WorldWideScience

Sample records for maximum metabolic rate

  1. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    Exercise-induced maximum metabolic rate scaled to body mass by the fractal ... rate scaling is that exercise-induced maximum aerobic metabolic rate (MMR) is ... muscle stress limitation, and maximized oxygen delivery and metabolic rates.

  2. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.

    Science.gov (United States)

    Myhrvold, Nathan P

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

  3. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    Science.gov (United States)

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  4. The scaling of maximum and basal metabolic rates of mammals and birds

    Science.gov (United States)

    Barbosa, Lauro A.; Garcia, Guilherme J. M.; da Silva, Jafferson K. L.

    2006-01-01

    Allometric scaling is one of the most pervasive laws in biology. Its origin, however, is still a matter of dispute. Recent studies have established that maximum metabolic rate scales with an exponent larger than that found for basal metabolism. This unpredicted result sets a challenge that can decide which of the concurrent hypotheses is the correct theory. Here, we show that both scaling laws can be deduced from a single network model. Besides the 3/4-law for basal metabolism, the model predicts that maximum metabolic rate scales as M, maximum heart rate as M, and muscular capillary density as M, in agreement with data.

  5. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    user

    2016-10-27

    Oct 27, 2016 ... maximum aerobic metabolic rate (MMR) is proportional to the fractal extent ... metabolic rate with body mass can be obtained by taking body .... blood takes place. ..... MMR and BMR is that MMR is owing mainly to respiration in skeletal .... the spectra of surface area scaling strategies of cells and organisms:.

  6. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    OpenAIRE

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth...

  7. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers.

    Science.gov (United States)

    Rosewarne, P J; Wilson, J M; Svendsen, J C

    2016-01-01

    Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology. © 2016 The Fisheries Society of the British Isles.

  8. Methodological aspects of crossover and maximum fat-oxidation rate point determination.

    Science.gov (United States)

    Michallet, A-S; Tonini, J; Regnier, J; Guinot, M; Favre-Juvin, A; Bricout, V; Halimi, S; Wuyam, B; Flore, P

    2008-11-01

    Indirect calorimetry during exercise provides two metabolic indices of substrate oxidation balance: the crossover point (COP) and maximum fat oxidation rate (LIPOXmax). We aimed to study the effects of the analytical device, protocol type and ventilatory response on variability of these indices, and the relationship with lactate and ventilation thresholds. After maximum exercise testing, 14 relatively fit subjects (aged 32+/-10 years; nine men, five women) performed three submaximum graded tests: one was based on a theoretical maximum power (tMAP) reference; and two were based on the true maximum aerobic power (MAP). Gas exchange was measured concomitantly using a Douglas bag (D) and an ergospirometer (E). All metabolic indices were interpretable only when obtained by the D reference method and MAP protocol. Bland and Altman analysis showed overestimation of both indices with E versus D. Despite no mean differences between COP and LIPOXmax whether tMAP or MAP was used, the individual data clearly showed disagreement between the two protocols. Ventilation explained 10-16% of the metabolic index variations. COP was correlated with ventilation (r=0.96, P<0.01) and the rate of increase in blood lactate (r=0.79, P<0.01), and LIPOXmax correlated with the ventilation threshold (r=0.95, P<0.01). This study shows that, in fit healthy subjects, the analytical device, reference used to build the protocol and ventilation responses affect metabolic indices. In this population, and particularly to obtain interpretable metabolic indices, we recommend a protocol based on the true MAP or one adapted to include the transition from fat to carbohydrate. The correlation between metabolic indices and lactate/ventilation thresholds suggests that shorter, classical maximum progressive exercise testing may be an alternative means of estimating these indices in relatively fit subjects. However, this needs to be confirmed in patients who have metabolic defects.

  9. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  10. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  11. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule

  12. Evolution of mitochondrial DNA and its relation to basal metabolic rate.

    Science.gov (United States)

    Feng, Ping; Zhao, Huabin; Lu, Xin

    2015-08-01

    Energy metabolism is essential for the survival of animals, which can be characterized by maximum metabolic rate (MMR) and basal metabolic rate (BMR). Because of the crucial roles of mitochondria in energy metabolism, mitochondrial DNA (mtDNA) has been subjected to stronger purifying selection in strongly locomotive than weakly locomotive birds and mammals. Although maximum locomotive speed (an indicator of MMR) showed a negative correlation with the evolutionary rate of mtDNA, it is unclear whether BMR has driven the evolution of mtDNA. Here, we take advantage of the large amount of mtDNA and BMR data in 106 mammals to test whether BMR has influenced the mtDNA evolution. Our results showed that, in addition to the locomotive speed, mammals with higher BMR have subjected to stronger purifying selection on mtDNA than did those with lower BMR. The evolution of mammalian mtDNA has been modified by two levels of energy metabolism, including MMR and BMR. Our study provides a more comprehensive view of mtDNA evolution in relation to energy metabolism.

  13. Basal metabolic rate and the mass of tissues differing in metabolic scope : Migration-related covariation between individual knots Calidris canutus

    NARCIS (Netherlands)

    Weber, TP; Piersma, T; Weber, Thomas P.

    To examine whether variability in the basal metabolic rate (BMR) of migrant shorebirds is a function of a variably sized metabolic machinery or of temporal changes in metabolic intensities at the tissue level, BMR, body composition and activity of cytochrome-c oxidase (CCO, a marker for maximum

  14. Formal comment on: Myhrvold (2016) Dinosaur metabolism and the allometry of maximum growth rate. PLoS ONE; 11(11): e0163205.

    Science.gov (United States)

    Griebeler, Eva Maria; Werner, Jan

    2018-01-01

    In his 2016 paper, Myhrvold criticized ours from 2014 on maximum growth rates (Gmax, maximum gain in body mass observed within a time unit throughout an individual's ontogeny) and thermoregulation strategies (ectothermy, endothermy) of 17 dinosaurs. In our paper, we showed that Gmax values of similar-sized extant ectothermic and endothermic vertebrates overlap. This strongly questions a correct assignment of a thermoregulation strategy to a dinosaur only based on its Gmax and (adult) body mass (M). Contrary, Gmax separated similar-sized extant reptiles and birds (Sauropsida) and Gmax values of our studied dinosaurs were similar to those seen in extant similar-sized (if necessary scaled-up) fast growing ectothermic reptiles. Myhrvold examined two hypotheses (H1 and H2) regarding our study. However, we did neither infer dinosaurian thermoregulation strategies from group-wide averages (H1) nor were our results based on that Gmax and metabolic rate (MR) are related (H2). In order to assess whether single dinosaurian Gmax values fit to those of extant endotherms (birds) or of ectotherms (reptiles), we already used a method suggested by Myhrvold to avoid H1, and we only discussed pros and cons of a relation between Gmax and MR and did not apply it (H2). We appreciate Myhrvold's efforts in eliminating the correlation between Gmax and M in order to statistically improve vertebrate scaling regressions on maximum gain in body mass. However, we show here that his mass-specific maximum growth rate (kC) replacing Gmax (= MkC) does not model the expected higher mass gain in larger than in smaller species for any set of species. We also comment on, why we considered extant reptiles and birds as reference models for extinct dinosaurs and why we used phylogenetically-informed regression analysis throughout our study. Finally, we question several arguments given in Myhrvold in order to support his results.

  15. 7 CFR 3565.210 - Maximum interest rate.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Maximum interest rate. 3565.210 Section 3565.210... AGRICULTURE GUARANTEED RURAL RENTAL HOUSING PROGRAM Loan Requirements § 3565.210 Maximum interest rate. The interest rate for a guaranteed loan must not exceed the maximum allowable rate specified by the Agency in...

  16. Effects of growth hormone transgenesis on metabolic rate, exercise performance and hypoxia tolerance in tilapia hybrids

    DEFF Research Database (Denmark)

    McKenzie, DJ; Martinez, R; Morales, A

    2003-01-01

    Swimming respirometry was employed to compare inactive metabolic rate (Rr), maximum metabolic rate (Rmax), resultant aerobic scope and maximum sustainable (critical) swimming speed (Ucrit), in growth hormone transgenic (GHT) and wild-type (W) tilapia Oreochromis sp. hybrids. Although the Rr of GHT...... tilapia was significantly (58%) higher than their W conspecifics, there were no significant differences in their net aerobic scope because GHT tilapia exhibited a compensatory increase in Rmax that was equal to their net increase in Rr. As a consequence, the two groups had the same Ucrit. The GHT and W...... tilapia also exhibited the same capacity to regulate oxygen uptake during progressive hypoxia, despite the fact that the GHT fish were defending a higher demand for O2. The results indicate that ectopic expression of GH raises metabolic rate in tilapia, but the fish compensate for this metabolic load...

  17. Evidence of circadian rhythm, oxygen regulation capacity, metabolic repeatability and positive correlations between forced and spontaneous maximal metabolic rates in lake sturgeon Acipenser fulvescens.

    Directory of Open Access Journals (Sweden)

    Jon C Svendsen

    Full Text Available Animal metabolic rate is variable and may be affected by endogenous and exogenous factors, but such relationships remain poorly understood in many primitive fishes, including members of the family Acipenseridae (sturgeons. Using juvenile lake sturgeon (Acipenser fulvescens, the objective of this study was to test four hypotheses: 1 A. fulvescens exhibits a circadian rhythm influencing metabolic rate and behaviour; 2 A. fulvescens has the capacity to regulate metabolic rate when exposed to environmental hypoxia; 3 measurements of forced maximum metabolic rate (MMR(F are repeatable in individual fish; and 4 MMR(F correlates positively with spontaneous maximum metabolic rate (MMR(S. Metabolic rates were measured using intermittent flow respirometry, and a standard chase protocol was employed to elicit MMR(F. Trials lasting 24 h were used to measure standard metabolic rate (SMR and MMR(S. Repeatability and correlations between MMR(F and MMR(S were analyzed using residual body mass corrected values. Results revealed that A. fulvescens exhibit a circadian rhythm in metabolic rate, with metabolism peaking at dawn. SMR was unaffected by hypoxia (30% air saturation (O(2sat, demonstrating oxygen regulation. In contrast, MMR(F was affected by hypoxia and decreased across the range from 100% O(2sat to 70% O(2sat. MMR(F was repeatable in individual fish, and MMR(F correlated positively with MMR(S, but the relationships between MMR(F and MMR(S were only revealed in fish exposed to hypoxia or 24 h constant light (i.e. environmental stressor. Our study provides evidence that the physiology of A. fulvescens is influenced by a circadian rhythm and suggests that A. fulvescens is an oxygen regulator, like most teleost fish. Finally, metabolic repeatability and positive correlations between MMR(F and MMR(S support the conjecture that MMR(F represents a measure of organism performance that could be a target of natural selection.

  18. Is the rate of metabolic ageing and survival determined by Basal metabolic rate in the zebra finch?

    Directory of Open Access Journals (Sweden)

    Bernt Rønning

    Full Text Available The relationship between energy metabolism and ageing is of great interest because aerobic metabolism is the primary source of reactive oxygen species which is believed to be of major importance in the ageing process. We conducted a longitudinal study on captive zebra finches where we tested the effect of age on basal metabolic rate (BMR, as well as the effect of BMR on the rate of metabolic ageing (decline in BMR with age and survival. Basal metabolic rate declined with age in both sexes after controlling for the effect of body mass, indicating a loss of functionality with age. This loss of functionality could be due to accumulated oxidative damage, believed to increase with increasing metabolic rate, c.f. the free radical theory of ageing. If so, we would expect the rate of metabolic ageing to increase and survival to decrease with increasing BMR. However, we found no effect of BMR on the rate of metabolic ageing. Furthermore, survival was not affected by BMR in the males. In female zebra finches there was a tendency for survival to decrease with increasing BMR, but the effect did not reach significance (P<0.1. Thus, the effect of BMR on the rate of functional deterioration with age, if any, was not strong enough to influence neither the rate of metabolic ageing nor survival in the zebra finches.

  19. Is the rate of metabolic ageing and survival determined by Basal metabolic rate in the zebra finch?

    Science.gov (United States)

    Rønning, Bernt; Moe, Børge; Berntsen, Henrik H; Noreen, Elin; Bech, Claus

    2014-01-01

    The relationship between energy metabolism and ageing is of great interest because aerobic metabolism is the primary source of reactive oxygen species which is believed to be of major importance in the ageing process. We conducted a longitudinal study on captive zebra finches where we tested the effect of age on basal metabolic rate (BMR), as well as the effect of BMR on the rate of metabolic ageing (decline in BMR with age) and survival. Basal metabolic rate declined with age in both sexes after controlling for the effect of body mass, indicating a loss of functionality with age. This loss of functionality could be due to accumulated oxidative damage, believed to increase with increasing metabolic rate, c.f. the free radical theory of ageing. If so, we would expect the rate of metabolic ageing to increase and survival to decrease with increasing BMR. However, we found no effect of BMR on the rate of metabolic ageing. Furthermore, survival was not affected by BMR in the males. In female zebra finches there was a tendency for survival to decrease with increasing BMR, but the effect did not reach significance (PBMR on the rate of functional deterioration with age, if any, was not strong enough to influence neither the rate of metabolic ageing nor survival in the zebra finches.

  20. Thermal optimum for pikeperch (Sander lucioperca) and the use of ventilation frequency as a predictor of metabolic rate

    DEFF Research Database (Denmark)

    Frisk, Michael; Skov, Peter Vilhelm; Steffensen, John Fleng

    2012-01-01

    at six temperatures, ranging from 13 to 28 °C, in order to identify the temperature where pikeperch has the largest metabolic scope (MS). Between 13 and 25 °C, standard metabolic rates (SMR) increased as expected with a Q10=1.8 in response to increasing temperatures, while maximum metabolic rate (MMR...... consumption rate (M_ O2), during normoxia and progressive hypoxia. A strong correlation was found between fV and M_ O2 across all temperatures, and fV could predict M_ O2 with a high degree of accuracy in normoxia...

  1. 5 CFR 531.221 - Maximum payable rate rule.

    Science.gov (United States)

    2010-01-01

    ... before the reassignment. (ii) If the rate resulting from the geographic conversion under paragraph (c)(2... previous rate (i.e., the former special rate after the geographic conversion) with the rates on the current... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Maximum payable rate rule. 531.221...

  2. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    DEFF Research Database (Denmark)

    Wone, B W M; Madsen, Per; Donovan, E R

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection...... on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols...... and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR...

  3. Assessing Metabolic Syndrome Through Increased Heart Rate During Exercise

    Directory of Open Access Journals (Sweden)

    Masoumeh Sadeghi

    2016-12-01

    Full Text Available The present study aimed to assess changes in resting and maximum heart rates as primary indicators of cardiac autonomic function in metabolic syndrome (MetS patients and to determine their value for discriminating MetS from non-MetS. 468 participants were enrolled in this cross-sectional study and assessed according to the updated adult treatment panel III (ATP-III definition of MetS. Resting and maximum heart rates were recorded following the Bruce protocol during an exercise. A receiver operating characteristic (ROC curve was used to identify the best cutoff point for discriminating MetS from the non-MetS state. 194 participants (41.5% were diagnosed as MetS. The mean resting heart rate (RHR was not statistically different between the two groups (P=0.078. However, the mean maximum heart (MHR rate was considerably higher in participants with MetS (142.37±14.84 beats per min compared to the non-MetS group (134.62±21.63 beats per min (P<0.001. In the MetS group, the MHR was positively correlated with the serum triglyceride level (β=0.185, P=0.033 and was inversely associated with age (β=-0.469, P<0.001. The MHR had a moderate value for discriminating MetS from the non-MetS state (c=0.580, P=0.004 with the optimal cutoff point of 140 beats per min. In MetS patients, the MHR was significantly greater compared to non-MetS subjects and was directly correlated with serum triglyceride levels and inversely with advanced age. Moreover, MHR can be used as a suspicious indicator for identifying MetS.

  4. Assessing Metabolic Syndrome Through Increased Heart Rate During Exercise.

    Science.gov (United States)

    Sadeghi, Masoumeh; Gharipour, Mojgan; Nezafati, Pouya; Shafie, Davood; Aghababaei, Esmaeil; Sarrafzadegan, Nizal

    2016-11-01

    The present study aimed to assess changes in resting and maximum heart rates as primary indicators of cardiac autonomic function in metabolic syndrome (MetS) patients and to determine their value for discriminating MetS from non-MetS. 468 participants were enrolled in this cross-sectional study and assessed according to the updated adult treatment panel III (ATP-III) definition of MetS. Resting and maximum heart rates were recorded following the Bruce protocol during an exercise. A receiver operating characteristic (ROC) curve was used to identify the best cutoff point for discriminating MetS from the non-MetS state. 194 participants (41.5%) were diagnosed as MetS. The mean resting heart rate (RHR) was not statistically different between the two groups (P=0.078). However, the mean maximum heart (MHR) rate was considerably higher in participants with MetS (142.37±14.84 beats per min) compared to the non-MetS group (134.62±21.63 beats per min) (P<0.001). In the MetS group, the MHR was positively correlated with the serum triglyceride level (β=0.185, P=0.033) and was inversely associated with age (β=-0.469, P<0.001). The MHR had a moderate value for discriminating MetS from the non-MetS state (c=0.580, P=0.004) with the optimal cutoff point of 140 beats per min. In MetS patients, the MHR was significantly greater compared to non-MetS subjects and was directly correlated with serum triglyceride levels and inversely with advanced age. Moreover, MHR can be used as a suspicious indicator for identifying MetS.

  5. Estimating fish swimming metrics and metabolic rates with accelerometers: the influence of sampling frequency.

    Science.gov (United States)

    Brownscombe, J W; Lennox, R J; Danylchuk, A J; Cooke, S J

    2018-06-21

    Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1-25 Hz) with tri-axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail-beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim-tunnel respirometer and free-swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free-swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail-beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail-beat frequency and swimming style, this study provides a reference point with a medium body-sized sub-carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Does basal metabolic rate drive eating rate?

    Science.gov (United States)

    Henry, Christiani Jeyakumar; Ponnalagu, Shalini; Bi, Xinyan; Forde, Ciaran

    2018-05-15

    There have been recent advances in our understanding of the drivers of energy intake (EI). However, the biological drivers of differences in eating rate (ER) remain less clear. Studies have reported that the fat-free mass (FFM) and basal metabolic rate (BMR) are both major components that contribute to daily energy expenditure (EE) and drive EI. More recently, a number of observations report that higher ER can lead to greater EI. The current study proposed that adults with a higher BMR and higher energy requirements would also exhibit higher ERs. Data on BMR, FFM, and ER were collected from 272 Chinese adults (91 males and 181 females) in a cross-sectional study. Analysis showed significant positive associations between BMR and ER (r s  = 0.405, p BMR explained about 15% of the variation in ER which was taken to be metabolically significant. This association provides metabolic explanation that the differences in an individual's BMR (hence energy requirements) may be correlated with ERs. This merits further research. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. 44 CFR 208.12 - Maximum Pay Rate Table.

    Science.gov (United States)

    2010-10-01

    ...) Physicians. DHS uses the latest Special Salary Rate Table Number 0290 for Medical Officers (Clinical... Personnel, in which case the Maximum Pay Rate Table would not apply. (3) Compensation for Sponsoring Agency... organizations, e.g., HMOs or medical or engineering professional associations, under the revised definition of...

  8. Metabolic expenditures of lunge feeding rorquals across scale: implications for the evolution of filter feeding and the limits to maximum body size.

    Directory of Open Access Journals (Sweden)

    Jean Potvin

    Full Text Available Bulk-filter feeding is an energetically efficient strategy for resource acquisition and assimilation, and facilitates the maintenance of extreme body size as exemplified by baleen whales (Mysticeti and multiple lineages of bony and cartilaginous fishes. Among mysticetes, rorqual whales (Balaenopteridae exhibit an intermittent ram filter feeding mode, lunge feeding, which requires the abandonment of body-streamlining in favor of a high-drag, mouth-open configuration aimed at engulfing a very large amount of prey-laden water. Particularly while lunge feeding on krill (the most widespread prey preference among rorquals, the effort required during engulfment involve short bouts of high-intensity muscle activity that demand high metabolic output. We used computational modeling together with morphological and kinematic data on humpback (Megaptera noveaangliae, fin (Balaenoptera physalus, blue (Balaenoptera musculus and minke (Balaenoptera acutorostrata whales to estimate engulfment power output in comparison with standard metrics of metabolic rate. The simulations reveal that engulfment metabolism increases across the full body size of the larger rorqual species to nearly 50 times the basal metabolic rate of terrestrial mammals of the same body mass. Moreover, they suggest that the metabolism of the largest body sizes runs with significant oxygen deficits during mouth opening, namely, 20% over maximum VO2 at the size of the largest blue whales, thus requiring significant contributions from anaerobic catabolism during a lunge and significant recovery after a lunge. Our analyses show that engulfment metabolism is also significantly lower for smaller adults, typically one-tenth to one-half VO2|max. These results not only point to a physiological limit on maximum body size in this lineage, but also have major implications for the ontogeny of extant rorquals as well as the evolutionary pathways used by ancestral toothed whales to transition from hunting

  9. Metabolic rate determines haematopoietic stem cell self-renewal.

    Science.gov (United States)

    Sastry, P S R K

    2004-01-01

    The number of haematopoietic stem cells (HSCs) per animal is conserved across species. This means the HSCs need to maintain hematopoiesis over a longer period in larger animals. This would result in the requirement of stem cell self-renewal. At present the three existing models are the stochastic model, instructive model and the third more recently proposed is the chiaro-scuro model. It is a well known allometric law that metabolic rate scales to the three quarter power. Larger animals have a lower metabolic rate, compared to smaller animals. Here it is being hypothesized that metabolic rate determines haematopoietic stem cell self-renewal. At lower metabolic rate the stem cells commit for self-renewal, where as at higher metabolic rate they become committed to different lineages. The present hypothesis can explain the salient features of the different models. Recent findings regarding stem cell self-renewal suggest an important role for Wnt proteins and their receptors known as frizzleds, which are an important component of cell signaling pathway. The role of cGMP in the Wnts action provides further justification for the present hypothesis as cGMP is intricately linked to metabolic rate. One can also explain the telomere homeostasis by the present hypothesis. One prediction of the present hypothesis is with reference to the limit of cell divisions known as Hayflick limit, here it is being suggested that this is the result of metabolic rate in laboratory conditions and there can be higher number of cell divisions in vivo if the metabolic rate is lower. Copyright 2004 Elsevier Ltd.

  10. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate.

    Directory of Open Access Journals (Sweden)

    Dustyn Roberts

    Full Text Available A subject-specific model of instantaneous cost of transport (ICOT is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters-mass, height, (estimated maximum oxygen uptake, and (estimated maximum joint torques-are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90 inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326-0.348 of the experimental total COT (0.311-0.358 across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic energy pathway similar to that of steady-state walking.

  11. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  12. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  13. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.

    Science.gov (United States)

    Swanson, David L; Thomas, Nathan E; Liknes, Eric T; Cooper, Sheldon J

    2012-01-01

    The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, M(sum) (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; M(sum) and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and M(sum) only) and examined correlations among these variables. We also measured BMR and M(sum) in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either M(sum) or MMR in juncos. Moreover, no significant correlation between M(sum) and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and M(sum) were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and M(sum) were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic

  14. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.

    Directory of Open Access Journals (Sweden)

    David L Swanson

    Full Text Available The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, M(sum (maximum thermoregulatory metabolic rate and MMR (maximum exercise metabolic rate in a hop-flutter chamber in winter for dark-eyed juncos (Junco hyemalis, American goldfinches (Carduelis tristis; M(sum and MMR only, and black-capped chickadees (Poecile atricapillus; BMR and M(sum only and examined correlations among these variables. We also measured BMR and M(sum in individual house sparrows (Passer domesticus in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either M(sum or MMR in juncos. Moreover, no significant correlation between M(sum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and M(sum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and M(sum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential

  15. Sleep-Dependent Modulation of Metabolic Rate in Drosophila.

    Science.gov (United States)

    Stahl, Bethany A; Slocumb, Melissa E; Chaitin, Hersh; DiAngelo, Justin R; Keene, Alex C

    2017-08-01

    Dysregulation of sleep is associated with metabolic diseases, and metabolic rate (MR) is acutely regulated by sleep-wake behavior. In humans and rodent models, sleep loss is associated with obesity, reduced metabolic rate, and negative energy balance, yet little is known about the neural mechanisms governing interactions between sleep and metabolism. We have developed a system to simultaneously measure sleep and MR in individual Drosophila, allowing for interrogation of neural systems governing interactions between sleep and metabolic rate. Like mammals, MR in flies is reduced during sleep and increased during sleep deprivation suggesting sleep-dependent regulation of MR is conserved across phyla. The reduction of MR during sleep is not simply a consequence of inactivity because MR is reduced ~30 minutes following the onset of sleep, raising the possibility that CO2 production provides a metric to distinguish different sleep states in the fruit fly. To examine the relationship between sleep and metabolism, we determined basal and sleep-dependent changes in MR is reduced in starved flies, suggesting that starvation inhibits normal sleep-associated effects on metabolic rate. Further, translin mutant flies that fail to suppress sleep during starvation demonstrate a lower basal metabolic rate, but this rate was further reduced in response to starvation, revealing that regulation of starvation-induced changes in MR and sleep duration are genetically distinct. Therefore, this system provides the unique ability to simultaneously measure sleep and oxidative metabolism, providing novel insight into the physiological changes associated with sleep and wakefulness in the fruit fly. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  16. 47 CFR 1.1507 - Rulemaking on maximum rates for attorney fees.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Rulemaking on maximum rates for attorney fees... § 1.1507 Rulemaking on maximum rates for attorney fees. (a) If warranted by an increase in the cost of... types of proceedings), the Commission may adopt regulations providing that attorney fees may be awarded...

  17. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate.

    Science.gov (United States)

    Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P

    2015-04-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question.

  18. Metabolic rate regulates L1 longevity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Inhwan Lee

    Full Text Available Animals have to cope with starvation. The molecular mechanisms by which animals survive long-term starvation, however, are not clearly understood. When they hatch without food, C. elegans arrests development at the first larval stage (L1 and survives more than two weeks. Here we show that the survival span of arrested L1s, which we call L1 longevity, is a starvation response regulated by metabolic rate during starvation. A high rate of metabolism shortens the L1 survival span, whereas a low rate of metabolism lengthens it. The longer worms are starved, the slower they grow once they are fed, suggesting that L1 arrest has metabolic costs. Furthermore, mutants of genes that regulate metabolism show altered L1 longevity. Among them, we found that AMP-dependent protein kinase (AMPK, as a key energy sensor, regulates L1 longevity by regulating this metabolic arrest. Our results suggest that L1 longevity is determined by metabolic rate and that AMPK as a master regulator of metabolism controls this arrest so that the animals survive long-term starvation.

  19. Palaeohistological Evidence for Ancestral High Metabolic Rate in Archosaurs.

    Science.gov (United States)

    Legendre, Lucas J; Guénard, Guillaume; Botha-Brink, Jennifer; Cubo, Jorge

    2016-11-01

    Metabolic heat production in archosaurs has played an important role in their evolutionary radiation during the Mesozoic, and their ancestral metabolic condition has long been a matter of debate in systematics and palaeontology. The study of fossil bone histology provides crucial information on bone growth rate, which has been used to indirectly investigate the evolution of thermometabolism in archosaurs. However, no quantitative estimation of metabolic rate has ever been performed on fossils using bone histological features. Moreover, to date, no inference model has included phylogenetic information in the form of predictive variables. Here we performed statistical predictive modeling using the new method of phylogenetic eigenvector maps on a set of bone histological features for a sample of extant and extinct vertebrates, to estimate metabolic rates of fossil archosauromorphs. This modeling procedure serves as a case study for eigenvector-based predictive modeling in a phylogenetic context, as well as an investigation of the poorly known evolutionary patterns of metabolic rate in archosaurs. Our results show that Mesozoic theropod dinosaurs exhibit metabolic rates very close to those found in modern birds, that archosaurs share a higher ancestral metabolic rate than that of extant ectotherms, and that this derived high metabolic rate was acquired at a much more inclusive level of the phylogenetic tree, among non-archosaurian archosauromorphs. These results also highlight the difficulties of assigning a given heat production strategy (i.e., endothermy, ectothermy) to an estimated metabolic rate value, and confirm findings of previous studies that the definition of the endotherm/ectotherm dichotomy may be ambiguous. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Metabolic rates of giant pandas inform conservation strategies

    Science.gov (United States)

    Fei, Yuxiang; Hou, Rong; Spotila, James R.; Paladino, Frank V.; Qi, Dunwu; Zhang, Zhihe

    2016-06-01

    The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction.

