Exporter Withholding Scenario, which could potentially overwhelm all other considerations. Three scenarios for mitigation planning resulted from this analysis: (1) A Best Case, where maximum world oil production is followed by a multi-year plateau before the onset of a monatomic decline rate of 2-5% per year; (2) A Middling Case, where world oil production reaches a maximum, after which it drops into a long-term, 2-5% monotonic annual decline; and finally (3) A Worst Case, where the sharp peak of the Middling Case is degraded by oil exporter withholding, leading to world oil shortages growing potentially more rapidly than 2-5% per year, creating the most dire world economic impacts. (author)

  13. Combustion Enhancement with a Silent Discharge Plasma

    Rosocha, Louis


    It is well known that the application of an external electric field to a flame can affect its propagation speed, stability, and combustion chemistry (Lawton & Weinberg 1969). External electrodes, arc discharges, and plasma jets have been employed to allow combustible gas mixtures to operate outside their flammability limits by gas heating, injection of free radicals, and field-promoted flame stabilization (Yagodnikov & Voronetskii 1994). Other investigators have carried out experiments with silent electrical discharges applied to propagating flames (Inomata et al 1983, Kim et al 2003). These have demonstrated that the flame propagation velocity is actually decreased (combustion retarded) when a silent discharge is applied directly to the flame region, but that the flame propagation velocity is increased (combustion promoted) when a silent discharge is applied to the unburned gas mixture upstream of a flame. Two other recent works have considered the possibility of combustion enhancement in aircraft gas turbine engine combustor mixers by using a plasma-generating fuel nozzle, that employs an electric-arc or microwave plasma generator, to produce dissociated fuel or ionized fuel (Johnson et al 2001); and pulsed corona-enhanced detonation of fuel-air mixtures in jet engines (Wang et al 2003). In contrast to these prior works, we have employed a silent discharge plasma (SDP) reactor to break up large fuel molecules into smaller molecules and create free radicals or other active species in a gas stream before the fuel is mixed with an oxidizer and combusted. In experiments reported here, a cylindrical SDP reactor was used to 'activate' propane before mixing it with air and igniting the combustible gas mixture. With the plasma, the physical appearance of the flame changes and substantial changes in mass spectrometer fragmentation peaks are observed (e.g., propane fragments decrease and water and carbon dioxide increase). This indicates that the combustion process is

  14. Characteristics of pellet injected discharges in TEXTOR

    Finken, K.H. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Assocition Euratom-KFA, 52425 Juelich (Germany); Sato, K.N. [National Institute for Fusion Science, Nagoya 464-01 (Japan); Akiyama, H. [Kumamoto University, Kumamoto 860 (Japan); Fuchs, G.; Jaspers, R. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Assocition Euratom-KFA, 52425 Juelich (Germany); Kogoshi, S. [Science University of Tokyo, Noda 278 (Japan); Koslowski, H.R.; Mank, G. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Assocition Euratom-KFA, 52425 Juelich (Germany); Sakakita, H.; Sakamoto, M. [National Institute for Fusion Science, Nagoya 464-01 (Japan); Sander, M.; Soltwisch, H. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Assocition Euratom-KFA, 52425 Juelich (Germany)


    Pellets injected into the TEXTOR tokamak lead to a density profile peaking which is strongest at low plasma current and weakest at high current independent of {ital B}{sub {ital T}}. After the injection two types of density oscillations are excited, the first type follows immediately the injection and the second one is excited with a delay of more than ten milliseconds. The oscillations are also observed in runaway discharges; the synchrotron light from the relativistic electrons drops after the pellet injection and is subsequently modulated due to a trapping of the runaways in magnetic islands. First Faraday measurements have been performed indicating that the distribution of the plasma current is not measurably modified by the pellet. {copyright} {ital 1995 American Institute of Physics.}

  15. Sheet Plasma Produced by Hollow Cathode Discharge

    张龙; 张厚先; 杨宣宗; 冯春华; 乔宾; 王龙


    A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field.The plasma is about 40cm in length,4 cm in width and 1cm in thickness.The electron density is about 108cm-3.The hollow cathode is made to be shallow with a large opening,which is different from the ordinary deep hollow cathode.A Langmuir probe is used to detect the plasma.The electron density and the spatial distribution of the plasma change when voltage,pressure and the magnetic field vary.A peak and a data fluctuation at about 200 G-300 G are observed in the variation of electron density(or thickness of the sheet plasma)with the magnetic field.Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable.

  16. Discharges of past flood events based on historical river profiles

    D. Sudhaus


    Full Text Available This paper presents a case study on the estimation of peak discharges of extreme flood events during the 19th century of the Neckar River located in south-western Germany. It was carried out as part of the BMBF (German Federal Ministry of Education and Research research project RIMAX (Risk Management of Extreme Flood Events. The discharge estimations were made for the 1824 and 1882 flood events, and are based on historical cross profiles. The 1-D model Hydrologic Engineering Centers River Analysis System (HEC-RAS was applied with different roughness coefficients to determine these estimations. The results are compared (i with contemporary historical calculations for the 1824 and 1882 flood events and (ii in the case of the flood event in 1824, with the discharge simulation by the water balance model LARSIM (Large Area Runoff Simulation Model. These calculations are matched by the HEC-RAS simulation based on the standard roughness coefficients.

  17. Microwave discharge as a remote source of neutral oxygen atoms

    Gregor Primc


    Full Text Available The late flowing afterglow of an oxygen plasma was used as a remote source of neutral oxygen atoms. Plasma was created via a microwave discharge in a narrow quartz glass tube with an inner diameter of 6 mm at powers between 50 W and 300 W. The tube was connected to a wider perpendicular tube with an inner diameter of 36 mm. The density of neutral oxygen atoms was measured in the wide tube about 70 cm from the discharge using a classical nickel catalytic probe. The oxygen atom density as a function of gas pressure had a well-defined maximum. The oxygen atom density can be as large as 11 × 1020 m-3. At the lowest power tested (50 W, the maximum was obtained at a pressure of about 30 Pa. However, at higher powers, the maximum shifted to higher pressures. As a result, at 300 W the maximum appeared at 60 Pa. The results can be explained through collision phenomena in gas phase and surfaces in both discharge and flowing afterglow regions, and strong pressure gradients along the narrow tube.

  18. A game theoretic approach for trading discharge permits in rivers.

    Niksokhan, Mohammad Hossein; Kerachian, Reza; Karamouz, Mohammad


    In this paper, a new Cooperative Trading Discharge Permit (CTDP) methodology is designed for estimating equitable and efficient treatment cost allocation among dischargers in a river system considering their conflicting interests. The methodology consists of two main steps: (1) initial treatment cost allocation and (2) equitable treatment cost reallocation. In the first step, a Pareto front among objectives is developed using a powerful and recently developed multi-objective genetic algorithm known as Nondominated Sorting Genetic Algorithm-II (NSGA-II). The objectives of the optimization model are considered to be the average treatment level of dischargers and a fuzzy risk of violating the water quality standards. The fuzzy risk is evaluated using the Monte Carlo analysis. The best non-dominated solution on the Pareto front, which provides the initial cost allocation to dischargers, is selected using the Young Bargaining Theory (YBT). In the second step, some cooperative game theoretic approaches are utilized to investigate how the maximum saving cost of participating dischargers in a coalition can be fairly allocated to them. The final treatment cost allocation provides the optimal trading discharge permit policies. The practical utility of the proposed methodology for river water quality management is illustrated through a realistic case study of the Zarjub river in the northern part of Iran.

  19. Surface modification of polycarbonate in homogeneous atmospheric pressure discharge

    SIra, M; Trunec, D; St' ahel, P; BursIkova, V; Navratil, Z [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)


    A homogeneous atmospheric pressure dielectric barrier discharge was used for the surface modification of polycarbonate (PC). The discharge was generated between two planar metal electrodes, the top electrode was covered by glass and the bottom electrode was covered by a polymer sample. The discharge burned in pure nitrogen or in a mixture of nitrogen and hydrogen. The surface properties of both treated and untreated polymers were characterized by atomic force microscopy, surface free energy (SFE) measurements and x-ray photoelectron spectroscopy. The influence of the treatment time and power input to the discharge on the surface properties of polymers was studied. The ageing of treated samples was also investigated. The treatment of polymers in the homogeneous atmospheric pressure discharge was homogeneous and the polymer surfaces showed a smaller degree of roughness in comparison with the polymer surfaces treated in a filamentary discharge. The SFE of the treated PC obtained at optimum conditions was 53 mJ m{sup -2} and the corresponding contact angle of water was 38{sup 0}. The maximum decrease in the SFE during ageing was about 13%. The analysis of the chemical composition showed an increase in the nitrogen concentration in the surface layer, but almost a zero increase in the oxygen concentration. This result was discussed concerning the measured values of the SFE measurement.

  20. Regulating electricity demand peaks for home appliances using reversible fair scheduling

    Kardaras, Georgios; Rossello Busquet, Ana; Iversen, Villy Bæk


    of home appliances into priority classes and the definition of a maximum power consumption threshold which is not allowed to be exceeded during peak hours. According to the bandwidth demand and priority of each class, the reversible fair scheduling algorithm delays some of the appliances and prolongs...

  1. Discharge Planning in Chronic Conditions

    McMartin, K


    Background Chronically ill people experience frequent changes in health status accompanied by multiple transitions between care settings and care providers. Discharge planning provides support services, follow-up activities, and other interventions that span pre-hospital discharge to post-hospital settings. Objective To determine if discharge planning is effective at reducing health resource utilization and improving patient outcomes compared with standard care alone. Data Sources A standard systematic literature search was conducted for studies published from January 1, 2004, until December 13, 2011. Review Methods Reports, randomized controlled trials, systematic reviews, and meta-analyses with 1 month or more of follow-up and limited to specified chronic conditions were examined. Outcomes included mortality/survival, readmissions and emergency department (ED) visits, hospital length of stay (LOS), health-related quality of life (HRQOL), and patient satisfaction. Results One meta-analysis compared individualized discharge planning to usual care and found a significant reduction in readmissions favouring individualized discharge planning. A second meta-analysis compared comprehensive discharge planning with postdischarge support to usual care. There was a significant reduction in readmissions favouring discharge planning with postdischarge support. However, there was significant statistical heterogeneity. For both meta-analyses there was a nonsignificant reduction in mortality between the study arms. Limitations There was difficulty in distinguishing the relative contribution of each element within the terms “discharge planning” and “postdischarge support.” For most studies, “usual care” was not explicitly described. Conclusions Compared with usual care, there was moderate quality evidence that individualized discharge planning is more effective at reducing readmissions or hospital LOS but not mortality, and very low quality evidence that it is more

  2. Predicting VO2peak from Submaximal- and Peak Exercise Models: The HUNT 3 Fitness Study, Norway.

    Henrik Loe

    Full Text Available Peak oxygen uptake (VO2peak is seldom assessed in health care settings although being inversely linked to cardiovascular risk and all-cause mortality. The aim of this study was to develop VO2peak prediction models for men and women based on directly measured VO2peak from a large healthy population.VO2peak prediction models based on submaximal- and peak performance treadmill work were derived from multiple regression analysis. 4637 healthy men and women aged 20-90 years were included. Data splitting was used to generate validation and cross-validation samples.The accuracy for the peak performance models were 10.5% (SEE = 4.63 mL⋅kg(-1⋅min(-1 and 11.5% (SEE = 4.11 mL⋅kg(-1⋅min(-1 for men and women, respectively, with 75% and 72% of the variance explained. For the submaximal performance models accuracy were 14.1% (SEE = 6.24 mL⋅kg(-1⋅min(-1 and 14.4% (SEE = 5.17 mL⋅kg(-1⋅min(-1 for men and women, respectively, with 55% and 56% of the variance explained. The validation and cross-validation samples displayed SEE and variance explained in agreement with the total sample. Cross-classification between measured and predicted VO2peak accurately classified 91% of the participants within the correct or nearest quintile of measured VO2peak.Judicious use of the exercise prediction models presented in this study offers valuable information in providing a fairly accurate assessment of VO2peak, which may be beneficial for risk stratification in health care settings.

  3. Effect of gear ratio on peak power and time to peak power in BMX cyclists.

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T


    The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders' bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14) = 6.448; p = .010) and peak torque (F(2,14) = 4.777; p = .026), but no significant difference was found for time to peak power (F(2,14) = 0.200; p = .821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658 ± 221 W, compared to 1436 ± 129 W and 1380 ± 56 W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in -0.01 s and a 45/16 in 0.22 s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.

  4. A diagnostic system for electrical faults in a high current discharge plasma setup.

    Nigam, S; Aneesh, K; Navathe, C P; Gupta, P D


    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ∼4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements.

  5. Electric Organ Discharges of Mormyrid Fish as a Possible Cue for Predatory Catfish

    Hanika, S.; Kramer, B.

    During reproductive migration the electroreceptive African sharptooth catfish, Clarias gariepinus (Siluriformes), preys mainly on a weakly electric fish, the bulldog Marcusenius macrolepidotus (Mormyridae; Merron 1993). This is puzzling because the electric organ discharges of known Marcusenius species are pulses of a duration (catfishes' low-frequency electroreceptive system (optimum sensitivity, 10-30Hz Peters and Bretschneider 1981). On the recent discovery that M. macrolepidotus males emit discharges lasting approximately ten times longer than those of females (Kramer 1997a) we determined behavioral thresholds for discharges of both sexes, using synthetic playbacks of field-recorded discharges. C. gariepinus detected M. macrolepidotus male discharges down to a field gradient of 103μVpeak-peak/cm and up to a distance of 1.5m at natural field conditions. In contrast, thresholds for female discharges were not reached with our setup, and we presume the bulldogs eaten by catfish are predominantly male.

  6. A diagnostic system for electrical faults in a high current discharge plasma setup

    Nigam, S.; Aneesh, K.; Navathe, C. P.; Gupta, P. D.


    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ˜4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements.

  7. Electric field determination in streamer discharges in air at atmospheric pressure

    Bonaventura, Z; Bourdon, A [EM2C Laboratory, Ecole Centrale Paris, UPR 288 CNRS, Grande voie des vignes, 92295 Chatenay-Malabry Cedex (France); Celestin, S; Pasko, V P, E-mail: [Communications and Space Sciences Laboratory, Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802 (United States)


    The electric field in streamer discharges in air can be easily determined by the ratio of luminous intensities emitted by N{sub 2}(C {sup 3{Pi}}{sub u}) and N{sub 2}{sup +}(B {sup 2{Sigma}}{sub u}{sup +}) if the steady-state assumption of the emitting states is fully justified. At ground pressure, the steady-state condition is not fulfilled and it is demonstrated that its direct use to determine the local and instantaneous peak electric field in the streamer head may overestimate this field by a factor of 2. However, when spatial and time-integrated optical emissions (OEs) are considered, the reported results show that it is possible to formulate a correction factor in the framework of the steady-state approximation and to accurately determine the peak electric field in an air discharge at atmospheric pressure. A correction factor is defined as {Gamma} = E{sub s}/E{sub e}, where E{sub e} is the estimated electric field and E{sub s} is the true peak electric field in the streamer head. It is shown that this correction stems from (i) the shift between the location of the peak electric field and the maximum excitation rate for N{sub 2}(C {sup 3{Pi}}{sub u}) and N{sub 2}{sup +}(B {sup 2{Sigma}}{sub u}{sup +}) as proposed by Naidis (2009 Phys. Rev. E 79 057401) and (ii) from the cylindrical geometry of the streamers as stated by Celestin and Pasko (2010 Geophys. Res. Lett. 37 L07804). For instantaneous OEs integrated over the whole radiating plasma volume, a correction factor of {Gamma} {approx} 1.4 has to be used. For time-integrated OEs, the reported results show that the ratio of intensities can be used to derive the electric field in discharges if the time of integration is sufficiently long (i.e. at least longer than the longest characteristic lifetime of excited species) to have the time to collect all the light from the emitting zones of the streamer. For OEs recorded using slits (i.e. a window with a small width but a sufficiently large radial extension to

  8. The Doppler peaks from a generic defect

    Magueijo, J


    We investigate which of the exotic Doppler peak features found for textures and cosmic strings are generic novelties pertaining to defects. We find that the ``out of phase'' texture signature is an accident. Generic defects, when they generate a secondary peak structure similar to inflation, apply to it an additive shift. It is not necessary for this shift to be ``out of phase''. We also show which factors are responsible for the absence of secondary oscillations found for cosmic strings. Within this general analysis we finally consider the conditions under which topological defects and inflation can be confused. It is argued that only \\Omega=1 inflation and a defect with a horizon size coherence length have a chance to be confused. Any other inflationary or defect model always differ distinctly. (To appear in the proceedings of the XXXIth Moriond meeting, ``Microwave Background Anisotropies'')

  9. Solar Cycle 24: is the peak coming?

    Sello, Stefano


    Solar cycle activity forecasting, mainly its magnitude and timing, is an essential issue for numerous scientific and technological applications: in fact, during an active solar period, many strong eruptions occur on the Sun with increasing frequency, such as flares, coronal mass ejections, high velocity solar wind photons and particles, which can severely affect the Earth's ionosphere and the geomagnetic field, with impacts on the low atmosphere. Thus it is very important to develop reliable solar cycle prediction methods for the incoming solar activity. The current solar cycle 24 appeared unusual from many points of view: an unusually extended minimum period, and a global low activity compared to those of the previous three or four cycles. Currently, there are many different evidences that the peak in the northern hemisphere already occurred at 2011.6 but not yet in the southern hemisphere. In this brief note we update the peak prediction and its timing, based on the most recent observations.

