Efficiency at maximum power output of quantum heat engines under finite-time operation
Wang, Jianhui; He, Jizhou; Wu, Zhaoqi
2012-03-01
We study the efficiency at maximum power, ηm, of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), ηm becomes identical to the Carnot efficiency ηC=1-Tc/Th. For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency ηm at maximum power output is bounded from above by ηC/(2-ηC) and from below by ηC/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency ηCA=1-Tc/Th is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.
Efficiency at maximum power output of quantum heat engines under finite-time operation.
Wang, Jianhui; He, Jizhou; Wu, Zhaoqi
2012-03-01
We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency η(CA)=1-√(T(c)/T(h)) is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.
Zhou, Si-Da; Heylen, Ward; Sas, Paul; Liu, Li
2014-05-01
This paper investigates the problem of modal parameter estimation of time-varying structures under unknown excitation. A time-frequency-domain maximum likelihood estimator of modal parameters for linear time-varying structures is presented by adapting the frequency-domain maximum likelihood estimator to the time-frequency domain. The proposed estimator is parametric, that is, the linear time-varying structures are represented by a time-dependent common-denominator model. To adapt the existing frequency-domain estimator for time-invariant structures to the time-frequency methods for time-varying cases, an orthogonal polynomial and z-domain mapping hybrid basis function is presented, which has the advantageous numerical condition and with which it is convenient to calculate the modal parameters. A series of numerical examples have evaluated and illustrated the performance of the proposed maximum likelihood estimator, and a group of laboratory experiments has further validated the proposed estimator.
2011-01-10
...: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure Using Record Evidence, and... facilities of their responsibilities, under Federal integrity management (IM) regulations, to perform... system, especially when calculating Maximum Allowable Operating Pressure (MAOP) or Maximum Operating...
14 CFR 25.1505 - Maximum operating limit speed.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not...
49 CFR 195.406 - Maximum operating pressure.
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum operating pressure. 195.406 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a...
Maximum phonation time: variability and reliability.
Speyer, Renée; Bogaardt, Hans C A; Passos, Valéria Lima; Roodenburg, Nel P H D; Zumach, Anne; Heijnen, Mariëlle A M; Baijens, Laura W J; Fleskens, Stijn J H M; Brunings, Jan W
2010-05-01
The objective of the study was to determine maximum phonation time reliability as a function of the number of trials, days, and raters in dysphonic and control subjects. Two groups of adult subjects participated in this reliability study: a group of outpatients with functional or organic dysphonia versus a group of healthy control subjects matched by age and gender. Over a period of maximally 6 weeks, three video recordings were made of five subjects' maximum phonation time trials. A panel of five experts were responsible for all measurements, including a repeated measurement of the subjects' first recordings. Patients showed significantly shorter maximum phonation times compared with healthy controls (on average, 6.6 seconds shorter). The averaged interclass correlation coefficient (ICC) over all raters per trial for the first day was 0.998. The averaged reliability coefficient per rater and per trial for repeated measurements of the first day's data was 0.997, indicating high intrarater reliability. The mean reliability coefficient per day for one trial was 0.939. When using five trials, the reliability increased to 0.987. The reliability over five trials for a single day was 0.836; for 2 days, 0.911; and for 3 days, 0.935. To conclude, the maximum phonation time has proven to be a highly reliable measure in voice assessment. A single rater is sufficient to provide highly reliable measurements.
Maximum Phonation Time: Variability and Reliability
R. Speyer; H.C.A. Bogaardt; V.L. Passos; N.P.H.D. Roodenburg; A. Zumach; M.A.M. Heijnen; L.W.J. Baijens; S.J.H.M. Fleskens; J.W. Brunings
2010-01-01
The objective of the study was to determine maximum phonation time reliability as a function of the number of trials, days, and raters in dysphonic and control subjects. Two groups of adult subjects participated in this reliability study: a group of outpatients with functional or organic dysphonia v
Maximum power operation of interacting molecular motors
Golubeva, Natalia; Imparato, Alberto
2013-01-01
We study the mechanical and thermodynamic properties of different traffic models for kinesin which are relevant in biological and experimental contexts. We find that motor-motor interactions play a fundamental role by enhancing the thermodynamic efficiency at maximum power of the motors......, as compared to the non-interacting system, in a wide range of biologically compatible scenarios. We furthermore consider the case where the motor-motor interaction directly affects the internal chemical cycle and investigate the effect on the system dynamics and thermodynamics....
49 CFR 174.86 - Maximum allowable operating speed.
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Maximum allowable operating speed. 174.86 Section... operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in § 173.247 of this subchapter, the maximum allowable operating speed may not exceed 24 km/hour (15...
Remarks on the strong maximum principle for nonlocal operators
Jerome Coville
2008-05-01
Full Text Available In this note, we study the existence of a strong maximum principle for the nonlocal operator $$ mathcal{M}[u](x :=int_{G}J(gu(x*g^{-1}dmu(g - u(x, $$ where $G$ is a topological group acting continuously on a Hausdorff space $X$ and $u in C(X$. First we investigate the general situation and derive a pre-maximum principle. Then we restrict our analysis to the case of homogeneous spaces (i.e., $ X=G /H$. For such Hausdorff spaces, depending on the topology, we give a condition on $J$ such that a strong maximum principle holds for $mathcal{M}$. We also revisit the classical case of the convolution operator (i.e. $G=(mathbb{R}^n,+, X=mathbb{R}^n, dmu =dy$.
Time-Reversal Acoustics and Maximum-Entropy Imaging
Berryman, J G
2001-08-22
Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.
Maximum disturbance review criteria : operational code and guideline
NONE
2003-07-01
This maximum disturbance review criteria (MDRC) is designed to encourage oil and gas construction contractors to reduce environmental impacts and consider land use and water management strategies in their development plans. The MDRC describes the preferred maximum disturbance allowances for the development of wellsites, access routes, right of way for pipelines and other associated facilities such as remote sumps, decking sites, camp sites and borrow pits. The guidelines specify acceptable parameters for typical oil and gas development activities. This report includes operating code tables which describe clearings and setbacks, access roads, watercourses, and photography and assessment reports for oil and gas activity. Additional care is required if special wildlife habitat features are encountered such as nesting sites, mineral licks, bear dens or beaver ponds. 4 tabs.
LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL
Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta
2000-02-26
Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with
On the maximum speed of operation of a quantum "black box"
Dugic, M
2001-01-01
We investigate the minimum time needed for (i.e. the maximum speed of) a quantum "black box" ("oracle") operation which employs "quantum parallelism" to be executed. We emphasize that the operation considered employs the quantum-measurement-like establishing of entanglement in the composite system "input register + output register" of a quantum computer's hardware, and we show that the speed of the operation can be increased by increasing the coupling (strength of interaction) in the composite system, as well as by some local operations (e.g., a proper state preparation) performed on the output register. It also proves that the operation employing a macroscopic (or at least a mesoscopic) system to mediate the registers' interaction should be much faster than the operation performed through direct registers' interaction. Finally, we show that adding energy to the composite system needs not to speed up the operation considered. Rather, e.g., in the case of mutually directly interacting registers, the requiremen...
Time series analysis by the Maximum Entropy method
Kirk, B.L.; Rust, B.W.; Van Winkle, W.
1979-01-01
The principal subject of this report is the use of the Maximum Entropy method for spectral analysis of time series. The classical Fourier method is also discussed, mainly as a standard for comparison with the Maximum Entropy method. Examples are given which clearly demonstrate the superiority of the latter method over the former when the time series is short. The report also includes a chapter outlining the theory of the method, a discussion of the effects of noise in the data, a chapter on significance tests, a discussion of the problem of choosing the prediction filter length, and, most importantly, a description of a package of FORTRAN subroutines for making the various calculations. Cross-referenced program listings are given in the appendices. The report also includes a chapter demonstrating the use of the programs by means of an example. Real time series like the lynx data and sunspot numbers are also analyzed. 22 figures, 21 tables, 53 references.
LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL
Don Augenstein
1999-01-11
''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.
Stochastic behavior of a cold standby system with maximum repair time
Ashish Kumar
2015-09-01
Full Text Available The main aim of the present paper is to analyze the stochastic behavior of a cold standby system with concept of preventive maintenance, priority and maximum repair time. For this purpose, a stochastic model is developed in which initially one unit is operative and other is kept as cold standby. There is a single server who visits the system immediately as and when required. The server takes the unit under preventive maintenance after a maximum operation time at normal mode if one standby unit is available for operation. If the repair of the failed unit is not possible up to a maximum repair time, failed unit is replaced by new one. The failure time, maximum operation time and maximum repair time distributions of the unit are considered as exponentially distributed while repair and maintenance time distributions are considered as arbitrary. All random variables are statistically independent and repairs are perfect. Various measures of system effectiveness are obtained by using the technique of semi-Markov process and RPT. To highlight the importance of the study numerical results are also obtained for MTSF, availability and profit function.
Training Concept, Evolution Time, and the Maximum Entropy Production Principle
Alexey Bezryadin
2016-04-01
Full Text Available The maximum entropy production principle (MEPP is a type of entropy optimization which demands that complex non-equilibrium systems should organize such that the rate of the entropy production is maximized. Our take on this principle is that to prove or disprove the validity of the MEPP and to test the scope of its applicability, it is necessary to conduct experiments in which the entropy produced per unit time is measured with a high precision. Thus we study electric-field-induced self-assembly in suspensions of carbon nanotubes and realize precise measurements of the entropy production rate (EPR. As a strong voltage is applied the suspended nanotubes merge together into a conducting cloud which produces Joule heat and, correspondingly, produces entropy. We introduce two types of EPR, which have qualitatively different significance: global EPR (g-EPR and the entropy production rate of the dissipative cloud itself (DC-EPR. The following results are obtained: (1 As the system reaches the maximum of the DC-EPR, it becomes stable because the applied voltage acts as a stabilizing thermodynamic potential; (2 We discover metastable states characterized by high, near-maximum values of the DC-EPR. Under certain conditions, such efficient entropy-producing regimes can only be achieved if the system is allowed to initially evolve under mildly non-equilibrium conditions, namely at a reduced voltage; (3 Without such a “training” period the system typically is not able to reach the allowed maximum of the DC-EPR if the bias is high; (4 We observe that the DC-EPR maximum is achieved within a time, Te, the evolution time, which scales as a power-law function of the applied voltage; (5 Finally, we present a clear example in which the g-EPR theoretical maximum can never be achieved. Yet, under a wide range of conditions, the system can self-organize and achieve a dissipative regime in which the DC-EPR equals its theoretical maximum.
Efficient maximum likelihood parameterization of continuous-time Markov processes
McGibbon, Robert T
2015-01-01
Continuous-time Markov processes over finite state-spaces are widely used to model dynamical processes in many fields of natural and social science. Here, we introduce an maximum likelihood estimator for constructing such models from data observed at a finite time interval. This estimator is drastically more efficient than prior approaches, enables the calculation of deterministic confidence intervals in all model parameters, and can easily enforce important physical constraints on the models such as detailed balance. We demonstrate and discuss the advantages of these models over existing discrete-time Markov models for the analysis of molecular dynamics simulations.
Concerning the maximum frequency limits of Gunn operators
R; F; Macpherson; G; M; Dunn; Ata; Khalid; D; R; S; Cumming
2015-01-01
The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode-the shorter the device,the higher the frequency of operation.The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region is about 1.5μm,limiting the devices to fundamental mode operation at frequencies of roughly 60 GHz.The authors posit that this theoretical restriction is a consequence of limits of the hydrodynamic models by which it was determined.Study of these devices by more advanced Monte Carlo techniques,which simulate the ballistic transport and electron-phonon interactions that govern device behaviour,offers a new lower bound of 0.5μm,which is already being approached by the experimental evidence shown in planar and vertical devices exhibiting Gunn operation at 0.6μm and 0.7μm.It is shown that the limits for Gunn domain operation are determined by the device length required for the transferred electron effect to occur(approximately 0.15μm,which as demonstrated is largely field independent)and the fundamental size of the domain(approximately 0.3μm).At this new length,operation in fundamental mode at much higher frequencies becomes possible-the Monte Carlo model used predicts power output at frequencies over 300 GHz.
Minimizing Maximum Response Time and Delay Factor in Broadcast Scheduling
Chekuri, Chandra; Moseley, Benjamin
2009-01-01
We consider online algorithms for pull-based broadcast scheduling. In this setting there are n pages of information at a server and requests for pages arrive online. When the server serves (broadcasts) a page p, all outstanding requests for that page are satisfied. We study two related metrics, namely maximum response time (waiting time) and maximum delay-factor and their weighted versions. We obtain the following results in the worst-case online competitive model. - We show that FIFO (first-in first-out) is 2-competitive even when the page sizes are different. Previously this was known only for unit-sized pages [10] via a delicate argument. Our proof differs from [10] and is perhaps more intuitive. - We give an online algorithm for maximum delay-factor that is O(1/eps^2)-competitive with (1+\\eps)-speed for unit-sized pages and with (2+\\eps)-speed for different sized pages. This improves on the algorithm in [12] which required (2+\\eps)-speed and (4+\\eps)-speed respectively. In addition we show that the algori...
A Maximum Time Difference Pipelined Arithmetic Unit Based on CMOS Gate Array
唐志敏; 夏培肃
1995-01-01
This paper describes a maximum time difference pipelined arithmetic chip,the 36-bit adder and subtractor based on 1.5μm CMOS gate array.The chip can operate at 60MHz,and consumes less than 0.5Watt.The results are also studied,and a more precise model of delay time difference is proposed.
Improving predictability of time series using maximum entropy methods
Chliamovitch, G.; Dupuis, A.; Golub, A.; Chopard, B.
2015-04-01
We discuss how maximum entropy methods may be applied to the reconstruction of Markov processes underlying empirical time series and compare this approach to usual frequency sampling. It is shown that, in low dimension, there exists a subset of the space of stochastic matrices for which the MaxEnt method is more efficient than sampling, in the sense that shorter historical samples have to be considered to reach the same accuracy. Considering short samples is of particular interest when modelling smoothly non-stationary processes, which provides, under some conditions, a powerful forecasting tool. The method is illustrated for a discretized empirical series of exchange rates.
LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL
Don Augenstein
2001-02-01
The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.
H. Ijadi
2012-09-01
Full Text Available In this paper, a method to track the maximum power of solar panels based on fuzzy logic is presented. The proposed method is based on the relationship between radiation intensity and the voltage of maximum power operating point. With this relationship, at any time by measuring the light intensity, voltage can be calculated at the maximum power point by using fuzzy approximation function. In order to verify the proposed method, simulation results are presented.
Factorizing the time evolution operator
Quijas, P C G
2006-01-01
There is a widespread belief in the quantum physical community, and in textbooks used to teach Quantum Mechanics, that it is a difficult task to apply the time evolution operator on an initial wave function. That is to say, because the hamiltonian operator generally is the sum of two operators, then it is a difficult task to apply the time evolution operator on an initial wave function, because it implies to apply terms like (A+B)^n. A possible solution of this problem is to factorize the time evolution operator and then apply successively the individual exponential operator on the initial wave function. However, the exponential operator does not directly factorize. In this work we present useful ways to factorizing the time evolution operator when the argument of the exponential is a sum of two operators which obey specific commutation relations. Then, we apply the exponential operator as an evolution operator for the case of elementary unidimensional potentials, like the harmonic oscillator. Also, we argue ...
On the maximum-entropy/autoregressive modeling of time series
Chao, B. F.
1984-01-01
The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
2010-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage,...
2010-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating...
Vaudrey, A; Lanzetta, F; Glises, R
2009-01-01
Producing useful electrical work in consuming chemical energy, the fuel cell have to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time through finite areas. As it was already done for various types of systems, we study the fuel cell within the finite time thermodynamics framework and define an endoreversible fuel cell. Considering different types of heat transfer laws, we obtain an optimal value of the operating temperature, corresponding to a maximum produced power. This analysis is a first step of a thermodynamical approach of design of thermal management devices, taking into account performances of the whole system.
"Time operator": the challenge persists
Mielnik, Bogdan
2011-01-01
Contrary to the conviction expressed by J. Kijowski [Phys. Rev. A 59, 897 (1999)] and shared in some other papers, the reasons to look for the 'time operator' in the context of the standard quantum doctrine of orthogonal projectors and self-adjoint observables are highly questionable. Some improved solutions in terms of POV measures invite critical discussions as well.
Gómez, I.; Estrela, M.
2009-09-01
Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).
Maximum Time Separation of Events in Cyclic Systems with Linear and Latest Timing Constraints
Jin, Fen; Hulgaard, Henrik; Cerny, Eduard
1998-01-01
The determination of the maximum time separations of events is important in the design, synthesis, and verification of digital systems, especially in interface timing verification. Many researchers have explored solutions to the problem with various restrictions: a) on the type of constraints......, and b) on whether the events in the specification are allowed to occur repeatedly. When the events can occur only once, the problem is well solved. There are fewer concrete results for systems where the events can occur repeatedly. We extend the work by Hulgaard et al.\\ for computing the maximum...
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
2010-10-01
... operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating... design pressure of the weakest element in the segment, determined in accordance with subparts C and D of... K of this part, if any variable necessary to determine the design pressure under the design...
Kordheili, Reza Ahmadi; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna
2014-01-01
High penetration of photovoltaic panels in distribution grid can bring the grid to its operation limits. The main focus of the paper is to determine maximum photovoltaic penetration level in the grid. Three main criteria were investigated for determining maximum penetration level of PV panels...... for this grid: even distribution of PV panels, aggregation of panels at the beginning of each feeder, and aggregation of panels at the end of each feeder. Load modeling is done using Velander formula. Since PV generation is highest in the summer due to irradiation, a summer day was chosen to determine maximum...
STATIONARITY OF ANNUAL MAXIMUM DAILY STREAMFLOW TIME SERIES IN SOUTH-EAST BRAZILIAN RIVERS
Jorge Machado Damázio
2015-08-01
Full Text Available DOI: 10.12957/cadest.2014.18302The paper presents a statistical analysis of annual maxima daily streamflow between 1931 and 2013 in South-East Brazil focused in detecting and modelling non-stationarity aspects. Flood protection for the large valleys in South-East Brazil is provided by multiple purpose reservoir systems built during 20th century, which design and operation plans has been done assuming stationarity of historical flood time series. Land cover changes and rapidly-increasing level of atmosphere greenhouse gases of the last century may be affecting flood regimes in these valleys so that it can be that nonstationary modelling should be applied to re-asses dam safety and flood control operation rules at the existent reservoir system. Six annual maximum daily streamflow time series are analysed. The time series were plotted together with fitted smooth loess functions and non-parametric statistical tests are performed to check the significance of apparent trends shown by the plots. Non-stationarity is modelled by fitting univariate extreme value distribution functions which location varies linearly with time. Stationarity and non-stationarity modelling are compared with the likelihood ratio statistic. In four of the six analyzed time series non-stationarity modelling outperformed stationarity modelling.Keywords: Stationarity; Extreme Value Distributions; Flood Frequency Analysis; Maximum Likelihood Method.
Maximum Likelihood Timing and Carrier Synchronization in Burst-Mode Satellite Transmissions
Morelli Michele
2007-01-01
Full Text Available This paper investigates the joint maximum likelihood (ML estimation of the carrier frequency offset, timing error, and carrier phase in burst-mode satellite transmissions over an AWGN channel. The synchronization process is assisted by a training sequence appended in front of each burst and composed of alternating binary symbols. The use of this particular pilot pattern results into an estimation algorithm of affordable complexity that operates in a decoupled fashion. In particular, the frequency offset is measured first and independently of the other parameters. Timing and phase estimates are subsequently computed through simple closed-form expressions. The performance of the proposed scheme is investigated by computer simulation and compared with Cramer-Rao bounds. It turns out that the estimation accuracy is very close to the theoretical limits up to relatively low signal-to-noise ratios. This makes the algorithm well suited for turbo-coded transmissions operating near the Shannon limit.
Maximum Likelihood Timing and Carrier Synchronization in Burst-Mode Satellite Transmissions
Michele Morelli
2007-06-01
Full Text Available This paper investigates the joint maximum likelihood (ML estimation of the carrier frequency offset, timing error, and carrier phase in burst-mode satellite transmissions over an AWGN channel. The synchronization process is assisted by a training sequence appended in front of each burst and composed of alternating binary symbols. The use of this particular pilot pattern results into an estimation algorithm of affordable complexity that operates in a decoupled fashion. In particular, the frequency offset is measured first and independently of the other parameters. Timing and phase estimates are subsequently computed through simple closed-form expressions. The performance of the proposed scheme is investigated by computer simulation and compared with Cramer-Rao bounds. It turns out that the estimation accuracy is very close to the theoretical limits up to relatively low signal-to-noise ratios. This makes the algorithm well suited for turbo-coded transmissions operating near the Shannon limit.
A real-time maximum-likelihood heart-rate estimator for wearable textile sensors.
Cheng, Mu-Huo; Chen, Li-Chung; Hung, Ying-Che; Yang, Chang Ming
2008-01-01
This paper presents a real-time maximum-likelihood heart-rate estimator for ECG data measured via wearable textile sensors. The ECG signals measured from wearable dry electrodes are notorious for its susceptibility to interference from the respiration or the motion of wearing person such that the signal quality may degrade dramatically. To overcome these obstacles, in the proposed heart-rate estimator we first employ the subspace approach to remove the wandering baseline, then use a simple nonlinear absolute operation to reduce the high-frequency noise contamination, and finally apply the maximum likelihood estimation technique for estimating the interval of R-R peaks. A parameter derived from the byproduct of maximum likelihood estimation is also proposed as an indicator for signal quality. To achieve the goal of real-time, we develop a simple adaptive algorithm from the numerical power method to realize the subspace filter and apply the fast-Fourier transform (FFT) technique for realization of the correlation technique such that the whole estimator can be implemented in an FPGA system. Experiments are performed to demonstrate the viability of the proposed system.
Time Reversal Migration for Passive Sources Using a Maximum Variance Imaging Condition
Wang, H.
2017-05-26
The conventional time-reversal imaging approach for micro-seismic or passive source location is based on focusing the back-propagated wavefields from each recorded trace in a source image. It suffers from strong background noise and limited acquisition aperture, which may create unexpected artifacts and cause error in the source location. To overcome such a problem, we propose a new imaging condition for microseismic imaging, which is based on comparing the amplitude variance in certain windows, and use it to suppress the artifacts as well as find the right location for passive sources. Instead of simply searching for the maximum energy point in the back-propagated wavefield, we calculate the amplitude variances over a window moving in both space and time axis to create a highly resolved passive event image. The variance operation has negligible cost compared with the forward/backward modeling operations, which reveals that the maximum variance imaging condition is efficient and effective. We test our approach numerically on a simple three-layer model and on a piece of the Marmousi model as well, both of which have shown reasonably good results.
Liu, Jian; Miller, William H.
2008-08-01
The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. The LSC-IVR provides a very effective 'prior' for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25K and 14K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR, for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T = 25K, but the MEAC procedure produces a significant correction at the lower temperature (T = 14K). Comparisons are also made to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.
Maximum holding endurance time: Effects of load and load's center of gravity height.
Lee, Tzu-Hsien
2015-01-01
Manual holding task is a potential risk to the development of musculoskeletal injuries since it is prone to induce localized muscle fatigue. Maximum holding endurance time is a significant parameter for the design of manual holding task. This study aimed to examine the effects of load and load's COG height on maximum holding endurance time. Fifteen young and healthy males were recruited as participants. A factorial design was used to examine the effects of load and load's COG height on maximum holding endurance time. Four levels of load (15% , 30% , 45% and 60% of the participant's maximum holding capacity) and two levels of load's COG height in box (0 cm and 40 cm high from the handle position) were examined. Maximum holding endurance time decreased with increasing load and/or increasing load's COG height. The effect of load's COG height on maximum holding endurance time decreased with increasing load. Load, load's COG height, and the interaction of load and load's COG height significantly affected maximum holding endurance time. Practitioners should realize the effects of load, load's COG height, and the interaction of load and load's COG height on maximum holding endurance time when setting the working conditions of holding tasks.
Time Warp Operating System (TWOS)
Bellenot, Steven F.
1993-01-01
Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.
Time Warp Operating System (TWOS)
Bellenot, Steven F.
1993-01-01
Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.
Jun He; Xin Yao
2004-01-01
Most of works on the time complexity analysis of evolutionary algorithms have always focused on some artificial binary problems.The time complexity of the algorithms for combinatorial optimisation has not been well understood.This paper considers the time complexity of an evolutionary algorithm for a classical combinatorial optimisation problem,to find the maximum cardinality matching in a graph.It is shown that the evolutionary algorithm can produce a matching with nearly maximum cardinality in average polynomial time.
Ru-Min Chao
2016-01-01
Full Text Available This paper identifies the partial shading problem of a PV module using the one-diode model and simulating the characteristics exhibiting multiple-peak power output condition that is similar to a PV array. A modified particle swarm optimization (PSO algorithm based on the suggested search-agent deployment, retracking condition, and multicore operation is proposed in order to continuously locate the global maximum power point for the PV system. Partial shading simulation results for up to 16 modules in series/parallel formats are presented. A distributed PV system consisting of up to 8 a-silicon thin film PV panels and also having a dedicated DC/DC buck converter on each of the modules is tested. The converter reaches its steady state voltage output in 10 ms. However for MPPT operation, voltage, and current measurement interval is set to 20 ms to avoid unnecessary noise from the entire electric circuit. Based on the simulation and experiment results, each core of the proposed PSO operation should control no more than 4 PV modules in order to have the maximum tracking accuracy and minimum overall tracking time. Tracking for the global maximum power point of a distributed PV system under various partial shading conditions can be done within 1.3 seconds.
Yu. N. Shumilov
2013-09-01
Full Text Available The paper shows that, in 6-35 kV mains, application of a non-linear surge arrester (SA with the maximum continuous admissible operating voltage which is 10% higher than the mains’ maximum operating voltage results in the SA protection from overheating and subsequent breakdown at nonnormable lifetime of single-phase arc faults.
Proprioceptive Factors in Operative Timing.
Ellis, M. J.
Time estimation is improved when the interval is filled with a motor response, with the proprioceptive feedback (PFB) presumably acting as a mediator. Altering the resistive dynamics of a handle moved 60 centimeters to fill a two-second interval manipulated the PFB from the response. Spelling aloud 2-, 3-, and 4-letter words during the motor…
Robust optimal sensor placement for operational modal analysis based on maximum expected utility
Li, Binbin; Der Kiureghian, Armen
2016-06-01
Optimal sensor placement is essentially a decision problem under uncertainty. The maximum expected utility theory and a Bayesian linear model are used in this paper for robust sensor placement aimed at operational modal identification. To avoid nonlinear relations between modal parameters and measured responses, we choose to optimize the sensor locations relative to identifying modal responses. Since the modal responses contain all the information necessary to identify the modal parameters, the optimal sensor locations for modal response estimation provide at least a suboptimal solution for identification of modal parameters. First, a probabilistic model for sensor placement considering model uncertainty, load uncertainty and measurement error is proposed. The maximum expected utility theory is then applied with this model by considering utility functions based on three principles: quadratic loss, Shannon information, and K-L divergence. In addition, the prior covariance of modal responses under band-limited white-noise excitation is derived and the nearest Kronecker product approximation is employed to accelerate evaluation of the utility function. As demonstration and validation examples, sensor placements in a 16-degrees-of-freedom shear-type building and in Guangzhou TV Tower under ground motion and wind load are considered. Placements of individual displacement meter, velocimeter, accelerometer and placement of mixed sensors are illustrated.
The effect of maximum open height on operating characteristics of polymer injected pump poppet valve
Zhang, S. C.; Chen, X. D.; Deng, H. Y.
2012-11-01
Reciprocating polymer injected pump is the key injection equipment of tertiary oil recovery, the poppet valve in it exists the problem of large vibration noise, low efficiency and short life when transportation high viscosity medium. So the CFD technique is adopted to simulate and analyze the inner flow fields of fluid end poppet valve. According to the practical structure of the poppet valve, a simplified 2D axis-symmetry geometry model of the flow field is established. Combined with pump speed, plunger stroke and plunger diameter, given the boundary condition of the inlet valve, then the numerical simulation of flow field under six different maximum open heights is done depending on software Fluent. The relationship between open height to valve gap flow velocity, hydraulic loss and lag angle is obtained. The results indicate that, with the increase of open height, the valve gap flow velocity decreases, inlet outlet pressure differential decreases and hydraulic loss decreases. But the lag angle is continuously increasing with the increase of maximum open height, the valve has a good work performance when the open height is 1, 1.5, 2, 2.5, 3mm, but when it reaches 3.5mm, the valve performance becomes poor. The study can offer certain reference to understand operating characteristics of poppet valve, help to reduce the hydraulic losses and raise volume efficiency of the pump.
The action operator for continuous time histories
Savvidou, K N
1999-01-01
We define the action operator for the History Projection Operator consistent histories theory, as the quantum analogue of the classical action functional, for the simple harmonic oscillator in one dimention. We conclude that the action operator is the generator of time transformations, and is associated with the two types of time-evolution of the standard quantum theory: the wave-packet reduction and the Heisenberg time-evolution. We construct corresponding classical histories and demonstrate the relevance with the quantum histories. Finally, we show the appearance of the action operator in the expression for the decoherence functional.
Maximum Potential Score (MPS: An operating model for a successful customer-focused strategy.
Cabello González, José Manuel
2015-11-01
Full Text Available One of marketers’ chief objectives is to achieve customer loyalty, which is a key factor for profitable growth. Therefore, they need to develop a strategy that attracts and maintains customers, giving them adequate motives, both tangible (prices and promotions and intangible (personalized service and treatment, to satisfy a customer and make him loyal to the company. Finding a way to accurately measure satisfaction and customer loyalty is very important. With regard to typical Relationship Marketing measures, we can consider listening to customers, which can help to achieve a competitive sustainable advantage. Customer satisfaction surveys are essential tools for listening to customers. Short questionnaires have gained considerable acceptance among marketers as a means to achieve a customer satisfaction measure. Our research provides an indication of the benefits of a short questionnaire (one/three questions. We find that the number of questions survey is significantly related to the participation in the survey (Net Promoter Score or NPS. We also prove that a the three question survey is more likely to have more participants than a traditional survey (Maximum Potential Score or MPS . Our main goal is to analyse one method as a potential predictor of customer loyalty. Using surveys, we attempt to empirically establish the causal factors in determining the satisfaction of customers. This paper describes a maximum potential operating model that captures with a three questions survey, important elements for a successful customer-focused strategy. MPS may give us lower participation rates than NPS but important information that helps to convert unhappy customers or just satisfied customers, into loyal customers.
Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems
Hakan A. Çırpan
2002-05-01
Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.
Estimating the Size and Timing of the Maximum Amplitude of Solar Cycle 24
Ke-Jun Li; Peng-Xin Gao; Tong-Wei Su
2005-01-01
A simple statistical method is used to estimate the size and timing of maximum amplitude of the next solar cycle (cycle 24). Presuming cycle 23 to be a short cycle (as is more likely), the minimum of cycle 24 should occur about December 2006 (±2 months) and the maximum, around March 2011 (±9 months),and the amplitude is 189.9 ± 15.5, if it is a fast riser, or about 136, if it is a slow riser. If we presume cycle 23 to be a long cycle (as is less likely), the minimum of cycle 24 should occur about June 2008 (±2 months) and the maximum, about February 2013 (±8 months) and the maximum will be about 137 or 80, according as the cycle is a fast riser or a slow riser.
Maximum Likelihood Estimation of Time-Varying Loadings in High-Dimensional Factor Models
Mikkelsen, Jakob Guldbæk; Hillebrand, Eric; Urga, Giovanni
In this paper, we develop a maximum likelihood estimator of time-varying loadings in high-dimensional factor models. We specify the loadings to evolve as stationary vector autoregressions (VAR) and show that consistent estimates of the loadings parameters can be obtained by a two-step maximum...... likelihood estimation procedure. In the first step, principal components are extracted from the data to form factor estimates. In the second step, the parameters of the loadings VARs are estimated as a set of univariate regression models with time-varying coefficients. We document the finite...
Evaluating the time limit at maximum aerobic speed in elite swimmers. Training implications.
Renoux, J C
2001-12-01
The aim of the present study was to make use of the concepts of maximum aerobic speed (MAS) and time limit (tlim) in order to determine the relationship between these two elements, and this in an attempt to significantly improve both speed and swimming performance during a training season. To this same end, an intermittent training model was used, which was adapted to the value obtained for the time limit at maximum aerobic speed. During a 12 week training period, the maximum aerobic speed for a group of 9 top-ranking varsity swimmers was measured on two occasions, as was the tlim. The values generated indicated that: 1) there was an inverse relationship between MAS and the time this speed could be maintained, thus confirming the studies by Billat et al. (1994b); 2) a significant increase in MAS occurred over the 12 week period, although no such evolution was seen for the tlim; 3) there was an improvement in results; 4) the time limit could be used in designing a training program based on intermittent exercises. In addition, results of the present study should allow swimming coaches to draw up individualized training programs for a given swimmer by taking into consideration maximum aerobic speed, time limit and propelling efficiency.
Kirkegaard, Poul Henning; Nielsen, Søren R.K.; Micaletti, R. C.;
This paper considers estimation of the Maximum Damage Indicator (MSDI) by using time-frequency system identification techniques for an RC-structure subjected to earthquake excitation. The MSDI relates the global damage state of the RC-structure to the relative decrease of the fundamental eigenfre...
Recommended maximum holding times for prevention of discomfort of static standing postures
Miedema, M.C.; Douwes, M.; Dul, J.
1997-01-01
The aim of the present study was threefold; (1) to analyze the influence of posture on the maximum holding time (MHT), (2) to study the possibility of classifying postures on the basis of MHT, and (3) to develop ergonomic recommendations for the MHT of categories of postures. For these purposes data
Maximum entropy method for solving operator equations of the first kind
金其年; 侯宗义
1997-01-01
The maximum entropy method for linear ill-posed problems with modeling error and noisy data is considered and the stability and convergence results are obtained. When the maximum entropy solution satisfies the "source condition", suitable rates of convergence can be derived. Considering the practical applications, an a posteriori choice for the regularization parameter is presented. As a byproduct, a characterization of the maximum entropy regularized solution is given.
?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life
DeVault, Robert C [ORNL
2009-01-01
Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.
Impact maturity times and citation time windows: The 2-year maximum journal impact factor
Dorta-Gonzalez, Pablo
2013-01-01
Journal metrics are employed for the assessment of scientific scholar journals from a general bibliometric perspective. In this context, the Thomson Reuters journal impact factors (JIF) are the citation-based indicators most used. The 2-year journal impact factor (2-JIF) counts citations to one and two year old articles, while the 5-year journal impact factor (5-JIF) counts citations from one to five year old articles. Nevertheless, these indicators are not comparable among fields of science for two reasons: (i) each field has a different impact maturity time, and (ii) because of systematic differences in publication and citation behaviour across disciplines. In fact, the 5-JIF firstly appeared in the Journal Citation Reports (JCR) in 2007 with the purpose of making more comparable impacts in fields in which impact matures slowly. However, there is not an optimal fixed impact maturity time valid for all the fields. In some of them two years provides a good performance whereas in others three or more years are...
Becker, Joseph F.; Valentin, Jose
1996-01-01
The maximum entropy technique was successfully applied to the deconvolution of overlapped chromatographic peaks. An algorithm was written in which the chromatogram was represented as a vector of sample concentrations multiplied by a peak shape matrix. Simulation results demonstrated that there is a trade off between the detector noise and peak resolution in the sense that an increase of the noise level reduced the peak separation that could be recovered by the maximum entropy method. Real data originated from a sample storage column was also deconvoluted using maximum entropy. Deconvolution is useful in this type of system because the conservation of time dependent profiles depends on the band spreading processes in the chromatographic column, which might smooth out the finer details in the concentration profile. The method was also applied to the deconvolution of previously interpretted Pioneer Venus chromatograms. It was found in this case that the correct choice of peak shape function was critical to the sensitivity of maximum entropy in the reconstruction of these chromatograms.
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks †
Wang, Zhaowei; Zeng, Peng; Zhou, Mingtuo; Li, Dong; Wang, Jintao
2017-01-01
Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs), and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs’ demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS) method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays. PMID:28098750
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks
Zhaowei Wang
2017-01-01
Full Text Available Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs, and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs’ demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays.
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks.
Wang, Zhaowei; Zeng, Peng; Zhou, Mingtuo; Li, Dong; Wang, Jintao
2017-01-13
Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs), and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs' demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS) method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays.
Operational and real-time Business Intelligence
Daniela Ioana SANDU
2008-01-01
Full Text Available A key component of a companyÃ¢Â€Â™s IT framework is a business intelligence (BI system. BI enables business users to report on, analyze and optimize business operations to reduce costs and increase revenues. Organizations use BI for strategic and tactical decision making where the decision-making cycle may span a time period of several weeks (e.g., campaign management or months (e.g., improving customer satisfaction.Competitive pressures coming from a very dynamic business environment are forcing companies to react faster to changing business conditions and customer requirements. As a result, there is now a need to use BI to help drive and optimize business operations on a daily basis, and, in some cases, even for intraday decision making. This type of BI is usually called operational business intelligence and real-time business intelligence.
Maximum-Likelihood Detection for Energy-Efficient Timing Acquisition in NB-IoT
2016-01-01
Initial timing acquisition in narrow-band IoT (NB-IoT) devices is done by detecting a periodically transmitted known sequence. The detection has to be done at lowest possible latency, because the RF-transceiver, which dominates downlink power consumption of an NB-IoT modem, has to be turned on throughout this time. Auto-correlation detectors show low computational complexity from a signal processing point of view at the price of a higher detection latency. In contrast a maximum likelihood cro...
Prediction of maximum magnitude and original time of reservoir induced seismicity
无
2001-01-01
This paper deals with the prediction of potentially maximum magnitude and origin time for reservoir induced seismicity (RIS). The factor and sign of seismology and geology of RIS has been studied, and the information quantity for magnitude of induced seismicity provided by them has been calculated. In terms of information quan-tity the biggest possible magnitude of RIS is determined. The changes of seismic frequency with time are studied using grey model method, and the time of the biggest change rate is taken as original time of the main shock. The feasibility of methods for predicting magnitude and time has been tested for the reservoir induced seismicity in the Xinfengjiang reservoir, China and the Koyna reservoir, India.
Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu
2015-01-01
Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject...
Bakaev, Nikolai Yu.; Crouzeix, Michel; Thomee, Vidar
2006-01-01
In recent years several papers have been devoted to stability and smoothing properties in maximum-norm of finite element discretizations of parabolic problems. Using the theory of analytic semigroups it has been possible to rephrase such properties as bounds for the resolvent of the associated discr
The Research of Car-Following Model Based on Real-Time Maximum Deceleration
Longhai Yang
2015-01-01
Full Text Available This paper is concerned with the effect of real-time maximum deceleration in car-following. The real-time maximum acceleration is estimated with vehicle dynamics. It is known that an intelligent driver model (IDM can control adaptive cruise control (ACC well. The disadvantages of IDM at high and constant speed are analyzed. A new car-following model which is applied to ACC is established accordingly to modify the desired minimum gap and structure of the IDM. We simulated the new car-following model and IDM under two different kinds of road conditions. In the first, the vehicles drive on a single road, taking dry asphalt road as the example in this paper. In the second, vehicles drive onto a different road, and this paper analyzed the situation in which vehicles drive from a dry asphalt road onto an icy road. From the simulation, we found that the new car-following model can not only ensure driving security and comfort but also control the steady driving of the vehicle with a smaller time headway than IDM.
Fiebig, H R
2002-01-01
We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss practical issues of the approach.
Maximum number of habitable planets at the time of Earth's origin: new hints for panspermia?
von Bloh, Werner; Franck, Siegfried; Bounama, Christine; Schellnhuber, Hans-Joachim
2003-04-01
New discoveries have fuelled the ongoing discussion of panspermia, i.e. the transport of life from one planet to another within the solar system (interplanetary panspermia) or even between different planetary systems (interstellar panspermia). The main factor for the probability of interstellar panspermia is the average density of stellar systems containing habitable planets. The combination of recent results for the formation rate of Earth-like planets with our estimations of extrasolar habitable zones allows us to determine the number of habitable planets in the Milky Way over cosmological time scales. We find that there was a maximum number of habitable planets around the time of Earth's origin. If at all, interstellar panspermia was most probable at that time and may have kick-started life on our planet.
Real-time maximum a-posteriori image reconstruction for fluorescence microscopy
Anwar A. Jabbar
2015-08-01
Full Text Available Rapid reconstruction of multidimensional image is crucial for enabling real-time 3D fluorescence imaging. This becomes a key factor for imaging rapidly occurring events in the cellular environment. To facilitate real-time imaging, we have developed a graphics processing unit (GPU based real-time maximum a-posteriori (MAP image reconstruction system. The parallel processing capability of GPU device that consists of a large number of tiny processing cores and the adaptability of image reconstruction algorithm to parallel processing (that employ multiple independent computing modules called threads results in high temporal resolution. Moreover, the proposed quadratic potential based MAP algorithm effectively deconvolves the images as well as suppresses the noise. The multi-node multi-threaded GPU and the Compute Unified Device Architecture (CUDA efficiently execute the iterative image reconstruction algorithm that is ≈200-fold faster (for large dataset when compared to existing CPU based systems.
Real-time maximum a-posteriori image reconstruction for fluorescence microscopy
Jabbar, Anwar A.; Dilipkumar, Shilpa; C K, Rasmi; Rajan, K.; Mondal, Partha P.
2015-08-01
Rapid reconstruction of multidimensional image is crucial for enabling real-time 3D fluorescence imaging. This becomes a key factor for imaging rapidly occurring events in the cellular environment. To facilitate real-time imaging, we have developed a graphics processing unit (GPU) based real-time maximum a-posteriori (MAP) image reconstruction system. The parallel processing capability of GPU device that consists of a large number of tiny processing cores and the adaptability of image reconstruction algorithm to parallel processing (that employ multiple independent computing modules called threads) results in high temporal resolution. Moreover, the proposed quadratic potential based MAP algorithm effectively deconvolves the images as well as suppresses the noise. The multi-node multi-threaded GPU and the Compute Unified Device Architecture (CUDA) efficiently execute the iterative image reconstruction algorithm that is ≈200-fold faster (for large dataset) when compared to existing CPU based systems.
Embedded and real-time operating systems
Wang, K C
2017-01-01
This book covers the basic concepts and principles of operating systems, showing how to apply them to the design and implementation of complete operating systems for embedded and real-time systems. It includes all the foundational and background information on ARM architecture, ARM instructions and programming, toolchain for developing programs, virtual machines for software implementation and testing, program execution image, function call conventions, run-time stack usage and link C programs with assembly code. It describes the design and implementation of a complete OS for embedded systems in incremental steps, explaining the design principles and implementation techniques. For Symmetric Multiprocessing (SMP) embedded systems, the author examines the ARM MPcore processors, which include the SCU and GIC for interrupts routing and interprocessor communication and synchronization by Software Generated Interrupts (SGIs). Throughout the book, complete working sample systems demonstrate the design principles and...
Izumida, Yuki; Okuda, Koji
2014-05-01
We formulate the work output and efficiency for linear irreversible heat engines working between a finite-sized hot heat source and an infinite-sized cold heat reservoir until the total system reaches the final thermal equilibrium state with a uniform temperature. We prove that when the heat engines operate at the maximum power under the tight-coupling condition without heat leakage the work output is just half of the exergy, which is known as the maximum available work extracted from a heat source. As a consequence, the corresponding efficiency is also half of its quasistatic counterpart.
Onset of effects of testosterone treatment and time span until maximum effects are achieved
Saad, Farid; Aversa, Antonio; Isidori, Andrea M; Zafalon, Livia; Zitzmann, Michael; Gooren, Louis
2011-01-01
Objective Testosterone has a spectrum of effects on the male organism. This review attempts to determine, from published studies, the time-course of the effects induced by testosterone replacement therapy from their first manifestation until maximum effects are attained. Design Literature data on testosterone replacement. Results Effects on sexual interest appear after 3 weeks plateauing at 6 weeks, with no further increments expected beyond. Changes in erections/ejaculations may require up to 6 months. Effects on quality of life manifest within 3–4 weeks, but maximum benefits take longer. Effects on depressive mood become detectable after 3–6 weeks with a maximum after 18–30 weeks. Effects on erythropoiesis are evident at 3 months, peaking at 9–12 months. Prostate-specific antigen and volume rise, marginally, plateauing at 12 months; further increase should be related to aging rather than therapy. Effects on lipids appear after 4 weeks, maximal after 6–12 months. Insulin sensitivity may improve within few days, but effects on glycemic control become evident only after 3–12 months. Changes in fat mass, lean body mass, and muscle strength occur within 12–16 weeks, stabilize at 6–12 months, but can marginally continue over years. Effects on inflammation occur within 3–12 weeks. Effects on bone are detectable already after 6 months while continuing at least for 3 years. Conclusion The time-course of the spectrum of effects of testosterone shows considerable variation, probably related to pharmacodynamics of the testosterone preparation. Genomic and non-genomic effects, androgen receptor polymorphism and intracellular steroid metabolism further contribute to such diversity. PMID:21753068
REAL TIME SYSTEM OPERATIONS 2006-2007
Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo
2008-08-15
The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.
Abhishek Khanna
2012-01-01
Full Text Available We revisit the problem of optimal power extraction in four-step cycles (two adiabatic and two heat-transfer branches when the finite-rate heat transfer obeys a linear law and the heat reservoirs have finite heat capacities. The heat-transfer branch follows a polytropic process in which the heat capacity of the working fluid stays constant. For the case of ideal gas as working fluid and a given switching time, it is shown that maximum work is obtained at Curzon-Ahlborn efficiency. Our expressions clearly show the dependence on the relative magnitudes of heat capacities of the fluid and the reservoirs. Many previous formulae, including infinite reservoirs, infinite-time cycles, and Carnot-like and non-Carnot-like cycles, are recovered as special cases of our model.