  1. 5 CFR 9901.312 - Maximum rates of base salary and adjusted salary.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Maximum rates of base salary and adjusted salary. 9901.312 Section 9901.312 Administrative Personnel DEPARTMENT OF DEFENSE HUMAN RESOURCES....312 Maximum rates of base salary and adjusted salary. (a) Subject to § 9901.105, the Secretary may...

  2. Metabolic rates of giant pandas inform conservation strategies

    Science.gov (United States)

    Fei, Yuxiang; Hou, Rong; Spotila, James R.; Paladino, Frank V.; Qi, Dunwu; Zhang, Zhihe

    2016-01-01

    The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction. PMID:27264109

  3. Tradeoffs between metabolic rate and spiracular conductance in discontinuous gas exchange of Samia cynthia (Lepidoptera, Saturniidae).

    Science.gov (United States)

    Moerbitz, Christian; Hetz, Stefan K

    2010-05-01

    The insect tracheal system is a unique respiratory system, designed for maximum oxygen delivery at high metabolic demands, e.g. during activity and at high ambient temperatures. Therefore, large safety margins are required for tracheal and spiracular conductance. Spiracles are the entry to the tracheal system and play an important role in controlling discontinuous gas exchange (DGC) between tracheal system and atmosphere in moth pupae. We investigated the effect of modulated metabolic rate (by changing ambient temperature) and modulated spiracular conductance (by blocking all except one spiracles) on gas exchange patterns in Samia pupae. Both, spiracle blocking and metabolic rates, affected respiratory behavior in Samia cynthia pupae. While animals showed discontinuous gas exchange cycles at lower temperatures with unblocked spiracles, the respiratory patterns were cyclic at higher temperatures, with partly blocked spiracles or a combination of these two factors. The threshold for the transition from a discontinuous (DGC) to a cyclic gas exchange ((cyc)GE) was significantly higher in animals with unblocked spiracles (18.7 nmol g(-1) min(-1) vs. 7.9 nmol g(-1) min(-1)). These findings indicate an important influence of spiracle conductance on the DGC, which may occur mostly in insects showing high spiracular conductances and low metabolic rates. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Rate maximum calculation of Dpa in CNA-II pressure vessel

    International Nuclear Information System (INIS)

    Mascitti, J. A

    2012-01-01

    The maximum dpa rate was calculated for the reactor in the following state: fresh fuel, no Xenon, a Boron concentration of 15.3 ppm, critical state, its control rods in the criticality position, hot, at full power (2160 MW). It was determined that the maximum dpa rate under such conditions is 3.54(2)x10 12 s -1 and it is located in the positions corresponding to θ=210 o in the azimuthal direction, and z=20 cm and -60 cm respectively in the axial direction, considering the calculation mesh centered at half height of the fuel element (FE) active length. The dpa rate spectrum was determined as well as the contribution to it for 4 energy groups: a thermal group, two epithermal groups and a fast one. The maximum dpa rate considering the photo-neutrons production from (γ, n) reaction in the heavy water of coolant and moderator was 3.93(4)x10 12 s -1 that is 11% greater than the obtained without photo-neutrons. This verified significant difference between both cases, suggest that photo-neutrons in large heavy water reactors such as CNA-II should not be ignored. The maximum DPA rate in the first mm of the reactor pressure vessel was calculated too and it was obtained a value of 4.22(6)x10 12 s -1 . It should be added that the calculation was carried out with the reactor complete accurate model, with no approximations in spatial or energy variables. Each value has, between parentheses, a percentage relative error representing the statistical uncertainty due to the probabilistic Monte Carlo method used to estimate it. More representative values may be obtained with this method if equilibrium burn-up distribution is used (author)

  5. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy.

    NARCIS (Netherlands)

    Fronczek, R.; Overeem, S.; Reijntjes, R.; Lammers, G.J.; Dijk, J.G.M.; Pijl, H.

    2008-01-01

    STUDY OBJECTIVES: We investigated autonomic balance and resting metabolic rate to explore their possible involvement in obesity in hypocretin/orexin-deficient narcoleptic subjects. METHODS: Resting metabolic rate (using indirect calorimetry) and variability in heart rate and blood pressure were

  6. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome.

    Science.gov (United States)

    Kang, Seol-Jung; Kim, Eon-Ho; Ko, Kwang-Jun

    2016-06-01

    [Purpose] The purpose of this study was to investigate the effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness or female patients with metabolic syndrome. [Subjects and Methods] Subjects were randomly assigned to an exercise group (n=12) or a control group (n=11). Subjects in the exercise group performed aerobic exercise at 60-80% of maximum heart rate for 40 min 5 times a week for 12 weeks. The changes in metabolic syndrome risk factors, resting heart rate, physical fitness, and arterial stiffness were measured and analyzed before and after initiation of the exercise program to determine the effect of exercise. Arterial stiffness was assessed based on brachial-ankle pulse wave velocity (ba-PWV). [Results] Compared to the control group; The metabolic syndrome risk factors (weight, % body fat, waist circumference, systolic blood pressure, diastolic blood pressure, and HDL-Cholesterol) were significantly improved in the exercise: resting heart rate was significantly decreased; VO2max, muscle strength and muscle endurance were significantly increased; and ba-PWV was significantly decreased. [Conclusion] Aerobic exercise had beneficial effects on the resting heart rate, physical fitness, and arterial stiffness of patients with metabolic syndrome.

  7. Estimation of maximum credible atmospheric radioactivity concentrations and dose rates from nuclear tests

    International Nuclear Information System (INIS)

    Telegadas, K.

    1979-01-01

    A simple technique is presented for estimating maximum credible gross beta air concentrations from nuclear detonations in the atmosphere, based on aircraft sampling of radioactivity following each Chinese nuclear test from 1964 to 1976. The calculated concentration is a function of the total yield and fission yield, initial vertical radioactivity distribution, time after detonation, and rate of horizontal spread of the debris with time. calculated maximum credible concentrations are compared with the highest concentrations measured during aircraft sampling. The technique provides a reasonable estimate of maximum air concentrations from 1 to 10 days after a detonation. An estimate of the whole-body external gamma dose rate corresponding to the maximum credible gross beta concentration is also given. (author)

  8. Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Xia, Shaojun; Sun, Fengrui

    2016-01-01

    A sulphuric acid decomposition process in a tubular plug-flow reactor with fixed inlet flow rate and completely controllable exterior wall temperature profile and reactants pressure profile is studied in this paper by using finite-time thermodynamics. The maximum production rate of the aimed product SO 2 and the optimal exterior wall temperature profile and reactants pressure profile are obtained by using nonlinear programming method. Then the optimal reactor with the maximum production rate is compared with the reference reactor with linear exterior wall temperature profile and the optimal reactor with minimum entropy generation rate. The result shows that the production rate of SO 2 of optimal reactor with the maximum production rate has an increase of more than 7%. The optimization of temperature profile has little influence on the production rate while the optimization of reactants pressure profile can significantly increase the production rate. The results obtained may provide some guidelines for the design of real tubular reactors. - Highlights: • Sulphuric acid decomposition process in tubular plug-flow reactor is studied. • Fixed inlet flow rate and controllable temperature and pressure profiles are set. • Maximum production rate of aimed product SO 2 is obtained. • Corresponding optimal temperature and pressure profiles are derived. • Production rate of SO 2 of optimal reactor increases by 7%.

  9. Maximum discharge rate of liquid-vapor mixtures from vessels

    International Nuclear Information System (INIS)

    Moody, F.J.

    1975-09-01

    A discrepancy exists in theoretical predictions of the two-phase equilibrium discharge rate from pipes attached to vessels. Theory which predicts critical flow data in terms of pipe exit pressure and quality severely overpredicts flow rates in terms of vessel fluid properties. This study shows that the discrepancy is explained by the flow pattern. Due to decompression and flashing as fluid accelerates into the pipe entrance, the maximum discharge rate from a vessel is limited by choking of a homogeneous bubbly mixture. The mixture tends toward a slip flow pattern as it travels through the pipe, finally reaching a different choked condition at the pipe exit

  10. Radiographic and metabolic response rates following image-guided stereotactic radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Grills, Inga S.; Wong, Ching-Yee Oliver; Galerani, Ana Paula; Chao, Kenneth; Welsh, Robert; Chmielewski, Gary; Yan Di; Kestin, Larry L.

    2011-01-01

    Purpose: To evaluate radiographic and metabolic response after stereotactic body radiotherapy (SBRT) for early lung tumors. Materials and methods: Thirty-nine tumors were treated prospectively with SBRT (dose = 48-60 Gy, 4-5 Fx). Thirty-six cases were primary NSCLC (T1N0 = 67%; T2N0 = 25%); three cases were solitary metastases. Patients were followed using CT and PET at 6, 16, and 52 weeks post-SBRT, with CT follow-up thereafter. RECIST and EORTC criteria were used to evaluate CT and PET responses. Results: At median follow-up of 9 months (0.4-26), RECIST complete response (CR), partial response (PR), and stable disease (SD) rates were 3%, 43%, 54% at 6 weeks; 15%, 38%, 46% at 16 weeks; 27%, 64%, 9% at 52 weeks. Mean baseline tumor volume was reduced by 46%, 70%, 87%, and 96%, respectively at 6, 16, 52, and 72 weeks. Mean baseline maximum standardized uptake value (SUV) was 8.3 (1.1-20.3) and reduced to 3.4, 3.0, and 3.7 at 6, 16, and 52 weeks after SBRT. EORTC metabolic CR/PR, SD, and progressive disease rates were 67%, 22%, 11% at 6 weeks; 86%, 10%, 3% at 16 weeks; 95%, 5%, 0% at 52 weeks. Conclusions: SBRT yields excellent RECIST and EORTC based response. Metabolic response is rapid however radiographic response occurs even after 1-year post treatment.

  11. Vitamin C improves basal metabolic rate and lipid profile in alloxan ...

    Indian Academy of Sciences (India)

    MADU

    3.1 Effect of vitamin C administration on basal metabolic rate. The basal metabolic rate values in diabetic rats and control are presented in figure 1. The basal metabolic rate (BMR) in diabetic rats was 1.19 ± 0.15 ml/h/g, while the BMR in control rats was 0.76 ± 0.89 ml/h/g. The BMR value in diabetic rats treated with vitamin ...

  12. On the equivalence between the minimum entropy generation rate and the maximum conversion rate for a reactive system

    International Nuclear Information System (INIS)

    Bispo, Heleno; Silva, Nilton; Brito, Romildo; Manzi, João

    2013-01-01

    Highlights: • Minimum entropy generation (MEG) principle improved the reaction performance. • MEG rate and the maximum conversion equivalence have been analyzed. • Temperature and residence time are used to the domain establishment of MEG. • Satisfying the temperature and residence time relationship results a optimal performance. - Abstract: The analysis of the equivalence between the minimum entropy generation (MEG) rate and the maximum conversion rate for a reactive system is the main purpose of this paper. While being used as a strategy of optimization, the minimum entropy production was applied to the production of propylene glycol in a Continuous Stirred-Tank Reactor (CSTR) with a view to determining the best operating conditions, and under such conditions, a high conversion rate was found. The effects of the key variables and restrictions on the validity domain of MEG were investigated, which raises issues that are included within a broad discussion. The results from simulations indicate that from the chemical reaction standpoint a maximum conversion rate can be considered as equivalent to MEG. Such a result can be clearly explained by examining the classical Maxwell–Boltzmann distribution, where the molecules of the reactive system under the condition of the MEG rate present a distribution of energy with reduced dispersion resulting in a better quality of collision between molecules with a higher conversion rate

  13. Environmental effects on energy metabolism and 86Rb elimination rates of fishes

    International Nuclear Information System (INIS)

    Peters, E.L.

    1994-01-01

    Relationships between energy metabolism and the turnover rates of number of important chemical and radiological elements (particularly the Group IA alkali metals: K, Rb, and Cs) have been observed in fishes. Using response surface statistics and fractional factorial ANOVA, the author examined the relative influences of temperature, salinity, food intake rate, mass, and their first order interactions on routine energy metabolism and 86 Rb elimination rates. Routine metabolic rates were increased primarily by increased temperature and salinity, with a strong body mass effect and a significant effect of food intake. 86 Rb elimination rates were increased primarily by increased temperature and salinity. There were no interactive effects between mass and either temperature or salinity for either routine energy metabolism or 86 Rb elimination rates. There was a significant interaction effect between temperature and salinity on routine energy metabolism rates, but not on 86 Rb elimination. The authors also observed a relationship between routine energy metabolism and 86 Rb elimination rates that may possibly be exploited as a means of estimating energy metabolic rates of fishes in the field. The statistical techniques used in this experiment have broad potential applications in assessing the contributions of combinations of environmental variables on contaminant kinetics, as well as in multiple toxicity testing, in that they greatly simplify experimental designs compared with traditional full-factorial methods

  14. Encystment of parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae coincides with increased metabolic rate and haematocrit in juvenile brown trout (Salmo trutta).

    Science.gov (United States)

    Filipsson, Karl; Brijs, Jeroen; Näslund, Joacim; Wengström, Niklas; Adamsson, Marie; Závorka, Libor; Österling, E Martin; Höjesjö, Johan

    2017-04-01

    Gill parasites on fish are likely to negatively influence their host by inhibiting respiration, oxygen transport capacity and overall fitness. The glochidia larvae of the endangered freshwater pearl mussel (FPM, Margaritifera margaritifera (Linnaeus, 1758)) are obligate parasites on the gills of juvenile salmonid fish. We investigated the effects of FPM glochidia encystment on the metabolism and haematology of brown trout (Salmo trutta Linnaeus, 1758). Specifically, we measured whole-animal oxygen uptake rates at rest and following an exhaustive exercise protocol using intermittent flow-through respirometry, as well as haematocrit, in infested and uninfested trout. Glochidia encystment significantly affected whole-animal metabolic rate, as infested trout exhibited higher standard and maximum metabolic rates. Furthermore, glochidia-infested trout also had elevated levels of haematocrit. The combination of an increased metabolism and haematocrit in infested fish indicates that glochidia encystment has a physiological effect on the trout, perhaps as a compensatory response to the potential respiratory stress caused by the glochidia. When relating glochidia load to metabolism and haematocrit, fish with low numbers of encysted glochidia were the ones with particularly elevated metabolism and haematocrit. Standard metabolic rate decreased with substantial glochidia loads towards levels similar to those of uninfested fish. This suggests that initial effects visible at low levels of encystment may be countered by additional physiological effects at high loads, e.g. potential changes in energy utilization, and also that high numbers of glochidia may restrict oxygen uptake by the gills.

  15. Body Composition and Basal Metabolic Rate in Women with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Marina de Figueiredo Ferreira

    2014-01-01

    Full Text Available Objective. The aim of this study was to determine which of the seven selected equations used to predict basal metabolic rate most accurately estimated the measured basal metabolic rate. Methods. Twenty-eight adult women with type 2 diabetes mellitus participated in this cross-sectional study. Anthropometric and biochemical variables were measured as well as body composition (by absorptiometry dual X-ray emission and basal metabolic rate (by indirect calorimetry; basal metabolic rate was also estimated by prediction equations. Results. There was a significant difference between the measured and the estimated basal metabolic rate determined by the FAO/WHO/UNU (Pvalue<0.021 and Huang et al. (Pvalue≤0.005 equations. Conclusion. The calculations using Owen et al’s. equation were the closest to the measured basal metabolic rate.

  16. Basal metabolic rate and the rate of senescence in the great tit

    NARCIS (Netherlands)

    Bouwhuis, Sandra; Sheldon, Ben C.; Verhulst, Simon; Koteja, Pawel

    1. Between-individual variation in rates of senescence has recently been found to relate to natal and early-life conditions in several natural populations. Mechanistic theories of senescence have predicted between-individual variation in basal metabolic rate (BMR) to also underlie such variation in

  17. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    Science.gov (United States)

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  18. Body Composition and Basal Metabolic Rate in Women with Type 2 Diabetes Mellitus

    OpenAIRE

    de Figueiredo Ferreira, Marina; Detrano, Filipe; Coelho, Gabriela Morgado de Oliveira; Barros, Maria Elisa; Serrão Lanzillotti, Regina; Firmino Nogueira Neto, José; Portella, Emilson Souza; Serrão Lanzillotti, Haydée; Soares, Eliane de Abreu

    2014-01-01

    Objective. The aim of this study was to determine which of the seven selected equations used to predict basal metabolic rate most accurately estimated the measured basal metabolic rate. Methods. Twenty-eight adult women with type 2 diabetes mellitus participated in this cross-sectional study. Anthropometric and biochemical variables were measured as well as body composition (by absorptiometry dual X-ray emission) and basal metabolic rate (by indirect calorimetry); basal metabolic rate was als...

  19. Fumigant dosages below maximum label rate control some soilborne pathogens

    Directory of Open Access Journals (Sweden)

    Shachaf Triky-Dotan

    2016-08-01

    Full Text Available The activity of commercial soil fumigants on some key soilborne pathogens was assessed in sandy loam soil under controlled conditions. Seven soil fumigants that are registered in California or are being or have been considered for registration were used in this study: dimethyl disulfide (DMDS mixed with chloropicrin (Pic (79% DMDS and 21% Pic, Tri-Con (50% methyl bromide and 50% Pic, Midas Gold (33% methyl iodide [MI] and 67% Pic, Midas Bronze (50% MI and 50% Pic, Midas (MI, active ingredient [a.i.] 97.8%, Pic (a.i. 99% trichloronitromethane and Pic-Clor 60 (57% Pic and 37% 1,3-dichloropropene [1–3,D]. Dose-response models were calculated for pathogen mortality after 24 hours of exposure to fumigants. Overall, the tested fumigants achieved good efficacy with dosages below the maximum label rate against the tested pathogens. In this study, Pythium ultimum and citrus nematode were sensitive to all the fumigants and Verticillium dahliae was resistant. For most fumigants, California regulations restrict application rates to less than the maximum (federal label rate, meaning that it is possible that the fumigants may not control major plant pathogens. This research provides information on the effectiveness of these alternatives at these lower application rates. The results from this study will help growers optimize application rates for registered fumigants (such as Pic and 1,3-D and will help accelerate the adoption of new fumigants (such as DMDS if they are registered in California.

  20. Body composition and basal metabolic rate in Hidradenitis Suppurativa

    DEFF Research Database (Denmark)

    Miller, I M; Rytgaard, Helene Charlotte; Mogensen, U B

    2016-01-01

    BACKGROUND: Several studies have suggested an association between Hidradenitis Suppurativa (HS) and obesity. Obesity is often expressed as Body Mass Index (BMI). However, BMI lacks information on body composition. General obesity is a predictor of health status and cardiovascular risk, but body...... composition (e.g. abdominal fat) may be more so. Basal metabolic rate (BMR) is an expression of resting metabolism and may serve as a complementary tool when assessing the possibly underlying metabolism behind a persons' body composition. OBJECTIVE: To investigate the body composition and basal metabolic rate...... in individuals with HS compared with healthy controls. METHODS: We performed a cross-sectional study on both a hospital-based and population-based HS group and compared with controls using Bioelectrical Impedance Analysis to assess body composition. RESULTS: We identified a hospital-based HS group of 32 hospital...

  1. Fluctuating selection on basal metabolic rate.

    Science.gov (United States)

    Nilsson, Johan F; Nilsson, Jan-Åke

    2016-02-01

    BMR (Basal metabolic rate) is an important trait in animal life history as it represents a significant part of animal energy budgets. BMR has also been shown to be positively related to sustainable work rate and maximal thermoregulatory capacity. To this date, most of the studies have focused on the causes of interspecific and intraspecific variation in BMR, and fairly little is known about the fitness consequences of different metabolic strategies. In this study, we show that winter BMR affects local survival in a population of wild blue tits (Cyanistes caeruleus), but that the selection direction differs between years. We argue that this fluctuating selection is probably a consequence of varying winter climate with a positive relation between survival and BMR during cold and harsh conditions, but a negative relation during mild winters. This fluctuating selection can not only explain the pronounced variation in BMR in wild populations, but will also give us new insights into how energy turnover rates can shape the life-history strategies of animals. Furthermore, the study shows that the process of global warming may cause directional selection for a general reduction in BMR, affecting the general life-history strategy on the population level.

  2. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist.

    Science.gov (United States)

    Fei, Yuxiang; Hou, Rong; Spotila, James R; Paladino, Frank V; Qi, Dunwu; Zhang, Zhihe

    2017-01-01

    The red panda (Ailurus fulgens) has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204-0.342) in summer and 0.361 ml/g/h in winter (range 0.331-0.406), with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17), more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.

  3. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist.

    Directory of Open Access Journals (Sweden)

    Yuxiang Fei

    Full Text Available The red panda (Ailurus fulgens has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204-0.342 in summer and 0.361 ml/g/h in winter (range 0.331-0.406, with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17, more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.

  4. [The maximum heart rate in the exercise test: the 220-age formula or Sheffield's table?].

    Science.gov (United States)

    Mesquita, A; Trabulo, M; Mendes, M; Viana, J F; Seabra-Gomes, R

    1996-02-01

    To determine in the maximum cardiac rate in exercise test of apparently healthy individuals may be more properly estimated through 220-age formula (Astrand) or the Sheffield table. Retrospective analysis of clinical history and exercises test of apparently healthy individuals submitted to cardiac check-up. Sequential sampling of 170 healthy individuals submitted to cardiac check-up between April 1988 and September 1992. Comparison of maximum cardiac rate of individuals studied by the protocols of Bruce and modified Bruce, in interrupted exercise test by fatigue, and with the estimated values by the formulae: 220-age versus Sheffield table. The maximum cardiac heart rate is similar with both protocols. This parameter in normal individuals is better predicted by the 220-age formula. The theoretic maximum cardiac heart rate determined by 220-age formula should be recommended for a healthy, and for this reason the Sheffield table has been excluded from our clinical practice.

  5. Long-term effect of yogic practices on diurnal metabolic rates of healthy subjects

    Directory of Open Access Journals (Sweden)

    Chaya M

    2008-01-01

    Full Text Available Background: The metabolic rate is an indicator of autonomic activity. Reduced sympathetic arousal probably resulting in hypometabolic states has been reported in several yogic studies. Aim: The main objective of this study was to assess the effect of yoga training on diurnal metabolic rates in yoga practitioners at two different times of the day (at 6 a.m. and 9 p.m.. Methods and Material: Eighty eight healthy volunteers were selected and their metabolic rates assessed at 6 a.m. and 9 p.m. using an indirect calorimeter at a yoga school in Bangalore, India. Results and conclusions: The results show that the average metabolic rate of the yoga group was 12% lower than that of the non-yoga group ( P < 0.001 measured at 9 p.m. and 16% lower at 6 a.m. ( P < 0.001. The 9 p.m. metabolic rates of the yoga group were almost equal to their predicted basal metabolic rates (BMRs whereas the metabolic rate was significantly higher than the predicted BMR for the non-yoga group. The 6 a.m. metabolic rate was comparable to their predicted BMR in the non-yoga group whereas it was much lower in the yoga group ( P < 0.001. The lower metabolic rates in the yoga group at 6 a.m. and 9 p.m. may be due to coping strategies for day-to-day stress, decreased sympathetic nervous system activity and probably, a stable autonomic nervous system response (to different stressors achieved due to training in yoga.

  6. Long-term effect of yogic practices on diurnal metabolic rates of healthy subjects

    Directory of Open Access Journals (Sweden)

    Chaya M

    2008-01-01

    Full Text Available Background : The metabolic rate is an indicator of autonomic activity. Reduced sympathetic arousal probably resulting in hypometabolic states has been reported in several yogic studies. Aim : The main objective of this study was to assess the effect of yoga training on diurnal metabolic rates in yoga practitioners at two different times of the day (at 6 a.m. and 9 p.m.. Materials and Methods : Eighty eight healthy volunteers were selected and their metabolic rates assessed at 6 a.m. and 9 p.m. using an indirect calorimeter at a yoga school in Bangalore, India. Results and conclusions: The results show that the average metabolic rate of the yoga group was 12% lower than that of the non-yoga group ( P < 0.001 measured at 9 p.m. and 16% lower at 6 a.m. ( P < 0.001. The 9 p.m. metabolic rates of the yoga group were almost equal to their predicted basal metabolic rates (BMRs whereas the metabolic rate was significantly higher than the predicted BMR for the non-yoga group. The 6 a.m. metabolic rate was comparable to their predicted BMR in the non-yoga group whereas it was much lower in the yoga group ( P < 0.001. The lower metabolic rates in the yoga group at 6 a.m. and 9 p.m. may be due to coping strategies for day-to-day stress, decreased sympathetic nervous system activity and probably, a stable autonomic nervous system response (to different stressors achieved due to training in yoga.

  7. Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women.

    Science.gov (United States)

    Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N

    2014-06-01

    Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea

    Science.gov (United States)

    van Oevelen, Dick

    2018-01-01

    Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403

  9. Fast maximum likelihood estimation of mutation rates using a birth-death process.

    Science.gov (United States)

    Wu, Xiaowei; Zhu, Hongxiao

    2015-02-07

    Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.

  10. 13 CFR 107.845 - Maximum rate of amortization on Loans and Debt Securities.

    Science.gov (United States)

    2010-01-01

    ... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Financing of Small Businesses by Licensees Structuring Licensee's Financing of An Eligible Small Business: Terms and Conditions of Financing § 107.845 Maximum... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maximum rate of amortization on...

  11. A quantitative theory of solid tumor growth, metabolic rate and vascularization.

    Directory of Open Access Journals (Sweden)

    Alexander B Herman

    Full Text Available The relationships between cellular, structural and dynamical properties of tumors have traditionally been studied separately. Here, we construct a quantitative, predictive theory of solid tumor growth, metabolic rate, vascularization and necrosis that integrates the relationships between these properties. To accomplish this, we develop a comprehensive theory that describes the interface and integration of the tumor vascular network and resource supply with the cardiovascular system of the host. Our theory enables a quantitative understanding of how cells, tissues, and vascular networks act together across multiple scales by building on recent theoretical advances in modeling both healthy vasculature and the detailed processes of angiogenesis and tumor growth. The theory explicitly relates tumor vascularization and growth to metabolic rate, and yields extensive predictions for tumor properties, including growth rates, metabolic rates, degree of necrosis, blood flow rates and vessel sizes. Besides these quantitative predictions, we explain how growth rates depend on capillary density and metabolic rate, and why similar tumors grow slower and occur less frequently in larger animals, shedding light on Peto's paradox. Various implications for potential therapeutic strategies and further research are discussed.

  12. Metabolism and thermoregulation in the tree shrew, Tupaia belangeri

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2012-05-01

    Full Text Available Maximum metabolic rate is a physiological limitation that is an important for animals' survival, reproduction and geographic. Basal metabolic rate (BMR, nonshivering thermogenesis (NST, and maximum metabolic rate (MMR were measured was in a small mammal species, Tupaia belangeri, which is a unique species of small-bodied mammals in the Oriental realm. Thermal neutral zone (TNZ was 30 - 35°C and BMR was 1.38±0.09 ml g-1 h-1. NST and MMR were 2.64±0.08 ml g-1 h-1 and 7.14±0.38 ml g-1 h-1 in summer, respectively. The ecophysiological properties of relatively high body temperature, wide TNZ, low BMR and thermogenic capacity enable this species to adapt to its environment.