  10. Peak oil, food systems, and public health.

    Neff, Roni A; Parker, Cindy L; Kirschenmann, Frederick L; Tinch, Jennifer; Lawrence, Robert S


    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all.

  11. Excursion set peaks: the role of shear

    Castorina, Emanuele; Hahn, Oliver; Sheth, Ravi K


    Recent analytical work on the modelling of dark halo abundances and clustering has demonstrated the advantages of combining the excursion set approach with peaks theory. We extend these ideas and introduce a model of excursion set peaks that incorporates the role of initial tidal effects or shear in determining the gravitational collapse of dark haloes. The model -- in which the critical density threshold for collapse depends on the tidal influences acting on protohaloes -- is well motivated from ellipsoidal collapse arguments and is also simple enough to be analytically tractable. We show that the predictions of this model are in very good agreement with measurements of the halo mass function and traditional scale dependent halo bias in N-body simulations across a wide range of masses and redshift. The presence of shear in the collapse threshold means that halo bias is naturally predicted to be nonlocal, and that protohalo densities at fixed mass are naturally predicted to have Lognormal-like distributions. ...

  12. NPDES (National Pollution Discharge & Elimination System) Minor Dischargers

    U.S. Environmental Protection Agency — As authorized by the Clean Water Act, the National Pollutant Discharge Elimination System (NPDES) permit program controls water pollution by regulating point sources...

  13. METing SUSY on the Z peak

    Barenboim, G.; Bernabeu, J.; Vives, O. [Universitat de Valencia, Departament de Fisica Teorica, Burjassot (Spain); Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain); Mitsou, V.A.; Romero, E. [Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain)


    Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E{sub T}{sup miss} > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m{sub g} or similar 400 GeV decaying predominantly to Z-boson plus a light gravitino, such that nearly every gluino produces at least one Z-boson in its decay chain, could reproduce the excess. We construct an explicit general gauge mediation model able to reproduce the observed signal overcoming all the experimental limits. Needless to say, more sophisticated models could also reproduce the signal, however, any model would have to exhibit the following features: light gluinos, or heavy particles with a strong production cross section, producing at least one Z-boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are pointed out. (orig.)


    Josephson, V.


    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  15. An introduction to gas discharges

    Howatson, A M


    An Introduction to Gas Discharges: Second Edition aims to provide a compact introduction to the subject of gas discharges, which continues to make both scientific and industrial progress. In this second edition, the author has made minor corrections, rewritten and expanded some sections, used SI units and modernized notions, in hopes of making the book more up to date. Included in the book is a short history of the subject, an introduction that enumerates the types of gas discharges, the fundamental processes, and then moves on to the more specific areas such as the breakdown, the self-sustai

  16. Snowfall induced by corona discharge

    Ju, Jingjing; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan


    We demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra Cloud Condensation Nuclei (CCN). 2.25 g of net snow enhancement was measured after applying a 30 kV corona discharge for 25 min. In comparison with another newly emerging femtosecond laser filamentation method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.

  17. Peak Bone Mass Measurement in Iranian Healthy Population

    B Larijani


    Full Text Available Background: Osteoporosis is a disabling disease characterized by compromised bone strength, which predisposes a patient to increased risk of fracture. The aim of this study was evaluation the pattern of bone mass in Iranian healthy population. Methods: The study was performed between December 2000 and May 2001 on one thousand three healthy Iranian sub¬jects who currently live in Tehran. They were selected randomly by cluster random sampling among men and women of 10-76 yr from 50 clusters. The volunteer people were referred to the Bone Mineral Density BMD unit of EMRC. The partici¬pants were recalled for three times and the response rate was 83%. BMD was measured by DXA using Lunar DPX-MD device. Results: Females achieved maximum lumbar BMD up to 25-35. Femur BMD maximized in 30 to 35 and after 45 the inten¬sity of bone loss increased. Female peak bone mass in lumbar region was 1.19 ± 0.12 g/cm2and in femur was 1.02±0.12 g/cm2. Male peak bone mass in lumbar region occurred between ages 25-40 yr, Male's femur BMD maximized in 20-30. In male peak lumbar bone mass was 1.22±0.16 g/cm2 and femur was 1.08±0.15 g/cm2. Osteopenia was recog¬nized in 50% and 48.8% of women above 50 in spine and total femur, respectively, however these percentages were 37.1% and 34.8% among male subjects. Conclusion: Iranian BMD values sufficiently different from other countries to warrant a separate reference sample with which to compare individuals for the purpose of diagnosing osteoporosis and osteopenia according to the WHO criteria.

  18. Relationships between muscle power output using the stretch-shortening cycle and eccentric maximum strength.

    Miyaguchi, Kazuyoshi; Demura, Shinichi


    This study aimed to examine the relationships between muscle power output using the stretch-shortening cycle (SSC) and eccentric maximum strength under elbow flexion. Eighteen young adult males pulled up a constant light load (2 kg) by ballistic elbow flexion under the following two preliminary conditions: 1) the static relaxed muscle state (SR condition), and 2) using the SSC with countermovement (SSC condition).Muscle power was determined from the product of the pulling velocity and the load mass by a power measurement instrument that adopted the weight-loading method. We assumed the pulling velocity to be the subject's muscle power parameters as a matter of convenience, because we used a constant load. The following two parameters were selected in reference to a previous study: 1) peak velocity (m x s(-1)) (peak power) and 2) 0.1-second velocity during concentric contraction (m x s(-1)) (initial power). Eccentric maximum strength by elbow flexion was measured by a handheld dynamometer.Initial power produced in the SSC condition was significantly larger than that in the SR condition. Eccentric maximum strength showed a significant and high correlation (r = 0.70) with peak power in the SSC condition but not in the SR condition. Eccentric maximum strength showed insignificant correlations with initial power in both conditions. In conclusion, it was suggested that eccentric maximum strength is associated with peak power in the SSC condition, but the contribution of the eccentric maximum strength to the SSC potentiation (initial power) may be low.

  19. Decarbonization rate and the timing and magnitude of the CO2 concentration peak

    Seshadri, Ashwin K.


    Carbon-dioxide (CO2) is the main contributor to anthropogenic global warming, and the timing of its peak concentration in the atmosphere is likely to be the major factor in the timing of maximum radiative forcing. Other forcers such as aerosols and non-CO2 greenhouse gases may also influence the timing of maximum radiative forcing. This paper approximates solutions to a linear model of atmospheric CO2 dynamics with four time-constants to identify factors governing the timing of its concentration peak. The most important emissions-related factor is the ratio between average rates at which emissions increase and decrease, which in turn is related to the rate at which the emissions intensity of CO2 is reduced. Rapid decarbonization of CO2 can not only limit global warming but also achieve an early CO2 concentration peak. The most important carbon cycle parameters are the long multi-century time-constant of atmospheric CO2, and the ratio of contributions to the impulse response function of atmospheric CO2 from the infinitely long lived and the multi-century contributions respectively. Reducing uncertainties in these parameters can reduce uncertainty in forecasts of the radiative forcing peak. A simple approximation for peak CO2 concentration, valid especially if decarbonization is slow, is developed. Peak concentration is approximated as a function of cumulative emissions and emissions at the time of the concentration peak. Furthermore peak concentration is directly proportional to cumulative CO2 emissions for a wide range of emissions scenarios. Therefore, limiting the peak CO2 concentration is equivalent to limiting cumulative emissions. These relationships need to be verified using more complex models of Earth system's carbon cycle.

  20. Will peak oil accelerate carbon dioxide emissions?

    Caldeira, K.; Davis, S. J.; Cao, L.


    The relative scarcity of oil suggests that oil production is peaking and will decline thereafter. Some have suggested that this represents an opportunity to reduce carbon dioxide emissions. However, in the absence of constraints on carbon dioxide emission, "peak oil" may drive a shift towards increased reliance on coal as a primary energy source. Because coal per unit energy, in the absence of carbon capture and disposal, releases more carbon dioxide to the atmosphere than oil, "peak oil" may lead to an acceleration of carbon dioxide emissions. We will never run out of oil. As oil becomes increasingly scarce, prices will rise and therefore consumption will diminish. As prices rise, other primary energy sources will become increasingly competitive with oil. The developed world uses oil primarily as a source of transportation fuels. The developing world uses oil primarily for heat and power, but the trend is towards increasing reliance on oil for transportation. Liquid fuels, including petroleum derivatives such as gasoline and diesel fuel, are attractive as transportation fuels because of their relative abundance of energy per unit mass and volume. Such considerations are especially important for the air transport industry. Today, there is little that can compete with petroleum-derived transportation fuels. Future CO2 emissions from the transportation sector largely depend on what replaces oil as a source of fuel. Some have suggested that biomass-derived ethanol, hydrogen, or electricity could play this role. Each of these potential substitutes has its own drawbacks (e.g., low power density per unit area in the case of biomass, low power density per unit volume in the case of hydrogen, and low power density per unit mass in the case of battery storage). Thus, it is entirely likely that liquefaction of coal could become the primary means by which transportation fuels are produced. Since the burning of coal produces more CO2 per unit energy than does the burning of

  1. Electron density and electron temperature measurements in nanosecond pulse discharges over liquid water surface

    Simeni Simeni, M.; Roettgen, A.; Petrishchev, V.; Frederickson, K.; Adamovich, I. V.


    Time-resolved electron density, electron temperature, and gas temperature in nanosecond pulse discharges in helium and O2-He mixtures near liquid water surface are measured using Thomson/pure rotational Raman scattering, in two different geometries, (a) ‘diffuse filament’ discharge between a spherical high-voltage electrode and a grounded pin electrode placed in a reservoir filled with distilled water, with the tip exposed, and (b) dielectric barrier discharge between the high-voltage electrode and the liquid water surface. A diffuse plasma filament generated between the electrodes in helium during the primary discharge pulse exhibits noticeable constriction during the secondary discharge pulse several hundred ns later. Adding oxygen to the mixture reduces the plasma filament diameter and enhances constriction during the secondary pulse. In the dielectric barrier discharge, diffuse volumetric plasma occupies nearly the entire space between the high voltage electrode and the liquid surface, and extends radially along the surface. In the filament discharge in helium, adding water to the container results in considerable reduction of plasma lifetime compared to the discharge in dry helium, by about an order of magnitude, indicating rapid electron recombination with water cluster ions. Peak electron density during the pulse is also reduced, by about a factor of two, likely due to dissociative attachment to water vapor during the discharge pulse. These trends become more pronounced as oxygen is added to the mixture, which increases net rate of dissociative attachment. Gas temperature during the primary discharge pulse remains near room temperature, after which it increases up to T ~ 500 K over 5 µs and decays back to near room temperature before the next discharge pulse several tens of ms later. As expected, electron density and electron temperature in diffuse DBD plasmas are considerably lower compared to peak values in the filament discharge. Use of Thomson

  2. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro; Li, Zhongshan


    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also be found to take place from spark-type discharges to glow-type discharges. Short-cutting events were often observed as the intermediate states formed during the spark-glow transition. Three different types of short-cutting events have been observed to generate new current paths between two plasma channel segments, and between two electrodes, as well as between the channel segment and the electrodes, respectively. The short-cut upper part of the plasma column that was found to have no current passing through can be detected several hundreds of microseconds after the short-cutting event. The voltage recovery rate, the period of AC voltage-driving signal, the flow rates and the rated input powers were found to play an important role in affecting the transitions among the different types of discharges.

  3. Peak picking and the assessment of separation performance in two-dimensional high performance liquid chromatography

    Guiochon, Georges A [ORNL; Shalliker, R. Andrew [University of Western Sydney, Australia


    An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Due to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.

  4. Peak triceps surae muscle activity is not specific to knee flexion angles during MVIC.

    Hébert-Losier, Kim; Schneiders, Anthony G; García, José A; Sullivan, S John; Simoneau, Guy G


    There is limited research on peak activity of the separate triceps surae muscles in select knee flexion (KF) positions during a maximum voluntary isometric contraction (MVIC) used to normalize EMG signals. The aim of this study was to determine how frequent peak activity occurred during an MVIC for soleus (SOL), gastrocnemius medialis (GM), and gastrocnemius lateralis (GL) in select KF positions, and if these peaks were recorded in similar KF positions. Forty-eight healthy individuals performed unilateral plantar-flexion MVIC in standing with 0°KF and 45°KF, and in sitting with 90°KF. Surface EMG of SOL, GM, and GL were collected and processed in 250 ms epochs to determine peak root-mean-square amplitude. Peak activity was most frequently captured in standing and rarely in sitting, with no position selective to SOL, GM or GL activity. Peak GM and GL activity was more frequent in 0°KF than 45°KF, and more often in similar KF positions than not. Peak SOL activity was just as likely in 45°KF as 0°KF, and more in positions similar to GM, but not GL. The EMG amplitudes were at least 20% greater in positions that captured peak activity over those that did not. The overall findings support performing an MVIC in more than one KF position to normalize triceps surae EMG. It is emphasized that no KF position is selective to SOL, GM, or GL alone.

  5. Effect of Rainfall on Traffic Stream Characteristics during Peak and Non-Peak Periods

    Hashim Mohammed Alhassan


    Full Text Available This paper examined the effect of rainfall on traffic stream behaviour during  peak and non-peak periods on a basic highway section. Data on this section which is located on the J5 was collected for four months during which 99 rainfall events occurred. The traffic consisted of 75.80% cars, 10.23% motorcycles, 3.51% trucks and 10.46%  of other vehicles. Traffic was observed for both rain and no-rain conditions and the data was analysed to see the effect of the rain. The results showed decreases in the speed as the rain intensity increased. Similarly, the traffic flow rates decreased as the rain intensity increased. This trend was observed for both peak and non-peak periods and for both directions. It is concluded that the effect of rain during peak period could have more serious consequences on the traffic flow than during non-peak periods because of the higher flow rates and the constrained nature of the flow. Consequently, capacity degradations up to 30% during peak periods would require resources to be employed to manage the traffic.

  6. Receiver function estimated by maximum entropy deconvolution

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生


    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  7. Research on the Optical Properties of Transformers Partial Discharge Based on Different Discharge Models

    Wei Bengang


    Full Text Available In this paper, the different types of discharge in transformer were simulated based on the real transformer fault model. The optical partial discharge detection system was established based on optical sensors which were capturing partial discharge accompanied by optical effects. In this research, surface discharge and suspended discharge defect model was pressurized to generate partial discharge signal. The results showed that: Partial discharge optical signals could effectively respond the production and development process of transformer partial discharge. It was able to assess discharge level also. When the discharge phenomenon stabilized, the phase of surface discharge mainly between 60°~150°and 240°~330°, the phase of suspended discharge mainly between 260°~320°. According to the phase characteristic of discharge pattern, the creeping discharge and suspended discharge phenomenon of transformer can be distinguished. It laid the foundation for the application of transformer optical partial discharge detection technology.