Component Prioritization Schema for Achieving Maximum Time and Cost Benefits from Software Testing
Srivastava, Praveen Ranjan; Pareek, Deepak
Software testing is any activity aimed at evaluating an attribute or capability of a program or system and determining that it meets its required results. Defining the end of software testing represents crucial features of any software development project. A premature release will involve risks like undetected bugs, cost of fixing faults later, and discontented customers. Any software organization would want to achieve maximum possible benefits from software testing with minimum resources. Testing time and cost need to be optimized for achieving a competitive edge in the market. In this paper, we propose a schema, called the Component Prioritization Schema (CPS), to achieve an effective and uniform prioritization of the software components. This schema serves as an extension to the Non Homogenous Poisson Process based Cumulative Priority Model. We also introduce an approach for handling time-intensive versus cost-intensive projects.
Mlpnp - a Real-Time Maximum Likelihood Solution to the Perspective-N Problem
Urban, S.; Leitloff, J.; Hinz, S.
2016-06-01
In this paper, a statistically optimal solution to the Perspective-n-Point (PnP) problem is presented. Many solutions to the PnP problem are geometrically optimal, but do not consider the uncertainties of the observations. In addition, it would be desirable to have an internal estimation of the accuracy of the estimated rotation and translation parameters of the camera pose. Thus, we propose a novel maximum likelihood solution to the PnP problem, that incorporates image observation uncertainties and remains real-time capable at the same time. Further, the presented method is general, as is works with 3D direction vectors instead of 2D image points and is thus able to cope with arbitrary central camera models. This is achieved by projecting (and thus reducing) the covariance matrices of the observations to the corresponding vector tangent space.
Reengineering observatory operations for the time domain
Seaman, Robert L; Hessman, Frederic V
2014-01-01
Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Re...
JIN Qibing; LIU Qie; WANG Qi; TIAN Yuqi; WANG Yuanfei
2013-01-01
The IMC (Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Maximum Sensitivity (Ms) in depth.And the analytical relationship is obtained between the robustness specification and controller parameters,which gives a clear design criterion to robust IMC controller.Moreover,a novel and simple IMC-PID (Proportional-Integral-Derivative) tuning method is proposed by converting the IMC controller to PID form in terms of the time domain rather than the frequency domain adopted in some conventional IMC-based methods.Hence,the presented IMC-PID gives a good performance with a specific robustness degree.The new IMC-PID method is compared with other classical IMC-PID rules,showing the flexibility and feasibility for a wide range of plants.
Glottal closure instant and voice source analysis using time-scale lines of maximum amplitude
Christophe D’Alessandro; Nicolas Sturmel
2011-10-01
1Time-scale representation of voiced speech is applied to voice quality analysis, by introducing the Line of Maximum Amplitude (LoMA) method. This representation takes advantage of the tree patterns observed for voiced speech periods in the time-scale domain. For each period, the optimal LoMA is computed by linking amplitude maxima at each scale of a wavelet transform, using a dynamic programming algorithm. A time-scale analysis of the linear acoustic model of speech production shows several interesting properties. The LoMA points to the glottal closure instants. The LoMA phase delay is linked to the voice open quotient. The cumulated amplitude along the LoMA is related to voicing amplitude. The LoMA spectral centre of gravity is an indication of voice spectral tilt. Following these theoretical considerations, experimental results are reported. Comparative evaluation demonstrates that the LoMA is an effective method for the detection of Glottal Closure Instants (GCI). The effectiveness of LoMA analysis for open quotient, amplitude and spectral tilt estimations is also discussed with the help of some examples.
Schaefer, Andreas; Wenzel, Friedemann
2017-04-01
technically trades time with space, considering subduction zones where we have likely not observed the maximum possible event yet. However, by identifying sources of the same class, the not-yet observed temporal behavior can be replaced by spatial similarity among different subduction zones. This database aims to enhance the research and understanding of subduction zones and to quantify their potential in producing mega earthquakes considering potential strong motion impact on nearby cities and their tsunami potential.
Reengineering observatory operations for the time domain
Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.
2014-07-01
Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.
Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences
Köcher, S. S.; Heydenreich, T.; Zhang, Y.; Reddy, G. N. M.; Caldarelli, S.; Yuan, H.; Glaser, S. J.
2016-04-01
Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoretically predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.
Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun
2014-01-01
We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.
Zhaoyong Mao
2016-01-01
Full Text Available This paper addresses the power generation control system of a new drag-type Vertical Axis Turbine with several retractable blades. The returning blades can be entirely hidden in the drum, and negative torques can then be considerably reduced as the drum shields the blades. Thus, the power efficiency increases. Regarding the control, a Linear Quadratic Tracking (LQT optimal control algorithm for Maximum Power Point Tracking (MPPT is proposed to ensure that the wave energy conversion system can operate highly effectively under fluctuating conditions and that the tracking process accelerates over time. Two-dimensional Computational Fluid Dynamics (CFD simulations are performed to obtain the maximum power points of the turbine’s output. To plot the tip speed ratio curve, the least squares method is employed. The efficacy of the steady and dynamic performance of the control strategy was verified using Matlab/Simulink software. These validation results show that the proposed system can compensate for power fluctuations and is effective in terms of power regulation.
Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors
Langbein, John O.
2017-01-01
Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If temporal correlations are not taken into account, or each observation is assumed to be independent, it is likely that any estimate of the error of these parameters will be too low and the estimated value of the parameter will be biased. Inclusion of better estimates of uncertainties is limited by several factors, including selection of the correct model for the background noise and the computational requirements to estimate the parameters of the selected noise model for cases where there are numerous observations. Here, I address the second problem of computational efficiency using maximum likelihood estimates (MLE). Most geophysical time series have background noise processes that can be represented as a combination of white and power-law noise, 1/fα">1/fα1/fα with frequency, f. With missing data, standard spectral techniques involving FFTs are not appropriate. Instead, time domain techniques involving construction and inversion of large data covariance matrices are employed. Bos et al. (J Geod, 2013. doi:10.1007/s00190-012-0605-0) demonstrate one technique that substantially increases the efficiency of the MLE methods, yet is only an approximate solution for power-law indices >1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by simply forming a data filter that adds noise processes rather than combining them in quadrature. Consequently, the inversion of the data covariance matrix is simplified yet provides robust results for a wider range of power-law indices.
Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors
Langbein, John
2017-02-01
Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If temporal correlations are not taken into account, or each observation is assumed to be independent, it is likely that any estimate of the error of these parameters will be too low and the estimated value of the parameter will be biased. Inclusion of better estimates of uncertainties is limited by several factors, including selection of the correct model for the background noise and the computational requirements to estimate the parameters of the selected noise model for cases where there are numerous observations. Here, I address the second problem of computational efficiency using maximum likelihood estimates (MLE). Most geophysical time series have background noise processes that can be represented as a combination of white and power-law noise, 1/f^{α } with frequency, f. With missing data, standard spectral techniques involving FFTs are not appropriate. Instead, time domain techniques involving construction and inversion of large data covariance matrices are employed. Bos et al. (J Geod, 2013. doi: 10.1007/s00190-012-0605-0) demonstrate one technique that substantially increases the efficiency of the MLE methods, yet is only an approximate solution for power-law indices >1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by simply forming a data filter that adds noise processes rather than combining them in quadrature. Consequently, the inversion of the data covariance matrix is simplified yet provides robust results for a wider range of power-law indices.
Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors
Langbein, John
2017-08-01
Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If temporal correlations are not taken into account, or each observation is assumed to be independent, it is likely that any estimate of the error of these parameters will be too low and the estimated value of the parameter will be biased. Inclusion of better estimates of uncertainties is limited by several factors, including selection of the correct model for the background noise and the computational requirements to estimate the parameters of the selected noise model for cases where there are numerous observations. Here, I address the second problem of computational efficiency using maximum likelihood estimates (MLE). Most geophysical time series have background noise processes that can be represented as a combination of white and power-law noise, 1/f^{α } with frequency, f. With missing data, standard spectral techniques involving FFTs are not appropriate. Instead, time domain techniques involving construction and inversion of large data covariance matrices are employed. Bos et al. (J Geod, 2013. doi: 10.1007/s00190-012-0605-0) demonstrate one technique that substantially increases the efficiency of the MLE methods, yet is only an approximate solution for power-law indices >1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by simply forming a data filter that adds noise processes rather than combining them in quadrature. Consequently, the inversion of the data covariance matrix is simplified yet provides robust results for a wider range of power-law indices.
The timing of the maximum extent of the Rhone Glacier at Wangen a.d. Aare
Ivy-Ochs, S.; Schluechter, C. [Bern Univ. (Switzerland); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Beer, J. [EAWAG, Duebendorf (Switzerland)
1997-09-01
Erratic blocks found in the region of Wangen a.d. Aare delineate the maximum position of the Solothurn lobe of the Rhone Glacier. {sup 10}Be and {sup 26}Al exposure ages of three of these blocks show that the glacier withdraw from its maximum position at or slightly before 20,000{+-}1800 years ago. (author) 1 fig., 5 refs.
Jat, Prahlad; Serre, Marc L
2016-12-01
Widespread contamination of surface water chloride is an emerging environmental concern. Consequently accurate and cost-effective methods are needed to estimate chloride along all river miles of potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/time geostatistical estimation framework that uses river distances, and we compare it with Euclidean BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and Patuxent subbasins in Maryland. River BME improves the cross-validation R(2) by 23.67% over Euclidean BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is important to use river BME maps to assess water quality impairment. The river BME maps of chloride concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disappearance of a clean buffer separating these two large urban areas, and the emergence of multiple localized pockets of contamination in surrounding areas. The number of impaired river miles increased by 0.55% per year in 2005-2009 and by 1.23% per year in 2011-2014, corresponding to a marked acceleration of the rate of impairment. Our results support the need for control measures and increased monitoring of unassessed river miles.
Novel Maximum-based Timing Acquisition for Spread-Spectrum Communications
Sibbetty, Taylor; Moradiz, Hussein; Farhang-Boroujeny, Behrouz
2016-12-01
This paper proposes and analyzes a new packet detection and timing acquisition method for spread spectrum systems. The proposed method provides an enhancement over the typical thresholding techniques that have been proposed for direct sequence spread spectrum (DS-SS). The effective implementation of thresholding methods typically require accurate knowledge of the received signal-to-noise ratio (SNR), which is particularly difficult to estimate in spread spectrum systems. Instead, we propose a method which utilizes a consistency metric of the location of maximum samples at the output of a filter matched to the spread spectrum waveform to achieve acquisition, and does not require knowledge of the received SNR. Through theoretical study, we show that the proposed method offers a low probability of missed detection over a large range of SNR with a corresponding probability of false alarm far lower than other methods. Computer simulations that corroborate our theoretical results are also presented. Although our work here has been motivated by our previous study of a filter bank multicarrier spread-spectrum (FB-MC-SS) system, the proposed method is applicable to DS-SS systems as well.
Guo-Jheng Yang
2013-08-01
Full Text Available The fragile watermarking technique is used to protect intellectual property rights while also providing security and rigorous protection. In order to protect the copyright of the creators, it can be implanted in some representative text or totem. Because all of the media on the Internet are digital, protection has become a critical issue, and determining how to use digital watermarks to protect digital media is thus the topic of our research. This paper uses the Logistic map with parameter u = 4 to generate chaotic dynamic behavior with the maximum entropy 1. This approach increases the security and rigor of the protection. The main research target of information hiding is determining how to hide confidential data so that the naked eye cannot see the difference. Next, we introduce one method of information hiding. Generally speaking, if the image only goes through Arnold’s cat map and the Logistic map, it seems to lack sufficient security. Therefore, our emphasis is on controlling Arnold’s cat map and the initial value of the chaos system to undergo small changes and generate different chaos sequences. Thus, the current time is used to not only make encryption more stringent but also to enhance the security of the digital media.
Ertas, Gokhan; Gulcur, H Ozcan; Tunaci, Mehtap
2008-05-01
Effectiveness of morphological descriptors based on normalized maximum intensity-time ratio (nMITR) maps generated using a 3 x 3 pixel moving mask on dynamic contrast-enhanced magnetoresistance (MR) mammograms are studied for assessment of malignancy. After a rough indication of volume of interest on the nMITR maps, lesions are automatically segmented. Two-dimensional (2D) convexity, normalized complexity, extent, and eccentricity as well as three-dimensional (3D) versions of these descriptors and contact surface area ratio are computed. On a data set consisting of dynamic contrast-enhanced MR DCE-MR mammograms from 51 women that contain 26 benign and 32 malignant lesions, 3D convexity, complexity, and extent are found to reflect aggressiveness of malignancy better than 2D descriptors. Contact surface area ratio which is easily adaptable to different imaging resolutions is found to be the most significant and accurate descriptor (75% sensitivity, 88% specificity, 89% positive predictive values, and 74% negative predictive values).
The Maximum Coping Time Analysis of the ELAP for the OPR1400
Shin, Sung Hyun; Hah, Chang Joo [KINGS, Ulsan (Korea, Republic of); Jung, Si Chae; Lee, Chang Gyun [KEPCO E and C, Daejeon (Korea, Republic of)
2014-05-15
There have been many evaluations and recommendations for the extended Station Black Out (SBO) condition of the nuclear power plant. For example, the 'SECY-11-0093/0137', is a recommendation of NRC and the 'WCAP-17601-P' is an evaluation of the PWROG. The extended loss of AC power (ELAP) can be defined as same with the extended (or prolonged) SBO which has a Loss of Offsite Power (LOOP) condition and loss of all Emergency Diesel Generators (EDG), Alternative Alternating Current (AAC), but Direct Current (DC) source is available. This evaluation provides NSSS responses to an ELAP for the OPR1000 unit. And the results presented provide certain phenomena which occur during the ELAP, the maximum coping time until a core uncovery condition. It is assumed for this case that sufficient SG secondary makeup inventory exists or can be attained, so that the duration of the ELAP prior to core damage is dependent solely upon the loss of inventory from the RCS. Even with a limited RCS cooldown and depressurization, and conservatively high assumed RCP seal leakage, the plant can be sustained for over 65 hours prior to core uncovery.
Johann A. Briffa
2014-06-01
Full Text Available In this study, the authors consider time-varying block (TVB codes, which generalise a number of previous synchronisation error-correcting codes. They also consider various practical issues related to maximum a posteriori (MAP decoding of these codes. Specifically, they give an expression for the expected distribution of drift between transmitter and receiver because of synchronisation errors. They determine an appropriate choice for state space limits based on the drift probability distribution. In turn, they obtain an expression for the decoder complexity under given channel conditions in terms of the state space limits used. For a given state space, they also give a number of optimisations that reduce the algorithm complexity with no further loss of decoder performance. They also show how the MAP decoder can be used in the absence of known frame boundaries, and demonstrate that an appropriate choice of decoder parameters allows the decoder to approach the performance when frame boundaries are known, at the expense of some increase in complexity. Finally, they express some existing constructions as TVB codes, comparing performance with published results and showing that improved performance is possible by taking advantage of the flexibility of TVB codes.
Fast Maximum-Likelihood Decoder for Quasi-Orthogonal Space-Time Block Code
Adel Ahmadi
2015-01-01
Full Text Available Motivated by the decompositions of sphere and QR-based methods, in this paper we present an extremely fast maximum-likelihood (ML detection approach for quasi-orthogonal space-time block code (QOSTBC. The proposed algorithm with a relatively simple design exploits structure of quadrature amplitude modulation (QAM constellations to achieve its goal and can be extended to any arbitrary constellation. Our decoder utilizes a new decomposition technique for ML metric which divides the metric into independent positive parts and a positive interference part. Search spaces of symbols are substantially reduced by employing the independent parts and statistics of noise. Symbols within the search spaces are successively evaluated until the metric is minimized. Simulation results confirm that the proposed decoder’s performance is superior to many of the recently published state-of-the-art solutions in terms of complexity level. More specifically, it was possible to verify that application of the new algorithms with 1024-QAM would decrease the computational complexity compared to state-of-the-art solution with 16-QAM.
Susanne Wegener
Full Text Available After recanalization, cerebral blood flow (CBF can increase above baseline in cerebral ischemia. However, the significance of post-ischemic hyperperfusion for tissue recovery remains unclear. To analyze the course of post-ischemic hyperperfusion and its impact on vascular function, we used magnetic resonance imaging (MRI with pulsed arterial spin labeling (pASL and measured CBF quantitatively during and after a 60 minute transient middle cerebral artery occlusion (MCAO in adult rats. We added a 5% CO2 - challenge to analyze vasoreactivity in the same animals. Results from MRI were compared to histological correlates of angiogenesis. We found that CBF in the ischemic area recovered within one day and reached values significantly above contralateral thereafter. The extent of hyperperfusion changed over time, which was related to final infarct size: early (day 1 maximal hyperperfusion was associated with smaller lesions, whereas a later (day 4 maximum indicated large lesions. Furthermore, after initial vasoparalysis within the ischemic area, vasoreactivity on day 14 was above baseline in a fraction of animals, along with a higher density of blood vessels in the ischemic border zone. These data provide further evidence that late post-ischemic hyperperfusion is a sequel of ischemic damage in regions that are likely to undergo infarction. However, it is transient and its resolution coincides with re-gaining of vascular structure and function.
Koutroulis, Eftichios; Blaabjerg, Frede
2012-01-01
output, such that it behaves as a constant input-power load. The proposed method has the advantage that it can be applied in either stand-alone or grid-connected PV systems comprising PV arrays with unknown electrical characteristics and does not require knowledge about the PV modules configuration......The power-voltage characteristic of photovoltaic (PV) arrays operating under partial-shading conditions exhibits multiple local maximum power points (MPPs). In this paper, a new method to track the global MPP is presented, which is based on controlling a dc/dc converter connected at the PV array...
Effects of preload 4 repetition maximum on 100-m sprint times in collegiate women.
Linder, Elizabeth E; Prins, Jan H; Murata, Nathan M; Derenne, Coop; Morgan, Charles F; Solomon, John R
2010-05-01
The purpose of this study was to determine the effects of postactivation potentiation (PAP) on track-sprint performance after a preload set of 4 repetition maximum (4RM) parallel back half-squat exercises in collegiate women. All subjects (n = 12) participated in 2 testing sessions over a 3-week period. During the first testing session, subjects performed the Controlled protocol consisting of a 4-minute standardized warm-up, followed by a 4-minute active rest, a 100-m track sprint, a second 4-minute active rest, finalized with a second 100-m sprint. The second testing session, the Treatment protocol, consisted of a 4-minute standardized warm-up, followed by 4-minute active rest, sprint, a second 4-minute active rest, a warm-up of 4RM parallel back half-squat, a third 9-minute active rest, finalized with a second sprint. The results indicated that there was a significant improvement of 0.19 seconds (p sprint was preceded by a 4RM back-squat protocol during Treatment. The standardized effect size, d, was 0.82, indicating a large effect size. Additionally, the results indicated that it would be expected that mean sprint times would increase 0.04-0.34 seconds (p 0.05). The findings suggest that performing a 4RM parallel back half-squat warm-up before a track sprint will have a positive PAP affect on decreased track-sprint times. Track coaches, looking for the "competitive edge" (PAP effect) may re-warm up their sprinters during meets.
Springer, P.
1993-01-01
This paper discusses the method in which the Cascade-Correlation algorithm was parallelized in such a way that it could be run using the Time Warp Operating System (TWOS). TWOS is a special purpose operating system designed to run parellel discrete event simulations with maximum efficiency on parallel or distributed computers.
Springer, P.
1993-01-01
This paper discusses the method in which the Cascade-Correlation algorithm was parallelized in such a way that it could be run using the Time Warp Operating System (TWOS). TWOS is a special purpose operating system designed to run parellel discrete event simulations with maximum efficiency on parallel or distributed computers.
Jiang Zhu
2014-01-01
Full Text Available Some delta-nabla type maximum principles for second-order dynamic equations on time scales are proved. By using these maximum principles, the uniqueness theorems of the solutions, the approximation theorems of the solutions, the existence theorem, and construction techniques of the lower and upper solutions for second-order linear and nonlinear initial value problems and boundary value problems on time scales are proved, the oscillation of second-order mixed delat-nabla differential equations is discussed and, some maximum principles for second order mixed forward and backward difference dynamic system are proved.
FlowMax: A Computational Tool for Maximum Likelihood Deconvolution of CFSE Time Courses.
Maxim Nikolaievich Shokhirev
Full Text Available The immune response is a concerted dynamic multi-cellular process. Upon infection, the dynamics of lymphocyte populations are an aggregate of molecular processes that determine the activation, division, and longevity of individual cells. The timing of these single-cell processes is remarkably widely distributed with some cells undergoing their third division while others undergo their first. High cell-to-cell variability and technical noise pose challenges for interpreting popular dye-dilution experiments objectively. It remains an unresolved challenge to avoid under- or over-interpretation of such data when phenotyping gene-targeted mouse models or patient samples. Here we develop and characterize a computational methodology to parameterize a cell population model in the context of noisy dye-dilution data. To enable objective interpretation of model fits, our method estimates fit sensitivity and redundancy by stochastically sampling the solution landscape, calculating parameter sensitivities, and clustering to determine the maximum-likelihood solution ranges. Our methodology accounts for both technical and biological variability by using a cell fluorescence model as an adaptor during population model fitting, resulting in improved fit accuracy without the need for ad hoc objective functions. We have incorporated our methodology into an integrated phenotyping tool, FlowMax, and used it to analyze B cells from two NFκB knockout mice with distinct phenotypes; we not only confirm previously published findings at a fraction of the expended effort and cost, but reveal a novel phenotype of nfkb1/p105/50 in limiting the proliferative capacity of B cells following B-cell receptor stimulation. In addition to complementing experimental work, FlowMax is suitable for high throughput analysis of dye dilution studies within clinical and pharmacological screens with objective and quantitative conclusions.
Becker, L. W. M.; Sejrup, H. P.; Hjelstuen, B. O. B.; Haflidason, H.
2016-12-01
The extent of the NW European ice sheet during the Last Glacial Maximum is fairly well constrained to, at least in periods, the shelf edge. However, the exact timing and varying activity of the largest ice stream, the Norwegian Channel Ice Stream (NCIS), remains uncertain. We here present three sediment records, recovered proximal and distal to the upper NW European continental slope. All age models for the cores are constructed in the same way and based solely on 14C dating of planktonic foraminifera. The sand-sized sediments in the discussed cores is believed to be primarily transported by ice rafting. All records suggest ice streaming activity between 25.8 and 18.5 ka BP. However, the core proximal to the mouth of the Norwegian Channel (NC) shows distinct periods of activity and periods of very little coarse sediment input. Out of this there appear to be at least three well-defined periods of ice streaming activity which lasted each for 1.5 to 2 ka, with "pauses" of several hundred years in between. The same core shows a conspicuous variation in several proxies and sediment colour within the first peak of ice stream activity, compared to the second and third peak. The light grey colour of the sediment was earlier attributed to Triassic chalk grains, yet all "chalk" grains are in fact mollusc fragments. The low magnetic susceptibility values, the high Ca, high Sr and low Fe content compared to the other peaks suggests a different provenance for the material of the first peak. We suggest therefore, that the origin of this material is rather the British Irish Ice Sheet (BIIS) and not the Fennoscandian Ice Sheet (FIS). Earlier studies have shown an extent of the BIIS at least to the NC, whereas ice from the FIS likely stayed within the boundaries of the NC. A possible scenario for the different provenance could therefore be the build-up of the BIIS into the NC until it merged with the FIS. At this point the BIIS calved off the shelf edge southwest of the mouth of
Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui
2014-12-01
We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures Th and Tc (Otto engine working in the linear-response regime.
Kozlowski, Dawid; Worthington, Dave
2015-01-01
Many public healthcare systems struggle with excessive waiting lists for elective patient treatment. Different countries address this problem in different ways, and one interesting method entails a maximum waiting time guarantee. Introduced in Denmark in 2002, it entitles patients to treatment at...... by hospital planners and strategic decision makers....... at a private hospital in Denmark or at a hospital abroad if the public healthcare system is unable to provide treatment within the stated maximum waiting time guarantee. Although clearly very attractive in some respects, many stakeholders have been very concerned about the negative consequences of the policy...... on the utilization of public hospital resources. This paper illustrates the use of a queue modelling approach in the analysis of elective patient treatment governed by the maximum waiting time policy. Drawing upon the combined strengths of analytic and simulation approaches we develop both continuous-time Markov...
MIN Htwe, Y. M.
2016-12-01
Myanmar has suffered many times from earthquake disasters and four times from tsunamis according to historical data. The purpose of this study is to estimate the tsunami arrival time and maximum tsunami wave amplitude for the Rakhine coast of Myanmar using the TUNAMI F1 model. In this study I calculate the tsunami arrival time and maximum tsunami wave amplitude based on a tsunamigenic earthquake source of moment magnitude 8.5 in the Arakan subduction zone off the west-coast of Myanmar, using the TUNAMI F1 model, selecting eight points on Rakhine coast. The model result indicates that the tsunami waves would first hit Kyaukpyu on the Rakhine coast about 0.05 minutes after the onset of a magnitude 8.5 earthquake, and the maximum tsunami wave amplitude would be 2.37 meters.
Nezhel'skaya, L. A.
2016-09-01
A flow of physical events (photons, electrons, and other elementary particles) is studied. One of the mathematical models of such flows is the modulated MAP flow of events circulating under conditions of unextendable dead time period. It is assumed that the dead time period is an unknown fixed value. The problem of estimation of the dead time period from observations of arrival times of events is solved by the method of maximum likelihood.
Pintelon, R.; Peeters, B.; Guillaume, P.
2010-01-01
Recently [R. Pintelon, B. Peeters, P. Guillaume, Continuous-time operational modal analysis in the presence of harmonic disturbances, Mechanical Systems and Signal Processing 22 (5) (2008) 1017-1035] a single-output algorithm for continuous-time operational modal analysis in the presence of harmonic disturbances with time-varying frequency has been developed. This paper extends the results of Pintelon, et al. [Continuous-time operational modal analysis in the presence of harmonic disturbances, Mechanical Systems and Signal Processing 22 (5) (2008) 1017-1035] to multi-output signals. The statistical performance of the proposed maximum likelihood estimator is illustrated on simulations and real helicopter data.
Shen, Hua
2016-10-19
A maximum-principle-satisfying space-time conservation element and solution element (CE/SE) scheme is constructed to solve a reduced five-equation model coupled with the stiffened equation of state for compressible multifluids. We first derive a sufficient condition for CE/SE schemes to satisfy maximum-principle when solving a general conservation law. And then we introduce a slope limiter to ensure the sufficient condition which is applicative for both central and upwind CE/SE schemes. Finally, we implement the upwind maximum-principle-satisfying CE/SE scheme to solve the volume-fraction-based five-equation model for compressible multifluids. Several numerical examples are carried out to carefully examine the accuracy, efficiency, conservativeness and maximum-principle-satisfying property of the proposed approach.
Henning Grosse Ruse-Khan
2009-07-01
Full Text Available International intellectual property (IP protection is at the heart of controversies over the impact of economic interests on social or environmental concerns. Some see IP rights as unduly encroaching upon human rights and societal interests, others argue for stronger enforcement and additional exclusivity to incentivize new innovations and creations. Underlying these debates is the perception that international IP treaties set out minimum standards of protection - which presumably allow for additional protection with only the sky being the limit. This article challenges this view and explores the idea of maximum standards or ceilings within the existing body of international IP law. It looks at the relation between IP treaties and subsequent agreements or national laws which offer stronger protection. In particular, within the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS, an important qualification may serve as a door opener for ceilings: While additional IP protection may not go beyond mandatory limits within TRIPS, the qualification not to “contravene” TRIPS is unlikely to safeguard TRIPS flexibilities against TRIPS-plus norms. The article further identifies and examines the rationales for maximum standards in international IP protection as: (1 Legal security and predictability about the boundaries of protection; (2 the global protection of users’ rights; and (3 the free movement of goods, services and information. Examples of mandatory limits in the existing IP treaties and in ongoing initiatives can implement these. However, most of the relevant treaty norms are optional. The article concludes with some observations on the need for more comprehensive and precise maximum standards.
Invariant Hermitian Operator and Density Operator for the Adiabatically Time-Dependent System
YAN Feng-Li; YANG Lin-Guang
2001-01-01
The density operator is approximately expressed as a function of the invariant Hermitian operator for the adiabatically time-dependent system. Using this method, the calculation of the density operator for the Heisenberg spin system in a weakly time-dependent magnetic field is exemplified. By virtue of the density operator, we obtain equilibrium.``
Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui
2014-12-01
We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures T(h) and T(c) (power based on these two different kinds of quantum systems are bounded from the upper side by the same expression η(mp)≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))] with η(C)=1-T(c)/T(h) as the Carnot efficiency. This expression η(mp) possesses the same universality of the CA efficiency η(CA)=1-√(1-η(C)) at small relative temperature difference. Within the context of irreversible thermodynamics, we calculate the Onsager coefficients and show that the value of η(CA) is indeed the upper bound of EMP for an Otto engine working in the linear-response regime.
AMON: Transition to real-time operations
Cowen, D. F.; Keivani, A.; Tešić, G.
2016-04-01
The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.
Culley, S.; Noble, S.; Yates, A.; Timbs, M.; Westra, S.; Maier, H. R.; Giuliani, M.; Castelletti, A.
2016-09-01
Many water resource systems have been designed assuming that the statistical characteristics of future inflows are similar to those of the historical record. This assumption is no longer valid due to large-scale changes in the global climate, potentially causing declines in water resource system performance, or even complete system failure. Upgrading system infrastructure to cope with climate change can require substantial financial outlay, so it might be preferable to optimize existing system performance when possible. This paper builds on decision scaling theory by proposing a bottom-up approach to designing optimal feedback control policies for a water system exposed to a changing climate. This approach not only describes optimal operational policies for a range of potential climatic changes but also enables an assessment of a system's upper limit of its operational adaptive capacity, beyond which upgrades to infrastructure become unavoidable. The approach is illustrated using the Lake Como system in Northern Italy—a regulated system with a complex relationship between climate and system performance. By optimizing system operation under different hydrometeorological states, it is shown that the system can continue to meet its minimum performance requirements for more than three times as many states as it can under current operations. Importantly, a single management policy, no matter how robust, cannot fully utilize existing infrastructure as effectively as an ensemble of flexible management policies that are updated as the climate changes.
Oudyn, Frederik W; Lyons, David J; Pringle, M J
2012-01-01
Many scientific laboratories follow, as standard practice, a relatively short maximum holding time (within 7 days) for the analysis of total suspended solids (TSS) in environmental water samples. In this study we have subsampled from bulk water samples stored at ∼4 °C in the dark, then analysed for TSS at time intervals up to 105 days after collection. The nonsignificant differences in TSS results observed over time demonstrates that storage at ∼4 °C in the dark is an effective method of preserving samples for TSS analysis, far past the 7-day standard practice. Extending the maximum holding time will ease the pressure on sample collectors and laboratory staff who until now have had to determine TSS within an impractically short period.
Juin-Ling Tseng
2016-01-01
Full Text Available Facial animation is one of the most popular 3D animation topics researched in recent years. However, when using facial animation, a 3D facial animation model has to be stored. This 3D facial animation model requires many triangles to accurately describe and demonstrate facial expression animation because the face often presents a number of different expressions. Consequently, the costs associated with facial animation have increased rapidly. In an effort to reduce storage costs, researchers have sought to simplify 3D animation models using techniques such as Deformation Sensitive Decimation and Feature Edge Quadric. The studies conducted have examined the problems in the homogeneity of the local coordinate system between different expression models and in the retainment of simplified model characteristics. This paper proposes a method that applies Homogeneous Coordinate Transformation Matrix to solve the problem of homogeneity of the local coordinate system and Maximum Shape Operator to detect shape changes in facial animation so as to properly preserve the features of facial expressions. Further, root mean square error and perceived quality error are used to compare the errors generated by different simplification methods in experiments. Experimental results show that, compared with Deformation Sensitive Decimation and Feature Edge Quadric, our method can not only reduce the errors caused by simplification of facial animation, but also retain more facial features.
Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.
2016-09-01
Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.
Short-Time Decoherence of Solid-State Qubit at Optimal Operation Points
无
2005-01-01
We investigate the short-time decoherence of a solid-state qubit under Ohmic noise at optimal operation points. The decoherence is analyzed by maximum norm of the deviation density operator. It is shown that at the temperature T = 3 mK, the loss of the fidelity due to decoherence is much smaller than the DiVincenzo low decoherence criterion, which means that the model may be an optimal candidate of qubit for quantum computation.
Preconditioning the pressure operator for the time dependent Stokes problem
Bramble, J.H.; Pasciak, J.E.
1994-12-31
In implicit time stepping procedures for the linearized Navier Stokes equations, a linear perturbed Stokes problem must be solved at each time step. Many methods for doing this require a good preconditioner for the resulting pressure operator (Schur complement). In contrast to the time independent Stokes equations where the pressure operator is well conditioned, the pressure operator for the perturbed system becomes more illconditioned as the time step is reduced (and/or the Reynolds number is increased). The authors describe the method for solving the coupled velocity/pressure systems and, in particular, show how to construct good preconditioners for the poorly conditioned pressure operator.
The effects of disjunct sampling and averaging time on maximum mean wind speeds
Larsén, Xiaoli Guo; Mann, J.
2006-01-01
Conventionally, the 50-year wind is calculated on basis of the annual maxima of consecutive 10-min averages. Very often, however, the averages are saved with a temporal spacing of several hours. We call it disjunct sampling. It may also happen that the wind speeds are averaged over a longer time...... period before being saved. In either case, the extreme wind will be underestimated. This paper investigates the effects of the disjunct sampling interval and the averaging time on the attenuation of the extreme wind estimation by means of a simple theoretical approach as well as measurements...
ANALYTICAL ESTIMATION OF MINIMUM AND MAXIMUM TIME EXPENDITURES OF PASSENGERS AT AN URBAN ROUTE STOP
Gorbachov, P.
2013-01-01
Full Text Available This scientific paper deals with the problem related to the definition of average time spent by passengers while waiting for transport vehicles at urban stops as well as the results of analytical modeling of this value at traffic schedule unknown to the passengers and of two options of the vehicle traffic management on the given route.
The Round-Robin Mock Interview: Maximum Learning in Minimum Time
Marks, Melanie; O'Connor, Abigail H.
2006-01-01
Interview skills is critical to a job seeker's success in obtaining employment. However, learning interview skills takes time. This article offers an activity for providing students with interview practice while sacrificing only a single classroom period. The authors begin by reviewing relevant literature. Then, they outline the process of…
Transformer real-time reliability model based on operating conditions
HE Jian; CHENG Lin; SUN Yuan-zhang
2007-01-01
Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on operating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are obtained by using operational reliability evaluation.
Lee, C.-H.; Herget, C. J.
1976-01-01
This short paper considers the parameter-identification problem of general discrete-time, nonlinear, multiple input-multiple output dynamic systems with Gaussian white distributed measurement errors. Knowledge of the system parameterization is assumed to be available. Regions of constrained maximum likelihood (CML) parameter identifiability are established. A computation procedure employing interval arithmetic is proposed for finding explicit regions of parameter identifiability for the case of linear systems.
Murray, M P; Baldwin, J M; Gardner, G M; Sepic, S B; Downs, W J
1977-06-01
Isometric torque of the knee flexor and extensor muscles were recorded for 5 seconds at three knee joint positions. The subjects included healthy men in age groups from 20 to 35 and 45 to 65 years of age. The amplitudes and duration of peak torque and the time to peak torque were measured for each contraction. Peak torque was usually maintaned less than 0.1 second and never longer than 0.9 second. At each of the three angles, the mean extensor muscle torque was higher than the mean flexor muscle torque in both age groups, and the mean torque for both muscle group was higher among the younger than among the older man. The highest average torque was recorded at the knee angle of 60 degrees for the extensor muscles and 45 degrees for the flexor muscles, but this was not always a stereotyped response either for a given individual or among individuals.
Timing A Pulsed Thin Film Pyroelectric Generator For Maximum Power Denisty
Smith, A. N.; Hanrahan, B. M.; Neville, C. J.; Jankowski, N. R.
2016-11-01
Pyroelectric thermal-to-electric energy conversion is accomplished by a cyclic process of thermally-inducing polarization changes in the material under an applied electric field. The pyroelectric MEMS device investigated consisted of a thin film PZT capacitor with platinum bottom and iridium oxide top electrodes. Electric fields between 1-20 kV/cm with a 30% duty cycle and frequencies from 0.1 - 100 Hz were tested with a modulated continuous wave IR laser with a duty cycle of 20% creating temperature swings from 0.15 - 26 °C on the pyroelectric receiver. The net output power of the device was highly sensitive to the phase delay between the laser power and the applied electric field. A thermal model was developed to predict and explain the power loss associated with finite charge and discharge times. Excellent agreement was achieved between the theoretical model and the experiment results for the measured power density versus phase delay. Limitations on the charging and discharging rates result in reduced power and lower efficiency due to a reduced net work per cycle.
Biomechanical events in the time to exhaustion at maximum aerobic speed.
Gazeau, F; Koralsztein, J P; Billat, V
1997-10-01
Recent studies reported good intra-individual reproducibility, but great inter-individual variation in a sample of elite athletes, in time to exhaustion (tlim) at the maximal aerobic speed (MAS: the lowest speed that elicits VO2max in an incremental treadmill test). The purpose of the present study was, on the one hand, to detect modifications of kinematic variables at the end of the tlim of the VO2max test and, on the other hand, to evaluate the possibility that such modifications were factors responsible for the inter-individual variability in tlim. Eleven sub-elite male runners (Age = 24 +/- 6 years; VO2max = 69.2 +/- 6.8 ml kg-1 min-1; MAS = 19.2 +/- 1.45 km h-1; tlim = 301.9 +/- 82.7 s) performed two exercise tests on a treadmill (0% slope): an incremental test to determine VO2max and MAS, and an exhaustive constant velocity test to determine tlim at MAS. Statistically significant modifications were noted in several kinematic variables. The maximal angular velocity of knee during flexion was the only variable that was both modified through the tlim test and influenced the exercise duration. A multiple correlation analysis showed that tlim was predicted by the modifications of four variables (R = 0.995, P < 0.01). These variables are directly or indirectly in relation with the energic cost of running. It was concluded that runners who demonstrated stable running styles were able to run longer during MAS test because of optimal motor efficiency.
Schmidt, Jesper Hvass; Brandt, Christian; Pedersen, Ellen Raben
2014-01-01
response criteria. User-operated audiometry was developed as an alternative to traditional audiometry for research purposes among musicians. Design: Test-retest reliability of the user-operated audiometry system was evaluated and the user-operated audiometry system was compared with traditional audiometry......Objective: To create a user-operated pure-tone audiometry method based on the method of maximum likelihood (MML) and the two-alternative forced-choice (2AFC) paradigm with high test-retest reliability without the need of an external operator and with minimal influence of subjects' fluctuating....... Study sample: Test-retest reliability of user-operated 2AFC audiometry was tested with 38 naïve listeners. User-operated 2AFC audiometry was compared to traditional audiometry in 41 subjects. Results: The repeatability of user-operated 2AFC audiometry was comparable to traditional audiometry...
2014-12-12
TYPE Journal Article 3. DATES COVERED (From - To) 01 Oct 2014 – 30 Nov 2014 4. TITLE AND SUBTITLE Estimate of Solar Maximum Using the 1–8 Å...predict the intensity and date of the solar maximum of the current solar cycle. The solar cycle 24 prediction panel3 (Biesecker & Prediction Panel 2007...statement of the solar cycle 24 prediction panel is available at http://www.swpc.noaa.gov/SolarCycle/SC24/. 2. DETERMINATION OF THE SOLAR CYCLE
Leus, G.; Petré, F.; Moonen, M.
2004-01-01
In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser interference (MUI). Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress the MUI. Furthermore, multiple-input
Leus, G.; Petré, F.; Moonen, M.
2004-01-01
In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser interference (MUI). Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress the MUI. Furthermore, multiple-input multiple-
Calebe A. Matias
2017-07-01
Full Text Available The purpose of the present study is to simulate and analyze an isolated full-bridge DC/DC boost converter, for photovoltaic panels, running a modified perturb and observe maximum power point tracking method. The zero voltage switching technique was used in order to minimize the losses of the converter for a wide range of solar operation. The efficiency of the power transfer is higher than 90% for large solar operating points. The panel enhancement due to the maximum power point tracking algorithm is 5.06%.
Time Warp Operating System, Version 2.5.1
Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.;
1993-01-01
Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.
Time Warp Operating System, Version 2.5.1
Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.; Younger, Herbert C.
1993-01-01
Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.
Grove, R. D.; Bowles, R. L.; Mayhew, S. C.
1972-01-01
A maximum likelihood parameter estimation procedure and program were developed for the extraction of the stability and control derivatives of aircraft from flight test data. Nonlinear six-degree-of-freedom equations describing aircraft dynamics were used to derive sensitivity equations for quasilinearization. The maximum likelihood function with quasilinearization was used to derive the parameter change equations, the covariance matrices for the parameters and measurement noise, and the performance index function. The maximum likelihood estimator was mechanized into an iterative estimation procedure utilizing a real time digital computer and graphic display system. This program was developed for 8 measured state variables and 40 parameters. Test cases were conducted with simulated data for validation of the estimation procedure and program. The program was applied to a V/STOL tilt wing aircraft, a military fighter airplane, and a light single engine airplane. The particular nonlinear equations of motion, derivation of the sensitivity equations, addition of accelerations into the algorithm, operational features of the real time digital system, and test cases are described.
Operative Start Time Does Not Affect Post-Operative Infection Risk.
Guidry, Christopher A; Davies, Stephen W; Willis, Rhett N; Dietch, Zachary C; Shah, Puja M; Sawyer, Robert G
2016-10-01
Surgical care is delivered 24 h a day at most institutions. Alarmingly, some authors have found that certain operative start times are associated with greater morbidity and mortality rates. This effect has been noted in both the public and private sector. Although some of these differences may be related to process, they may also be caused by the human circadian rhythm and corresponding changes in host defenses. We hypothesized that the time of day of an operation would impact the frequency of certain post-operative outcomes significantly. Cases at a single tertiary-care center reported to the American College of Surgeons National Surgical Quality Improvement Program over a 10-year period were identified. Operative start times were divided into six-hour blocks, with 6 am to noon serving as the reference. Standard univariable techniques were applied. Multivariable logistic regression with mixed effects modeling then was used to determine the relation between operative start times and infectious outcomes, controlling for surgeon clustering. Statistical significance was set at p pm; 14.8% from 6 pm to midnight; and 14.4% from midnight to 6 am; p < 0.001). On multivariable analysis, operative start time was not associated with the risk of post-operative infection, even when emergency cases were considered independently. Our data suggest that operative start times have no correlation with post-operative infectious complications. Further work is required to identify the source of the time-dependent outcome variability observed in previous studies.
Operative timing and patient survival following distal splenorenal shunt.
Pomerantz, R A; Eckhauser, F E; Knol, J A; Guirre, K; Raper, S E; Turcotte, J G
1989-06-01
The importance of "operative timing" in cirrhotic patients with variceal hemorrhage is often underemphasized. To evaluate the effects of immediate versus delayed selective portasystemic decompression on hepatic function, operative mortality, and long-term patient survival, we reviewed the records of 77 patients who underwent distal splenorenal shunts (DSRS) over a 14-year period. A hepatic risk status score was calculated at the time of the index bleed (HRS1) or presentation and again just prior to operation (HRS2). Variables analyzed included age, sex, prior bleeding episodes, time from index bleed to operation, transfusion requirements, and etiology of cirrhosis. Operative mortality rates for immediate versus delayed DSRS were 46.2 per cent and 17 per cent, respectively. HRS improved significantly in elective DSRS patients from 1.46 to 1.30. Predictors of HRS2 included HRS1 and time in days from the index bleed to operation. The most important predictor of early survival for all patients after elective DSRS was the HRS2; however, for patients who underwent elective DSRS and survived, HRS1 was a better predictor of length of survival than HRS2. No other variable analyzed accurately predicted survival. We conclude that HRS can be expected to improve with supportive inhospital therapy; improved HRS at the time of operation is associated with decreased operative mortality; and the extent of liver disease as determined by HRS1 appears to be the chief determinant of long-term patient survival.
Feynman's operational calculus and beyond noncommutativity and time-ordering
Johnson, George W; Nielsen, Lance
2015-01-01
This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections wi...
Static Behaviors of Confined Time-Arrival Operators
2003-01-01
We show that the quantization of the classical Time-of-Arrival (TOA) for arbitrary position X still leadsto a class of self-adjoint TOA-operator for a confined particle. The spectrum of the TOA-operator isstudied for different cases.
A Real-Time Simulation Platform for Power System Operation
Cha, Seung-Tae; Østergaard, Jacob; Wu, Qiuwei
2010-01-01
This paper describes the real-time digital simulation platform that can be used for power system operation, analysis, and power system modeling. This particular platform gives grid operators, planners and researchers the opportunity to observe how a power system behaves and can be used...
47 CFR 78.55 - Time of operation.
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Time of operation. 78.55 Section 78.55 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY... to any prescribed schedule of operation. Continous radiation of the carrier without modulation...
Santos W. N. dos
2003-01-01
Full Text Available The hot wire technique is considered to be an effective and accurate means of determining the thermal conductivity of ceramic materials. However, specifically for materials of high thermal diffusivity, the appropriate time interval to be considered in calculations is a decisive factor for getting accurate and consistent results. In this work, a numerical simulation model is proposed with the aim of determining the minimum and maximum measuring time for the hot wire parallel technique. The temperature profile generated by this model is in excellent agreement with that one experimentally obtained by this technique, where thermal conductivity, thermal diffusivity and specific heat are simultaneously determined from the same experimental temperature transient. Eighteen different specimens of refractory materials and polymers, with thermal diffusivities ranging from 1x10-7 to 70x10-7 m²/s, in shape of rectangular parallelepipeds, and with different dimensions were employed in the experimental programme. An empirical equation relating minimum and maximum measuring times and the thermal diffusivity of the sample is also obtained.
Ándonios D. Tsolakis
2011-01-01
Full Text Available Problem statement: Main purpose of this study was to investigation toothed gear loading problems using the Finite Element Method. Approach: We used Niemann's equations to compare maximum bending stress which was developed at critical gear-tooth flank point during gear meshing, applied for three distinct spur-gear sizes, each having different teeth number, module and power rating. Results: The results emerging after the application of Niemann's equations were compared to the results derived by application of the Finite Element Method (FEM for the same gear-loading input data. Results are quite satisfactory, since von Mises' equivalent stresses calculated with FEM are of the same order with the results of classical analytical method. Conclusion: Judging from the emerging results, deviation of the two methods, analytical (Niemann's equations and computational (FEM, referring to maximum bending stress is fairly slight, independently of the applied geometrical and loading data of each gear.