  13. Effect of nanosilver on metabolism in rainbow trout (Oncorhynchus mykiss): An investigation using different respirometric approches

    DEFF Research Database (Denmark)

    Murray, Laura; Rennie, Michael D.; Svendsen, Jon Christian

    2017-01-01

    Nanosilver (nAg) has been incorporated into many consumer products, including clothing and washing machines, because of its antimicrobial properties. Consequently, the potential for its release into aquatic environments is of significant concern. Documented toxic effects on fish include altered.......60 ± 5.13 μg/L) for 28 d, after which their standard metabolic rate (SMR), forced maximum metabolic rate (MMRf), and spontaneous maximum metabolic rate (MMRs) were measured. There was no effect observed in SMR, MMRf, or MMRs, suggesting that nAg is unlikely to directly affect fish metabolism. On average...

  14. Does basal metabolic rate contain a useful signal? Mammalian BMR allometry and correlations with a selection of physiological, ecological, and life-history variables.

    Science.gov (United States)

    White, Craig R; Seymour, Roger S

    2004-01-01

    Basal metabolic rate (BMR, mL O2 h(-1)) is a useful measurement only if standard conditions are realised. We present an analysis of the relationship between mammalian body mass (M, g) and BMR that accounts for variation associated with body temperature, digestive state, and phylogeny. In contrast to the established paradigm that BMR proportional to M3/4, data from 619 species, representing 19 mammalian orders and encompassing five orders of magnitude variation in M, show that BMR proportional to M2/3. If variation associated with body temperature and digestive state are removed, the BMRs of eutherians, marsupials, and birds do not differ, and no significant allometric exponent heterogeneity remains between orders. The usefulness of BMR as a general measurement is supported by the observation that after the removal of body mass effects, the residuals of BMR are significantly correlated with the residuals for a variety of physiological and ecological variables, including maximum metabolic rate, field metabolic rate, resting heart rate, life span, litter size, and population density.

  15. Individual variation in metabolic reaction norms over ambient temperature causes low correlation between basal and standard metabolic rate

    NARCIS (Netherlands)

    Briga, Michael; Verhulst, Simon

    2017-01-01

    Basal metabolic rate (BMR) is often assumed to be indicative of the energy turnover at ambient temperatures (T-a) below the thermoneutral zone (SMR), but this assumption has remained largely untested. Using a new statistical approach, we quantified the consistency in nocturnal metabolic rate across

  16. Physiological Status Drives Metabolic Rate in Mediterranean Geckos Infected with Pentastomes.

    Directory of Open Access Journals (Sweden)

    Isabel C Caballero

    Full Text Available Negative effects of parasites on their hosts are well documented, but the proximate mechanisms by which parasites reduce their host's fitness are poorly understood. For example, it has been suggested that parasites might be energetically demanding. However, a recent meta-analysis suggests that they have statistically insignificant effects on host resting metabolic rate (RMR. It is possible, though, that energetic costs associated with parasites are only manifested during and/or following periods of activity. Here, we measured CO2 production (a surrogate for metabolism in Mediterranean geckos (Hemidactylus turcicus infected with a lung parasite, the pentastome Raillietiella indica, under two physiological conditions: rested and recently active. In rested geckos, there was a negative, but non-significant association between the number of pentastomes (i.e., infection intensity and CO2 production. In recently active geckos (chased for 3 minutes, we recorded CO2 production from its maximum value until it declined to a stationary phase. We analyzed this decline as a 3 phase function (initial decline, secondary decline, stationary. Geckos that were recently active showed, in the secondary phase, a significant decrease in CO2 production as pentastome intensity increased. Moreover, duration of the secondary phase showed a significant positive association with the number of pentastomes. These results suggest that the intensity of pentastome load exerts a weak effect on the metabolism of resting geckos, but a strong physiological effect on geckos that have recently been active; we speculate this occurs via mechanical constraints on breathing. Our results provide a potential mechanism by which pentastomes can reduce gecko fitness.

  17. Physiological Status Drives Metabolic Rate in Mediterranean Geckos Infected with Pentastomes.

    Science.gov (United States)

    Caballero, Isabel C; Sakla, Andrew J; Detwiler, Jillian T; Le Gall, Marion; Behmer, Spencer T; Criscione, Charles D

    2015-01-01

    Negative effects of parasites on their hosts are well documented, but the proximate mechanisms by which parasites reduce their host's fitness are poorly understood. For example, it has been suggested that parasites might be energetically demanding. However, a recent meta-analysis suggests that they have statistically insignificant effects on host resting metabolic rate (RMR). It is possible, though, that energetic costs associated with parasites are only manifested during and/or following periods of activity. Here, we measured CO2 production (a surrogate for metabolism) in Mediterranean geckos (Hemidactylus turcicus) infected with a lung parasite, the pentastome Raillietiella indica, under two physiological conditions: rested and recently active. In rested geckos, there was a negative, but non-significant association between the number of pentastomes (i.e., infection intensity) and CO2 production. In recently active geckos (chased for 3 minutes), we recorded CO2 production from its maximum value until it declined to a stationary phase. We analyzed this decline as a 3 phase function (initial decline, secondary decline, stationary). Geckos that were recently active showed, in the secondary phase, a significant decrease in CO2 production as pentastome intensity increased. Moreover, duration of the secondary phase showed a significant positive association with the number of pentastomes. These results suggest that the intensity of pentastome load exerts a weak effect on the metabolism of resting geckos, but a strong physiological effect on geckos that have recently been active; we speculate this occurs via mechanical constraints on breathing. Our results provide a potential mechanism by which pentastomes can reduce gecko fitness.

  18. Larval developmental rate, metabolic rate and future growth performance in Atlantic salmon

    DEFF Research Database (Denmark)

    Serrano, Jonathan Vaz; Åberg, Madelene; Gjoen, Hans Magnus

    2009-01-01

    , quantified as time to first feeding, and growth in later stages was demonstrated in Atlantic salmon (Salmo salar L.). The observed relationship between future growth and larval developmental rate suggests that sorting larvae by time to first feeding can be a potential tool to optimize feeding strategies...... and growth in commercial rearing of Atlantic salmon. Furthermore, the link between larval standard metabolic rate and developmental rate and future growth is discussed in the present study....

  19. Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera.

    Science.gov (United States)

    Harrison, Jon F; Fewell, Jennifer H

    2002-10-01

    Flying honey bees demonstrate highly variable metabolic rates. The lowest reported values (approximately 0.3 Wg(-1)) occur in tethered bees generating the minimum lift to support their body weight, free-flying 2-day old bees, winter bees, or bees flying at high air temperatures (45 degrees C). The highest values (approximately 0.8 Wg(-1)) occur in foragers that are heavily loaded or flying in low-density air. In different studies, flight metabolic rate has increased, decreased, or remained constant with air temperature. Current research collectively suggests that this variation occurs because flight metabolic rates decrease at thorax temperatures above or below 38 degrees C. At 30 degrees C, approximately 30% of colonial energy is spent during typical foraging, so variation in flight metabolic rate can strongly affect colony-level energy balance. Higher air temperatures tend to increase colonial net gain rates, efficiencies and honey storage rates due to lower metabolic rates during flight and in the hive. Variation in flight metabolism has a clear genetic basis. Different genetic strains of honey bees often differ in flight metabolic rate, and these differences in flight physiology can be correlated with foraging effort, suggesting a possible pathway for selection effects on flight metabolism.

  20. Metabolism of lipids in Epidermophyton floccosum

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, A; Khuller, G K [Post-Graduate Inst. of Medical Education and Research, Chandigarh (India)

    1981-03-01

    Metabolism of major lipids in E. floccosum was studied with /sup 14/C-acetate as a precursor. Among the phosphatides, phosphatidylcholine exhibited the maximum rate of synthesis and degradation, followed by phosphatidylethanolamine and phosphatidylserine. These phospholipids appear to exist in two pools, one metabolically more active than the other. In neutral lipids, maximum uptake was observed in triglycerides, followed by free fatty acids, diglycerides and monoglycerides. However, on chase of the labelled lipids, a continuous synthesis of all neutral lipid fractions was observed suggesting a recycling of the labelled carbon.

  1. Evolution of basal metabolic rate in bank voles from a multidirectional selection experiment

    Science.gov (United States)

    Sadowska, Edyta T.; Stawski, Clare; Rudolf, Agata; Dheyongera, Geoffrey; Chrząścik, Katarzyna M.; Baliga-Klimczyk, Katarzyna; Koteja, Paweł

    2015-01-01

    A major theme in evolutionary and ecological physiology of terrestrial vertebrates encompasses the factors underlying the evolution of endothermy in birds and mammals and interspecific variation of basal metabolic rate (BMR). Here, we applied the experimental evolution approach and compared BMR in lines of a wild rodent, the bank vole (Myodes glareolus), selected for 11 generations for: high swim-induced aerobic metabolism (A), ability to maintain body mass on a low-quality herbivorous diet (H) and intensity of predatory behaviour towards crickets (P). Four replicate lines were maintained for each of the selection directions and an unselected control (C). In comparison to C lines, A lines achieved a 49% higher maximum rate of oxygen consumption during swimming, H lines lost 1.3 g less mass in the test with low-quality diet and P lines attacked crickets five times more frequently. BMR was significantly higher in A lines than in C or H lines (60.8, 56.6 and 54.4 ml O2 h−1, respectively), and the values were intermediate in P lines (59.0 ml O2 h−1). Results of the selection experiment provide support for the hypothesis of a positive association between BMR and aerobic exercise performance, but not for the association of adaptation to herbivorous diet with either a high or low BMR. PMID:25876844

  2. Thyroid hormones correlate with basal metabolic rate but not field metabolic rate in a wild bird species.

    Directory of Open Access Journals (Sweden)

    Jorg Welcker

    Full Text Available Thyroid hormones (TH are known to stimulate in vitro oxygen consumption of tissues in mammals and birds. Hence, in many laboratory studies a positive relationship between TH concentrations and basal metabolic rate (BMR has been demonstrated whereas evidence from species in the wild is scarce. Even though basal and field metabolic rates (FMR are often thought to be intrinsically linked it is still unknown whether a relationship between TH and FMR exists. Here we determine the relationship between the primary thyroid hormone triiodothyronine (T3 with both BMR and FMR in a wild bird species, the black-legged kittiwake (Rissa tridactyla. As predicted we found a strong and positive relationship between plasma concentrations of T3 and both BMR and mass-independent BMR with coefficients of determination ranging from 0.36 to 0.60. In contrast there was no association of T3 levels with either whole-body or mass-independent FMR (R(2 =0.06 and 0.02, respectively. In accordance with in vitro studies our data suggests that TH play an important role in modulating BMR and may serve as a proxy for basal metabolism in wild birds. However, the lack of a relationship between TH and FMR indicates that levels of physical activity in kittiwakes are largely independent of TH concentrations and support recent studies that cast doubt on a direct linkage between BMR and FMR.

  3. Thyroid Hormones Correlate with Basal Metabolic Rate but Not Field Metabolic Rate in a Wild Bird Species

    Science.gov (United States)

    Welcker, Jorg; Chastel, Olivier; Gabrielsen, Geir W.; Guillaumin, Jerome; Kitaysky, Alexander S.; Speakman, John R.; Tremblay, Yann; Bech, Claus

    2013-01-01

    Thyroid hormones (TH) are known to stimulate in vitro oxygen consumption of tissues in mammals and birds. Hence, in many laboratory studies a positive relationship between TH concentrations and basal metabolic rate (BMR) has been demonstrated whereas evidence from species in the wild is scarce. Even though basal and field metabolic rates (FMR) are often thought to be intrinsically linked it is still unknown whether a relationship between TH and FMR exists. Here we determine the relationship between the primary thyroid hormone triiodothyronine (T3) with both BMR and FMR in a wild bird species, the black-legged kittiwake (Rissa tridactyla). As predicted we found a strong and positive relationship between plasma concentrations of T3 and both BMR and mass-independent BMR with coefficients of determination ranging from 0.36 to 0.60. In contrast there was no association of T3 levels with either whole-body or mass-independent FMR (R2 = 0.06 and 0.02, respectively). In accordance with in vitro studies our data suggests that TH play an important role in modulating BMR and may serve as a proxy for basal metabolism in wild birds. However, the lack of a relationship between TH and FMR indicates that levels of physical activity in kittiwakes are largely independent of TH concentrations and support recent studies that cast doubt on a direct linkage between BMR and FMR. PMID:23437096

  4. Disentangling the effects of alternation rate and maximum run length on judgments of randomness

    Directory of Open Access Journals (Sweden)

    Sabine G. Scholl

    2011-08-01

    Full Text Available Binary sequences are characterized by various features. Two of these characteristics---alternation rate and run length---have repeatedly been shown to influence judgments of randomness. The two characteristics, however, have usually been investigated separately, without controlling for the other feature. Because the two features are correlated but not identical, it seems critical to analyze their unique impact, as well as their interaction, so as to understand more clearly what influences judgments of randomness. To this end, two experiments on the perception of binary sequences orthogonally manipulated alternation rate and maximum run length (i.e., length of the longest run within the sequence. Results show that alternation rate consistently exerts a unique effect on judgments of randomness, but that the effect of alternation rate is contingent on the length of the longest run within the sequence. The effect of maximum run length was found to be small and less consistent. Together, these findings extend prior randomness research by integrating literature from the realms of perception, categorization, and prediction, as well as by showing the unique and joint effects of alternation rate and maximum run length on judgments of randomness.

  5. Maximum standard metabolic rate corresponds with the salinity of maximum growth in hatchlings of the estuarine northern diamondback terrapin (Malaclemys terrapin terrapin): Implications for habitat conservation

    Science.gov (United States)

    Rowe, Christopher L.

    2018-01-01

    I evaluated standard metabolic rates (SMR) of hatchling northern diamondback terrapins (Malaclemys terrapin terrapin) across a range of salinities (salinity = 1.5, 4, 8, 12, and 16 psu) that they may encounter in brackish habitats such as those in the Maryland portion of the Chesapeake Bay, U.S.A. Consumption of O2 and production of CO2 by resting, unfed animals served as estimates of SMR. A peak in SMR occurred at 8 psu which corresponds closely with the salinity at which hatchling growth was previously shown to be maximized (salinity ∼ 9 psu). It appears that SMR is influenced by growth, perhaps reflecting investments in catabolic pathways that fuel anabolism. This ecophysiological information can inform environmental conservation and management activities by identifying portions of the estuary that are bioenergetically optimal for growth of hatchling terrapins. I suggest that conservation and restoration efforts to protect terrapin populations in oligo-to mesohaline habitats should prioritize protection or creation of habitats in regions where average salinity is near 8 psu and energetic investments in growth appear to be maximized.

  6. Hemispherical dominance of glucose metabolic rate in the brain of the 'normal' ageing population

    NARCIS (Netherlands)

    Cutts, DA; Maguire, RP; Leenders, KL; Spyrou, NM

    2004-01-01

    In the 'normal' ageing brain a decrease in the cerebral metabolic rate has been determined across many brain regions. This study determines whether age differences would affect metabolic rates in regions and different hemispheres of the brain. The regional metabolic rate of glucose (rCMRGlu) was

  7. 19 CFR 212.07 - Rulemaking on maximum rates for attorney fees.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Rulemaking on maximum rates for attorney fees. 212.07 Section 212.07 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT General Provisions...

  8. Evolutionary Rate Heterogeneity of Primary and Secondary Metabolic Pathway Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Mukherjee, Dola; Mukherjee, Ashutosh; Ghosh, Tapash Chandra

    2015-11-10

    Primary metabolism is essential to plants for growth and development, and secondary metabolism helps plants to interact with the environment. Many plant metabolites are industrially important. These metabolites are produced by plants through complex metabolic pathways. Lack of knowledge about these pathways is hindering the successful breeding practices for these metabolites. For a better knowledge of the metabolism in plants as a whole, evolutionary rate variation of primary and secondary metabolic pathway genes is a prerequisite. In this study, evolutionary rate variation of primary and secondary metabolic pathway genes has been analyzed in the model plant Arabidopsis thaliana. Primary metabolic pathway genes were found to be more conserved than secondary metabolic pathway genes. Several factors such as gene structure, expression level, tissue specificity, multifunctionality, and domain number are the key factors behind this evolutionary rate variation. This study will help to better understand the evolutionary dynamics of plant metabolism. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Trophic position and metabolic rate predict the long-term decay process of radioactive cesium in fish: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Hideyuki Doi

    Full Text Available Understanding the long-term behavior of radionuclides in organisms is important for estimating possible associated risks to human beings and ecosystems. As radioactive cesium (¹³⁷Cs can be accumulated in organisms and has a long physical half-life, it is very important to understand its long-term decay in organisms; however, the underlying mechanisms determining the decay process are little known. We performed a meta-analysis to collect published data on the long-term ¹³⁷Cs decay process in fish species to estimate biological (metabolic rate and ecological (trophic position, habitat, and diet type influences on this process. From the linear mixed models, we found that 1 trophic position could predict the day of maximum ¹³⁷Cs activity concentration in fish; and 2 the metabolic rate of the fish species and environmental water temperature could predict ecological half-lives and decay rates for fish species. These findings revealed that ecological and biological traits are important to predict the long-term decay process of ¹³⁷Cs activity concentration in fish.

  10. Cellular metabolic rates from primary dermal fibroblast cells isolated from birds of different body masses.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-10-01

    The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Low reproducibility of maximum urinary flow rate determined by portable flowmetry

    NARCIS (Netherlands)

    Sonke, G. S.; Kiemeney, L. A.; Verbeek, A. L.; Kortmann, B. B.; Debruyne, F. M.; de la Rosette, J. J.

    1999-01-01

    To evaluate the reproducibility in maximum urinary flow rate (Qmax) in men with lower urinary tract symptoms (LUTSs) and to determine the number of flows needed to obtain a specified reliability in mean Qmax, 212 patients with LUTSs (mean age, 62 years) referred to the University Hospital Nijmegen,

  12. The metabolic clearance rate of corticosterone in lean and obese male Zucker rats

    International Nuclear Information System (INIS)

    White, B.D.; Corll, C.B.; Porter, J.R.

    1989-01-01

    The obese Zucker rat is an animal model of human juvenile-onset obesity. These rats exhibit numerous endocrine and metabolic abnormalities. Adrenalectomy of obese rats has been shown to reduce or reverse several of these abnormalities, thereby implying that corticosterone may contribute to the expression of obesity in this animal. Furthermore, it has been shown that the circadian rhythm of plasma corticosterone is disturbed in obese Zucker rats resulting in elevated morning plasma corticosterone concentrations in obese rats as compared to lean rats. In a effort to better elucidate the mechanism of the elevated morning levels of plasma corticosterone, the metabolic clearance rate of corticosterone was determined in the morning for lean and obese male Zucker rats (12 to 20 weeks). Additionally, the biliary and urinary excretion of labeled corticosterone and/or its metabolites were determined. The metabolic clearance rate of corticosterone was significantly greater in obese rats than in their lean counterparts. Both the metabolic clearance rate and the volume of compartments significantly correlated with body weight. No correlation was found between body weight and the elimination rate constant. The increased metabolic clearance rate of obese rats appeared to be due to an increase in the physiologic distribution of corticosterone and not to an alteration in the enzymes responsible for corticosterone metabolism. It appears that the metabolic clearance rate of corticosterone in obese Zucker rats does not contribute to elevated morning concentrations of plasma corticosterone previously observed in these animals. It suggests that the adrenal corticosterone secretion rate must actually be greater than one would expect from the plasma corticosterone concentrations alone

  13. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  14. Behavioral and physiological significance of minimum resting metabolic rate in king penguins.

    Science.gov (United States)

    Halsey, L G; Butler, P J; Fahlman, A; Woakes, A J; Handrich, Y

    2008-01-01

    Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.

  15. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield.

    Directory of Open Access Journals (Sweden)

    Meike T Wortel

    2018-02-01

    Full Text Available Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts.

  16. Energy metabolism and the metabolic syndrome: does a lower basal metabolic rate signal recovery following weight loss?

    Science.gov (United States)

    Soares, Mario J; Cummings, Nicola K; Ping-Delfos, Wendy L Chan She

    2011-01-01

    To determine whether basal metabolic rate (BMR) was causally related to MetS, and to study the role of gender in this relationship. Seventy-two Caucasian subjects (43 women, 29 men) had changes in basal metabolic rate (BMR), carbohydrate oxidation rate (COR), fat oxidation rate (FOR) and prevalence of the metabolic syndrome (MetS) assessed in response to weight loss. There was a significant gender×MetS interaction in BMR at the start. Women with MetS had higher adjusted BMR, whilst men with MetS had lower adjusted BMR than their respective counterparts. Weight loss resulted in a significant decrease in fat mass (-5.2±0.31 kg, p=0.001), fat free mass (-2.3±0.27 kg, p=0.001), BMR (-549±58 kJ/d, p=0.001) and a decreased proportion of MetS (22/72, χ(2)=0.005). Subjects who recovered from MetS after weight loss (RMS) had ∼250 kJ/d significantly lower adjusted BMR compared to those who were never MetS (NMS, p=0.046) and those who still had MetS (MetS+, p=0.047). Regression analysis showed that change (Δ) in BMR was best determined by Δglucose×gender interaction (r(2)=23%), ΔFOR (r(2)=20.3%), ΔCOR (r(2)=19.4%) and Δtriglycerides (r(2)=7.8%). There is a sexual dimorphism of BMR in MetS. Overall, the data support the notion that alterations in BMR may be central to the etiopathogenesis of MetS. Copyright © 2012 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  17. Maximum inflation of the type 1 error rate when sample size and allocation rate are adapted in a pre-planned interim look.

    Science.gov (United States)

    Graf, Alexandra C; Bauer, Peter

    2011-06-30

    We calculate the maximum type 1 error rate of the pre-planned conventional fixed sample size test for comparing the means of independent normal distributions (with common known variance) which can be yielded when sample size and allocation rate to the treatment arms can be modified in an interim analysis. Thereby it is assumed that the experimenter fully exploits knowledge of the unblinded interim estimates of the treatment effects in order to maximize the conditional type 1 error rate. The 'worst-case' strategies require knowledge of the unknown common treatment effect under the null hypothesis. Although this is a rather hypothetical scenario it may be approached in practice when using a standard control treatment for which precise estimates are available from historical data. The maximum inflation of the type 1 error rate is substantially larger than derived by Proschan and Hunsberger (Biometrics 1995; 51:1315-1324) for design modifications applying balanced samples before and after the interim analysis. Corresponding upper limits for the maximum type 1 error rate are calculated for a number of situations arising from practical considerations (e.g. restricting the maximum sample size, not allowing sample size to decrease, allowing only increase in the sample size in the experimental treatment). The application is discussed for a motivating example. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr.; Gillin, J.C.

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep

  19. Consequences of Fatherhood in the Biparental California Mouse (Peromyscus californicus): Locomotor Performance, Metabolic Rate, and Organ Masses.

    Science.gov (United States)

    Andrew, Jacob R; Saltzman, Wendy; Chappell, Mark A; Garland, Theodore

    2016-01-01

    Although effects of motherhood on mothers have been well documented in mammals, the effects of fatherhood on fathers are not well known. We evaluated effects of being a father on key metabolic and performance measures in the California mouse, Peromyscus californicus. California mice are genetically monogamous in the wild, and fathers show similar parental behavior to mothers, with the exception of lactation. To investigate the impact of fatherhood on fathers, focal males were paired with an intact female (breeding males), a tubally ligated female (nonbreeding males), or another male (virgins). Starting 3-5 d after the birth of each breeding pair's first litter, males were tested for locomotor performance (maximum sprint speed, treadmill endurance), basal metabolic rate (BMR), and maximum oxygen consumption ([Formula: see text]). At the end of the 11-d test period, mice were euthanized, hematocrit was determined, and organs were weighed. Speed, endurance, and [Formula: see text] were significantly repeatable between two replicate measurement days but did not differ among groups, nor did BMR. Breeding males had significantly larger hind limb muscles than did nonbreeding males, whereas virgin males had heavier subcutaneous fat pads than did nonbreeding and breeding males. Several correlations were observed at the level of individual variation (residuals from ANCOVA models), including positive correlations for endurance with [Formula: see text], [Formula: see text] with testes mass, and some of the digestion-related organs with each other. These results indicate that fatherhood may not have pronounced performance, metabolic, or morphological effects on fathers, at least under standard laboratory conditions and across a single breeding cycle.

  20. Effect of Different Types of Food on Metabolic Rate in Rats | Azeez ...

    African Journals Online (AJOL)

    The method used in measuring the metabolic rate was by indirect calorimetry. Results showed that the different food- carbohydrate, protein and fat ingestion each, caused a significant increase (p<0.0001) when compared with the control metabolic rate. Comparing the effect of the three, protein ingestion caused the greatest ...

  1. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    OpenAIRE

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cel...

  2. The relationship between body mass and field metabolic rate among individual birds and mammals.

    Science.gov (United States)

    Hudson, Lawrence N; Isaac, Nick J B; Reuman, Daniel C

    2013-09-01

    1. The power-law dependence of metabolic rate on body mass has major implications at every level of ecological organization. However, the overwhelming majority of studies examining this relationship have used basal or resting metabolic rates, and/or have used data consisting of species-averaged masses and metabolic rates. Field metabolic rates are more ecologically relevant and are probably more directly subject to natural selection than basal rates. Individual rates might be more important than species-average rates in determining the outcome of ecological interactions, and hence selection. 2. We here provide the first comprehensive database of published field metabolic rates and body masses of individual birds and mammals, containing measurements of 1498 animals of 133 species in 28 orders. We used linear mixed-effects models to answer questions about the body mass scaling of metabolic rate and its taxonomic universality/heterogeneity that have become classic areas of controversy. Our statistical approach allows mean scaling exponents and taxonomic heterogeneity in scaling to be analysed in a unified way while simultaneously accounting for nonindependence in the data due to shared evolutionary history of related species. 3. The mean power-law scaling exponents of metabolic rate vs. body mass relationships were 0.71 [95% confidence intervals (CI) 0.625-0.795] for birds and 0.64 (95% CI 0.564-0.716) for mammals. However, these central tendencies obscured meaningful taxonomic heterogeneity in scaling exponents. The primary taxonomic level at which heterogeneity occurred was the order level. Substantial heterogeneity also occurred at the species level, a fact that cannot be revealed by species-averaged data sets used in prior work. Variability in scaling exponents at both order and species levels was comparable to or exceeded the differences 3/4-2/3 = 1/12 and 0.71-0.64. 4. Results are interpreted in the light of a variety of existing theories. In particular, results

  3. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length.

    Science.gov (United States)

    Rossi, Sergio; Deslauriers, Annie; Anfodillo, Tommaso; Morin, Hubert; Saracino, Antonio; Motta, Renzo; Borghetti, Marco

    2006-01-01

    Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (beta) and rate of change (kappa). A strong linear relationship was found between the constants beta and kappa for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter.

  4. Maximum Acceptable Vibrato Excursion as a Function of Vibrato Rate in Musicians and Non-musicians

    DEFF Research Database (Denmark)

    Vatti, Marianna; Santurette, Sébastien; Pontoppidan, Niels H.

    2014-01-01

    and, in most listeners, exhibited a peak at medium vibrato rates (5–7 Hz). Large across-subject variability was observed, and no significant effect of musical experience was found. Overall, most listeners were not solely sensitive to the vibrato excursion and there was a listener-dependent rate...... for which larger vibrato excursions were favored. The observed interaction between maximum excursion thresholds and vibrato rate may be due to the listeners’ judgments relying on cues provided by the rate of frequency changes (RFC) rather than excursion per se. Further studies are needed to evaluate......Human vibrato is mainly characterized by two parameters: vibrato extent and vibrato rate. These parameters have been found to exhibit an interaction both in physical recordings of singers’ voices and in listener’s preference ratings. This study was concerned with the way in which the maximum...