  8. Maximum Power from a Solar Panel

    Michael Miller


    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  9. Pulsed discharge production Ar* metastables

    Han, Jiande; Heaven, Michael C.; Emmons, Daniel; Perram, Glen P.; Weeks, David E.; Bailey, William F.


    The production of relatively high densities of Ar* metastables (>1012 cm-3) in Ar/He mixtures, at total pressures close to 1 atm, is essential for the efficient operation of an optically pumped Ar* laser. We have used emission spectroscopy and diode laser absorption spectroscopy measurements to observe the production and decay of Ar* in a parallel plate pulsed discharge. With discharge pulses of 1 μs duration we find that metastable production is dominated by processes occurring within the first 100 ns of the gas break-down. Application of multiple, closely spaced discharge pulses yields insights concerning conditions that favor metastable production. This information has been combined with time-resolved measurements of voltage and current. The experimental results and preliminary modeling of the discharge kinetics are presented.

  10. Circle Points Discharge Tube Current Controller

    Meng Jinjia; Meng Lisheng


    Circle points discharge tube current controller is a new type device to limit theoutput of high voltage discharge current. Circle points uniform corona discharge to form airionization current in the discharge tube. On the outside, even if the discharge electrode is sparkdischarging or the two discharge electrodes are short circuited, the air ionization current in the tuberemains within a stable range, and there is no spark discharge. In this case, when the dischargecurrent only increases slightly, the requirement to limited current is obtained. By installing thecontroller at a discharge pole with a small power but high voltage supply, we can realize the shiftbetween the continuous spark line discharge and corona discharge. This provides a new simpledevice for spark discharge research and is a supplement to the Townsend discharge experiment.

  11. Peak power prediction of a vanadium redox flow battery

    Yu, V. K.; Chen, D.


    The vanadium redox flow battery (VRFB) is a promising grid-scale energy storage technology, but future widespread commercialization requires a considerable reduction in capital costs. Determining the appropriate battery size for the intended power range can help minimize the amount of materials needed, thereby reducing capital costs. A physics-based model is an essential tool for predicting the power range of large scale VRFB systems to aid in the design optimization process. This paper presents a modeling framework that accounts for the effects of flow rate on the pumping losses, local mass transfer rate, and nonuniform vanadium concentration in the cell. The resulting low-order model captures battery performance accurately even at high power densities and remains computationally practical for stack-level optimization and control purposes. We first use the model to devise an optimal control strategy that maximizes battery life during discharge. Assuming optimal control is implemented, we then determine the upper efficiency limits of a given VRFB system and compare the net power and associated overpotential and pumping losses at different operating points. We also investigate the effects of varying the electrode porosity, stack temperature, and total vanadium concentration on the peak power.

  12. Methods for reducing peak pressure in laparoscopic grasping.

    Bos, Jasper; Doornebosch, Ernst W L J; Engbers, Josco G; Nyhuis, Ole; Dodou, Dimitra


    During tissue retraction with a laparoscopic grasper, tissue-damaging pressures can occur. Past research suggests that peak pressures can be considerably reduced by rounding the edges or covering the tip of the end effector with a silicon sleeve. To identify grasping methods that limit tissue damage, the effects of (a) Young's modulus of the end effector, (b) curvature of the end effector, and (c) angle with which the tissue is pulled relative to the plane of the end effector, on the pressure generated on the tissue were investigated. Artificial skin was placed between two non-serrated jaws, a pressure-sensitive film was interposed between the skin and upper jaw, and the end effector was loaded with 13 N. End effectors with Young's moduli of 0.09, 0.67, 1.49 MPa, and 69 GPa, and with non-rounded and 5 mm rounded edges were tested under pulling angles of 25°, 50°, and 75°. For non-rounded end effectors, the maximum pressure and the area across which pressure exceeded the safety threshold for tissue damage increased with Young's modulus and pulling angle. For rounded end effectors, maximum pressure did not increase monotonically with Young's modulus. Instead, the end effector with the second lowest Young's modulus yielded significantly lower maximum pressure than the end effector with the lowest Young's modulus. For rounded end effectors, pressures were below the safety threshold for all Young's moduli. This indicates that to prevent tissue damage, soft graspers may not be needed; rounding the edges of metal graspers could suffice for preventing tissue damage.

  13. Simulation of the discharge propagation in a capillary tube in air at atmospheric pressure

    Jansky, Jaroslav; Tholin, Fabien; Bonaventura, Zdenek; Bourdon, Anne, E-mail: jaroslav.jansky@em2c.ecp.f [Ecole Centrale Paris, EM2C Laboratory, UPR 288 CNRS, Grande voie des vignes, 92295 Chatenay-Malabry Cedex (France)


    This paper presents simulations of an air plasma discharge at atmospheric pressure initiated by a needle anode set inside a dielectric capillary tube. We have studied the influence of the tube inner radius and its relative permittivity {epsilon}{sub r} on the discharge structure and dynamics. As a reference, we have used a relative permittivity {epsilon}{sub r} = 1 to study only the influence of the cylindrical constraint of the tube on the discharge. For a tube radius of 100 {mu}m and {epsilon}{sub r} = 1, we have shown that the discharge fills the tube during its propagation and is rather homogeneous behind the discharge front. When the radius of the tube is in the range 300-600 {mu}m, the discharge structure is tubular with peak values of electric field and electron density close to the dielectric surface. When the radius of the tube is larger than 700 {mu}m, the tube has no influence on the discharge which propagates axially. For a tube radius of 100 {mu}m, when {epsilon}{sub r} increases from 1 to 10, the discharge structure becomes tubular. We have noted that the velocity of propagation of the discharge in the tube increases when the front is more homogeneous and then, the discharge velocity increases with the decrease in the tube radius and {epsilon}{sub r}. Then, we have compared the relative influence of the value of the tube radius and {epsilon}{sub r} on the discharge characteristics. Our simulations indicate that the geometrical constraint of the cylindrical tube has more influence than the value of {epsilon}{sub r} on the discharge structure and dynamics. Finally, we have studied the influence of photoemission processes on the discharge structure by varying the photoemission coefficient. As expected, we have shown that photoemission, as it increases the number of secondary electrons close to the dielectric surface, promotes the tubular structure of the discharge.

  14. Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water

    Chen, Bingyan; Zhu, Changping; Fei, Juntao; He, Xiang; Yin, Cheng; Wang, Yuan; Gao, Ying; Jiang, Yongfeng; Wen, Wen; Chen, Longwei


    Discharge plasma in and in contact with water can be accompanied with ultraviolet radiation and electron impact, thus can generate hydroxyl radicals, ozone, nitrite nitrogen and hydrogen peroxide. In this paper, a non-equilibrium plasma processing system was established by means of an atmospheric pressure plasma jet immersed in water. The hydroxyl intensities and discharge energy waveforms were tested. The results show that the positive and negative discharge energy peaks were asymmetric, where the positive discharge energy peak was greater than the negative one. Meanwhile, the yield of ozone and nitrite nitrogen was enhanced with the increase of both the treatment time and the discharge energy. Moreover, the pH value of treated water was reduced rapidly and maintained at a lower level. The residual concentration of hydrogen peroxide in APPJ treated water was kept at a low level. Additionally, both the efficiency energy ratio of the yield of ozone and nitrite nitrogen and that of the removal of p-nitrophenol increased as a function of discharge energy and discharge voltage. The experimental results were fully analyzed and the chemical reaction equations and the physical processes of discharges in water were given. supported by National Natural Science Foundation of China (Nos. 11274092, 11404092, 61401146), the Nantong Science and Technology Project, Nantong, China (No. BK2014024), the Open Project of Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, China (No. KF2014001), and the Fundamental Research Funds for the Central Universities of China (No. 2014B11414)

  15. Chronology, sedimentology, and microfauna of groundwater discharge deposits in the central Mojave Desert, Valley Wells, California

    Pigati, Jeffrey S.; Miller, David M.; Bright, Jordon E.; Mahan, Shannon; Nekola, Jeffrey C.; Paces, James B.


    During the late Pleistocene, emergent groundwater supported persistent and long-lived desert wetlands in many broad valleys and basins in the American Southwest. When active, these systems provided important food and water sources for local fauna, supported hydrophilic and phreatophytic vegetation, and acted as catchments for eolian and alluvial sediments. Desert wetlands are represented in the geologic record by groundwater discharge deposits, which are also called spring or wetland deposits. Groundwater discharge deposits contain information on the timing and magnitude of past changes in water-table levels and, thus, are a source of paleohydrologic and paleoclimatic information. Here, we present the results of an investigation of extensive groundwater discharge deposits in the central Mojave Desert at Valley Wells, California. We used geologic mapping and stratigraphic relations to identify two distinct wetland sequences at Valley Wells, which we dated using radiocarbon, luminescence, and uranium-series techniques. We also analyzed the sediments and microfauna (ostracodes and gastropods) to reconstruct the specific environments in which they formed. Our results suggest that the earliest episode of high water-table conditions at Valley Wells began ca. 60 ka (thousands of calendar yr B.P.), and culminated in peak discharge between ca. 40 and 35 ka. During this time, cold (4–12 °C) emergent groundwater supported extensive wetlands that likely were composed of a wet, sedge-rush-tussock meadow mixed with mesic riparian forest. After ca. 35 ka, the water table dropped below the ground surface but was still shallow enough to support dense stands of phreatophytes through the Last Glacial Maximum (LGM). The water table dropped further after the LGM, and xeric conditions prevailed until modest wetlands returned briefly during the Younger Dryas cold event (13.0–11.6 ka). We did not observe any evidence of wet conditions during the Holocene at Valley Wells. The timing

  16. Study on the transition from filamentary discharge to diffuse discharge by using a dielectric barrier surface discharge device


    Discharge characteristics have been investigated in different gases under different pressures using a dielectric barrier surface discharge device. Electrical measurements and optical emission spectroscopy are used to study the discharge,and the results obtained show that the discharges in atmospheric pressure helium and in low-pressure air are diffuse,while that in high-pressure air is filamentary. With decreasing pressure, the discharge in air can transit from filamentary to diffuse one. The results also indicate that corona discharge around the stripe electrode is important for the diffuse discharge. The spectral intensity of N2+ (391.4 nm) relative to N2 (337.1 nm) is measured during the transition from diffuse to filamentary discharge. It is shown that relative spectral intensity increases during the discharge transition. This phenomenon implies that the averaged electron energy in diffuse discharge is higher than that in the filamentary discharge.

  17. Electromechanical Peak Devices of Distributed Power Generation

    S. V. Konstantinova


    Full Text Available The power world crises (1973, 1979 have demonstrated that mankind entered the expensive energy epoch. More and more attitude is given to power saving problem by including renewable power sources in energy balance of the countries. The paper analyzes a power system inBelarusand a typical chart of the active load is cited in the paper. Equalization of load chart is considered as one of measures directed on provision of higher operational efficiency of power system and power saving.  This purpose can be obtained while including electromechanical peak devices of the distributed generation in the energy balance.


    Segerstrom, Kenneth; Weisner, R.C.


    On the basis of a mineral survey, most of the Laramie Peak Wilderness study area in Wyoming was concluded to have little promise for the occurrence of mineral or energy resources. Only three small areas in the northern part, one extending outside the study area to Esterbrook, were found to have probable mineral-resource potential for copper and lead. The geologic setting precludes the presence of fossil-fuel resources in the study area. There are no surface indications that geothermal energy could be developed within or near the study area.

  19. Forecasting peaks of seasonal influenza epidemics.

    Nsoesie, Elaine; Mararthe, Madhav; Brownstein, John


    We present a framework for near real-time forecast of influenza epidemics using a simulation optimization approach. The method combines an individual-based model and a simple root finding optimization method for parameter estimation and forecasting. In this study, retrospective forecasts were generated for seasonal influenza epidemics using web-based estimates of influenza activity from Google Flu Trends for 2004-2005, 2007-2008 and 2012-2013 flu seasons. In some cases, the peak could be forecasted 5-6 weeks ahead. This study adds to existing resources for influenza forecasting and the proposed method can be used in conjunction with other approaches in an ensemble framework.

  20. Peak oil, economic growth, and wildlife conservation

    Gates, J Edward; Czech, Brian


    The proposed book focuses on one of the most important issues affecting humankind in this century - Peak Oil or the declining availability of abundant, cheap energy-and its effects on our industrialized economy and wildlife conservation. Energy will be one of the defining issues of the 21st Century directly affecting wildlife conservation wherever energy extraction is a primary economic activity and indirectly through deepening economic recessions. Since cheap, abundant energy has been at the core of our industrial society, and has resulted in the technological advancements we enjoy today, the

  1. Particle creation by peak electric field

    Adorno, T C; Gitman, D M


    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially-increasing and another exponentially-decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered.

  2. Particle creation by peak electric field

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)


    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  3. Classification of electrical discharges in DC Accelerators

    Banerjee, Srutarshi, E-mail: [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Deb, A.K. [Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Rajan, Rehim N. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kishore, N.K. [Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)


    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  4. Classification of electrical discharges in DC Accelerators

    Banerjee, Srutarshi; Deb, A. K.; Rajan, Rehim N.; Kishore, N. K.


    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  5. The discharge behavior of lithium-ion batteries using the Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen


    This paper gives insight into the discharge behavior of lithium-ion batteries based on the investigations, which have been done by the researchers [1– 19]. In this article, the battery's discharge behaviour at various discharge rates is studied and surface monitor, discharge curve, volume monitor...... to analysis the discharge behaviour of lithium-ion batteries. The results show that surface monitor plot of discharge curve at 1 C has a decreasing trend and volume monitor plot of maximum temperature in the domain has slightly increasing pattern over the simulation time. For the curves of discharge...... plot of maximum temperature in the domain and maximum temperature in the area are illustrated. Additionally, an external and internal short-circuit treatment for three cases have been studied. The Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model (BM) was used by ANSYS FLUENT software...

  6. Beyond the Peak - Tactile Temporal Discrimination Does Not Correlate with Individual Peak Frequencies in Somatosensory Cortex.

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim


    The human sensory systems constantly receive input from different stimuli. Whether these stimuli are integrated into a coherent percept or segregated and perceived as separate events, is critically determined by the temporal distance of the stimuli. This temporal distance has prompted the concept of temporal integration windows or perceptual cycles. Although this concept has gained considerable support, the neuronal correlates are still discussed. Studies suggested that neuronal oscillations might provide a neuronal basis for such perceptual cycles, i.e., the cycle lengths of alpha oscillations in visual cortex and beta oscillations in somatosensory cortex might determine the length of perceptual cycles. Specifically, recent studies reported that the peak frequency (the frequency with the highest spectral power) of alpha oscillations in visual cortex correlates with subjects' ability to discriminate two visual stimuli. In the present study, we investigated whether peak frequencies in somatosensory cortex might serve as the correlate of perceptual cycles in tactile discrimination. Despite several different approaches, we were unable to find a significant correlation between individual peak frequencies in the alpha- and beta-band and individual discrimination abilities. In addition, analysis of Bayes factor provided evidence that peak frequencies and discrimination thresholds are unrelated. The results suggest that perceptual cycles in the somatosensory domain are not necessarily to be found in the peak frequency, but in other frequencies. We argue that studies based solely on analysis of peak frequencies might thus miss relevant information.

  7. PeakVizor: Visual Analytics of Peaks in Video Clickstreams from Massive Open Online Courses.

    Chen, Qing; Chen, Yuanzhe; Liu, Dongyu; Shi, Conglei; Wu, Yingcai; Qu, Huamin


    Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported.


    Lei Wen; Long Teng; Han Yueqiu


    Stepped frequency signal is often used to synthesize high-resolution range profile,but redundant high-resolution range profile exists before synthesis. Two methods have been given to extract target from overlapped high-resolution range profile and analyzed to show how spurious peaks appear. This paper provides a reverse-count algorithm to resolve the problem of spurious peaks for moving target. This proposed method selects the peak with maximum amplitude as the extracted target and gets its position by using the number of samples prceding before the present sample position and the number of high-resolution range cell of the target. This proposed method is compared with the already given method and the result shows the ability of the proposed method to remove spurious peaks, it provides the foundation for high-resolution range profile.