Quantum Gravity and a Time Operator in Relativistic Quantum Mechanics
Bauer, M
2016-01-01
The problem of time in the quantization of gravity arises from the fact that time in Schroedinger's equation is a parameter. This sets time apart from the spatial coordinates, represented by operators in quantum mechanics (QM). Thus "time" in QM and "time" in General Relativity (GR) are seen as mutually incompatible notions. The introduction of a dy- namical time operator in relativistic quantum mechanics (RQM), that in the Heisenberg representation is also a function of the parameter t (iden- tifed as the laboratory time), prompts to examine whether it can help to solve the disfunction referred to above. In particular, its application to the conditional interpretation of the canonical quantization approach toquantum gravity is developed. 1
Operational and logical semantics for polling real-time systems
Anders, P.R.; Dierks, Henning; Fehnker, Ansgar; Rischel, H.; Fehnker, Ansgar; Mader, Angelika H.; Vaandrager, Frits
PLC-Automata are a class of real-time automata suitable to describe the behavior of polling real-time systems. PLC-Automata can be compiled to source code for PLCs, a hardware widely used in industry to control processes. Also, PLC-Automata have been equipped with a logical and operational
Kaiadi, Mehrzad
2011-01-01
Most heavy-duty engines are diesel operated. Severe emission regulations, high fuel prices, high technology costs (e.g. catalysts, fuel injection systems) and unsustainably in supplying fuel are enough reasons to convenience engine developers to explore alternative technologies or fuels. Using natural gas/biogas can be a very good alternative due to the attractive fuel properties regarding emission reduction and engine operation. Heavy-duty diesel engines can be easily converted for natur...
Almog, Assaf
2014-01-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of time series of activity of their fundamental elements (such as stocks or neurons respectively). While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relationships between binary and non-binary properties of financial time series. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to replicate the observed binary/non-binary relations very well, and to mathematically...
Chiuh Cheng Chyu
2012-06-01
Full Text Available This paper studies the unrelated parallel machine scheduling problem with three minimization objectives – makespan, maximum earliness, and maximum tardiness (MET-UPMSP. The last two objectives combined are related to just-in-time (JIT performance of a solution. Three hybrid algorithms are presented to solve the MET-UPMSP: reactive GRASP with path relinking, dual-archived memetic algorithm (DAMA, and SPEA2. In order to improve the solution quality, min-max matching is included in the decoding scheme for each algorithm. An experiment is conducted to evaluate the performance of the three algorithms, using 100 (jobs x 3 (machines and 200 x 5 problem instances with three combinations of two due date factors – tight and range. The numerical results indicate that DAMA performs best and GRASP performs second for most problem instances in three performance metrics: HVR, GD, and Spread. The experimental results also show that incorporating min-max matching into decoding scheme significantly improves the solution quality for the two population-based algorithms. It is worth noting that the solutions produced by DAMA with matching decoding can be used as benchmark to evaluate the performance of other algorithms.
Response Times of Operators in a Control Room
Platz, O.; Rasmussen, J.; Skanborg, Preben Zacho
A statistical analysis was made of operator response times recorded in the control room of a research reactor during the years 1972-1974. A homogeneity test revealed that the data consist of a mixture of populations. A small but statistically significant difference is found between day and night ...... response times. Lognormal distributions are found to provide the best fit of the day and the night response times....
Operation Timing of Free Vascular Fibula Flep in Mandibular Reconstructions
Cengiz Eser; Eyuphan Gencel; Metin Yavuz; Erol Kesiktas
2011-01-01
Free tissue transfers are commonly used popular approach with respect to the development of microsurgery. In the present study, we aimed to evaluate the relationship between the operation timing and the succes of the free fibula flap operations for 11 cases, which were applied for mandible reconstruction after the high velocity gundshot wound of face in Cukurova university, Department of Plastic, Reconstructive and Aesthetic surgery between 1986-2004. The ages of the patients were between 17-...
Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R
2008-04-01
The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.
Start time delays in operating room: Different perspectives
Babita Gupta
2011-01-01
Full Text Available Background: Healthcare expenditure is a serious concern, with escalating costs failing to meet the expectations of quality care. The treatment capacities are limited in a hospital setting and the operating rooms (ORs. Their optimal utilization is vital in efficient hospital management. Starting late means considerable wait time for staff, patients and waste of resources. We planned an audit to assess different perspectives of the residents in surgical specialities and anesthesia and OR staff nurses so as to know the causative factors of operative delay. This can help develop a practical model to decrease start time delays in operating room (ORs. Aims: An audit to assess different perspectives of the Operating room (OR staff with respect to the varied causative factors of operative delay in the OR. To aid in the development of a practical model to decrease start time delays in ORs and facilitate on-time starts at Jai Prakash Narayan Apex Trauma centre (JPNATC, All India Institute of Medical Sciences (AIIMS, New Delhi. Methods: We prepared a questionnaire seeking the five main reasons of delay as per their perspective. Results: The available data was analysed. Analysis of the data demonstrated the common causative factors in start time operative delays as: a lack of proper planning, deficiencies in team work, communication gap and limited availability of trained supporting staff. Conclusions: The preparation of the equipment and required material for the OR cases must be done well in advance. Utilization of newer technology enables timely booking and scheduling of cases. Improved inter-departmental coordination and compliance with preanesthetic instructions needs to be ensured. It is essential that the anesthesiologists perform their work promptly, well in time . and supervise the proceedings as the OR manager. This audit is a step forward in defining the need of effective OR planning for continuous quality improvement.
Shareef, Hussain; Mutlag, Ammar Hussein; Mohamed, Azah
2017-01-01
Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland-Altman test, with more than 95 percent acceptability.
Azzi, Alain Joe; Shah, Karan; Seely, Andrew; Villeneuve, James Patrick; Sundaresan, Sudhir R; Shamji, Farid M; Maziak, Donna E; Gilbert, Sebastien
2016-05-01
Health care resources are costly and should be used judiciously and efficiently. Predicting the duration of surgical procedures is key to optimizing operating room resources. Our objective was to identify factors influencing operative time, particularly surgical team turnover. We performed a single-institution, retrospective review of lobectomy operations. Univariate and multivariate analyses were performed to evaluate the impact of different factors on surgical time (skin-to-skin) and total procedure time. Staff turnover within the nursing component of the surgical team was defined as the number of instances any nurse had to leave the operating room over the total number of nurses involved in the operation. A total of 235 lobectomies were performed by 5 surgeons, most commonly for lung cancer (95%). On multivariate analysis, percent forced expiratory volume in 1 second, surgical approach, and lesion size had a significant effect on surgical time. Nursing turnover was associated with a significant increase in surgical time (53.7 minutes; 95% confidence interval, 6.4-101; P = .026) and total procedure time (83.2 minutes; 95% confidence interval, 30.1-136.2; P = .002). Active management of surgical team turnover may be an opportunity to improve operating room efficiency when the surgical team is engaged in a major pulmonary resection. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Intelligent Real-Time Reservoir Operation for Flood Control
Chang, L.; Hsu, H.
2008-12-01
Real-time flood control of a multi-purpose reservoir should consider decreasing the flood peak stage downstream and storing floodwaters for future usage during typhoon seasons. It is a continuous and instant decision-making process based on relevant operating rules, policy and water laws, in addition the immediate rainfall and the hydrology information; however, it is difficult to learn the intelligent experience from the elder operators. The main purpose of this study is to establish the automatic reservoir flood control model to achieve the goal of a reservoir operation during flood periods. In this study, we propose an intelligent reservoir operating methodology for real-time flood control. First, the genetic algorithm is used to search the optimal solutions, which can be considered as extracting the knowledge of reservoir operation strategies. Then, the adaptive network-based fuzzy inference system (ANFIS), which uses a hybrid learning procedure for extracting knowledge in the form of fuzzy if-then rules, is used to learn the input-output patterns and then to estimate the optimal flood operation. The Shihmen reservoir in Northern Taiwan was used as a case study, where its 26 typhoon events are investigated by the proposed method. The results demonstrate that the proposed control model can perform much better than the original reservoir operator in 26 flood events and effectively achieve decreasing peak flood stage downstream and storing floodwaters for future usage.
Almog, Assaf; Garlaschelli, Diego
2014-09-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false What is the maximum collect-on-delivery amount I may demand at the time of delivery? 375.703 Section 375.703 Transportation Other Regulations Relating... amount I may demand at the time of delivery? (a) On a binding estimate, the maximum amount is the exact...
INTELLIGENT TIME SLICE FOR ROUND ROBIN IN REAL TIME OPERATING SYSTEMS
Yaashuwanth C. and Dr.R.Ramesh
2010-02-01
Full Text Available The main objective of this paper is to develop a new scheduling algorithm for scheduling tasks in real time operating systems. Scheduling algorithms play a significant role in the design of real time embedded systems. Simple round robin architecture cannot be implemented in real time operating systems because of high context switch rate, large waiting time and larger response time. Missing deadlines will degrade the system performance in real time embedded systems. The proposed algorithm modifies all the drawbacks of simple round robin architecture, the proposed architecture calculates the time slice for tasks and exclusively allocates the time slice for every individual tasks. A comparison with round robin architecture to the proposed architecture has been made. It is observed that the proposed architecture solves the problems encountered in simple round robin architecture in real time operating systems by decreasing the number of context switches waiting time and response time thereby increasing the system throughput.
Kajian dan Implementasi Real Time Operating System pada Single Board Computer Berbasis ARM
Wiedjaja
2014-06-01
Full Text Available Operating System is an important software in computer system. For personal and office use the operating system is sufficient. However, to critical mission applications such as nuclear power plants and braking system on the car (auto braking system which need a high level of reliability, it requires operating system which operates in real time. The study aims to assess the implementation of the Linux-based operating system on a Single Board Computer (SBC ARM-based, namely Pandaboard ES with the Dual-core ARM Cortex-A9, TI OMAP 4460 type. Research was conducted by the method of implementation of the General Purpose OS Ubuntu 12:04 OMAP4-armhf-RTOS and Linux 3.4.0-rt17 + on PandaBoard ES. Then research compared the latency value of each OS on no-load and with full-load condition. The results obtained show the maximum latency value of RTOS on full load condition is at 45 uS, much smaller than the maximum value of GPOS at full-load at 17.712 uS. The lower value of latency demontrates that the RTOS has ability to run the process in a certain period of time much better than the GPOS.
Workspace visualization and time-delay telerobotic operations
Schenker, P. S.; Bejczy, A. K.
1990-01-01
The paper examines the performance of telerobotic tasks where the operator and robot are physically separated, and a comunication time delay of up to several seconds between them exists. This situation is applicable to space robotic servicing-assembly-maintenance operations on low earth or geosynchronous orbits with a ground-based command station. Attention is given to two developments which address advanced time-delay teleoperations for unstructured tasks: (1) the 'phantom robot', a real-time predictive graphics simulator developed to allow teleoperator eye-to-hand coordination or robot free-space kinematics under a time delay of several seconds; and (2) shared compliance control, a modified form of automatic electromechanical impedance control employed in parallel with manual position control to permit soft contact and grasp compliance with workpiece geometry under a time delay of several seconds.
Ivy-Ochs, Susan; Braakhekke, Jochem; Monegato, Giovanni; Gianotti, Franco; Forno, Gabriella; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian
2017-04-01
The Last Glacial Maximum (LGM) in the Alps saw much of the mountains inundated by ice. Several main accumulation areas comprising local ice caps and plateau icefields fit into a picture of transection glaciers flowing into huge valley glaciers. In the north the valley glaciers covered long distances (hundreds of kilometers) to reach the forelands where they spread out in fan-shaped piedmont lobes tens of kilometers across, e.g. the Rhine glacier. In the south travel distances to the mountain front were often shorter, the pathway steeper. Nevertheless, not all glaciers even reached beyond the front, as the temperatures were notably warmer in the south. For example at Orta the glacier snout remained within the mountains. Where glaciers reached the forelands they stopped abruptly and the moraine amphitheaters were constructed, e.g. at Ivrea and Rivoli-Avigliana. Sets of stacked moraines built-up as glacier advance was directly confined by the older moraines. We may temporally and spatially identify the culmination of the last glacial cycle by pinpointing the outermost moraines that date to the LGM (generally about 26-24 ka). On the other hand, the timing of abandonment of foreland positions is given by ages of the innermost, often lake-bounding, moraines (about 19-18 ka). Between the two, glacier fluctuations left the stadial moraines. In the Linth-Rhine system three stadials have been recognized: Killwangen, Schlieren and Zurich. Nevertheless, already in the Swiss sector correlation of the LGM stadials among the several foreland lobes is not unambiguous. Across the Alps, not only north to south but also west to east, how do the timing and extent of glaciers during the LGM vary? Recent glacier modelling by Seguinot et al. (2017) informs and suggests the possibility of differences in timing for reaching of the maximum extent and for the number of oscillations of individual lobes during the LGM. At present few sites in the Alps have detailed enough geomorphological
Bellili, Faouzi; Meftehi, Rabii; Affes, Sofiene; Stephenne, Alex
2015-01-01
In this paper, we tackle for the first time the problem of maximum likelihood (ML) estimation of the signal-to-noise ratio (SNR) parameter over time-varying single-input multiple-output (SIMO) channels. Both the data-aided (DA) and the non-data-aided (NDA) schemes are investigated. Unlike classical techniques where the channel is assumed to be slowly time-varying and, therefore, considered as constant over the entire observation period, we address the more challenging problem of instantaneous (i.e., short-term or local) SNR estimation over fast time-varying channels. The channel variations are tracked locally using a polynomial-in-time expansion. First, we derive in closed-form expressions the DA ML estimator and its bias. The latter is subsequently subtracted in order to obtain a new unbiased DA estimator whose variance and the corresponding Cram\\'er-Rao lower bound (CRLB) are also derived in closed form. Due to the extreme nonlinearity of the log-likelihood function (LLF) in the NDA case, we resort to the expectation-maximization (EM) technique to iteratively obtain the exact NDA ML SNR estimates within very few iterations. Most remarkably, the new EM-based NDA estimator is applicable to any linearly-modulated signal and provides sufficiently accurate soft estimates (i.e., soft detection) for each of the unknown transmitted symbols. Therefore, hard detection can be easily embedded in the iteration loop in order to improve its performance at low to moderate SNR levels. We show by extensive computer simulations that the new estimators are able to accurately estimate the instantaneous per-antenna SNRs as they coincide with the DA CRLB over a wide range of practical SNRs.
A Real-Time Simulation Platform for Power System Operation
Cha, Seung-Tae; Østergaard, Jacob; Wu, Qiuwei
2010-01-01
This paper describes the real-time digital simulation platform that can be used for power system operation, analysis, and power system modeling. This particular platform gives grid operators, planners and researchers the opportunity to observe how a power system behaves and can be used...... in real time. Various phenomena commonly encountered when dealing with the two-area system is studied. Despite its small size, it mimics very closely the behavior of typical systems in actual operation. The electromagnetic transient type of simulation made in RSCAD enables the study of fast and detailed...... to demonstrate modeling, system disturbances of various types, and proper recovery actions, as well as to illustrate complex power system concepts. The Kundur power system consists of two fully symmetrical areas linked together by two 230kV lines is modeled by using RSCAD in order to carry out simulations...
Time warp operating system version 2.7 internals manual
1992-01-01
The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.
Vuillemin, Aurele; Ariztegui, Daniel; Leavitt, Peter R.; Bunting, Lynda
2014-05-01
Laguna Potrok Aike is a closed basin located in the southern hemisphere's mid-latitudes (52°S) where paleoenvironmental conditions were recorded as temporal sedimentary sequences resulting from variations in the regional hydrological regime and geology of the catchment. The interpretation of the limnogeological multiproxy record developed during the ICDP-PASADO project allowed the identification of contrasting time windows associated with the fluctuations of Southern Westerly Winds. In the framework of this project, a 100-m-long core was also dedicated to a detailed geomicrobiological study which aimed at a thorough investigation of the lacustrine subsurface biosphere. Indeed, aquatic sediments do not only record past climatic conditions, but also provide a wide range of ecological niches for microbes. In this context, the influence of environmental features upon microbial development and survival remained still unexplored for the deep lacustrine realm. Therefore, we investigated living microbes throughout the sedimentary sequence using in situ ATP assays and DAPI cell count. These results, compiled with pore water analysis, SEM microscopy of authigenic concretions and methane and fatty acid biogeochemistry, provided evidence for a sustained microbial activity in deep sediments and pinpointed the substantial role of microbial processes in modifying initial organic and mineral fractions. Finally, because the genetic material associated with microorganisms can be preserved in sediments over millennia, we extracted environmental DNA from Laguna Potrok Aike sediments and established 16S rRNA bacterial and archaeal clone libraries to better define the use of DNA-based techniques in reconstructing past environments. We focused on two sedimentary horizons both displaying in situ microbial activity, respectively corresponding to the Holocene and Last Glacial Maximum periods. Sequences recovered from the productive Holocene record revealed a microbial community adapted to
A Parallel Priority Queue with Constant Time Operations
Brodal, Gerth Stølting; Träff, Jesper Larsson; Zaroliagis, Christos D.
1998-01-01
We present a parallel priority queue that supports the following operations in constant time:parallel insertionof a sequence of elements ordered according to key,parallel decrease keyfor a sequence of elements ordered according to key,deletion of the minimum key element, anddeletion of an arbitrary...... element. Our data structure is the first to support multi-insertion and multi-decrease key in constant time. The priority queue can be implemented on the EREW PRAM and can perform any sequence ofnoperations inO(n) time andO(mlogn) work,mbeing the total number of keyes inserted and/or updated. A main...
Random Dirac operators with time-reversal symmetry
Sadel, Christian
2009-01-01
Quasi-one-dimensional stochastic Dirac operators with an odd number of channels, time reversal symmetry but otherwise efficiently coupled randomness are shown to have one conducting channel and absolutely continuous spectrum of multiplicity two. This follows by adapting the criteria of Guivac-Raughi and Goldsheid-Margulis to the analysis of random products of matrices in the group SO$^*(2L)$, and then a version of Kotani theory for these operators. Absence of singular spectrum can be shown by adapting an argument of Jaksic-Last if the potential contains random Dirac peaks with absolutely continuous distribution.
Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong
2016-06-16
Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain's response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°.
Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong
2016-01-01
Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267
Kyungsoo Kim
2016-06-01
Full Text Available Electroencephalograms (EEGs measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE schemes based on a joint maximum likelihood (ML criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°.
Real-Time Simulation and Analysis of the Induction Machine Performances Operating at Flux Constant
Aziz Derouich
2014-05-01
Full Text Available In this paper, we are interested, in a first time, at the study and the implementation of a V/f control for induction machine in real time. After, We are attached to a comparison of the results by simulation and experiment for, speed responses, flux and currents of the real machine, with a DSPACE card and model established by classical identification (Direct Current test , blocked-rotor test, no-load test , synchronous test, to ensure the validity of the established model. The scalar controlled induction motor allows operation of the motor with the maximum torque by simultaneous action on the frequency and amplitude of the stator voltage, with conservation of the ratio V/f. Speed reference imposes a frequency at the inverter supplying the voltages needed to power the motor, which determines the speed of rotation. The maximum torque of the machine is proportional to the square of the supply voltage and inversely proportional to the frequency voltage. So, Keep V/f constant implies a operating with maximum constant torque. The results obtained for the rotor flux and the stator currents are especially satisfactory steady.
Operation Timing of Free Vascular Fibula Flep in Mandibular Reconstructions
Cengiz Eser
2011-02-01
Full Text Available Free tissue transfers are commonly used popular approach with respect to the development of microsurgery. In the present study, we aimed to evaluate the relationship between the operation timing and the succes of the free fibula flap operations for 11 cases, which were applied for mandible reconstruction after the high velocity gundshot wound of face in Cukurova university, Department of Plastic, Reconstructive and Aesthetic surgery between 1986-2004. The ages of the patients were between 17-42 (Mean age 25.8. Ten of them were male (%90.9 and one of them female (%9.1. Defect of the mandible bone were measured between 4 to13 cm. Nine of them were also required to the reconstruction of soft tissues. Nine patients were operated for free flap transfer during the first year and 2 of the patients were operated after the 1 year as a late reconstruction. Free flap failures were noted independently defect size and localizations for three patients, which were operated at l.month, 12.month and after 1 year as a late reconstruction. Free flap failure were noted especially at groups of 10-30 ages and 40-50 ages. Two of them were reoperated but the succes of flap was achieved at the group of 20-30 ages. Flap ischemia time was found to be directly proportional to the flap failure rate. Flap success rate (%100 were achieved at the operations betvveen the 2 and 7 months (mean 4.4 months with less than 1 mm decrease of bicortical cortical thickness of flap. In conclusion, free flap reconstructipn of mandible defect after the high velocity gunshot wound can be achieved with better results at 4.4 months and between the 30-40 years of ages. [Cukurova Med J 2011; 36(1.000: 41-46
Schmid, Gernot; Kuster, Niels
2015-02-01
The objective of this paper is to compare realistic maximum electromagnetic exposure of human tissues generated by mobile phones with electromagnetic exposures applied during in vitro experiments to assess potentially adverse effects of electromagnetic exposure in the radiofrequency range. We reviewed 80 in vitro studies published between 2002 and present that concern possible adverse effects of exposure to mobile phones operating in the 900 and 1800 MHz bands. We found that the highest exposure level averaged over the cell medium that includes evaluated cells (monolayer or suspension) used in 51 of the 80 studies corresponds to 2 W/kg or less, a level below the limit defined for the general public. That does not take into account any exposure non-uniformity. For comparison, we estimated, by numerical means using dipoles and a commercial mobile phone model, the maximum conservative exposure of superficial tissues from sources operated in the 900 and 1800 MHz bands. The analysis demonstrated that exposure of skin, blood, and muscle tissues may well exceed 40 W/kg at the cell level. Consequently, in vitro studies reporting minimal or no effects in response to maximum exposure of 2 W/kg or less averaged over the cell media, which includes the cells, may be of only limited value for analyzing risk from realistic mobile phone exposure. We, therefore, recommend future in vitro experiments use specific absorption rate levels that reflect maximum exposures and that additional temperature control groups be included to account for sample heating.
Estimation of fuel cell operating time for predictive maintenance strategies
Onanena, R. [FC LAB, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); FEMTO-ST (UMR CNRS 6174), ENISYS department, University of Franche-Comte (France); INRETS - LTN, ' ' Le Descartes 2' ' , 2 rue de la butte verte, 93166 Noisy-le-Grand Cedex (France); Oukhellou, L. [INRETS - LTN, ' ' Le Descartes 2' ' , 2 rue de la butte verte, 93166 Noisy-le-Grand Cedex (France); CERTES Universite Paris 12, 61 avenue du Gal. de Gaulle, 94100 Creteil (France); Candusso, D. [FC LAB, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); INRETS - LTN, ' ' Le Descartes 2' ' , 2 rue de la butte verte, 93166 Noisy-le-Grand Cedex (France); Same, A.; Aknin, P. [INRETS - LTN, ' ' Le Descartes 2' ' , 2 rue de la butte verte, 93166 Noisy-le-Grand Cedex (France); Hissel, D. [FC LAB, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); FEMTO-ST (UMR CNRS 6174), ENISYS department, University of Franche-Comte (France)
2010-08-15
Durability is one of the limiting factors for spreading and commercialization of fuel cell technology. That is why research to extend fuel cell durability is being conducted world wide. A pattern-recognition approach aiming to estimate fuel cell operating time based on electrochemical impedance spectroscopy measurements is presented here. It is based on extracting the features from the impedance spectra. For that purpose, two approaches have been investigated. In the first one, particular points of the spectrum are empirically extracted as features. In the second approach, a parametric modeling is performed to extract features from both the real and the imaginary parts of the impedance spectrum. In particular, a latent regression model is used to automatically split the spectrum into several segments that are approximated by polynomials. The number of segments is adjusted taking into account the a priori knowledge about the physical behavior of the fuel cell components. Then, a linear regression model using different subsets of extracted features is employed for an estimate of the fuel cell operating time. The effectiveness of the proposed approach is evaluated on an experimental dataset. Allowing the estimation of the fuel cell operating time, and consequently its remaining duration life, these results could lead to interesting perspectives for predictive fuel cells maintenance policy. (author)
Utilization of operating room time in a cancer hospital
P Ranganathan
2013-01-01
Full Text Available Background: Appropriate usage of operating room (OR time can improve efficiency of utilization of resources and help to decrease surgical waiting lists. Aims: This study was conducted to evaluate the pattern of usage of OR time in a tertiary referral cancer hospital. Setting and Design: This was a prospective audit carried out over 2 months in 11 major ORs in a cancer hospital. Materials and Methods: OR anesthesiologists filled a standard form for all patients undergoing elective surgery and documented the following times: entry into OR, start of anesthesia, handover to surgeon, incision, start of reversal, end of anesthesia, and shifting out of patient. Statistical Analysis: Median time utilized for various OR processes was calculated. Results: An average of two surgeries were performed per OR session (828 surgeries in 407 OR sessions. Anesthesia and surgery-related processes contributed to 17% and 79%, respectively, of total OR time, with turnover time between cases accounting for the remaining 4%. Fifteen percent (60 out of 407 OR sessions started more than 10 min later than the planned start time, and 17% (70 of 407 of OR sessions ended more than 2 h after the scheduled finish time. An anesthesia procedure room was utilized in only 15% of cases where it could potentially have been used. Conclusion: This audit identified patterns of OR usage in a cancer hospital and helped to detect areas of inefficient utilization. Anesthesia-related processes contributed to 17% of the total OR time.
Timed Operational Semantics and Well-Formedness of Shape Calculus
E. Bartocci
2010-01-01
Full Text Available The Shape Calculus is a bio-inspired calculus for describing 3D shapes moving in a space. A shape forms a 3D process when combined with a behaviour. Behaviours are specified with a timed CCS-like process algebra using a notion of channel that models naturally binding sites on the surface of shapes. In this paper, the full formal timed operational semantics of the calculus is provided, together with examples that illustrate the use of the calculus in a well-known biological scenario. Moreover, a result of well-formedness about the evolution of a given network of well-formed 3D processes is proved.
Tokamak power reactor ignition and time dependent fractional power operation
Vold, E.L.; Mau, T.K.; Conn, R.W.
1986-06-01
A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve.
Ramachandran, Hema; Pillai, K. P. P.; Bindu, G. R.
2016-08-01
A two-port network model for a wireless power transfer system taking into account the distributed capacitances using PP network topology with top coupling is developed in this work. The operating and maximum power transfer efficiencies are determined analytically in terms of S-parameters. The system performance predicted by the model is verified with an experiment consisting of a high power home light load of 230 V, 100 W and is tested for two forced resonant frequencies namely, 600 kHz and 1.2 MHz. The experimental results are in close agreement with the proposed model.
Rama, Aarti; Kesari, Shreekant; Das, Pradeep; Kumar, Vijay
2017-07-24
Extensive application of routine insecticide i.e., dichlorodiphenyltrichloroethane (DDT) to control Phlebotomus argentipes (Diptera: Psychodidae), the proven vector of visceral leishmaniasis in India, had evoked the problem of resistance/tolerance against DDT, eventually nullifying the DDT dependent strategies to control this vector. Because tolerating an hour-long exposure to DDT is not challenging enough for the resistant P. argentipes, estimating susceptibility by exposing sand flies to insecticide for just an hour becomes a trivial and futile task.Therefore, this bioassay study was carried out to investigate the maximum limit of exposure time to which DDT resistant P. argentipes can endure the effect of DDT for their survival. The mortality rate of laboratory-reared DDT resistant strain P. argentipes exposed to DDT was studied at discriminating time intervals of 60 min and it was concluded that highly resistant sand flies could withstand up to 420 min of exposure to this insecticide. Additionally, the lethal time for female P. argentipes was observed to be higher than for males suggesting that they are highly resistant to DDT's toxicity. Our results support the monitoring of tolerance limit with respect to time and hence points towards an urgent need to change the World Health Organization's protocol for susceptibility identification in resistant P. argentipes.
Initial operation of the NSTX-Upgrade real-time velocity diagnostic
Podestà, M.; Bell, R. E.
2016-12-01
A real-time velocity (RTV) diagnostic based on active charge-exchange recombination spectroscopy is now operational on the National Spherical Torus Experiment-Upgrade (NSTX-U) spherical torus (Menard et al 2012 Nucl. Fusion 52 083015). The system has been designed to supply plasma velocity data in real time to the NSTX-U plasma control system, as required for the implementation of toroidal rotation control. Measurements are available from four radii at a maximum sampling frequency of 5 kHz. Post-discharge analysis of RTV data provides additional information on ion temperature, toroidal velocity and density of carbon impurities. Examples of physics studies enabled by RTV measurements from initial operations of NSTX-U are discussed.
TWOS - TIME WARP OPERATING SYSTEM, VERSION 2.5.1
Bellenot, S. F.
1994-01-01
The Time Warp Operating System (TWOS) is a special-purpose operating system designed to support parallel discrete-event simulation. TWOS is a complete implementation of the Time Warp mechanism, a distributed protocol for virtual time synchronization based on process rollback and message annihilation. Version 2.5.1 supports simulations and other computations using both virtual time and dynamic load balancing; it does not support general time-sharing or multi-process jobs using conventional message synchronization and communication. The program utilizes the underlying operating system's resources. TWOS runs a single simulation at a time, executing it concurrently on as many processors of a distributed system as are allocated. The simulation needs only to be decomposed into objects (logical processes) that interact through time-stamped messages. TWOS provides transparent synchronization. The user does not have to add any more special logic to aid in synchronization, nor give any synchronization advice, nor even understand much about how the Time Warp mechanism works. The Time Warp Simulator (TWSIM) subdirectory contains a sequential simulation engine that is interface compatible with TWOS. This means that an application designer and programmer who wish to use TWOS can prototype code on TWSIM on a single processor and/or workstation before having to deal with the complexity of working on a distributed system. TWSIM also provides statistics about the application which may be helpful for determining the correctness of an application and for achieving good performance on TWOS. Version 2.5.1 has an updated interface that is not compatible with 2.0. The program's user manual assists the simulation programmer in the design, coding, and implementation of discrete-event simulations running on TWOS. The manual also includes a practical user's guide to the TWOS application benchmark, Colliding Pucks. TWOS supports simulations written in the C programming language. It is designed
Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte
2010-01-01
Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...... system (BESS) in relation to the real-time electricity price in order to achieve the maximum profits of the BESS. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may represent the future of electricity...
The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements
Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray
2012-01-01
In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.
Deterministic homogenization of parabolic monotone operators with time dependent coefficients
Gabriel Nguetseng
2004-06-01
Full Text Available We study, beyond the classical periodic setting, the homogenization of linear and nonlinear parabolic differential equations associated with monotone operators. The usual periodicity hypothesis is here substituted by an abstract deterministic assumption characterized by a great relaxation of the time behaviour. Our main tool is the recent theory of homogenization structures by the first author, and our homogenization approach falls under the two-scale convergence method. Various concrete examples are worked out with a view to pointing out the wide scope of our approach and bringing the role of homogenization structures to light.
FAN Hong-Yi; LU Hai-Liang
2006-01-01
We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU(1,1)algebra. This is an approach for obtaining the time-dependent Hamiltonian from the preassigned time evolution in classical phase space, an approach which is in contrast to Lewis-Riesenfeld's invariant operator theory of treating time-dependent harmonic oscillators.
Real-time operations intelligence from the user perspective
Kharbat, Fayez [Saudi Aramco, Dhahran (Saudi Arabia)
2004-07-01
Running a refinery or a chemical plant is a complex business. Planning and scheduling, process control and maintenance require dedicated, multifaceted solutions necessitating highly trained and experienced users. The inevitable system and user specialization results in the proliferation of disparate data sources, incoherent information, inconsistent decisions and the failure to realize corporate objectives - until today. IndX Software Corporation is the de facto market-leading provider of operations intelligence solutions. IndX's XHQ{sup TM} Real-time Operations Intelligence solutions have been selected by many of the world's major corporations in their quest for Operational Excellence and IndX is currently engaged in more than 50 maximizedROI{sup TM} deployments around the world. This paper describes the thinking and technology behind XHQ and the implementation methodology typically employed in deploying an XHQ solution enterprise-wide. This paper will also provide examples of the benefits that users have realized from their implementation of XHQ. (author)
Shape Calculus: Timed Operational Semantics and Well-formedness
Bartocci, Ezio; Di Berardini, Maria Rita; Merelli, Emanuela; Tesei, Luca
2010-01-01
The Shape Calculus is a bio-inspired calculus for describing 3D shapes moving in a space. A shape forms a 3D process when combined with a behaviour. Behaviours are specified with a timed CCS-like process algebra using a notion of channel that models naturally binding sites on the surface of shapes. Processes can represent molecules or other mobile objects and can be part of networks of processes that move simultaneously and interact in a given geometrical space. The calculus embeds collision detection and response, binding of compatible 3D processes and splitting of previously established bonds. In this work the full formal timed operational semantics of the calculus is provided, together with examples that illustrate the use of the calculus in a well-known biological scenario. Moreover, a result of well-formedness about the evolution of a given network of well-formed 3D processes is proved.
Kinkhabwala, Ali
2013-01-01
The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...
Obesity Increases Operative Time in Children Undergoing Laparoscopic Cholecystectomy.
Pandian, T K; Ubl, Daniel S; Habermann, Elizabeth B; Moir, Christopher R; Ishitani, Michael B
2017-03-01
Few studies have assessed the impact of obesity on laparoscopic cholecystectomy (LC) in pediatric patients. Children who underwent LC were identified from the 2012 to 2013 American College of Surgeons' National Surgical Quality Improvement Program Pediatrics data. Patient characteristics, operative details, and outcomes were compared. Multivariable logistic regression was utilized to identify predictors of increased operative time (OT) and duration of anesthesia (DOAn). In total, 1757 patients were identified. Due to low rates of obesity in children obese). Among obese children, 80.6% were girls. A higher proportion of obese patients had diabetes (3.0% versus 1.0%, P obesity was an independent predictor of OT >90 (odds ratio [OR] 2.02; 95% confidence interval [95% CI] 1.55-2.63), and DOAn >140 minutes (OR 1.86; 95% CI 1.42-2.43). Obesity is an independent risk factor for increased OT in children undergoing LC. Pediatric surgeons and anesthesiologists should be prepared for the technical and physiological challenges that obesity may pose in this patient population.
Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring
Pollock, Julie; Oliver, Brett; Brickner, Christopher
2012-01-01
A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.
FLOW-SHOP SCHEDULING WITH MULTIPLE OPERATIONS AND TIME LAGS
RIEZEBOS, J; GAALMAN, GJC; GUPTA, JND
1995-01-01
A scheduling system is proposed and developed for a special type of flow shop. Ln this flow shop there is one machine at each stage. A job may require multiple operations at each stage. The first operation of a job on stage j cannot start until the last operation of the job on stage j - 1 has finish
FLOW-SHOP SCHEDULING WITH MULTIPLE OPERATIONS AND TIME LAGS
RIEZEBOS, J; GAALMAN, GJC; GUPTA, JND
A scheduling system is proposed and developed for a special type of flow shop. Ln this flow shop there is one machine at each stage. A job may require multiple operations at each stage. The first operation of a job on stage j cannot start until the last operation of the job on stage j - 1 has
Djeison Cesar Batista
2011-09-01
Full Text Available Thermal rectification of wood was developed in the decade of 1940 and has been largely studied and produced in Europe. In Brazil, the research about this technique is still little and sparse, but it has gained attention nowadays. The aim of this study was to evaluate the influence of time and temperature of rectification on the reduction of maximum swelling of Eucalyptus grandis wood. According to the results obtained it is possible to achieve reductions of about 50% on the maximum volumetric swelling of Eucalyptus grandis wood. Best results were obtained for 230°C of thermal rectification rather than 200°C. The factor temperature was more significant than time, once that there was no significant difference between the times used (1, 2 and 3 hours. There was no significant interaction between the factors time and temperature.
Improving operating room turnover time: a systems based approach.
Bhatt, Ankeet S; Carlson, Grant W; Deckers, Peter J
2014-12-01
Operating room (OR) turnover time (TT) has a broad and significant impact on hospital administrators, providers, staff and patients. Our objective was to identify current problems in TT management and implement a consistent, reproducible process to reduce average TT and process variability. Initial observations of TT were made to document the existing process at a 511 bed, 24 OR, academic medical center. Three control groups, including one consisting of Orthopedic and Vascular Surgery, were used to limit potential confounders such as case acuity/duration and equipment needs. A redesigned process based on observed issues, focusing on a horizontally structured, systems-based approach has three major interventions: developing consistent criteria for OR readiness, utilizing parallel processing for patient and room readiness, and enhancing perioperative communication. Process redesign was implemented in Orthopedics and Vascular Surgery. Comparisons of mean and standard deviation of TT were made using an independent 2-tailed t-test. Using all surgical specialties as controls (n = 237), mean TT (hh:mm:ss) was reduced by 0:20:48 min (95 % CI, 0:10:46-0:30:50), from 0:44:23 to 0:23:25, a 46.9 % reduction. Standard deviation of TT was reduced by 0:10:32 min, from 0:16:24 to 0:05:52 and frequency of TT≥30 min was reduced from 72.5to 11.7 %. P systems-based focus should drive OR TT design.
Getting pre-stack time migration travel times from the single square root operator
Liu Guofeng; Liu Hong; Li Bo; Meng Xiaohong
2009-01-01
Improving the focusing capability of pre-stack time migration allows the imaged section to reflect structural characteristics, depth, and interface shape and it is a key step for the preparation of the initial depth migration velocity model. The traditional symmetrical travel time equation is derived based on the assumption of a layered model. It is difficult to achieve the desired effect of focusing in media with strong lateral variation. The non-symmetrical travel time equation based on Lie algebra and a pseudo-differential operator contains a lateral velocity derivative which can improve the focusing capability even in strongly lateral variable media and also the computation precision of the weight coefficients for relative amplitude preservation. Compared with the symmetrical methods, the non-symmetrical method is more effective. In this paper, we describe several key steps of non-symmetric pre-staek travel time calculation and present some test results using synthetic and real data.
Risk factors for a prolonged operative time in a single-incision laparoscopic cholecystectomy
Sato, Norihiro; Yabuki, Kei; Shibao, Kazunori; Mori, Yasuhisa; Tamura, Toshihisa; Higure, Aiichiro; Yamaguchi, Koji
2013-01-01
Background: A prolonged operative time is associated with adverse post-operative outcomes in laparoscopic surgery. Although a single-incision laparoscopic cholecystectomy (SILC) requires a longer operative time as compared with a conventional laparoscopic cholecystectomy, risk factors for a prolonged operative time in SILC remain unknown.
Chen Pоуu
2013-01-01
Full Text Available Products made overseas but sold in Taiwan are very common. Regarding the cross-border or interregional production and marketing of goods, inventory decision-makers often have to think about how to determine the amount of purchases per cycle, the number of transport vehicles, the working hours of each transport vehicle, and the delivery by ground or air transport to sales offices in order to minimize the total cost of the inventory in unit time. This model assumes that the amount of purchases for each order cycle should allow all rented vehicles to be fully loaded and the transport times to reach the upper limit within the time period. The main research findings of this study included the search for the optimal solution of the integer planning of the model and the results of sensitivity analysis.
Green, Cynthia L; Brownie, Cavell; Boos, Dennis D; Lu, Jye-Chyi; Krucoff, Mitchell W
2016-04-01
We propose a novel likelihood method for analyzing time-to-event data when multiple events and multiple missing data intervals are possible prior to the first observed event for a given subject. This research is motivated by data obtained from a heart monitor used to track the recovery process of subjects experiencing an acute myocardial infarction. The time to first recovery, T1, is defined as the time when the ST-segment deviation first falls below 50% of the previous peak level. Estimation of T1 is complicated by data gaps during monitoring and the possibility that subjects can experience more than one recovery. If gaps occur prior to the first observed event, T, the first observed recovery may not be the subject's first recovery. We propose a parametric gap likelihood function conditional on the gap locations to estimate T1 Standard failure time methods that do not fully utilize the data are compared to the gap likelihood method by analyzing data from an actual study and by simulation. The proposed gap likelihood method is shown to be more efficient and less biased than interval censoring and more efficient than right censoring if data gaps occur early in the monitoring process or are short in duration.
Concept of Operations for Real-time Airborne Management System
Barr, Jonathan L.; Taira, Randal Y.; Orr, Heather M.
2013-03-04
The purpose of this document is to describe the operating concepts, capabilities, and benefits of RAMS including descriptions of how the system implementations can improve emergency response, damage assessment, task prioritization, and situation awareness. This CONOPS provides general information on operational processes and procedures required to utilize RAMS, and expected performance benefits of the system. The primary audiences for this document are the end users of RAMS (including flight operators and incident commanders) and the RAMS management team. Other audiences include interested offices within the Department of Homeland Security (DHS), and officials from other state and local jurisdictions who want to implement similar systems.
Cavaliere, Giuseppe; Nielsen, Morten Ørregaard; Taylor, Robert
We consider the problem of conducting estimation and inference on the parameters of univariate heteroskedastic fractionally integrated time series models. We first extend existing results in the literature, developed for conditional sum-of squares estimators in the context of parametric fractional...... time series models driven by conditionally homoskedastic shocks, to allow for conditional and unconditional heteroskedasticity both of a quite general and unknown form. Global consistency and asymptotic normality are shown to still obtain; however, the covariance matrix of the limiting distribution...... of the estimator now depends on nuisance parameters derived both from the weak dependence and heteroskedasticity present in the shocks. We then investigate classical methods of inference based on the Wald, likelihood ratio and Lagrange multiplier tests for linear hypotheses on either or both of the long and short...
FENG Guolin; DONG Wenjie; GAO Hongxing
2005-01-01
The time-dependent solution of reduced air-sea coupling stochastic-dynamic model is accurately obtained by using the Fokker-Planck equation and the quantum mechanical method. The analysis of the timedependent solution suggests that when the climate system is in the ground state, the behavior of the system appears to be a Brownian movement, thus reasoning the foothold of Hasselmann's stochastic climatic model;when the system is in the first excitation state, the motion of the system exhibits a form of time-decaying,or under certain condition a periodic oscillation with the main period being 2.3 yr. At last, the results are used to discuss the impact of the doubling of carbon dioxide on climate.
2013-08-01
2 x Dose (2) CAMI (3) Medication Max Hrs Hrs Half-lives Interv Hrs Half-lives Eq Hrs Half-lives Codeine 4.0 24 6.0 8.0 2.0 15 3.6 Morphine 7.0 24...return-to-duty time, even for individuals on the extreme metabolic margins of the general population. The variation in t½ (calculated by the CAMI
Furbish, David J.; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan L.
2016-01-01
We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.
47 CFR 74.763 - Time of operation.
2010-10-01
... antenna structures. In the event normal operation is restored prior to the expiration of the 30 day period.... Furthermore, the station's license will expire as a matter of law, without regard to any causes beyond...
Shaolin Ji
2012-01-01
Full Text Available We study the optimal control problem of a controlled time-symmetric forward-backward doubly stochastic differential equation with initial-terminal state constraints. Applying the terminal perturbation method and Ekeland’s variation principle, a necessary condition of the stochastic optimal control, that is, stochastic maximum principle, is derived. Applications to backward doubly stochastic linear-quadratic control models are investigated.
Liu, Weidong
2009-01-01
In this paper, Cram\\'{e}r type moderate deviations for the maximum of the periodogram and its studentized version are derived. The results are then applied to a simultaneous testing problem in gene expression time series. It is shown that the level of the simultaneous tests is accurate provided that the number of genes $G$ and the sample size $n$ satisfy $G=\\exp(o(n^{1/3}))$.
Svendsen, Morten B S; Domenici, Paolo; Marras, Stefano;
2016-01-01
, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s(-1)), followed by barracuda (6.2±1.0 m s(-1)), little tunny (5.6±0.2 m s(-1)) and dorado (4...
Guo, Jin; Guo, Shuxiang; Tamiya, Takashi; Hirata, Hideyuki; Ishihara, Hidenori
2016-03-01
An Internet-based tele-operative robotic catheter operating system was designed for vascular interventional surgery, to afford unskilled surgeons the opportunity to learn basic catheter/guidewire skills, while allowing experienced physicians to perform surgeries cooperatively. Remote surgical procedures, limited by variable transmission times for visual feedback, have been associated with deterioration in operability and vascular wall damage during surgery. At the patient's location, the catheter shape/position was detected in real time and converted into three-dimensional coordinates in a world coordinate system. At the operation location, the catheter shape was reconstructed in a virtual-reality environment, based on the coordinates received. The data volume reduction significantly reduced visual feedback transmission times. Remote transmission experiments, conducted over inter-country distances, demonstrated the improved performance of the proposed prototype. The maximum error for the catheter shape reconstruction was 0.93 mm and the transmission time was reduced considerably. The results were positive and demonstrate the feasibility of remote surgery using conventional network infrastructures. Copyright © 2015 John Wiley & Sons, Ltd.
Vanavil, B.; Krishna Chaitanya, K.; Seshagiri Rao, A.
2015-06-01
In this paper, a proportional-integral-derivative controller in series with a lead-lag filter is designed for control of the open-loop unstable processes with time delay based on direct synthesis method. Study of the performance of the designed controllers has been carried out on various unstable processes. Set-point weighting is considered to reduce the undesirable overshoot. The proposed scheme consists of only one tuning parameter, and systematic guidelines are provided for selection of the tuning parameter based on the peak value of the sensitivity function (Ms). Robustness analysis has been carried out based on sensitivity and complementary sensitivity functions. Nominal and robust control performances are achieved with the proposed method and improved closed-loop performances are obtained when compared to the recently reported methods in the literature.
RadMonitor: radiology operations data mining in real time.
Chen, Richard; Mongkolwat, Pattanasak; Channin, David S
2008-09-01
This paper describes the web-based visualization interface of RadMonitor, a platform-independent web application designed to help manage the complexity of information flow within a health care enterprise. The system eavesdrops on Health Layer 7 traffic and parses statistical operational information into a database. The information is then presented to the user as a treemap--a graphical visualization scheme that simplifies the display of hierarchical information. While RadMonitor has been implemented for the purpose of analyzing radiology operations, its XML backend allows it to be reused for virtually any other hierarchical data set.