  5. LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies

    Directory of Open Access Journals (Sweden)

    Daniel L. Rabosky

    2006-01-01

    Full Text Available Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximum likelihood methods based on the birth-death process to test whether diversification rates have changed over time. LASER contrasts the likelihood of phylogenetic data under models where diversification rates have changed over time to alternative models where rates have remained constant over time. Major strengths of the package include the ability to detect temporal increases in diversification rates and the inference of diversification parameters under multiple rate-variable models of diversification. The program and associated documentation are freely available from the R package archive at http://cran.r-project.org.

  6. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  7. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    Directory of Open Access Journals (Sweden)

    Ana Gabriela Jimenez

    Full Text Available In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR, proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR], using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  8. Increased metabolic turnover rate and transcapillary escape rate of albumin in long-term juvenile diabetics

    DEFF Research Database (Denmark)

    Parving, H H; Rossing, N; Sander, E

    1975-01-01

    The metabolic turnover rate and transcapillary escape rate of albumin were studied with 131I-labelled human albumin in nine patients with long-term diabetes mellitus. Retinopathy was present in all patients and nephropathy in four. Plasma albumin concentration and plasma volume were reduced (P...

  9. a metabolic wastage model for the rate-yield trade off

    Indian Academy of Sciences (India)

    A METABOLIC WASTAGE MODEL FOR THE RATE-YIELD TRADE OFF. There is a growth limiting step in which an intermediate metabolite (m) has to hit a target molecule (t). ... D= rate of diffusing out. S= the rate of formation of the metabolite. The equilibrium loss decides the yield. The no. of activated targets decide the rate ...

  10. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds

    Directory of Open Access Journals (Sweden)

    Kyle H. Elliott

    2013-04-01

    Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia. Because BMR and daily energy expenditure (DEE are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4 and triiodothyronine (T3 with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR. RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species.

  11. Maximum entropy production rate in quantum thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Beretta, Gian Paolo, E-mail: beretta@ing.unibs.i [Universita di Brescia, via Branze 38, 25123 Brescia (Italy)

    2010-06-01

    In the framework of the recent quest for well-behaved nonlinear extensions of the traditional Schroedinger-von Neumann unitary dynamics that could provide fundamental explanations of recent experimental evidence of loss of quantum coherence at the microscopic level, a recent paper [Gheorghiu-Svirschevski 2001 Phys. Rev. A 63 054102] reproposes the nonlinear equation of motion proposed by the present author [see Beretta G P 1987 Found. Phys. 17 365 and references therein] for quantum (thermo)dynamics of a single isolated indivisible constituent system, such as a single particle, qubit, qudit, spin or atomic system, or a Bose-Einstein or Fermi-Dirac field. As already proved, such nonlinear dynamics entails a fundamental unifying microscopic proof and extension of Onsager's reciprocity and Callen's fluctuation-dissipation relations to all nonequilibrium states, close and far from thermodynamic equilibrium. In this paper we propose a brief but self-contained review of the main results already proved, including the explicit geometrical construction of the equation of motion from the steepest-entropy-ascent ansatz and its exact mathematical and conceptual equivalence with the maximal-entropy-generation variational-principle formulation presented in Gheorghiu-Svirschevski S 2001 Phys. Rev. A 63 022105. Moreover, we show how it can be extended to the case of a composite system to obtain the general form of the equation of motion, consistent with the demanding requirements of strong separability and of compatibility with general thermodynamics principles. The irreversible term in the equation of motion describes the spontaneous attraction of the state operator in the direction of steepest entropy ascent, thus implementing the maximum entropy production principle in quantum theory. The time rate at which the path of steepest entropy ascent is followed has so far been left unspecified. As a step towards the identification of such rate, here we propose a possible

  12. Metabolism and Aging : Effects of Cold Exposure on Metabolic Rate, Body Composition, and Longevity in Mice

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Daan, Serge; Schubert, Kristin A.; Visser, G. Henk

    2009-01-01

    The proposition that increased energy expenditure shortens life has a long history. The rate-of-living theory ( Pearl 1928) states that life span and average mass-specific metabolic rate are inversely proportional. Originally based on interspecific allometric comparisons between species of mammals,

  13. Growth hormone transgenic tilapia (Oreochromis sp.) compensate for increased metabolic rate to preserve exercise performance and hypoxia tolerance

    DEFF Research Database (Denmark)

    McKenzie, D.J.; Martínez, R.; Morales, A.

    2001-01-01

    Transgenic tilapia hybrids (Oreochromis mossambicus × O. hornorum) carrying a single copy of a homologous cDNA growth hormone exhibit higher growth rates than their wild-type conspecifics (Martinez et al. 1999). Swimming respirometry was employed to determine whether the increased growth rate...... higher in transgenics, such that aerobic scope was similar in both groups, and there was no difference in maximum sustainable U (5.2 ± 0.5 vs. 4.5 ± 0.7 bl s-1 in transgenics vs. wild-types, respectively). Following 2 h recovery from exercise, tilapia were exposed to progressive hypoxia (stepwise......Pa, respectively). The results indicate that stimulation of growth consequent to ectopic expression of growth hormone in transgenic tilapia (Martinez et al. 1999) is linked to increased rates of maintenance metabolism. The swimming and hypoxia experiments indicate, however, that the transgenics were able...

  14. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    Science.gov (United States)

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  15. High Yolk Testosterone Transfer Is Associated with an Increased Female Metabolic Rate.

    Science.gov (United States)

    Tschirren, Barbara; Ziegler, Ann-Kathrin; Canale, Cindy I; Okuliarová, Monika; Zeman, Michal; Giraudeau, Mathieu

    2016-01-01

    Yolk androgens of maternal origin are important mediators of prenatal maternal effects. Although in many species short-term benefits of exposure to high yolk androgen concentrations for the offspring have been observed, females differ substantially in the amount of androgens they transfer to their eggs. It suggests that costs for the offspring or the mother constrain the evolution of maternal hormone transfer. However, to date, the nature of these costs remains poorly understood. Unlike most previous work that focused on potential costs for the offspring, we here investigated whether high yolk testosterone transfer is associated with metabolic costs (i.e., a higher metabolic rate) for the mother. We show that Japanese quail (Coturnix japonica) females that deposit higher testosterone concentrations into their eggs have a higher resting metabolic rate. Because a higher metabolic rate is often associated with a shorter life span, this relationship may explain the negative association between yolk testosterone transfer and female longevity observed in the wild. Our results suggest that metabolic costs for the mother can balance the short-term benefits of yolk testosterone exposure for the offspring, thereby contributing to the maintenance of variation in maternal yolk hormone transfer in natural populations.

  16. Basal metabolic rate and risk-taking behaviour in birds.

    Science.gov (United States)

    Møller, A P

    2009-12-01

    Basal metabolic rate (BMR) constitutes the minimal metabolic rate in the zone of thermo-neutrality, where heat production is not elevated for temperature regulation. BMR thus constitutes the minimum metabolic rate that is required for maintenance. Interspecific variation in BMR in birds is correlated with food habits, climate, habitat, flight activity, torpor, altitude, and migration, although the selective forces involved in the evolution of these presumed adaptations are not always obvious. I suggest that BMR constitutes the minimum level required for maintenance, and that variation in this minimum level reflects the fitness costs and benefits in terms of ability to respond to selective agents like predators, implying that an elevated level of BMR is a cost of wariness towards predators. This hypothesis predicts a positive relationship between BMR and measures of risk taking such as flight initiation distance (FID) of individuals approached by a potential predator. Consistent with this suggestion, I show in a comparative analysis of 76 bird species that species with higher BMR for their body mass have longer FID when approached by a potential predator. This effect was independent of potentially confounding variables and similarity among species due to common phylogenetic descent. These results imply that BMR is positively related to risk-taking behaviour, and that predation constitutes a neglected factor in the evolution of BMR.

  17. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  18. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    International Nuclear Information System (INIS)

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-01-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions

  19. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths.

    Directory of Open Access Journals (Sweden)

    Zuzana Starostová

    Full Text Available While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae with different patterns of RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate and body mass.

  20. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths.

    Science.gov (United States)

    Starostová, Zuzana; Konarzewski, Marek; Kozłowski, Jan; Kratochvíl, Lukáš

    2013-01-01

    While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC) size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae) with different patterns of RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate and body mass.

  1. Hemispherical dominance of glucose metabolic rate in the brain of the 'normal' ageing population

    International Nuclear Information System (INIS)

    Cutts, D.A.; Spyrou, N.M.

    2004-01-01

    In the 'normal' ageing brain a decrease in the cerebral metabolic rate has been determined across many brain regions. It is determined whether age differences would affect metabolic rates in regions and different hemispheres of the brain. The regional metabolic rate of glucose (rCMRGlu) was examined in a group of 72 subjects, ages 22 to 82 years, with 36 regions of interest chosen from both hemispheres of the cortex, midbrain and cerebellum. To determine metabolic rates the in-vivo technique of positron emission tomography (PET) was employed. Three age groups were chosen to compare hemispherical differences. In both young and intermediate age groups the left hemisphere had higher rCMRGlu values than those of the right for the majority of regions with, although less pronounced in the intermediate group. Importantly, the older age group displayed little difference between hemispheres. (author)

  2. Inbreeding effects on standard metabolic rate investigated at cold, benign and hot temperatures in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Jensen, Palle; Overgaard, Johannes; Loeschcke, Volker

    2014-01-01

    in replicated lines of inbred and outbred Drosophila melanogaster at stressful low, benign and stressful high temperatures. The lowest measurements of metabolic rate in our study are always associated with the low activity period of the diurnal cycle and these measurements therefore serve as good estimates...... of standard metabolic rate. Due to the potentially added costs of genetic stress in inbred lines we hypothesized that inbred individuals have increased metabolic rate compared to outbred controls and that this is more pronounced at stressful temperatures due to synergistic inbreeding by environment...... interactions. Contrary to our hypothesis we found no significant difference in metabolic rate between inbred and outbred lines and no interaction between inbreeding and temperature. Inbreeding however effected the variance; the variance in metabolic rate was higher between the inbred lines compared...

  3. Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs

    International Nuclear Information System (INIS)

    Busija, D.W.; Leffler, C.W.

    1987-01-01

    The authors examined effects of hypothermia on cerebral metabolic rate and cerebral blood flow in anesthetized, newborn pigs (1-4 days old). Cerebral blood flow (CBF) was determined with 15-μm radioactive microspheres. Regional CBF ranged from 44 to 66 ml·min -1 ·100 g -1 , and cerebral metabolic rate was 1.94 ± 0.23 ml O 2 ·100 g -1 ·min -1 during normothermia (39 degree C). Reduction of rectal temperature to 34-35 degree C decreased CBF and cerebral metabolic rate 40-50%. In another group of piglets, they examined responsiveness of the cerebral circulation to arterial hypercapnia during hypothermia. Although absolute values for normocapnic and hypercapnic CBF were reduced by hypothermia and absolute values for normocapnic and hypercapnic cerebrovascular resistance were increased, the percentage changes from control in these variables during hypercapnia were similar during normothermia and hypothermia. In another group of animals that were maintained normothermic and exposed to two episodes of hypercapnia, there was no attenuation of cerebrovascular dilation during the second episode. They conclude that hypothermia reduces CBF secondarily to a decrease in cerebral metabolic rate and that percent dilator responsiveness to arterial hypercapnia is unaltered when body temperature is reduced

  4. Effect of nanosilver on metabolism in rainbow trout (Oncorhynchus mykiss): An investigation using different respirometric approches

    DEFF Research Database (Denmark)

    Murray, Laura; Rennie, Michael D.; Svendsen, Jon Christian

    2017-01-01

    gene expression, gill damage, and impaired gas exchange, as well as mortality at high nAg concentrations. The present study reports the effects of nAg on the metabolism of rainbow trout (Oncorhynchus mykiss). Fish were exposed to environmentally relevant concentrations (0.28 ± 0.02 μg/L) and higher (47.......60 ± 5.13 μg/L) for 28 d, after which their standard metabolic rate (SMR), forced maximum metabolic rate (MMRf), and spontaneous maximum metabolic rate (MMRs) were measured. There was no effect observed in SMR, MMRf, or MMRs, suggesting that nAg is unlikely to directly affect fish metabolism. On average......, MMRs tended to be greater than MMRf, and most MMRs occurred when room lighting increased. The timing of MMRf chase protocols was found to affect both MMRf and SMR estimates, in that chasing fish before respirometric experiments caused higher MMRf estimates and lower SMR estimates. Although compounded...

  5. The relationship of sleep with temperature and metabolic rate in a hibernating primate.

    Directory of Open Access Journals (Sweden)

    Andrew D Krystal

    Full Text Available STUDY OBJECTIVES: It has long been suspected that sleep is important for regulating body temperature and metabolic-rate. Hibernation, a state of acute hypothermia and reduced metabolic-rate, offers a promising system for investigating those relationships. Prior studies in hibernating ground squirrels report that, although sleep occurs during hibernation, it manifests only as non-REM sleep, and only at relatively high temperatures. In our study, we report data on sleep during hibernation in a lemuriform primate, Cheirogaleus medius. As the only primate known to experience prolonged periods of hibernation and as an inhabitant of more temperate climates than ground squirrels, this animal serves as an alternative model for exploring sleep temperature/metabolism relationships that may be uniquely relevant to understanding human physiology. MEASUREMENTS AND RESULTS: We find that during hibernation, non-REM sleep is absent in Cheirogaleus. Rather, periods of REM sleep occur during periods of relatively high ambient temperature, a pattern opposite of that observed in ground squirrels. Like ground squirrels, however, EEG is marked by ultra-low voltage activity at relatively low metabolic-rates. CONCLUSIONS: These findings confirm a sleep-temperature/metabolism link, though they also suggest that the relationship of sleep stage with temperature/metabolism is flexible and may differ across species or mammalian orders. The absence of non-REM sleep suggests that during hibernation in Cheirogaleus, like in the ground squirrel, the otherwise universal non-REM sleep homeostatic response is greatly curtailed or absent. Lastly, ultra-low voltage EEG appears to be a cross-species marker for extremely low metabolic-rate, and, as such, may be an attractive target for research on hibernation induction.

  6. Cold-hearted bats: uncoupling of heart rate and metabolism during torpor at sub-zero temperatures.

    Science.gov (United States)

    Currie, Shannon E; Stawski, Clare; Geiser, Fritz

    2018-01-04

    Many hibernating animals thermoregulate during torpor and defend their body temperature ( T b ) near 0°C by an increase in metabolic rate. Above a critical temperature ( T crit ), animals usually thermoconform. We investigated the physiological responses above and below T crit for a small tree-dwelling bat ( Chalinolobus gouldii , ∼14 g) that is often exposed to sub-zero temperatures during winter. Through simultaneous measurement of heart rate ( f H ) and oxygen consumption ( V̇ O 2 ), we show that the relationship between oxygen transport and cardiac function is substantially altered in thermoregulating torpid bats between 1 and -2°C, compared with thermoconforming torpid bats at mild ambient temperatures ( T a 5-20°C). T crit for this species was at a T a of 0.7±0.4°C, with a corresponding T b of 1.8±1.2°C. Below T crit , animals began to thermoregulate, as indicated by a considerable but disproportionate increase in both f H and V̇ O 2 The maximum increase in f H was only 4-fold greater than the average thermoconforming minimum, compared with a 46-fold increase in V̇ O 2 The differential response of f H and V̇ O 2  to low T a was reflected in a 15-fold increase in oxygen delivery per heart beat (cardiac oxygen pulse). During torpor at low T a , thermoregulating bats maintained a relatively slow f H and compensated for increased metabolic demands by significantly increasing stroke volume and tissue oxygen extraction. Our study provides new information on the relationship between metabolism and f H in an unstudied physiological state that may occur frequently in the wild and can be extremely costly for heterothermic animals. © 2018. Published by The Company of Biologists Ltd.

  7. 7 CFR 4290.845 - Maximum rate of amortization on Loans and Debt Securities.

    Science.gov (United States)

    2010-01-01

    ...) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financing of Enterprises by RBICs Structuring Rbic Financing of Eligible Enterprises-Types of Financings § 4290.845 Maximum rate of amortization on Loans and Debt Securities. The...

  8. Prediction of work metabolism from heart rate measurements in forest work: some practical methodological issues.

    Science.gov (United States)

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Auger, Isabelle; Leone, Mario

    2015-01-01

    Individual heart rate (HR) to workload relationships were determined using 93 submaximal step-tests administered to 26 healthy participants attending physical activities in a university training centre (laboratory study) and 41 experienced forest workers (field study). Predicted maximum aerobic capacity (MAC) was compared to measured MAC from a maximal treadmill test (laboratory study) to test the effect of two age-predicted maximum HR Equations (220-age and 207-0.7 × age) and two clothing insulation levels (0.4 and 0.91 clo) during the step-test. Work metabolism (WM) estimated from forest work HR was compared against concurrent work V̇O2 measurements while taking into account the HR thermal component. Results show that MAC and WM can be accurately predicted from work HR measurements and simple regression models developed in this study (1% group mean prediction bias and up to 25% expected prediction bias for a single individual). Clothing insulation had no impact on predicted MAC nor age-predicted maximum HR equations. Practitioner summary: This study sheds light on four practical methodological issues faced by practitioners regarding the use of HR methodology to assess WM in actual work environments. More specifically, the effect of wearing work clothes and the use of two different maximum HR prediction equations on the ability of a submaximal step-test to assess MAC are examined, as well as the accuracy of using an individual's step-test HR to workload relationship to predict WM from HR data collected during actual work in the presence of thermal stress.

  9. Metabolic rates and biochemical compositions of Apostichopus japonicus (Selenka) tissue during periods of inactivity

    Science.gov (United States)

    Bao, Jie; Dong, Shuanglin; Tian, Xiangli; Wang, Fang; Gao, Qinfeng; Dong, Yunwei

    2010-03-01

    Estivation, hibernation, and starvation are indispensable inactive states of sea cucumbers Apostichopus japonicus in nature and in culture ponds. Generally, temperature is the principal factor that induces estivation or hibernation in the sea cucumber. The present study provided insight into the physiological adaptations of A. japonicus during the three types of inactivity (hibernation, estivation, and starvation) by measuring the oxygen consumption rates ( Vo2) and biochemical compositions under laboratory conditions of low (3°C), normal (17°C) and high (24°C) temperature. The results show that the characteristics of A. japonicus in dormancy (hibernation and estivation) states were quite different from higher animals, such as fishes, amphibians, reptiles, and mammals, but more closely resembled a semi-dormant state. It was observed that the shift in the A. japonicus physiological state from normal to dormancy was a chronic rather than acute process, indicated by the gradual depression of metabolic rate. While metabolic rates declined 44.9% for the estivation group and 71.7% for the hibernation group, relative to initial rates, during the 36 d culture period, metabolic rates were not maintained at constant levels during these states. The metabolic depression processes for sea cucumbers in hibernation and estivation appeared to be a passive and an active metabolic suppression, respectively. In contrast, the metabolic rates (128.90±11.70 μg/g h) of estivating sea cucumbers were notably higher (107.85±6.31 μg/g h) than in starving sea cucumbers at 17°C, which indicated that the dormancy mechanism here, as a physiological inhibition, was not as efficient as in higher animals. Finally, the principle metabolic substrate or energy source of sea cucumbers in hibernation was lipid, whereas in estivation they mainly consumed protein in the early times and both protein and lipid thereafter.

  10. Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor.

    Science.gov (United States)

    Bjørge, Julie Dahl; Overgaard, Johannes; Malte, Hans; Gianotten, Natasja; Heckmann, Lars-Henrik

    2018-03-10

    Insects are increasingly used as a dietary source for food and feed and it is therefore important to understand how rearing conditions affect growth and development of these agricultural animals. Temperature is arguably the most important factor affecting metabolism and growth rate in insects. Here, we investigated how rearing temperature affected growth rate, growth efficiency and macronutrient composition in two species of edible beetle larvae: Alphitobius diaperinus and Tenebrio molitor. Growth rates of both species were quantified at temperatures ranging from 15.2 to 38.0 °C after which we measured protein and lipid content of the different treatment groups. Metabolic rate was measured in a similar temperature range by measuring the rate of O 2 consumption (V·O 2 ) and CO 2 production (V·CO 2 ) using repeated measures closed respirometry. Using these measurements, we calculated the growth efficiency of mealworms by relating the energy assimilation rate to the metabolic rate. Maximum daily growth rates were 18.3% and 16.6% at 31 °C, for A. diaperinus and T. molitor respectively, and we found that A. diaperinus was better at maintaining growth at high temperatures while T. molitor had superior growth at lower temperatures. Both species had highest efficiencies of energy assimilation in the temperature range of 23.3-31.0 °C, with values close to 2 J assimilated/J metabolised in A. diaperinus and around 4 J assimilated/J metabolised in T. molitor. Compared to "conventional" terrestrial livestock, both species of insects were characterised by high growth rates and very high energy conversion efficiency at most experimental temperatures. For A. diaperinus, lipid content was approximately 30% of dry mass and protein content approximately 50% of dry mass across most temperatures. Temperature had a greater influence on the body composition of T. molitor. At 31.0 °C the lipid and protein content was measured to 47.4% and 37.9%, respectively but lipid

  11. Maximum Entropy and Theory Construction: A Reply to Favretti

    Directory of Open Access Journals (Sweden)

    John Harte

    2018-04-01

    Full Text Available In the maximum entropy theory of ecology (METE, the form of a function describing the distribution of abundances over species and metabolic rates over individuals in an ecosystem is inferred using the maximum entropy inference procedure. Favretti shows that an alternative maximum entropy model exists that assumes the same prior knowledge and makes predictions that differ from METE’s. He shows that both cannot be correct and asserts that his is the correct one because it can be derived from a classic microstate-counting calculation. I clarify here exactly what the core entities and definitions are for METE, and discuss the relevance of two critical issues raised by Favretti: the existence of a counting procedure for microstates and the choices of definition of the core elements of a theory. I emphasize that a theorist controls how the core entities of his or her theory are defined, and that nature is the final arbiter of the validity of a theory.

  12. Is there a relationship between insect metabolic rate and mortality of mealworms Tenebrio molitor L. after insecticide exposure?

    OpenAIRE

    MALISZEWSKA, Justyna; TĘGOWSKA, Eugenia

    2016-01-01

    Pesticides are known to affect insects metabolic rate and CO2 release patterns. In the presented paper metabolic rate and mortality of mealworms Tenebrio molitor L. exposed to four different insecticides was evaluated, to find out whether there is a relationship between mealworms sensitivity to pesticides and their metabolic rate. Tenebrio molitor mortality was determined after intoxication with pyrethroid, oxadiazine, neonicotinoid and organophosphate. Metabolic rate before and after intoxic...

  13. Correlations of metabolic rate and body acceleration in three species of coastal sharks under contrasting temperature regimes.

    Science.gov (United States)

    Lear, Karissa O; Whitney, Nicholas M; Brewster, Lauran R; Morris, Jack J; Hueter, Robert E; Gleiss, Adrian C

    2017-02-01

    The ability to produce estimates of the metabolic rate of free-ranging animals is fundamental to the study of their ecology. However, measuring the energy expenditure of animals in the field has proved difficult, especially for aquatic taxa. Accelerometry presents a means of translating metabolic rates measured in the laboratory to individuals studied in the field, pending appropriate laboratory calibrations. Such calibrations have only been performed on a few fish species to date, and only one where the effects of temperature were accounted for. Here, we present calibrations between activity, measured as overall dynamic body acceleration (ODBA), and metabolic rate, measured through respirometry, for nurse sharks (Ginglymostoma cirratum), lemon sharks (Negaprion brevirostris) and blacktip sharks (Carcharhinus limbatus). Calibrations were made at a range of volitional swimming speeds and experimental temperatures. Linear mixed models were used to determine a predictive equation for metabolic rate based on measured ODBA values, with the optimal model using ODBA in combination with activity state and temperature to predict metabolic rate in lemon and nurse sharks, and ODBA and temperature to predict metabolic rate in blacktip sharks. This study lays the groundwork for calculating the metabolic rate of these species in the wild using acceleration data. © 2017. Published by The Company of Biologists Ltd.

  14. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    International Nuclear Information System (INIS)

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G.

    1990-01-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states

  15. Helicoverpa armigera (Lepidoptera: Noctuidae) larvae that survive sublethal doses of nucleopolyhedrovirus exhibit high metabolic rates.

    Science.gov (United States)

    Bouwer, Gustav; Nardini, Luisa; Duncan, Frances D

    2009-04-01

    To determine the effect of sublethal doses of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearSNPV) on the metabolic rate of H. armigera, the respiration rates of third instar H. armigera larvae inoculated with sublethal doses of HearSNPV were evaluated. Respiration rates, measured as the rate of CO(2) production (VCO(2)), were recorded daily using closed-system respirometry. By 4 days post-inoculation (dpi), the metabolic rates of LD(25) or LD(75) survivors were significantly higher than that of uninoculated controls. When dose data were pooled, the VCO(2) values of larvae that survived inoculation (0.0288mlh(-1)), the uninoculated controls (0.0250mlh(-1)), and the larvae that did not survive inoculation (0.0199mlh(-1)) differed significantly from one another. At 4dpi, the VCO(2) of the uninoculated controls were significantly lower than the VCO(2) of inoculation survivors, but significantly higher than the VCO(2) of inoculation non-survivors. Inoculation survivors may have had high metabolic rates due to a combination of viral replication, organ damage, and an energy-intensive induced cellular immune response. The high 4dpi metabolic rate of inoculation survivors may reflect an effective immune response and may be seen as the metabolic signature of larvae that are in the process of surviving inoculation with HearSNPV.

  16. Heat dissipation does not suppress an immune response in laboratory mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2016-05-15

    The capacity for heat dissipation is considered to be one of the most important constraints on rates of energy expenditure in mammals. To date, the significance of this constraint has been tested exclusively under peak metabolic demands, such as during lactation. Here, we used a different set of metabolic stressors, which do not induce maximum energy expenditures and yet are likely to expose the potential constraining effect of heat dissipation. We compared the physiological responses of mice divergently selected for high (H-BMR) and low basal metabolic rate (L-BMR) to simultaneous exposure to the keyhole limpet haemocyanin (KLH) antigen and high ambient temperature (Ta). At 34°C (and at 23°C, used as a control), KLH challenge resulted in a transient increase in core body temperature (Tb) in mice of both line types (by approximately 0.4°C). Warm exposure did not produce line-type-dependent differences in Tb (which was consistently higher by ca. 0.6°C in H-BMR mice across both Ta values), nor did it result in the suppression of antibody synthesis. These findings were also supported by the lack of between-line-type differences in the mass of the thymus, spleen or lymph nodes. Warm exposure induced the downsizing of heat-generating internal organs (small intestine, liver and kidneys) and an increase in intrascapular brown adipose tissue mass. However, these changes were similar in scope in both line types. Mounting a humoral immune response in selected mice was therefore not affected by ambient temperature. Thus, a combined metabolic challenge of high Ta and an immune response did not appreciably compromise the capacity to dissipate heat, even in the H-BMR mice. © 2016. Published by The Company of Biologists Ltd.

  17. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).

    Science.gov (United States)

    Meyer, Carola W; Reitmeir, Peter; Tschöp, Matthias H

    2015-09-01

    Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well-defined metabolic descriptors serve as meaningful first-line read-outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed. Copyright © 2015 John Wiley & Sons, Inc.