  9. Peak heart rates at extreme altitudes

    Lundby, C; Van Hall, Gerrit


    We have measured maximal heart rate during a graded maximal bicycle exercise test to exhaustion in five healthy climbers before and during an expedition to Mt. Everest. Maximal heart rates at sea level were 186 (177-204) beats/min(-1) at sea level and 170 (169-182) beats/min(-1) with acute hypoxia....... After 1, 4 and 6 weeks of acclimatization to 5400 m, maximal heart rates were 155 (135-182), 158 (144-182), and 155 (140-183) beats/min(-1), respectively. Heart rates of two of the climbers were measured during their attempt to reach the summit of Mt. Everest without the use of supplemental oxygen....... The peak heart rates at 8,750 m for the two climbers were 142 and 144 beats/min(-1), which were similar to their maximal heart rates during exhaustive bicycle exercise at 5,400 m, the values being 144 and 148 beats/min(-1), respectively. The peak heart rates at 8,750 m are in agreement with other field...

  10. Equivalence Principle and the Baryon Acoustic Peak

    Baldauf, Tobias; Simonović, Marko; Zaldarriaga, Matias


    We study the dominant effect of a long wavelength density perturbation $\\delta(\\lambda_L)$ on short distance physics. In the non-relativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and typically has no effect on statistical averages due to translational invariance. This same reasoning has been formalized to obtain a "consistency condition" on the cosmological correlation functions. In the presence of a feature, such as the acoustic peak at $l_{\\rm BAO}$, this naive expectation breaks down for $\\lambda_Lpeak, and is calculable to all orders in the long modes. This can be used to improve the result of perturbative calculations - a technique known as "infra-red resummation"- and is explicitly applied to the one-loop calculation of power spectrum. Finally, the success of BAO reconstruction schemes is argue...

  11. Microwave peak absorption frequency of liquid


    Microwave-assisted extraction is a new effective method which has practical ap-plications in many fields. Microwave heating is one of its physical mechanisms,and it also has the characteristic of selectivity. When the applied microwave fre-quency equals a certain absorption frequency of the material (or specific compo-nent),the material will intensively absorb microwave energy. This is also known as resonant absorption,and the frequency is called the peak absorption frequency which depends on the physical structure of the material. In this work,dynamic hy-drogen bond energy was included in molecular activation energy; with the liquid cell model,the expression of interaction energy between dipolar molecules was derived. The rotational relaxation time was gotten from the Eyring viscosity formula. Then based on the relationship between dielectric dissipation coefficient and re-laxation time,the expression of microwave peak absorption frequency as a func-tion of the material physical structure,rotational inertia and electrical dipole mo-ment of molecules was established. These theoretical formulas were applied to water and benzene,and the calculated results agree fairly well with the experi-mental data. This work can not only deepen the study of the interaction between microwave and material,but also provide a possible guide for the experiment of microwave-assisted extraction.

  12. Microwave peak absorption frequency of liquid

    HAN GuangZe; CHEN MingDong


    Microwave-assisted extraction is a new effective method which has practical ap-plications in many fields. Microwave heating is one of its physical mechanisms, and it also has the characteristic of selectivity. When the applied microwave fre-quency equals a certain absorption frequency of the material (or specific compo-nent), the material will intensively absorb microwave energy. This is also known as resonant absorption, and the frequency is called the peak absorption frequency which depends on the physical structure of the material. In this work, dynamic hy-drogen bond energy was included in molecular activation energy; with the liquid cell model, the expression of interaction energy between dipolar molecules was derived. The rotational relaxation time was gotten from the Eyring viscosity formula. Then based on the relationship between dielectric dissipation coefficient and re-laxation time, the expression of microwave peak absorption frequency as a func-tion of the material physical structure, rotational inertia and electrical dipole mo-ment of molecules was established. These theoretical formulas were applied to water and benzene, and the calculated results agree fairly well with the experi-mental data. This work can not only deepen the study of the interaction between microwave and material, but also provide a possible guide for the experiment of microwave-assisted extraction.

  13. A comparative study on continuous and pulsed RF argon capacitive glow discharges at low pressure by fluid modeling

    Liu, Ruiqiang; Liu, Yue; Jia, Wenzhu; Zhou, Yanwen


    Based on the plasma fluid theory and using the drift-diffusion approximation, a mathematical model for continuous and pulsed radial frequency (RF) argon capacitive glow discharges at low pressure is established. The model is solved by a finite difference method and the numerical results are reported. Based on the systematic analysis of the results, plasma characteristics of the continuous and pulsed RF discharges are comparatively investigated. It is shown that, under the same condition for the peak value of the driving potential, the cycle-averaged electron density, the current density, and other essential physical quantities in the continuous RF discharge are higher than those from the pulsed RF discharge. On the other hand, similar plasma characteristics are obtained with two types of discharges, by assuming the same deposited power. Consequently, higher driving potential is needed in pulsed discharges in order to maintain the same effective plasma current. Furthermore, it is shown that, in the bulk plasma region, the peak value of the bipolar electric field from the continuous RF discharge is greater than that from the pulsed RF discharge. In the sheath region, the ionization rate has the shape of double-peaking and the explanation is given. Because the plasma input power depends on the driving potential and the plasma current phase, the phase differences between the driving potential and the plasma current are compared between the continuous and the pulsed RF discharges. It is found that this phase difference is smaller in the pulsed RF discharge compared to that of the continuous RF discharge. This means that the input energy coupling in the pulsed RF discharge is less efficient than the continuous counterpart. This comparative study, carried out also under other conditions, thus can provide instructive ideas in applications using the continuous and pulsed RF capacitive glow discharges.

  14. Method and apparatus for current-output peak detection

    De Geronimo, Gianluigi


    A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.

  15. Combined corona discharge and UV photoionization source for ion mobility spectrometry.

    Bahrami, Hamed; Tabrizchi, Mahmoud


    An ion mobility spectrometer is described which is equipped with two non-radioactive ion sources, namely an atmospheric pressure photoionization and a corona discharge ionization source. The two sources cannot only run individually but are additionally capable of operating simultaneously. For photoionization, a UV lamp was mounted parallel to the axis of the ion mobility cell. The corona discharge electrode was mounted perpendicular to the UV radiation. The total ion current from the photoionization source was verified as a function of lamp current, sample flow rate, and drift field. Simultaneous operation of the two ionization sources was investigated by recording ion mobility spectra of selected samples. The design allows one to observe peaks from either the corona discharge or photoionization individually or simultaneously. This makes it possible to accurately compare peaks in the ion mobility spectra from each individual source. Finally, the instrument's capability for discriminating two peaks appearing in approximately identical drift times using each individual ionization source is demonstrated.

  16. , Recorded at Ladron Peak, Central New Mexico

    Ricketts, J. W.; Kelley, S.; Read, A. S.; Karlstrom, K. E.


    Ladron Peak, situated on the western flank of the Rio Grande rift ~30 miles NW of Socorro, NM, is composed of Precambrian granitic and metamorphic assemblages that have been faulted and uplifted during the late Tertiary formation of the rift. The area is bounded on three sides by normal faults, including the anomalously low-angle (~26°) Jeter fault to the east, which places Precambrian rocks in the footwall against Paleozoic and Mesozoic fault slivers, and mainly Cenozoic Santa Fe Group basin fill in the hanging wall. New apatite fission track (AFT) thermochronological data collected at 22 locations along the NE and SE margins of Ladron Peak give a range of ages from 10.9 ± 1.9 to 20.4 ± 8.6 Ma. Samples within the footwall include granitic and metasedimentary rocks that have mean track lengths of 13.1 to 14.1 μm; one quartzite sample has a mean track length of 12.5 μm, suggesting time in the partial annealing zone. Within the hanging wall block, new AFT ages from the Permian Bursum and Abo Formations give cooling ages of 23.1 ± 3.3 Ma. and 59.9 ± 12.4 Ma., respectively. The Bursum Formation sample, with a track length of 13.7 μm, cooled below the 110°C isotherm during the Miocene, while the Abo Formation sample, with a track length of 11.2 μm, was only partially reset prior to rift-related deformation. Mylonitized granitic and metamorphic rocks in the immediate footwall preserve dip-slip lineations that are parallel to slip on the Jeter fault. This suggests that strain associated with exhumation was recorded by both brittle and ductile deformation. Although this type of deformation is common within metamorphic core complexes in highly extended terranes, ductile normal faulting has not been recognized within the Rio Grande rift in New Mexico, though there is some suggestion of ductile deformation around Blanca Peak in the San Luis Valley in Colorado. These observations imply one or both of the following: (1) Ductile deformation at Ladron Peak was

  17. Scaling of the Density Peak with Pellet Injection in ITER*%Scaling of the Density Peak with Pellet Injection in ITER*



    Scalings of the density peak and pellet penetration length in ITER are developed based on simulations using 1.5D BALDUR integrated predictive modeling code. In these simulations , the pellet ablation is described by the Neutral Gas Shielding (NGS) model with grad-B drift effect taken into account. The NGS pellet model is coupled with a plasma core transport model, which is a combination of an MMM95 anomalous transport model and an NCLASS neoclassical transport model. The BALDUR code with a combination of MMM95 and NCLASS models, together with the NGS model, is used to simulate the time evolution of plasma current, ion and electron temperatures, and density profiles for ITER standard type I ELMy H-mode discharges during the pellet injection. As a result, the scaling of the density peak and pellet penetration length at peak density can be established using this set of predictive simulations that covers a wide range of ITER plasma conditions and pellet parameters. The multiple regression technique is utilized in the development of the scalings. It is found that the scaling for density at center is sensitive to both the plasma and pellet parameters; whereas the scalings for density and location of the additional peak are sensitive to the pellet parameters only.

  18. Compressibility effects on the non-linear receptivity of boundary layers to dielectric barrier discharges

    Denison, Marie F. C.

    The reduction of drag and aerodynamic heating caused by boundary layer transition is of central interest for the development of hypersonic vehicles. Receptivity to flow perturbation in the form of Tollmien-Schlichting (TS) wave growth often determines the first stage of the transition process, which can be delayed by depositing specific excitations into the boundary layer. Weakly ionized Dielectric Barrier Discharge (DBD) actuators are being investigated as possible sources of such excitations, but little is known today about their interaction with high-speed flows. In this framework, the first part of the thesis is dedicated to a receptivity study of laminar compressible boundary layers over a flat plate by linear stability analysis following an adjoint operator formulation, under DBD representative excitations assumed independent of flow conditions. The second part of the work concentrates on the development of a coupled plasma-Navier and Stokes solver targeted at the study of supersonic flow and compressibility effects on DBD forcing and non-parallel receptivity. The linear receptivity study of quasi-parallel compressible flows reveals several interesting features such as a significant shift of the region of maximum receptivity deeper into the flow at high Mach number and strong wave amplitude reduction compared to incompressible flows. The response to DBD relevant excitation distributions and to variations of the base flow conditions and system length scales follows these trends. Observed absolute amplitude changes and relative sensitivity modifications between source types are related to the evolution of the offset between forcing peak profile and relevant adjoint mode maximum. The analysis highlights the crucial importance of designing and placing the actuator in a way that matches its force field to the position of maximum boundary layer receptivity for the specific flow conditions of interest. In order to address the broad time and length scale spectrum

  19. Monitoring of Time-Dependent System Profiles by Multiplex Gas Chromatography with Maximum Entropy Demodulation

    Becker, Joseph F.; Valentin, Jose


    The maximum entropy technique was successfully applied to the deconvolution of overlapped chromatographic peaks. An algorithm was written in which the chromatogram was represented as a vector of sample concentrations multiplied by a peak shape matrix. Simulation results demonstrated that there is a trade off between the detector noise and peak resolution in the sense that an increase of the noise level reduced the peak separation that could be recovered by the maximum entropy method. Real data originated from a sample storage column was also deconvoluted using maximum entropy. Deconvolution is useful in this type of system because the conservation of time dependent profiles depends on the band spreading processes in the chromatographic column, which might smooth out the finer details in the concentration profile. The method was also applied to the deconvolution of previously interpretted Pioneer Venus chromatograms. It was found in this case that the correct choice of peak shape function was critical to the sensitivity of maximum entropy in the reconstruction of these chromatograms.

  20. Water purification by electrical discharges

    Arif Malik, Muhammad; Ghaffar, Abdul; Akbar Malik, Salman


    There is a continuing need for the development of effective, cheap and environmentally friendly processes for the disinfection and degradation of organic pollutants from water. Ozonation processes are now replacing conventional chlorination processes because ozone is a stronger oxidizing agent and a more effective disinfectant without any side effects. However, the fact that the cost of ozonation processes is higher than chlorination processes is their main disadvantage. In this paper recent developments targeted to make ozonation processes cheaper by improving the efficiency of ozone generation, for example, by incorporation of catalytic packing in the ozone generator, better dispersion of ozone in water and faster conversion of dissolved ozone to free radicals are described. The synthesis of ozone in electrical discharges is discussed. Furthermore, the generation and plasma chemical reactions of several chemically active species, such as H2O2, Obullet, OHbullet, HO2bullet, O3*, N2*, e-, O2-, O-, O2+, etc, which are produced in the electrical discharges are described. Most of these species are stronger oxidizers than ozone. Therefore, water treatment by direct electrical discharges may provide a means to utilize these species in addition to ozone. Much research and development activity has been devoted to achieve these targets in the recent past. An overview of these techniques and important developments that have taken place in this area are discussed. In particular, pulsed corona discharge, dielectric barrier discharge and contact glow discharge electrolysis techniques are being studied for the purpose of cleaning water. The units based on electrical discharges in water or close to the water level are being tested at industrial-scale water treatment plants.}

  1. Seasonal and interannual variations of flow discharge from Pearl River into sea

    Wei ZHANG


    Full Text Available Flow discharge from the river basin into the sea has severe impacts on the immediate vicinity of river channels, estuaries, and coastal areas. This paper analyzes the features and temporal trends of flow discharge at Pearl River’s three main gauge stations: the Wuzhou, Shijiao, and Boluo gauge stations on the West River, North River, and East River, respectively. The results show no significant trend in annual mean discharge into the sea at the three gauge stations. Changes of monthly mean discharge at the Boluo Gauge Station are evident, and a majority of monthly discharge in the dry season displays significant increasing trends. Furthermore, changes of the extreme discharge are quite evident, with a significant decreasing trend in the annual maximum discharge and a significant increasing trend in the minimum one. The significantly decreasing ratio of the flood discharge to annual discharge at the Boluo Gauge Station indicates that the flow discharge from the East River has increased in the dry season and decreased in the flood season since the construction of dams and reservoirs. At the other two gauge stations, the Wuzhou and Shijiao gauge stations, the seasonal discharge generally does not change perceptibly. Human impacts, especially those pertaining to reservoir and dam construction, appear to be responsible for the seasonal variation of flow discharge. The results indicate that the construction and operation of dams and reservoirs in the East River have a greater influence on flow discharge, which can well explain why the seasonal variation of flow discharge from the East River is more evident.

  2. The inverse maximum dynamic flow problem

    BAGHERIAN; Mehri


    We consider the inverse maximum dynamic flow (IMDF) problem.IMDF problem can be described as: how to change the capacity vector of a dynamic network as little as possible so that a given feasible dynamic flow becomes a maximum dynamic flow.After discussing some characteristics of this problem,it is converted to a constrained minimum dynamic cut problem.Then an efficient algorithm which uses two maximum dynamic flow algorithms is proposed to solve the problem.

  3. Distribution of phytoplankton groups within the deep chlorophyll maximum

    Latasa, Mikel


    The fine vertical distribution of phytoplankton groups within the deep chlorophyll maximum (DCM) was studied in the NE Atlantic during summer stratification. A simple but unconventional sampling strategy allowed examining the vertical structure with ca. 2 m resolution. The distribution of Prochlorococcus, Synechococcus, chlorophytes, pelagophytes, small prymnesiophytes, coccolithophores, diatoms, and dinoflagellates was investigated with a combination of pigment-markers, flow cytometry and optical and FISH microscopy. All groups presented minimum abundances at the surface and a maximum in the DCM layer. The cell distribution was not vertically symmetrical around the DCM peak and cells tended to accumulate in the upper part of the DCM layer. The more symmetrical distribution of chlorophyll than cells around the DCM peak was due to the increase of pigment per cell with depth. We found a vertical alignment of phytoplankton groups within the DCM layer indicating preferences for different ecological niches in a layer with strong gradients of light and nutrients. Prochlorococcus occupied the shallowest and diatoms the deepest layers. Dinoflagellates, Synechococcus and small prymnesiophytes preferred shallow DCM layers, and coccolithophores, chlorophytes and pelagophytes showed a preference for deep layers. Cell size within groups changed with depth in a pattern related to their mean size: the cell volume of the smallest group increased the most with depth while the cell volume of the largest group decreased the most. The vertical alignment of phytoplankton groups confirms that the DCM is not a homogeneous entity and indicates groups’ preferences for different ecological niches within this layer.