Kodner Robin B
2010-10-01
Full Text Available Abstract Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service.
47 CFR 73.561 - Operating schedule; time sharing.
2010-10-01
... pertain, the Commission will set the matter for expedited hearing limited solely to the issue of the... antenna structures. In the event normal operation is restored prior to the expiration of the 30 day period... transmit broadcast signals for any consecutive 12 month period expires as a matter of law at the end...
A Time-Composable Operating System for the Patmos Processor
Ziccardi, Marco; Schoeberl, Martin; Vardanega, Tullio
2015-01-01
. The Patmos time-predictable microprocessor used in the T-CREST project employs performance-enhancing hardware while keeping the system analyzable. Time composability, at both hardware and software level, is a considerable aid to reducing the integration costs of complex applications. A time...
Hawes, R H; Andrzejowski, J C; Goodhart, I M; Berthoud, M C; Wiles, M D
2016-03-01
Elective patients undergoing anaesthetic pre-operative assessment are usually allocated the same period of time with a nurse practitioner, leading to potential inefficiencies in patient flow through the clinic. We prospectively collected data on 8519 patients attending a pre-operative assessment clinic. The data set were split into derivation and validation cohorts. Standard multiple regressions were used to construct a model in the derivation cohort, which was then tested in the validation cohort. Due to missing data, 2457 patients were not studied, leaving 5892 for analysis (3870 in the derivation cohort and 2022 in the validation cohort). The mean (SD) pre-operative assessment time was 46 (12) min. Age, ASA physical status, nurse practitioner and surgical specialty all influenced the time spent in pre-operative assessment. The predictive equations calculated using the derivation cohort, based on age and ASA physical status, correctly estimated duration of consultation to within 20% of the maximum predicted time in 74.2% of the validation cohort. We conclude that if age and ASA physical status are known before the pre-operative assessment consultation, it could allow appointment times to be allocated more accurately.
Ronzhin, A., E-mail: ronzhin@fnal.gov [Fermilab, Batavia, Il 60510 (United States); Los, S.; Ramberg, E. [Fermilab, Batavia, Il 60510 (United States); Apresyan, A.; Xie, S.; Spiropulu, M. [California Institute of Technology, Pasadena, CA 91126 (United States); Kim, H. [University of Chicago, Chicago, Il 60637 (United States)
2015-09-21
We continue the study of micro-channel plate photomultiplier (MCP-PMT) as the active element of a shower maximum (SM) detector. We present test beam results obtained with Photek 240 and Photonis XP85011 MCP-PMTs devices. For proton beams, we obtained a time resolution of 9.6 ps, representing a significant improvement over past results using the same time of flight system. For electron beams, the time resolution obtained for this new type of SM detector is measured to be at the level of 13 ps when we use Photek 240 as the active element of the SM. Using the Photonis XP85011 MCP-PMT as the active element of the SM, we performed time resolution measurements with pixel readout, and achieved a TR better than 30 ps, The pixel readout was observed to improve upon the TR compared to the case where the individual channels were summed.
Closed-loop Operated Time-Based Accelerometer
Dias, R.A.; Macedo, P.J.; Silva, H.D.; Wolffenbuttel, R.F.; Cretu, E.; Rocha, L.A.
2012-01-01
A high-resolution, high dynamic range capacitive accelerometer based on pull-in time measurement is described in this paper. The high sensitivity of pull-in time can be used to implement high performance accelerometers, but non-linearity and low dynamic range compromise device performance. A
Real-time operating system for selected Intel processors
Pool, W. R.
1980-01-01
The rationale for system development is given along with reasons for not using vendor supplied operating systems. Although many system design and performance goals were dictated by problems with vendor supplied systems, other goals surfaced as a result of a design for a custom system able to span multiple projects. System development and management problems and areas that required redesign or major code changes for system implementation are examined as well as the relative successes of the initial projects. A generic description of the actual project is provided and the ongoing support requirements and future plans are discussed.
Morten B. S. Svendsen
2016-10-01
Full Text Available Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s−1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s−1, followed by barracuda (6.2±1.0 m s−1, little tunny (5.6±0.2 m s−1 and dorado (4.0±0.9 m s−1; although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s−1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues.
Svendsen, Morten B. S.; Domenici, Paolo; Marras, Stefano; Krause, Jens; Boswell, Kevin M.; Rodriguez-Pinto, Ivan; Wilson, Alexander D. M.; Kurvers, Ralf H. J. M.; Viblanc, Paul E.; Finger, Jean S.; Steffensen, John F.
2016-01-01
ABSTRACT Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s−1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s−1), followed by barracuda (6.2±1.0 m s−1), little tunny (5.6±0.2 m s−1) and dorado (4.0±0.9 m s−1); although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s−1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues. PMID:27543056
Eppler, D. B.
2012-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona in the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where multi-day tests are achievable. Desert RATS 2011 Science Operations Test simulated the management of crewed science operations at targets that were beyond the light delay time experienced during Low-Earth Orbit (LEO) and lunar surface missions, such as a mission to a Near-Earth Object (NEO) or the martian surface. Operations at targets at these distances are likely to be the norm as humans move out of the Earth-Moon system. Operating at these distances places significant challenges on mission operations, as the imposed light-delay time makes normal, two-way conversations extremely inefficient. Consequently, the operations approach for space missions that has been exercised during the first half-century of human space operations is no longer viable, and new approaches must be devised.
Dobrzanski, J.; Paszkowska, H.; Zielinski, A. [Institute for Ferrous Metallurgy, Gliwice (Poland)
2010-07-01
The assessment of suitability for further operation for materials and welded repair joints of thick-walled main steam pipeline components, made of steel 14MoV63, as well as steam superheater outlet headers made of steel X20CrMoV121 following operation in creep conditions in time periods considerably longer than the specified calculated time of operation. Strength properties, impact strength and transition temperature into brittle condition, as well as structure condition have been evaluated. On the basis of shortened creep tests, the residual life and disposable residual life of materials and welded joints have been determined. Material properties following operation and those of fabricated circumferential welded repair joints have been compared. The condition of examined components and suitability of the fabricated welded repair joints for further operation have been assessed. (orig.)
The Older of Two Trees: Young Children's Development of Operational Time
Kamii, Constance; Russell, Kelly A.
2010-01-01
Piaget (1971) made a distinction between intuitive (preoperational) time and operational (logico-mathematical) time. According to Piaget, operational time develops around 7-8 years of age and is characterized by children's ability to deduce, for example, that if A was born before B, A will always be older than B. When time is still intuitive,…
Esposito, Rosario; Mensitieri, Giuseppe; de Nicola, Sergio
2015-12-21
A new algorithm based on the Maximum Entropy Method (MEM) is proposed for recovering both the lifetime distribution and the zero-time shift from time-resolved fluorescence decay intensities. The developed algorithm allows the analysis of complex time decays through an iterative scheme based on entropy maximization and the Brent method to determine the minimum of the reduced chi-squared value as a function of the zero-time shift. The accuracy of this algorithm has been assessed through comparisons with simulated fluorescence decays both of multi-exponential and broad lifetime distributions for different values of the zero-time shift. The method is capable of recovering the zero-time shift with an accuracy greater than 0.2% over a time range of 2000 ps. The center and the width of the lifetime distributions are retrieved with relative discrepancies that are lower than 0.1% and 1% for the multi-exponential and continuous lifetime distributions, respectively. The MEM algorithm is experimentally validated by applying the method to fluorescence measurements of the time decays of the flavin adenine dinucleotide (FAD).
Onboard Run-Time Goal Selection for Autonomous Operations
Rabideau, Gregg; Chien, Steve; McLaren, David
2010-01-01
We describe an efficient, online goal selection algorithm for use onboard spacecraft and its use for selecting goals at runtime. Our focus is on the re-planning that must be performed in a timely manner on the embedded system where computational resources are limited. In particular, our algorithm generates near optimal solutions to problems with fully specified goal requests that oversubscribe available resources but have no temporal flexibility. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. This enables shorter response cycles and greater autonomy for the system under control.
Wu, Dan; Huang, Liping; Quan, Xie; Li Puma, Gianluca
2016-03-01
The performance of carbon rod (CR), titanium sheet (TS), stainless steel woven mesh (SSM) and copper sheet (CS) cathode materials are investigated in microbial fuel cells (MFCs) for simultaneous electricity generation and Cu(II) reduction, in multiple batch cycle operations. After 12 cycles, the MFC with CR exhibits 55% reduction in the maximum power density and 76% increase in Cu(II) removal. In contrast, the TS and SSM cathodes at cycle 12 show maximum power densities of 1.7 (TS) and 3.4 (SSM) times, and Cu(II) removal of 1.2 (TS) and 1.3 (SSM) times higher than those observed during the first cycle. Diffusional resistance in the TS and SSM cathodes is found to appreciably decrease over time due to the copper deposition. In contrast to CR, TS and SSM, the cathode made with CS is heavily corroded in the first cycle, exhibiting significant reduction in both the maximum power density and Cu(II) removal at cycle 2, after which the performance stabilizes. These results demonstrate that the initial deposition of copper on the cathodes of MFCs is crucial for efficient and continuous Cu(II) reduction and electricity generation over prolonged time. This effect is closely associated with the nature of the cathode material. Among the materials examined, the SSM is the most effective and inexpensive cathode for practical use in MFCs.
Fei Lin
2016-03-01
Full Text Available With its large capacity, the total urban rail transit energy consumption is very high; thus, energy saving operations are quite meaningful. The effective use of regenerative braking energy is the mainstream method for improving the efficiency of energy saving. This paper examines the optimization of train dwell time and builds a multiple train operation model for energy conservation of a power supply system. By changing the dwell time, the braking energy can be absorbed and utilized by other traction trains as efficiently as possible. The application of genetic algorithms is proposed for the optimization, based on the current schedule. Next, to validate the correctness and effectiveness of the optimization, a real case is studied. Actual data from the Beijing subway Yizhuang Line are employed to perform the simulation, and the results indicate that the optimization method of the dwell time is effective.
Kajian dan Implementasi Real Time Operating System pada Single Board Computer Berbasis ARM
Wiedjaja; Handi Muljoredjo; Jonathan Lukas; Benyamin Christian; Luis Kristofel
2014-01-01
Operating System is an important software in computer system. For personal and office use the operating system is sufficient. However, to critical mission applications such as nuclear power plants and braking system on the car (auto braking system) which need a high level of reliability, it requires operating system which operates in real time. The study aims to assess the implementation of the Linux-based operating system on a Single Board Computer (SBC) ARM-based, namely Pandaboard ES with ...
Influence of operative timing on prognosis of patients with acute subdural hematoma
ZhAO Hong; BAI Xiang-jun
2009-01-01
Objective: To study the influence of operative timing on the prognosis of patients with acute subdural hematoma (ASDH) in order to provide theoretical basis for clinical treatment.Methods: The clinical data of 202 patients with ASDH undergoing operations were collected, and the mortalities and functional survival rates were analyzed 2, 4, 6, and 8 hours after injury.Results: No significant difference was found in mortalities and functional survival rates at different operative timings. However, there was a clear trend that the shorter the operative timing was, the lower the mortality and the higher functional survival rate were. In addition, the mean time from injury to operation of non-survivors was significantly longer than that of survivors.Conclusions: Operative timing has potential influences on the prognosis of patients with ASDH. Surgical evacuation of ASDH should be performed as soon as possible once the operation indication emerges.
Gian Paolo Beretta
2008-08-01
Full Text Available A rate equation for a discrete probability distribution is discussed as a route to describe smooth relaxation towards the maximum entropy distribution compatible at all times with one or more linear constraints. The resulting dynamics follows the path of steepest entropy ascent compatible with the constraints. The rate equation is consistent with the Onsager theorem of reciprocity and the fluctuation-dissipation theorem. The mathematical formalism was originally developed to obtain a quantum theoretical unification of mechanics and thermodinamics. It is presented here in a general, non-quantal formulation as a part of an effort to develop tools for the phenomenological treatment of non-equilibrium problems with applications in engineering, biology, sociology, and economics. The rate equation is also extended to include the case of assigned time-dependences of the constraints and the entropy, such as for modeling non-equilibrium energy and entropy exchanges.
Beretta, Gian P.
2008-09-01
A rate equation for a discrete probability distribution is discussed as a route to describe smooth relaxation towards the maximum entropy distribution compatible at all times with one or more linear constraints. The resulting dynamics follows the path of steepest entropy ascent compatible with the constraints. The rate equation is consistent with the Onsager theorem of reciprocity and the fluctuation-dissipation theorem. The mathematical formalism was originally developed to obtain a quantum theoretical unification of mechanics and thermodinamics. It is presented here in a general, non-quantal formulation as a part of an effort to develop tools for the phenomenological treatment of non-equilibrium problems with applications in engineering, biology, sociology, and economics. The rate equation is also extended to include the case of assigned time-dependences of the constraints and the entropy, such as for modeling non-equilibrium energy and entropy exchanges.
An Estimation of Operator's Diagnostic Time for Feed-And-Bleed Operation under Various Scenarios
Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Abu Dhabi (United Arab Emirates)
2015-10-15
In order to assess realistic safety of plant, effects of interactions between components, operator, and plant condition are needed to be considered in the PSA model. One of the important issues to estimate the CDF is the estimation of human error probability (HEP). When an accident occurs, operators follow the emergency operating procedure and check various alarm, parameters, and signals. In the conventional Korean PSA model, the Korean standard HRA (K-HRA) method is used. In this method, the HEP is the sum of diagnosis error probability and execution error probability. A diagnosis error probability is expressed by the available time for diagnosis and adjusting performance shaping factors, and an execution error probability is a function of task type and stress level. Available time for diagnosis is very important factor of HEP. If the available time for diagnosis is short, the HEP becomes high. In order to obtain the realistic risk assessment results, we first focus on the estimation of HEP considering the plant dynamics under various scenarios. Target operation and scenarios are feed-and bleed operation (F and B operation) and total loss of feedwater (TLOFW) accident with/without loss of coolant accident (LOCA). One of the highest HEP is HEP of FnB operation. In additional, Scenarios, which are related to combination secondary heat removal failure and primary heat removal failure, are most critical core damage scenario of the combined accident except scenarios related to station black out (SBO). In these scenarios, the FnB operation is last resort to prevent core damage. To estimate available operator diagnosis time, we identify the relationship between accidents, mitigation function, and plant condition. Distribution of available time of diagnosis was estimated using the MOSAIQUE. The variables are break size, break timing, trip timing of RCP, and availability of high pressure safety injection (HPSI) pump under the TLOFW accident with LOCA. For Type 1 accident
Chahim, M.; Hartl, R.F.; Kort, P.M.
2011-01-01
This paper considers a class of optimal control problems that allows jumps in the state variable. We present the necessary optimality conditions of the Impulse Control Maximum Principle based on the current value formulation. By reviewing the existing impulse control models in the literature, we poi
Nonconvex evolution inclusions generated by time-dependent subdifferential operators
Kate Arseni-Benou
1999-01-01
Full Text Available We consider nonlinear nonconvex evolution inclusions driven by time-varying subdifferentials ∂ϕ(t,x without assuming that ϕ(t,. is of compact type. We show the existence of extremal solutions and then we prove a strong relaxation theorem. Moreover, we show that under a Lipschitz condition on the orientor field, the solution set of the nonconvex problem is path-connected in C(T,H. These results are applied to nonlinear feedback control systems to derive nonlinear infinite dimensional versions of the bang-bang principle. The abstract results are illustrated by two examples of nonlinear parabolic problems and an example of a differential variational inequality.
Impact of future time-based operations on situation awareness of air traffic controllers
Oprins, E.A.P.B.; Zwaaf, D.; Eriksson, F.; Merwe, K. van de; Roe, R.
2009-01-01
A time-based operation, as planned in the ATM future, is assumed to affect the controllers’ Situation Awareness (SA) due to a higher priority of meeting a time objective and increasing automation. This paper provides SA requirements on the design of controller support tools in time-based operations,
The Fermionic Signature Operator and Quantum States in Rindler Space-Time
Finster, Felix; Röken, Christian
2016-01-01
The fermionic signature operator is constructed in Rindler space-time. It is shown to be an unbounded self-adjoint operator on the Hilbert space of solutions of the massive Dirac equation. In two-dimensional Rindler space-time, we prove that the resulting fermionic projector state coincides with the Fulling-Rindler vacuum. Moreover, the fermionic signature operator gives a covariant construction of general thermal states, in particular of the Unruh state. The fermionic signature operator is shown to be well-defined in asymptotically Rindler space-times. In four-dimensional Rindler space-time, our construction gives rise to new quantum states.
Yamamoto Y
2013-10-01
Full Text Available Background: The objective of this study is to provide certain data on clinical outcomes and their predictors of traditional maximum androgen blockade (MAB in prostate cancer with bone metastasis. Methods: Subjects were patients with prostate adenocarcinoma with bone metastasis initiated to treat with MAB as a primary treatment without any local therapy at our hospital between January 2003 and December 2010. Time to prostate specific antigen (PSA progression, overall survival (OS time, and association of clinical factors and outcomes were retrospectively evaluated. Results: A total of 57 patients were evaluable. The median age was 70 years. The median primary PSA was 203 ng/ml. Luteinizing hormone-releasing hormone agonists had been administered in 96.5% of the patients. Bicalutamide had been chosen in 89.4 % of the patients as the initial antiandrogen. The median time to PSA progression with MAB was 11.3 months (95% confidence interval [CI], 10.4 to 13.0. The median OS was 47.3 months (95% CI, 30.7 to 81.0. Gleason score 9 or greater, decline of PSA level equal to or higher than 1.0 ng/ml with MAB, and time to PSA nadir equal to or shorter than six months after initiation of MAB were independent risk factors for time to PSA progression (P=0.010, P=0.005, and P=0.001; respectively. Time to PSA nadir longer than six months was the only independent predictor for longer OS (HR, 0.255 [95% CI, 0.109 to 0.597]; P=0.002. Conclusions: Initial time to PSA nadir should be emphasized for clinical outcome analyses in future studies on prostate cancer with bone metastasis.
Application of generalized operator representation in the time evolution of quantum systems
He, Rui; Liu, Xiangyuan; Song, Jun
2016-10-01
We have systematically explored the application of generalized operator representation including P-, W-, and Husimi representation in the time evolution of quantum systems. In particular, by using the method of differentiation within an ordered product of operators, we give the normally and antinormally ordered forms of the integral kernels of Husimi operator representations and its corresponding formulations. By making use of the generalized operator representation, we transform exponentially complex operator equations into tractable phase-space equations. As a simple application, the time evolution equation of Husimi function in the amplitude dissipative channel is clearly obtained.
Chenghong Gu
2015-12-01
Full Text Available This paper develops a discrete operation optimization model for combined heat and powers (CHPs in deregulated energy markets to maximize owners’ profits, where energy price forecasting is included. First, a single input and multi-output (SIMO model for typical CHPs is established, considering the varying ratio between heat and electricity outputs at different loading levels. Then, the energy prices are forecasted with a gray forecasting model and revised in real-time based on the actual prices by using the least squares method. At last, a discrete optimization model and corresponding dynamic programming algorithm are developed to design the optimal operation strategies for CHPs in real-time. Based on the forecasted prices, the potential operating strategy which may produce the maximum profits is pre-developed. Dynamic modification is then conducted to adjust the pre-developed operating strategy after the actual prices are known. The proposed method is implemented on a 1 MW CHP on a typical day. Results show the optimized profits comply well with those derived from real-time prices after considering dynamic modification process.
Analyzing Density Operator in Thermal State for Complicated Time-Dependent Optical Systems
Jeong Ryeol Choi
2014-01-01
Full Text Available Density operator of oscillatory optical systems with time-dependent parameters is analyzed. In this case, a system is described by a time-dependent Hamiltonian. Invariant operator theory is introduced in order to describe time-varying behavior of the system. Due to the time dependence of parameters, the frequency of oscillation, so-called a modified frequency of the system, is somewhat different from the natural frequency. In general, density operator of a time-dependent optical system is represented in terms of the modified frequency. We showed how to determine density operator of complicated time-dependent optical systems in thermal state. Usually, density operator description of quantum states is more general than the one described in terms of the state vector.
Self-adjoint Time Operator is the Rule for Discrete Semibounded Hamiltonians
Galapon, E A
2002-01-01
We prove explicitly that to every discrete, semibounded Hamiltonian with constant degeneracy and with finite sum of the squares of the reciprocal of its eigenvalues and whose eigenvectors span the entire Hilbert space there exists a characteristic self-adjoint time operator which is canonically conjugate to the Hamiltonian in a dense subspace of the Hilbert space. Moreover, we show that each characteristic time operator generates an uncountable class of self- adjoint operators canonically conjugate with the same Hamiltonian.
A HARDWARE SUPPORTED OPERATING SYSTEM KERNEL FOR EMBEDDED HARD REAL-TIME APPLICATIONS
COLNARIC, M; HALANG, WA; TOL, RM
1994-01-01
The concept of the kernel, i.e. the time critical part of a real-time operating system, and its dedicated co-processor, especially tailored for embedded applications, are presented. The co-processor acts as a system controller and operates in conjunction with one or more conventional processors in
Dexter, Franklin; Abouleish, Amr E; Epstein, Richard H; Whitten, Charles W; Lubarsky, David A
2003-10-01
Potential benefits to reducing turnover times are both quantitative (e.g., complete more cases and reduce staffing costs) and qualitative (e.g., improve professional satisfaction). Analyses have shown the quantitative arguments to be unsound except for reducing staffing costs. We describe a methodology by which each surgical suite can use its own numbers to calculate its individual potential reduction in staffing costs from reducing its turnover times. Calculations estimate optimal allocated operating room (OR) time (based on maximizing OR efficiency) before and after reducing the maximum and average turnover times. At four academic tertiary hospitals, reductions in average turnover times of 3 to 9 min would result in 0.8% to 1.8% reductions in staffing cost. Reductions in average turnover times of 10 to 19 min would result in 2.5% to 4.0% reductions in staffing costs. These reductions in staffing cost are achieved predominantly by reducing allocated OR time, not by reducing the hours that staff work late. Heads of anesthesiology groups often serve on OR committees that are fixated on turnover times. Rather than having to argue based on scientific studies, this methodology provides the ability to show the specific quantitative effects (small decreases in staffing costs and allocated OR time) of reducing turnover time using a surgical suite's own data. Many anesthesiologists work at hospitals where surgeons and/or operating room (OR) committees focus repeatedly on turnover time reduction. We developed a methodology by which the reductions in staffing cost as a result of turnover time reduction can be calculated for each facility using its own data. Staffing cost reductions are generally very small and would be achieved predominantly by reducing allocated OR time to the surgeons.
Research ＆ Reform on Real-Time Operating System Applied to Robot
CHENYimin; CHENYangbin
2004-01-01
The paper describes some current popular real-time operation systems such as QNX, VxWorks, and analyses Linux present status and weak points for real-time supporting characteristics and related main trend technology of real-time support based on Linux kernel, and compares comprehensively strong and weak points among different kinds of solutions. By drawing out a typical realtime application model and combining some present research results and thoughts, this paper puts forward reform scheme of real-time operation system which is realized in Linux operation system, and some good results are given at last.
Chiba Shigeru
2007-09-01
Full Text Available Abstract Background Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. Methods An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index ρmax, which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. Results The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in ρmax with time. Conclusion The physiological index, ρmax, will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.
ASPECTS REGARDING THE SETTING OF TIME STANDARDS FOR THE PRODUCTION AND SEWING OPERATIONS
SECAN Cristina
2014-05-01
Full Text Available This paper presents the technological process of manufacture of a shoe for women in IL system in order to establish the time and the production norm in the processing-sewing procedure. The sequence of operations is presented in a case study that analyzed how can be obtained the upper assembly of a footwear product that later becomes integral part into the finished product. Drawing up the technological process is done considering both the manual operations and the manual-mechanical operations for processing and assembling the parts that make the whole upper assembly by gluing the parts, by seaming and securing the joints. The type of equipment chosen to carry out operations is influencing through its productivity the necessary material calculated and hence the labour force required. The amount of time consists of time needed for preparation-finishing time, operative time, time of working place service and time of regulated interruptions. These periods of times were determined basically by timing assistance of the manufacturing process throughout its development. Production norm is calculated on the basis of the standard time, taking into account that it represents the amount of products manufactured in a work shift In order to improve the process by reducing the time of production and the number of workers engaged we are considering the automation of the manufacturing process by using modern methods using laser cutting or cutting under running water, automatic sewing machines, strip conveyor belts with pace imposed etc.
Dynamic Quantum Allocation and Swap-Time Variability in Time-Sharing Operating Systems.
Bhat, U. Narayan; Nance, Richard E.
The effects of dynamic quantum allocation and swap-time variability on central processing unit (CPU) behavior are investigated using a model that allows both quantum length and swap-time to be state-dependent random variables. Effective CPU utilization is defined to be the proportion of a CPU busy period that is devoted to program processing, i.e.…
Svendsen, Morten Bo Søndergaard; Domenici, Paolo; Marras, Stefano
2016-01-01
Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s(-1) but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish...
Choice reaction time in patients with post-operative cognitive dysfunction
Steinmetz, J.; Rasmussen, L.S.
2008-01-01
in nine countries. CRT was measured 52 times using the four boxes test. Patients performed the test before surgery (n=1083), at 1 week (n=926) and at 3 months (n=852) post-operatively. CRT for the individual patient was determined as the median time of correct responses. The usefulness of the CRT......BACKGROUND: Post-operative cognitive dysfunction (POCD) is detected by administration of a neuropsychological test battery. Reaction time testing is at present not included as a standard test. Choice reaction time (CRT) data from the first International Study of Post-operative Cognitive Dysfunction...... had a significantly longer CRT. ROC curves revealed that a reaction time of 813 ms was the most appropriate cut-off at 1 week and 762 ms at 3 months but the positive predictive value for POCD was low: 34.4% and 14.7%, respectively. CONCLUSIONS: Post-operative cognitive dysfunction is associated...
Maximum magnitude earthquakes induced by fluid injection
McGarr, Arthur F.
2014-01-01
Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.
Maximum magnitude earthquakes induced by fluid injection
McGarr, A.
2014-02-01
Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.
Rotta, Davide; Sebastiano, Fabio; Charbon, Edoardo; Prati, Enrico
2017-06-01
Even the quantum simulation of an apparently simple molecule such as Fe2S2 requires a considerable number of qubits of the order of 106, while more complex molecules such as alanine (C3H7NO2) require about a hundred times more. In order to assess such a multimillion scale of identical qubits and control lines, the silicon platform seems to be one of the most indicated routes as it naturally provides, together with qubit functionalities, the capability of nanometric, serial, and industrial-quality fabrication. The scaling trend of microelectronic devices predicting that computing power would double every 2 years, known as Moore's law, according to the new slope set after the 32-nm node of 2009, suggests that the technology roadmap will achieve the 3-nm manufacturability limit proposed by Kelly around 2020. Today, circuital quantum information processing architectures are predicted to take advantage from the scalability ensured by silicon technology. However, the maximum amount of quantum information per unit surface that can be stored in silicon-based qubits and the consequent space constraints on qubit operations have never been addressed so far. This represents one of the key parameters toward the implementation of quantum error correction for fault-tolerant quantum information processing and its dependence on the features of the technology node. The maximum quantum information per unit surface virtually storable and controllable in the compact exchange-only silicon double quantum dot qubit architecture is expressed as a function of the complementary metal-oxide-semiconductor technology node, so the size scale optimizing both physical qubit operation time and quantum error correction requirements is assessed by reviewing the physical and technological constraints. According to the requirements imposed by the quantum error correction method and the constraints given by the typical strength of the exchange coupling, we determine the workable operation frequency
Linear Impulsive Periodic System with Time-Varying Generating Operators on Banach Space
Wei W
2007-01-01
Full Text Available A class of the linear impulsive periodic system with time-varying generating operators on Banach space is considered. By constructing the impulsive evolution operator, the existence of -periodic -mild solution for homogeneous linear impulsive periodic system with time-varying generating operators is reduced to the existence of fixed point for a suitable operator. Further the alternative results on -periodic -mild solution for nonhomogeneous linear impulsive periodic system with time-varying generating operators are established and the relationship between the boundness of solution and the existence of -periodic -mild solution is shown. The impulsive periodic motion controllers that are robust to parameter drift are designed for a given periodic motion. An example given for demonstration.
Yifan Wang
2014-05-01
Full Text Available A control method based on real-time operational reliability evaluation for space manipulator is presented for improving the success rate of a manipulator during the execution of a task. In this paper, a method for quantitative analysis of operational reliability is given when manipulator is executing a specified task; then a control model which could control the quantitative operational reliability is built. First, the control process is described by using a state space equation. Second, process parameters are estimated in real time using Bayesian method. Third, the expression of the system's real-time operational reliability is deduced based on the state space equation and process parameters which are estimated using Bayesian method. Finally, a control variable regulation strategy which considers the cost of control is given based on the Theory of Statistical Process Control. It is shown via simulations that this method effectively improves the operational reliability of space manipulator control system.
Timing and Operating Mode Design for Time-Gated Fluorescence Lifetime Imaging Microscopy
Chao Liu; Xinwei Wang; Yan Zhou; Yuliang Liu
2013-01-01
Steady-state fluorence imaging and time-resolved fluorescence imaging are two important areas in fluorescence imaging research. Fluorescence lifetime imaging is an absolute measurement method which is independent of excitation laser intensity, fluorophore concentration, and photobleaching compared to fluorescence intensity imaging techniques. Time-gated fluorescence lifetime imaging microscopy (FLIM) can provide high resolution and high imaging frame during mature FLIM methods. An abstract ti...
The Bloch wave operator: generalizations and applications: II. The time-dependent case
Jolicard, Georges [Observatoire de Besancon (UMR-CNRS 6091), Universite de Franche-Comte, 41 bis, Avenue de l' Observatoire, 25000 Besancon (France); Killingbeck, John P [Observatoire de Besancon (UMR-CNRS 6091), Universite de Franche-Comte, 41 bis, Avenue de l' Observatoire, 25000 Besancon (France); Mathematics Department, University of Hull, Hull HU6 7RX (United Kingdom)
2003-10-10
Part II of the review shows how the stationary Bloch wave operator of part I can be suitably modified to give a time-dependent wave operator. This operator makes it possible to use a relatively small active space in order to describe the dynamical processes which occur in quantum mechanical systems which have a time-dependent Hamiltonian. A close study is made of the links between the time-dependent and time-independent wave operators at the adiabatic limit; the analysis clarifies the way in which the wave operator formalism allows the time evolution of a system or a wave packet to be described in terms of a fast evolution inside the active space together with weak transitions out of this space which can be treated by perturbation methods. Two alternative wave operator equations of motion are derived and analysed. The first one is a non-linear differential equation in the usual Hilbert space; the second one is a differential equation in an extended Hilbert space with an extra time variable added and becomes equivalent to the usual Bloch equation when the Floquet Hamiltonian is taken in place of the ordinary Hamiltonian. A study is made of the close relationships between the time-dependent wave operator formalism, the Floquet theory and the (t, t') theory. Some original methods of solution of the two forms of wave operator equation are proposed and lead to new techniques of integration for the time-dependent Schroedinger equation (e.g., the generalized Green equation procedure). Mixed procedures involving both the time-independent and time-dependent wave operators are shown to be applicable to the internal eigenstate problem for large complex matrices. A detailed account is given of the description of inelastic and photoreactive processes by means of the time-dependent wave operator formalism, with particular attention to laser-molecule interactions. The emphasis is on projection operator techniques, with special attention being given to the method of selection
Fighting in the Medium of Time: The Dynamics of Operational Tempo
1988-04-11
save time. Today, with the value of time more 32 critical than ever, it would be prudent for us to assume that the Soviets would prefer to do the same...level and in technology. Implicit in the approach is an overriding concern for the value of time . Time is the medium that will be contested. It...Operationally, this priority manifests itself in the almost phobic Soviet stress on high rates of advance. Strategically, the value of time is equally
Localization Operators and an Uncertainty Principle for the Discrete Short Time Fourier Transform
Carmen Fernández
2014-01-01
Full Text Available Localization operators in the discrete setting are used to obtain information on a signal f from the knowledge on the support of its short time Fourier transform. In particular, the extremal functions of the uncertainty principle for the discrete short time Fourier transform are characterized and their connection with functions that generate a time-frequency basis is studied.
A time dependent solution for the operation of ion chambers in a high ionization background
Velissaris, C
2005-01-01
We have derived a time dependent solution describing the development of space charge inside an ion chamber subjected to an externally caused ionization rate N. The solution enables the derivation of a formula that the operational parameters of the chamber must satisfy for saturation free operation. This formula contains a correction factor to account for the finite duration of the ionization rate N.
Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation
Zhao, T.; Cai, X.; Yang, D.
2010-12-01
Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover
THERMAL HYDRAULIC ISSUES OF CONTAINMENT FILTERED VENTING SYSTEM FOR A LONG OPERATING TIME
Ha, Kwang Soon; Park, Rae-Joon; Park, Jong-Hwa; Cho, Song-Won
2014-01-01
...) for a long operating time using the MELCOR computer code. The modeling of the CFVS, including the models for pool scrubbing and the filter, was added to the input file for the OPR-1000, and a Station Blackout (SBO...
Das, Ashok
2016-01-01
We develop an operator description, much like thermofield dynamics, for quantum field theories on a real time path with an arbitrary parameter $\\sigma\\,(0\\leq\\sigma\\leq\\beta)$. We point out new features which arise when $\\sigma\
Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.
2017-09-01
The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.
Command and Control of Special Operations Aviation: Time for a Change
2011-01-24
coordination or aircraft deconfliction as a significant issue. The actions of TF Ranger during Operation GOTHIC SERPENT in Somalia is the final...examples. However, a significant difference between the previous two operations listed and GOTHIC SERPENT was the time sensitive and dynamic nature of... GOTHIC SERPENT proved essential for prosecuting time sensitive targets (TSTs). A command relationship of ARSOA as a subordinate element in the JSOTF also
Real-time portal imaging devices operating on high-pressure gaseous electronic principles
Giakos, George C.; Richardson, Donna B.; Ghotra, P.; Pillai, Bindu; Seetharaman, Lakshmi; Passalaqua, Anthony M.; DiBianca, Frank A.; Endorf, Robert J.; Devidas, Sreenivas
1995-05-01
A novel real-time portal imaging scanning detector, based on high-pressure gaseous electronics principles and operating up to 60 atmospheres, is presented and the predicted performance of this detector is analyzed. The idea is to utilize high pressure gaseous electronics imaging detectors operating in the saturation regime, aimed at improving image performance characteristics in real time portal imaging. As a result, beam localization errors are controlled, identified and corrected accurately and the patient radiotherapy treatment becomes more effective.
Online Synthesis for Operation Execution Time Variability on Digital Microfluidic Biochips
Alistar, Mirela; Pop, Paul
2014-01-01
Several approaches have been proposed for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. Researchers...... an online synthesis strategy that re-synthesizes the application at runtime when operations experience variability in their execution time, obtaining thus shorter application execution times. The proposed strategy has been evaluated using several benchmarks....
Study of a self-adjoint operator indicating the direction of time within standard quantum mechanics
Strauss, Y; Machnes, S; Horwitz, L P
2011-01-01
In [J. Math. Phys. 51 (2010) 022104] a self-adjoint operator was introduced that has the property that it indicates the direction of time within the framework of standard quantum mechanics, in the sense that as a function of time its expectation value decreases monotonically for any initial state. In this paper we study some of this operator's properties. In particular, we derive its spectrum and generalized eigenstates, and treat the example of the free particle.
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2003-01-01
Demonstrated, through simulation, that stationary autoregressive moving average (ARMA) models may be fitted readily when T>N, using normal theory raw maximum likelihood structural equation modeling. Also provides some illustrations based on real data. (SLD)
2007-07-01
In Norway Integrated Operations (IO) is a concept which in the first phase (G1) has been used to describe how to integrate processes and people onshore and offshore using ICT solutions and facilities that improve onshore's ability to support offshore operationally. The second generation (G2) Integrated Operations aims to help operators utilize vendors' core competencies and services more efficiently. Utilizing digital services and vendor products, operators will be able to update reservoir models, drilling targets and well trajectories as wells are drilled, manage well completions remotely, optimize production from reservoir to export lines, and implement condition-based maintenance concepts. The total impact on production, recovery rates, costs and safety will be profound. When the international petroleum business moves to the Arctic region the setting is very different from what is the case on the Norwegian Continental Shelf (NCS) and new challenges will arise. The Norwegian Ministry of Environment has recently issued an Integrated Management Plan for the Barents Sea where one focus is on 'Monitoring of the Marine Environment in the North'. The Government aims to establish a new and more coordinated system for monitoring the marine ecosystems in the north. A representative group consisting of the major Operators, the Service Industry, Academia and the Authorities have developed the enclosed strategy for the OG21 Integrated Operations and Real Time Reservoir Management (IO and RTRM) Technology Target Area (TTA). Major technology and work process research and development gaps have been identified in several areas: Bandwidth down-hole to surface; Sensor development including Nano-technology; Cross discipline use of Visualisation, Simulation and model development particularly in Drilling and Reservoir management areas; Software development in terms of data handling, model updating and calculation speed; Enabling reliable and robust communications
Hoeij, F.B. van; Stadhouders, P.H.G.M.; Weusten, B.L.A.M. [St Antonius Ziekenhuis, Department of Gastroenterology, Nieuwegein (Netherlands); Keijsers, R.G.M. [St Antonius Ziekenhuis, Department of Nuclear Medicine, Nieuwegein (Netherlands); Loffeld, B.C.A.J. [Zuwe Hofpoort Ziekenhuis, Department of Internal Medicine, Woerden (Netherlands); Dun, G. [Ziekenhuis Rivierenland, Department of Internal Medicine, Tiel (Netherlands)
2015-01-15
In patients undergoing {sup 18}F-FDG PET/CT, incidental colonic focal lesions can be indicative of inflammatory, premalignant or malignant lesions. The maximum standardized uptake value (SUV{sub max}) of these lesions, representing the FDG uptake intensity, might be helpful in differentiating malignant from benign lesions, and thereby be helpful in determining the urgency of colonoscopy. The aim of our study was to assess the incidence and underlying pathology of incidental PET-positive colonic lesions in a large cohort of patients, and to determine the usefulness of the SUV{sub max} in differentiating benign from malignant pathology. The electronic records of all patients who underwent FDG PET/CT from January 2010 to March 2013 in our hospital were retrospectively reviewed. The main indications for PET/CT were: characterization of an indeterminate mass on radiological imaging, suspicion or staging of malignancy, and suspicion of inflammation. In patients with incidental focal FDG uptake in the large bowel, data regarding subsequent colonoscopy were retrieved, if performed within 120 days. The final diagnosis was defined using colonoscopy findings, combined with additional histopathological assessment of the lesion, if applicable. Of 7,318 patients analysed, 359 (5 %) had 404 foci of unexpected colonic FDG uptake. In 242 of these 404 lesions (60 %), colonoscopy follow-up data were available. Final diagnoses were: adenocarcinoma in 25 (10 %), adenoma in 90 (37 %), and benign in 127 (53 %). The median [IQR] SUV{sub max} was significantly higher in adenocarcinoma (16.6 [12 - 20.8]) than in benign lesions (8.2 [5.9 - 10.1]; p < 0.0001), non-advanced adenoma (8.3 [6.1 - 10.5]; p < 0.0001) and advanced adenoma (9.7 [7.2 - 12.6]; p < 0.001). The receiver operating characteristic curve of SUV{sub max} for malignant versus nonmalignant lesions had an area under the curve of 0.868 (SD ± 0.038), the optimal cut-off value being 11.4 (sensitivity 80 %, specificity 82
Succinct Dynamic Cardinal Trees with Constant Time Operations for Small Alphabet
Davoodi, Pooya; Satti, Srinivasa Rao
2011-01-01
) bits and performs the following operations in O(1) time: parent, child(i), label-child(alpha), degree, subtree-size, preorder, is-ancestor(x), insert-leaf (alpha), delete-leaf(alpha). The update times are amortized. The space is close to the information theoretic lower bound. The operations...... are performed in the course of traversing the tree. This improves the succinct dynamic $k$-ary cardinal trees representation of Arroyuelo [1] for small alphabet, by speeding up both the query time of O(loglog n), and the update time of O((log log n)^2/logloglog n) to O(1), solving an open problem in [1...
A statistical study of equipment operating time in an open pit lignite mine
Xerokostas, D.; Polyzos, P.; Galitis, N.; Michiotis, A.; Dalakas, G. (National Technical University, Athens (Greece). Dept. of Mechanical Engineering)
1991-08-01
The production planning of an open pit lignite mine, as of any mining operation in general, is influenced by a series of factors. Of great importance among these factors is the operating time of the equipment used in the production process. In this paper the authors use applied statistical methods (specially comparison tests) to study the net operating time of some excavation branches of the Ptolemais lignite mining district in Greece. Thus, it is hoped that the paper will contribute to estimating and predicting equipment performance in a more accurate way. 4 refs., 4 figs., 3 tabs.
Spruce, Joseph P.; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip D.
2012-01-01
This presentation reviews the development, integration, and testing of Near Real Time (NRT) MODIS forest % maximum NDVI change products resident to the USDA Forest Service (USFS) ForWarn System. ForWarn is an Early Warning System (EWS) tool for detection and tracking of regionally evident forest change, which includes the U.S. Forest Change Assessment Viewer (FCAV) (a publically available on-line geospatial data viewer for visualizing and assessing the context of this apparent forest change). NASA Stennis Space Center (SSC) is working collaboratively with the USFS, ORNL, and USGS to contribute MODIS forest change products to ForWarn. These change products compare current NDVI derived from expedited eMODIS data, to historical NDVI products derived from MODIS MOD13 data. A new suite of forest change products are computed every 8 days and posted to the ForWarn system; this includes three different forest change products computed using three different historical baselines: 1) previous year; 2) previous three years; and 3) all previous years in the MODIS record going back to 2000. The change product inputs are maximum value NDVI that are composited across a 24 day interval and refreshed every 8 days so that resulting images for the conterminous U.S. are predominantly cloud-free yet still retain temporally relevant fresh information on changes in forest canopy greenness. These forest change products are computed at the native nominal resolution of the input reflectance bands at 231.66 meters, which equates to approx 5.4 hectares or 13.3 acres per pixel. The Time Series Product Tool, a MATLAB-based software package developed at NASA SSC, is used to temporally process, fuse, reduce noise, interpolate data voids, and re-aggregate the historical NDVI into 24 day composites, and then custom MATLAB scripts are used to temporally process the eMODIS NDVIs so that they are in synch with the historical NDVI products. Prior to posting, an in-house snow mask classification product
2007-07-01
In Norway Integrated Operations (IO) is a concept which in the first phase (G1) has been used to describe how to integrate processes and people onshore and offshore using ICT solutions and facilities that improve onshore's ability to support offshore operationally. The second generation (G2) Integrated Operations aims to help operators utilize vendors' core competencies and services more efficiently. Utilizing digital services and vendor products, operators will be able to update reservoir models, drilling targets and well trajectories as wells are drilled, manage well completions remotely, optimize production from reservoir to export lines, and implement condition-based maintenance concepts. The total impact on production, recovery rates, costs and safety will be profound. When the international petroleum business moves to the Arctic region the setting is very different from what is the case on the Norwegian Continental Shelf (NCS) and new challenges will arise. The Norwegian Ministry of Environment has recently issued an Integrated Management Plan for the Barents Sea where one focus is on 'Monitoring of the Marine Environment in the North'. The Government aims to establish a new and more coordinated system for monitoring the marine ecosystems in the north. A representative group consisting of the major Operators, the Service Industry, Academia and the Authorities have developed the enclosed strategy for the OG21 Integrated Operations and Real Time Reservoir Management (IO and RTRM) Technology Target Area (TTA). Major technology and work process research and development gaps have been identified in several areas: Bandwidth down-hole to surface; Sensor development including Nano-technology; Cross discipline use of Visualisation, Simulation and model development particularly in Drilling and Reservoir management areas; Software development in terms of data handling, model updating and calculation speed; Enabling reliable and robust communications
Predictors of shoulder dystocia at the time of operative vaginal delivery.