  18. Running and Metabolic Demands of Elite Rugby Union Assessed Using Traditional, Metabolic Power, and Heart Rate Monitoring Methods

    Science.gov (United States)

    Dubois, Romain; Paillard, Thierry; Lyons, Mark; McGrath, David; Maurelli, Olivier; Prioux, Jacques

    2017-01-01

    The aims of this study were (1) to analyze elite rugby union game demands using 3 different approaches: traditional, metabolic and heart rate-based methods (2) to explore the relationship between these methods and (3) to explore positional differences between the backs and forwards players. Time motion analysis and game demands of fourteen professional players (24.1 ± 3.4 y), over 5 European challenge cup games, were analyzed. Thresholds of 14.4 km·h-1, 20 W.kg-1 and 85% of maximal heart rate (HRmax) were set for high-intensity efforts across the three methods. The mean % of HRmax was 80.6 ± 4.3 % while 42.2 ± 16.5% of game time was spent above 85% of HRmax with no significant differences between the forwards and the backs. Our findings also show that the backs cover greater distances at high-speed than forwards (% difference: +35.2 ± 6.6%; pdemands of professional rugby games. The traditional and the metabolic-power approaches shows a close correlation concerning their relative values, nevertheless the difference in absolute values especially for the high-intensity thresholds demonstrates that the metabolic power approach may represent an interesting alternative to the traditional approaches used in evaluating the high-intensity running efforts required in rugby union games. Key points Elite/professional rugby union players Heart rate monitoring during official games Metabolic power approach PMID:28344455

  19. Racial differences in the relationship between rate of nicotine metabolism and nicotine intake from cigarette smoking.

    Science.gov (United States)

    Ross, Kathryn C; Gubner, Noah R; Tyndale, Rachel F; Hawk, Larry W; Lerman, Caryn; George, Tony P; Cinciripini, Paul; Schnoll, Robert A; Benowitz, Neal L

    2016-09-01

    Rate of nicotine metabolism has been identified as an important factor influencing nicotine intake and can be estimated using the nicotine metabolite ratio (NMR), a validated biomarker of CYP2A6 enzyme activity. Individuals who metabolize nicotine faster (higher NMR) may alter their smoking behavior to titrate their nicotine intake in order to maintain similar levels of nicotine in the body compared to slower nicotine metabolizers. There are known racial differences in the rate of nicotine metabolism with African Americans on average having a slower rate of nicotine metabolism compared to Whites. The goal of this study was to determine if there are racial differences in the relationship between rate of nicotine metabolism and measures of nicotine intake assessed using multiple biomarkers of nicotine and tobacco smoke exposure. Using secondary analyses of the screening data collected in a recently completed clinical trial, treatment-seeking African American and White daily smokers (10 or more cigarettes per day) were grouped into NMR quartiles so that the races could be compared at the same NMR, even though the distribution of NMR within race differed. The results indicated that rate of nicotine metabolism was a more important factor influencing nicotine intake in White smokers. Specifically, Whites were more likely to titrate their nicotine intake based on the rate at which they metabolize nicotine. However, this relationship was not found in African Americans. Overall there was a greater step-down, linear type relationship between NMR groups and cotinine or cotinine/cigarette in African Americans, which is consistent with the idea that differences in blood cotinine levels between the African American NMR groups were primarily due to differences in CYP2A6 enzyme activity without titration of nicotine intake among faster nicotine metabolizers. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. New England observed and predicted August stream/river temperature maximum daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum negative rate of change in New England based on a...

  1. Determinants of inter-specific variation in basal metabolic rate.

    Science.gov (United States)

    White, Craig R; Kearney, Michael R

    2013-01-01

    Basal metabolic rate (BMR) is the rate of metabolism of a resting, postabsorptive, non-reproductive, adult bird or mammal, measured during the inactive circadian phase at a thermoneutral temperature. BMR is one of the most widely measured physiological traits, and data are available for over 1,200 species. With data available for such a wide range of species, BMR is a benchmark measurement in ecological and evolutionary physiology, and is often used as a reference against which other levels of metabolism are compared. Implicit in such comparisons is the assumption that BMR is invariant for a given species and that it therefore represents a stable point of comparison. However, BMR shows substantial variation between individuals, populations and species. Investigation of the ultimate (evolutionary) explanations for these differences remains an active area of inquiry, and explanation of size-related trends remains a contentious area. Whereas explanations for the scaling of BMR are generally mechanistic and claim ties to the first principles of chemistry and physics, investigations of mass-independent variation typically take an evolutionary perspective and have demonstrated that BMR is ultimately linked with a range of extrinsic variables including diet, habitat temperature, and net primary productivity. Here we review explanations for size-related and mass-independent variation in the BMR of animals, and suggest ways that the various explanations can be evaluated and integrated.

  2. Positron emission tomography assessment of cerebral glucose metabolic rates in autism spectrum disorder and schizophrenia.

    Science.gov (United States)

    Mitelman, Serge A; Bralet, Marie-Cecile; Mehmet Haznedar, M; Hollander, Eric; Shihabuddin, Lina; Hazlett, Erin A; Buchsbaum, Monte S

    2018-04-01

    Several models have been proposed to account for observed overlaps in clinical features and genetic predisposition between schizophrenia and autism spectrum disorder. This study assessed similarities and differences in topological patterns and vectors of glucose metabolism in both disorders in reference to these models. Co-registered 18 fluorodeoxyglucose PET and MRI scans were obtained in 41 schizophrenia, 25 ASD, and 55 healthy control subjects. AFNI was used to map cortical and subcortical regions of interest. Metabolic rates were compared between three diagnostic groups using univariate and multivariate repeated-measures ANOVA. Compared to controls, metabolic rates in schizophrenia subjects were decreased in the frontal lobe, anterior cingulate, superior temporal gyrus, amygdala and medial thalamic nuclei; rates were increased in the occipital cortex, hippocampus, basal ganglia and lateral thalamic nuclei. In ASD subjects metabolic rates were decreased in the parietal lobe, frontal premotor and eye-fields areas, and amygdala; rates were increased in the posterior cingulate, occipital cortex, hippocampus and basal ganglia. In relation to controls, subjects with ASD and schizophrenia showed opposite changes in metabolic rates in the primary motor and somatosensory cortex, anterior cingulate and hypothalamus; similar changes were found in prefrontal and occipital cortices, inferior parietal lobule, amygdala, hippocampus, and basal ganglia. Schizophrenia and ASD appear to be associated with a similar pattern of metabolic abnormalities in the social brain. Divergent maladaptive trade-offs, as postulated by the diametrical hypothesis of their evolutionary relationship, may involve a more circumscribed set of anterior cingulate, motor and somatosensory regions and the specific cognitive functions they subserve.

  3. Does growth rate determine the rate of metabolism in shorebird chicks living in the arctic?

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. Irene; Visser, G. Henk; Ricklefs, Robert E.

    2007-01-01

    We measured resting and peak metabolic rates (RMR and PMR, respectively) during development of chicks of seven species of shorebirds: least sandpiper (Calidris minutilla; adult mass 20 22 g), dunlin (Calidris alpina; 56-62 g), lesser yellowlegs (Tringa flavipes; 88-92 g), short-billed dowitcher

  4. Differential metabolic rates in prefrontal and temporal Brodmann areas in schizophrenia and schizotypal personality disorder.

    Science.gov (United States)

    Buchsbaum, Monte S; Nenadic, Igor; Hazlett, Erin A; Spiegel-Cohen, Jacqueline; Fleischman, Michael B; Akhavan, Arash; Silverman, Jeremy M; Siever, Larry J

    2002-03-01

    In an exploration of the schizophrenia spectrum, we compared cortical metabolic rates in unmedicated patients with schizophrenia and schizotypal personality disorder (SPD) with findings in age- and sex-matched normal volunteers. Coregistered magnetic resonance imaging (MRI) and positron emission tomography (PET) scans were obtained in 27 schizophrenic, 13 SPD, and 32 normal volunteers who performed a serial verbal learning test during tracer uptake. A template of Brodmann areas derived from a whole brain histological section atlas was used to analyze PET findings. Significantly lower metabolic rates were found in prefrontal areas 44-46 in schizophrenic patients than in normal volunteers. SPD patients did not differ from normal volunteers in most lateral frontal regions, but they had values intermediate between those of normal volunteers and schizophrenic patients in lateral temporal regions. SPD patients showed higher than normal metabolic rates in both medial frontal and medial temporal areas. Metabolic rates in Brodmann area 10 were distinctly higher in SPD patients than in either normal volunteers or schizophrenic patients.

  5. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    International Nuclear Information System (INIS)

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using [18F]fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men

  6. Analysis of reaction schemes using maximum rates of constituent steps

    Science.gov (United States)

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-01-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  7. Metabolic rate and body temperature of an African sun bird ...

    African Journals Online (AJOL)

    1997-02-19

    Feb 19, 1997 ... has a wide distribution in southern Africa. ... sample the voltage output of the oxygen analyser every 2 min ... Bailey Bat thermocouple thermometer, and the system was .... A similar 50% drop in metabolic rate in finches at.

  8. Metabolic rate and thermal conductance of lemmings from high-arctic Canada and Siberia

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Agrell, J.; Lindström, A.

    2002-01-01

    The arctic climate places high demands on the energy metabolism of its inhabitants. We measured resting (RMR) and basal metabolic rates (BMR), body temperatures, and dry and wet thermal conductances in summer morphs of the lemmings Dicrostonyx groenlandicus and Lemmus trimucronatus in arctic Canada,

  9. Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running.

    Science.gov (United States)

    Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Malisch, Jessica L; Garland, Theodore

    2005-06-01

    Selective breeding for high wheel-running activity has generated four lines of laboratory house mice (S lines) that run about 170% more than their control counterparts (C lines) on a daily basis, mostly because they run faster. We tested whether maximum aerobic metabolic rates (V(O2max)) have evolved in concert with wheel-running, using 48 females from generation 35. Voluntary activity and metabolic rates were measured on days 5+6 of wheel access (mimicking conditions during selection), using wheels enclosed in metabolic chambers. Following this, V(O2max) was measured twice on a motorized treadmill and twice during cold-exposure in a heliox atmosphere (HeO2). Almost all measurements, except heliox V(O2max), were significantly repeatable. After accounting for differences in body mass (S running speeds on the treadmill. However, running speeds and V(O2max) during voluntary exercise were significantly higher in S lines. Nevertheless, S mice never voluntarily achieved the V(O2max) elicited during their forced treadmill trials, suggesting that aerobic capacity per se is not limiting the evolution of even higher wheel-running speeds in these lines. Our results support the hypothesis that S mice have genetically higher motivation for wheel-running and they demonstrate that behavior can sometimes evolve independently of performance capacities. We also discuss the possible importance of domestication as a confounding factor to extrapolate results from this animal model to natural populations.

  10. Simultaneous measurement of glucose blood–brain transport constants and metabolic rate in rat brain using in-vivo 1H MRS

    Science.gov (United States)

    Du, Fei; Zhang, Yi; Zhu, Xiao-Hong; Chen, Wei

    2012-01-01

    Cerebral glucose consumption and glucose transport across the blood–brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMRglc) and glucose transport constants (KT: half-saturation constant; Tmax: maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMRglc, KT, and Tmax via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo 1H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMRglc, Tmax, and KT were determined to be 0.44±0.17 μmol/g per minute, 1.35±0.47 μmol/g per minute, and 13.4±6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMRglc and Tmax are more reliable than that of KT. The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application. PMID:22714049

  11. Hexamitiasis leads to lower metabolic rates in rainbow trout Oncorhynchus mykiss (Walbaum) juveniles.

    Science.gov (United States)

    Ogut, H; Parlak, R

    2014-12-01

    This study assessed the effects of Hexamita salmonis (Moore) on metabolism of rainbow trout Oncorhynchus mykiss (Walbaum) and its effect on the host's susceptibility to infectious pancreatic necrosis virus (IPNV) after antiparasitic treatment. Rainbow trout naturally infected with H. salmonis were treated with 10 mg metronidazole kg fish(-1) per day, and their physiological recovery was assessed through measuring resting metabolism on the 7th, 14th, 21st and 28th day after treatment. In addition, we exposed the naïve fish to H. salmonis and measured the resting metabolism (oxygen consumption as mg O2 kg(-1) per hour) on the 10th, 20th and 30th day after the exposure to assess the variation in metabolic rates after infection. Significantly lower rates of metabolic activity (P trout to IPNV remained unchanged in the presence of H. salmonis. Weight loss was significantly higher (P < 0.05) in infected than that in the parasite-free fish. Fish should be examined regularly for H. salmonis and treated immediately whether found to prevent economic losses and excessive size variation. © 2013 John Wiley & Sons Ltd.

  12. Resting metabolic rate and postprandial thermogenesis in polycystic ovarian syndrome.

    Science.gov (United States)

    Segal, K R; Dunaif, A

    1990-07-01

    To determine whether the high frequency of obesity in women with polycystic ovary syndrome (PCO) is related to a defect in energy expenditure, resting metabolic rate (RMR) and the thermic response to a standard meal were compared in 10 obese PCO women, nine obese but otherwise normal women, and 11 lean women. All groups were matched with respect to age and fat-free mass and the two obese groups were matched for degree of obesity. RMR was measured by indirect calorimetry for 3 h on two days: (1) in the postabsorptive state; and (2) after a 720 kcal (3014 kJ) liquid mixed meal. The thermic effect of food, calculated as 3 h postprandial minus fasting RMR, was significantly greater for the lean [52.9 +/- 5.5 kcal/3 h (221 +/- 23 kJ/3 h)] than the obese [17.2 +/- 5.1 kcal/3 h (72 +/- 21 kJ/3 h)] and the PCO women [22.8 +/- 5.2 kcal/3 h (95 +/- 22 kJ/3)], P less than 0.001). The thermic effect of food was negatively related to percent body fat (r = -0.694, P less than 0.001). Resting metabolic rate did not differ significantly among the three groups, and was strongly related to fat-free mass (r = 0.687, P less than 0.001). These results confirm previous reports of blunted thermogenesis in obese individuals, but provide no evidence of altered resting metabolic rate or postprandial thermogenesis in women with PCO compared with normal women of similar degree of obesity.

  13. A 'slow pace of life' in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates.

    Science.gov (United States)

    Bech, Claus; Chappell, Mark A; Astheimer, Lee B; Londoño, Gustavo A; Buttemer, William A

    2016-05-01

    Life history theory suggests that species experiencing high extrinsic mortality rates allocate more resources toward reproduction relative to self-maintenance and reach maturity earlier ('fast pace of life') than those having greater life expectancy and reproducing at a lower rate ('slow pace of life'). Among birds, many studies have shown that tropical species have a slower pace of life than temperate-breeding species. The pace of life has been hypothesized to affect metabolism and, as predicted, tropical birds have lower basal metabolic rates (BMR) than temperate-breeding birds. However, many temperate-breeding Australian passerines belong to lineages that evolved in Australia and share 'slow' life-history traits that are typical of tropical birds. We obtained BMR from 30 of these 'old-endemics' and ten sympatric species of more recently arrived passerine lineages (derived from Afro-Asian origins or introduced by Europeans) with 'faster' life histories. The BMR of 'slow' temperate-breeding old-endemics was indistinguishable from that of new-arrivals and was not lower than the BMR of 'fast' temperate-breeding non-Australian passerines. Old-endemics had substantially smaller clutches and longer maximal life spans in the wild than new arrivals, but neither clutch size nor maximum life span was correlated with BMR. Our results suggest that low BMR in tropical birds is not functionally linked to their 'slow pace of life' and instead may be a consequence of differences in annual thermal conditions experienced by tropical versus temperate species.

  14. Impact of a Metabolic Screening Bundle on Rates of Screening for Metabolic Syndrome in a Psychiatry Resident Outpatient Clinic

    Science.gov (United States)

    Wiechers, Ilse R.; Viron, Mark; Stoklosa, Joseph; Freudenreich, Oliver; Henderson, David C.; Weiss, Anthony

    2012-01-01

    Objective: Although it is widely acknowledged that second-generation antipsychotics are associated with cardiometabolic side effects, rates of metabolic screening have remained low. The authors created a quality-improvement (QI) intervention in an academic medical center outpatient psychiatry resident clinic with the aim of improving rates of…

  15. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus)

    Science.gov (United States)

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L.

    2015-01-01

    ABSTRACT Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. PMID:25987736

  16. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus).

    Science.gov (United States)

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L

    2015-07-01

    Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. © 2015. Published by The Company of Biologists Ltd.

  17. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients.

    Science.gov (United States)

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.

  18. Determinants of intra-specific variation in basal metabolic rate.

    Science.gov (United States)

    Konarzewski, Marek; Książek, Aneta

    2013-01-01

    Basal metabolic rate (BMR) provides a widely accepted benchmark of metabolic expenditure for endotherms under laboratory and natural conditions. While most studies examining BMR have concentrated on inter-specific variation, relatively less attention has been paid to the determinants of within-species variation. Even fewer studies have analysed the determinants of within-species BMR variation corrected for the strong influence of body mass by appropriate means (e.g. ANCOVA). Here, we review recent advancements in studies on the quantitative genetics of BMR and organ mass variation, along with their molecular genetics. Next, we decompose BMR variation at the organ, tissue and molecular level. We conclude that within-species variation in BMR and its components have a clear genetic signature, and are functionally linked to key metabolic process at all levels of biological organization. We highlight the need to integrate molecular genetics with conventional metabolic field studies to reveal the adaptive significance of metabolic variation. Since comparing gene expressions inter-specifically is problematic, within-species studies are more likely to inform us about the genetic underpinnings of BMR. We also urge for better integration of animal and medical research on BMR; the latter is quickly advancing thanks to the application of imaging technologies and 'omics' studies. We also suggest that much insight on the biochemical and molecular underpinnings of BMR variation can be gained from integrating studies on the mammalian target of rapamycin (mTOR), which appears to be the major regulatory pathway influencing the key molecular components of BMR.

  19. Basal Metabolic Rate and Energy Expenditure of Rural Farmers in ...

    African Journals Online (AJOL)

    Measurement of basal metabolic rate (BMR) provides an important baseline for the determination of an individual's total energy requirement. The study sought to establish human energy expenditure of rural farmers in Magubike village in Tanzania, through determination of BMR, physical activity level (PAL) and total energy ...

  20. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18

    International Nuclear Information System (INIS)

    Baxter, L.R. Jr.; Phelps, M.E.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.; Selin, C.E.; Sumida, R.M.

    1985-01-01

    Cerebral metabolic rates for glucose were examined in patients with unipolar depression (N = 11), bipolar depression (N = 5), mania (N = 5), bipolar mixed states (N = 3), and in normal controls (N = 9) using positron emission tomography and fluorodeoxyglucose F 18. All subjects were studied supine under ambient room conditions with eyes open. Bipolar depressed and mixed patients had supratentorial whole brain glucose metabolic rates that were significantly lower than those of the other comparison groups. The whole brain metabolic rates for patients with bipolar depression increased going from depression or a mixed state to a euthymic or manic state. Patients with unipolar depression showed a significantly lower ratio of the metabolic rate of the caudate nucleus, divided by that of the hemisphere as a whole, when compared with normal controls and patients with bipolar depression

  1. Albuminuria and Glomerular Filtration Rate in Individuals with Type 1 Diabetes Mellitus: Contribution of Metabolic Syndrome.

    Science.gov (United States)

    Uribe-Wiechers, Ana Cecilia; Janka-Zires, Marcela; Almeda-Valdés, Paloma; López-Gutiérrez, Joel; Gómez-Pérez, Francisco J

    2015-01-01

    The development of metabolic syndrome has been described in patients with type 1 diabetes mellitus as the disease progresses over time. The purpose of this study is to assess the relationship between metabolic syndrome, albuminuria, and glomerular filtration rate, as well as to determine the prevalence of metabolic syndrome, in a group of Mexican patients with type 1 diabetes mellitus. We conducted a cross-sectional study that included patients with type 1 diabetes mellitus who were diagnosed over 10 years ago and who are seen at the Diabetes Intensive Control Clinic of the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran in Mexico City. The presence of metabolic syndrome was determined by using the National Cholesterol Education Program-Adult Treatment Panel III (ATP III) criteria. A total of 81 individuals were studied. The prevalence of metabolic syndrome was 18.5% (n = 15). A higher albuminuria was found in subjects with metabolic syndrome (34.9 mg/24 hours; 8.3-169.3) than in those without metabolic syndrome (9.0 mg/24 hours; 5.0-27.0; p = 0.02). Glomerular filtration rate was lower in patients with metabolic syndrome (95.3 ml/minute; [64.9-107.2] vs. 110.2 ml/minute [88.1-120.3]; p = 0.04). After classifying the population according to the number of metabolic syndrome criteria, a progressive increase in albuminuria and a progressive decrease in glomerular filtration rate were found with each additional metabolic syndrome criterion (p = 0.008 and p = 0.032, respectively). After adjusting for age, time from diagnosis, systolic blood pressure, triglycerides, HDL-cholesterol, and treatment with angiotensin receptor blockers or angiotensin converting enzyme inhibitors, we found that age, time from diagnosis, triglycerides, and HDL-cholesterol were independent factors associated with glomerular filtration rate (R2 = 0.286; p diabetes mellitus. Metabolic syndrome was present in 18.5% of this group of Mexican individuals with type 1 diabetes

  2. New England observed and predicted August stream/river temperature maximum positive daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum positive daily rate of change in New England based on a...

  3. New England observed and predicted July stream/river temperature maximum positive daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature maximum positive daily rate of change in New England based on a...

  4. New England observed and predicted July maximum negative stream/river temperature daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature maximum negative daily rate of change in New England based on a...

  5. Standard metabolic rate is associated with gestation duration, but not clutch size, in speckled cockroaches Nauphoeta cinerea

    Directory of Open Access Journals (Sweden)

    Natalie G. Schimpf

    2012-09-01

    Metabolic rate varies significantly between individuals, and these differences persist even when the wide range of biotic and abiotic factors that influence metabolism are accounted for. It is important to understand the life history implications of variation in metabolic rate, but they remain poorly characterised despite a growing body of work examining relationships between metabolism and a range of traits. In the present study we used laboratory-bred families (one sire to three dams of Nauphoeta cinerea (Olivier (speckled cockroaches to examine the relationship between standard metabolic rate (SMR and reproductive performance (number of offspring and gestation duration. We show that SMR is negatively associated with female gestation duration. Age at mating is negatively associated with gestation duration for females, and mass is negatively associated with the average gestation duration of the females a male was mated with. In addition to the results in the current literature, the results from the present study suggest that the association between metabolism and life history is more complex than simple relationships between metabolism and various fitness traits. Future work should consider longitudinal, ontogenetic as well as selective and quantitative genetic breeding approaches to fully examine the associations between metabolism and fitness.

  6. Expanded flux variability analysis on metabolic network of Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    CHEN Tong; XIE ZhengWei; OUYANG Qi

    2009-01-01

    Flux balance analysis,based on the mass conservation law in a cellular organism,has been extensively employed to study the interplay between structures and functions of cellular metabolic networks.Consequently,the phenotypes of the metabolism can be well elucidated.In this paper,we introduce the Expanded Flux Variability Analysis (EFVA) to characterize the intrinsic nature of metabolic reactions,such as flexibility,modularity and essentiality,by exploring the trend of the range,the maximum and the minimum flux of reactions.We took the metabolic network of Escherichia coli as an example and analyzed the variability of reaction fluxes under different growth rate constraints.The average variability of all reactions decreases dramatically when the growth rate increases.Consider the noise effect on the metabolic system,we thus argue that the microorganism may practically grow under a suboptimal state.Besides,under the EFVA framework,the reactions are easily to be grouped into catabolic and anabolic groups.And the anabolic groups can be further assigned to specific biomass constitute.We also discovered the growth rate dependent essentiality of reactions.

  7. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    International Nuclear Information System (INIS)

    Ackermann, R.F.; Lear, J.L.

    1989-01-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14 C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14 C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum

  8. Effects of season, temperature, and body mass on the standard metabolic rate of tegu lizards (Tupinambis merianae).

    Science.gov (United States)

    Toledo, Luís F; Brito, Simone P; Milsom, William K; Abe, Augusto S; Andrade, Denis V

    2008-01-01

    Abstract This study examined how the standard metabolic rate of tegu lizards, a species that undergoes large ontogenetic changes in body weight with associated changes in life-history traits, is affected by changes in body mass, body temperature, season, and life-history traits. We measured rates of oxygen consumption (Vo(2)) in 90 individuals ranging in body mass from 10.4 g to 3.75 kg at three experimental temperatures (17 degrees , 25 degrees , and 30 degrees C) over the four seasons. We found that standard metabolic rate scaled to the power of 0.84 of body mass at all experimental temperatures in all seasons and that thermal sensitivity of metabolism was relatively low (Q(10) approximately 2.0-2.5) over the range from 17 degrees to 30 degrees C regardless of body size or season. Metabolic rates did vary seasonally, being higher in spring and summer than in autumn and winter at the same temperatures, and this was true regardless of animal size. Finally, in this study, the changes in life-history traits that occurred ontogenetically were not accompanied by significant changes in metabolic rate.

  9. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    Science.gov (United States)

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-02-07

    The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small

  10. Mechanistic drivers of flexibility in summit metabolic rates of small birds.

    Directory of Open Access Journals (Sweden)

    David Swanson

    Full Text Available Flexible metabolic phenotypes allow animals to adjust physiology to better fit ecological or environmental demands, thereby influencing fitness. Summit metabolic rate (Msum = maximal thermogenic capacity is one such flexible trait. Skeletal muscle and heart masses and myocyte metabolic intensity are potential drivers of Msum flexibility in birds. We examined correlations of skeletal muscle and heart masses and pectoralis muscle citrate synthase (CS activity (an indicator of cellular metabolic intensity with Msum in house sparrows (Passer domesticus and dark-eyed juncos (Junco hyemalis to determine whether these traits are associated with Msum variation. Pectoralis mass was positively correlated with Msum for both species, but no significant correlation remained for either species after accounting for body mass (Mb variation. Combined flight and leg muscle masses were also not significantly correlated with Msum for either species. In contrast, heart mass was significantly positively correlated with Msum for juncos and nearly so (P = 0.054 for sparrows. Mass-specific and total pectoralis CS activities were significantly positively correlated with Msum for sparrows, but not for juncos. Thus, myocyte metabolic intensity influences Msum variation in house sparrows, although the stronger correlation of total (r = 0.495 than mass-specific (r = 0.378 CS activity with Msum suggests that both pectoralis mass and metabolic intensity impact Msum. In contrast, neither skeletal muscle masses nor pectoralis metabolic intensity varied with Msum in juncos. However, heart mass was associated with Msum variation in both species. These data suggest that drivers of metabolic flexibility are not uniform among bird species.

  11. Metabolic rate and evaporative water loss of Mexican Spotted and Great Horned Owls

    Science.gov (United States)

    Joseph L. Ganey; Russell P. Balda; Rudy M. King

    1993-01-01

    We measured rates of oxygen consumption and evaporative water loss (EWL) of Mexican Spotted (Strix occidentalis lucida) and Great Horned (Bubo virginianus) owls in Arizona. Basal metabolic rate averaged 0.84 ccO2. g-1. h-1...

  12. 30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; dual element fuses... Trailing Cables § 75.601-3 Short circuit protection; dual element fuses; current ratings; maximum values. Dual element fuses having adequate current-interrupting capacity shall meet the requirements for short...

  13. Adaptive changes in basal metabolic rate and thermogenesis in chronic undernutrition

    International Nuclear Information System (INIS)

    Shetty, P.S.