  4. Predicting the solar maximum with the rising rate

    Du, Z L


    The growth rate of solar activity in the early phase of a solar cycle has been known to be well correlated with the subsequent amplitude (solar maximum). It provides very useful information for a new solar cycle as its variation reflects the temporal evolution of the dynamic process of solar magnetic activities from the initial phase to the peak phase of the cycle. The correlation coefficient between the solar maximum (Rmax) and the rising rate ({\\beta}a) at {\\Delta}m months after the solar minimum (Rmin) is studied and shown to increase as the cycle progresses with an inflection point (r = 0.83) at about {\\Delta}m = 20 months. The prediction error of Rmax based on {\\beta}a is found within estimation at the 90% level of confidence and the relative prediction error will be less than 20% when {\\Delta}m \\geq 20. From the above relationship, the current cycle (24) is preliminarily predicted to peak around October 2013 with a size of Rmax =84 \\pm 33 at the 90% level of confidence.

  5. Maximum permissible voltage of YBCO coated conductors

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)


    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  6. Peak Wind Tool for General Forecasting

    Barrett, Joe H., III


    The expected peak wind speed of the day is an important forecast element in the 45th Weather Squadron's (45 WS) daily 24-Hour and Weekly Planning Forecasts. The forecasts are used for ground and space launch operations at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45 WS also issues wind advisories for KSC/CCAFS when they expect wind gusts to meet or exceed 25 kt, 35 kt and 50 kt thresholds at any level from the surface to 300 ft. The 45 WS forecasters have indicated peak wind speeds are challenging to forecast, particularly in the cool season months of October - April. In Phase I of this task, the Applied Meteorology Unit (AMU) developed a tool to help the 45 WS forecast non-convective winds at KSC/CCAFS for the 24-hour period of 0800 to 0800 local time. The tool was delivered as a Microsoft Excel graphical user interface (GUI). The GUI displayed the forecast of peak wind speed, 5-minute average wind speed at the time of the peak wind, timing of the peak wind and probability the peak speed would meet or exceed 25 kt, 35 kt and 50 kt. For the current task (Phase II ), the 45 WS requested additional observations be used for the creation of the forecast equations by expanding the period of record (POR). Additional parameters were evaluated as predictors, including wind speeds between 500 ft and 3000 ft, static stability classification, Bulk Richardson Number, mixing depth, vertical wind shear, temperature inversion strength and depth and wind direction. Using a verification data set, the AMU compared the performance of the Phase I and II prediction methods. Just as in Phase I, the tool was delivered as a Microsoft Excel GUI. The 45 WS requested the tool also be available in the Meteorological Interactive Data Display System (MIDDS). The AMU first expanded the POR by two years by adding tower observations, surface observations and CCAFS (XMR) soundings for the cool season months of March 2007 to April 2009. The POR was expanded


    Y. Labbi


    Full Text Available Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency.In this work, a Particle Swarm Optimization (PSO is proposed for maximum power point tracker for photovoltaic panel, are used to generate the optimal MPP, such that solar panel maximum power is generated under different operating conditions. A photovoltaic system including a solar panel and PSO MPP tracker is modelled and simulated, it has been has been carried out which has shown the effectiveness of PSO to draw much energy and fast response against change in working conditions.

  8. Influence of sleep and meal schedules on performance peaks in competitive sprinters.

    Javierre, C; Calvo, M; Díez, A; Garrido, E; Segura, R; Ventura, J L


    The influence of sleep and meal schedules on performance in short distance running was assessed in a group of 8 national-class competition male sprinters. They were tested on Saturdays for five consecutive weeks. On each testing day, the performance time for an 80 m sprint was registered on eight different occasions during days 1 and 4, on 9 occasions on days 2 and 5, and on 7 occasions on day 3. On control days (days 1 and 4) performance gradually improved during the morning up to 13:00 h, decreased at 15:00 h, and again improved thereafter, with a maximum peak performance at 19:00 h. On day 2, in which sleep/wake cycles and meal-times were advanced for two hours, and on day 3, in which timetables were delayed for two hours, maximum peak performance was observed at 17:00 h and 21:00 h, respectively. At the time of maximum peak performance on both days a statistically significant improvement was observed as compared with the control day (day 2, p sleep/wake cycle was advanced for two hours, performance in the afternoon and evening was similar to that recorded on days 1 and 4. We observed that easy manipulation of sleep and meal schedules would allow competitive sprinters to synchronize peak power output with the time of the athletic event, increasing the chances for improvement in performance.

  9. Continuous river discharge monitoring with bottom-mounted current profilers at narrow tidal estuaries

    Garel, E.; D'Alimonte, D.


    The objective of this study is to verify whether accurate and continuous estimates of freshwater discharge at the mouth of a narrow estuary with a single channel can be obtained from a bottom-mounted current profiler (ADCP). The focus is on moderate- to high-discharge events that significantly affect the water circulation corresponding to low river flow conditions. Observations at the Guadiana Estuary (southern Iberia) indicate lateral subtidal flow variability, constant cross-channel area, and quasi-steady response of the axial velocity to discharge events. Based on the concept of maximum entropy, the mean and maximum channel velocities were related by a constant ratio, Ω, using data from three cross-channel surveys. This relationship was then used to estimate the freshwater discharge at the mouth based on the maximum velocity obtained from the detided ADCP velocity profiles. This approach was possible because the ADCP was deployed near the position of maximum current velocity, that is, over the deepest part of the channel. The results show good correspondence with observations, indicating that the entropy model can complete or substitute the records from upstream gauged stations that do not include the contribution from downstream tributaries. A Multilayer Perceptron neural net (MLP) based on the entropy approach was then implemented with the purpose of estimating the discharge when Ω is unknown. This latter analysis showsthat the relationship between maximum velocity and discharge is quasi-stationary. Consequently, the MLP can successfully estimate freshwater runoff if the training data represent all statistical properties of the river discharge dynamics. The results also indicate that Ω may vary not only with concomitant hydrographic conditions, but also with the recent (i.e., several days prior) discharge magnitude.

  10. Decarbonization and the time-delay between peak CO2 emissions and concentrations

    Seshadri, Ashwin K


    Carbon-dioxide (CO2) is the main contributor to anthropogenic global warming, and the timing of its peak concentration in the atmosphere is likely to govern the timing of maximum radiative forcing. While dynamics of atmospheric CO2 is governed by multiple time-constants, we idealize this by a single time-constant to consider some of the factors describing the time-delay between peaks in CO2 emissions and concentrations. This time-delay can be understood as the time required to bring CO2 emissions down from its peak to a small value, and is governed by the rate of decarbonizaton of economic activity. This decarbonization rate affects how rapidly emissions decline after having achieved their peak, and a rapid decline in emissions is essential for limiting peak radiative forcing. Long-term mitigation goals for CO2 should therefore consider not only the timing of peak emissions, but also the rate of decarbonization. We discuss implications for mitigation of the fact that the emissions peak corresponds to small bu...

  11. Guidance for a harmonized emission scenario document (ESD) on ballast water discharge

    Zipperle, Andreas [BIS - Beratungszentrum fuer integriertes Sedimentmanagement, Hamburg (Germany); Gils, Jos van [DELTARES, Delft (Netherlands); Hattum, Bert van [Amsterdam Univ. (Netherlands). IVM - Institute for Environmental Studies; Heise, Susanne [BIS - Beratungszentrum fuer integriertes Sedimentmanagement, Hamburg (Germany); Hamburg Univ. of Applied Sciences (Germany)


    The present report provides guidance for a harmonized Emission Scenario Document (ESD) for the exposure assessment as part of the environmental risk assessment process which applicants seeking approval of a ballast water management system (BWMS) need to perform prior to notification and authorisation procedures. Despite the global variability of the marine environment, ballast water discharges and treatment methods, exposure assessments need to be comparable between different applications. In order to achieve this, this ESD points out the following aspects: - Applicants should use standardized scenarios in order to predict mean exposure. These should reflect generic situations, independent of region or port so that results are widely applicable. In addition to a harbour scenario, a standardized shipping lane scenario should be considered, - During or right after ballast water discharge, high concentrations may persist in a water body for a certain length of time until extensive mixing results in mean concentrations. Not taking exposure to peak concentrations within gradients into account could lead to an underestimation of risk, especially for rapidly degrading substances. Efforts have been made to approximate maximum exposure concentration with simple dilution factors. Their applicability was checked by near-field-evaluations. - Chemical properties determine the environmental fate of substances. If they are ambiguous, selection of a specific set of data strongly influences the result of an exposure assessment. Guidance is given on what to do about lacking data. - In order to harmonize the exposure assessments, reliable chemical model software should be used. A discussion on the requirements of suitable software and an evaluation of MAMPEC is given in this report. (orig.)

  12. Peak Electric Load Relief in Northern Manhattan

    Hildegaard D. Link


    Full Text Available The aphorism “Think globally, act locally,” attributed to René Dubos, reflects the vision that the solution to global environmental problems must begin with efforts within our communities. PlaNYC 2030, the New York City sustainability plan, is the starting point for this study. Results include (a a case study based on the City College of New York (CCNY energy audit, in which we model the impacts of green roofs on campus energy demand and (b a case study of energy use at the neighborhood scale. We find that reducing the urban heat island effect can reduce building cooling requirements, peak electricity loads stress on the local electricity grid and improve urban livability.

  13. Tim Peake and Britain's road to space

    Seedhouse, Erik


    This book puts the reader in the flight suit of Britain’s first male astronaut, Tim Peake. It chronicles his life, along with the Principia mission and the down-to-the-last-bolt descriptions of life aboard the ISS, by way of the hurdles placed by the British government and the rigors of training at Russia’s Star City military base. In addition, this book discusses the learning curves required in astronaut and mission training and the complexity of the technologies required to launch an astronaut and keep them alive for months on end. This book underscores the fact that technology and training, unlike space, do not exist in a vacuum; complex technical systems, like the ISS, interact with the variables of human personality, and the cultural background of the astronauts. .

  14. Paddle River Dam : review of probable maximum flood

    Clark, D. [UMA Engineering Ltd., Edmonton, AB (Canada); Neill, C.R. [Northwest Hydraulic Consultants Ltd., Edmonton, AB (Canada)


    The Paddle River Dam was built in northern Alberta in the mid 1980s for flood control. According to the 1999 Canadian Dam Association (CDA) guidelines, this 35 metre high, zoned earthfill dam with a spillway capacity sized to accommodate a probable maximum flood (PMF) is rated as a very high hazard. At the time of design, it was estimated to have a peak flow rate of 858 centimetres. A review of the PMF in 2002 increased the peak flow rate to 1,890 centimetres. In light of a 2007 revision of the CDA safety guidelines, the PMF was reviewed and the inflow design flood (IDF) was re-evaluated. This paper discussed the levels of uncertainty inherent in PMF determinations and some difficulties encountered with the SSARR hydrologic model and the HEC-RAS hydraulic model in unsteady mode. The paper also presented and discussed the analysis used to determine incremental damages, upon which a new IDF of 840 m{sup 3}/s was recommended. The paper discussed the PMF review, modelling methodology, hydrograph inputs, and incremental damage of floods. It was concluded that the PMF review, involving hydraulic routing through the valley bottom together with reconsideration of the previous runoff modeling provides evidence that the peak reservoir inflow could reasonably be reduced by approximately 20 per cent. 8 refs., 5 tabs., 8 figs.

  15. The abnormal electrostatic discharge of a no-connect metal cover in a ceramic packaging device

    Li Song; Zeng Chuanbin; Luo Jiajun; Han Zhengsheng


    The human body model (HBM) stress of a no-connect metal cover is tested to obtain the characteristics of abnormal electrostatic discharge,including current waveforms and peak current under varied stress voltage and device failure voltage.A new discharge model called the "sparkover-induced model" is proposed based on the results.Then,failure mechanism analysis and model simulation are performed to prove that the transient peak current caused by a sparkover of low arc impedance will result in the devices' premature damage when the potential difference between the no-connect metal cover and the chip exceeds the threshold voltage of sparkover.

  16. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier

    ZHANG Yuan-Tao; WANG De-Zhen; WANG Yan-Hui; LIU Cheng-Sen


    @@ The radial evolution of atmospheric pressure glow discharge in helium is presented by numerical simulation. The calculations reveal the mechanism of two current peaks per half cycle. The first breakdown occurs firstly in the central region of the electrode, and then spreads to the edge, while the second breakdown ignites at the periphery firstly, and then propagates toward the discharge central region. The simulations indicate that radial electric fields and radial sheath play an important role in the evolution of the second peak. These results agree fundamentally with the experimental observations.

  17. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field.

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander


    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.

  18. Methods and equations for estimating peak streamflow per square mile in Virginia’s urban basins

    Austin, Samuel H.


    Models are presented that describe Virginia urban area annual peak streamflow per square mile based on basin percent urban area and basin drainage area. Equations are provided to estimate Virginia urban peak flow per square mile of basin drainage area in each of the following annual exceedance probability categories: 0.995, 0.99, 0.95, 0.9, 0.8, 0.67, 0.5, 0.43, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 1.005, 1.01, 1.05, 1.11, 1.25, 1.49, 2.0, 2.3, 5, 10, 25, 50, 100, 200, and 500 years, respectively). Equations apply to Virginia drainage basins ranging in size from no less than 1.2 mi2 to no more than 2,400 mi2 containing at least 10 percent urban area, and not more than 96 percent urban area. A total of 115 Virginia drainage basins were analyzed. Actual-by-predicted plots and leverage plots for response variables and explanatory variables in each peak-flow annual exceedance probability category indicate robust model fits and significant explanatory power. Equations for 8 of 15 urban peak-flow response surface models yield R-square values greater than 0.8. Relations identified in statistical models, describing significant increases in urban peak stream discharges as basin urban area increases, affirm empirical relations reported in past studies of change in stream discharge, lag times, and physical streamflow processes, most notably those detailed for urban areas in northern Virginia.

  19. Capillary Discharge XUV Radiation Source

    M. Nevrkla


    Full Text Available A device producing Z-pinching plasma as a source of XUV radiation is described. Here a ceramic capacitor bank pulse-charged up to 100 kV is discharged through a pre-ionized gas-filled ceramic tube 3.2 mm in diameter and 21 cm in length. The discharge current has amplitude of 20 kA and a rise-time of 65 ns. The apparatus will serve as experimental device for studying of capillary discharge plasma, for testing X-ray optics elements and for investigating the interaction of water-window radiation with biological samples. After optimization it will be able to produce 46.9 nm laser radiation with collision pumped Ne-like argon ions active medium. 

  20. Stroke rehabilitation and discharge planning.

    Kerr, Peter

    Nurses play a pivotal role in the rehabilitation and discharge planning process of patients who have had a stroke. The nurse's role in the wider stroke multidisciplinary team is complex and diverse and, as such, stroke nurses may find it hard to describe their role and how it fits into the rehabilitation and discharge planning process. A definition of the stroke nurse role in prominent publications such as those of the Scottish Intercollegiate Guidelines Network and the Royal College of Physicians is lacking. This article emphasises the role of the stroke nurse in the rehabilitation and discharge planning process in the stroke unit, while highlighting the complexity, diversity and importance of this role in providing holistic care and support for patients who have survived a stroke. The author draws on his clinical experience of stroke nursing practice in primary, secondary and tertiary care in west central Scotland.

  1. Generalised maximum entropy and heterogeneous technologies

    Oude Lansink, A.G.J.M.


    Generalised maximum entropy methods are used to estimate a dual model of production on panel data of Dutch cash crop farms over the period 1970-1992. The generalised maximum entropy approach allows a coherent system of input demand and output supply equations to be estimated for each farm in the sam

  2. 20 CFR 229.48 - Family maximum.


    ... month on one person's earnings record is limited. This limited amount is called the family maximum. The family maximum used to adjust the social security overall minimum rate is based on the employee's Overall..., when any of the persons entitled to benefits on the insured individual's compensation would, except...