Palatnik, Anna; Grobman, William A; Hellendag, Madeline G; Janetos, Timothy M; Gossett, Dana R; Miller, Emily S
2016-11-01
It remains uncertain whether clinical factors known prior to delivery can predict which women are more likely to experience shoulder dystocia in the setting of operative vaginal delivery. We sought to identify whether shoulder dystocia can be accurately predicted among women undergoing an operative vaginal delivery. This was a case-control study of women undergoing a low or outlet operative vaginal delivery from 2005 through 2014 in a single tertiary care center. Cases were defined as women who experienced a shoulder dystocia at the time of operative vaginal delivery. Controls consisted of women without a shoulder dystocia at the time of operative vaginal delivery. Variables previously identified to be associated with shoulder dystocia that could be known prior to delivery were abstracted from the medical records. Bivariable analyses and multivariable logistic regression were used to identify factors independently associated with shoulder dystocia. A receiver operating characteristic curve was created to evaluate the predictive value of the model for shoulder dystocia. Of the 4080 women who met inclusion criteria, shoulder dystocia occurred in 162 (4.0%) women. In bivariable analysis, maternal age, parity, body mass index, diabetes, chorioamnionitis, arrest disorder as an indication for an operative vaginal delivery, vacuum use, and estimated fetal weight >4 kg were significantly associated with shoulder dystocia. In multivariable analysis, parity, diabetes, chorioamnionitis, arrest disorder as an indication for operative vaginal delivery, vacuum use, and estimated fetal weight >4 kg remained independently associated with shoulder dystocia. The area under the curve for the generated receiver operating characteristic curve was 0.73 (95% confidence interval, 0.69-0.77), demonstrating only a modest ability to predict shoulder dystocia before performing an operative vaginal delivery. While risk factors for shoulder dystocia at the time of operative vaginal delivery
Operating Room Time Savings with the Use of Splint Packs: A Randomized Controlled Trial
Tyler Gonzalez
2016-01-01
Full Text Available Background: The most expensive variable in the operating room (OR is time. Lean Process Management is being used in the medical field to improve efficiency in the OR. Streamlining individual processes within the OR is crucial to a comprehensive time saving and cost-cutting health care strategy. At our institution, one hour of OR time costs approximately $500, exclusive of supply and personnel costs. Commercially prepared splint packs (SP contain all components necessary for plaster-of-Paris short-leg splint application and have the potential to decrease splint application time and overall costs by making it a more lean process. We conducted a randomized controlled trial comparing OR time savings between SP use and bulk supply (BS splint application. Methods: Fifty consecutive adult operative patients on whom post-operative short-leg splint immobilization was indicated were randomized to either a control group using BS or an experimental group using SP. One orthopaedic surgeon (EMB prepared and applied all of the splints in a standardized fashion. Retrieval time, preparation time, splint application time, and total splinting time for both groups were measured and statistically analyzed. Results: The retrieval time, preparation time and total splinting time were significantly less (p
刘圣波; 刘贺; 赵燕东
2013-01-01
output, it is ideally appropriate for sampling and analysis. Setting the output voltage as status variable, the discrete-time RCC (DRCC) algorithm can track the optimal operating point quickly via sampling at maximum and minimum voltage moments. A DRCC Simulink model of the maximum power point tracking (MPPT) system was built in the paper. The model consists of three parts:solar PV panel module, DC-DC convertor and control module. In the control module, ripple sampler is built with trigger subsystem to get output information (voltage and current). Controller is implemented with S-function. After S-function adopts the voltage and current information, it will calculate the power difference and output duty ratio signal. The output of the controller is transformed to PWM wave to adjust the system power output. Voltage of solar PV panel is controlled by duty ratio via DC-DC convertor. When the system works at non-maximal power point, difference of power outputs at two sample points can refresh the duty ratio to make the voltage change, and finally take effects on the power output. The proposed algorithm was realized and testified in Simulink system. In the simulation, voltage of solar PV system at maximum power point was set to 17V and maximum power output is set to 25.7W. In an environment of 1000 W/cm 2 and 25℃, output of the whole system finally reached a stable state of 17V and 24.8W. Power tracking accuracy was up to 96%. Under the same condition, we used mountain climbing tracking technique to run the simulation. The system power output came to 23.9W in the end, which achieved an accuracy of 93%. Another simulation was conducted by changing the environment parameter to 200 W/cm2, 25℃. The control model can also track the maximum power point. In the dynamic light intensity test which light intensity varied from 1000W/cm2 to 200W/cm2 at 0.2s during simulation, the system was able to track new maximum power point within 0.1s. The results indicated that the algorithm is
Real-Time Reporting of Small Operational Failures in Nursing Care
Kathleen R. Stevens
2016-01-01
Full Text Available Addressing microsystem problems from the frontline holds promise for quality enhancement. Frontline providers are urged to apply quality improvement; yet no systematic approach to problem detection has been tested. This study investigated a self-report approach to detecting operational failures encountered during patient care. Methods. Data were collected from 5 medical-surgical units over 4 weeks. Unit staff documented operational failures on a small distinctive Pocket Card. Frequency distributions for the operational failures in each category were calculated for each hospital overall and disaggregated by shift. Rate of operational failures on each unit was also calculated. Results. A total of 160 nurses participated in this study reporting a total of 2,391 operational failures over 429 shifts. Mean number of problems per shift varied from 4.0 to 8.5 problems with equipment/supply problems being the most commonly reported category. Conclusions. Operational failures are common on medical-surgical clinical units. It is feasible for unit staff to record these failures in real time. Many types of failures were recognized by frontline staff. This study provides preliminary evidence that the Pocket Card is a feasible approach to detecting operational failures in real time. Continued research on methodologies to investigate the impact of operational failures is warranted.
PROGNOSIS OF PATIENTS WITH BREAST CANCER RELATED TO THE TIMING OF OPERATION DURING MENSTRUAL CYCLE
Zhang Baoning
1998-01-01
Objective: To evaluate the effect of operation timing during menstrual cycle on the prognosis of patients with breast cancer. Methods: 218 operated premenopausal patients with breast cancer had been followed-up for more than 10 years. Prognostic factors related to these patients had been selected to be underwent univariate analysis and multivariate analysis by Cox regression model. Results: Univariage analysis showed that the menstrual timing of operation, as other Known prognostic factors (tumor size, node status,histological grade, TNM classification, adjuvent systemic therapy, etc), had an influence on the patients' outcome.Multivariate analysis by Cox regression model indicated that disease-free rate and overall survival rate of patients operated during the periovulatory phase (123 cases) were significantly superior to those operated during the premenstrual phase (95 cases) (P＜0.01). There were no significant differences in prognosis between patients who received operations during the follicular phase (96 cases)and those during the luteal phase (122 cases) (P＞0.01).Conclusion: Probably there is an optimal timing of operation for premenopausal breast cancer patients. Any prospective, randomized clinical study should be carried out to make this problem clear.
Wooley, John F.
Capillary suction time is time required for the liquid phase of a treated sludge to travel through 1 centimeter of media (blotter or filter paper). Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module provides waste water treatment plant operators with…
Investigation of the Adaptability of Transient Stability Assessment Methods to Real-Time Operation
Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Sommer, Stefan
2012-01-01
In this paper, an investigation of the adaptability of available transient stability assessment methods to real-time operation and their real-time performance is carried out. Two approaches based on Lyapunov’s method and the equal area criterion are analyzed. The results allow to determine...
Carnegie, John W.
The rise time test (along with the settleometer procedure) is used to monitor sludge behavior in the secondary clarifier of an activated sludge system. The test monitors the effect of the nitrification/denitrification process and aids the operator in determining optimum clarifier sludge detention time and, to some extent, optimum degree of…
Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations
Sharma, Shivanjli; Fergus, John
2017-01-01
A real time dashboard was developed in order to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users across a number of roles benefit from a real time system that enables common situational awareness. In addition to shared situational awareness the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial set of metrics computed on operational data. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017; Charlotte-Douglas International Airport. Analysis and metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of metrics across delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are explored. The potential of the real time tool to inform the predictability and efficiency of using a trajectory-based departure scheduling system is also discussed.
Building XenoBuntu Linux Distribution for Teaching and Prototyping Real-Time Operating Systems
Slim BEN SAOUD; Ahmed BEN ACHBALLAH; Litayem, Nabil
2011-01-01
This paper describes the realization of a new Linux distribution based on Ubuntu Linux and Xenomai Real-Time framework. This realization is motivated by the eminent need of real-time systems in modern computer science courses. The majority of the technical choices are made after qualitative comparison. The main goal of this distribution is to offer standard Operating Systems (OS) that include Xenomai infrastructure and the essential tools to begin hard real-time application development inside...
Detailed design of the kernel of a real-time multiprocessor operating system.
Wasson, Warren James
1980-01-01
This thesis describes the detailed design of a distributed operating system for a real-time, microcomputer based multiprocessor system. Process structuring and segmented address spaces comprise the central concepts around which this system is built. The system particularly supports applications where processing is partitioned into a set of multiple processes. One such area is that of digital signal processing for which this system has been specifically developed. The operating system is hiera...
The Regional Special Operations Headquarters: Franchising the NATO Model as a Hedge in Lean Times
2012-04-01
1 AIR FORCE FELLOWS AIR UNIVERSITY THE REGIONAL SPECIAL OPERATIONS HEADQUARTERS: FRANCHISING THE NATO MODEL AS A HEDGE IN LEAN...Headquarters: Franchising The NATO Model As A Hedge In Lean Times 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...it is not copyrighted, but is the property of the United States government. 3 The Regional Special Operations Headquarters: Franchising the
Real-Time Online Communications: ’Chat’ Use in Navy Operations
2004-06-01
within US military command and control. Introduction Chat Systems The ability to conduct a real-time conversation online has become a...Oonk, Smallman & Moore, 2000; Oonk, Rogers & Moore, 2001) and military operations ( Schermerhorn , Oonk & Moore, 2002) and suggest that improvements...the discussions that become the basis for operational orders. Overall, it is clear that a comprehensive knowledge management approach is required to
Nakafuji, Dora [Hawaiian Electric Company, Honululu, HI (United States); Gouveia, Lauren [Hawaiian Electric Company, Honululu, HI (United States)
2016-10-24
This project supports development of the next generation, integrated energy management infrastructure (EMS) able to incorporate advance visualization of behind-the-meter distributed resource information and probabilistic renewable energy generation forecasts to inform real-time operational decisions. The project involves end-users and active feedback from an Utility Advisory Team (UAT) to help inform how information can be used to enhance operational functions (e.g. unit commitment, load forecasting, Automatic Generation Control (AGC) reserve monitoring, ramp alerts) within two major EMS platforms. Objectives include: Engaging utility operations personnel to develop user input on displays, set expectations, test and review; Developing ease of use and timeliness metrics for measuring enhancements; Developing prototype integrated capabilities within two operational EMS environments; Demonstrating an integrated decision analysis platform with real-time wind and solar forecasting information and timely distributed resource information; Seamlessly integrating new 4-dimensional information into operations without increasing workload and complexities; Developing sufficient analytics to inform and confidently transform and adopt new operating practices and procedures; Disseminating project lessons learned through industry sponsored workshops and conferences;Building on collaborative utility-vendor partnership and industry capabilities
Operating system for a real-time multiprocessor propulsion system simulator
Cole, G. L.
1984-01-01
The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.
Gómez, Fernando
2007-04-01
Reversible evolutions are usually expressed in terms of unitary groups on separable Hilbert spaces, whereas irreversible ones are described by contraction semigroups. In the theory of nonunitary similarity transformations intertwining unitary groups and contraction semigroups, proposed initially in the context of statistical mechanics as part of an exact theory of irreversibility, the unitary groups with such intertwining property have been qualified by the existence of an internal time operator. This work tackles the question of existence of internal time operators for unitary groups with the intertwining property. Equivalent conditions to the existence of internal time operators for such unitary groups are given on the basis of the Sz.-Nagy-Foiaş [Harmonic Analysis of Operators on Hilbert Spaces (North-Holland, Amsterdam, 1970)] dilation theory and the theory of shift invariant subspaces. These conditions permit us to solve the inverse intertwining problem in the negative: there are unitary groups with the intertwining property which do not admit internal time operator. A representative family of such unitary groups is given.
Paul, Rourab; Sau, Suman; Chakrabarti, Amlan
2012-01-01
Security is the most important part in data communication system, where more randomization in secret keys increases the security as well as complexity of the cryptography algorithms. As a result in recent dates these algorithms are compensating with enormous memory spaces and large execution time on hardware platform. Field programmable gate arrays (FPGAs), provide one of the major alternative in hardware platform scenario due to its reconfiguration nature, low price and marketing speed. In FPGA based embedded system we can use embedded processor to execute particular algorithm with the inclusion of a real time operating System (RTOS), where threads may reduce resource utilization and time consumption. A process in the runtime is separated in different smaller tasks which are executed by the scheduler to meet the real time dead line using RTOS. In this paper we demonstrate the design and implementation of a 128-bit Advanced Encryption Standard (AES) both symmetric key encryption and decryption algorithm by de...
Real-time embedded systems open-source operating systems perspective
Bertolotti, Ivan Cibrario
2012-01-01
From the Foreword: "!the presentation of real-time scheduling is probably the best in terms of clarity I have ever read in the professional literature. Easy to understand, which is important for busy professionals keen to acquire (or refresh) new knowledge without being bogged down in a convoluted narrative and an excessive detail overload. The authors managed to largely avoid theoretical-only presentation of the subject, which frequently affects books on operating systems. ! an indispensable [resource] to gain a thorough understanding of the real-time systems from the operating systems p
Operation safety risk analysis method of hydropower project considering time-dependent effect
Zhang Sherong; Yan Lei
2012-01-01
In order to consider the time-dependent characteristic of risk factors of hydropower project, the method of stochastic process simulating structure resistance and load effect is adopted. On the basis of analyzing the structure characteristics and mode of operation, the operation safety risk rate assessment model of hydropower project is established on the comprehensive application of the improved analytic hierarchy process, the time-dependent reliability theory and the risk rate threshold. A scheme to demonstrate the time-dependent risk rate assessment method for an example of the earth-rock dam is particularly implemented by the proposed approach. The example shows that operation safety risk rate is closely related to both the service period and design standard ; considering the effect of time-dependent, the risk rate increases with time and the intersection of them reflects the technical service life of structures. It could provide scientific basis for the operation safety and risk decision of the hydropower project by predicting the trend of risk rate via this model.
Tempo máximo de fonação de crianças pré-escolares Maximum phonation time in pre-school children
Carla Aparecida Cielo
2008-08-01
Full Text Available Pesquisas sobre o tempo máximo de fonação (TMF em crianças obtiveram diferentes resultados, constatando que tal medida pode refletir o controle neuromuscular e aerodinâmico da produção vocal, podendo ser utilizada como indicador para outras formas de avaliação, tanto qualitativas quanto objetivas. OBJETIVO: Verificar as medidas de TMF de 23 crianças pré-escolares, com idades entre quatro e seis anos e oito meses. MATERIAL E MÉTODO: O processo de amostragem contou com questionário enviado aos pais, triagem auditiva e avaliação perceptivo-auditiva vocal, por meio da escala RASAT. A coleta de dados constou dos TMF. DESENHO DO ESTUDO: Prospectivo de corte transversal. RESULTADOS: Os TMF /a/, /s/ e /z/ médios foram 7,42s, 6,35s e 7,19s; os TMF /a/ aos seis anos, foram significativamente maiores do que aos quatro anos; à medida que a idade aumentou, todos os TMF também aumentaram; e a relação s/z para todas as idades foi próxima de um. CONCLUSÕES: Os valores de TMF mostraram-se superiores aos verificados em pesquisas nacionais e inferiores aos verificados em pesquisa internacionais. Além disso, pode-se concluir que as faixas etárias analisadas no presente estudo encontram-se num período de maturação nervosa e muscular, sendo a imaturidade mais evidente na faixa etária dos quatro anos.Past studies on the maximum phonation time (MPT in children have shown different results in duration. This factor may reflect the neuromuscular and aerodynamic control of phonation in patients; such control might be used as an indicator of other evaluation methods on a qualitative and quantitative basis. AIM: to verify measures of MPT and voice acoustic characteristics in 23 children aged four to six year and eight months. METHOD: The sampling process comprised a questionnaire that was sent to parents, followed by auditory screening and a voice perceptive-auditory assessment based on the R.A.S.A.T. scale. Data collection included the MPT. STUDY
Obesity increases operating room time for lobectomy in the society of thoracic surgeons database.
St Julien, Jamii B; Aldrich, Melinda C; Sheng, Shubin; Deppen, Stephen A; Burfeind, William R; Putnam, Joe B; Lambright, Eric S; Nesbitt, Jonathan C; Grogan, Eric L
2012-12-01
Obesity has become a major epidemic in the United States. Although research suggests obesity does not increase major morbidity or mortality after thoracic operations, it likely results in greater use of health care resources. We examined all patients in The Society of Thoracic Surgeons General Thoracic Surgery database with primary lung cancer who underwent lobectomy from 2006 to 2010. We investigated the impact of body mass index (BMI) on total operating room time using a linear mixed-effects regression model and multiple imputations to account for missing data. Secondary outcomes included postoperative length of stay and 30-day mortality. Covariates included age, sex, race, forced expiratory volume, smoking status, Zubrod score, prior chemotherapy or radiation, steroid use, number of comorbidities, surgical approach, hospital lobectomy volume, hospital percent obesity, and the addition of mediastinoscopy or wedge resection. A total of 19,337 patients were included. The mean BMI was 27.3 kg/m2, with 4,898 patients (25.3%) having a BMI of 30 kg/m2 or greater. The mean total operating room time, length of stay, and 30-day mortality were 240 minutes, 6.7 days, and 1.8%, respectively. For every 10-unit increase in BMI, mean operating room time increased by 7.2 minutes (range, 4.8 to 8.4 minutes; pobese patients did not affect the association between BMI and operative time. Body mass index was not associated with 30-day mortality or increased length of stay. Increased BMI is associated with increased total operating room time, regardless of institutional experience with obese patients. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Maximum Autocorrelation Factorial Kriging
Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.
2000-01-01
This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...
Bonnard, A; Masmoudi, M; Boimond, B; Capito, C; Holvoet, L; Skhiri, A; El Ghoneimi, A
2014-11-01
Laparoscopic splenectomy remains a technically demanding procedure. On patients with sickle cell disease (SCD), a post operative acute chest syndrome (ACS) can occur. The aim of the study was to look for predictive factors of post operative ACS. It's a retrospective study on patients with SCD, who underwent a laparoscopic splenectomy in Robert Debré hospital, Paris, France, between March 2008 and December 2013. Diagnosis of ACS was done if the patient developed hypoxemia associated with fever above 38.5 °C and an infiltrate on chest x ray during the post operative course. Pre-, post- and operative factors were studied. Descriptive statistics were compared using the Mann-Whitney test or the exact Fisher test. A p inferior to 0.05 was considered as significant. 52 patients with SCD underwent a laparoscopic splenectomy. Twelve patients presented a post operative ACS (23%) (mean age at surgery 4 years old) while forty did not (mean age 5.25 years old). Neither previous episode of ACS nor any factors reflecting SCD severity were significant. The shorter the operative time was, the greater the risk of developing an ACS (p post operative management, in the absence of predictive factors for ACS, should be carefully followed in a high dependency unit at least for 48 h for all patients.
The service evaluation and measures for long time operation of piping systems
Junek, L. [Institute of Applied Mechanics, Brno (Czech Republic); Hahn, J. [CEZ Temelin (Czech Republic); Bartonicek, J. [JBC Consulting, Neckarwestheim (Germany)
2009-07-01
There are piping systems in industrial equipment and nuclear power plants that are important regarding safety and economical operation. The required quality of these piping systems has to be safeguarded during operation. The integrity concept is applied in these cases. Technical basics are: - required quality approved after design, manufacturing and assembly, - safeguard of quality in operation, - regular re-assessment of quality in operation. Design should include all degradation mechanisms but some of them cannot be controlled by analysis. They have to be excluded using appropriate measures. In most of the cases, these damage mechanisms are a result of local effects (like loads, medium, material characteristics) that cannot be determined exactly in advance. Examples for piping systems are fatigue caused by vibration or dynamics loads and material corrosion phenomena. For cases like these and given medium, suitable materials have to be chosen in combination with appropriate manufacturing procedures (incl. welding), optimized constructions and operation. The loads and the water chemistry in operation have to be monitored and the efficiency of the measures has to be verified, regularly, taking into account the actual state of knowledge. Design specification can determine global temperature, pressure, sustained loads and time history loadings during normal, abnormal and emergency operation only. Goal of design analysis (stress, fatigue) is to demonstrate, that the results are within given limits. It is obvious that this formal procedure does not provide conclusion regarding the state of components quality after a given period of operation. The manufacturing process is important for the quality status too. The demanded quality can only be achieved if there is a thorough control of material composition and behaviour, of constructive details and of the desired-fault-free state. Control of reasons for specified and unspecified degradation during operation is the first
Real-time automated failure analysis for on-orbit operations
Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James
1993-01-01
A system which is to provide real-time failure analysis support to controllers at the NASA Johnson Space Center Control Center Complex (CCC) for both Space Station and Space Shuttle on-orbit operations is described. The system employs monitored systems' models of failure behavior and model evaluation algorithms which are domain-independent. These failure models are viewed as a stepping stone to more robust algorithms operating over models of intended function. The described system is designed to meet two sets of requirements. It must provide a useful failure analysis capability enhancement to the mission controller. It must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation. The underlying technology and how it may be used to support operations is also discussed.
Lee, Ji-Hoon; Choi, Young Eun; Lee, Jun Hee; Lee, Byeong Hoon; Song, Won Il; Jeong, Kwang-Un; Lee, Gi-Dong; Lee, Seung Hee
2013-12-01
We proposed a method to reduce the operating voltage and the grey-to-grey switching time of a vertically aligned liquid crystal display using a mixture of planar and vertical polyimide alignment materials. The surface anchoring energy of the two-polyimide mixture was smaller than that of the pure vertical polyimide and consequently, liquid crystal molecules were easily switched to a planar state with an electric field, resulting in a greater maximum retardation than that of the pure polyimide at the same applied voltage. Rising time was also significantly reduced due to the suppressed optical bouncing effect in the mixed planar polyimide, and the decaying time showed negligible change. With the proposed approach, we can reduce the cell gap to obtain half-wave retardation allowing for faster response time while keeping a low operating voltage.
Dynamic simulation and optimal real-time operation of CHP systems for buildings
Cho, Hee Jin
Combined Cooling, Heating, and Power (CHP) systems have been widely recognized as a key alternative for electric and thermal energy generation because of their outstanding energy efficiency, reduced environmental emissions, and relative independence from centralized power grids. The systems provide simultaneous onsite or near-site electric and thermal energy generation in a single, integrated package. As CHP becomes increasingly popular worldwide and its total capacity increases rapidly, the research on the topics of CHP performance assessment, design, and operational strategy become increasingly important. Following this trend of research activities to improve energy efficiency, environmental emissions, and operational cost, this dissertation focuses on the following aspects: (a) performance evaluation of a CHP system using a transient simulation model; (b) development of a dynamic simulation model of a power generation unit that can be effectively used in transient simulations of CHP systems; (c) investigation of real-time operation of CHP systems based on optimization with respect to operational cost, primary energy consumption, and carbon dioxide emissions; and (d) development of optimal supervisory feed-forward control that can provide realistic real-time operation of CHP systems with electric and thermal energy storages using short-term weather forecasting. The results from a transient simulation of a CHP system show that technical and economical performance can be readily evaluated using the transient model and that the design, component selection, and control of a CHP system can be improved using this model. The results from the case studies using optimal real-time operation strategies demonstrate that CHP systems with an energy dispatch algorithm have the potential to yield savings in operational cost, primary energy consumption, and carbon dioxide emissions with respect to a conventional HVAC system. Finally, the results from the case study using a
Holonomy Spin Foam Models: Boundary Hilbert spaces and Time Evolution Operators
Dittrich, Bianca; Kaminski, Wojciech
2012-01-01
In this and the companion paper a novel holonomy formulation of so called Spin Foam models of lattice gauge gravity are explored. After giving a natural basis for the space of simplicity constraints we define a universal boundary Hilbert space, on which the imposition of different forms of the simplicity constraints can be studied. We detail under which conditions this Hilbert space can be mapped to a Hilbert space of projected spin networks or an ordinary spin network space. These considerations allow to derive the general form of the transfer operators which generates discrete time evolution. We will describe the transfer operators for some current models on the different boundary Hilbert spaces and highlight the role of the simplicity constraints determining the concrete form of the time evolution operators.
Operation and performance of Time Projection Chambers of SHINE / NA61 experiment at CERN
Aduszkiewicz, Antoni
This paper characterizes the Time Projection Chambers (TPC) in the SHINE / NA61 exper- iment at CERN and their operation during the first run in 2007. An analysis of a change of the gas mixture in the TPCs for SHINE is included. Also the gas system of the TPCs is described.
DCOS, a Real-Time Light-weight Data Centric Operating System
Hofmeijer, T.J.; Dulman, S.O.; Jansen, P.G.; Havinga, Paul J.M.; Sahni, S.
DCOS is a Data Centric lightweight Operating System for embedded devices. Despite limited energy and hardware resources, it supports a data driven architecture with provisions for dynamic loadable Modules. It combines these with Real-Time provisions based on Earliest Deadline First with a simple but
DCOS, a real-time light-weight Data Centric Operating System
Hofmeijer, T.J.; Dulman, S.O.; Jansen, P.G.; Havinga, Paul J.M.
2004-01-01
DCOS is a Data Centric lightweight Operating System for embedded devices. Despite limited energy and hardware resources, it supports a data driven architecture with provisions for dynamic loadable Modules. It combines these with Real-Time provisions based on Earliest Deadline First with a simple but
Increase in Cesarean Operative Time Following Institution of the 80-Hour Workweek
Smrtka, Michael P.; Gunatilake, Ravindu P.; Harris, Benjamin; Yu, Miao; Lan, Lan; Brancazio, Leo R.; Valea, Fidel A.; Grotegut, Chad A.; Brown, Haywood L.
2015-01-01
Background In 2003, the Accreditation Council for Graduate Medical Education limited resident duty hours to 80 hours per week. More than a decade later, the effect of the limits on resident clinical competence is not fully understood. Objective We sought to assess the effect of duty hour restrictions on resident performance of an uncomplicated cesarean delivery. Methods We reviewed unlabored primary cesarean deliveries at Duke University Hospital after 34 weeks gestation, between 2003 and 2011. Descriptive statistics and linear regression were used to compare total operative time with incision to delivery time as a function of years since institution of the 80-hour workweek. Resident training level, subject body mass index, estimated blood loss, and skin closure method were controlled for in the regression model. Results We identified 444 deliveries that met study criteria. The mean (SD) total operative time in 2003–2004 was 43.3 (14.3) minutes and 59.6 (10.7) minutes in 2010–2011 (P delivery time (P = .05). The magnitude of increased operative time was seen among junior residents (2.0 min/y, P < .001) compared to that of senior residents (1.2 min/y, P = .06). Conclusions Since introduction of the 2003 duty hour limits, there has been an increase of nearly 20 minutes in the time required for a routine cesarean delivery. It is unclear if the findings are due to a change in residency duty hours or to another aspect of residency training. PMID:26457141
Alpert, J. C.; Wang, J.
2009-12-01
To reduce the impact of natural hazards and environmental changes, the National Centers for Environmental Prediction (NCEP) provide first alert and a preferred partner for environmental prediction services, and represents a critical national resource to operational and research communities affected by climate, weather and water. NOMADS is now delivering high availability services as part of NOAA’s official real time data dissemination at its Web Operations Center (WOC) server. The WOC is a web service used by organizational units in and outside NOAA, and acts as a data repository where public information can be posted to a secure and scalable content server. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development efforts aimed at advancing modeling and GEO-related tasks. The user (client) executes what is efficient to execute on the client and the server efficiently provides format independent access services. Client applications can execute on the server, if it is desired, but the same program can be executed on the client side with no loss of efficiency. In this way this paradigm lends itself to aggregation servers that act as servers of servers listing, searching catalogs of holdings, data mining, and updating information from the metadata descriptions that enable collections of data in disparate places to be simultaneously accessed, with results processed on servers and clients to produce a needed answer. The services used to access the operational model data output are the Open-source Project for a Network Data Access Protocol (OPeNDAP), implemented with the Grid Analysis and Display System (GrADS) Data Server (GDS), and applications for slicing, dicing and area sub-setting the large matrix of real time model data holdings. This approach insures an efficient use of computer resources because users transmit/receive only the data necessary for their tasks including
陈富坚; 黄世斌; 包惠明
2011-01-01
To solve the problems in the current deterministic method for determining a maximum speed limit for expressway operation against disastrous events, a reliability method was presented. The dynamic analysis was made for vehicle traveling at a horizontal curve of expressway, and respective maximum allowable speeds were deduced for vehicle in horizontal circular motion without sliding and that in emergency stopping without hitting an obstacle in the visual range. Based on Reliability engineering, the reliability of a maximum speed limit was defined. With safety of horizontal circular motion and emergency stopping as constraints, the performance function of the maximum speed limit was established and the model for calculation of its reliability and reliable indicator were deduced. For solution of the reliability model, Monte Carlo method was recommended due to multi-parameter high complexity of the non-linear performance function. With a self-developed program, a case study was conducted to illustrate the reliability analysis of the maximum speed limit for expressway safety management under a detrimental event. The reliability method for determining a maximum speed limit of expressway operation is helpful for improving traffic safety.%针对灾变事件下高速公路安全管理中采用定值型限速标准存在的问题,对基于可靠性的限速标准进行了探讨.通过对高速公路平曲线路段车辆行驶的动力学分析,推导了车辆作圆周运动而不发生横向滑移的最大允许车速,以及司机在弯道内发现障碍物而紧急安全停车的最大允许速度.以可靠性工程理论为依据,对高速公路限速标准的可靠度进行了定义,并以圆周运动安全和紧急刹车安全为约束条件建立了高速公路限速标准的功能函数,推导了相应的可靠性计算模型.针对限速标准功能函数的多参数复杂非线性特征,提出采用Monte Carlo法对限速标准可靠性计算模型进行求解.以所
Proposed Fuzzy CPU Scheduling Algorithm (PFCS for Real Time Operating Systems
Prerna Ajmani
2013-12-01
Full Text Available In the era of supercomputers multiprogramming operating system has emerged. Multiprogramming operating system allows more than one ready to execute processes to be loaded into memory. CPU scheduling is the process of selecting from among the processes in memory that are ready to execute and allocate the processor time (CPU to it. Many conventional algorithms have been proposed for scheduling CPU such as FCFS, shortest job first (SJF, priority scheduling etc. But no algorithm is absolutely ideal in terms of increased throughput, decreased waiting time, decreased turnaround time etc. In this paper, a new fuzzy logic based CPU scheduling algorithm has been proposed to overcome the drawbacks of conventional algorithms for efficient utilization of CPU.
Operating system for a real-time multiprocessor propulsion system simulator. User's manual
Cole, G. L.
1985-01-01
The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.
Castaños, Octavio; Schuch, Dieter; Rosas-Ortiz, Oscar
2013-02-01
Based on the Gaussian wave packet solution for the harmonic oscillator and the corresponding creation and annihilation operators, a generalization is presented that also applies for wave packets with time-dependent width as they occur for systems with different initial conditions, time-dependent frequency or in contact with a dissipative environment. In all these cases, the corresponding coherent states, position and momentum uncertainties and quantum mechanical energy contributions can be obtained in the same form if the creation and annihilation operators are expressed in terms of a complex variable that fulfils a nonlinear Riccati equation which determines the time-evolution of the wave packet width. The solutions of this Riccati equation depend on the physical system under consideration and on the (complex) initial conditions and have close formal similarities with general superpotentials leading to isospectral potentials in supersymmetric quantum mechanics. The definition of the generalized creation and annihilation operator is also in agreement with a factorization of the operator corresponding to the Ermakov invariant that exists in all cases considered.
The Bloch wave operator: generalizations and applications: Part I. The time-independent case
Killingbeck, John P [Mathematics Department, University of Hull, Hull HU6 7RX (United Kingdom); Jolicard, Georges [Observatoire de Besancon (UMR-CNRS 6091), Universite de Franche-Comte, 41 bis, Avenue de l' Observatoire, 25000 Besancon (France)
2003-05-23
This is part 1 of a two-part review on wave operator theory and methods. The basic theory of the time-independent wave operator is presented in terms of partitioned matrix theory for the benefit of general readers, with a discussion of the links between the matrix and projection operator approaches. The matrix approach is shown to lead to simple derivations of the wave operators and effective Hamiltonians of Loewdin, Bloch, Des Cloizeaux and Kato as well as to some associated variational forms. The principal approach used throughout stresses the solution of the nonlinear equation for the reduced wave operator, leading to the construction of the effective Hamiltonians of Bloch and of Des Cloizeaux. Several mathematical techniques which are useful in implementing this approach are explained, some of them being relatively little known in the area of wave operator calculations. The theoretical discussion is accompanied by several specimen numerical calculations which apply the described techniques to a selection of test matrices taken from the previous literature on wave operator methods. The main emphasis throughout is on the use of numerical methods which use iterative or perturbation algorithms, with simple Pade approximant methods being found sufficient to deal with most of the cases of divergence which are encountered. The use of damping factors and relaxation parameters is found to be effective in stabilizing calculations which use the energy-dependent effective Hamiltonian of Loewdin. In general the computations suggest that the numerical applications of the nonlinear equation for the reduced wave operator are best carried out with the equation split into a pair of equations in which the Bloch effective Hamiltonian appears as a separate entity. The presentation of the theoretical and computational details throughout is accompanied by references to and discussion of many works which have used wave operator methods in physics, chemistry and engineering. Some of
Risk factors for prolonged operative time in single-incision laparoscopic cholecystectomy
Cheon, Seong Uk; Moon, Ju Ik; Choi, In Seok
2015-01-01
Purpose We performed 3-channel single incision laparoscopic cholecystectomy (SILC) in earlier period of this study and modified our method to 4-channel SILC using a snake retractor for better operative field in later period. This study has been designed to evaluate the risk factors for prolonged operative time in SILC. Methods From April 2010 to August 2014, 323 cases of 3-channel SILC (Konyang standard method [KSM] group) and 399 cases of 4-channel SILC (modified KSM [mKSM] group) using a sn...
Small flow-time representation of fermion bi-linear operators
Hieda, Kenji
2016-01-01
Fermion bi-linear operators of mass dimension~$3$, such as the axial-vector and vector currents, the pseudo-scalar and scalar densities, whose normalizations are fixed by Ward--Takahashi relations, are related to small flow-time behavior of composite operators of fermion fields evolved by L\\"uscher's flow equation. The representations can be useful in lattice numerical simulations, as recently demonstrated by the WHOT QCD collaboration for the chiral condensation of the $N_f=2+1$ QCD at finite temperature.
无
2008-01-01
To improve the effect of destroying time-sensitive target (TST), a method of operational effectiveness evaluation is presented and some influential factors are analyzed based on the combat flow of system for destroying TST. Considering the possible operation modes of the system, a waved operation mode and a continuous operation mode are put forward at first. At the same time, some relative formulas are modified. In examples, the influential factors and operation modes are analyzed based on the system effectiveness. From simulation results, some design and operation strategies of the system for destroying time sensitive targets are concluded, which benefit to the improvement of the system effectiveness.
APPLICATION OF TRAVEL TIME RELIABILITY FOR PERFORMANCE ORIENTED OPERATIONAL PLANNING OF EXPRESSWAYS
Mehran, Babak; Nakamura, Hideki
Evaluation of impacts of congestion improvement scheme s on travel time reliability is very significant for road authorities since travel time reliability repr esents operational performance of expressway segments. In this paper, a methodology is presented to estimate travel tim e reliability prior to implementation of congestion relief schemes based on travel time variation modeling as a function of demand, capacity, weather conditions and road accident s. For subject expressway segmen ts, traffic conditions are modeled over a whole year considering demand and capacity as random variables. Patterns of demand and capacity are generated for each five minute interval by appl ying Monte-Carlo simulation technique, and accidents are randomly generated based on a model that links acci dent rate to traffic conditions. A whole year analysis is performed by comparing de mand and available capacity for each scenario and queue length is estimated through shockwave analysis for each time in terval. Travel times are estimated from refined speed-flow relationships developed for intercity expressways and buffer time index is estimated consequently as a measure of travel time reliability. For validation, estimated reliability indices are compared with measured values from empirical data, and it is shown that the proposed method is suitable for operational evaluation and planning purposes.
Mohanty, P.; Rixen, D. J.
2004-08-01
Operational modal analysis procedures are efficient techniques to identify modal properties of structures excited through unknown random noise produced during operation. In many practical cases, harmonic excitations are often present in addition to the white-noise and, if the harmonic frequency is close to structural frequencies, standard identification techniques fail. Here, a method is presented to take into account the harmonic excitations while doing modal parameter identification for operational modal analysis (OMA). The proposed technique is based on the Ibrahim Time Domain method and explicitly includes the harmonic frequencies known a priori. Therefore, the modified technique allows proper identification of eigenfrequencies and modal damping even when harmonic excitation frequencies are close to the natural frequencies of the structures. Experimental results are shown in the presence of multi-harmonic loads for a steel plate to validate the method.
Surgery in Pediatric Crohn's Disease: Indications, Timing and Post-Operative Management
2017-01-01
Pediatric onset Crohn's disease (CD) tends to have complicated behavior (stricture or penetration) than elderly onset CD at diagnosis. Considering the longer duration of the disease in pediatric patients, the accumulative chance of surgical treatment is higher than in adult onset CD patients. Possible operative indications include perianal CD, intestinal stricture or obstruction, abdominal abscess or fistula, intestinal hemorrhage, neoplastic changes and medically untreatable inflammation. Growth retardation is an operative indication only for pediatric patients. Surgery can affect a patient's clinical course, especially for pediatric CD patient who are growing physically and mentally, so the decision should be made by careful consideration of several factors. The complex and diverse clinical conditions hinder development of a systemized treatment algorithm. Therefore, timing of surgery in pediatric CD patients should be determined with individualized approach by an experienced and well organized multidisciplinary inflammatory bowel disease team. Best long-term outcomes will require proactive post-operative monitoring and therapeutic modifications according to the conditions.
Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation
Chen, Lu; Singh, Vijay P.; Lu, Weiwei; Zhang, Junhong; Zhou, Jianzhong; Guo, Shenglian
2016-09-01
When employing streamflow forecasting in practical applications, such as reservoir operation, one important issue is to deal with the uncertainty involved in forecasting. Traditional studies dealing with the uncertainty in streamflow forecasting have been limited in describing the evolution of forecast uncertainty. This paper proposes a copula-based uncertainty evolution (CUE) model to describe the evolution of streamflow forecast uncertainty. The generated forecast uncertainty series fits the observed series well in terms of observed mean, standard deviation and skewness. Daily flow with forecast uncertainty are simulated and used to determine the effect of forecast uncertainty on real-time reservoir operation of the Three Gorges Reservoir (TGR), China. Results show that using the forecast inflow coupled with the pre-release module for reservoir operation of TGR in flood season cannot increase the flood risk.
Performance analysis and kernel size study of the Lynx real-time operating system
Liu, Yuan-Kwei; Gibson, James S.; Fernquist, Alan R.
1993-01-01
This paper analyzes the Lynx real-time operating system (LynxOS), which has been selected as the operating system for the Space Station Freedom Data Management System (DMS). The features of LynxOS are compared to other Unix-based operating system (OS). The tools for measuring the performance of LynxOS, which include a high-speed digital timer/counter board, a device driver program, and an application program, are analyzed. The timings for interrupt response, process creation and deletion, threads, semaphores, shared memory, and signals are measured. The memory size of the DMS Embedded Data Processor (EDP) is limited. Besides, virtual memory is not suitable for real-time applications because page swap timing may not be deterministic. Therefore, the DMS software, including LynxOS, has to fit in the main memory of an EDP. To reduce the LynxOS kernel size, the following steps are taken: analyzing the factors that influence the kernel size; identifying the modules of LynxOS that may not be needed in an EDP; adjusting the system parameters of LynxOS; reconfiguring the device drivers used in the LynxOS; and analyzing the symbol table. The reductions in kernel disk size, kernel memory size and total kernel size reduction from each step mentioned above are listed and analyzed.
Performance analysis and kernel size study of the Lynx real-time operating system
Liu, Yuan-Kwei; Gibson, James S.; Fernquist, Alan R.
1993-01-01
This paper analyzes the Lynx real-time operating system (LynxOS), which has been selected as the operating system for the Space Station Freedom Data Management System (DMS). The features of LynxOS are compared to other Unix-based operating system (OS). The tools for measuring the performance of LynxOS, which include a high-speed digital timer/counter board, a device driver program, and an application program, are analyzed. The timings for interrupt response, process creation and deletion, threads, semaphores, shared memory, and signals are measured. The memory size of the DMS Embedded Data Processor (EDP) is limited. Besides, virtual memory is not suitable for real-time applications because page swap timing may not be deterministic. Therefore, the DMS software, including LynxOS, has to fit in the main memory of an EDP. To reduce the LynxOS kernel size, the following steps are taken: analyzing the factors that influence the kernel size; identifying the modules of LynxOS that may not be needed in an EDP; adjusting the system parameters of LynxOS; reconfiguring the device drivers used in the LynxOS; and analyzing the symbol table. The reductions in kernel disk size, kernel memory size and total kernel size reduction from each step mentioned above are listed and analyzed.
ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks
Hall, Timothy A.; Clancey, William J.; McDonald, Aaron; Toschlog, Jason; Tucker, Tyson; Khan, Ahmed; Madrid, Steven (Eric)
2011-01-01
In 2007 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organizations to find ways to reduce the cost of operations for supporting the International Space Station (ISS) in the Mission Control Center (MCC). Each MOD organization was asked to define and execute projects that would help them attain cost reductions by 2012. The MOD Operations Division Flight Planning Branch responded to this challenge by launching several software automation projects that would allow them to greatly improve console operations and reduce ISS console staffing and intern reduce operating costs. These tasks ranged from improving the management and integration mission plan changes, to automating the uploading and downloading of information to and from the ISS and the associated ground complex tasks that required multiple decision points. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture; as well as engaging a previously TRL 4-5 technology developed by Ames Research Center (ARC) that utilized an intelligent agent-based system to manage and automate file traffic flow, archive data, and generate console logs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the goal of eliminating a second full time ISS console support position by 2012. The team will also reduce one long range planning console position by 2014. When complete, these Flight Planning Branch projects will account for the elimination of 3 console positions and a reduction in staffing of 11 engineering personnel (EP) for ISS.
Ou, Congjie; Chamberlin, Ralph V.; Abe, Sumiyoshi
2017-01-01
The Lindblad equation is widely employed in studies of Markovian quantum open systems. Here, the following question is posed: in a quantum open system with a time-dependent Hamiltonian such as a subsystem in contact with the heat bath, what is the corresponding Lindblad equation for the quantum state that keeps the internal energy of the subsystem constant in time? This issue is of importance in realizing quasi-stationary states of open systems such as quantum circuits and batteries. As an illustrative example, the time-dependent harmonic oscillator is analyzed. It is shown that the Lindbladian operator is uniquely determined with the help of a Lie-algebraic structure, and the time derivative of the von Neumann entropy is shown to be nonnegative if the curvature of the harmonic potential monotonically decreases in time.
Building XenoBuntu Linux Distribution for Teaching and Prototyping Real-Time Operating Systems
Litayem, Nabil; Saoud, Slim Ben
2011-01-01
This paper describes the realization of a new Linux distribution based on Ubuntu Linux and Xenomai Real-Time framework. This realization is motivated by the eminent need of real-time systems in modern computer science courses. The majority of the technical choices are made after qualitative comparison. The main goal of this distribution is to offer standard Operating Systems (OS) that include Xenomai infrastructure and the essential tools to begin hard real-time application development inside a convivial desktop environment. The released live/installable DVD can be adopted to emulate several classic RTOS Application Program Interfaces (APIs), directly use and understand real-time Linux in convivial desktop environment and prototyping real-time embedded applications.
Alternative real-time and historical visualization of cementing operations data
Sanchez, J.R. [Anadarko Canada Corp., Calgary, AB (Canada); Olesen, L. [Pason Systems Corp., Calgary, AB (Canada); Marriott, T.; Slight, C. [Halliburton Energy Services, Calgary, AB (Canada)
2006-07-01
This paper described a new and efficient way to transmit drilling data via the Internet to optimize operations and eliminate the rising cost of delivering data to the office of engineers. Monitoring data from drilling rigs is recorded and transmitted through a rig's satellite system to reveal performance history, current state, and how future improvements can be made. Although existing infrastructures can be used to send data from most services to head offices, very few services actually use the process. This paper used the example of cementing as the newest service to use this integration. Electronic drilling recorders (EDR) are installed on most rigs in North America to record parameters from drilling operations and to disseminate the information via a local area network. The parameters are sent off location via satellite and typically stored on a secure Internet site where operators with appropriate security can access the information about wells currently being drilled as well as historical well information. The interface connecting the cementing data to the operator is a valuable asset. Real-time data can be transmitted to an operator's office on every cementing job conducted. This paper demonstrated that the operator's requirement to view cementing data in real time at minimal cost was achieved by requesting that the cementing companies add their specific data parameters to the general set collected by the EDR. This was done using a wellsite information transfer standard (WITS), a common interface protocol. The new use of existing technology opens communication and provides operators with the ability to make real-time decisions during the cementing job. In addition to real-time visualization, other benefits include reduced cost of acquiring and transmitting data. The typical parameters recorded by gauges on a cementing truck include pumping pressure, pumping rate, recirculating density, pumping density and mix water rate. Additional gauges can
Basques, Bryce A; Golinvaux, Nicholas S; Bohl, Daniel D; Yacob, Alem; Toy, Jason O; Varthi, Arya G; Grauer, Jonathan N
2014-10-15
Retrospective database review. To evaluate whether microscope use during spine procedures is associated with increased operating room times or increased risk of infection. Operating microscopes are commonly used in spine procedures. It is debated whether the use of an operating microscope increases operating room time or confers increased risk of infection. The American College of Surgeons National Surgical Quality Improvement Program database, which includes data from more than 370 participating hospitals, was used to identify patients undergoing elective spinal procedures with and without the use of an operating microscope for the years 2011 and 2012. Bivariate and multivariate linear regressions were used to test the association between microscope use and operating room times. Bivariate and multivariate logistic regressions were similarly conducted to test the association between microscope use and infection occurrence within 30 days of surgery. A total of 23,670 elective spine procedures were identified, of which 2226 (9.4%) used an operating microscope. The average patient age was 55.1±14.4 years. The average operative time (incision to closure) was 125.7±82.0 minutes.Microscope use was associated with minor increases in preoperative room time (+2.9 min, P=0.013), operative time (+13.2 min, Pmicroscope and nonmicroscope groups for occurrence of any infection, superficial surgical site infection, deep surgical site infection, organ space infection, or sepsis/septic shock, regardless of surgery type. We did not find operating room times or infection risk to be significant deterrents for use of an operating microscope during spine surgery. 3.
Validation of an operational product to determine L1 to Earth propagation time delays
Cash, M. D.; Witters Hicks, S.; Biesecker, D. A.; Reinard, A. A.; Koning, C. A.; Weimer, D. R.
2016-02-01
We describe the development and validation of an operational space weather tool to forecast propagation delay times between L1 and Earth using the Weimer and King (2008) tilted phase front technique. A simple flat plane convection delay method is currently used by the NOAA Space Weather Prediction Center (SWPC) to propagate the solar wind from a monitoring satellite located at L1 to a point upstream of the magnetosphere. This technique assumes that all observed solar wind discontinuities, such as interplanetary shocks and interplanetary coronal mass ejection boundaries, are in a flat plane perpendicular to the Sun-Earth line traveling in the GSE X direction at the observed solar wind velocity. In reality, these phase plane fronts can have significantly tilted orientations, and by relying on a ballistic propagation method, delay time errors of ±15 min are common. In principle, the propagation time delay product presented here should more accurately predict L1 to Earth transit times by taking these tilted phase plane fronts into account. This algorithm, which is based on the work of Weimer and King (2008), is currently running in real time in test mode at SWPC as part of the SWPC test bed. We discuss the current algorithm performance, and via our detailed validation study, show that there is no significant difference between the two propagation methods when run in a real-time operational environment.
ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks
Hall, Timothy A.
2011-01-01
In 2008 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organization to find ways to reduce the costs of International Space station (ISS) console operations in the Mission Control Center (MCC). Each MOD organization was asked to identify projects that would help them attain a goal of a 30% reduction in operating costs by 2012. The MOD Operations and Planning organization responded to this challenge by launching several software automation projects that would allow them to greatly improve ISS console operations and reduce staffing and operating costs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the plan of eliminating two full time ISS console support positions by 2012. This will account for an overall 10 EP reduction in staffing for the Operations and Planning organization. These automation projects focused on utilizing software to automate many administrative and often repetitive tasks involved with processing ISS planning and daily operations information. This information was exchanged between the ground flight control teams in Houston and around the globe, as well as with the ISS astronaut crew. These tasks ranged from managing mission plan changes from around the globe, to uploading and downloading information to and from the ISS crew, to even more complex tasks that required multiple decision points to process the data, track approvals and deliver it to the correct recipient across network and security boundaries. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture between several planning tools; as well as a engaging a previously research level technology (TRL 2-3) developed by Ames Research Center (ARC) that utilized an intelligent agent based system to manage and automate file traffic flow
The time-saving numerical method for GPS/MET observation operator
李树勇; 王斌; 邹晓蕾; 刘辉
2001-01-01
The global positioning system (GPS) ray-shooting method is a self-sufficient observation operator inGPS/MET (meteorology) data variational assimilation linking up the GPS observation data and the atmosphere state vari-ables. But it cannot be applied to data assimilation and operational prediction so far because of huge computations. In order to reduce the amount of computation, a 2-order time-saving symplectic scheme is used to solve the equations of the GPS ray trajectory, due to its separable Hamiltonian nature, and good results are achieved. Not only does it save 75 % of CPU time taken by the old GPS ray-shooting model with 4th-order Runge-Kutta method , but also it improves the sim-ulation accuracy to some extent.
An application of timed Petri nets to S/C operations analysis: The Aristoteles autonomy concept
Barro, E.; Rossi, F.
1990-10-01
Petri nets as a methodology for the study and analysis of systems behavior are discussed. They can be tailored to timed approaches, to highlight all the system possible timing critical and deadlock conditions. As a consequence, it is valuable to apply a Petri nets-based methodology in the space environment. Spacecraft operations analysis during system definition is one area of possible application. The application of Petri nets, as a basis for an investigation methodology in the Aristoteles spacecraft autonomy concept definition is described. Significant results are obtained allowing the production of a consistent, formally clean and self explaining system description, to be used as an aid to design and a tool for system evaluation. Such positive achievements support the exploitation of Petri nets-based methodologies in spacecraft operations to describe and analyze the overall space system behavior.
Santra, Kalyan; Zhan, Jinchun; Song, Xueyu; Smith, Emily A; Vaswani, Namrata; Petrich, Jacob W
2016-03-10
The need for measuring fluorescence lifetimes of species in subdiffraction-limited volumes in, for example, stimulated emission depletion (STED) microscopy, entails the dual challenge of probing a small number of fluorophores and fitting the concomitant sparse data set to the appropriate excited-state decay function. This need has stimulated a further investigation into the relative merits of two fitting techniques commonly referred to as "residual minimization" (RM) and "maximum likelihood" (ML). Fluorescence decays of the well-characterized standard, rose bengal in methanol at room temperature (530 ± 10 ps), were acquired in a set of five experiments in which the total number of "photon counts" was approximately 20, 200, 1000, 3000, and 6000 and there were about 2-200 counts at the maxima of the respective decays. Each set of experiments was repeated 50 times to generate the appropriate statistics. Each of the 250 data sets was analyzed by ML and two different RM methods (differing in the weighting of residuals) using in-house routines and compared with a frequently used commercial RM routine. Convolution with a real instrument response function was always included in the fitting. While RM using Pearson's weighting of residuals can recover the correct mean result with a total number of counts of 1000 or more, ML distinguishes itself by yielding, in all cases, the same mean lifetime within 2% of the accepted value. For 200 total counts and greater, ML always provides a standard deviation of <10% of the mean lifetime, and even at 20 total counts there is only 20% error in the mean lifetime. The robustness of ML advocates its use for sparse data sets such as those acquired in some subdiffraction-limited microscopies, such as STED, and, more importantly, provides greater motivation for exploiting the time-resolved capacities of this technique to acquire and analyze fluorescence lifetime data.
Assessment of operative times of multiple surgical specialties in a public university hospital.
Costa, Altair da Silva
2017-01-01
To evaluate the indicators duration of anesthesia, operative time and time patients stay in the operating rooms of different surgical specialties at a public university hospital. It was done by a descriptive cross-sectional study based on the operating room database. The following stages were measured: duration of anesthesia, procedure time and patient length of stay in the room of the various specialties. We included surgeries carried out in sequence in the same room, between 7:00 a.m. and 5 p.m., either elective or emergency. We calculated the 80th percentile of the stages, where 80% of procedures were below this value. The study measured 8,337 operations of 12 surgical specialties performed within one year. The overall mean duration of anesthesia of all specialties was 178.12±110.46 minutes, and the 80th percentile was 252 minutes. The mean operative time was 130.45±97.23 minutes, and the 80th percentile was 195 minutes. The mean total time of the patient in the operating room was 197.30±113.71 minutes, and the 80th percentile was 285 minutes. Thus, the variation of the overall mean compared to the 80th percentile was 41% for anesthesia, 49% for surgeries and 44% for operating room time. In average, anesthesia took up 88% of the operating room period, and surgery, 61%. This study identified patterns in the duration of surgery stages. The mean values of the specialties can assist with operating room planning and reduce delays. Avaliar os indicadores de tempo da anestesia, da operação e da permanência do paciente em sala de diversas especialidades do centro cirúrgico de um hospital universitário. Foi realizado em estudo descritivo transversal a partir da base de dados do centro cirúrgico e mensuradas as seguintes etapas: duração de anestesia, tempo do procedimento e tempo de permanência do paciente em sala das diversas especialidades. Foram incluídas as operações realizadas em sequência na mesma sala, das 7h às 17h, eletivas ou de urg
CONTRIBUTIONS TO THE CALCULATION OF NORM TIME EDGE THINNING OPERATIONS PARTS OF FOOTWEAR
MALCOCI Marina
2016-05-01
Full Text Available It is known that regulations allow the introduction in production regimes efficient operation of equipment and methods of rational organization of production. To ensure accuracy imposed regulations must meet the following conditions: to take into account the main factors influencing consumption of work; depending on the types of production which they are intended to ensure adequate precision. In this work the analysis literature authors proposed a new relationship for calculating the standard time for the operation of thinning also set the value of two coefficients K1 and K2. K1 is a constant coefficient for thinning operation of 1,0549; and K2 - a constant that depends on the degree of automation of the machine. Knowing the degree of mechanization machines and time required to perform operation coefficient was determined K2, namely Km – 1,0833; KM – 1,0460; KA – 0,0785. Since the relationship for the calculation of the time aids not it into consideration that a part may contain from 3 to 5 types of profiles, it has been proposed that it be included in the relationship, so there was obtained a new relationship calculation. The study conducted also allowed the optimization of computing time assistant relationship, including the number of adjustments in relation computing machine. Proper use of normative values, taking into account the type of machine, but also their knowledge calclulul methodology allow us to identify the following positive effects on the company's footwear: reducing workload; achieving balanced labor standards; saving human effort; reducing worker fatigue etc.
Operating Security System Support for Run-Time Security with a Trusted Execution Environment
Gonzalez, Javier
. In this thesis we introduce run-time security primitives that enable a number of trusted services in the context of Linux. These primitives mediate any action involving sensitive data or sensitive assets in order to guarantee their integrity and confidentiality. We introduce a general mechanism to protect...... in the Linux operating system. We are in the process of making this driver part of the mainline Linux kernel....
Whither probabilistic security management for real-time operation of power systems ?
Karangelos, Efthymios; Panciatici, Patrick; Wehenkel, Louis
2016-01-01
This paper investigates the stakes of introducing probabilistic approaches for the management of power system’s security. In real-time operation, the aim is to arbitrate in a rational way between preventive and corrective control, while taking into account i) the prior probabilities of contingencies, ii) the possible failure modes of corrective control actions, iii) the socio-economic consequences of service interruptions. This work is a first step towards the construction of a globally co...
Bare-State Time-Evolving Operator Solution to Raman Model in A Configuration
WUYing; NIEYi-Zhen; YANGXiao-Xue
2003-01-01
We derive exact analytical expressions of time-evolving bare-state operators of level occupation numbers and the photon numbers for a composite system consisting of a three-level atom interacting with two modes ofa quantized electromagnetic field in A configuration. These results demonstrate the oscillations with three-family frequencies for a nonzero detuning, which dramatically differ from the previous results showing only single-family Rabi oscillations.
Bare-State Time-Evolving Operator Solution to Raman Model in A Configuration
WU Ying; NIE Yi-Zhen; YANG Xiao-Xue
2003-01-01
We derive exact analytical expressions of time-evolving bare-state operators of level occupation numbers and the photon numbers for a composite system consisting of a three-level atom interacting with two modes of a quantized electromagnetic field in A configuration. These results demonstrate the oscillations with three-family frequencies for a nonzero detuning, which dramatically differ from the previous results showing only single-family Rabi oscillations.
Izabela NIELSEN; Robert WJCIK; Grzegorz BOCEWICZ; Zbigniew BANASZAK
2016-01-01
We present an extension of the resource-constrained multi-product scheduling problem for an automated guided vehicle (AGV) served flow shop, where multiple material handling transport modes provide movement of work pieces between machining centers in the multimodal transportation network (MTN). The multimodal processes behind the multi-product pro-duction flow executed in an MTN can be seen as processes realized by using various local periodically functioning processes. The considered network of repetitively acting local transportation modes encompassing MTN’s structure provides a framework for multimodal processes scheduling treated in terms of optimization of the AGVs fleet scheduling problem subject to fuzzy operation time constraints. In the considered case, both production takt and operation execution time are described by imprecise data. The aim of the paper is to present a constraint propagation (CP) driven approach to multi-robot task allocation providing a prompt service to a set of routine queries stated in both direct and reverse way. Illustrative examples taking into account an uncertain specification of robots and workers operation time are provided.
Near real-time operation of public image database for ground vehicle navigation
Ali, E.; Kozaitis, S. P.
2015-02-01
An effective color night vision system for ground vehicle navigation should operate in near real-time to be practical. We described a system that uses a public database as a source of color information to colorize night vision imagery. Such an approach presents several problems due to differences between acquired and reference imagery. Our system performed registration, colorizing, and reference updating in near real-time in an effort to help drivers of ground vehicles during night to see a colored view of a scene.
John Cortés-Romero
2013-01-01
Full Text Available The problem of active disturbance rejection control of induction motors is tackled by means of a generalized PI observer based discrete-time control, using the delta operator approach as the methodology of analyzing the sampled time process. In this scheme, model uncertainties and external disturbances are included in a general additive disturbance input which is to be online estimated and subsequently rejected via the controller actions. The observer carries out the disturbance estimation, thus reducing the complexity of the controller design. The controller efficiency is tested via some experimental results, performing a trajectory tracking task under load variations.
A discrete-time model for binary detection with rectangular hysteresis operators
Korman, Can E.
2006-02-01
The operation of a nonlinear binary detector with hysteresis is investigated. Prior models developed for continuous time inputs are extended for the computationally more efficient discrete-time inputs. The input to the rectangular hysteresis detector is modeled to be a binary signal in the presence of additive independent identically distributed noise. The rectangular hysteresis loop models one of a number of rate independent repeaters in an optical communication link. The link is terminated by a binary discriminator that is tuned to a particular bit duration. The study shows that key calculations to compute the bit error probability can be performed by employing the formalism of discrete Markov chains.
Y. M. Ibrahim
2012-07-01
Full Text Available Construction professionals have been using time-lapse movies in monitoring construction operations. However, some amount of detail is always lost in the interval between two consecutive frames in a time-lapse movie. This poses the question: By how much can the frame rate be lowered from the standard 30fps (frames per second to allow for the accurate observation of construction operations from a time-lapse movie? This paper addresses the problem by establishing the optimum frame rates for observation of activities related to mortar mixing and block handling. The activities were first recorded at the standard rate of 30fps. Using the Adobe Premier Pro video editing software, the records were then segregated into still images from which 15 different time-lapse movies of various time intervals were generated. The movies were then shown to 25 Construction Managers. A structured questionnaire was employed to capture the level of accuracy with which Construction Managers could interpret the job site situation from each movie. The results suggest that 1fpm (frame per minute is sufficient for the accurate tracking of labourers involved in mortar mixing while 1 frame in every 20 seconds is sufficient for accurate identification of number of cement bags used. However, for tracking number of blocks off-loaded, and those damaged, 1 frame in every 2 seconds is required.
Optimisation of battery operating life considering software tasks and their timing behaviour
Lipskoch, Henrik
2010-02-19
Users of mobile embedded systems have an interest in long battery operating life. The longer a system can operate without need for recharge or battery replacement, the more will maintenance cost and the number of faults due to insufficient power supply decrease. Operating life is prolonged by saving energy, which may reduce available processing time. Mobile embedded systems communicating with other participants like other mobiles or radio stations are subject to time guarantees ensuring reliable communication. Thus, methods that save energy by reducing processing time are not only subject to available processing time but subject to the embedded system's time guarantees. To perform parameter optimisations offline, decisions can be taken early at design time, avoiding further computations at run-time. Especially, to compute processor shutdown durations offline, no extra circuitry to monitor system behaviour and to wake up the processor needs to be designed, deployed, or power supplied: only a timer is required. In this work, software tasks are considered sharing one processor. The scheduling algorithm earliest deadline first is assumed, and per-task, a relative deadline is assumed. Tasks may be instantiated arbitrarily as long as this occurrence behaviour is given in the notion of event streams. Scaling of the processor's voltage and processor shutdown are taken into account as methods for saving energy. With given per task worst-case execution times and the tasks' event streams, the real-time feasibility of the energy optimised solutions is proven. The decision which energy saving solution provides longest operating life is made with the help of a battery model. The used real-time feasibility test has the advantage that it can be approximated: this yields an adjustable number of linear optimisation constraints. Reducing the processor's voltage reduces processor frequency, therefore, execution times increase. The resulting slowdown becomes the
Efficient implementation of real-time programs under the VAX/VMS operating system
Johnson, S. C.
1985-01-01
Techniques for writing efficient real-time programs under the VAX/VMS oprating system are presented. Basic operations are presented for executing at real-time priority and for avoiding needlless processing delays. A highly efficient technique for accessing physical devices by mapping to the input/output space and accessing the device registrs directly is described. To illustrate the application of the technique, examples are included of different uses of the technique on three devices in the Langley Avionics Integration Research Lab (AIRLAB): the KW11-K dual programmable real-time clock, the Parallel Communications Link (PCL11-B) communication system, and the Datacom Synchronization Network. Timing data are included to demonstrate the performance improvements realized with these applications of the technique.
Pal, P. S.; Saha, Arnab; Jayannavar, A. M.
2016-09-01
We have studied the single-particle heat engine and refrigerator driven by time-asymmetric protocol of finite duration. Our system consists of a particle in a harmonic trap with time-periodic strength that drives the particle cyclically between two baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. The system works in irreversible mode of operation even in the quasistatic regime. This is indicated by finite entropy production even in the large cycle time limit. Consequently, Carnot efficiency for heat engine or Carnot coefficient of performance (COP) for refrigerators is not achievable. We further analyzed the phase diagram of heat engines and refrigerators. They are sensitive to time-asymmetry of the protocol. Phase diagram shows several interesting features, often counterintuitive. The distribution of stochastic efficiency and COP is broad and exhibits power-law tails.
Reducing Wait Times through Operations Research: Optimizing the Use of Surge Capacity.
Patrick, Jonathan; Puterman, Martin L
2008-02-01
Widespread public demand for improved access, political pressure for shorter wait times, a stretched workforce, an aging population and overutilized equipment and facilities challenge healthcare leaders to adopt new management approaches. This paper highlights the significant benefits that can be achieved by applying operations research (OR) methods to healthcare management. It shows how queuing theory provides managers with insights into the causes for excessive wait times and the relationship between wait times and capacity. It provides a case study of the use of several OR methods, including Markov decision processes, linear programming and simulation, to optimize the scheduling of patients with multiple priorities. The study shows that by applying this approach, wait time targets can be attained with the judicious use of surge capacity in the form of overtime. It concludes with some policy insights.
Real-time observations of stressful events in the operating room
AlNassar Sami
2012-01-01
Full Text Available Aim: To identify and quantify factors causing stress in the operating room (OR and evaluate the relationship between these factors and surgeons′ stress level. Methods: This is a prospective observational study from 32 elective surgical procedures conducted in the OR of King Khalid University Hospital, Riyadh, Saudi Arabia. Before each operation, each surgeon was asked of stressors. Two interns observed 16 surgeries each, separately. The interns watched and took notes during the entire surgical procedure. During each operation, the observer recorded anxiety-inducing activities and events that occurred in real time by means of a checklist of 8 potential stressors: technical, patient problems, teamwork problems, time and management issues, distractions and interruptions, equipment problems, personal problems, and teaching. After each operation, surgeons were asked to answer the validated State-Trait Anxiety Inventory questionnaire and self-report on their stress level from the 8 sources using a scale of 1-8 (1: stress free, 8: extremely stressful. The observer also recorded perceived stress levels experienced by the surgeons during the operation. Results: One hundred ten stressors were identified. Technical problems most frequently caused stress (16.4% and personal issues the least often (6.4%. Frequently encountered stressors (teaching and distractions/interruptions caused less stress to the surgeons. Technical factors, teamwork, and equipment problems occurred frequently and were also a major contributor to OR stress. All patients were discharged in good health and within 1 week of surgery. Conclusion: Certain stressful factors do occur among surgeons in the OR and can increase the potential for errors. Further research is required to determine the impact of stress on performance and the outcome of surgery.
Real-time observations of stressful events in the operating room.
Sami, Alnassar; Waseem, Hajjar; Nourah, Alsubaie; Areej, Alhummaid; Afnan, Almarshedi; Ghadeer, Al-Shaikh; Abdulaziz, Alsaif; Arthur, Isnani
2012-04-01
To identify and quantify factors causing stress in the operating room (OR) and evaluate the relationship between these factors and surgeons' stress level. This is a prospective observational study from 32 elective surgical procedures conducted in the OR of King Khalid University Hospital, Riyadh, Saudi Arabia. Before each operation, each surgeon was asked of stressors. Two interns observed 16 surgeries each, separately. The interns watched and took notes during the entire surgical procedure. During each operation, the observer recorded anxiety-inducing activities and events that occurred in real time by means of a checklist of 8 potential stressors: technical, patient problems, teamwork problems, time and management issues, distractions and interruptions, equipment problems, personal problems, and teaching. After each operation, surgeons were asked to answer the validated State-Trait Anxiety Inventory questionnaire and self-report on their stress level from the 8 sources using a scale of 1-8 (1: stress free, 8: extremely stressful). The observer also recorded perceived stress levels experienced by the surgeons during the operation. One hundred ten stressors were identified. Technical problems most frequently caused stress (16.4%) and personal issues the least often (6.4%). Frequently encountered stressors (teaching and distractions/interruptions) caused less stress to the surgeons. Technical factors, teamwork, and equipment problems occurred frequently and were also a major contributor to OR stress. All patients were discharged in good health and within 1 week of surgery. Certain stressful factors do occur among surgeons in the OR and can increase the potential for errors. Further research is required to determine the impact of stress on performance and the outcome of surgery.
Defining the optimal time to the operating room may salvage early trauma deaths.
Remick, Kyle N; Schwab, C William; Smith, Brian P; Monshizadeh, Amir; Kim, Patrick K; Reilly, Patrick M
2014-05-01
Early trauma deaths have the potential for salvage with immediate surgery. We studied time from injury to death in this group to qualify characteristics and quantify time to the operating room, yielding the greatest opportunity for salvage. The Pennsylvania Trauma Outcomes Study (PTOS) is a comprehensive registry including all Pennsylvania trauma centers. PTOS was queried for adult trauma patients from 1999 to 2010 dying within 4 hours of injury. The distribution of time to death (TD) was examined for subgroups according to mechanism of injury, hypotension (defined as systolic blood pressure ≤ 90 mm Hg), and operation required. The 5th percentile (TD5) and the 50th percentile (TD50) were calculated from the distributions and compared using the Mann-Whitney U-test. The PTOS yielded 6,547 deaths within 4 hours of injury. The overall TD5 and TD50 were 0:23 (hour:minute) and 0:59, respectively. Median penetrating injury times were significantly shorter than blunt injury times (TD5/TD50, 0:19/0:43 vs. 0:29/1:10). Median time was significantly shorter for hypotensive versus normotensive patients (TD5/TD50, 0:22/0:52 vs. 0:43/2:18). Operative subgroups had different TD5/TD50 (abdominal surgery [n = 607], 1:07/2:26; thoracic surgery [n = 756] 0:25/1:25; vascular surgery [n = 156], 0:35/2:15; and cranial surgery [n = 18], 1:20/2:42). Early trauma deaths have the potential for salvage with immediate surgery. We found TD to vary based on mechanism of injury, presence of hypotension, and type of surgery needed. With the use of TD5 and TD50 benchmarks in these subgroups, a trauma system may determine if decreased time to the operating room decreases mortality. Trauma systems can use these data to further improve prehospital and initial hospital phases of care for this subset of early death trauma patients. Epidemiologic study, level III.
Operating Time Division for a Bus Route Based on the Recovery of GPS Data
Jian Wang
2017-01-01
Full Text Available Bus travel time is an important source of data for time of day partition of the bus route. However, in practice, a bus driver may deliberately speed up or slow down on route so as to follow the predetermined timetable. The raw GPS data collected by the GPS device equipped on the bus, as a result, cannot reflect its real operating conditions. To address this concern, this study first develops a method to identify whether there is deliberate speed-up or slow-down movement of a bus. Building upon the relationships between the intersection delay, link travel time, and traffic flow, a recovery method is established for calculating the real bus travel time. Using the dwell time at each stop and the recovered travel time between each of them as the division indexes, a sequential clustering-based time of day partition method is proposed. The effectiveness of the developed method is demonstrated using the data of bus route 63 in Harbin, China. Results show that the partition method can help bus enterprises to design reasonable time of day intervals and significantly improve their level of service.
Urióstegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.; Clark, Jordan F.
2016-12-01
Identifying groundwater retention times near managed aquifer recharge (MAR) facilities is a high priority for managing water quality, especially for operations that incorporate recycled wastewater. To protect public health, California guidelines for Groundwater Replenishment Reuse Projects require a minimum 2-6 month subsurface retention time for recycled water depending on the level of disinfection, which highlights the importance of quantifying groundwater travel times on short time scales. This study developed and evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 (35S). The 87.5 day half-life of 35S is ideal for investigating groundwater travel times on the managers. Natural concentrations of 35S found in water as dissolved sulfate (35SO4) were measured in source waters and groundwater at the Rio Hondo Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge Facilities in Orange County, CA. 35SO4 travel times are comparable to travel times determined by well-established deliberate tracer studies. The study also revealed that 35SO4 in MAR source water can vary seasonally and therefore careful characterization of 35SO4 is needed to accurately quantify groundwater travel time. More data is needed to fully assess whether or not this tracer could become a valuable tool for managers.
Continuous-time operational modal analysis in the presence of harmonic disturbances
Pintelon, R.; Peeters, B.; Guillaume, P.
2008-07-01
Operational modal analysis (OMA) allows to identify the modal parameters from the measured response to unknown random perturbations of a mechanical structure in operation. However, in all applications with rotating components (e.g. helicopters, turbines, diesel motors,…,) the structural vibration in operation is a combination of the response to the random perturbation and the harmonic excitation due to the rotating components. Classical OMA methods fail if the harmonic disturbance is close to, or coincides with a resonance frequency of the structure. Therefore, these methods have been extended to deal with harmonic disturbances with a known, fixed frequency. However, in many applications (e.g. helicopters, wind turbines, diesel motors,…) the frequencies of the harmonic disturbances vary in time. This paper presents three methods for suppressing the influence of harmonic disturbances with unknown varying frequencies in operational modal analysis. Two of these methods can handle the case where the peak of the harmonic disturbance and the resonance peak completely overlap. The performance of the three methods is illustrated on simulations and real helicopter data. The present paper handles the single output case only.
Real-time bio-sensors for enhanced C2ISR operator performance
Miller, James C.
2005-05-01
The objectives of two Air Force Small Business research topics were to develop a real-time, unobtrusive, biological sensing and monitoring technology for evaluating cognitive readiness in command and control environments (i.e., console operators). We sought an individualized status monitoring system for command and control operators and teams. The system was to consist of a collection of bio-sensing technologies and processing and feedback algorithms that could eventually guide the effective incorporation of fatigue-adaptive workload interventions into weapon systems to mitigate episodes of cognitive overload and lapses in operator attention that often result in missed signals and catastrophic failures. Contractors set about determining what electro-physiological and other indicators of compromised operator states are most amenable for unobtrusive monitoring of psychophysiological and warfighter performance data. They proposed multi-sensor platforms of bio-sensing technologies for development. The sensors will be continuously-wearable or off-body and will not require complicated or uncomfortable preparation. A general overview of the proposed approaches and of progress toward the objective is presented.
THERMAL HYDRAULIC ISSUES OF CONTAINMENT FILTERED VENTING SYSTEM FOR A LONG OPERATING TIME
YOUNG SU NA
2014-12-01
Full Text Available This study investigated the thermal hydraulic issues in the Containment Filtered Venting System (CFVS for a long operating time using the MELCOR computer code. The modeling of the CFVS, including the models for pool scrubbing and the filter, was added to the input file for the OPR-1000, and a Station Blackout (SBO was chosen as an accident scenario. Although depressurization in the containment building as a primary objective of the CFVS was successful, the decontamination feature by scrubbing and filtering in the CFVS for a long operating time could fail by the continuous evaporation of the scrubbing solution. After the operation of the CFVS, the atmosphere temperature in the CFVS became slightly above the water saturation temperature owing to the release of an amount of steam with high temperature from the containment building to the scrubbing solution. Reduced pipe diameters at the inlet and outlet of the CFVS vessel mitigated the evaporation of scrubbing water by controlling the amount of high-temperature steam and the water saturation temperature.
Real Time Space Weather Support for Chandra X-Ray Observatory Operations
O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.
2012-01-01
NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data sources that are used to protect
The Chimera II Real-Time Operating System for advanced sensor-based control applications
Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.
1992-01-01
Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.
Estimating Periodic Software Rejuvenation Schedules under Discrete-Time Operation Circumstance
Iwamoto, Kazuki; Dohi, Tadashi; Kaio, Naoto
Software rejuvenation is a preventive and proactive solution that is particularly useful for counteracting the phenomenon of software aging. In this article, we consider periodic software rejuvenation models based on the expected cost per unit time in the steady state under discrete-time operation circumstance. By applying the discrete renewal reward processes, we describe the stochastic behavior of a telecommunication billing application with a degradation mode, and determine the optimal periodic software rejuvenation schedule minimizing the expected cost. Similar to the earlier work by the same authors, we develop a statistically non-parametric algorithm to estimate the optimal software rejuvenation schedule, by applying the discrete total time on test concept. Numerical examples are presented to estimate the optimal software rejuvenation schedules from the simulation data. We discuss the asymptotic behavior of estimators developed in this paper.
Time-dependent spectrum of a single photon and its positive-operator-valued measure
van Enk, S. J.
2017-09-01
Suppose we measure the time-dependent spectrum of a single photon. That is, we first send the photon through a set of frequency filters (which we assume to have different filter frequencies but the same finite bandwidth Γ ) and then record at what time (with some finite precision Δ t and some finite efficiency η ) and after passing what filter the photon is detected. What is the positive-operator-valued measure (POVM), the most general description of a quantum measurement, corresponding to such a measurement? We show how to construct the POVM in various cases, with special interest in the case Γ Δ t ≪1 (time-frequency uncertainty still holds, even in that limit). One application of the formalism is to heralding single photons. We also find a Hong-Ou-Mandel type of interference effect with two photons entering a frequency filter.
Versteeg, Roelof J; Few, Douglas A; Kinoshita, Robert A; Johnson, Doug; Linda, Ondrej
2015-02-24
Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.
Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji
2016-06-30
Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries.
Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji
2016-06-01
Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries.
Versteeg, Roelof J.; Few, Douglas A.; Kinoshita, Robert A.; Johnson, Douglas; Linda, Ondrej
2015-12-15
Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.
Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji
2016-01-01
Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries. PMID:27357605
Ambrozinski, Lukasz; Stepinski, Tadeusz; Packo, Pawel; Uhl, Tadeusz
2012-02-01
Active ultrasonic arrays are very useful for structural health monitoring (SHM) of large plate-like structures. Large areas of a plate can be monitored from a fixed position but it normally requires precise information on material properties. Self-focusing methods can perform well without the exact knowledge of a medium and array parameters. In this paper a method for selective focusing of Lamb waves will be presented. The algorithm is an extension of the DORT method (French acronym for decomposition of time-reversal operator) where the continuous wavelet transform (CWT) is used for the time-frequency representation (TFR) of nonstationary signals instead of the discrete Fourier transform. The performance of the methods is compared and verified in the paper using both simulated and experimental data. It is shown that the extension of the DORT method with the use of TFR considerably improved its resolving ability. To experimentally evaluate the performance of the proposed method, a linear array of small piezoelectric transducers attached to an aluminum plate was used to obtain interelement responses, required for beam self-focusing on targets present in the plate. The array was used for the transmission of signals calculated with the DORT-CWT algorithm. To verify the self-focusing effect the backpropagated field generated in the experiment was sensed using laser scanning vibrometer.
Influence of the operating room schedule on tardiness from scheduled start times.
Wachtel, Ruth E; Dexter, Franklin
2009-06-01
Tardiness from scheduled start times in a surgical suite is a common source of frustration for both operating room personnel and patients. Data from two surgical suites were used to investigate the relative importance of various factors that contribute to tardiness, including average case duration, time of day, prolonged turnovers, whether a surgeon follows himself or another surgeon, the potential for starting cases early, concurrency (e.g., number of residents supervised simultaneously), expected under-utilized or over-utilized time, and case duration bias. Average tardiness per case did not depend on the individual durations of preceding cases or on the relative numbers of long and short cases. In contrast, the total duration of preceding cases was important in determining tardiness. Tardiness per case grew larger as the day progressed because the total duration of preceding cases increased, but began to decline for cases scheduled to commence 6 h after the start of the workday. Tardiness was not affected by prolonged turnovers, differences in average case duration among services, or whether a surgeon followed himself or another surgeon in the same operating room. Tardiness was affected by expected under-utilized or over-utilized time at the end of the workday and by case duration bias. Factors associated with the largest numbers of cases had the biggest influence on tardiness. Greater understanding of these factors aided in the development of several mathematical interventions to reduce tardiness in the two surgical suites. These interventions and their applicability for reducing tardiness are described in a companion article. At two surgical suites, tardiness from scheduled start times did not depend on average case duration or prolonged turnovers. Tardiness did depend on the total duration of preceding cases, expected under-utilized or over-utilized time at the end of the day, and case duration bias.
A real-time control framework for urban water reservoirs operation
Galelli, S.; Goedbloed, A.; Schwanenberg, D.
2012-04-01
Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced
Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.
2013-12-01
Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of
Maximum Autocorrelation Factorial Kriging
Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete
2000-01-01
This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...
Relative blood loss and operative time can predict length of stay following orthognathic surgery.
Andersen, K; Thastum, M; Nørholt, S E; Blomlöf, J
2016-10-01
The aim of this study was to investigate the length of stay (LOS) following orthognathic surgery and thereby to establish a benchmark. The secondary aim was to identify predictors of postoperative LOS following orthognathic surgery. Patients were treated consecutively during the period 2010 to 2012. Inclusion criteria were (1) patient age ≥18 years, and (2) surgery involving a three-piece Le Fort I osteotomy, or a bilateral sagittal split osteotomy (BSSO), or bimaxillary surgery. A total of 335 patients were included. The following data were recorded: height, weight, body mass index (BMI), age, sex, operative time, intraoperative blood loss, and type of surgery. LOS was defined as the duration of time from date of surgery to date of discharge. The average LOS was 1.3 days following Le Fort I osteotomy, 1.3 days following BSSO, and 1.8 days following bimaxillary surgery. In the multivariate regression model (R(2)=0.11), predictors of a prolonged LOS were operative time (P<0.001) and relative blood loss (P=0.002). No significant effect of age, BMI, sex, or treatment on LOS was observed. The short duration of LOS found in this study supports the possibility of increasing outpatient pathways for selected patients.
Kadry, Bassam; Press, Christopher D; Alosh, Hassan; Opper, Isaac M; Orsini, Joe; Popov, Igor A; Brodsky, Jay B; Macario, Alex
2014-01-01
Background. Obesity impacts utilization of healthcare resources. The goal of this study was to measure the relationship between increasing body mass index (BMI) in patients undergoing total hip arthroplasty (THA) with different components of operating room (OR) time. Methods. The Stanford Translational Research Integrated Database Environment (STRIDE) was utilized to identify all ASA PS 2 or 3 patients who underwent primary THA at Stanford Medical Center from February 1, 2008 through January 1, 2013. Patients were divided into five groups based on the BMI weight classification. Regression analysis was used to quantify relationships between BMI and the different components of total OR time. Results. 1,332 patients were included in the study. There were no statistically significant differences in age, gender, height, and ASA PS classification between the BMI groups. Normal-weight patients had a total OR time of 138.9 min compared 167.9 min (P 35 kg/m(2) each incremental BMI unit increase was associated with greater incremental total OR time increases. Conclusion. Morbidly obese patients required significantly more total OR time than normal-weight patients undergoing a THA procedure. This increase in time is relevant when scheduling obese patients for surgery and has an important impact on health resource utilization.
Bassam Kadry
2014-08-01
Full Text Available Background. Obesity impacts utilization of healthcare resources. The goal of this study was to measure the relationship between increasing body mass index (BMI in patients undergoing total hip arthroplasty (THA with different components of operating room (OR time. Methods. The Stanford Translational Research Integrated Database Environment (STRIDE was utilized to identify all ASA PS 2 or 3 patients who underwent primary THA at Stanford Medical Center from February 1, 2008 through January 1, 2013. Patients were divided into five groups based on the BMI weight classification. Regression analysis was used to quantify relationships between BMI and the different components of total OR time. Results. 1,332 patients were included in the study. There were no statistically significant differences in age, gender, height, and ASA PS classification between the BMI groups. Normal-weight patients had a total OR time of 138.9 min compared 167.9 min (P 35 kg/m2 each incremental BMI unit increase was associated with greater incremental total OR time increases. Conclusion. Morbidly obese patients required significantly more total OR time than normal-weight patients undergoing a THA procedure. This increase in time is relevant when scheduling obese patients for surgery and has an important impact on health resource utilization.
Affonso H. Camargo
2006-06-01
Full Text Available INTRODUCTION: Compare the outcomes between kidney morcellation and two types of open specimen extraction incisions, several covariates need to be taken into consideration that have not yet been studied. MATERIALS AND METHODS: We retrospectively reviewed 153 consecutive patients who underwent laparoscopic nephrectomy at our institution, 107 who underwent specimen morcellation and 46 with intact specimen removal, either those with connected port sites with a muscle-cutting incision and those with a remote, muscle-splitting incision. Operative time, postoperative analgesia requirements, and incisional complications were evaluated using univariate and multivariate analysis, comparing variables such as patient age, gender, body mass index (BMI, laterality, benign versus cancerous renal conditions, estimated blood loss, specimen weight, overall complications, and length of stay. RESULTS: There was no significant difference for operative time between the 2 treatment groups (p = 0.65. Incision related complications occurred in 2 patients (4.4% from the intact specimen group but none in the morcellation group (p = 0.03. Overall narcotic requirement was lower in patients with morcellated (41 mg compared to intact specimen retrieval (66 mg on univariate (p = 0.03 and multivariate analysis (p = 0.049. Upon further stratification, however, there was no significant difference in mean narcotic requirement between the morcellation and muscle-splitting incision subgroup (p = 0.14. CONCLUSION: Morcellation does not extend operative time, and is associated with significantly less postoperative pain compared to intact specimen retrieval overall, although this is not statistically significant if a remote, muscle-splitting incision is made. Morcellation markedly reduces the risk of incisional-related complications.
Real-time operating system for a multi-laser/multi-detector system
Coles, G.
1980-01-01
The laser-one hazard detector system, used on the Rensselaer Mars rover, is reviewed briefly with respect to the hardware subsystems, the operation, and the results obtained. A multidetector scanning system was designed to improve on the original system. Interactive support software was designed and programmed to implement real time control of the rover or platform with the elevation scanning mast. The formats of both the raw data and the post-run data files were selected. In addition, the interface requirements were selected and some initial hardware-software testing was completed.
Popoff, Sébastien Michel; Lerosey, Geoffroy; Fink, Mathias; Boccara, Albert-Claude; Gigan, Sylvain
2011-01-01
We report on the experimental measurement of the backscattering matrix of a weakly scattering medium in optics, composed of a few dispersed gold nanobeads. The DORT method (Decomposition of the Time Reversal Operator) is applied to this matrix and we demonstrate selective and efficient focusing on individual scatterers, even through an aberrating layer. Moreover, we show that this approach provides the decomposition of the scattering pattern of a single nanoparticle. These results open important perspectives for optical imaging, characterization and selective excitation of nanoparticles.
Maximum power point tracking for optimizing energy harvesting process
Akbari, S.; Thang, P. C.; Veselov, D. S.
2016-10-01
There has been a growing interest in using energy harvesting techniques for powering wireless sensor networks. The reason for utilizing this technology can be explained by the sensors limited amount of operation time which results from the finite capacity of batteries and the need for having a stable power supply in some applications. Energy can be harvested from the sun, wind, vibration, heat, etc. It is reasonable to develop multisource energy harvesting platforms for increasing the amount of harvesting energy and to mitigate the issue concerning the intermittent nature of ambient sources. In the context of solar energy harvesting, it is possible to develop algorithms for finding the optimal operation point of solar panels at which maximum power is generated. These algorithms are known as maximum power point tracking techniques. In this article, we review the concept of maximum power point tracking and provide an overview of the research conducted in this area for wireless sensor networks applications.
Supporting Real-Time Operations and Execution through Timeline and Scheduling Aids
Marquez, Jessica J.; Pyrzak, Guy; Hashemi, Sam; Ahmed, Samia; McMillin, Kevin Edward; Medwid, Joseph Daniel; Chen, Diana; Hurtle, Esten
2013-01-01
Since 2003, the NASA Ames Research Center has been actively involved in researching and advancing the state-of-the-art of planning and scheduling tools for NASA mission operations. Our planning toolkit SPIFe (Scheduling and Planning Interface for Exploration) has supported a variety of missions and field tests, scheduling activities for Mars rovers as well as crew on-board International Space Station and NASA earth analogs. The scheduled plan is the integration of all the activities for the day/s. In turn, the agents (rovers, landers, spaceships, crew) execute from this schedule while the mission support team members (e.g., flight controllers) follow the schedule during execution. Over the last couple of years, our team has begun to research and validate methods that will better support users during realtime operations and execution of scheduled activities. Our team utilizes human-computer interaction principles to research user needs, identify workflow processes, prototype software aids, and user test these. This paper discusses three specific prototypes developed and user tested to support real-time operations: Score Mobile, Playbook, and Mobile Assistant for Task Execution (MATE).
Transfer of Real-time Dynamic Radiation Environment Assimilation Model; Research to Operation
Cho, K. S. F.; Hwang, J.; Shin, D. K.; Kim, G. J.; Morley, S.; Henderson, M. G.; Friedel, R. H.; Reeves, G. D.
2015-12-01
Real-time Dynamic Radiation Environment Assimilation Model (rtDREAM) was developed by LANL for nowcast of energetic electrons' flux at the radiation belt to quantify potential risks from radiation damage at the satellites. Assimilated data are from multiple sources including LANL assets (GEO, GPS). For transfer from research to operation of the rtDREAM code, LANL/KSWC/NOAA makes a Memorandum Of Understanding (MOU) on the collaboration between three parts. By this MOU, KWSC/RRA provides all the support for transitioning the research version of DREAM to operations. KASI is primarily responsible for providing all the interfaces between the current scientific output formats of the code and useful space weather products that can be used and accessed through the web. In the second phase, KASI will be responsible in performing the work needed to transform the Van Allen Probes beacon data into "DREAM ready" inputs. KASI will also provide the "operational" code framework and additional data preparation, model output, display and web page codes back to LANL and SWPC. KASI is already a NASA partnering ground station for the Van Allen Probes' space weather beacon data and can here show use and utility of these data for comparison between rtDREAM and observations by web. NOAA has offered to take on some of the data processing tasks specific to the GOES data.
Time headway in car following and operational performance during unexpected braking.
van Winsum, W; Brouwer, W
1997-06-01
The relation between car-following behaviour and braking performance was studied in a driving simulator. The theoretical perspective was that individual differences in tactical car-driving behaviour may be related to skills on the operational level of the driving task via a process of adaptation. In a sample of 16 young and middle-aged experienced drivers independent assessments were made of preferred time headway during car following and of braking skill. Starting from modern theories of visual-motor learning, braking performance was analyzed in terms of a reaction time component, an open-loop visual-motor component, and a closed-loop visual-motor component involving the precise adjustment of braking (timing and force) to the situation. The efficiency of the visual-motor component of braking was a strong and significant predictor of choice of time headway to the lead vehicle in such a way that less efficient braking indicated a preference for a longer time headway. This result supports the theory of adaptation on the individual level.
Brasted, P J; Döbrössy, M D; Robbins, T W; Dunnett, S B
1998-08-01
The dorsal striatum plays a crucial role in mediating voluntary movement. Excitotoxic striatal lesions in rats have previously been shown to impair the initiation but not the execution of movement in a choice reaction time task in an automated lateralised nose-poke apparatus (the "nine-hole box"). Conversely, when a conceptually similar reaction time task has been applied in a conventional operant chamber (or "Skinner box"), striatal lesions have been seen to impair the execution rather than the initiation of the lateralised movement. The present study was undertaken to compare directly these two results by training the same group of rats to perform a choice reaction time task in the two chambers and then comparing the effects of a unilateral excitotoxic striatal lesion in both chambers in parallel. Particular attention was paid to adopting similar parameters and contingencies in the control of the task in the two test chambers. After striatal lesions, the rats showed predominantly contralateral impairments in both tasks. However, they showed a deficit in reaction time in the nine-hole box but an apparent deficit in response execution in the Skinner box. This finding confirms the previous studies and indicates that differences in outcome are not simply attributable to procedural differences in the lesions, training conditions or tasks parameters. Rather, the pattern of reaction time deficit after striatal lesions depends critically on the apparatus used and the precise response requirements for each task.
HOU Shu-juan; WU Si-liang
2006-01-01
A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can over come the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.
Real-time monitoring and operational control of drinking-water systems
Ocampo-Martínez, Carlos; Pérez, Ramon; Cembrano, Gabriela; Quevedo, Joseba; Escobet, Teresa
2017-01-01
This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;...
Lee, Daero; Vukovich, George; Gui, Haichao
2017-05-01
This paper presents an adaptive variable-structure finite-time control for spacecraft proximity maneuvers under parameter uncertainties, external disturbances and actuator saturation. The coupled six degrees-of-freedom dynamics are modeled for spacecraft relative motion, where the exponential coordinates on the Lie group SE(3) are employed to describe relative configuration. No prior knowledge of inertia matrix and mass of the spacecraft is required for the proposed control law, which implies that the proposed control scheme can be applied in spacecraft systems with large parametric uncertainties in inertia matrix and mass. Finite-time convergence of the feedback system with the proposed control law is established. Numerical simulation results are presented to illustrate the effectiveness of the proposed control law for spacecraft proximity operations with actuator saturation.
Performance of infiltration swales with regard to operation in winter times in an Alpine region.
Fach, Stefan; Engelhard, Carolina; Wittke, Nina; Rauch, Wolfgang
2011-01-01
In cold climate regions winter conditions significantly influence the performance of stormwater infiltration devices. Frozen soil and water storage by snow changes their operation. In this paper winter operation of a grassed infiltration swale was investigated using on-site and laboratory measurements. The field investigation of a grassed swale at a parking place in an Alpine region showed that the swale fulfilled its function properly. Although the top layer was frozen for some time, the storage capacity of the swale was sufficient to store the precipitation until the conditions improved. The soil attenuated the air temperature, at 20 cm below ground surface the soil was only frozen for one week. winter maintenance proved to be a problem, together with the snow from the parking place a lot of gravel and fine particles were deposited at one end of the swale. This decreased the hydraulic conductivity at that point significantly. The laboratory tests with soil columns showed an increase of flow time through the soil column with decreasing soil moisture content. For soil temperatures below 0 degrees C the hydraulic conductivity was reduced for increasing initial soil moisture contents. All in all the hydraulic conductivity was best around 0 degrees C for all soil water contents. However, also at minus 5 degrees C the coefficient of hydraulic conductivity was always at least above 10(-6) m/s, thus within the range of tolerated hydraulic conductivity specified in the national guidelines. Nevertheless, the handling of the soil was found to have high influence on the results. The results indicate that in the Alpine region infiltration swales operate sufficiently under winter conditions although with decreased performance.
PLIO: a generic tool for real-time operational predictive optimal control of water networks.
Cembrano, G; Quevedo, J; Puig, V; Pérez, R; Figueras, J; Verdejo, J M; Escaler, I; Ramón, G; Barnet, G; Rodríguez, P; Casas, M
2011-01-01
This paper presents a generic tool, named PLIO, that allows to implement the real-time operational control of water networks. Control strategies are generated using predictive optimal control techniques. This tool allows the flow management in a large water supply and distribution system including reservoirs, open-flow channels for water transport, water treatment plants, pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas to meet future demands with appropriate pressure levels, optimizing operational goals such as network safety volumes and flow control stability. PLIO allows to build the network model graphically and then to automatically generate the model equations used by the predictive optimal controller. Additionally, PLIO can work off-line (in simulation) and on-line (in real-time mode). The case study of Santiago-Chile is presented to exemplify the control results obtained using PLIO off-line (in simulation).