    1993-01-01

    Metabolic adaptation during chronic undernutrition represents a complex integration of several processes which affect the total energy expenditure of the individual. Basal metabolic rate (BMR) is reduced; reductions in BMR per unit fat free mass (FFM) is difficult to demonstrate. BMR changes in undernutrition reflect the low body weight as well as alterations in the composition of the FFM; more specifically changes in the ratio of viscera to muscle compartments of the FFM. Thermogenic responses to norepinephrine are transiently suppressed but recover rapidly on repeated stimulation. Dietary thermogenesis is enhanced possible the result of increases in tissue synthesis within the body. Changes in BMR and thermogenesis suggestive of an increase in metabolic efficiency is thus difficult to demonstrate in chronic undernutrition. (author). 15 refs, 2 figs, 7 tabs

  14. Running and Metabolic Demands of Elite Rugby Union Assessed Using Traditional, Metabolic Power, and Heart Rate Monitoring Methods

    Directory of Open Access Journals (Sweden)

    Romain Dubois, Thierry Paillard, Mark Lyons, David McGrath, Olivier Maurelli, Jacques Prioux

    2017-03-01

    Full Text Available The aims of this study were (1 to analyze elite rugby union game demands using 3 different approaches: traditional, metabolic and heart rate-based methods (2 to explore the relationship between these methods and (3 to explore positional differences between the backs and forwards players. Time motion analysis and game demands of fourteen professional players (24.1 ± 3.4 y, over 5 European challenge cup games, were analyzed. Thresholds of 14.4 km·h-1, 20 W.kg-1 and 85% of maximal heart rate (HRmax were set for high-intensity efforts across the three methods. The mean % of HRmax was 80.6 ± 4.3 % while 42.2 ± 16.5% of game time was spent above 85% of HRmax with no significant differences between the forwards and the backs. Our findings also show that the backs cover greater distances at high-speed than forwards (% difference: +35.2 ± 6.6%; p<0.01 while the forwards cover more distance than the backs (+26.8 ± 5.7%; p<0.05 in moderate-speed zone (10-14.4 km·h-1. However, no significant difference in high-metabolic power distance was found between the backs and forwards. Indeed, the high-metabolic power distances were greater than high-speed running distances of 24.8 ± 17.1% for the backs, and 53.4 ± 16.0% for the forwards with a significant difference (+29.6 ± 6.0% for the forwards; p<0.001 between the two groups. Nevertheless, nearly perfect correlations were found between the total distance assessed using the traditional approach and the metabolic power approach (r = 0.98. Furthermore, there is a strong association (r = 0.93 between the high-speed running distance (assessed using the traditional approach and the high-metabolic power distance. The HR monitoring methods demonstrate clearly the high physiological demands of professional rugby games. The traditional and the metabolic-power approaches shows a close correlation concerning their relative values, nevertheless the difference in absolute values especially for the high

  15. Is there a relationship between insect metabolic rate and mortality of mealworms Tenebrio molitor L. after insecticide exposure?

    Directory of Open Access Journals (Sweden)

    Justyna MALISZEWSKA

    2016-09-01

    Full Text Available Pesticides are known to affect insects metabolic rate and CO2 release patterns. In the presented paper metabolic rate and mortality of mealworms Tenebrio molitor L. exposed to four different insecticides was evaluated, to find out whether there is a relationship between mealworms sensitivity to pesticides and their metabolic rate. Tenebrio molitor mortality was determined after intoxication with pyrethroid, oxadiazine, neonicotinoid and organophosphate. Metabolic rate before and after intoxication with insecticides was also determined. The highest CO2 production and mortality rate was observed after mealworms exposition to neonicotinoid insecticide. The results suggest that high CO2 release after intoxication is adequate to the intensity of the non-specific action of the xenobiotic (e.g. hyperactivity of neuromuscular system, rather than the intensity of detoxification processes, and it is correlated with mealworms mortality.

  16. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones.

    Science.gov (United States)

    Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra

    2014-02-15

    The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.

  17. [Analysis of body composition and resting metabolic rate of 858 middle-aged and elderly people in urban area of Beijing].

    Science.gov (United States)

    Yu, D N; Xian, T Z; Wang, L J; Cheng, B; Sun, M X; Guo, L X

    2018-05-10

    Objective: To understand the overweight rate and obesity rate in middle-aged and elderly people in urban area of Beijing, and analyze the changes of body composition and resting metabolic rate with age. Methods: From November 2014 to December 2015, body composition measurement and resting metabolic rate detection were conducted among 858 people aged 51 to 99 years, including 760 men, 98 women, who received physical examination at Beijing Hospital. Results: The overweight rate was 51.4 % , and the obesity rate was 16.9 % . The overweight rate was 26.5 % and the obesity rate was 14.3 % in women, significantly lower than those in men (54.6 % and 17.2 % ) ( P area and resting metabolic rate in different age groups were different ( P area increased obviously ( P area increased significantly in age group 70- years ( P area of Beijing, and the rates were higher in men than in women. With the increase of age, the skeletal muscle volume, muscle index and resting metabolic rate gradually decreased, while the percentage of body fat and visceral fat area increased; Overweight and obese people had earlier changes in body composition and resting metabolic rate.

  18. ReplacementMatrix: a web server for maximum-likelihood estimation of amino acid replacement rate matrices.

    Science.gov (United States)

    Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier

    2011-10-01

    Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/

  19. Original communication: Basal metabolic rate in children with a solid tumor

    NARCIS (Netherlands)

    Broeder, den E.; Oeseburg, B.; Lippens, R.J.J.; Staveren, van W.A.; Sengers, R.C.A.; Hof, van 't M.A.; Tolboom, J.J.M.

    2001-01-01

    Objective: To study the level of and changes in basal metabolic rate (BMR) in children with a solid tumour at diagnosis and during treatment in order to provide a more accurate estimate of energy requirements for nutritional support. Design: An observational study. Setting: Tertiary care at the

  20. Effects of Contingency versus Constraints on the Body-Mass Scaling of Metabolic Rate

    Directory of Open Access Journals (Sweden)

    Douglas S. Glazier

    2018-01-01

    Full Text Available I illustrate the effects of both contingency and constraints on the body-mass scaling of metabolic rate by analyzing the significantly different influences of ambient temperature (Ta on metabolic scaling in ectothermic versus endothermic animals. Interspecific comparisons show that increasing Ta results in decreasing metabolic scaling slopes in ectotherms, but increasing slopes in endotherms, a pattern uniquely predicted by the metabolic-level boundaries hypothesis, as amended to include effects of the scaling of thermal conductance in endotherms outside their thermoneutral zone. No other published theoretical model explicitly predicts this striking variation in metabolic scaling, which I explain in terms of contingent effects of Ta and thermoregulatory strategy in the context of physical and geometric constraints related to the scaling of surface area, volume, and heat flow across surfaces. My analysis shows that theoretical models focused on an ideal 3/4-power law, as explained by a single universally applicable mechanism, are clearly inadequate for explaining the diversity and environmental sensitivity of metabolic scaling. An important challenge is to develop a theory of metabolic scaling that recognizes the contingent effects of multiple mechanisms that are modulated by several extrinsic and intrinsic factors within specified constraints.

  1. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis

    Science.gov (United States)

    Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019

  2. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.

    Directory of Open Access Journals (Sweden)

    Marie C Matrka

    Full Text Available The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos. To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.

  3. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells.

    Science.gov (United States)

    Bibby, Susan R S; Jones, Deborah A; Ripley, Ruth M; Urban, Jill P G

    2005-03-01

    In vitro measurements of metabolic rates of isolated bovine nucleus pulposus cells at varying levels of oxygen, glucose, and pH. To obtain quantitative information on the interactions between oxygen and glucose concentrations and pH, and the rates of oxygen and glucose consumption and lactic acid production, for disc nucleus cells. Disc cells depend on diffusion from blood vessels at the disc margins for supply of nutrients. Loss of supply is thought to lead to disc degeneration, but how loss of supply affects nutrient concentrations in the disc is not known; nutrient concentrations within discs can normally only be calculated, because concentration measurements are invasive. However, realistic predictions cannot be made until there are data from measurements of metabolic rates at conditions found in the disc in vivo, i.e., at low levels of oxygen, glucose, and pH. A metabolism chamber was designed to allow simultaneous recording of oxygen and glucose concentrations and of pH. These concentrations were measured electrochemically with custom-built glucose and oxygen sensors; lactic acid was measured biochemically. Bovine nucleus pulposus cells were isolated and inserted into the chamber, and simultaneous rates of oxygen and glucose consumption and of lactic acid production were measured over a range of glucose, oxygen, and pH levels. There were strong interactions between rates of metabolism and oxygen consumption and pH. At atmospheric oxygen levels, oxygen consumption rate at pH 6.2 was 32% of that at pH 7.4. The rate fell by 60% as oxygen concentration was decreased from 21 to 5% at pH 7.4, but only by 20% at pH 6.2. Similar interactions were seen for lactic acid production and glucose consumption rates; we found that glycolysis rates fell at low oxygen and glucose concentrations and low pH. Equations were derived that satisfactorily predict the effect of nutrient and metabolite concentrations on rates of lactic acid production rate and oxygen consumption. Disc

  4. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate.

    Science.gov (United States)

    Carey, Nicholas; Harianto, Januar; Byrne, Maria

    2016-04-15

    Body size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad range in body size (two to three orders of magnitude difference in body mass), we addressed the impact of climate change on the sea urchin ITALIC! Heliocidaris erythrogrammain context with climate projections for southeast Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23°C) and two pH levels (7.5 and 8.0), at which they were maintained for 2 months. Identical experimental trials separated by several weeks validated the fact that a new physiological steady state had been reached, otherwise known as acclimation. The relationship between body size, temperature and acidification on the metabolic rate of ITALIC! H. erythrogrammawas strikingly stable. Both stressors caused increases in metabolic rate: 20% for temperature and 19% for pH. Combined effects were additive: a 44% increase in metabolism. Body size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body size all substantially affect metabolism and are highly consistent and

  5. Climate and foraging mode explain interspecific variation in snake metabolic rates.

    Science.gov (United States)

    Dupoué, Andréaz; Brischoux, François; Lourdais, Olivier

    2017-11-29

    The energy cost of self-maintenance is a critical facet of life-history strategies. Clarifying the determinant of interspecific variation in metabolic rate (MR) at rest is important to understand and predict ecological patterns such as species distributions or responses to climatic changes. We examined variation of MR in snakes, a group characterized by a remarkable diversity of activity rates and a wide distribution. We collated previously published MR data ( n = 491 observations) measured in 90 snake species at different trial temperatures. We tested for the effects of metabolic state (standard MR (SMR) versus resting MR (RMR)), foraging mode (active versus ambush foragers) and climate (temperature and precipitation) while accounting for non-independence owing to phylogeny, body mass and thermal dependence. We found that RMR was 40% higher than SMR, and that active foragers have higher MR than species that ambush their prey. We found that MR was higher in cold environments, supporting the metabolic cold adaptation hypothesis. We also found an additive and positive effect of precipitation on MR suggesting that lower MR in arid environments may decrease dehydration and energetic costs. Altogether, our findings underline the complex influences of climate and foraging mode on MR and emphasize the relevance of these facets to understand the physiological impact of climate change. © 2017 The Author(s).

  6. Reduced basal metabolic rate of migratory waders wintering in coastal Africa

    NARCIS (Netherlands)

    Kersten, M.; Bruinzeel, L.W.; Wiersma, P.; Piersma, T.

    1998-01-01

    We measured Basal Metabolic Rate (EMR) of 16 wader species (order Charadriiformes) on their wintering grounds in Africa. The allometric regression equation relating BMR to body mass: BMR (W) = 4.02 x M (kg)(0.724) runs parallel to that of waders in temperate areas, but at a 20% lower elevation.

  7. Maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells.

    Science.gov (United States)

    Haverinen, Jaakko; Abramochkin, Denis V; Kamkin, Andre; Vornanen, Matti

    2017-02-01

    Temperature-induced changes in cardiac output (Q̇) in fish are largely dependent on thermal modulation of heart rate (f H ), and at high temperatures Q̇ collapses due to heat-dependent depression of f H This study tests the hypothesis that firing rate of sinoatrial pacemaker cells sets the upper thermal limit of f H in vivo. To this end, temperature dependence of action potential (AP) frequency of enzymatically isolated pacemaker cells (pacemaker rate, f PM ), spontaneous beating rate of isolated sinoatrial preparations (f SA ), and in vivo f H of the cold-acclimated (4°C) brown trout (Salmo trutta fario) were compared under acute thermal challenges. With rising temperature, f PM steadily increased because of the acceleration of diastolic depolarization and shortening of AP duration up to the break point temperature (T BP ) of 24.0 ± 0.37°C, at which point the electrical activity abruptly ceased. The maximum f PM at T BP was much higher [193 ± 21.0 beats per minute (bpm)] than the peak f SA (94.3 ± 6.0 bpm at 24.1°C) or peak f H (76.7 ± 2.4 at 15.7 ± 0.82°C) (P brown trout in vivo. Copyright © 2017 the American Physiological Society.

  8. The interplay between aerobic metabolism and antipredator performance: vigilance is related to recovery rate after exercise

    Directory of Open Access Journals (Sweden)

    Shaun Steven Killen

    2015-04-01

    Full Text Available When attacked by a predator, fish respond with a sudden fast-start motion away from the threat. Although this anaerobically-powered swimming necessitates a recovery phase which is fuelled aerobically, little is known about links between escape performance and aerobic traits such as aerobic scope or recovery time after exhaustive exercise. Slower recovery ability or a reduced aerobic scope could make some individuals less likely to engage in a fast-start response or display reduced performance. Conversely, increased vigilance in some individuals could permit faster responses to an attack but also increase energy demand and prolong recovery after anaerobic exercise. We examined how aerobic scope and the ability to recover from anaerobic exercise relates to differences in fast-start escape performance in juvenile golden grey mullet at different acclimation temperatures. Individuals were acclimated to either 18, 22, or 26oC, then measured for standard and maximal metabolic rates and aerobic scope using intermittent flow respirometry. Anaerobic capacity and the time taken to recover after exercise were also assessed. Each fish was also filmed during a simulated attack to determine response latency, maximum speed and acceleration, and turning rate displayed during the escape response. Across temperatures, individuals with shorter response latencies during a simulated attack are those with the longest recovery time after exhaustive anaerobic exercise. Because a short response latency implies high preparedness to escape, these results highlight the trade-off between the increased vigilance and metabolic demand, which leads to longer recovery times in fast reactors. These results improve our understanding of the intrinsic physiological traits that generate inter-individual variability in escape ability, and emphasise that a full appreciation of trade-offs associated with predator avoidance and energy balance must include energetic costs associated with

  9. Quantitative Rates of Brain Glucose Metabolism Distinguish Minimally Conscious from Vegetative State Patients

    DEFF Research Database (Denmark)

    Stender, Johan; Kupers, Ron; Rodell, Anders

    2015-01-01

    of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global......The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function...... these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.Journal of Cerebral Blood Flow & Metabolism advance online publication, 8 October 2014; doi:10...

  10. Calorie restriction hysteretically primes aging Saccharomyces cerevisiae toward more effective oxidative metabolism.

    Directory of Open Access Journals (Sweden)

    Erich B Tahara

    Full Text Available Calorie restriction (CR is an intervention known to extend the lifespan of a wide variety of organisms. In S. cerevisiae, chronological lifespan is prolonged by decreasing glucose availability in the culture media, a model for CR. The mechanism has been proposed to involve an increase in the oxidative (versus fermentative metabolism of glucose. Here, we measured wild-type and respiratory incompetent (ρ(0 S. cerevisiae biomass formation, pH, oxygen and glucose consumption, and the evolution of ethanol, glycerol, acetate, pyruvate and succinate levels during the course of 28 days of chronological aging, aiming to identify metabolic changes responsible for the effects of CR. The concomitant and quantitative measurements allowed for calculations of conversion factors between different pairs of substrates and products, maximum specific substrate consumption and product formation rates and maximum specific growth rates. Interestingly, we found that the limitation of glucose availability in CR S. cerevisiae cultures hysteretically increases oxygen consumption rates many hours after the complete exhaustion of glucose from the media. Surprisingly, glucose-to-ethanol conversion and cellular growth supported by glucose were not quantitatively altered by CR. Instead, we found that CR primed the cells for earlier, faster and more efficient metabolism of respiratory substrates, especially ethanol. Since lifespan-enhancing effects of CR are absent in respiratory incompetent ρ(0 cells, we propose that the hysteretic effect of glucose limitation on oxidative metabolism is central toward chronological lifespan extension by CR in this yeast.

  11. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    Science.gov (United States)

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  12. Effect of nanoparticles of silver and gold on metabolic rate and development of broiler and layer embryos

    DEFF Research Database (Denmark)

    Pineda, L; Sawosz, E; Hotowy, A

    2012-01-01

    This investigation evaluated the effects of nanoparticles of silver (AgNano) and gold (AuNano) on metabolic rate (O(2) consumption, CO(2) production and heat production-HP) and the development of embryos from different breeds of broiler and layer chicken. Gaseous exchange was measured in an open......-air-circuit respiration unit, and HP was calculated for 10, 13, 16 and 19-day-old embryos. Relative chick and muscle weights were used as a measure of growth rate and development. AgNano but not AuNano increased the rates of O(2) consumption and HP of the layer embryos. The metabolic rate of broiler embryos...... was not affected by either of the treatments, but it was significantly higher compared to the layer embryos. Neither of the nanoparticles promoted nor depressed growth and development of the embryos, irrespective of breed. Although the metabolic rate of AgNano-injected layer embryos was significantly increased...

  13. Basal metabolic rate in relation to body composition and daily energy expenditure in the field vole, Microtus agrestis

    NARCIS (Netherlands)

    Meerlo, P; Bolle, L; Visser, GH; Masman, D; Daan, S

    1997-01-01

    Basal metabolic rate in the field vole (Microtus agrestis) was studied in relation to body composition and daily energy expenditure in the field Daily energy expenditure was measured by means of doubly labelled water ((D2O)-O-18). In the same individuals, basal metabolic rate was subsequently

  14. Using in vitro derived enzymatic reaction rates of metabolism to inform pesticide body burdens in amphibians

    Science.gov (United States)

    Understanding how pesticide exposure to non-target species influences toxicity is necessary to accurately assess the ecological risks these compounds pose. To assess the potential metabolic activation of broad use pesticides in amphibians, in vitro and in vivo metabolic rate cons...

  15. Metabolic rates of 15N-D- and 15N-L-phenylalanine in an amino acid mixture for parenteral feeding

    International Nuclear Information System (INIS)

    Wutzke, K.; Heine, W.; Drescher, U.

    1982-01-01

    15 N investigations on the metabolism of L- and D-phenylalanine under conditions of parenteral feeding with the aminoacid solution Infesol in 6 infants revealed a retention rate of 83.4 +- 3.4 per cent for the L-form and of 36.6 +- 5.2 per cent for the D-form. When the D-isomer was raised from 1:3 to 1:1 in relation to the L-Form, 32.6 per cent of the infused D-phenylalanine were still retained. After continuous 24-hour infusion of the tracers, the maximum of 15 N excretion in the urine was reached between the 24th and the 30th hour. But little incorporation of 15 N-nitrogen was found in the serum and erythrocytes because of the relatively long half-life period of these proteins. Changes in the composition of commercial DL-amino acid mixtures will only be possible after determining the utilization rates of all essential and non-essential D-amino acids being used in such mixtures. (author)

  16. Basal metabolic rate scaled to body mass within species by the ...

    African Journals Online (AJOL)

    Basal metabolic rate scaled to body mass within species by the fractal dimension of the vascular system and body composition. ... The postulate bd = c is shown to hold for both these species within the limits of experimental error, with the crucian carp evidence being especially convincing, since b, c and d are estimated from ...

  17. Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees.

    Science.gov (United States)

    Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H

    2016-10-03

    Amputees using passive ankle-foot prostheses tend to expend more metabolic energy during walking than non-amputees, and reducing this cost has been a central motivation for the development of active ankle-foot prostheses. Increased push-off work at the end of stance has been proposed as a way to reduce metabolic energy use, but the effects of push-off work have not been tested in isolation. In this experiment, participants with unilateral transtibial amputation (N=6) walked on a treadmill at a constant speed while wearing a powered prosthesis emulator. The prosthesis delivered different levels of ankle push-off work across conditions, ranging from the value for passive prostheses to double the value for non-amputee walking, while all other prosthesis mechanics were held constant. Participants completed six acclimation sessions prior to a data collection in which metabolic rate, kinematics, kinetics, muscle activity and user satisfaction were recorded. Metabolic rate was not affected by net prosthesis work rate (p=0.5; R 2 =0.007). Metabolic rate, gait mechanics and muscle activity varied widely across participants, but no participant had lower metabolic rate with higher levels of push-off work. User satisfaction was affected by push-off work (p=0.002), with participants preferring values of ankle push-off slightly higher than in non-amputee walking, possibly indicating other benefits. Restoring or augmenting ankle push-off work is not sufficient to improve energy economy for lower-limb amputees. Additional necessary conditions might include alternate timing or control, individualized tuning, or particular subject characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate.

    Directory of Open Access Journals (Sweden)

    Maxi Meissner

    Full Text Available AIMS/HYPOTHESIS: Bile acid sequestrants (BAS reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology. METHODS: Lean and diabetic db/db mice were treated with 2% (wt/wt in diet Colesevelam HCl (BAS for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-(13C]-glucose, [2-(13C]-glycerol, [1-(2H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns. RESULTS: Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001, a ∼300% increased glucokinase flux (p = 0.001 and a ∼200% increased total hepatic glucose production rate (p = 0.0002. BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317 but not in liver (p = 0.189. Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030 and 3-fold in db/db mice (p = 0.002. CONCLUSIONS/INTERPRETATION: BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.

  19. Sex differences in metabolic rates in field crickets and their dipteran parasitoids.

    Science.gov (United States)

    Kolluru, G R; Chappell, M A; Zuk, M

    2004-11-01

    Sex differences in metabolic rate (MR) can result from dimorphism in the performance of energetically demanding activities. Male crickets (Teleogryllus oceanicus) engage in costly calling and aggressive activity not performed by females. Consistent with this difference, we found higher maximal MR, factorial scope, and fat content in males than females. T. oceanicus song is also costly because it attracts the parasitoid fly Ormia ochracea. Parasitized crickets had reduced maximal MR consistent with a metabolic cost to harboring larvae. This cost was greater for females, either because females invest more heavily into reproduction at the expense of metabolic capacity, or because males are under stronger selection to respond to infection. Little is known about O. ochracea outside of its auditory system and parasitic lifestyle. We observed greater resting MR in male flies, possibly reflecting a sex difference in the requirement for metabolic power output, because male flies perform potentially costly mating behavior not seen in females. We found a positive relationship between larval density within a cricket and pupal resting MR, suggesting that crickets in good condition are able to both harbor more larvae and produce larvae with higher resting MR. These results reveal a complex interplay between the metabolism of crickets and their fly parasitoids.

  20. Clinical evaluation of a simple uroflowmeter for categorization of maximum urinary flow rate

    Directory of Open Access Journals (Sweden)

    Simon Pridgeon

    2007-01-01

    Full Text Available Objective: To evaluate the accuracy and diagnostic usefulness of a disposable flowmeter consisting of a plastic funnel with a spout divided into three chambers. Materials and Methods: Men with lower urinary tract symptoms (LUTS voided sequentially into a standard flowmeter and the funnel device recording maximum flow rate (Q max and voided volume (V void . The device was precalibrated such that filling of the bottom, middle and top chambers categorized maximum input flows as 15 ml s -1 respectively. Subjects who agreed to use the funnel device at home obtained readings of flow category and V void twice daily for seven days. Results: A single office reading in 46 men using the device showed good agreement with standard measurement of Q max for V void > 150 ml (Kappa = 0.68. All 14 men whose void reached the top chamber had standard Q max > 15 ml s -1 (PPV = 100%, NPV = 72% whilst eight of 12 men whose void remained in the bottom chamber had standard Q max < 10 ml s -1 (PPV = 70%, NPV = 94%. During multiple home use by 14 men the device showed moderate repeatability (Kappa = 0.58 and correctly categorized Q max in comparison to standard measurement for 12 (87% men. Conclusions: This study suggests that the device has sufficient accuracy and reliability for initial flow rate assessment in men with LUTS. The device can provide a single measurement or alternatively multiple home measurements to categorize men with Q max < 15 ml s -1 .

  1. [Study of Basal metabolic rate of 81 young adults aged 20-29 years old in Changsha].

    Science.gov (United States)

    Zhou, X; Mao, D Q; Luo, J Y; Wu, J H; Zhuo, Q; Li, Y M

    2017-07-06

    Objective: To determine the basal metabolic rate (BMR) of young adults aged between 20-29 years old in Changsha. Methods: We recruited volunteers to join in our research project from April to May, 2015. All recruited volunteers must meet the inclusion criteria: aged 20-29 years old, height between 164-180 centimeters in males and 154-167 centimeters in females, in good health condition, and with no habit of regular physical exercise in last year. Finally, 81 qualified volunteers were selected as research objects, including 43 males and 38 females. The BMR, resting lying metabolism rate and resting sitting metabolism rate of the subjects were detected, and the determined BMR was compared with the calculated results: from the adjusted Schofield equation. Results The BMR, resting lying metabolism rate and resting sitting metabolism rate among males were (166.10±22.09), (174.22±24.56), and (179.54±23.35) kJ·m(-2)·h(-1), respectively, which were all higher than those among females were (137.70±20.04), (149.79±19.25), and (167.78±26.02) kJ·m(-2)·h(-1), respectively, ( PBMR of males and females calculated from the adjusted Schofield equation were (160.83±3.93), and (140.29±4.18) kJ·m(-2)·h(-1), respectively, and there was no significantly statistical difference found between the determined BMR and the calculated results from Schofield equation (adjusted) classified by sex, all P values >0.05. Conclusion: The BMR of young adults aged 20-29 years old in Changsha was in the national average level, and the adjusted Schofield equation displayed fine accuracy in predicting BMR of young adults aged 20-29 years old in Changsha.

  2. A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon Halobacterium salinarum.

    Science.gov (United States)

    Todor, Horia; Dulmage, Keely; Gillum, Nicholas; Bain, James R; Muehlbauer, Michael J; Schmid, Amy K

    2014-09-01

    Co-ordinating metabolism and growth is a key challenge for all organisms. Despite fluctuating environments, cells must produce the same metabolic outputs to thrive. The mechanisms underlying this 'growth homeostasis' are known in bacteria and eukaryotes, but remain unexplored in archaea. In the model archaeon Halobacterium salinarum, the transcription factor TrmB regulates enzyme-coding genes in diverse metabolic pathways in response to glucose. However, H. salinarum is thought not to catabolize glucose. To resolve this discrepancy, we demonstrate that TrmB regulates the gluconeogenic production of sugars incorporated into the cell surface S-layer glycoprotein. Additionally, we show that TrmB-DNA binding correlates with instantaneous growth rate, likely because S-layer glycosylation is proportional to growth. This suggests that TrmB transduces a growth rate signal to co-regulated metabolic pathways including amino acid, purine, and cobalamin biosynthesis. Remarkably, the topology and function of this growth homeostatic network appear conserved across domains despite extensive alterations in protein components. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  3. Basal metabolic rate scaled to body mass between species by the ...

    African Journals Online (AJOL)

    The principal reason that basal metabolic rate (BMR) and MMR scale with different power exponents to whole body mass is that MMR is due mainly to respiration in skeletal muscle during exercise and BMR to respiration in the viscera during rest. It follows, therefore, from the self-similarity of the vascular system that BMR is ...

  4. Temperature- and body mass-related variation in cyclic gas exchange characteristics and metabolic rate of seven weevil species: Broader implications.

    Science.gov (United States)

    Klok, C J; Chown, S L

    2005-07-01

    The influence of temperature on metabolic rate and characteristics of the gas exchange patterns of flightless, sub-Antarctic Ectemnorhinus-group species from Heard and Marion islands was investigated. All of the species showed cyclic gas exchange with no Flutter period, indicating that these species are not characterized by discontinuous gas exchange cycles. Metabolic rate estimates were substantially lower in this study than in a previous one of a subset of the species, demonstrating that open-system respirometry methods provide more representative estimates of standard metabolic rate than do many closed-system methods. We recommend that the latter, and especially constant-pressure methods, either be abandoned for estimates of standard metabolic rate in insects, or have their outputs subject to careful scrutiny, given the wide availability of the former. V(.)CO(2) increase with an increase in temperature (range: 0-15 degrees C) was modulated by an increase in cycle frequency, but typically not by an increase in burst volume. Previous investigations of temperature-related changes in cyclic gas exchange (both cyclic and discontinuous) in several other insect species were therefore substantiated. Interspecific mass-scaling of metabolic rate (ca. 0.466-0.573, excluding and including phylogenetic non-independence, respectively) produced an exponent lower than 0.75 (but not distinguishable from it or from 0.67). The increase of metabolic rate with mass was modulated by an increase in burst volume and not by a change in cycle frequency, in keeping with investigations of species showing discontinuous gas exchange. These findings are discussed in the context of the emerging macrophysiological metabolic theory of ecology.