  3. The maximum rotation of a galactic disc

    Bottema, R


    The observed stellar velocity dispersions of galactic discs show that the maximum rotation of a disc is on average 63% of the observed maximum rotation. This criterion can, however, not be applied to small or low surface brightness (LSB) galaxies because such systems show, in general, a continuously

  4. Electron power absorption dynamics in capacitive radio frequency discharges driven by tailored voltage waveforms in CF4

    Brandt, S.; Berger, B.; Schüngel, E.; Korolov, I.; Derzsi, A.; Bruneau, B.; Johnson, E.; Lafleur, T.; O'Connell, D.; Koepke, M.; Gans, T.; Booth, J.-P.; Donkó, Z.; Schulze, J.


    The power absorption dynamics of electrons and the electrical asymmetry effect in capacitive radio-frequency plasmas operated in CF4 and driven by tailored voltage waveforms are investigated experimentally in combination with kinetic simulations. The driving voltage waveforms are generated as a superposition of multiple consecutive harmonics of the fundamental frequency of 13.56 MHz. Peaks/valleys and sawtooth waveforms are used to study the effects of amplitude and slope asymmetries of the driving voltage waveform on the electron dynamics and the generation of a DC self-bias in an electronegative plasma at different pressures. Compared to electropositive discharges, we observe strongly different effects and unique power absorption dynamics. At high pressures and high electronegativities, the discharge is found to operate in the drift-ambipolar (DA) heating mode. A dominant excitation/ionization maximum is observed during sheath collapse at the edge of the sheath which collapses fastest. High negative-ion densities are observed inside this sheath region, while electrons are confined for part of the RF period in a potential well formed by the ambipolar electric field at this sheath edge and the collapsed (floating potential) sheath at the electrode. For specific driving voltage waveforms, the plasma becomes divided spatially into two different halves of strongly different electronegativity. This asymmetry can be reversed electrically by inverting the driving waveform. For sawtooth waveforms, the discharge asymmetry and the sign of the DC self-bias are found to reverse as the pressure is increased, due to a transition of the electron heating mode from the α-mode to the DA-mode. These effects are interpreted with the aid of the simulation results.

  5. Duality of Maximum Entropy and Minimum Divergence

    Shinto Eguchi


    Full Text Available We discuss a special class of generalized divergence measures by the use of generator functions. Any divergence measure in the class is separated into the difference between cross and diagonal entropy. The diagonal entropy measure in the class associates with a model of maximum entropy distributions; the divergence measure leads to statistical estimation via minimization, for arbitrarily giving a statistical model. The dualistic relationship between the maximum entropy model and the minimum divergence estimation is explored in the framework of information geometry. The model of maximum entropy distributions is characterized to be totally geodesic with respect to the linear connection associated with the divergence. A natural extension for the classical theory for the maximum likelihood method under the maximum entropy model in terms of the Boltzmann-Gibbs-Shannon entropy is given. We discuss the duality in detail for Tsallis entropy as a typical example.

  6. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    Bauk, Sabar, E-mail: [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hussin, Siti Fatimah [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Alam, Md. Shah [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Physics Department, Shahjalal University of Science and Technology, Sylhet (Bangladesh)


    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s{sup −1}. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peak 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases.

  7. State Waste Discharge Permit application, 183-N Backwash Discharge Pond


    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

  8. Combining flow routing modelling and direct velocity measurement for optimal discharge estimation

    G. Corato


    using field data of three gauged river sites. Indeed, for each of them a downstream reach, long not more than 500 m, is turned out fair for achieving good performances of the diffusive hydraulic model, thus allowing to drastically reducing the topographical data of river cross-sections; (2 the procedure for Manning's coefficient calibration allowed to get high performance of the hydraulic model just considering the observed water levels and sporadic measurements of maximum surface flow velocity during the rising limb of flood. Indeed, in terms of errors in magnitude on peak discharge, for the optimal calibration, they were found, in average, not exceeding 5% for all events observed in the three investigated gauged sections, while the Nash-Sutcliff efficiency was, in average, greater than 0.95. Therefore, the proposed procedure, apart from to have turned out reliable for the rating curve assessment at ungauged sites, can be applied in realtime for whatever flood conditions and this is of great interest for the practice hydrology seeing that, looking at new monitoring technologies, it will be possible to carry out velocity measurements by hand-held radar sensors in different river sites and for the same flood.

  9. Peak, multi-peak and broadband absorption in graphene-based one-dimensional photonic crystal

    Miloua, R.; Kebbab, Z.; Chiker, F.; Khadraoui, M.; Sahraoui, K.; Bouzidi, A.; Medles, M.; Mathieu, C.; Benramdane, N.


    We theoretically investigate the possibility of enhancing light absorption in graphene-based one dimensional photonic crystal. We demonstrate that it is possible to achieve total light absorption at technologically important wavelengths using one-dimensional graphene-based photonic crystals. By means of the transfer matrix method, we investigate the effect of refractive indices and layer numbers on the optical response of the structure. We found that it is possible to achieve one peak, multi-peak or broadband, and complete optical absorption. As a result, the proposed photonic structures enable myriad potential applications such as photodetection, shielding and optical sensing.

  10. Compact monolithic capacitive discharge unit

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.


    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  11. Dielectric barrier discharges in analytical chemistry.

    Meyer, C; Müller, S; Gurevich, E L; Franzke, J


    The present review reflects the importance of dielectric barrier discharges in analytical chemistry. Special about this discharge is-and in contrast to usual discharges with direct current-that the plasma is separated from one or two electrodes by a dielectric barrier. This gives rise to two main features of the dielectric barrier discharges; it can serve as dissociation and excitation device and as ionization mechanism, respectively. The article portrays the various application fields for dielectric barrier discharges in analytical chemistry, for example the use for elemental detection with optical spectrometry or as ionization source for mass spectrometry. Besides the introduction of different kinds of dielectric barrier discharges used for analytical chemistry from the literature, a clear and concise classification of dielectric barrier discharges into capacitively coupled discharges is provided followed by an overview about the characteristics of a dielectric barrier discharge concerning discharge properties and the ignition mechanism.

  12. Emission of excimer radiation from direct current, high-pressure hollow cathode discharges

    El-Habachi, Ahmed; Schoenbach, Karl H.


    A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 μm diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V for xenon discharges, at current levels on the order of mA. The resistive current-voltage characteristics of the microdischarges indicate the possibility to form arrays for direct current, flat panel excimer lamps.

  13. Effect of Ne Glow Discharge on Ion Density Control in LHD

    S.Morita; M. Goto; S. Masuzaki; H. Suzuki; K. Tanaka; H. Nozato; Y. Takeiri; J. Miyazawa; LHD esperimental group


    Neon glow discharge cleaning was firstly attempted in Large Helical Device (LHD) instead of He glow discharge to remove hydrogen neutrals and to control the ion density, ni. The Ne glow discharge continued for 8 hours overnight after a three-day experiment. At the second night Halpha emission became weaker than the emission usually observed in the He glow discharge. A clear reduction of the hydrogen influx was also observed in neutral beam injection (NBI) discharges with Ne puff, whereas the neon recycling was strongly enhanced with appearance of a flat density profile. As a result, the lowest density limit was further reduced down to 0.2 times10 13 ,cm-3. The use of Ar puff formed a peaked density profile with a high Ti of 7 keV.

  14. A Quantified Reconstruction of Amazon River Discharge for the Last 40 kyr

    Ettwein, V.; Maslin, M.; Burns, S.; Leng, M.; Weyhenmeyer, C.


    The glacial moisture history of the Amazon Basin is comparatively poorly known. Previous estimates have been inferred from highly localised and qualitative indicators of effective moisture, and debate exists as to whether the glacial Amazon Basin was humid or dry. Reconstructing glacial Amazon aridity is essential for three main reasons: 1) Aridity is a key physiological control on the distribution of vegetation and therefore provides a means of testing the Pleistocene tropical rainforest refuge hypothesis; 2) Amazonian wetlands represent a major source of atmospheric methane and may exert a primary control on the ice core methane records; 3) the Amazon Basin is a major source of tropical atmospheric water vapour, another important greenhouse gas. Here we present unequivocal evidence to suggest widespread aridity within the Amazon Basin during the Last Glacial Maximum (LGM) and also the Younger Dryas (YD). We have used δ18O of planktonic foraminifera from ODP Site 942 on the Amazon Fan to quantify Amazon River discharge for the last 40 kyr, employing an age model constructed around 35 14C AMS dates. Our calculations suggest outflow to have been c. 70% relative to modern during the LGM (i.e. c. 30% reduced), and c. 60% relative to modern during the YD. Sedimentation rates are relatively more elevated during the YD with two distinct peaks around 11200 and 13500 Cal yr BP. Centennial and millennial-scale variability in the data are most likely climate-driven.

  15. Cold-cathode, pulsed-power plasma discharge switch

    Goebel, Dan M.


    CROSSATRONTMmodulator switches are cold-cathode, grid-controlled, plasma-discharge devices that are used for thyratron and hard-tube replacement in high-voltage, pulsed-power applications. CROSSATRON modulator switches have been used to produce square pulses of up to 100 kV and 1000 A, and CROSSATRON laser-discharge switches have switched peak discharge currents of up to 10 kA at 40 kV. The major advantage that CROSSATRON switches offer over other plasma switches is a rapid deionization time that permits high pulse-repetition frequencies (103 to 106 pulses per second depending on the application), and a long life associated with the cold-cathode plasma production mechanism. Compared to hard tubes, CROSSATRON switches have a relatively low forward voltage drop (500 V), the ability to close and open up to 1 kA of peak current, and lower grid-drive power requirements. In this article, we describe the physical mechanisms for how the switch works based on simple models and experimental data. The design of CROSSATRON switches is explained, and characteristic performance in closing and opening applications is described and explained.

  16. The role of MHD in causing impurity peaking in JET Hybrid plasmas

    Hender, T C; Casson, F J; Alper, B; Baranov, Yu; Baruzzo, M; Challis, C D; Koechl, F; Marchetto, C; Nave, M F F; Pütterich, T; Cortes, S Reyes; Contributors, JET


    In Hybrid plasma operation in JET with its ITER-like wall (JET-ILW) it is found that n>1 tearing activity can significantly enhance the rate of on-axis peaking of tungsten impurities, which in turn significantly degrades discharge performance. Core n=1 instabilities can be beneficial in removing tungsten impurities from the plasma core (e.g. sawteeth or fishbones), but can conversely also degrade core confinement (particularly in combination with simultaneous n=3 activity). The nature of MHD instabilities in JET Hybrid discharges, with both its previous Carbon wall and subsequent JET-ILW, is surveyed statistically and the character of the instabilities is examined. Possible qualitative models for how the n>1 islands can enhance on-axis tungsten transport accumulation processes are presented.

  17. Investigation of electrolyte electric discharge characteristics

    Kirko, D. L.; Savjolov, A. S.


    The most important electrical characteristics of electrolyte electric discharge were investigated. The electric burning discharge was obtained with the help of different electrolytes. The spectral composition of the electric discharge electromagnetic radiation was determined, the plasma temperature was determined. The spectrum of the electric discharge high-frequency oscillations was calculated in the region v=10 kHz-80 MHz. The most appropriate modes of the electric burning discharge in different electrolytes were proposed.

  18. Norwegian hydropower a valuable peak power source

    Brekke, Hermod


    given on a possible increase of the Norwegian hydropower peak power production to meet the growing the European demand for peak power caused by the growing non stationary production from wind mills and ocean energy from waves and sea current. Also building of reversible pump turbine power plants will be discussed even if approximately 10% power will be consumed by loss in the pumping phase compared to direct use of the water from reservoirs. (Author)

  19. Current-pressure dependencies of dc magnetron discharge in inert gases

    Serov, A. O.; Mankelevich, Yu A.; Pal, A. F.; Ryabinkin, A. N.


    The current-pressure (I-P) characteristics of dc magnetron discharge in inert gases (Ar, Kr and Xe) for various constant discharge voltages were measured. Under certain conditions on I-P characteristic, the nonmonotonic region of local maximum followed by a minimum is observed. It is found that increasing mass of the working gas ions results in a shift of the local maximum to lower pressures. The spatial distribution of ions in the plasma was studied by optical emission spectroscopy. Transformation of the discharge spatial structure with pressure was observed. A qualitative model of the observed trends is presented. It takes into account the pressure dependence of the discharge spatial structure, the capturing of secondary electrons by the cathode and charge exchange effects.

  20. Coherence of EMG activity and single motor unit discharge patterns in human rhythmical force production.

    Sosnoff, Jacob J; Vaillancourt, David E; Larsson, Lars; Newell, Karl M


    The purpose of this study was to examine the modulation of the motor neuronal pool as a function of task dynamics. Specifically, we investigated the effects of task frequency on the single motor unit discharge pattern, electromyogram (EMG) activity and effector force output. Myoelectric activity and effector force were recorded while young adults isometrically abducted their first dorsal interosseus at five sinusoidal targets (0.5 Hz, 1 Hz, 2 Hz, 3 Hz and 4 Hz) and at two force levels (5% and 25% maximum voluntary contraction (MVC)). Individual motor unit spike trains were isolated from the EMG. Auto-spectral and coherence analyses were performed on the force output, EMG and motor unit spike trains. The frequency of maximal coherence between the EMG and force output closely corresponded to the target frequency in all conditions. There was a broadband distribution of power with multiple peaks in the EMG and motor unit spectrums in the 0.5 Hz and 1 Hz targets. However, the EMG and motor unit spectrums in the 2 Hz, 3 Hz and 4 Hz targets were characterized by an increasingly narrower band of activity with one dominant peak that closely corresponded to the target. There is high coherence between EMG output and target force frequency, but the relative contribution of the fast and slow neuromuscular bands are differentially influenced by the task frequency. The rhythmical organization of neuromuscular output in the 0.5 Hz task is relatively broadband and similar to that shown previously for constant level force output. The frequency structure of neuromuscular organization becomes increasingly more narrowband as the frequency of the target increases (2-4 Hz). The modulation of the motor neuronal pool is adaptive and depends on the relative contribution of feedback and feedforward control processes, which are driven by the task demands.

  1. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality

    Pundhir, Sachin; Bagger, Frederik Otzen; Lauridsen, Felicia Kathrine Bratt


    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak...

  2. Analysis of the Peak Resistance Frequency Method.

    Wang, Boshuo; Weiland, James D


    This study analyzes the peak resistance frequency (PRF) method described by Mercanzini et al., a method that can easily extract the tissue resistance from impedance spectroscopy for many neural engineering applications but has no analytical description thus far. Mathematical analyses and computer simulations were used to explore underlying principles, accuracy, and limitations of the PRF method. The mathematical analyses demonstrated that the PRF method has an inherent but correctable deviation dependent on the idealness of the electrode-tissue interface, which is validated by simulations. Further simulations show that both frequency sampling and noise affect the accuracy of the PRF method, and in general, it performs less accurately than least squares methods. However, the PRF method achieves simplicity and reduced measurement and computation time at the expense of accuracy. From the qualitative results, the PRF method can work with reasonable precision and simplicity, although its limitation and the idealness of the electrode-tissue interface involved should be taken into consideration. This paper provides a mathematical foundation for the PRF method and its practical implementation.

  3. Z-peaked excess in goldstini scenarios

    Liew, Seng Pei; Mawatari, Kentarou; Sakurai, Kazuki; Vereecken, Matthias


    We study a possible explanation of a 3.0 $\\sigma$ excess recently reported by the ATLAS Collaboration in events with Z-peaked same-flavour opposite-sign lepton pair, jets and large missing transverse momentum in the context of gauge-mediated SUSY breaking with more than one hidden sector, the so-called goldstini scenario. In a certain parameter space, the gluino two-body decay chain $\\tilde g\\to g\\tilde\\chi^0_{1,2}\\to gZ\\tilde G'$ becomes dominant, where $\\tilde\\chi^0_{1,2}$ and $\\tilde G'$ are the Higgsino-like neutralino and the massive pseudo-goldstino, respectively, and gluino pair production can contribute to the signal. We find that a mass spectrum such as $m_{\\tilde g}\\sim 900$ GeV, $m_{\\tilde\\chi^0_{1,2}}\\sim 700$ GeV and $m_{\\tilde G'}\\sim 600$ GeV demonstrates the rate and the distributions of the excess, without conflicting with the stringent constraints from jets plus missing energy analyses and with the CMS constraint on the identical final state.