Transient-Free Operations With Physics-Based Real-time Analysis and Control
Kolemen, Egemen; Burrell, Keith; Eggert, William; Eldon, David; Ferron, John; Glasser, Alex; Humphreys, David
2016-10-01
In order to understand and predict disruptions, the two most common methods currently employed in tokamak analysis are the time-consuming ``kinetic EFITs,'' which are done offline with significant human involvement, and the search for correlations with global precursors using various parameterization techniques. We are developing automated ``kinetic EFITs'' at DIII-D to enable calculation of the stability as the plasma evolves close to the disruption. This allows us to quantify the probabilistic nature of the stability calculations and provides a stability metric for all possible linear perturbations to the plasma. This study also provides insight into how the control system can avoid the unstable operating space, which is critical for high-performance operations close to stability thresholds at ITER. A novel, efficient ideal stability calculation method and new real-time CER acquisition system are being developed, and a new 77-core server has been installed on the DIII-D PCS to enable experimental use. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.
Traumatic First Time Shoulder Dislocation: Surgery vs Non-Operative Treatment
Ioannis Polyzois
2016-04-01
Full Text Available Management of first shoulder dislocation following reduction remains controversial. The two main options are immobilisation and arthroscopic stabilisation. The aim of this article is to highlight some of the issues that influence decision making when discussing management options with these patients, including natural history of the first time dislocation, outcomes of surgery and non-operative management particularly on the risk of future osteoarthritis (OA, the effects of delaying surgery and the optimal method of immobilisation. Extensive literature review was performed looking for previous publication addressing 4 points. i Natural history of primary shoulder dislocation ii Effect of surgical intervention on natural history iii Risk of long term osteoarthritis with and without surgical intervention iv Immobilisation techniques post reduction. Individuals younger than 25 years old are likely to re-dislocate with non-operative management. Surgery reduces risk of recurrent instability. Patients with recurrent instability appear to be at a higher risk of OA. Those who have surgical stabilisation do not appear to be at a higher risk than those who dislocate just once, but are less likely to develop OA than those with recurrent instability. Delaying surgery makes the stabilisation more demanding due to elongation of capsule, progressive labro-ligamentous injury, prevalence and severity of glenoid bone loss. Recent studies have failed to match the preliminary outcomes associated with external rotation braces. Defining the best timing and type of treatment remains a challenge and should be tailored to each individual’s age, occupation and degree of physical activity.
Rosangela Alves de Mendonça
2012-12-01
Full Text Available OBJETIVO: medir os limites do tempo máximo de fonação pré e pós-aplicação do Programa de Exercícios Funcionais Vocais de Stemple e Gerdeman em professoras, com e sem alteração vocal, que atuam no ensino fundamental do Município de Niterói-RJ. MÉTODO: participaram do estudo 17 professoras, que aceitaram participar espontaneamente da aplicação do programa de exercícios: vogal /i/ sustentada, glissando ascendente e descendente da palavra /nol/, e escala de tons musicais Dó,Ré,Mi,Fá,Sol, com emissão de /ol/, pelo tempo máximo de fonação. A medida do tempo foi coletada pré e pós-aplicação do programa por meio da vogal [ε], após a participante ter sido submetida a exame de videolaringoestroboscopia. RESULTADOS: verificou-se expressivo ganho do tempo máximo de fonação do pré para o pós-exercício e o valor do programa, que em sua aplicação, prioriza a execução dos exercícios com o maior tempo possível de fonação. CONCLUSÃO: o Programa de Exercícios Funcionais Vocais de Stemple e Gerdeman favoreceu o aumento do tempo máximo de fonação intrassujeito, possibilitando melhores condições de saúde vocal no desempenho profissional e social.PURPOSE: to measure the limits of the maximum phonation time pre and post application of the Stemple and Gerdeman Vocal Function Exercises Program in teachers of the Elementary School Education level in Niterói/Brazil, with or without voice alterations. METHOD: there were 17 female teachers who spontaneously agreed to participate. The exercise program that was applied consisted in the sustained vowel /i/, ascending and descending gliding on the word /nol/, and musical scale tones Do Re Mi Fa Sol - issuing the /ol/ for the maximum time of phonation. The measure of the maximum phonation time was counted pre and post exercise program through the vowel /ε/. RESULTS: the results revealed that the teachers presented an expressive increase in the maximum phonation and time
时间的操作定义%The Operational Definition of Time
殷业; 胡素辉
2013-01-01
In Mathematical Principles of Natural Philosophy, Newton had given eight original definitions, but didn't include time definition, a descriptive definition of absolute time was only given in the notes. Einstein's theory of relativity, although is about time and space, Einstein never to give a clear definition of time. Therefore, no matter Newton's time or Einstein's time need to be employed with their entire theoretical system to understand the meaning of time, such a result, the people to understand the concept of time is difficulties. This paper attempts to compensate for the epistemological deficiencies on the concept of time by an operational definition of time. And finally prove that definition of the new time is rational by way of experiments.% 关于时间是什么？牛顿在《自然哲学的数学原理》一书中对“绝对时间”给出了一个描述，爱因斯坦没有给“相对论时间”下过定义，所以到目前为止，还没有一个统一的时间定义。无论是牛顿的时间还是爱因斯坦的时间都需要用他们建立的整个理论体系去理解时间的含义，这样的结果导致普通人理解物理时间概念的困难。本文试图给时间下一个操作定义，以弥补关于时间概念在认识论上的不足。并用相关实验说明定义的正确性，最后用新的时间定义重新分析了相对论运动时钟变慢的物理原因。
Cantini, C; Gendotti, A; Horikawa, S; Murphy, S; Natterer, G; Periale, L; Resnati, F; Rubbia, A; Sergiampietri, F; Viant, T; Wu, S
2013-01-01
We report on the successful operation of a double phase Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC) equipped with two dimensional projective anodes with dimensions 10$\\times$10 cm$^2$, and with a maximum drift length of 21 cm. The anodes were manufactured for the first time from a single multilayer printed circuit board (PCB). Various layouts of the readout views have been tested and optimised. In addition, the ionisation charge was efficiently extracted from the liquid to the gas phase with a single grid instead of two previously. We studied the response and the gain of the detector to cosmic muon tracks. To study long-term stability over several weeks, we continuously operated the chamber at fixed electric field settings. We reproducibly observe that after an initial decrease with a characteristic time of $\\tau\\approx 1.6$ days, the observed gain is stable. In 46 days of operation, a total of 14.6 million triggers have been collected at a stable effective gain of $G_\\infty\\s...
Optimisation of battery operating life considering software tasks and their timing behaviour
Lipskoch, Henrik
2010-02-19
Users of mobile embedded systems have an interest in long battery operating life. The longer a system can operate without need for recharge or battery replacement, the more will maintenance cost and the number of faults due to insufficient power supply decrease. Operating life is prolonged by saving energy, which may reduce available processing time. Mobile embedded systems communicating with other participants like other mobiles or radio stations are subject to time guarantees ensuring reliable communication. Thus, methods that save energy by reducing processing time are not only subject to available processing time but subject to the embedded system's time guarantees. To perform parameter optimisations offline, decisions can be taken early at design time, avoiding further computations at run-time. Especially, to compute processor shutdown durations offline, no extra circuitry to monitor system behaviour and to wake up the processor needs to be designed, deployed, or power supplied: only a timer is required. In this work, software tasks are considered sharing one processor. The scheduling algorithm earliest deadline first is assumed, and per-task, a relative deadline is assumed. Tasks may be instantiated arbitrarily as long as this occurrence behaviour is given in the notion of event streams. Scaling of the processor's voltage and processor shutdown are taken into account as methods for saving energy. With given per task worst-case execution times and the tasks' event streams, the real-time feasibility of the energy optimised solutions is proven. The decision which energy saving solution provides longest operating life is made with the help of a battery model. The used real-time feasibility test has the advantage that it can be approximated: this yields an adjustable number of linear optimisation constraints. Reducing the processor's voltage reduces processor frequency, therefore, execution times increase. The resulting slowdown becomes the
Mixing-Height Time Series from Operational Ceilometer Aerosol-Layer Heights
Lotteraner, Christoph; Piringer, Martin
2016-07-01
A new method is described to derive mixing-height time series directly from aerosol-layer height data available from a Vaisala CL51 ceilometer. As complete as possible mixing-height time series are calculated by avoiding outliers, filling data gaps by linear interpolation, and smoothing. In addition, large aerosol-layer heights at night that can be interpreted as residual layers are not assigned as mixing heights. The resulting mixing-height time series, converted to an appropriate data format, can be used as input for dispersion calculations. Two case examples demonstrate in detail how the method works. The mixing heights calculated using ceilometer data are compared with values determined from radiosounding data at Vienna by applying the parcel, Heffter, and Richardson methods. The results of the parcel method, obtained from radiosonde profiles at noon, show the best fit to the ceilometer-derived mixing heights. For midnight radiosoundings, larger deviations between mixing heights from the ceilometer and those deduced from the potential temperature profiles of the soundings are found. We use data from two Vaisala CL51 ceilometers, operating in the Vienna area at an urban and rural site, respectively, during an overlapping period of about 1 year. In addition to the case studies, the calculated mixing-height time series are also statistically evaluated and compared, demonstrating that the ceilometer-based mixing height follows an expected daily and seasonal course.
Mixing-Height Time Series from Operational Ceilometer Aerosol-Layer Heights
Lotteraner, Christoph; Piringer, Martin
2016-11-01
A new method is described to derive mixing-height time series directly from aerosol-layer height data available from a Vaisala CL51 ceilometer. As complete as possible mixing-height time series are calculated by avoiding outliers, filling data gaps by linear interpolation, and smoothing. In addition, large aerosol-layer heights at night that can be interpreted as residual layers are not assigned as mixing heights. The resulting mixing-height time series, converted to an appropriate data format, can be used as input for dispersion calculations. Two case examples demonstrate in detail how the method works. The mixing heights calculated using ceilometer data are compared with values determined from radiosounding data at Vienna by applying the parcel, Heffter, and Richardson methods. The results of the parcel method, obtained from radiosonde profiles at noon, show the best fit to the ceilometer-derived mixing heights. For midnight radiosoundings, larger deviations between mixing heights from the ceilometer and those deduced from the potential temperature profiles of the soundings are found. We use data from two Vaisala CL51 ceilometers, operating in the Vienna area at an urban and rural site, respectively, during an overlapping period of about 1 year. In addition to the case studies, the calculated mixing-height time series are also statistically evaluated and compared, demonstrating that the ceilometer-based mixing height follows an expected daily and seasonal course.
Russell, Robert T; Griffin, Russell L; Weinstein, Elizabeth; Billmire, Deborah F
2014-09-01
The incidence of button battery ingestions is increasing and injury due to esophageal impaction begins within minutes of exposure. We changed our management algorithm for suspected button battery ingestions with intent to reduce time to evaluation and operative removal. A retrospective study was performed to identify and evaluate time to treatment and outcome for all esophageal button battery ingestions presenting to a major children's hospital emergency room from February 1, 2010 through February 1, 2012. During the first year, standard emergency room triage (ST) was used. During the second year, the triage protocol was changed and Trauma I triage (TT) was used. 24 children had suspected button battery ingestions with 11 having esophageal impaction. One esophageal impaction was due to 2 stacked coins. Time from arrival in emergency room to battery removal was 183minutes in ST group (n=4) and 33minutes in TT group (n=7) (p=0.04). One patient in ST developed a tracheoesophageal fistula. There were no complications in the TT group. The use of Trauma 1 activations for suspected button battery ingestions has led to more expedient evaluation and shortened time to removal of impacted esophageal batteries. Copyright © 2014 Elsevier Inc. All rights reserved.
Xiu-Li Sun; Wen-Yin Zhang; Jin-Zhao Wu
2004-01-01
In this paper an event-based operational interleaving semantics is proposed for real-time processes, for which action refinement and a denotational true concurrency semantics are developed and defined in terms of timed event structures. The authors characterize the timed event traces that are generated by the operational semantics in a denotational way, and show that this operational semantics is consistent with the denotational semantics in the sense that they generate the same set of timed event traces, thereby eliminating the gap between the true concurrency and interleaving semantics.
Maximum likely scale estimation
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...
Maximum Power from a Solar Panel
Michael Miller
2010-01-01
Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.
Chance-Constrained Model for Real-Time Reservoir Operation Using Drought Duration Curve
Takeuchi, Kuniyoshi
1986-04-01
The seasonal drought duration curve (SDDC) ƒβ (m|τ) is defined as a deterministic equivalent of an average streamflow over an m-day period starting from date τ with probability of failure being β. This curve provides an estimate of a sum of inflows over m days starting from date τ in a T ( = 1/β)-year drought. The reservoir system considered is a single-purpose reservoir already in service. The demand pattern is predetermined, and the percentage of deficit in meeting the demand (supply cut) is left to operators' judgement. A chance-constrained model was developed for such a system. The model determined the percentage of supply cut on date τ in such the way that the probability of exhaustion of reservoir storage Sτ+m at the beginning of date τ+m was maintained less than a given constant βm for all 1 ≤ m ≤ M, i.e., Prob {Sτ+m ≤ 0} ≤ βm, m = 1, 2, …, M, where M is the number of days in the future to be considered to make a current decision on date τ, and βm are a given set of allowable exhaustion probability selected from an indifferent preference curve between reservoir exhaustion probability β and anticipated time to its occurrence, m. The reservoir operation rule thus developed was named as DDC rule curves and demonstrated satisfactorily operational through a simulation study of the Fukuoka drought case during 1978-1979.
Yi-qi YAN
2009-12-01
Full Text Available This study evaluated the application of the European flood forecasting operational real time system (EFFORTS to the Yellow River. An automatic data pre-processing program was developed to provide real-time hydrometeorological data. Various GIS layers were collected and developed to meet the demands of the distributed hydrological model in the EFFORTS. The model parameters were calibrated and validated based on more than ten years of historical hydrometeorological data from the study area. The San-Hua Basin (from the Sanmenxia Reservoir to the Huayuankou Hydrological Station, the most geographically important area of the Yellow River, was chosen as the study area. The analysis indicates that the EFFORTS enhances the work efficiency, extends the flood forecasting lead time, and attains an acceptable level of forecasting accuracy in the San-Hua Basin, with a mean deterministic coefficient at Huayuankou Station, the basin outlet, of 0.90 in calibration and 0.96 in validation. The analysis also shows that the simulation accuracy is better for the southern part than for the northern part of the San-Hua Basin. This implies that, along with the characteristics of the basin and the mechanisms of runoff generation of the hydrological model, the hydrometeorological data play an important role in simulation of hydrological behavior.
Wang, Jen-Chieh; Zhou, Yufeng
2017-03-01
Extracorporeal shock wave lithotripsy (ESWL) has been used widely in the noninvasive treatment of kidney calculi. The fine fragments less than 2 mm in size can be discharged by urination, which determines the success of ESWL. Although ultrasonic and fluorescent imaging are used to localize the calculi, it's challenging to monitor the stone comminution progress, especially at the late stage of ESWL when fragments spread out as a cloud. The lack of real-time and quantitative evaluation makes this procedure semi-blind, resulting in either under- or over-treatment after the legal number of pulses required by FDA. The time reversal operator (TRO) method has the ability to detect point-like scatterers, and the number of non-zero eigenvalues of TRO is equal to that of the scatterers. In this study, the validation of TRO method to identify stones was illustrated from both numerical and experimental results for one to two stones with various sizes and locations. Furthermore, the parameters affecting the performance of TRO method has also been investigated. Overall, TRO method is effective in identifying the fragments in a stone cluster in real-time. Further development of a detection system and evaluation of its performance both in vitro and in vivo during ESWL is necessary for application.
Jordi Inglada
2017-01-01
Full Text Available A detailed and accurate knowledge of land cover is crucial for many scientific and operational applications, and as such, it has been identified as an Essential Climate Variable. This accurate knowledge needs frequent updates. This paper presents a methodology for the fully automatic production of land cover maps at country scale using high resolution optical image time series which is based on supervised classification and uses existing databases as reference data for training and validation. The originality of the approach resides in the use of all available image data, a simple pre-processing step leading to a homogeneous set of acquisition dates over the whole area and the use of a supervised classifier which is robust to errors in the reference data. The produced maps have a kappa coefficient of 0.86 with 17 land cover classes. The processing is efficient, allowing a fast delivery of the maps after the acquisition of the image data, does not need expensive field surveys for model calibration and validation, nor human operators for decision making, and uses open and freely available imagery. The land cover maps are provided with a confidence map which gives information at the pixel level about the expected quality of the result.
Nanosized free-energy transducer F1-ATPase achieves 100% efficiency at finite time operation
Toyabe, Shoichi
2012-01-01
The free-energy transduction at 100% efficiency is not prohibited by thermodynamic laws. However, it is usually reached only at the quasi-static limit such as the macroscopic piston pulled or pushed at the infinitely slow velocity. If we operate the piston quickly, turbulence is inevitable and irreversible heat dissipates through the microscopic degrees of freedom. Here, we evaluated the work performed by the nano-sized biological free-energy transducer F1-ATPase by single-molecule experiments on the basis of nonequilibrium theory. We show that the F1-ATPase achieves a nearly 100% free-energy conversion efficiency even far from quasistatic process for both the mechanical-to-chemical and chemical-to-mechanical transductions. Such a high efficiency at a finite-time operation is not expected for macroscopic engines and highlights a remarkable property of the nano-sized engines working in the energy scale of k_{B}T. Some of the microscopic degrees of freedom may not be hidden but accessible to the F1-ATPase. Henc...
Nagesh, Jayashree; Brumer, Paul; Izmaylov, Artur F
2016-01-01
We extend the localized operator partitioning method (LOPM) [J. Nagesh, A.F. Izmaylov, and P. Brumer, J. Chem. Phys. 142, 084114 (2015)] to the time-dependent density functional theory (TD-DFT) framework to partition molecular electronic energies of excited states in a rigorous manner. A molecular fragment is defined as a collection of atoms using Stratman-Scuseria-Frisch atomic partitioning. A numerically efficient scheme for evaluating the fragment excitation energy is derived employing a resolution of the identity to preserve standard one- and two-electron integrals in the final expressions. The utility of this partitioning approach is demonstrated by examining several excited states of two bichromophoric compounds: 9-((1-naphthyl)-methyl)-anthracene and 4-((2-naphthyl)-methyl)-benzaldehyde. The LOPM is found to provide nontrivial insights into the nature of electronic energy localization that are not accessible using simple density difference analysis.
Das, Ashok; Kalauni, Pushpa
2016-06-01
We develop an operator description, much like thermofield dynamics, for quantum field theories on a real time path with an arbitrary parameter σ (0 ≤σ ≤β ) . We point out new features which arise when σ ≠β/2 in that the Hilbert space develops a natural, modified inner product different from the standard Dirac inner product. We construct the Bogoliubov transformation which connects the doubled vacuum state at zero temperature to the thermal vacuum in this case. We obtain the thermal Green's function (propagator) for the real massive Klein-Gordon theory as an expectation value in this thermal vacuum (with a modified inner product). The factorization of the thermal Green's function follows from this analysis. We also discuss, in the main text as well as in two appendices, various other interesting features which arise in such a description.
Real-Time Traffic Information for Emergency Evacuation Operations: Phase A Final Report
Franzese, Oscar [ORNL; Zhang, Li [Mississippi State University (MSU); Mahmoud, Anas M. [Mississippi State University (MSU); Lascurain, Mary Beth [ORNL; Wen, Yi [Mississippi State University (MSU)
2010-05-01
There are many instances in which it is possible to plan ahead for an emergency evacuation (e.g., an explosion at a chemical processing facility). For those cases, if an accident (or an attack) were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other cases (e.g., the derailment of a train transporting hazardous materials), there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on how to proceed with an emergency evacuation. In both situations, the availability of real-time traffic information plays a critical role in the management of the evacuation operations. To improve public safety during a vehicular emergency evacuation it is necessary to detect losses of road capacity (due to incidents, for example) as early as possible. Once these bottlenecks are identified, re-routing strategies must be determined in real-time and deployed in the field to help dissipate the congestion and increase the efficiency of the evacuation. Due to cost constraints, only large urban areas have traffic sensor deployments that permit access to some sort of real-time traffic information; any evacuation taking place in any other areas of the country would have to proceed without real-time traffic information. The latter was the focus of this SERRI/DHS (Southeast Region Research Initiative/Department of Homeland Security) sponsored project. That is, the main objective on the project was to improve the operations during a vehicular emergency evacuation anywhere by using newly developed real-time traffic-information-gathering technologies to assess traffic conditions and therefore to potentially detect incidents on the main evacuation routes. Phase A of the project consisted in the development and testing of a prototype system composed of sensors that are engineered in such a way that they can be rapidly deployed in the field where and when they are needed. Each one of these sensors
Receiver function estimated by maximum entropy deconvolution
吴庆举; 田小波; 张乃铃; 李卫平; 曾融生
2003-01-01
Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.
Maximum information photoelectron metrology
Hockett, P; Wollenhaupt, M; Baumert, T
2015-01-01
Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...
The squares of the dirac and spin-dirac operators on a riemann-cartan space(time)
Notte-Cuello, E. A.; Rodrigues, W. A.; Souza, Q. A. G.
2007-08-01
In this paper we introduce the Dirac and spin-Dirac operators associated to a connection on Riemann-Cartan space(time) and standard Dirac and spin-Dirac operators associated with a Levi-Civita connection on a Riemannian (Lorentzian) space(time) and calculate the squares of these operators, which play an important role in several topics of modern mathematics, in particular in the study of the geometry of moduli spaces of a class of black holes, the geometry of NS-5 brane solutions of type II supergravity theories and BPS solitons in some string theories. We obtain a generalized Lichnerowicz formula, decompositions of the Dirac and spin-Dirac operators and their squares in terms of the standard Dirac and spin-Dirac operators and using the fact that spinor fields (sections of a spin-Clifford bundle) have representatives in the Clifford bundle we present also a noticeable relation involving the spin-Dirac and the Dirac operators.
Campbell, R. H.; Essick, Ray B.; Johnston, Gary; Kenny, Kevin; Russo, Vince
1987-01-01
Project EOS is studying the problems of building adaptable real-time embedded operating systems for the scientific missions of NASA. Choices (A Class Hierarchical Open Interface for Custom Embedded Systems) is an operating system designed and built by Project EOS to address the following specific issues: the software architecture for adaptable embedded parallel operating systems, the achievement of high-performance and real-time operation, the simplification of interprocess communications, the isolation of operating system mechanisms from one another, and the separation of mechanisms from policy decisions. Choices is written in C++ and runs on a ten processor Encore Multimax. The system is intended for use in constructing specialized computer applications and research on advanced operating system features including fault tolerance and parallelism.
Varas, M. I.; Orteu, E.; Laserna, J. A.
2014-07-01
This paper demonstrates the process followed in the preparation of the Manual of floods of Cofrentes NPP to identify the allowed maximum time available to the central in the isolation of a moderate or high energy pipe break, until it affects security (1E) participating in the safe stop of Reactor or in pools of spent fuel cooling-related equipment , and to determine the recommended isolation mode from the point of view of the location of the break or rupture, of the location of the 1E equipment and human factors. (Author)
Real-Time Terrain Storage Generation from Multiple Sensors towards Mobile Robot Operation Interface
Wei Song
2014-01-01
Full Text Available A mobile robot mounted with multiple sensors is used to rapidly collect 3D point clouds and video images so as to allow accurate terrain modeling. In this study, we develop a real-time terrain storage generation and representation system including a nonground point database (PDB, ground mesh database (MDB, and texture database (TDB. A voxel-based flag map is proposed for incrementally registering large-scale point clouds in a terrain model in real time. We quantize the 3D point clouds into 3D grids of the flag map as a comparative table in order to remove the redundant points. We integrate the large-scale 3D point clouds into a nonground PDB and a node-based terrain mesh using the CPU. Subsequently, we program a graphics processing unit (GPU to generate the TDB by mapping the triangles in the terrain mesh onto the captured video images. Finally, we produce a nonground voxel map and a ground textured mesh as a terrain reconstruction result. Our proposed methods were tested in an outdoor environment. Our results show that the proposed system was able to rapidly generate terrain storage and provide high resolution terrain representation for mobile mapping services and a graphical user interface between remote operators and mobile robots.
Simulation Evaluation of Pilot Inputs for Real Time Modeling During Commercial Flight Operations
Martos, Borja; Ranaudo, Richard; Oltman, Ryan; Myhre, Nick
2017-01-01
Aircraft dynamics characteristics can only be identified from flight data when the aircraft dynamics are excited sufficiently. A preliminary study was conducted into what types and levels of manual piloted control excitation would be required for accurate Real-Time Parameter IDentification (RTPID) results by commercial airline pilots. This includes assessing the practicality for the pilot to provide this excitation when cued, and to further understand if pilot inputs during various phases of flight provide sufficient excitation naturally. An operationally representative task was evaluated by 5 commercial airline pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). Results showed that it is practical to use manual pilot inputs only as a means of achieving good RTPID in all phases of flight and in flight turbulence conditions. All pilots were effective in satisfying excitation requirements when cued. Much of the time, cueing was not even necessary, as just performing the required task provided enough excitation for accurate RTPID estimation. Pilot opinion surveys reported that the additional control inputs required when prompted by the excitation cueing were easy to make, quickly mastered, and required minimal training.
Real-time terrain storage generation from multiple sensors towards mobile robot operation interface.
Song, Wei; Cho, Seoungjae; Xi, Yulong; Cho, Kyungeun; Um, Kyhyun
2014-01-01
A mobile robot mounted with multiple sensors is used to rapidly collect 3D point clouds and video images so as to allow accurate terrain modeling. In this study, we develop a real-time terrain storage generation and representation system including a nonground point database (PDB), ground mesh database (MDB), and texture database (TDB). A voxel-based flag map is proposed for incrementally registering large-scale point clouds in a terrain model in real time. We quantize the 3D point clouds into 3D grids of the flag map as a comparative table in order to remove the redundant points. We integrate the large-scale 3D point clouds into a nonground PDB and a node-based terrain mesh using the CPU. Subsequently, we program a graphics processing unit (GPU) to generate the TDB by mapping the triangles in the terrain mesh onto the captured video images. Finally, we produce a nonground voxel map and a ground textured mesh as a terrain reconstruction result. Our proposed methods were tested in an outdoor environment. Our results show that the proposed system was able to rapidly generate terrain storage and provide high resolution terrain representation for mobile mapping services and a graphical user interface between remote operators and mobile robots.
The detection of flaws in austenitic welds using the decomposition of the time-reversal operator
Cunningham, Laura J.; Mulholland, Anthony J.; Tant, Katherine M. M.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin
2016-04-01
The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm.
Weijtjens, Wout; Lataire, John; Devriendt, Christof; Guillaume, Patrick
2014-12-01
Periodical loads, such as waves and rotating machinery, form a problem for operational modal analysis (OMA). In OMA only the vibrations of a structure of interest are measured and little to nothing is known about the loads causing these vibrations. Therefore, it is often assumed that all dynamics in the measured data are linked to the system of interest. Periodical loads defy this assumption as their periodical behavior is often visible within the measured vibrations. As a consequence most OMA techniques falsely associate the dynamics of the periodical load with the system of interest. Without additional information about the load, one is not able to correctly differentiate between structural dynamics and the dynamics of the load. In several applications, e.g. turbines and helicopters, it was observed that because of periodical loads one was unable to correctly identify one or multiple modes. Transmissibility based OMA (TOMA) is a completely different approach to OMA. By using transmissibility functions to estimate the structural dynamics of the system of interest, all influence of the load-spectrum can be eliminated. TOMA therefore allows to identify the modal parameters without being influenced by the presence of periodical loads, such as harmonics. One of the difficulties of TOMA is that the analyst is required to find two independent datasets, each associated with a different loading condition of the system of interest. This poses a dilemma for TOMA; how can an analyst identify two different loading conditions when little is known about the loads on the system? This paper tackles that problem by assuming that the loading conditions vary continuously over time, e.g. the changing wind directions. From this assumption TOMA is developed into a time-varying framework. This development allows TOMA to not only cope with the continuously changing loading conditions. The time-varying framework also enables the identification of the modal parameters from a single dataset
Real-time shipboard displays for science operation and planning on CGC Healy
Roberts, S.; Chayes, D.; Arko, R.
2007-12-01
To facilitate effective science planning and decision making, we have developed a real-time geospatial browser and other displays widely used by many if not all members of USCGC Healy's science cruises and some officers and crew since 2004. In order to enable a 'zero-configuration' experience to the end user with nearly any modern browser, on any platform, anywhere on the ship with wired (or wireless) network access, we chose a Web-based/server-centric approach that provides a very low barrier to access in an environment where we have many participants constantly coming and going, often with their own computers. The principle interface for planning and operational decision making is a georeferenced, Web-based user interface built on the MapServer Web GIS platform developed at the University of Minnesota (http://mapserver.gis.umn.edu/), using the PostGIS spatial database extensions (http://postgis.refractions.net/) to enable live database connectivity. Data available include current ship position and orientation, historical ship tracks and data, seafloor bathymetry, station locations, RADARSAT, and subbottom profiles among others. In addition to the user interfaces that are part of individual instrumentation (such as the sonars and navigation systems), custom interfaces have been developed to centralize data with high update rates such as sea surface temperature, vessel attitude, position, etc. Underlying data acquisition and storage is provided by the Lamont Data System (LDS) and the NOAA SCS system. All data are stored on RAIDed disk systems and shared across a switched network with a gigabit fiber backbone. The real-time displays access data in a number of ways including real-time UDP datagrams from LDS, accessing files on disk, and querying a PostgreSQL relational backend. This work is supported by grants from the U.S. National Science Foundation, Office of Polar Programs, Arctic Science section.
Reducing tardiness from scheduled start times by making adjustments to the operating room schedule.
Wachtel, Ruth E; Dexter, Franklin
2009-06-01
Tardiness from scheduled start times is a common source of frustration for both operating room (OR) personnel and patients. Factors that influence tardiness were quantified in a companion paper and have been used to develop interventions that have the potential for reducing tardiness. Data from two surgical suites were used to compare the effectiveness of several interventions to reduce tardiness, including i) moving cases to different ORs on the afternoon of surgery, ii) recalculating the OR schedule when it is published to correct for average lateness in first cases of the day, iii) recalculating the OR schedule when it is published to correct for average service-specific case duration bias, and iv) scheduling a gap (time buffer) before the cases of a "to follow" surgeon if the day is expected to end early. These last three interventions involve creation of a modified schedule with revised start times that are more accurate for both patient and "to follow" surgeon. The surgeon performing the first case of the day would not be affected. Moving cases to different ORs when a room was running late produced a 50%-70% reduction in the tardiness for those cases that were moved. However, overall tardiness in each suite was reduced by only 6%-9%, because few cases were moved. Scheduling a gap between surgeons if the day was expected to end early reduced tardiness by more than 50% for those cases that were preceded by gaps. However, overall tardiness in each suite was reduced by only 4%-8%, because few gaps could be scheduled. In contrast, correcting for the combination of lateness in first cases of the day and service-specific case duration bias reduced overall tardiness in each suite by 30%-35%. Interventions which involve small numbers of cases have little potential to reduce overall tardiness. Generating a modified or auxiliary OR schedule that compensates for known causes of tardiness can significantly reduce patient and "to follow" surgeon waiting times. Modifying
Maximum Safety Regenerative Power Tracking for DC Traction Power Systems
Guifu Du
2017-02-01
Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.
The Testability of Maximum Magnitude
Clements, R.; Schorlemmer, D.; Gonzalez, A.; Zoeller, G.; Schneider, M.
2012-12-01
Recent disasters caused by earthquakes of unexpectedly large magnitude (such as Tohoku) illustrate the need for reliable assessments of the seismic hazard. Estimates of the maximum possible magnitude M at a given fault or in a particular zone are essential parameters in probabilistic seismic hazard assessment (PSHA), but their accuracy remains untested. In this study, we discuss the testability of long-term and short-term M estimates and the limitations that arise from testing such rare events. Of considerable importance is whether or not those limitations imply a lack of testability of a useful maximum magnitude estimate, and whether this should have any influence on current PSHA methodology. We use a simple extreme value theory approach to derive a probability distribution for the expected maximum magnitude in a future time interval, and we perform a sensitivity analysis on this distribution to determine if there is a reasonable avenue available for testing M estimates as they are commonly reported today: devoid of an appropriate probability distribution of their own and estimated only for infinite time (or relatively large untestable periods). Our results imply that any attempt at testing such estimates is futile, and that the distribution is highly sensitive to M estimates only under certain optimal conditions that are rarely observed in practice. In the future we suggest that PSHA modelers be brutally honest about the uncertainty of M estimates, or must find a way to decrease its influence on the estimated hazard.
Rubin, Stephen P.; Reisenbichler, Reginald R.; Slatton, Stacey L.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.
2012-01-01
The accuracy of a model that predicts time between fertilization and maximum alevin wet weight (MAWW) from incubation temperature was tested for steelhead Oncorhynchus mykiss from Dworshak National Fish Hatchery on the Clearwater River, Idaho. MAWW corresponds to the button-up fry stage of development. Embryos were incubated at warm (mean=11.6°C) or cold (mean=7.3°C) temperatures and time between fertilization and MAWW was measured for each temperature. Model predictions of time to MAWW were within 1% of measured time to MAWW. Mean egg weight ranged from 0.101-0.136 g among females (mean = 0.116). Time to MAWW was positively related to egg size for each temperature, but the increase in time to MAWW with increasing egg size was greater for embryos reared at the warm than at the cold temperature. We developed equations accounting for the effect of egg size on time to MAWW for each temperature, and also for the mean of those temperatures (9.3°C).
Si-Da Zhou
2015-01-01
Full Text Available Real-time estimation of modal parameters of time-varying structures can conduct an obvious contribution to some specific applications in structural dynamic area, such as health monitoring, damage detection, and vibration control; the recursive algorithm of modal parameter estimation supplies one of fundamentals for acquiring modal parameters in real-time. This paper presents a vector multistage recursive method of modal parameter estimation for time-varying structures in hybrid time and frequency domain, including stages of recursive estimation of time-dependent power spectra, frozen-time modal parameter estimation, recursive modal validation, and continuous-time estimation of modal parameters. An experimental example validates the proposed method finally.
Maximum Likelihood Associative Memories
Gripon, Vincent; Rabbat, Michael
2013-01-01
Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...
Maximum likely scale estimation
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....
Piao, Daqing; Holyoak, G Reed; Patel, Sanjay
2016-01-01
We demonstrate a laparoscopic applicator probe and a method thereof for real-time en-face topographic mapping of near-surface heterogeneity for potential use in intraoperative margin assessment during minimally invasive oncological procedures. The probe fits in a 12mm port and houses at its maximum 128 copper-coated 750um fibers that form radially alternating illumination (70 fibers) and detection (58 fibers) channels. By simultaneously illuminating the 70 source channels of the probe that is in contact with a scattering medium and concurrently measuring the light diffusely propagated to the 58 detector channels, the presence of near-surface optical heterogeneities can be resolved in an en-face 9.5mm field-of-view in real-time. Visualization of a subsurface margin of strong attenuation contrast at a depth up to 3mm is demonstrated at one wavelength at a frame rate of 1.25Hz.
Sparse Component Analysis Using Time-Frequency Representations for Operational Modal Analysis
Shaoqian Qin
2015-03-01
Full Text Available Sparse component analysis (SCA has been widely used for blind source separation(BSS for many years. Recently, SCA has been applied to operational modal analysis (OMA, which is also known as output-only modal identification. This paper considers the sparsity of sources’ time-frequency (TF representation and proposes a new TF-domain SCA under the OMA framework. First, the measurements from the sensors are transformed to the TF domain to get a sparse representation. Then, single-source-points (SSPs are detected to better reveal the hyperlines which correspond to the columns of the mixing matrix. The K-hyperline clustering algorithm is used to identify the direction vectors of the hyperlines and then the mixing matrix is calculated. Finally, basis pursuit de-noising technique is used to recover the modal responses, from which the modal parameters are computed. The proposed method is valid even if the number of active modes exceed the number of sensors. Numerical simulation and experimental verification demonstrate the good performance of the proposed method.
Sparse Component Analysis Using Time-Frequency Representations for Operational Modal Analysis
Qin, Shaoqian; Guo, Jie; Zhu, Changan
2015-01-01
Sparse component analysis (SCA) has been widely used for blind source separation(BSS) for many years. Recently, SCA has been applied to operational modal analysis (OMA), which is also known as output-only modal identification. This paper considers the sparsity of sources' time-frequency (TF) representation and proposes a new TF-domain SCA under the OMA framework. First, the measurements from the sensors are transformed to the TF domain to get a sparse representation. Then, single-source-points (SSPs) are detected to better reveal the hyperlines which correspond to the columns of the mixing matrix. The K-hyperline clustering algorithm is used to identify the direction vectors of the hyperlines and then the mixing matrix is calculated. Finally, basis pursuit de-noising technique is used to recover the modal responses, from which the modal parameters are computed. The proposed method is valid even if the number of active modes exceed the number of sensors. Numerical simulation and experimental verification demonstrate the good performance of the proposed method. PMID:25789492
Real-time operation guide system for sintering process with artificial intelligence
FAN Xiao-hui; CHEN Xu-ling; JIANG Tao; LI Tao
2005-01-01
In order to optimize the sintering process, a real-time operation guide system with artificial intelligence was developed, mainly including the data acquisition online subsystem, the sinter chemical composition controller, the sintering process state controller, and the abnormal conditions diagnosis subsystem. Knowledge base of the sintering process controlling was constructed, and inference engine of the system was established. Sinter chemical compositions were controlled by the strategies of self-adaptive prediction, internal optimization and center on basicity. And the state of sintering was stabilized centering on permeability. In order to meet the needs of process change and make the system clear, the system has learning ability and explanation function. The software of the system was developed in Visual C++ programming language. The application of the system shows that the hitting accuracy of sinter compositions and burning through point prediction are more than 85%; the first-grade rate of sinter chemical composition, stability rate of burning through point and stability rate of sintering process are increased by 3%, 9% and 4%, respectively.
Keller, Delphine [CEA, LIST Service de Robotique Interactive, BP6 F-92265 Fontenay aux Roses Cedex (France)], E-mail: delphine.keller@cea.fr; Bayetti, P. [Association Euratom-CEA, DSM/IRFM, CEA/Cadarache F-13108 Saint Paul Lez Durance Cedex (France); Bonnemason, J. [CEA, LIST Service de Robotique Interactive, BP6 F-92265 Fontenay aux Roses Cedex (France); Bruno, V. [Association Euratom-CEA, DSM/IRFM, CEA/Cadarache F-13108 Saint Paul Lez Durance Cedex (France); Chambaud, P.; Friconneau, J.P. [CEA, LIST Service de Robotique Interactive, BP6 F-92265 Fontenay aux Roses Cedex (France); Gargiulo, L. [Association Euratom-CEA, DSM/IRFM, CEA/Cadarache F-13108 Saint Paul Lez Durance Cedex (France); Itchah, M.; Lamy, S. [CEA, LIST Service de Robotique Interactive, BP6 F-92265 Fontenay aux Roses Cedex (France); Le, R. [Association Euratom-CEA, DSM/IRFM, CEA/Cadarache F-13108 Saint Paul Lez Durance Cedex (France); Measson, Y.; Perrot, Y.; Ponsort, D. [CEA, LIST Service de Robotique Interactive, BP6 F-92265 Fontenay aux Roses Cedex (France)
2009-06-15
In 2008, the Articulated Inspection Arm (AIA) performed its first deployment in Tore Supra tokamak vessel, under real vacuum and temperature conditions (10{sup -6} Pa and 120 deg. C) after a conditioning phase to avoid pollution of the chamber. This full demonstration is a turning point in the project, allowing a second phase to start toward the objective to make use of the Remote Handling Equipment as an inspection routine tool. This feasibility demonstration will also be performed on Tore Supra. At this stage, the system requires enhancements of overall technologies and also developments of the Remote Handling control system. Lessons learned in the first phase of the project and experience collected for more than 20 years by Robotics Units of CEA-LIST teams on teleoperated systems enable to identify three main fields to explore to reach the objectives: - Development of a reliable control based on a real time generic command control system. - Development of a graphical supervisor for intuitive steering. - Development of a generic flexible model for realistic computations of the robot localization in the environment. This paper is dedicated to the description of the further developments that shall be done for routine Remote Handling operations. It presents the R and D project roadmap for the next years.
Near-infrared laparoscopy for real-time intra-operative arterial and lymphatic perfusion imaging.
Cahill, R A
2012-02-01
Multimodal laparoscopic imaging systems possessing the capability for extended spectrum irradiation and visualization within a unified camera system are now available to provide enhanced intracorporeal operative anatomic and dynamic perfusion assessment and potentially augmented patient outcome. While ultraviolet-range energies have limited penetration and hence are probably more useful for endoscopic mucosal interrogation, the near-infrared (NIR) spectrum is of greater potential utility for the purposes of examining inducible fluorescence in abdominopelvic tissue that can be achieved by administration of specific tracer agents, either directly into the circulation (e.g. for anastomotic perfusion assessment at the time of stapling) or into the lymphatic system (e.g. for lymph basin road-mapping and\\/or focussed target nodal assessment). This technology is also capable of supplementing anatomic recognition of the biliary system while implantable fibres can also be inserted intraoperatively for the purpose of safeguarding vital structures such as the oesphagus and ureters especially in difficult reoperations. It is likely that this technological capability will find a clear and common indication in colorectal specialist and general surgical departments worldwide in the near future.
Design and Implementation of a Real Time Wireless Quadcopter for Rescue Operations
Gordon Ononiwu
2016-09-01
Full Text Available This paper presents the design and implementation of an aerial surveillance quadcopter for search and rescue applications. The aim of this research is to develop a real-time, compact and cost-effective drone that will be capable of search and rescue operations. The first phase of the paper considered modeling of the quadcopter while the second phase involved system implementation and simulation. The basic components used for the quadcopter design were Nirvaino Multi-rotor Flight Control Board, brushless motors, Electronic Speed Controllers (ESCs, SkyZone FPV Wireless Receiver, LiPoly Cell Battery, Mobius Camera, and 4mm Heat Shrink Tube. The design takes cognizance of the structure model, and hovering stability of the quadcopter. The frame of the quadcopter was made up of very light glass fiber to ensure stability while flying and also to reduce weight of the overall material. The entire design generated a compact and low cost surveillance quadcopter with weight of approximately 1.50kg; which can take photographs from environments with the aid of the onboard mounted camera. Live streaming was done with the help of laptop during flight.
Digital arc welding power supply based on real-time operating system
无
2007-01-01
A digital arc welding power supply was designed with the advanced reduced instruction set computer machine (ARM) and embedded real-time multi-task operating system micro C/OS-Ⅱ. The ARM, with its powerful calculating speed and complete peripheral equipments, is very suitable to work as the controller of the digital power supply. The micro C/OS-Ⅱ transplanted in ARM, helps to improve the respondent speed against various welding signals, as well as the reliability of the controlling software. The welding process consists of nine tasks. The tasks of great significance on reliability of the welder, for example, the A/D conversion of current and voltage, enjoy top priority. To avoid simultaneous-sharing on A/D converter and LCD module, two semaphores are introduced in to ensure the smooth performance of the welding power supply. Proven by experiments,the ARM and the micro C/OS-Ⅱ can greatly improve both the respondent speed and the reliability of the digital welder.
Arena, L. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)
2014-02-01
Conventional wisdom surrounding space heating has consistently stated two things: size the mechanical systems to the heating loads, and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. The implication of this is that, for setback to be successfully implemented, the heating system must be oversized. This issue is exacerbated further when an outdoor reset control is used with a condensing boiler, because not only is the system matched to the load at design, the outdoor reset control matches the output to the load under varying outdoor temperatures. Under these circumstances, the home may never recover from setback. Special controls to bypass the outdoor reset sensor are then needed. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. The first step is to determine the appropriateness of setback for a particular project. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step-by-step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.
Arena, L.
2014-02-01
Conventional wisdom surrounding space heating has told us a couple of things consistently for several years now: size the mechanical systems to the heating loads and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. The implication of this is that, for setback to be successfully implemented, the heating system must be oversized. This issue is exacerbated further when an outdoor reset control is used with a condensing boiler, because not only is the system matched to the load at design, the outdoor reset control matches the output to the load under varying outdoor temperatures. Under these circumstances, the home may never recover from setback. Special controls to bypass the outdoor reset sensor are then needed. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. Determining the appropriateness of setback for a particular project is the first step. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step by step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.
Gladshteyn, V. I.; Troitskiy, A. I.
2017-01-01
Research of a metal of the stop valve case (SVC) of the K-300-23.5 LMZ turbine (steel grade 15Kh1M1FL), destroyed after operation for 331000 hours, is performed. It's chemical composition and properties are determined as follows: a short-term mechanical tensile stress at 20°C and at elevated temperature, critical temperature, fragility, critical crack opening at elevated temperature, and long-term strength. Furthermore, nature of the microstructure, packing density of carbide particles and their size, and chemical composition of carbide sediment are estimated. A manifestation of metal properties for the main case components by comparison with a forecast of the respective characteristics made for the operating time of 331000 hours is tested. Property-time relationships are built for the forecast using statistical treatment of the test results for the samples cut out from more than 300 parts. Representativeness of the research results is proved: the statistical treatment of their differences are within the range of ±5%. It has been found that, after 150000 hours of operation, only the tensile strength insignificantly depends on the operating time at 20°C, whereas indicators of strength at elevated temperature significantly reduce, depending on the operating time. A brittle-to-ductile transition temperature (BDTT) raises, a critical notch opening changes in a complicated way, a long-term strength reduces. It has been found empirically that the limit of a long-term strength of the SVC metal at 540°C and the operating time of 105 hours is almost 1.6 times less than the required value in the as-delivered state. It is possible to evaluate a service life of the operating valves with the operating time of more than 330000 hours with respect to the long-term strength of the metal taking into account the actual temperature and stress. Guidelines for the control of similar parts are provided.