  5. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [University of Massachusetts, Amherst

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  6. Direct monitoring by carbon-13 nuclear magnetic resonance spectroscopy of the metabolism and metabolic rate of 13C-labeled compounds in vivo.

    Science.gov (United States)

    Iida, K; Hidoh, O; Fukami, J; Kajiwara, M

    1991-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy has been used to observe the transformations of [1-13C]-D-glucose to [1,1'-13C2]-D-trehalose, and [3-13C]-L-alanine to [2-13C]-L-glutamic acid in the living body of Gryllodes sigillatus. [3-13C]-D-Alanine was not metabolized. The metabolic rate of [1-13C]-D-glucose was found to be altered by prior injection of boric acid.

  7. Basal metabolic rate declines during long-distance migratory flight in great knots

    NARCIS (Netherlands)

    Battley, PF; Dekinga, A; Dietz, MW; Piersma, T; Tang, SX; Hulsman, K; Battley, Phil F.; Tang, Sixian

    2001-01-01

    Great Knots (Calidris tenuirostris) make one of the longest migratory flights in the avian world, flying almost 5500 km from Australia to China during northward migration. We measured basal metabolic rate (BMR) and body composition in birds before and after this flight and found that BMR decreased

  8. Effect of copper nanoparticles on metabolic rate and development of chicken embryos

    DEFF Research Database (Denmark)

    Pineda, Lane Manalili; Sawosz, E.; Vadalasetty, K. P.

    2013-01-01

    The objective of the study was to investigate the effects of an in ovo injection of CuNano and the timing of injection on metabolic rate (O consumption and heat production, HP) and development of layer hatchlings. On day 1 of incubation, 192 fertile eggs from 29-week-old Lohmann breeder strain...... weights were used as a measure of hatchling development. In ovo injection of CuNano on different days during incubation significantly decreased O consumption and HP compared with the control group. The residual yolk sac weight in the treated groups was significantly higher than in the control group (P0.......05). Furthermore, the plasma concentrations of IgM and IgG and the mRNA expression of NF-kB and TNF-α were not affected (both; P>0.05), indicating the absence of inflammatory modulation by CuNano. These preliminary results demonstrated that CuNano, regardless of the day of injection, altered the metabolic rate...

  9. AEROSOL NUCLEATION AND GROWTH DURING LAMINAR TUBE FLOW: MAXIMUM SATURATIONS AND NUCLEATION RATES. (R827354C008)

    Science.gov (United States)

    An approximate method of estimating the maximum saturation, the nucleation rate, and the total number nucleated per second during the laminar flow of a hot vapour–gas mixture along a tube with cold walls is described. The basis of the approach is that the temperature an...

  10. Association of metabolic syndrome and change in Unified Parkinson's Disease Rating Scale scores.

    Science.gov (United States)

    Leehey, Maureen; Luo, Sheng; Sharma, Saloni; Wills, Anne-Marie A; Bainbridge, Jacquelyn L; Wong, Pei Shieen; Simon, David K; Schneider, Jay; Zhang, Yunxi; Pérez, Adriana; Dhall, Rohit; Christine, Chadwick W; Singer, Carlos; Cambi, Franca; Boyd, James T

    2017-10-24

    To explore the association between metabolic syndrome and the Unified Parkinson's Disease Rating Scale (UPDRS) scores and, secondarily, the Symbol Digit Modalities Test (SDMT). This is a secondary analysis of data from 1,022 of 1,741 participants of the National Institute of Neurological Disorders and Stroke Exploratory Clinical Trials in Parkinson Disease Long-Term Study 1, a randomized, placebo-controlled trial of creatine. Participants were categorized as having or not having metabolic syndrome on the basis of modified criteria from the National Cholesterol Education Program Adult Treatment Panel III. Those who had the same metabolic syndrome status at consecutive annual visits were included. The change in UPDRS and SDMT scores from randomization to 3 years was compared in participants with and without metabolic syndrome. Participants with metabolic syndrome (n = 396) compared to those without (n = 626) were older (mean [SD] 63.9 [8.1] vs 59.9 [9.4] years; p metabolic syndrome experienced an additional 0.6- (0.2) unit annual increase in total UPDRS ( p = 0.02) and 0.5- (0.2) unit increase in motor UPDRS ( p = 0.01) scores compared with participants without metabolic syndrome. There was no difference in the change in SDMT scores. Persons with Parkinson disease meeting modified criteria for metabolic syndrome experienced a greater increase in total UPDRS scores over time, mainly as a result of increases in motor scores, compared to those who did not. Further studies are needed to confirm this finding. NCT00449865. © 2017 American Academy of Neurology.

  11. Evaluation of rate law approximations in bottom-up kinetic models of metabolism

    DEFF Research Database (Denmark)

    Du, Bin; Zielinski, Daniel C.; Kavvas, Erol S.

    2016-01-01

    mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law......Background: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws....... These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction...

  12. Flexibility in metabolic rate confers a growth advantage under changing food availability.

    Science.gov (United States)

    Auer, Sonya K; Salin, Karine; Rudolf, Agata M; Anderson, Graeme J; Metcalfe, Neil B

    2015-09-01

    1. Phenotypic flexibility in physiological, morphological and behavioural traits can allow organisms to cope with environmental challenges. Given recent climate change and the degree of habitat modification currently experienced by many organisms, it is therefore critical to quantify the degree of phenotypic variation present within populations, individual capacities to change and what their consequences are for fitness. 2. Flexibility in standard metabolic rate (SMR) may be particularly important since SMR reflects the minimal energetic cost of living and is one of the primary traits underlying organismal performance. SMR can increase or decrease in response to food availability, but the consequences of these changes for growth rates and other fitness components are not well known. 3. We examined individual variation in metabolic flexibility in response to changing food levels and its consequences for somatic growth in juvenile brown trout (Salmo trutta). 4. SMR increased when individuals were switched to a high food ration and decreased when they were switched to a low food regime. These shifts in SMR, in turn, were linked with individual differences in somatic growth; those individuals that increased their SMR more in response to elevated food levels grew fastest, while growth at the low food level was fastest in those individuals that depressed their SMR most. 5. Flexibility in energy metabolism is therefore a key mechanism to maximize growth rates under the challenges imposed by variability in food availability and is likely to be an important determinant of species' resilience in the face of global change. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  13. Increasing Winter Maximal Metabolic Rate Improves Intrawinter Survival in Small Birds.

    Science.gov (United States)

    Petit, Magali; Clavijo-Baquet, Sabrina; Vézina, François

    Small resident bird species living at northern latitudes increase their metabolism in winter, and this is widely assumed to improve their chances of survival. However, the relationship between winter metabolic performance and survival has yet to be demonstrated. Using capture-mark-recapture, we followed a population of free-living black-capped chickadees (Poecile atricapillus) over 3 yr and evaluated their survival probability within and among winters. We also measured the size-independent body mass (M s ), hematocrit (Hct), basal metabolic rate (BMR), and maximal thermogenic capacity (Msum) and investigated how these parameters influenced survival within and among winters. Results showed that survival probability was high and constant both within (0.92) and among (0.96) winters. They also showed that while M s , Hct, and BMR had no significant influence, survival was positively related to Msum-following a sigmoid relationship-within but not among winter. Birds expressing an Msum below 1.26 W (i.e., similar to summer levels) had a winter. Our data therefore suggest that black-capped chickadees that are either too slow or unable to adjust their phenotype from summer to winter have little chances of survival and thus that seasonal upregulation of metabolic performance is highly beneficial. This study is the first to document in an avian system the relationship between thermogenic capacity and winter survival, a proxy of fitness.

  14. 22 CFR 201.67 - Maximum freight charges.

    Science.gov (United States)

    2010-04-01

    ..., commodity rate classification, quantity, vessel flag category (U.S.-or foreign-flag), choice of ports, and... the United States. (2) Maximum charter rates. (i) USAID will not finance ocean freight under any... owner(s). (4) Maximum liner rates. USAID will not finance ocean freight for a cargo liner shipment at a...

  15. Acute hypoxia increases the cerebral metabolic rate

    DEFF Research Database (Denmark)

    Vestergaard, Mark Bitsch; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob

    2016-01-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance im...

  16. Validity and reproducibility of resting metabolic rate measurements in rural Bangladeshi women: comparison of measurements obtained by Medgem and by Deltatrac device

    NARCIS (Netherlands)

    Alam, D.S.; Hulshof, P.J.M.; Roordink, D.; Meltzer, M.; Yunus, M.; Salam, M.A.; Raaij, van J.M.A.

    2005-01-01

    Objective:To assess reproducibility and validity of resting metabolic rate (RMR) of Bangladeshi women as measured with the MedGem device and using the Deltatrac metabolic monitor as a reference; and (2) to evaluate the FAO/WHO/UNU basal metabolic rate (BMR)-prediction equations. Design:In each of

  17. Intra-Seasonal Flexibility in Avian Metabolic Performance Highlights the Uncoupling of Basal Metabolic Rate and Thermogenic Capacity

    Science.gov (United States)

    Petit, Magali; Lewden, Agnès; Vézina, François

    2013-01-01

    Stochastic winter weather events are predicted to increase in occurrence and amplitude at northern latitudes and organisms are expected to cope through phenotypic flexibility. Small avian species wintering in these environments show acclimatization where basal metabolic rate (BMR) and maximal thermogenic capacity (MSUM) are typically elevated. However, little is known on intra-seasonal variation in metabolic performance and on how population trends truly reflect individual flexibility. Here we report intra-seasonal variation in metabolic parameters measured at the population and individual levels in black-capped chickadees ( Poecile atricapillus ). Results confirmed that population patterns indeed reflect flexibility at the individual level. They showed the expected increase in BMR (6%) and MSUM (34%) in winter relative to summer but also, and most importantly, that these parameters changed differently through time. BMR began its seasonal increase in November, while MSUM had already achieved more than 20% of its inter-seasonal increase by October, and declined to its starting level by March, while MSUM remained high. Although both parameters co-vary on a yearly scale, this mismatch in the timing of variation in winter BMR and MSUM likely reflects different constraints acting on different physiological components and therefore suggests a lack of functional link between these parameters. PMID:23840843

  18. BATS RECOVERING FROM WHITE-NOSE SYNDROME ELEVATE METABOLIC RATE DURING WING HEALING IN SPRING.

    Science.gov (United States)

    Meierhofer, Melissa B; Johnson, Joseph S; Field, Kenneth A; Lumadue, Shayne S; Kurta, Allen; Kath, Joseph A; Reeder, DeeAnn M

    2018-04-04

      Host responses to infection with novel pathogens are costly and require trade-offs among physiologic systems. One such pathogen is the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) and has led to mass mortality of hibernating bats in eastern North America. Although infection with Pd does not always result in death, we hypothesized that bats that survive infection suffer significant consequences that negatively impact the ability of females to reproduce. To understand the physiologic consequences of surviving infection with Pd, we assessed differences in wing damage, mass-specific resting metabolic rate, and reproductive rate between little brown myotis ( Myotis lucifugus) that survived a winter in captivity after inoculation with Pd (WNS survivors) and comparable, uninfected bats. Survivors of WNS had significantly more damaged wing tissue and displayed elevated mass-specific metabolic rates compared with Pd-uninfected bats after emergence from hibernation. The WNS survivors and Pd-uninfected bats did not significantly differ in their reproductive capacity, at least in captivity. However, our metabolic data demonstrated greater energetic costs during spring in WNS survivors compared with uninfected bats, which may have led to other consequences for postpartum fitness. We suggest that, after surviving the energetic constraints of winter, temperate hibernating bats infected with Pd faced a second energetic bottleneck after emerging from hibernation.

  19. Metabolic Syndrome and 16-year Cognitive Decline in Community-Dwelling Older Adults

    Science.gov (United States)

    McEvoy, Linda K.; Laughlin, Gail A.; Barrett-Connor, Elizabeth; Bergstrom, Jaclyn; Kritz-Silverstein, Donna; Der-Martirosian, Claudia; von Mühlen, Denise

    2012-01-01

    PURPOSE To determine whether metabolic syndrome is associated with accelerated cognitive decline in community-dwelling older adults. METHODS Longitudinal study of 993 adults (mean 66.8 ± 8.7 years) from the Rancho Bernardo Study. Metabolic syndrome components, defined by 2001 NCEP-ATP III criteria, were measured in 1984–87. Cognitive function was first assessed in 1988–92. Cognitive assessments were repeated approximately every four years, for a maximum 16-year follow-up. Mixed-effects models examined longitudinal rate of cognitive decline by metabolic syndrome status, controlling for factors plausibly associated with cognitive function (diabetes, inflammation). RESULTS Metabolic syndrome was more common in men than women (14% vs. 9%, p=0.01). In women, metabolic syndrome was associated with greater executive function and long term memory decline. These associations did not differ by inflammatory biomarker levels. Diabetes did not alter the association of metabolic syndrome with long-term recall but modified the association with executive function: metabolic syndrome was associated with accelerated executive function decline in diabetic women only. Metabolic syndrome was not related to rate of decline on any cognitive measure in men. CONCLUSIONS Metabolic syndrome was a risk factor for accelerated cognitive decline, but only in women. Prevention of metabolic syndrome may aid in maintenance of cognitive function with age. PMID:22285865

  20. [Proceeding: Production rate, metabolic clearance rate and mean plasma concentration of cortisol in hyperthyroidism (author's transl)].

    Science.gov (United States)

    Linquette, M; Lefebvre, J; Racadot, A; Cappoen, J P

    1975-01-01

    The adrenocortical function was studied in 23 patients with hyperthyroidism and compared with a group of 15 normal subjects. Parameters of adrenal function were determined with 1,2(3)H-cortisol. The half-life of cortisol is significantly shortened in hyperthyroidism, as compared to normal subjects (49,5 +/- 6,6 min vs 68,3 +/- 10,5 min) and metabolic clearance rate is increased (418,5 +/- 89,5 L/24 h vs 237,5 +/- 48,5 L/24 h, for normal subjects). The production rate of cortisol, calculated from specific and cumulate activities of THE and THF is increased in hyperthyroidism expressed as mg/24 h or mg/m2/24 h (respectively : 26,7 +/- 7,8 mg/24 h vs 15,7 +/- 3 mg/24 h and 16,9 +/- 4,6 mg/m2/24 h vs 9,5 +/- 1,8 mg/m2/24 h). The mean plasma concentration, calculated as the radio (see article) is not statiscally different in hyperthyroid and normal subjects (6,8 +/- 2,1 microg/100 ml vs 7,3 +/- 1,9 microg/100 ml). 7 patients were reinvestigated after treatment of thyrotoxicosis when they were clinically and biologically in euthyroid state. All the values were normalized, without statistically significant difference from control (T 1/2 = 65,4 +/- 18 min, Metb Cl. Rate : 255 +/- 64,5 L/24 h, production rate : 15,6 +/- 1,8 mg/24 h and 9 +/- 1,4 mg/m2/24 h. mean plasma concentration : 6,8 +/- 2,8 microg/100 ml). Shortened cortisol half life, increased metabolic clearance rate and production rate, and normal mean plasma concentration have been reported in hyperthyroidism (Peterson, Copinschi, Gallagher). These changes, secondary to thyroid hormone excess, are the consequences of increased hepatic catabolism of cortisol. The activity of 11 OH steroid deshydrogenase is increased, as demonstrated by increased ratio (see article) in normal subjects (0,001 less than p less than 0,005). There is a high proportion of 17 kéto metabolites (E, DHE, THE) whose feed-back effect is weak as compared to 17 OH metabolites (F, DHF, THF). The hypothalamo-hypophyso-adrenal system is

  1. TT Mutant Homozygote of Is a Key Factor for Increasing Basal Metabolic Rate and Resting Metabolic Rate in Korean Elementary School Children

    Directory of Open Access Journals (Sweden)

    Jung Ran Choi

    2013-12-01

    Full Text Available We investigated the contribution of genetic variations of KLF5 to basal metabolic rate (BMR and resting metabolic rate (RMR and the inhibition of obesity in Korean children. A variation of KLF5 (rs3782933 was genotyped in 62 Korean children. Using multiple linear regression analysis, we developed a model to predict BMR in children. We divided them into several groups; normal versus overweight by body mass index (BMI and low BMR versus high BMR by BMR. There were no differences in the distributions of alleles and genotypes between each group. The genetic variation of KLF5 gene showed a significant correlation with several clinical factors, such as BMR, muscle, low-density lipoprotein cholesterol, and insulin. Children with the TT had significantly higher BMR than those with CC (p = 0.030. The highest muscle was observed in the children with TT compared with CC (p = 0.032. The insulin and C-peptide values were higher in children with TT than those with CC (p= 0.029 vs. p = 0.004, respectively. In linear regression analysis, BMI and muscle mass were correlated with BMR, whereas insulin and C-peptide were not associated with BMR. In the high-BMR group, we observed that higher muscle, fat mass, and C-peptide affect the increase of BMR in children with TT (p < 0.001, p < 0.001, and p = 0.018, respectively, while Rohrer's index could explain the usual decrease in BMR (adjust r2 = 1.000, p < 0.001, respectively. We identified a novel association between TT of KLF5 rs3782933 and BMR in Korean children. We could make better use of the variation within KLF5 in a future clinical intervention study of obesity.

  2. Bipolar disorder and metabolic syndrome: a systematic review

    Directory of Open Access Journals (Sweden)

    Letícia Czepielewski

    2013-03-01

    Full Text Available OBJECTIVE: Summarize data on metabolic syndrome (MS in bipolar disorder (BD. METHODS: A systematic review of the literature was conducted using the Medline, Embase and PsycInfo databases, using the keywords "metabolic syndrome", "insulin resistance" and "metabolic X syndrome" and cross-referencing them with "bipolar disorder" or "mania". The following types of publications were candidates for review: (i clinical trials, (ii studies involving patients diagnosed with bipolar disorder or (iii data about metabolic syndrome. A 5-point quality scale was used to assess the methodological weight of the studies. RESULTS: Thirty-nine articles were selected. None of studies reached the maximum quality score of 5 points. The prevalence of MS was significantly higher in BD individuals when compared to a control group. The analysis of MS subcomponents showed that abdominal obesity was heterogeneous. Individuals with BD had significantly higher rates of hypertriglyceridemia than healthy controls. When compared to the general population, there were no significant differences in the prevalence of low HDL-c in individuals with BD. Data on hypertension were also inconclusive. Rates of hyperglycemia were significantly greater in patients with BD compared to the general population. CONCLUSIONS: The overall results point to the presence of an association between BD and MS, as well as between their subcomponents.

  3. Low resting metabolic rate in exercise-associated amenorrhea is not due to a reduced proportion of highly active metabolic tissue compartments.

    Science.gov (United States)

    Koehler, Karsten; Williams, Nancy I; Mallinson, Rebecca J; Southmayd, Emily A; Allaway, Heather C M; De Souza, Mary Jane

    2016-08-01

    Exercising women with menstrual disturbances frequently display a low resting metabolic rate (RMR) when RMR is expressed relative to body size or lean mass. However, normalizing RMR for body size or lean mass does not account for potential differences in the size of tissue compartments with varying metabolic activities. To explore whether the apparent RMR suppression in women with exercise-associated amenorrhea is a consequence of a lower proportion of highly active metabolic tissue compartments or the result of metabolic adaptations related to energy conservation at the tissue level, RMR and metabolic tissue compartments were compared among exercising women with amenorrhea (AMEN; n = 42) and exercising women with eumenorrheic, ovulatory menstrual cycles (OV; n = 37). RMR was measured using indirect calorimetry and predicted from the size of metabolic tissue compartments as measured by dual-energy X-ray absorptiometry (DEXA). Measured RMR was lower than DEXA-predicted RMR in AMEN (1,215 ± 31 vs. 1,327 ± 18 kcal/day, P < 0.001) but not in OV (1,284 ± 24 vs. 1,252 ± 17, P = 0.16), resulting in a lower ratio of measured to DEXA-predicted RMR in AMEN (91 ± 2%) vs. OV (103 ± 2%, P < 0.001). AMEN displayed proportionally more residual mass (P < 0.001) and less adipose tissue (P = 0.003) compared with OV. A lower ratio of measured to DXA-predicted RMR was associated with lower serum total triiodothyronine (ρ = 0.38, P < 0.001) and leptin (ρ = 0.32, P = 0.004). Our findings suggest that RMR suppression in this population is not the result of a reduced size of highly active metabolic tissue compartments but is due to metabolic and endocrine adaptations at the tissue level that are indicative of energy conservation.

  4. Metabolic rates, enzyme activities and chemical compositions of some deep-sea pelagic worms, particularly Nectonemertes mirabilis (Nemertea; Hoplonemertinea) and Poeobius meseres (Annelida; Polychaeta)

    Science.gov (United States)

    Thuesen, Erik V.; Childress, James J.

    1993-05-01

    Investigations of metabolic rate, enzyme activity and chemical composition were undertaken on two abundant deep-sea pelagic worms: Nectonemertes mirabilis (Nemertea; Hoplonemertinea) and Poeobius meseres (Annelida; Polychaeta). Six other species of worms ( Pelagonemertes brinkmanni (Nemertea) and the following polychaetes: Pelagobia species A, Tomopteris nisseni, Tomopteris pacifica, Tomopteris species A, and Traviopsis lobifera) were captured in smaller numbers and used for comparison in the physiological and biochemical measurements. Polychaete worms had the highest oxygen consumption rates and, along with N. mirabilis, displayed significant size effects on metabolic rate. Poeobius meseres had the lowest rates of oxygen consumption and displayed no significant relationship of oxygen consumption rate to wet weight. No significant effect of size on the activities of citrate synthase, lactate dehydrogenase or pyruvate kinase was observed in P. meseres or N. mirabilis. Lipid content was higher than protein content for all the worms in this study. Carbohydrate was of little significance in these worms and was usually metabolic rates. It appears that polychaete worms as a group have higher metabolic rates than bathypelagic shrimps, copepods and fishes, and may be the animals with the highest metabolic rates in the bathypelagic regions of the world's oceans.

  5. Maximum permissible continuous release rates of phosphorus-32 and sulphur-35 to atmosphere in a milk producing area

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, P M

    1963-01-01

    A method is given for calculating, for design purposes, the maximum permissible continuous release rates of phosphorus-32 and sulphur-35 to atmosphere with respect to milk contamination. In the absence of authoritative advice from the Medical Research Council, provisional working levels for the concentration of phosphorus-32 and sulphur-35 in milk are derived, and details are given of the agricultural assumptions involved in the calculation of the relationship between the amount of the nuclide deposited on grassland and that to be found in milk. The agricultural and meteorological conditions assumed are applicable as an annual average to England and Wales. The results (in mc/day) for phosphorus-32 and sulphur-35 for a number of stack heights and distances are shown graphically; typical values, quoted in a table, include 20 mc/day of phosphorus-32 and 30 mc/day of sulfur-35 as the maximum permissible continuous release rates with respect to ground level releases at a distance of 200 metres from pastureland.

  6. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.

    Science.gov (United States)

    Jackson, Rachel W; Dembia, Christopher L; Delp, Scott L; Collins, Steven H

    2017-06-01

    The goal of this study was to gain insight into how ankle exoskeletons affect the behavior of the plantarflexor muscles during walking. Using data from previous experiments, we performed electromyography-driven simulations of musculoskeletal dynamics to explore how changes in exoskeleton assistance affected plantarflexor muscle-tendon mechanics, particularly for the soleus. We used a model of muscle energy consumption to estimate individual muscle metabolic rate. As average exoskeleton torque was increased, while no net exoskeleton work was provided, a reduction in tendon recoil led to an increase in positive mechanical work performed by the soleus muscle fibers. As net exoskeleton work was increased, both soleus muscle fiber force and positive mechanical work decreased. Trends in the sum of the metabolic rates of the simulated muscles correlated well with trends in experimentally observed whole-body metabolic rate ( R 2 =0.9), providing confidence in our model estimates. Our simulation results suggest that different exoskeleton behaviors can alter the functioning of the muscles and tendons acting at the assisted joint. Furthermore, our results support the idea that the series tendon helps reduce positive work done by the muscle fibers by storing and returning energy elastically. We expect the results from this study to promote the use of electromyography-driven simulations to gain insight into the operation of muscle-tendon units and to guide the design and control of assistive devices. © 2017. Published by The Company of Biologists Ltd.

  7. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    Science.gov (United States)

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  8. Mechanistic model of mass-specific basal metabolic rate: evaluation in healthy young adults.

    Science.gov (United States)

    Wang, Z; Bosy-Westphal, A; Schautz, B; Müller, M

    2011-12-01

    Mass-specific basal metabolic rate (mass-specific BMR), defined as the resting energy expenditure per unit body mass per day, is an important parameter in energy metabolism research. However, a mechanistic explanation for magnitude of mass-specific BMR remains lacking. The objective of the present study was to validate the applicability of a proposed mass-specific BMR model in healthy adults. A mechanistic model was developed at the organ-tissue level, mass-specific BMR = Σ( K i × F i ), where Fi is the fraction of body mass as individual organs and tissues, and K i is the specific resting metabolic rate of major organs and tissues. The Fi values were measured by multiple MRI scans and the K i values were suggested by Elia in 1992. A database of healthy non-elderly non-obese adults (age 20 - 49 yrs, BMI BMR of all subjects was 21.6 ± 1.9 (mean ± SD) and 21.7 ± 1.6 kcal/kg per day, respectively. The measured mass-specific BMR was correlated with the predicted mass-specific BMR (r = 0.82, P BMR, versus the average of measured and predicted mass-specific BMR. In conclusion, the proposed mechanistic model was validated in non-elderly non-obese adults and can help to understand the inherent relationship between mass-specific BMR and body composition.

  9. Nonlinear temperature effects on multifractal complexity of metabolic rate of mice

    Directory of Open Access Journals (Sweden)

    Fabio A. Labra

    2016-10-01

    Full Text Available Complex physiological dynamics have been argued to be a signature of healthy physiological function. Here we test whether the complexity of metabolic rate fluctuations in small endotherms decreases with lower environmental temperatures. To do so, we examine the multifractal temporal scaling properties of the rate of change in oxygen consumption r(VO2, in the laboratory mouse Mus musculus, assessing their long range correlation properties across seven different environmental temperatures, ranging from 0 °C to 30 °C. To do so, we applied multifractal detrended fluctuation analysis (MF-DFA, finding that r(VO2 fluctuations show two scaling regimes. For small time scales below the crossover time (approximately 102 s, either monofractal or weak multifractal dynamics are observed depending on whether Ta  15 °C respectively. For larger time scales, r(VO2 fluctuations are characterized by an asymptotic scaling exponent that indicates multifractal anti-persistent or uncorrelated dynamics. For both scaling regimes, a generalization of the multiplicative cascade model provides very good fits for the Renyi exponents τ(q, showing that the infinite number of exponents h(q can be described by only two independent parameters, a and b. We also show that the long-range correlation structure of r(VO2 time series differs from randomly shuffled series, and may not be explained as an artifact of stochastic sampling of a linear frequency spectrum. These results show that metabolic rate dynamics in a well studied micro-endotherm are consistent with a highly non-linear feedback control system.

  10. Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Cooper-Mullin, Clara; Calhoon, Elisabeth A; Williams, Joseph B

    2014-07-01

    Animal life-history traits fall within limited ecological space with animals that have high reproductive rates having short lives, a continuum referred to as a "slow-fast" life-history axis. Animals of the same body mass at the slow end of the life-history continuum are characterized by low annual reproductive output and low mortality rate, such as is found in many tropical birds, whereas at the fast end, rates of reproduction and mortality are high, as in temperate birds. These differences in life-history traits are thought to result from trade-offs between investment in reproduction or self-maintenance as mediated by the biotic and abiotic environment. Thus, tropical and temperate birds provide a unique system to examine physiological consequences of life-history trade-offs at opposing ends of the "pace of life" spectrum. We have explored the implications of these trade-offs at several levels of physiological organization including whole-animal, organ systems, and cells. Tropical birds tend to have higher survival, slower growth, lower rates of whole-animal basal metabolic rate and peak metabolic rate, and smaller metabolically active organs compared with temperate birds. At the cellular level, primary dermal fibroblasts from tropical birds tend to have lower cellular metabolic rates and appear to be more resistant to oxidative cell stress than those of temperate birds. However, at the subcellular level, lipid peroxidation rates, a measure of the ability of lipid molecules within the cell membranes to thwart the propagation of oxidative damage, appear not to be different between tropical and temperate species. Nevertheless, lipids in mitochondrial membranes of tropical birds tend to have increased concentrations of plasmalogens (phospholipids with antioxidant properties), and decreased concentrations of cardiolipin (a complex phospholipid in the electron transport chain) compared with temperate birds.