  4. Z-peaked excess in goldstini scenarios

    Seng Pei Liew


    Full Text Available We study a possible explanation of a 3.0 σ excess recently reported by the ATLAS Collaboration in events with Z-peaked same-flavour opposite-sign lepton pair, jets and large missing transverse momentum in the context of gauge-mediated SUSY breaking with more than one hidden sector, the so-called goldstini scenario. In a certain parameter space, the gluino two-body decay chain g˜→gχ˜1,20→gZG˜′ becomes dominant, where χ˜1,20 and G˜′ are the Higgsino-like neutralino and the massive pseudo-goldstino, respectively, and gluino pair production can contribute to the signal. We find that a mass spectrum such as mg˜∼1000 GeV, mχ˜1,20∼800 GeV and mG˜′∼600 GeV demonstrates the rate and the distributions of the excess, without conflicting with the stringent constraints from jets plus missing energy analyses and with the CMS constraint on the identical final state.

  5. Asymmetry parameter of peaked Fano line shapes

    Meierott, S.; Hotz, T.; Néel, N.; Kröger, J.


    The spectroscopic line shape of electronic and vibrational excitations is ubiquitously described by a Fano profile. In the case of nearly symmetric and peaked Fano line shapes, the fit of the conventional Fano function to experimental data leads to difficulties in unambiguously extracting the asymmetry parameter, which may vary over orders of magnitude without degrading the quality of the fit. Moreover, the extracted asymmetry parameter depends on initially guessed values. Using the spectroscopic signature of the single-Co Kondo effect on Au(110) the ambiguity of the extracted asymmetry parameter is traced to the highly symmetric resonance profile combined with the inevitable scattering of experimental data. An improved parameterization of the conventional Fano function is suggested that enables the nonlinear optimization in a reduced parameter space. In addition, the presence of a global minimum in the sum of squared residuals and thus the independence of start parameters may conveniently be identified in a two-dimensional plot. An angular representation of the asymmetry parameter is suggested in order to reliably determine uncertainty margins via linear error propagation.

  6. Existence of a typical threshold in the response of human mesenchymal stem cells to a peak and valley topography.

    Bigerelle, M; Giljean, S; Anselme, K


    Our objective in this study was to determine whether a threshold in sensitivity of human mesenchymal stem cells (hMSC) to isotropic roughness exists. Using electrical discharge machining a very wide range of roughnesses (1.2μmpeaks and valleys) S(m)=110μm. The maximum cell number was observed at the lowest and highest roughnesses. Due to this very wide range of roughness it was possible to demonstrate that the response of hMSC to roughness varies with the dimensions of the surface features relative to the cell size. Above or below their own size hMSC essentially adhere to the nano and submicron features. When the surface displays features about the same size as hMSC the curvature of these surface features will decrease the number of attached cells by a factor of two. A modelling approach is proposed to help the interpretation of these results. It is hypothesized that this minimal adhesion is a consequence of an unfavourable stress imposed on the cell cytoskeleton.

  7. Electronic Discharge Letter Mobile App

    Lezcano, Leonardo; Triana, Michel; Ternier, Stefaan; Hartkopf, Kathleen; Stieger, Lina; Schroeder, Hanna; Sopka, Sasa; Drachsler, Hendrik; Maher, Bridget; Henn, Patrick; Orrego, Carola; Marcus, Specht


    The electronic discharge letter mobile app takes advantage of Near Field Communication (NFC) within the PATIENT project and a related post-doc study. NFC enabled phones to read passive RFID tags, but can also use this short-range wireless technology to exchange (small) messages. NFC in that sense co

  8. Plasma Characteristics of Electrosurgical Discharges*

    Stalder, Kenneth R.


    Surgical devices utilizing electrical discharges of ever increasing sophistication have been used for decades for numerous procedures. Cushing and Bovie in 1928, for example, developed high-frequency spark generators to cauterize blood vessels and remove unwanted tissue by a thermal ablation processes. Modern Bovies (named after their inventor) use a high-frequency discharge from an electrode to nearby tissue to thermally ablate tissue. Spectroscopic analysis shows that these discharges are hot and are well represented by a thermal equilibrium model, and temperatures near 2000 K are easily achieved. New electrosurgical devices utilizing repetitive electrical discharges in a conducting saline environment have recently been developed. Electron emission from an active electrode during certain portions of the voltage waveform causes the formation of a vapor layer surrounding the electrode and the subsequent ionization and dissociation of species in this region. Electron temperatures of approximately 4 eV are achieved during the plasma phase. Water molecules are dissociated into reactive fragments, and the salt species are also excited and ionized in this nonequilibrium plasma. It is thought that the reactive species interact with nearby tissue, causing localized tissue removal (ablation) which surgeons can exploit during surgical procedures. Flowing saline surrounding the plasma region cools untargeted tissue and removes the reaction products. This presentation will focus on experimental results of the plasma conditions and discuss our current efforts to understand the complex reactions of the various plasma species with tissue structures such as collagen. A short clip showing tissue removal will also be shown.

  9. Electrical discharge machining in dentistry.

    Van Roekel, N B


    A brief history of electrical discharge machining (EDM) is given and the process is discussed. A description of the application of EDM for fabricating precision attachment removable partial dentures, fixed-removable implant prostheses, and titanium-ceramic crowns is presented. The advantages and disadvantages of the EDM process for the dental profession are evaluated. Although expensive, the procedure has merit.

  10. Prediction of Single-Peak Flow Stress Curves at High Temperatures Using a New Logarithmic-Power Function

    Shafiei, Ehsan; Dehghani, Kamran


    In this study, using a nonlinear estimation of strain hardening rate versus strain, a new phenomenological constitutive equation is developed. Utilizing the presented model, three new equations were presented to determine the peak strain, critical strain for initiation of dynamic recrystallization (DRX), and transition strain associated with the maximum softening rate of DRX. Also, two temperature and strain rate-sensitive parameters were introduced to generate flow stress curve at any desired deformation conditions. The predicted results were found to be in a good agreement with the ones measured experimentally. Maximum errors in prediction of peak strain, critical strain, and transition strain were about 8, 11, and 4%, respectively. In addition, evaluation of maximum errors in prediction of flow stress indicates that the presented constitutive equation gives a more precise estimation of flow stress curves in comparison with the previous models pertaining modeling of single-peak flow stress curves.

  11. A Transformer Partial Discharge Measurement System Based on Fluorescent Fiber

    Fan Liu


    Full Text Available Based on the physical phenomena of optical effects produced by the partial discharge (PD and on the characteristics of fluorescent fiber sensing of weak fluorescent signals, a PD measurement system using a fluorescent fiber sensor was designed. The main parameters of the sensing system were calculated, an experimental testing platform for PD simulation in the lab was established, and PD signals were then detected through ultra-high frequency (UHF and optical methods under a needle-plate discharge model. PD optical pulses in transformer oil contained signal-peak and multi-peak pulse waveforms. Compared with UHF detection results, the number of PD pulses and the elapsed PD pulse phase time revealed a good corresponding relationship. However, PD signal amplitudes presented the opposite, thus indicating that PD UHF signals reflected pulse amplitude value, whereas PD optical signals reflected pulse energy magnitude. The n-u-φ three-dimensional distributions indicated that most of the PD signals concentrated in the nearby industrial frequency voltage peak value. Overall, the proposed fluorescent fiber sensing system design can be used successfully in transformer PD signal detection.

  12. Short-Term Electrical Peak Demand Forecasting in a Large Government Building Using Artificial Neural Networks

    Jason Grant


    Full Text Available The power output capacity of a local electrical utility is dictated by its customers’ cumulative peak-demand electrical consumption. Most electrical utilities in the United States maintain peak-power generation capacity by charging for end-use peak electrical demand; thirty to seventy percent of an electric utility’s bill. To reduce peak demand, a real-time energy monitoring system was designed, developed, and implemented for a large government building. Data logging, combined with an application of artificial neural networks (ANNs, provides short-term electrical load forecasting data for controlled peak demand. The ANN model was tested against other forecasting methods including simple moving average (SMA, linear regression, and multivariate adaptive regression splines (MARSplines and was effective at forecasting peak building electrical demand in a large government building sixty minutes into the future. The ANN model presented here outperformed the other forecasting methods tested with a mean absolute percentage error (MAPE of 3.9% as compared to the SMA, linear regression, and MARSplines MAPEs of 7.7%, 17.3%, and 7.0% respectively. Additionally, the ANN model realized an absolute maximum error (AME of 8.2% as compared to the SMA, linear regression, and MARSplines AMEs of 26.2%, 45.1%, and 22.5% respectively.

  13. Torque/velocity properties of human knee muscles: peak and angle-specific estimates.

    Caldwell, G E; Adams, W B; Whetstone, M R


    Angle-specific (AS) torque/velocity data have been used to avoid angle related variation in peak torque capacity. However, series elastic structures cause the contractile velocity of active force-producing tissue to differ from external joint velocity except at peak torque. Alternatively, angle related variation may be removed by normalizing peak torque to the isometric maximum at that angular position. The AS, peak (P), and normalized peak (NP) methods were compared in isovelocity knee flexion and extension at velocities between 50 and 250 degrees s-1 for 8 male subjects. The P and NP methods gave more similar torque/velocity relations than the AS method. Further, very little variation in peak torque was attributed to differences in joint angle. Both the P and AS methods illustrate that relative quadriceps/hamstrings torque capability (flexor/extensor ratio) increases slightly with velocity. It is proposed that antagonist muscle torque capabilities should be compared at different angular positions to assess muscular imbalance.

  14. The effects of drainage basin geomorphometry on minimum low flow discharge: the study of small watershed in Kelang River Valley in Peninsular Malaysia


    This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbeddrainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia.The drainage basins selected were third-orderbasins so as to facilitate a common base for sampling and performing an unbiased statistical analyses.Three levels of relationships were observedin the study.Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly,individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set upshowed that minimum flow discharge( Q min) was dependent of basin area(AU), stream length( LS ), maximum relief( Hmax), average relief(HAV) and stream frequency (SF).These findings further enforced other studies of this nature that drainage basins were dynamic andfunctional entities whose operations were governed by complex interrelationships occurring within the basins.Changes to any of thegeomorphometric properties would influence their role as basin regulators thus influencing a change in basin response.In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow.A shorter timeperiod would mean higher discharge, which is generally considered the prerequisite to flooding.This research also conclude that the role ofgeomorphometric properties to control the water supply within the stream through out the year even though during the drought and lessprecipitations months.Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the watersupply as well as the habitat within the areas.

  15. Fast-slow climate dynamics and peak global warming

    Seshadri, Ashwin K.


    The dynamics of a linear two-box energy balance climate model is analyzed as a fast-slow system, where the atmosphere, land, and near-surface ocean taken together respond within few years to external forcing whereas the deep-ocean responds much more slowly. Solutions to this system are approximated by estimating the system's time-constants using a first-order expansion of the system's eigenvalue problem in a perturbation parameter, which is the ratio of heat capacities of upper and lower boxes. The solution naturally admits an interpretation in terms of a fast response that depends approximately on radiative forcing and a slow response depending on integrals of radiative forcing with respect to time. The slow response is inversely proportional to the "damping-timescale", the timescale with which deep-ocean warming influences global warming. Applications of approximate solutions are discussed: conditions for a warming peak, effects of an individual pulse emission of carbon dioxide (CO2 ), and metrics for estimating and comparing contributions of different climate forcers to maximum global warming.

  16. Fast-slow climate dynamics and peak global warming

    Seshadri, Ashwin K.


    The dynamics of a linear two-box energy balance climate model is analyzed as a fast-slow system, where the atmosphere, land, and near-surface ocean taken together respond within few years to external forcing whereas the deep-ocean responds much more slowly. Solutions to this system are approximated by estimating the system's time-constants using a first-order expansion of the system's eigenvalue problem in a perturbation parameter, which is the ratio of heat capacities of upper and lower boxes. The solution naturally admits an interpretation in terms of a fast response that depends approximately on radiative forcing and a slow response depending on integrals of radiative forcing with respect to time. The slow response is inversely proportional to the "damping-timescale", the timescale with which deep-ocean warming influences global warming. Applications of approximate solutions are discussed: conditions for a warming peak, effects of an individual pulse emission of carbon dioxide (CO2), and metrics for estimating and comparing contributions of different climate forcers to maximum global warming.

  17. Potential-scour assessments and estimates of maximum scour at selected bridges in Iowa

    Fischer, E.E.


    The results of potential-scour assessments at 130 bridges and estimates of maximum scour at 10 bridges in Iowa are presented. All of the bridges evaluated in the study are constructed bridges (not culverts) that are sites of active or discontinued streamflow-gaging stations and peak-stage measurement sites. The period of the study was from October 1991 to September 1994.

  18. Determinants of abnormal maximum oxygen uptake after lung transplantation for chronic obstructive pulmonary disease.

    Systrom, D M; Pappagianopoulos, P; Fishman, R S; Wain, J C; Ginns, L C


    Single lung transplantation for chronic obstructive pulmonary disease relieves a ventilatory limit to incremental exercise, but maximum oxygen uptake remains abnormal. The purpose of this study was to define the relative contributions of Fick principle variables to abnormal aerobic capacity after lung transplantation. Twelve paired incremental cardiopulmonary exercise test results obtained before and 3 to 6 months after single lung transplantation for chronic obstructive pulmonary disease were compared. Maximum workload nearly doubled after operation (42.5+/-4.2 vs 25.5+/-4.7 watts, P < .05). Peak exercise minute ventilation increased (32.8+/-3.3 vs 21+/-2.4 L/min, n = 11, P < .05), but maximum oxygen uptake remained markedly abnormal after transplantation (46.6%+/-4.4% vs 32.1%+/-2.9% predicted, P < .05, n = 8). Peak exercise cardiac output was normal (11.0+/-1.4 L/min, 89% predicted), but arterial-mixed venous oxygen content difference at peak exercise was only half of normal (7.2+/-0.61 mL/dL), as a result in part of the failure of mixed venous oxygen saturation to fall normally (peak exercise SvO2 = 49.8%+/-2.8%). Lung transplantation for chronic obstructive pulmonary disease relieves a ventilatory limit to exercise, but maximum aerobic capacity remains abnormal, in part because of abnormal systemic O2 extraction.

  19. A dual method for maximum entropy restoration

    Smith, C. B.


    A simple iterative dual algorithm for maximum entropy image restoration is presented. The dual algorithm involves fewer parameters than conventional minimization in the image space. Minicomputer test results for Fourier synthesis with inadequate phantom data are given.

  20. Maximum Throughput in Multiple-Antenna Systems

    Zamani, Mahdi


    The point-to-point multiple-antenna channel is investigated in uncorrelated block fading environment with Rayleigh distribution. The maximum throughput and maximum expected-rate of this channel are derived under the assumption that the transmitter is oblivious to the channel state information (CSI), however, the receiver has perfect CSI. First, we prove that in multiple-input single-output (MISO) channels, the optimum transmission strategy maximizing the throughput is to use all available antennas and perform equal power allocation with uncorrelated signals. Furthermore, to increase the expected-rate, multi-layer coding is applied. Analogously, we establish that sending uncorrelated signals and performing equal power allocation across all available antennas at each layer is optimum. A closed form expression for the maximum continuous-layer expected-rate of MISO channels is also obtained. Moreover, we investigate multiple-input multiple-output (MIMO) channels, and formulate the maximum throughput in the asympt...

  1. Photoemission spectromicroscopy with MAXIMUM at Wisconsin

    Ng, W.; Ray-Chaudhuri, A.K.; Cole, R.K.; Wallace, J.; Crossley, S.; Crossley, D.; Chen, G.; Green, M.; Guo, J.; Hansen, R.W.C.; Cerrina, F.; Margaritondo, G. (Dept. of Electrical Engineering, Dept. of Physics and Synchrotron Radiation Center, Univ. of Wisconsin, Madison (USA)); Underwood, J.H.; Korthright, J.; Perera, R.C.C. (Center for X-ray Optics, Accelerator and Fusion Research Div., Lawrence Berkeley Lab., CA (USA))


    We describe the development of the scanning photoemission spectromicroscope MAXIMUM at the Wisoncsin Synchrotron Radiation Center, which uses radiation from a 30-period undulator. The article includes a discussion of the first tests after the initial commissioning. (orig.).