Izny Hafiz, Z; Rosdan, S; Mohd Khairi, M D
2014-04-01
The objective of this study was to compare the intraoperative time, intraoperative blood loss and post operative pain between coblation tonsillectomy and cold tonsillectomy in the same patient. A prospective single blind control trial was carried out on 34 patients whom underwent tonsillectomy. The patients with known bleeding disorder, history of unilateral peritonsillar abscess and unilateral tonsillar hypertrophy were excluded. Operations were done by a single surgeon using cold dissection tonsillectomy in one side while coblation tonsillectomy in the other. Intraoperative time, intraoperative blood loss and post operative pain during the first 3 days were compared between the two methods. Results showed that the intraoperative time was significantly shorter (pcoblation tonsillectomy as compared to cold tonsillectomy. Post operative pain score was significantly less at 6 hours post operation (pcoblation tonsillectomy as compared to cold tonsillectomy. However, there were no differences in the post operative pain scores on day 1, 2 and 3. In conclusion, coblation tonsillectomy does have superiority in improving intraoperative efficiency in term of intraoperative time and bleeding compared to cold dissection tonsillectomy. The patient will benefit with minimal post operative pain in the immediate post surgery duration.
Read-Brown, Sarah; Sanders, David S; Brown, Anna S; Yackel, Thomas R; Choi, Dongseok; Tu, Daniel C; Chiang, Michael F
2013-01-01
Efficiency and quality of documentation are critical in surgical settings because operating rooms are a major source of revenue, and because adverse events may have enormous consequences. Electronic health records (EHRs) have potential to impact surgical volume, quality, and documentation time. Ophthalmology is an ideal domain to examine these issues because procedures are high-throughput and demand efficient documentation. This time-motion study examines nursing documentation during implementation of an EHR operating room management system in an ophthalmology department. Key findings are: (1) EHR nursing documentation time was significantly worse during early implementation, but improved to a level near but slightly worse than paper baseline, (2) Mean documentation time varied significantly among nurses during early implementation, and (3) There was no decrease in operating room turnover time or surgical volume after implementation. These findings have important implications for ambulatory surgery departments planning EHR implementation, and for research in system design.
F. TopsÃƒÂ¸e
2001-09-01
Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Okimi, Hiroshi; Hara, Masahiko; Asada, Kohei; Sakaguchi, Yoshio
2009-06-01
The magnetic field effect (MFE) on the emission intensity was investigated for an organic light-emitting diode (OLED) with a poly(1,4-phenylenevinylene) (PPV) derivative as a luminescent layer, and the dependence of the emission intensity on the total operating time was investigated. By applying an external magnetic field, the emission intensity increased, and its magnitude increased from 50% at 5 V with increasing operating time. The emission intensity also increased with time, and reached its maximum in 20 h, but the MFE continued to increase over 100 h. The increases in the MFE and the emission intensity were considered to originate from the promotion of long-range charge recombination between electrons and holes, which were induced by the structural change of the OLED material. Heating the OLED to temperatures of 80 °C and lower produced, however, no change in the magnitude of the MFE, irrespective of the significant decrease in emission intensity. Therefore, global heating to low temperatures was found not to induce such effects.
Li, Chendan; Federico, de Bosio; Chen, Fang;
2017-01-01
In this paper, an economic dispatch problem for total operation cost minimization in DC microgrids is formulated. An operating cost is associated with each generator in the microgrid, including the utility grid, combining the cost-efficiency of the system with demand response requirements of the ...
Cha, Seung-Tae
regulation performance is highly improved with fuzzy logic control (FLC) when the system enters into islanding operation. Lastly, an intelligent multi-agent based secondary frequency control strategy for the islanding operation of ADN is proposed. A complete software-in-the-loop (SIL) simula-tion is carried...
First Time Go: Creating Capacity for Enduring Stability in Post-Operational Environments
2013-05-23
like its namesake.107 Operation Talisman /Eclipse was General Dwight D. Eisenhower’s plan for the occupation of Germany after hostilities.108...Planning for Operation Talisman /Eclipse began before the invasion of Europe. In fact, senior commanders began executing portions of the draft plans without
Li Qi; Gao Zhanbao; Tang Diyin; Li Baoan
2016-01-01
Dynamic time-varying operational conditions pose great challenge to the estimation of system remaining useful life (RUL) for the deteriorating systems. This paper presents a method based on probabilistic and stochastic approaches to estimate system RUL for periodically moni-tored degradation processes with dynamic time-varying operational conditions and condition-specific failure zones. The method assumes that the degradation rate is influenced by specific oper-ational condition and moreover, the transition between different operational conditions plays the most important role in affecting the degradation process. These operational conditions are assumed to evolve as a discrete-time Markov chain (DTMC). The failure thresholds are also determined by specific operational conditions and described as different failure zones. The 2008 PHM Conference Challenge Data is utilized to illustrate our method, which contains mass sensory signals related to the degradation process of a commercial turbofan engine. The RUL estimation method using the sensor measurements of a single sensor was first developed, and then multiple vital sensors were selected through a particular optimization procedure in order to increase the prediction accuracy. The effectiveness and advantages of the proposed method are presented in a comparison with exist-ing methods for the same dataset.
Kang, Shen-Song; Guo, Ying; Zhang, Dong-Yi; Jiang, Du-Yin
2015-08-20
The optimal age at which to initiate for auricular reconstruction is controversial. Rib cartilage growth is closely related to age and determines the feasibility and outcomes of auricular reconstruction. We developed a method to guide the timing of auricular reconstruction in children with microtia ranging in age from 5 to 10 years. Rib cartilage and the healthy ear were assessed using low-dose multi-slice computed tomography. The lengths of the eighth rib cartilage and the helix of the healthy ear (from the helical crus to the joint of the helix and the earlobe) were measured. Surgery was performed when the two lengths were approximately equal. The preoperative eighth rib measurements significantly correlated with the intraoperative measurements (P rib growth was not linear. In 76 (62.8%) of 121 patients, the eighth rib length was approximately equal to the helix length in the healthy ear; satisfactory outcomes were achieved in these patients. In 18 (14.9%) patients, the eighth rib was slightly shorter than the helix, helix fabrication was accomplished by adjusting the length of the helical crus of stent, and satisfactory outcomes were also achieved. Acceptable outcomes were achieved in 17 (14.0%) patients in whom helix fabrication was accomplished by cartilage splicing. In 9 (7.4%) patients with insufficient rib cartilage length, the operation was delayed. In one (0.8%) patient with insufficient rib cartilage length, which left no cartilage for helix splicing, the result was unsatisfactory. Eighth rib cartilage growth is variable. Rib cartilage assessment relative to the healthy ear can guide auricular reconstruction and personalize treatment in young patients with microtia.
Shen-Song Kang; Ying Guo; Dong-Yi Zhang; Du-Yin Jiang
2015-01-01
Background:The optimal age at which to initiate for auricular reconstruction is controversial.Rib cartilage growth is closely related to age and determines the feasibility and outcomes of auricular reconstruction.We developed a method to guide the timing of auricular reconstruction in children with microtia ranging in age from 5 to 10 years.Methods:Rib cartilage and the healthy ear were assessed using low-dose multi-slice computed tomography.The lengths of the eighth rib cartilage and the helix of the healthy ear (from the helical crus to the joint of the helix and the earlobe) were measured.Surgery was performed when the two lengths were approximately equal.Results:The preoperative eighth rib measurements significantly correlated with the intraoperative measurements (P ＜ 0.05).From 5 to 10 years of age,eighth rib growth was not linear.In 76 (62.8％) of 121 patients,the eighth rib length was approximately equal to the helix length in the healthy ear;satisfactory outcomes were achieved in these patients.In 18 (14.9％) patients,the eighth rib was slightly shorter than the helix,helix fabrication was accomplished by adjusting the length of the helical crus of stent,and satisfactory outcomes were also achieved.Acceptable outcomes were achieved in 17 (14.0％) patients in whom helix fabrication was accomplished by cartilage splicing.In 9 (7.4％) patients with insufficient rib cartilage length,the operation was delayed.In one (0.8％) patient with insufficient rib cartilage length,which left no cartilage for helix splicing,the result was unsatisfactory.Conclusions:Eighth rib cartilage growth is variable.Rib cartilage assessment relative to the healthy ear can guide auricular reconstruction and personalize treatment in young patients with microtia.
Operating envelope of a short contact time fuel reformer for propane catalytic partial oxidation
Waller, Michael G.; Walluk, Mark R.; Trabold, Thomas A.
2015-01-01
Fuel cell technology has yet to realize widespread deployment, in part because of the hydrogen fuel infrastructure required for proton exchange membrane systems. One option to overcome this barrier is to produce hydrogen by reforming propane, which has existing widespread infrastructure, is widely used by the general public, easily transported, and has a high energy density. The present work combines thermodynamic modeling of propane catalytic partial oxidation (cPOx) and experimental performance of a Precision Combustion Inc. (PCI) Microlith® reactor with real-time soot measurement. Much of the reforming research using Microlith-based reactors has focused on fuels such as natural gas, JP-8, diesel, and gasoline, but little research on propane reforming with Microlith-based catalysts can be found in literature. The aim of this study was to determine the optimal operating parameters for the reformer that maximizes efficiency and minimizes solid carbon formation. The primary parameters evaluated were reformate composition, carbon concentration in the effluent, and reforming efficiency as a function of catalyst temperature and O2/C ratio. Including the lower heating values for product hydrogen and carbon monoxide, efficiency of 84% was achieved at an O2/C ratio of 0.53 and a catalyst temperature of 940 °C, resulting in near equilibrium performance. Significant solid carbon formation was observed at much lower catalyst temperatures, and carbon concentration in the effluent was determined to have a negative linear relationship at T reactor displayed good stability during more than 80 experiments with temperature cycling from 360 to 1050 °C.
The strong maximum principle revisited
Pucci, Patrizia; Serrin, James
In this paper we first present the classical maximum principle due to E. Hopf, together with an extended commentary and discussion of Hopf's paper. We emphasize the comparison technique invented by Hopf to prove this principle, which has since become a main mathematical tool for the study of second order elliptic partial differential equations and has generated an enormous number of important applications. While Hopf's principle is generally understood to apply to linear equations, it is in fact also crucial in nonlinear theories, such as those under consideration here. In particular, we shall treat and discuss recent generalizations of the strong maximum principle, and also the compact support principle, for the case of singular quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear operators and the nonlinearities involved. Our principal interest is in necessary and sufficient conditions for the validity of both principles; in exposing and simplifying earlier proofs of corresponding results; and in extending the conclusions to wider classes of singular operators than previously considered. The results have unexpected ramifications for other problems, as will develop from the exposition, e.g. two point boundary value problems for singular quasilinear ordinary differential equations (Sections 3 and 4); the exterior Dirichlet boundary value problem (Section 5); the existence of dead cores and compact support solutions, i.e. dead cores at infinity (Section 7); Euler-Lagrange inequalities on a Riemannian manifold (Section 9); comparison and uniqueness theorems for solutions of singular quasilinear differential inequalities (Section 10). The case of p-regular elliptic inequalities is briefly considered in Section 11.
Equalized near maximum likelihood detector
2012-01-01
This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.
Ohnaka, K.; Weigelt, G.; Hofmann, K.-H.
2017-01-01
Aims: Our recent visible polarimetric images of the well-studied AGB star W Hya taken at pre-maximum light (phase 0.92) with VLT/SPHERE-ZIMPOL have revealed clumpy dust clouds close to the star at 2 R⋆. We present second-epoch SPHERE-ZIMPOL observations of W Hya at minimum light (phase 0.54) as well as high-spectral resolution long-baseline interferometric observations with the AMBER instrument at the Very Large Telescope Interferometer (VLTI). Methods: We observed W Hya with VLT/SPHERE-ZIMPOL at three wavelengths in the continuum (645, 748, and 820 nm), in the Hα line at 656.3 nm, and in the TiO band at 717 nm. The VLTI/AMBER observations were carried out in the wavelength region of the CO first overtone lines near 2.3 μm with a spectral resolution of 12 000. Results: The high-spatial resolution polarimetric images obtained with SPHERE-ZIMPOL have allowed us to detect clear time variations in the clumpy dust clouds as close as 34-50 mas (1.4-2.0 R⋆) to the star. We detected the formation of a new dust cloud as well as the disappearance of one of the dust clouds detected at the first epoch. The Hα and TiO emission extends to 150 mas ( 6 R⋆), and the Hα images obtained at two epochs reveal time variations. The degree of linear polarization measured at minimum light, which ranges from 13 to 18%, is higher than that observed at pre-maximum light. The power-law-type limb-darkened disk fit to the AMBER data in the continuum results in a limb-darkened disk diameter of 49.1 ± 1.5 mas and a limb-darkening parameter of 1.16 ± 0.49, indicating that the atmosphere is more extended with weaker limb-darkening compared to pre-maximum light. Our Monte Carlo radiative transfer modeling shows that the second-epoch SPHERE-ZIMPOL data can be explained by a shell of 0.1 μm grains of Al2O3, Mg2SiO4, and MgSiO3 with a 550 nm optical depth of 0.6 ± 0.2 and an inner and outer radii of 1.3 R⋆ and 10 ± 2R⋆, respectively. Our modeling suggests the predominance of small (0
Cheeseman, Peter; Stutz, John
2005-01-01
A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].
Shefqet Dervishaj
2016-04-01
Full Text Available Organizations exercise their activity in order to achieve their profit, while offering their products and services. Operations Management refers to the projection, operation and control of the process of transformation of inputs, such as human and material resources, into products or services that you offer to clients. The focus of this paper is the impacts of the time factor in the management of operations in public organizations, in particular the Kosovo Tax Administration (TAK.TAK's mission is to collect revenues for the Kosovo budget and provide professional services to taxpayers so that taxpayers will enable voluntary fulfilment of tax obligations to compile the revenues for the Kosovo budget efficiently with lower cost. Operations Management at TAK is the process of realization of revenue and provision of services where the transformation process from inputs into outputs occurs. As inputs for this process is the staff or human resources, information, information technology, etc. whereas, output are revenues and services provided to tax payers.The objective of this paper is to identify how employees manage time and how this factor affects the time to accomplish the purpose, and whether there is a set of standards regarding the planning and use of time.Methodology used for this paper will be based on qualitative interviews and gathering empirical data about the plan and the realization of tasks, and how time is used as an important resource and thus how they can achieve its operational objectives.
Mary Hokazono
Full Text Available CONTEXT AND OBJECTIVE: Transcranial Doppler (TCD detects stroke risk among children with sickle cell anemia (SCA. Our aim was to evaluate TCD findings in patients with different sickle cell disease (SCD genotypes and correlate the time-averaged maximum mean (TAMM velocity with hematological characteristics. DESIGN AND SETTING: Cross-sectional analytical study in the Pediatric Hematology sector, Universidade Federal de São Paulo. METHODS: 85 SCD patients of both sexes, aged 2-18 years, were evaluated, divided into: group I (62 patients with SCA/Sß0 thalassemia; and group II (23 patients with SC hemoglobinopathy/Sß+ thalassemia. TCD was performed and reviewed by a single investigator using Doppler ultrasonography with a 2 MHz transducer, in accordance with the Stroke Prevention Trial in Sickle Cell Anemia (STOP protocol. The hematological parameters evaluated were: hematocrit, hemoglobin, reticulocytes, leukocytes, platelets and fetal hemoglobin. Univariate analysis was performed and Pearson's coefficient was calculated for hematological parameters and TAMM velocities (P < 0.05. RESULTS: TAMM velocities were 137 ± 28 and 103 ± 19 cm/s in groups I and II, respectively, and correlated negatively with hematocrit and hemoglobin in group I. There was one abnormal result (1.6% and five conditional results (8.1% in group I. All results were normal in group II. Middle cerebral arteries were the only vessels affected. CONCLUSION: There was a low prevalence of abnormal Doppler results in patients with sickle-cell disease. Time-average maximum mean velocity was significantly different between the genotypes and correlated with hematological characteristics.
Francis Declerck
2012-12-01
Full Text Available The paper assesses the ability of French wineries to prevail over the crisis of French wine in the years 2000. Corporations are distinguished from co-operatives:Over the 2000-2006 period in spite of sales fluctuations, French wineries did not increase their financial debt level substantially. Such result supports the traditional static trade-off theory (TOT. Co-operatives were able to absorb part of the impact of the wine crisis at the expense of their members, in increasing account payables to member. Corporations have not increased trade account payables to vine growers.In the mid-2000s, the French wine crisis has not been strong enough to shake the financial structure of co-operatives and corporations. But co-operatives look more affected. However, sales of French wines dropped a lot more in 2009 and financial data are not yet available to observe the consequences.
Building a computer-aided design capability using a standard time share operating system
Sobieszczanski, J.
1975-01-01
The paper describes how an integrated system of engineering computer programs can be built using a standard commercially available operating system. The discussion opens with an outline of the auxiliary functions that an operating system can perform for a team of engineers involved in a large and complex task. An example of a specific integrated system is provided to explain how the standard operating system features can be used to organize the programs into a simple and inexpensive but effective system. Applications to an aircraft structural design study are discussed to illustrate the use of an integrated system as a flexible and efficient engineering tool. The discussion concludes with an engineer's assessment of an operating system's capabilities and desirable improvements.
Storesund, Jan
2011-03-15
Procedures that may be used for the life time assessments and growth laws for failure mechanisms with respect to cyclic operation has been compiled. Experience and analyzes of the effects of cyclical operation of steam drums, steam boxes, steam accumulators and valves has been compiled. For the strain-induced corrosion cracking in steam drums a correlation between the voltage level and the crack growth rate has been developed.
Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.
2011-01-01
In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.
Li, Chendan; de Bosio, Federico; Chaudhary, Sanjay Kumar
2015-01-01
In this paper, an optimal power flow problem is formulated in order to minimize the total operation cost by considering real-time pricing in DC microgrids. Each generation resource in the system, including the utility grid, is modeled in terms of operation cost, which combines the cost...... problem is solved in a heuristic way by using genetic algorithms. In order to test the proposed algorithm, a six-bus droop-controlled DC microgrid is used as a case-study. The obtained simulation results show that under variable renewable generation, load, and electricity prices, the proposed method can...... successfully dispatch the resources in the microgrid with lower total operation costs....
Hu, Kaifeng; Ellinger, James J; Chylla, Roger A; Markley, John L
2011-12-15
Time-zero 2D (13)C HSQC (HSQC(0)) spectroscopy offers advantages over traditional 2D NMR for quantitative analysis of solutions containing a mixture of compounds because the signal intensities are directly proportional to the concentrations of the constituents. The HSQC(0) spectrum is derived from a series of spectra collected with increasing repetition times within the basic HSQC block by extrapolating the repetition time to zero. Here we present an alternative approach to data collection, gradient-selective time-zero (1)H-(13)C HSQC(0) in combination with fast maximum likelihood reconstruction (FMLR) data analysis and the use of two concentration references for absolute concentration determination. Gradient-selective data acquisition results in cleaner spectra, and NMR data can be acquired in both constant-time and non-constant-time mode. Semiautomatic data analysis is supported by the FMLR approach, which is used to deconvolute the spectra and extract peak volumes. The peak volumes obtained from this analysis are converted to absolute concentrations by reference to the peak volumes of two internal reference compounds of known concentration: DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) at the low concentration limit (which also serves as chemical shift reference) and MES (2-(N-morpholino)ethanesulfonic acid) at the high concentration limit. The linear relationship between peak volumes and concentration is better defined with two references than with one, and the measured absolute concentrations of individual compounds in the mixture are more accurate. We compare results from semiautomated gsHSQC(0) with those obtained by the original manual phase-cycled HSQC(0) approach. The new approach is suitable for automatic metabolite profiling by simultaneous quantification of multiple metabolites in a complex mixture.
Li Qi
2016-06-01
Full Text Available Dynamic time-varying operational conditions pose great challenge to the estimation of system remaining useful life (RUL for the deteriorating systems. This paper presents a method based on probabilistic and stochastic approaches to estimate system RUL for periodically monitored degradation processes with dynamic time-varying operational conditions and condition-specific failure zones. The method assumes that the degradation rate is influenced by specific operational condition and moreover, the transition between different operational conditions plays the most important role in affecting the degradation process. These operational conditions are assumed to evolve as a discrete-time Markov chain (DTMC. The failure thresholds are also determined by specific operational conditions and described as different failure zones. The 2008 PHM Conference Challenge Data is utilized to illustrate our method, which contains mass sensory signals related to the degradation process of a commercial turbofan engine. The RUL estimation method using the sensor measurements of a single sensor was first developed, and then multiple vital sensors were selected through a particular optimization procedure in order to increase the prediction accuracy. The effectiveness and advantages of the proposed method are presented in a comparison with existing methods for the same dataset.
Estimating the maximum potential revenue for grid connected electricity storage :
Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.
2012-12-01
The valuation of an electricity storage device is based on the expected future cash flow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the
Comparison of a subrank to a full-rank time-reversal operator in a dynamic ocean.
Edelmann, Geoffrey F; Lingevitch, Joseph F; Gaumond, Charles F; Fromm, David M; Calvo, David C
2007-11-01
This paper investigates the application of time-reversal techniques to the detection and ensonification of a target of interest. The focusing method is based on a generalization of time-reversal operator techniques. A subrank time-reversal operator is derived and implemented using a discrete set of transmission beams to ensonify a region of interest. In a dynamic ocean simulation, target focusing using a subrank matrix is shown to be superior to using a full-rank matrix, specifically when the subrank matrix is captured in a period shorter than the coherence time of the modeled environment. Backscatter from the point target was propagated to a vertical 64-element source-receiver array and processed to form the sub-rank time-reversal operator matrix. The eigenvector corresponding to the strongest eigenvalue of the time-reversal operator was shown to focus energy on the target in simulation. Modeled results will be augmented by a limited at-sea experiment conducted on the New Jersey shelf in April-May 2004 measured low-frequency backscattered signal from an artificial target (echo repeater).
A maximum feasible subset algorithm with application to radiation therapy
Sadegh, Payman
1999-01-01
inequalities. Special classes of this problem are of interest in a variety of areas such as pattern recognition, machine learning, operations research, and medical treatment planning. This problem is generally solvable in exponential time. A heuristic polynomial time algorithm is presented in this paper......Consider a set of linear one sided or two sided inequality constraints on a real vector X. The problem of interest is selection of X so as to maximize the number of constraints that are simultaneously satisfied, or equivalently, combinatorial selection of a maximum cardinality subset of feasible...
Elaine Cristina Leonello
2012-12-01
Full Text Available A mecanização da colheita de madeira permite maior controle dos custos e pode proporcionar reduções em prazos relativamente curtos. Além disso, tem um lugar de destaque na humanização do trabalho florestal e no aumento do rendimento operacional. O presente trabalho teve por objetivo avaliar o desempenho de operadores de harvester em função do tempo de experiência na atividade. Foram avaliados oito operadores do sexo masculino, com idade entre 23 e 46 anos. O estudo consistiu na análise do volume de madeira colhida pelo harvester. O tempo de experiência afeta significativamente o rendimento operacional dos operadores de harvester. Tal rendimento aumenta expressivamente nos primeiros 18 meses de experiência, mantendo-se em ascensão nos próximos 26 meses. Após os 44 meses de experiência, o rendimento dos operadores tende a reduzir, revelando as possíveis acomodações do cotidiano. Tais resultados permitem concluir que por volta dos 50 meses de experiência na atividade de operação de harvester, se faz necessária a adoção de medidas de reciclagem, motivação, entre outras, a fim de proporcionar aos operadores melhores condições de trabalho que os possibilitem continuar exercendo a atividade de forma eficiente e rentável à empresa.The mechanization of timber harvesting allows greater control of costs and can provide reductions in relatively short intervals. Moreover, it has a place in the humanization of the working forest and the increase in performance. This work provides comparisons of operating performance of different operator harvester according to the time of experience in the activity. The operators evaluated were eight males, aged between 23 and 46 years old. The study consisted of analysis of the volume of timber harvested by the harvester. The experience significantly affects the performance of harvesters operators. The performance increases significantly in the first 18 months of experience, and it remained on
Minimum Length - Maximum Velocity
Panes, Boris
2011-01-01
We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example we can predict the ratio between the minimum lengths in space and time using the results from OPERA about superluminal neutrinos.
Maximum permissible voltage of YBCO coated conductors
Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)
2014-06-15
Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.
程刘胜
2015-01-01
在合理布局井下无线网络基站的基础上，提出了一种基于多载波时频迭代的最大似然TOA（Time of Arrival）估计算法，通过将小数延时不断迭代来缩小估计误差，确定合适搜索步长，实现对信号的精确TOA估计。仿真结果表明：时频迭代的最大似然TOA估计算法具有更快的收敛速度；在信噪比较小时，采用时频迭代的最大似然TOA估计算法比经典TOA估计算法有效地提高了估计精度。%The influence of underground multipath, non-line of sight and the network time synchronization accuracy cause that delayed arrival time estimation deviation is bigger in the mining UWB high accuracy position system. This paper proposes a maximum likelihood TOA estimation algorithm based on multi-carrier time-frequency iteration by rationally distributing the underground wireless base stations to conform a suitable searching step length and find the exact TOA approximation estimation to the signal via fractional delay iterated to narrow the estimation error. The result shows that the time frequency iteration TOA estimation has a faster rate of convergence than the non-iteration algorithm.
Chen Qin
2013-01-01
Full Text Available This paper considers the problems of the robust stability and robust H∞ controller design for time-varying delay switched systems using delta operator approach. Based on the average dwell time approach and delta operator theory, a sufficient condition of the robust exponential stability is presented by choosing an appropriate Lyapunov-Krasovskii functional candidate. Then, a state feedback controller is designed such that the resulting closed-loop system is exponentially stable with a guaranteed H∞ performance. The obtained results are formulated in the form of linear matrix inequalities (LMIs. Finally, a numerical example is provided to explicitly illustrate the feasibility and effectiveness of the proposed method.
Cha, Seung-Tae
the proposed con-trol performance. Thirdly, a new fuzzy logic based secondary frequency control strategy between a BESS and dispatchable DG units is proposed for further improving the system frequency per-formance as well as reducing output power fluctuations. The simulation results show that the frequency...... regulation performance is highly improved with fuzzy logic control (FLC) when the system enters into islanding operation. Lastly, an intelligent multi-agent based secondary frequency control strategy for the islanding operation of ADN is proposed. A complete software-in-the-loop (SIL) simula-tion is carried...... of the DERs, etc. Particularly during islanding operation, with relatively few DG units, the frequency and voltage control of the islanded system is not straightforward. DG units, specially based on renewable energy sources (RESs), i.e. wind and solar, have an inter-mittent nature and intrinsic...
A feasibility study for conducting unattended night-time operations at WMKO
Stomski, Paul J.; Gajadhar, Sarah; Dahm, Scott; Jordan, Carolyn; Nordin, Tom
2016-08-01
In 2015, W. M. Keck Observatory conducted a study of the feasibility of conducting nighttime operations on Maunakea without any staff on the mountain. The study was motivated by the possibility of long term operational costs savings as well as other expected benefits. The goals of the study were to understand the technical feasibility and risk as well as to provide labor and cost estimates for implementation. The results of the study would be used to inform a decision about whether or not to fund and initiate a formal project aimed at the development of this new unattended nighttime operating capability. In this paper we will describe the study process as well as a brief summary of the results including the identified viable design alternative, the risk analysis, and the scope of work. We will also share the decisions made as a result of the study and current status of related follow-on activity.
Meizoso, Jonathan P; Ray, Juliet J; Karcutskie, Charles A; Allen, Casey J; Zakrison, Tanya L; Pust, Gerd D; Koru-Sengul, Tulay; Ginzburg, Enrique; Pizano, Louis R; Schulman, Carl I; Livingstone, Alan S; Proctor, Kenneth G; Namias, Nicholas
2016-10-01
Timely hemorrhage control is paramount in trauma; however, a critical time interval from emergency department arrival to operation for hypotensive gunshot wound (GSW) victims is not established. We hypothesize that delaying surgery for more than 10 minutes from arrival increases all-cause mortality in hypotensive patients with GSW. Data of adults (n = 309) with hypotension and GSW to the torso requiring immediate operation from January 2004 to September 2013 were retrospectively reviewed. Patients with resuscitative thoracotomies, traumatic brain injury, transfer from outside institutions, and operations occurring more than 1 hour after arrival were excluded. Survival analysis using multivariate Cox regression models was used for comparison. Hazard ratios (HRs) and 95% confidence intervals (CIs) are reported. Statistical significance was considered at p ≤ 0.05. The study population was aged 32 ± 12 years, 92% were male, Injury Severity Score was 24 ± 15, systolic blood pressure was 81 ± 29 mm Hg, Glasgow Coma Scale score was 13 ± 4. Overall mortality was 27%. Mean time to operation was 19 ± 13 minutes. After controlling for organ injury, patients who arrived to the operating room after 10 minutes had a higher likelihood of mortality compared with those who arrived in 10 minutes or less (HR, 1.89; 95% CI, 1.10-3.26; p = 0.02); this was also true in the severely hypotensive patients with systolic blood pressure of 70 mm Hg or less (HR, 2.67; 95% CI, 0.97-7.34; p = 0.05). The time associated with a 50% cumulative mortality was 16 minutes. Delay to the operating room of more than 10 minutes increases the risk of mortality by almost threefold in hypotensive patients with GSW. Protocols should be designed to shorten time in the emergency department. Further prospective observational studies are required to validate these findings. Therapeutic study, level IV.
Analysis of Photovoltaic Maximum Power Point Trackers
Veerachary, Mummadi
The photovoltaic generator exhibits a non-linear i-v characteristic and its maximum power point (MPP) varies with solar insolation. An intermediate switch-mode dc-dc converter is required to extract maximum power from the photovoltaic array. In this paper buck, boost and buck-boost topologies are considered and a detailed mathematical analysis, both for continuous and discontinuous inductor current operation, is given for MPP operation. The conditions on the connected load values and duty ratio are derived for achieving the satisfactory maximum power point operation. Further, it is shown that certain load values, falling out of the optimal range, will drive the operating point away from the true maximum power point. Detailed comparison of various topologies for MPPT is given. Selection of the converter topology for a given loading is discussed. Detailed discussion on circuit-oriented model development is given and then MPPT effectiveness of various converter systems is verified through simulations. Proposed theory and analysis is validated through experimental investigations.
Time headway in car following and operational performance during unexpected braking
Brouwer, W.H.; van Winsum, W.
The relation between car-following behaviour and braking performance was studied in a driving simulator. The theoretical perspective was that individual differences in tactical car-driving behaviour may be related to skills on the operational level of the driving task via a process of adaptation. In
A Time-Space Diagram as Controller Support Tool for Closed Path Continuous Descent Operations
De Leege, A.M.P.; In 't Veld, A.C.; Mulder, M.; Van Paassen, M.M.
2011-01-01
Tactical control during a closed-path Continuous Descent Operation stops the aircraft from following its optimized descent. To mitigate tactical control, air traffic controllers apply arbitrary large spacing buffers to account for the unpredictability of the aircraft trajectory from the controller’s
Mafra, Tatiana [Eni Oil do Brasil, Rio de Janeiro, RJ (Brazil); Fragoso, Mauricio da Rocha; Santos, Francisco Alves dos; Cruz, Leonardo M. Marques A.; Pellegrini, Julio A.C.; Cerrone, Bruna Nogueira [Prooceano, Rio de Janeiro, RJ (Brazil); Assireu, Arcilan Trevenzoli [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)
2008-07-01
Monitoring the ocean conditions during offshore operations is essential for both operational and environmental aspects. Environmentally, not only to know better the environment where the activity is taking place, but also to be able to provide fast and accurate response in case of accidents. MONDO Project (Monitoring by Ocean Drifters) is a pioneer initiative from ENI Oil do Brasil and PROOCEANO that aimed to monitor currents as a part of a metoceanographic data monitoring project of drilling operations in Brazilian Waters, in Santos Basin throughout September to November 2007, 40 satellite tracked ocean drifters were deployed will be transmitting data up to November 2008. The results of this project can be used to study a wide range of subjects about ocean dynamics. Following the principles of social and environmental responsibility, MONDO Project aims to benefit the local ecosystem in increasing the scientific knowledge of the area to calibrate hydrodynamic models that will lead to more accurate modeling results and, as a consequence, to a better management of contingency plans. Based on these principles, the project will also provide unrestricted access to oceanographic data even after the end of operations. (author)
2012-12-01
considered whether based on seasonality , operational tempo, or some other identifiable factor. Without proper communication, both the intermediate and...Technical Information Center website: http://www.dtic.mil Hu, Hao. (2008). Poisson distribution and application. Department of Physics and Astronomy
Wind turbine blade life-time assessment model for preventive planning of operation and maintenance
Florian, Mihai; Sørensen, John Dalsgaard
2014-01-01
Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M) practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair...
Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance
Florian, Mihai; Sørensen, John Dalsgaard
2015-01-01
Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M) practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair...
Time headway in car following and operational performance during unexpected braking
Brouwer, W.H.; van Winsum, W.
1997-01-01
The relation between car-following behaviour and braking performance was studied in a driving simulator. The theoretical perspective was that individual differences in tactical car-driving behaviour may be related to skills on the operational level of the driving task via a process of adaptation. In
Parametrization of Contractive Block Operator Matrices and Passive Discrete-Time Systems
Arlinskii, Yury M.; Hassi, Seppo; de Snoo, Henk S. V.
2007-01-01
Passive linear systems tau = {A, B, C, D; h, m, n} have their transfer function Theta(tau) (lambda) = D + lambda C(I - lambda A)(-1) B in the Schur class S(m, n). Using a parametrization of contractive block operators the transfer function Theta(tau) (lambda) is connected to the Sz.-Nagy-Foias chara
Analysis of Short Time Period of Operation of Horizontal Ground Heat Exchangers
Salsuwanda Selamat
2015-07-01
Full Text Available Ground source heat pump (GSHP systems have been proven to have higher efficiency compared to conventional air source heat pump systems for space heating and cooling applications. While vertical ground heat exchangers (GHE are favorable in GSHP installation, this type of configuration requires higher capital costs as opposed to horizontal configuration. Numerical simulation has been used to accurately predict the thermal performance of GHE. In this paper, numerical analysis of thermal performance for slinky horizontal GHE loops in different orientations and operation modes is discussed. It was found that the loop orientation is not so important due to the little effect it has on thermal performance. While the mean heat exchange rate of copper loop increases 48% compared to HDPE loop, the analysis supports the common claim that heat exchange rate is predominantly limited by the thermal conductivity of the ground. With the same amount of circulation work, the mean heat exchange rate increases by 83%–162% when operated in parallel loops operations. The performance in these operations can be further optimized to 10%–14% increase when spacing between adjacent loops was provided. The spacing helps to minimize interference of heat flow that would penalize the overall thermal performance.
BIM-Integrated Construction Operation Simulation for Just-In-Time Production Management
WoonSeong Jeong
2016-10-01
Full Text Available Traditional construction planning, which depends on historical data and heuristic modification, prevents the integration of managerial details such as productivity dynamics. Specifically, the distance between planning and execution brings cost overruns and duration extensions. To minimize variations, this research presents a Building Information Modeling (BIM-integrated simulation framework for predicting productivity dynamics at the construction planning phase. To develop this framework, we examined critical factors affecting productivity at the operational level, and then forecast the productivity dynamics. The resulting plan includes specific commands for retrieving the required information from BIM and executing operation simulations. It consists of the following steps: (1 preparing a BIM model to produce input data; (2 composing a construction simulation at the operational level; and (3 obtaining productivity dynamics from the BIM-integrated simulation. To validate our framework, we applied it to a structural steel model; this was due to the significance of steel erections. By integrating BIM with construction operation simulations, we were able to create reliable construction plans that adapted to project changes. Our results show that the developed framework facilitates the reliable prediction of productivity dynamics, and can contribute to improved schedule reliability, optimized resource allocation, cost savings associated with buffers, and reduced material waste.
Real time diagnostic for operation at a CW low voltage FEL
Balfour, C.; Shaw, A.; Mayhew, S.E. [and others
1995-12-31
At Liverpool University, a system for single user control of an FEL has been designed to satisfy the low voltage FEL (ie 200kV) operational requirements. This system incorporates many aspects of computer automation for beam diagnostics, radiation detection and vacuum system management. In this paper the results of the development of safety critical control systems critical control systems are reported.
Ohnaka, Keiichi; Hofmann, Karl-Heinz
2016-01-01
Our recent visible polarimetric images of the well-studied AGB star W Hya taken at pre-maximum light (phase 0.92) with VLT/SPHERE-ZIMPOL have revealed clumpy dust clouds close to the star at ~2 Rstar. We present second-epoch SPHERE-ZIMPOL observations of W Hya at minimum light (phase 0.54) in the continuum (645, 748, and 820 nm), in the Halpha line (656.3 nm), and in the TiO band (717 nm) as well as high-spectral resolution long-baseline interferometric observations in 2.3 micron CO lines with the AMBER instrument at the Very Large Telescope Interferometer (VLTI). The high-spatial resolution polarimetric images have allowed us to detect clear time variations in the clumpy dust clouds as close as 34--50~mas (1.4--2.0 Rstar) to the star. We detected the formation of a new dust cloud and the disappearance of one of the dust clouds detected at the first epoch. The Halpha and TiO emission extends to ~150 mas (~6 Rstar), and the Halpha images reveal time variations. The degree of linear polarization is higher at mi...
Pneumatic shutoff and time-delay valve operates at controlled rate
Horning, J. L.; Tomlinson, L. E.
1966-01-01
Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.
The end of windshield time : field operation is moving quickly from the truck to the office
Byfield, M.
2008-12-15
Calgary-based Kudu Industries Inc. has developed a new oilfield automation tool to help operators handle 200 wells from a remote location. The initial concept came from the Delta-X automation tool that saves money and helps address the oil industry's shortage of skilled field personnel. The tool allows an office-based operator to remotely access all the data at an oilwell and make pump adjustments, such as shooting fluid levels, which are traditionally done by going to the wellsite. The Delta-X rod pump controller was first developed in 1972 to detect the pump off state in a rod pumping system. When the fluid level in a wellbore is insufficient, the operation could shut down the well for a specified period until fluid refills the wellbore. Operation restarts automatically when fluid levels return to normal. In 1983, Delta-X introduced a micro-processor-based pump off controller to give operators more flexibility in defining the pump off state. It could track flow rates, temperatures, pressures, compressors, injection pumps and tank levels. It also enables remote monitoring and control of a well by radio of hardwire communications. By the mid-1980s, remote computer monitoring and diagnosis of production systems was possible via telephone or radio. In 1997, Lufkin Industries Inc. joined with Kudu Industries Inc. to develop a prototype pump off controller for progressing cavity pumps (PCPs) which are prevalent in heavy oil fields. The controller provides enough additional crude output to justify the added investment in SCADA by oilfield producers. 3 figs.
van der Beek, Eva S J; Monpellier, Valerie M.; Eland, Ingo; Tromp, Ellen; van Ramshorst, Bert
2015-01-01
Background: Post-operative nutritional deficiencies are a common complication following bariatric surgery. The incidence and time of occurrence are not clear, and the efficacy of supplementation remains questionable. Clear guidelines for nutritional follow-up and counselling are needed.Methods: Preo
Nugent, M
2015-05-03
Posterior spinal instrumentation and fusion for correction of adolescent idiopathic scoliosis (AIS) typically requires lengthy operating time and may be associated with significant blood loss and subsequent transfusion. This study aimed to identify factors predictive of duration of surgery, intraoperative blood loss and transfusion requirements in an Irish AIS cohort.
Paiva, Gustavo Varanda; Schirru, Roberto, E-mail: gustavopaiva@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (brazil). Programa de Engenharia Nuclear
2015-07-01
In the history of nuclear power plants operation safety is an important factor to be considered and for this, the use of resistant materials and the application of redundant systems are used to make a plant with high reliability. Through the acquisition of experience with time and accidents that happened in the area, it was observed that the importance of creating methods that simplify the operator work in making decisions in accidents scenarios is an important factor in ensuring the safety of nuclear power plants. This work aims to create a program made with the Python language, which with the use of an expert systems be able to apply, in real time, the rules contained in the Limiting Conditions for Operation (LCO) and tell to the operator the occurrence of any limiting conditions and the occurrence of failure to perform the require actions in the time to completion. The generic structure used to represent the knowledge of the expert system was a fault tree where the events of this tree are objects in program. To test the accuracy of the program a simplified model of a fault tree was used that represents the LCO of the nuclear power station named Central Nuclear Almirante Alvaro Alberto 1. With the results obtained in the analysis of the simplified model it was observed a significant reduction in the time to identify the LCO, showing that the implementation of this program to more complex models of fault tree would be viable.(author)
BEST (bioreactor economics, size and time of operation) is an Excel™ spreadsheet-based model that is used in conjunction with the public domain geochemical modeling software, PHREEQCI. The BEST model is used in the design process of sulfate-reducing bacteria (SRB) field bioreacto...
Maximum Matchings via Glauber Dynamics
Jindal, Anant; Pal, Manjish
2011-01-01
In this paper we study the classic problem of computing a maximum cardinality matching in general graphs $G = (V, E)$. The best known algorithm for this problem till date runs in $O(m \\sqrt{n})$ time due to Micali and Vazirani \\cite{MV80}. Even for general bipartite graphs this is the best known running time (the algorithm of Karp and Hopcroft \\cite{HK73} also achieves this bound). For regular bipartite graphs one can achieve an $O(m)$ time algorithm which, following a series of papers, has been recently improved to $O(n \\log n)$ by Goel, Kapralov and Khanna (STOC 2010) \\cite{GKK10}. In this paper we present a randomized algorithm based on the Markov Chain Monte Carlo paradigm which runs in $O(m \\log^2 n)$ time, thereby obtaining a significant improvement over \\cite{MV80}. We use a Markov chain similar to the \\emph{hard-core model} for Glauber Dynamics with \\emph{fugacity} parameter $\\lambda$, which is used to sample independent sets in a graph from the Gibbs Distribution \\cite{V99}, to design a faster algori...
Gonzalez-Ayala, Julian; Calvo Hernández, A.; Roco, J. M. M.
2016-07-01
The main unified energetic properties of low dissipation heat engines and refrigerator engines allow for both endoreversible or irreversible configurations. This is accomplished by means of the constraints imposed on the characteristic global operation time or the contact times between the working system with the external heat baths and modulated by the dissipation symmetries. A suited unified figure of merit (which becomes power output for heat engines) is analyzed and the influence of the symmetries on the optimum performance discussed. The obtained results, independent on any heat transfer law, are faced with those obtained from Carnot-like heat models where specific heat transfer laws are needed. Thus, it is shown that only the inverse phenomenological law, often used in linear irreversible thermodynamics, correctly reproduces all optimized values for both the efficiency and coefficient of performance values.
Stavrou, George; Panidis, Stavros; Tsouskas, John; Tsaousi, Georgia; Kotzampassi, Katerina
2014-01-01
Aim. To perform a thorough and step-by-step assessment of operating room (OR) time utilization, with a view to assess the efficacy of our practice and to identify areas of further improvement. Materials and Methods. We retrospectively analyzed the most ordinary general surgery procedures, in terms of five intervals of OR time utilization: anaesthesia induction, surgery preparation, duration of operation, recovery from anaesthesia, and transfer to postanaesthesia care unit (PACU) or intensive care unit (ICU). According to their surgical impact, the procedures were defined as minor, moderate, and major. Results. A total of 548 operations were analyzed. The mean (SD) time in minutes for anaesthesia induction was 19 (9), for surgery preparation 13 (8), for surgery 115 (64), for recovery from anaesthesia 12 (8), and for transfer to PACU/ICU 12 (9). The time spent in each step presented an ascending escalation pattern proportional to the surgical impact (P = 0.000), which was less pronounced in the transfer to PACU/ICU (P = 0.006). Conclusions. Albeit, our study was conducted in a teaching hospital, the recorded time estimates ranged within acceptable limits. Efficient OR time usage and outliers elimination could be accomplished by a better organized transfer personnel service, greater availability of anaesthesia providers, and interdisciplinary collaboration.
REAL TIME MEASUREMENT OF ULTRAFINE AND NANO PARTICLES AND SIGNIFICANCE OF OPERATING GEARS
H. A. NAKHAWA
2017-03-01
Full Text Available This research paper focuses on characterization of ultrafine and nanoparticle emissions from diesel vehicle to investigate their physical characterization in terms of number and size as they are more vulnerable and responsible for toxicity, mutagenicity and carcinogenicity. An investigation has been carried out to identify the significance of different operating gears, clutch, declutch and gear change operations for their contributions to particle number(PN on urban and extra urban part of the driving cycle. A bi-modal particle size distribution pattern was observed for both urban and extra urban parts where almost all the particles are below 200 nm and particle number peaks appear at 7 to 8 nm and at 70 nm. Nano particles contribute approximately, 70% of total particle number over urban part. Experimental investigation shows that the most significant gear for their contribution to particle number are 3rd and 5th gears on urban and extra urban part of the driving cycle respectively.
Survey of timing/synchronization of operating wideband digital communications networks
Mitchell, R. L.
1978-01-01
In order to benefit from experience gained from the synchronization of operational wideband digital networks, a survey was made of three such systems: Data Transmission Company, Western Union Telegraph Company, and the Computer Communications Group of the Trans-Canada Telephone System. The focus of the survey was on deployment and operational experience from a practical (as opposed to theoretical) viewpoint. The objective was to provide a report on the results of deployment how the systems performed, and wherein the performance differed from that predicted or intended in the design. It also attempted to determine how the various system designers would use the benefit of hindsight if they could design those same systems today.
Computer vision for real-time orbital operations. Center directors discretionary fund
Vinz, F. L.; Brewster, L. L.; Thomas, L. D.
1984-01-01
Machine vision research is examined as it relates to the NASA Space Station program and its associated Orbital Maneuvering Vehicle (OMV). Initial operation of OMV for orbital assembly, docking, and servicing are manually controlled from the ground by means of an on board TV camera. These orbital operations may be accomplished autonomously by machine vision techniques which use the TV camera as a sensing device. Classical machine vision techniques are described. An alternate method is developed and described which employs a syntactic pattern recognition scheme. It has the potential for substantial reduction of computing and data storage requirements in comparison to the Two-Dimensional Fast Fourier Transform (2D FFT) image analysis. The method embodies powerful heuristic pattern recognition capability by identifying image shapes such as elongation, symmetry, number of appendages, and the relative length of appendages.