  2. Maximum-likelihood method in quantum estimation

    Paris, M G A; Sacchi, M F


    The maximum-likelihood method for quantum estimation is reviewed and applied to the reconstruction of density matrix of spin and radiation as well as to the determination of several parameters of interest in quantum optics.

  3. Global Maximum Power Point Tracking of Photovoltaic Array under Partial Shaded Conditions

    G.Shobana, P. Sornadeepika, Dr. R. Ramaprabha


    Full Text Available Efficiency of the PV module can be improved by operating at its peak power point so that the maximum power can be delivered to the load under varying environmental conditions. This paper is mainly focused on the maximum power point tracking of solar photovoltaic array (PV under non uniform insolation conditions. A maximum power point tracker (MPPT is used for extracting the maximum power from the solar PV module and transferring that power to the load. The problem of maximum power point (MPP tracking becomes a problem when the array receives non uniform insolation. Cells under shade absorb a large amount of electric power generated by cells receiving high insolation and convert it into heat which may damage the low illuminated cells. To relieve the stress on shaded cells, bypass diodes are added across the modules. In such a case multiple peaks in voltagepower characteristics are observed. Classical MPPT methods are not effective due to their inability to discriminate between local and global maximum. In this paper, Global MPPT algorithm is proposed to track the global maximum power point of PV array under partial shaded conditions.

  4. Analysis on Lissajous Figures of Dielectric Barrier Glow Discharge in Atmospheric-pressure Helium%大气压下氦气介质阻挡辉光放电过程的Lissajous图形分析

    郝艳捧; 刘耀阁; 郑彬


    In order to investigate the variation of equivalent capacitance during dielectric barrier discharge (DBD), single pulse and multi-pulse discharges were obtained using a high-frequency power supply in atmospheric-pressure helium. By measuring applied voltage and loop current, Lissajous figures were calculated and compared with those which were directly measured. The equivalent capacitance of the gas gap and dielectrics during the discharging and cutting-off phases were calculated with the corresponding relationship between the peaks and valleys of current pulse and the points on Lissajous figures. The reasons of variation of the equivalent capacitance were analyzed, and the physical process of discharge was discussed. The results show that the equivalent capacitance can be studied by using calculated Lissajous figures instead of the measured ones. The equivalent capacitance keeps unchanged during the discharge cutting-off stage, but changes with current during the discharging stage and reaches its maximum at the peak point of current pulse. And the process of discharge is mainly affected by the changing rates of applied voltage and space charges.%为研究介质阻挡放电(DBD)过程中等效电容的变化情况,利用高频高压电源,进行了大气压氦气介质阻挡单脉冲和多脉冲辉光放电试验,利用外施电压、回路电流计算得到放电Lissajous图形,并与直接测量的Lissajous图形进行了对比。确定了放电电流波峰和波谷在Lissajous图形上的对应位置,计算了放电截止和放电进行阶段气隙和介质的等效电容,分析了等效电容变化的原因,并且探讨了放电的物理过程。结果表明:计算得到的Lissajous图形与测量所得的Lissajous图形一致;介质等效电容在放电截止阶段保持不变,但在放电进行阶段随电流脉冲变化而变化,并且在电流峰值处最大;放电物理过程主要受到外施电压和介质表面电荷量的变化速率影响。

  5. The maximum entropy technique. System's statistical description

    Belashev, B Z


    The maximum entropy technique (MENT) is applied for searching the distribution functions of physical values. MENT takes into consideration the demand of maximum entropy, the characteristics of the system and the connection conditions, naturally. It is allowed to apply MENT for statistical description of closed and open systems. The examples in which MENT had been used for the description of the equilibrium and nonequilibrium states and the states far from the thermodynamical equilibrium are considered

  6. 19 CFR 114.23 - Maximum period.


    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Maximum period. 114.23 Section 114.23 Customs... CARNETS Processing of Carnets § 114.23 Maximum period. (a) A.T.A. carnet. No A.T.A. carnet with a period of validity exceeding 1 year from date of issue shall be accepted. This period of validity cannot be...

  7. Maximum-Likelihood Detection Of Noncoherent CPM

    Divsalar, Dariush; Simon, Marvin K.


    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.

  8. Time-resolved study of the extreme-ultraviolet emission and plasma dynamics of a sub-Joule, fast capillary discharge

    Valenzuela, J. C., E-mail: [Instituto de Físca, Pontificia Universidad Católica de Chile, Santiago (Chile); Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago (Chile); Wyndham, E. S.; Favre, M. [Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago (Chile)


    In this work, we discuss experimental observations on the dynamics of a fast, low energy capillary discharge when operated in argon and its properties as an intense source of extreme-ultraviolet (EUV) radiation. The discharge pre-ionization and self-triggering were accomplished by the use of the hollow cathode effect. This allowed a compact size and low inductance discharge with multi-kA current level and a quarter-period of ∼10 ns at sub-Joule energy level. We used the novel moiré and schlieren diagnostics with a 12 ps laser to obtain the time evolution of the line electron density and to study the plasma dynamics. EUV spectroscopy and filtered diodes were also implemented to estimate the plasma temperature and density throughout the evolution of the discharge. EUV source size was measured by using a filtered slit-wire camera. We observed that EUV emission starts from a compressed plasma on axis during the second quarter-period of the current and continues until the fifth quarter-period. Ionization levels from Ar VII to X were observed. By comparing the EUV emission spectra with synthetic spectra, we found that at the onset of emission (∼7 ns), the plasma is well fitted by a single Maxwellian electron distribution function with T{sub e} ∼ 12 eV and n{sub e} ∼ 10{sup 17 }cm{sup −3}. Close to peak emission (∼13 ns), plasma temperature and density increase to ∼20 eV and n{sub e} ∼ 10{sup 18 }cm{sup −3}, respectively. However, in order to successfully match the experimental data, a two component electron distribution function was necessary. Later in time, a smaller fraction in the high energy component and higher temperature suggests homogenization of the plasma. The moiré and schlieren diagnostics showed multiple radial compression-waves merging on axis throughout the discharge; they are an important heating mechanism that leads to a period of severe turbulence at peak EUV emission. It was also observed that emission

  9. Time-resolved study of the extreme-ultraviolet emission and plasma dynamics of a sub-Joule, fast capillary discharge

    Valenzuela, J. C.; Wyndham, E. S.; Favre, M.


    In this work, we discuss experimental observations on the dynamics of a fast, low energy capillary discharge when operated in argon and its properties as an intense source of extreme-ultraviolet (EUV) radiation. The discharge pre-ionization and self-triggering were accomplished by the use of the hollow cathode effect. This allowed a compact size and low inductance discharge with multi-kA current level and a quarter-period of ˜10 ns at sub-Joule energy level. We used the novel moiré and schlieren diagnostics with a 12 ps laser to obtain the time evolution of the line electron density and to study the plasma dynamics. EUV spectroscopy and filtered diodes were also implemented to estimate the plasma temperature and density throughout the evolution of the discharge. EUV source size was measured by using a filtered slit-wire camera. We observed that EUV emission starts from a compressed plasma on axis during the second quarter-period of the current and continues until the fifth quarter-period. Ionization levels from Ar VII to X were observed. By comparing the EUV emission spectra with synthetic spectra, we found that at the onset of emission (˜7 ns), the plasma is well fitted by a single Maxwellian electron distribution function with Te ˜ 12 eV and ne ˜ 1017 cm-3. Close to peak emission (˜13 ns), plasma temperature and density increase to ˜20 eV and ne ˜ 1018 cm-3, respectively. However, in order to successfully match the experimental data, a two component electron distribution function was necessary. Later in time, a smaller fraction in the high energy component and higher temperature suggests homogenization of the plasma. The moiré and schlieren diagnostics showed multiple radial compression-waves merging on axis throughout the discharge; they are an important heating mechanism that leads to a period of severe turbulence at peak EUV emission. It was also observed that emission ceases when the axial maximum of the electron density collapses.

  10. NOAA Aeronomy Laboratory long-path OH experiment, Fritz Peak Observatory, Colorado

    Mount, George H.


    Long path absorption of laser light over a 20.6 km path at Fritz Peak Observatory 17 km west of Boulder is described: elevation 2800 m, average beam height above terrain approximately 250 m, and operational since March 1991. System runs at maximum signal to noise with integration times longer than 64 seconds. Most of the data obtained to date are 15-minute averages due to the lengthy data analysis required.

  11. Optimization of the Safety Factor Profile for High Noninductive Current Fraction Discharges in DIII-D

    Ferron, J.R. [General Atomics, San Diego; Holcomb, C T [Lawrence Livermore National Laboratory (LLNL); Luce, T.C. [General Atomics, San Diego; Politzer, P. A. [General Atomics, San Diego; Turco, F. [Oak Ridge Associated Universities (ORAU); White, A. E. [Massachusetts Institute of Technology (MIT); DeBoo, J. C. [General Atomics; Doyle, E. J. [University of California, Los Angeles; Hyatt, A. W. [General Atomics, San Diego; La Haye, R. [General Atomics, San Diego; Murakami, Masanori [ORNL; Petrie, T W [General Atomics, San Diego; Petty, C C. [General Atomics, San Diego; Rhodes, T. L. [University of California, Los Angeles; Zeng, L. [University of California, Los Angeles


    In order to assess the optimum q profile for discharges in DIII-D with 100% of the current driven noninductively (f(NI) = 1), the self-consistent response of the plasma profiles to changes in the q profile was studied in high f(NI), high beta(N) discharges through a scan of q(min) and q(95) at two values of beta(N). As expected, both the bootstrap current fraction, f(BS), and f(NI) increased with q(95). The temperature and density profiles were found to broaden as either q(min) or beta(N) is increased. A consequence is that f(BS) does not continue to increase at the highest values of q(min). A scaling function that depends on q(min), q(95), and the peaking factor for the thermal pressure was found to represent well the f(BS)/beta(N) inferred from the experimental profiles. The changes in the shapes of the density and temperature profiles as beta(N) is increased modify the bootstrap current density (J(BS)) profile from peaked close to the axis to relatively flat in the region between the axis and the H-mode pedestal. Therefore, significant externally driven current density in the region inside the H-mode pedestal is required in addition to J(BS) in order to match the profiles of the noninductive current density (J(NI)) to the desired total current density (J). In this experiment, the additional current density was provided mostly by neutral beam current drive with the neutral-beam-driven current fraction 40-90% of f(BS). The profiles of J(NI) and J were most similar at q(min) approximate to 1.35-1.65, q(95) approximate to 6.8, where f(BS) is also maximum, establishing this q profile as the optimal choice for f(NI) = 1 operation in DIII-D with the existing set of external current drive sources.


    Pandya A M


    Full Text Available Sexual identification from the skeletal parts has medico legal and anthropological importance. Present study aims to obtain values of maximum femoral length and to evaluate its possible usefulness in determining correct sexual identification. Study sample consisted of 184 dry, normal, adult, human femora (136 male & 48 female from skeletal collections of Anatomy department, M. P. Shah Medical College, Jamnagar, Gujarat. Maximum length of femur was considered as maximum vertical distance between upper end of head of femur and the lowest point on femoral condyle, measured with the osteometric board. Mean Values obtained were, 451.81 and 417.48 for right male and female, and 453.35 and 420.44 for left male and female respectively. Higher value in male was statistically highly significant (P< 0.001 on both sides. Demarking point (D.P. analysis of the data showed that right femora with maximum length more than 476.70 were definitely male and less than 379.99 were definitely female; while for left bones, femora with maximum length more than 484.49 were definitely male and less than 385.73 were definitely female. Maximum length identified 13.43% of right male femora, 4.35% of right female femora, 7.25% of left male femora and 8% of left female femora. [National J of Med Res 2011; 1(2.000: 67-70

  13. Discharge current distribution in stratified soil under impulse discharge

    Eniola Fajingbesi, Fawwaz; Shahida Midi, Nur; Elsheikh, Elsheikh M. A.; Hajar Yusoff, Siti


    The mobility of charge particles traversing a material defines its electrical properties. Soil (earth) have long been the universal grounding before and after the inception of active ground systems for electrical appliance purpose due to it semi-conductive properties. The soil can thus be modelled as a single material exhibiting semi-complex inductive-reactive impedance. Under impulse discharge such as lightning strikes to soil this property of soil could result in electric potential level fluctuation ranging from ground potential rise/fall to electromagnetic pulse coupling that could ultimately fail connected electrical appliance. In this work we have experimentally model the soil and lightning discharge using point to plane electrode setup to observe the current distribution characteristics at different soil conductivity [mS/m] range. The result presented from this research indicate above 5% shift in conductivity before and after discharge which is significant for consideration when dealing with grounding designs. The current distribution in soil have also be successfully observed and analysed from experimental result using mean current magnitude in relation to electrode distance and location, current density variation with depth all showing strong correlation with theoretical assumptions of a semi-complex impedance material.

  14. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.


    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  15. Generation of broadband and multiple-peak THz radiation in aperiodically poled lithium niobate

    Fucheng Chen; Xianfeng Chen; Yuping Chen; Yuxing Xia


    @@ We theoretically analyze the generation of broadened and multi-peak terahertz (THz) radiation in aperiodically poled lithium niobate (APPLN), whose sequence of opposite domains is optimized by simulated annealing (SA) algorithm. The full-width at half maximum (FWHM) of the broadened THz radiation in our simulation is 0.26 THz. Both of the central wavelength and FWHM can be easily tuned by choosing proper objective functions. THz radiation with wider and flatter FWHM can be achieved by increasing the length of the lithium niobate crystal. The two-peak THz generation is also provided as an example of multi-peak with the central wavelengths at 1.68 and 1.80 THz, respectively.

  16. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Binh, P H; Trong, V D; Renucci, P; Marie, X


    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  17. Peak-ring formation in large impact craters: geophysical constraints from Chicxulub

    Morgan, J. V.; Warner, M. R.; Collins, G. S.; Melosh, H. J.; Christeson, G. L.


    A seismic reflection and three-dimensional wide-angle tomographic study of the buried, ˜200-km diameter, Chicxulub impact crater in Mexico reveals the kinematics of central structural uplift and peak-ring formation during large-crater collapse. The seismic data show downward and inward radial collapse of the transient cavity in the outer crater, and upward and outward collapse within the central structurally uplifted region. Peak rings are formed by the interference between these two flow regimes, and involve significant radial transport of material. Hydrocode modeling replicates the observed collapse features. Impact-generated melt rocks lie mostly inside the peak ring; the melt appears to be clast-rich and undifferentiated, with a maximum thickness of 3.5 km in the center.

  18. Peak Oil Production: How to Evaluate Estimates of Depleting Natural Resources?

    Craver, Bruce


    We review recent data for world oil production along with forecasts that world production is at or near a maximum. Many books and articles about ``peak oil'' have appeared in the non-peer reviewed literature in the past few years; we concentrate on information available from the petroleum industry, governmental agencies and the peer-reviewed literature. A summary of possible alternatives to petroleum will be given, with emphasis given to arguments based on the concept of energy return on energy invested (EROEI). We conclude that there is at least a high probability that ``peak oil'' is close at hand, and if that is the case, the consequences will likely constitute one of the greatest challenges for the current generation of students. The topic of peak oil is one that fits naturally into classroom discussions of energy in introductory physics courses for non-majors.

  19. Genetic Spot Optimization for Peak Power Estimation in Large VLSI Circuits

    Michael S. Hsiao


    Full Text Available Estimating peak power involves optimization of the circuit's switching function. The switching of a given gate is not only dependent on the output capacitance of the node, but also heavily dependent on the gate delays in the circuit, since multiple switching events can result from uneven circuit delay paths in the circuit. Genetic spot expansion and optimization are proposed in this paper to estimate tight peak power bounds for large sequential circuits. The optimization spot shifts and expands dynamically based on the maximum power potential (MPP of the nodes under optimization. Four genetic spot optimization heuristics are studied for sequential circuits. Experimental results showed an average of 70.7% tighter peak power bounds for large sequential benchmark circuits was achieved in short execution times.

  20. Reactor-specific spent fuel discharge projections, 1987-2020

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.


    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.