  11. Exercise-induced hypertension in men with metabolic syndrome: anthropometric, metabolic, and hemodynamic features.

    Science.gov (United States)

    Gaudreault, Valérie; Després, Jean-Pierre; Rhéaume, Caroline; Alméras, Natalie; Bergeron, Jean; Tremblay, Angelo; Poirier, Paul

    2013-02-01

    Metabolic syndrome is associated with increased cardiac morbidity. The aim of this study was to evaluate exercise-induced hypertension (EIH) in men with metabolic syndrome and to explore potential associations with anthropometric and metabolic variables. A total of 179 normotensive men with metabolic syndrome underwent a maximal symptom-limited treadmill test. Blood pressure was measured at 5-min rest prior to exercise testing (anticipatory blood pressure), at every 3 min during the exercise, and during the recovery period. EIH was defined as maximum systolic blood pressure (SBP) ≥220 mmHg and/or maximum diastolic blood pressure (DBP) ≥100 mmHg. Of the 179 men, 87 (47%) presented EIH. Resting blood pressure values at baseline were 127±10/83±6 mmHg in EIH and 119±9/80±6 mmHg (P=0.01 for both) in normal blood pressure responders to exercise. Anticipatory SBP and DPS were higher in the group with EIH (P=0.001). Subjects with EIH presented higher waist circumference (WC) (Pmetabolic syndrome showed EIH. These men are characterized by a worsened metabolic profile. Our data suggest that a treadmill exercise test may be helpful to identify a potentially higher risk metabolic syndrome subset of subjects.

  12. Metabolic Syndrome and Short-Term Heart Rate Variability in Adults with Intellectual Disabilities

    Science.gov (United States)

    Chang, Yaw-Wen; Lin, Jin-Ding; Chen, Wei-Liang; Yen, Chia-Feng; Loh, Ching-Hui; Fang, Wen-Hui; Wu, Li-Wei

    2012-01-01

    Metabolic syndrome (MetS) increases the risk of cardiovascular events. Heart rate variability (HRV) represents autonomic functioning, and reduced HRV significantly increases cardiovascular mortality. The aims of the present paper are to assess the prevalence of MetS in adults with intellectual disabilities (ID), the difference in short-term HRV…

  13. High basal metabolic rates in shorebirds while in the Arctic: a circumpolar view

    NARCIS (Netherlands)

    Lindström, A.; Klaassen, M.R.J.

    2003-01-01

    The basal metabolic rate (BMR) of Old World long-distance-migrant shorebirds has been found to vary along their migration route. On average, BMR is highest in the Arctic at the start of fall migration, intermediate at temperate latitudes, and lowest on the tropical wintering grounds. As a test of

  14. Maximum type I error rate inflation from sample size reassessment when investigators are blind to treatment labels.

    Science.gov (United States)

    Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic

    2016-05-30

    Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  15. Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories

    Science.gov (United States)

    Matthew R. Sloat; Gordon H. Reeves

    2014-01-01

    We reared juvenile Oncorhychus mykiss with low and high standard metabolic rates (SMR) under alternative thermal regimes to determine how these proximate factors influence life histories in a partially migratory salmonid fish. High SMR significantly decreased rates of freshwater maturation and increased rates of smoltification in females, but not...

  16. Heart rate variability analysed by Poincaré plot in patients with metabolic syndrome

    Czech Academy of Sciences Publication Activity Database

    Kubíčková, A.; Kozumplík, J.; Nováková, Z.; Plachý, M.; Jurák, Pavel; Lipoldová, J.

    2016-01-01

    Roč. 49, č. 1 (2016), s. 23-28 ISSN 0022-0736 R&D Projects: GA ČR GAP102/12/2034 Institutional support: RVO:68081731 Keywords : heart rate variability * metabolic syndrome * Poincaré plot * tilt table test * controlled breathing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.514, year: 2016

  17. Diets supplemented with seaweed affect metabolic rate, innate immune, and antioxidant responses, but not individual growth rate in European seabass (Dicentrarchus labrax)

    DEFF Research Database (Denmark)

    Peixoto, Maria J.; Svendsen, Jon Christian; Malte, Hans

    2016-01-01

    This study investigated the effects of seaweed dietary supplementation on measures of fish performance including aerobic metabolism, digestive enzymes activity, innate immune status, oxidative damage, and growth rate using European seabass (Dicentrarchus labrax). Fish were fed for 49 days with th...

  18. Metabolic rate and gross efficiency at high work rates in world class and national level sprint skiers.

    Science.gov (United States)

    Sandbakk, Øyvind; Holmberg, Hans-Christer; Leirdal, Stig; Ettema, Gertjan

    2010-06-01

    The present study investigated metabolic rate (MR) and gross efficiency (GE) at moderate and high work rates, and the relationships to gross kinematics and physical characteristics in elite cross-country skiers. Eight world class (WC) and eight national level (NL) male sprint cross-country skiers performed three 5-min stages using the skating G3 technique, whilst roller skiing on a treadmill. GE was calculated by dividing work rate by MR. Work rate was calculated as the sum of power against gravity and frictional rolling forces. MR was calculated using gas exchange and blood lactate values. Gross kinematics, i.e. cycle length (CL) and cycle rate (CR) were measured by video analysis. Furthermore, the skiers were tested for time to exhaustion (TTE), peak oxygen uptake (VO(2peak)), and maximal speed (V(max)) on the treadmill, and maximal strength in the laboratory. Individual performance level in sprint skating was determined by FIS points. WC skiers did not differ in aerobic MR, but showed lower anaerobic MR and higher GE than NL skiers at a given speed (all P higher V(max) and TTE (all P better technique and to technique-specific power.

  19. Efficiency of rate and latency coding with respect to metabolic cost and time

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie

    2017-01-01

    Roč. 161, Nov 2017 (2017), s. 31-40 ISSN 0303-2647 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : rate coding * temporal coding * metabolic cost * Fisher information Subject RIV: BD - Theory of Information OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 1.652, year: 2016

  20. The relationship between basal metabolic rate and daily energy expenditure in birds and mammals

    NARCIS (Netherlands)

    Ricklefs, RE; Konarzewski, M; Daan, S

    We examined the relationship between daily energy expenditure (DEE) and basal metabolic rate (BMR) in birds and mammals. Two models of the relationship between DEE and BMR were distinguished: a ''shared pathways'' model in which DEE replaces BMR in the active organism and a ''partitioned pathways''

  1. [Dry immersion effects on the mechanisms of metabolic-reflex regulation of hemodynamics during muscular work].

    Science.gov (United States)

    Bravyĭ, Ia R; Bersenev, E Iu; Missina, S S; Borovik, A S; Sharova, A P; Vinogradova, O L

    2008-01-01

    Effects of 4-d dry immersion on metabolic-reflex regulation of hemodynamics were evaluated during local static work (30% of maximum voluntary effort) of the talocrural extensors. One group of immersed test-subjects received low-frequency electrostimulation of leg muscles to offset the immersion effect on EMG of working muscles. Metabolic-reflex regulation was evaluated through comparison of cardiovascular responses to physical tests with and w/o post-exercise vascular occlusion. Immersion vaguely increased heart rate and reduced systolic arterial pressure in resting subjects; however, it did not have a distinct effect on arterial pressure and HR during muscular work or metabolic-reflex potentiation of hemodynamic shifts.

  2. Avian basal metabolic rates : their association with body composition and energy expenditure in nature

    NARCIS (Netherlands)

    Daan, Serge; Masman, Dirkjan; Groenewold, Alex

    Measurements of basal metabolic rate (BMR), body water, fat, and lean dry mass of different organs were obtained in 22 bird species, ranging from 10.8 to 1,253 g body mass. Residuals of BMR (after subtracting BMR allometrically predicted from body mass) were positively correlated with residuals of

  3. Metabolic Rate and Climatic Fluctuations Shape Continental Wide Pattern of Genetic Divergence and Biodiversity in Fishes

    Science.gov (United States)

    April, Julien; Hanner, Robert H.; Mayden, Richard L.; Bernatchez, Louis

    2013-01-01

    Taxonomically exhaustive and continent wide patterns of genetic divergence within and between species have rarely been described and the underlying evolutionary causes shaping biodiversity distribution remain contentious. Here, we show that geographic patterns of intraspecific and interspecific genetic divergence among nearly all of the North American freshwater fish species (>750 species) support a dual role involving both the late Pliocene-Pleistocene climatic fluctuations and metabolic rate in determining latitudinal gradients of genetic divergence and very likely influencing speciation rates. Results indicate that the recurrent glacial cycles caused global reduction in intraspecific diversity, interspecific genetic divergence, and species richness at higher latitudes. At the opposite, longer geographic isolation, higher metabolic rate increasing substitution rate and possibly the rapid accumulation of genetic incompatibilities, led to an increasing biodiversity towards lower latitudes. This indicates that both intrinsic and extrinsic factors similarly affect micro and macro evolutionary processes shaping global patterns of biodiversity distribution. These results also indicate that factors favouring allopatric speciation are the main drivers underlying the diversification of North American freshwater fishes. PMID:23922969

  4. Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs.

    Science.gov (United States)

    Seymour, Roger S; Smith, Sarah L; White, Craig R; Henderson, Donald M; Schwarz-Wings, Daniela

    2012-02-07

    The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat.

  5. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB; Harder, J.

    1999-01-01

    The numbers of sulfate reducers in two Arctic sediments within situ temperatures of 2.6 and -1.7 degrees C were determined. Most-probable-number counts were higher at 10 degrees C than at 20 degrees C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates...... of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than...... their mesophilic counterparts at similarly low temperatures....

  6. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions

    KAUST Repository

    Huete-Stauffer, Tamara Megan

    2015-09-11

    Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We used experimental incubations spanning 6oC with bacterial physiological groups identified by flow cytometry according to membrane integrity (live), nucleic acid content (HNA and LNA) and respiratory activity (CTC+). The temperature dependence of μat the exponential phase of growth was summarized by the activation energy (E), which was variable (-0.52 to 0.72 eV) but followed a seasonal pattern, only reaching the hypothesized value for aerobic heterotrophs of 0.65 eV during the spring bloom for the most active bacterial groups (live, HNA, CTC+). K (i.e. maximum experimental abundance) peaked at 4 × 106 cells mL-1 and generally covaried with μbut, contrary to MTE predictions, it did not decrease consistently with temperature. In the case of live cells, the responses of μand K to temperature were positively correlated and related to seasonal changes in substrate availability, indicating that the responses of bacteria to warming are far from homogeneous and poorly explained by MTE at our site. © FEMS 2015.

  7. Metabolic rate of spiders (Pardosa prativage) feed on prey species of different diet quality measured by colorimetry

    DEFF Research Database (Denmark)

    Nielsen, Søren Achim; Kynde, Bjarke; Westh, Peter

    The metabolic rate was measured in the wolf spider Pardosa prativaga after preying different species of aphids, collembolans and fruit flies raised on common commercial medium. The activity of detoxification enzyme systems Glutathione S-Transferase (GST), Glutathione Peroxidase (GSTpx) was invest......The metabolic rate was measured in the wolf spider Pardosa prativaga after preying different species of aphids, collembolans and fruit flies raised on common commercial medium. The activity of detoxification enzyme systems Glutathione S-Transferase (GST), Glutathione Peroxidase (GSTpx......) was investigated for spiders preying the different species. The heat production of starved P. prativaga was ca. 1.5 mW per mg fresh weight. For specimens feed on fruit flies (Drosophila melanogaster) the heat production was appreciable higher whereas feed on the aphids Sitobion avenae and Rhopalosiphum padi...... the heat production was on the same level or lower than in the staved spiders. The variation of the observed metabolic changes was in concordance with the variations in enzyme activities....

  8. Omega-3 Fatty Acid Supplementation for 12 Weeks Increases Resting and Exercise Metabolic Rate in Healthy Community-Dwelling Older Females.

    Directory of Open Access Journals (Sweden)

    Samantha L Logan

    Full Text Available Critical among the changes that occur with aging are decreases in muscle mass and metabolic rate and an increase in fat mass. These changes may predispose older adults to chronic disease and functional impairment; ultimately resulting in a decrease in the quality of life. Research has suggested that long chain omega-3 fatty acids, found predominantly in fatty fish, may assist in reducing these changes. The objective of this study was to evaluate the effect of fish oil (FO supplementation in a cohort of healthy, community-dwelling older females on 1 metabolic rate and substrate oxidation at rest and during exercise; 2 resting blood pressure and resting and exercise heart rates; 3 body composition; 4 strength and physical function, and; 5 blood measures of insulin, glucose, c-reactive protein, and triglycerides. Twenty-four females (66 ± 1 yr were recruited and randomly assigned to receive either 3g/d of EPA and DHA or a placebo (PL, olive oil for 12 wk. Exercise measurements were taken before and after 12 wk of supplementation and resting metabolic measures were made before and at 6 and 12 wk of supplementation. The results demonstrated that FO supplementation significantly increased resting metabolic rate by 14%, energy expenditure during exercise by 10%, and the rate of fat oxidation during rest by 19% and during exercise by 27%. In addition, FO consumption lowered triglyceride levels by 29% and increased lean mass by 4% and functional capacity by 7%, while no changes occurred in the PL group. In conclusion, FO may be a strategy to improve age-related physical and metabolic changes in healthy older females. Trial registration: ClinicalTrials.gov NCT01734538.

  9. TT Mutant Homozygote of Kruppel-like Factor 5 Is a Key Factor for Increasing Basal Metabolic Rate and Resting Metabolic Rate in Korean Elementary School Children.

    Science.gov (United States)

    Choi, Jung Ran; Kwon, In-Su; Kwon, Dae Young; Kim, Myung-Sunny; Lee, Myoungsook

    2013-12-01

    We investigated the contribution of genetic variations of KLF5 to basal metabolic rate (BMR) and resting metabolic rate (RMR) and the inhibition of obesity in Korean children. A variation of KLF5 (rs3782933) was genotyped in 62 Korean children. Using multiple linear regression analysis, we developed a model to predict BMR in children. We divided them into several groups; normal versus overweight by body mass index (BMI) and low BMR versus high BMR by BMR. There were no differences in the distributions of alleles and genotypes between each group. The genetic variation of KLF5 gene showed a significant correlation with several clinical factors, such as BMR, muscle, low-density lipoprotein cholesterol, and insulin. Children with the TT had significantly higher BMR than those with CC (p = 0.030). The highest muscle was observed in the children with TT compared with CC (p = 0.032). The insulin and C-peptide values were higher in children with TT than those with CC (p= 0.029 vs. p = 0.004, respectively). In linear regression analysis, BMI and muscle mass were correlated with BMR, whereas insulin and C-peptide were not associated with BMR. In the high-BMR group, we observed that higher muscle, fat mass, and C-peptide affect the increase of BMR in children with TT (p BMR (adjust r(2) = 1.000, p BMR in Korean children. We could make better use of the variation within KLF5 in a future clinical intervention study of obesity.

  10. Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak.

    Science.gov (United States)

    Polymeropoulos, E T; Heldmaier, G; Frappell, P B; McAllan, B M; Withers, K W; Klingenspor, M; White, C R; Jastroch, M

    2012-01-07

    Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.

  11. Metabolic rate and clothing insulation data of children and adolescents during various school activities

    NARCIS (Netherlands)

    Havenith, G.

    2007-01-01

    Data on metabolic rates (n = 0;81) and clothing insulation (n = 96) of school children and adolescents (A, primary school: age 9-10; B, primary school: age 10-11 year; C, junior vocational (technical) education: age 13-16 (lower level); D, same as C but at advanced level; and E, senior vocational

  12. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  13. Covariation of metabolic rates and cell size in coccolithophores

    Science.gov (United States)

    Aloisi, G.

    2015-08-01

    Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis and, to a lesser extent, calcification covary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature (below the optimum temperature for growth) produces the opposite effect. The magnitude of the coccosphere-size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere-size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. The coccolithophore database is strongly biased in favour of experiments with the coccolithophore Emiliania huxleyi (E. huxleyi; 82 % of database entries), and more experiments with other species are needed to understand whether these observations can be extended to coccolithophores in general. I

  14. Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors.

    Science.gov (United States)

    Gustafsson, Mats G; Wallman, Mikael; Wickenberg Bolin, Ulrika; Göransson, Hanna; Fryknäs, M; Andersson, Claes R; Isaksson, Anders

    2010-06-01

    Successful use of classifiers that learn to make decisions from a set of patient examples require robust methods for performance estimation. Recently many promising approaches for determination of an upper bound for the error rate of a single classifier have been reported but the Bayesian credibility interval (CI) obtained from a conventional holdout test still delivers one of the tightest bounds. The conventional Bayesian CI becomes unacceptably large in real world applications where the test set sizes are less than a few hundred. The source of this problem is that fact that the CI is determined exclusively by the result on the test examples. In other words, there is no information at all provided by the uniform prior density distribution employed which reflects complete lack of prior knowledge about the unknown error rate. Therefore, the aim of the study reported here was to study a maximum entropy (ME) based approach to improved prior knowledge and Bayesian CIs, demonstrating its relevance for biomedical research and clinical practice. It is demonstrated how a refined non-uniform prior density distribution can be obtained by means of the ME principle using empirical results from a few designs and tests using non-overlapping sets of examples. Experimental results show that ME based priors improve the CIs when employed to four quite different simulated and two real world data sets. An empirically derived ME prior seems promising for improving the Bayesian CI for the unknown error rate of a designed classifier. Copyright 2010 Elsevier B.V. All rights reserved.

  15. EFFECTS OF RATION SIZE AND TEMPERATURE ON MOULT INCREMENT AND METABOLIC PARAMETERS OF JUVENILE NOBLE CRAYFISH, ASTACUS ASTACUS

    Directory of Open Access Journals (Sweden)

    RENAI B.

    2007-07-01

    Full Text Available A laboratory experiment was carried out to test the combined effects of ration size (1 vs 3% body weight, b.w. and temperature (15 ± 2 vs 22 ± 2 °C on moult increment and metabolic parameters of 80 juvenile noble crayfish (Astacus astacus. The maximum daily consumption (Cmax and respiration rate (R were used to calculate the growth scope (i.e. the difference between maximum daily energy consumption and energy costs at a given temperature. The conversion of R into a food-equivalent unit allowed the comparison with Cmax. Results showed that crayfish obtained the maximum moult increment when fed 3% b.w. while temperature seemed to play a less relevant role on growth rate per moult, affecting only the moulting frequency. Crayfish A. astacus fed ad libitum showed a relative insensitivity to the metabolic parameters (oxygen uptake, R and Cmax within the analysed range of temperatures, possibly as a reflection of this “species” distribution across a broad variety of habitats with different thermal regimes. In the present study, A. astacus displayed characteristics proper of a K-selected species, as slow to moderate growth.

  16. Model-based design of bistable cell factories for metabolic engineering.

    Science.gov (United States)

    Srinivasan, Shyam; Cluett, William R; Mahadevan, Radhakrishnan

    2018-04-15

    Metabolism can exhibit dynamic phenomena like bistability due to the presence of regulatory motifs like the positive feedback loop. As cell factories, microorganisms with bistable metabolism can have a high and a low product flux at the two stable steady states, respectively. The exclusion of metabolic regulation and network dynamics limits the ability of pseudo-steady state stoichiometric models to detect the presence of bistability, and reliably assess the outcomes of design perturbations to metabolic networks. Using kinetic models of metabolism, we assess the change in the bistable characteristics of the network, and suggest designs based on perturbations to the positive feedback loop to enable the network to produce at its theoretical maximum rate. We show that the most optimal production design in parameter space, for a small bistable metabolic network, may exist at the boundary of the bistable region separating it from the monostable region of low product fluxes. The results of our analysis can be broadly applied to other bistable metabolic networks with similar positive feedback network topologies. This can complement existing model-based design strategies by providing a smaller number of feasible designs that need to be tested in vivo. http://lmse.biozone.utoronto.ca/downloads/. krishna.mahadevan@utoronto.ca. Supplementary data are available at Bioinformatics online.

  17. Female fibromyalgia patients: lower resting metabolic rates than matched healthy controls.

    Science.gov (United States)

    Lowe, John C; Yellin, Jackie; Honeyman-Lowe, Gina

    2006-07-01

    Many features of fibromyalgia and hypothyroidism are virtually the same, and thyroid hormone treatment trials have reduced or eliminated fibromyalgia symptoms. These findings led the authors to test the hypothesis that fibromyalgia patients are hypometabolic compared to matched controls. Resting metabolic rate (RMR) was measured by indirect calorimetry and body composition by bioelectrical impedance for 15 fibromyalgia patients and 15 healthy matched controls. Measured resting metabolic rate (mRMR) was compared to percentages of predicted RMR (pRMR) by fat-free weight (FFW) (Sterling-Passmore: SP) and by sex, age, height, and weight (Harris-Benedict: HB). Patients had a lower mRMR (4,306.31+/-1077.66 kJ vs 5,411.59+/-695.95 kJ, p=0.0028) and lower percentages of pRMRs (SP: -28.42+/-15.82% vs -6.83+/-12.55%, pBMI) best accounted for variability in controls' RMRs, age and fat weight (FW) did for patients. In the patient group, TSH level accounted for 28% of the variance in pain distribution, and free T3 (FT3) accounted for 30% of the variance in pressure-pain threshold. Patients had lower mRMR and percentages of pRMRs. The lower RMRs were not due to calorie restriction or low FFW. Patients' normal FFW argues against low physical activity as the mechanism. TSH, FT4, and FT3 levels did not correlate with RMRs in either group. This does not rule out inadequate thyroid hormone regulation because studies show these laboratory values do not reliably predict RMR.

  18. The power and robustness of maximum LOD score statistics.

    Science.gov (United States)

    Yoo, Y J; Mendell, N R

    2008-07-01

    The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.

  19. Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion.

    Directory of Open Access Journals (Sweden)

    Camille Bonneaud

    Full Text Available Energy-based trade-offs occur when investment in one fitness-related trait diverts energy away from other traits. The extent to which such trade-offs are shaped by limits on the rate of conversion of energy ingested in food (e.g. carbohydrates into chemical energy (ATP by oxidative metabolism rather than by the amount of food ingested in the first place is, however, unclear. Here we tested whether the ATP required for mounting an immune response will lead to a trade-off with ATP available for physical activity in mosquitofish (Gambusia holbrooki. To this end, we challenged fish either with lipopolysaccharide (LPS from E. coli or with Sheep Red Blood Cells (SRBC, and measured oxygen consumption at rest and during swimming at maximum speed 24h, 48h and 7 days post-challenge in order to estimate metabolic rates. Relative to saline-injected controls, only LPS-injected fish showed a significantly greater resting metabolic rate two days post-challenge and significantly higher maximal metabolic rates two and seven days post-challenge. This resulted in a significantly greater metabolic scope two days post-challenge, with LPS-fish transiently overcompensating by increasing maximal ATP production more than would be required for swimming in the absence of an immune challenge. LPS-challenged fish therefore increased their production of ATP to compensate physiologically for the energetic requirements of immune functioning. This response would avoid ATP shortages and allow fish to engage in an aerobically-challenging activity (swimming even when simultaneously mounting an immune response. Nevertheless, relative to controls, both LPS- and SRBC-fish displayed reduced body mass gain one week post-injection, and LPS-fish actually lost mass. The concomitant increase in metabolic scope and reduced body mass gain of LPS-challenged fish indicates that immune-associated trade-offs are not likely to be shaped by limited oxidative metabolic capacities, but may instead

  20. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions

    KAUST Repository

    Huete-Stauffer, Tamara Megan; Arandia-Gorostidi, Nestor; Dí az-Pé rez, Laura; Moran, Xose Anxelu G.

    2015-01-01

    Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We

  1. Metabolism and Residues of 2,4-Dichlorophenoxyacetic Acid in DAS-40278-9 Maize (Zea mays) Transformed with Aryloxyalkanoate Dioxygenase-1 Gene.

    Science.gov (United States)

    Zhou, Xiao; Rotondaro, Sandra L; Ma, Mingming; Rosser, Steve W; Olberding, Ed L; Wendelburg, Brian M; Adelfinskaya, Yelena A; Balcer, Jesse L; Blewett, T Craig; Clements, Bruce

    2016-10-12

    DAS-40278-9 maize, which is developed by Dow AgroSciences, has been genetically modified to express the aryloxyalkanoate dioxygenase-1 (AAD-1) protein and is tolerant to phenoxy auxin herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D). To understand the metabolic route and residue distribution of 2,4-D in DAS-40278-9 maize, a metabolism study was conducted with 14 C-radiolabeled 2,4-D applied at the maximum seasonal rate. Plants were grown in boxes outdoors. Forage and mature grain, cobs, and stover were collected for analysis. The metabolism study showed that 2,4-D was metabolized to 2,4-dichlorophenol (2,4-DCP), which was then rapidly conjugated with glucose. Field-scale residue studies with 2,4-D applied at the maximum seasonal rate were conducted at 25 sites in the U.S. and Canada to measure the residues of 2,4-D and free and conjugated 2,4-DCP in mature forage, grain, and stover. Residues of 2,4-D were not detectable in the majority of the grain samples and averaged <1.0 and <1.5 μg/g in forage and stover, respectively. Free plus conjugated 2,4-DCP was not observed in grain and averaged <1.0 μg/g in forage and stover.

  2. Stable Breathing in Patients With Obstructive Sleep Apnea Is Associated With Increased Effort but Not Lowered Metabolic Rate.

    Science.gov (United States)

    de Melo, Camila M; Taranto-Montemurro, Luigi; Butler, James P; White, David P; Loring, Stephen H; Azarbarzin, Ali; Marques, Melania; Berger, Philip J; Wellman, Andrew; Sands, Scott A

    2017-10-01

    In principle, if metabolic rate were to fall during sleep in a patient with obstructive sleep apnea (OSA), ventilatory requirements could be met without increased respiratory effort thereby favoring stable breathing. Indeed, most patients achieve periods of stable flow-limited breathing without respiratory events for periods during the night for reasons that are unclear. Thus, we tested the hypothesis that in patients with OSA, periods of stable breathing occur when metabolic rate (VO2) declines. Twelve OSA patients (apnea-hypopnea index >15 events/h) completed overnight polysomnography including measurements of VO2 (using ventilation and intranasal PO2) and respiratory effort (esophageal pressure). Contrary to our hypothesis, VO2 did not differ between stable and unstable breathing periods in non-REM stage 2 (208 ± 20 vs. 213 ± 18 mL/min), despite elevated respiratory effort during stable breathing (26 ± 2 versus 23 ± 2 cmH2O, p = .03). However, VO2 was lowered during deeper sleep (244 to 179 mL/min from non-REM stages 1 to 3, p = .04) in conjunction with more stable breathing. Further analysis revealed that airflow obstruction curtailed metabolism in both stable and unstable periods, since CPAP increased VO2 by 14% in both cases (p = .02, .03, respectively). Patients whose VO2 fell most during sleep avoided an increase in PCO2 and respiratory effort. OSA patients typically convert from unstable to stable breathing without lowering metabolic rate. During sleep, OSA patients labor with increased respiratory effort but fail to satisfy metabolic demand even in the absence of overt respiratory events. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  3. Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimer's disease using FDG-PET

    International Nuclear Information System (INIS)

    Mosconi, Lisa; Santi, Susan De; Li, Yi; Li, Juan; Zhan, Jiong; Boppana, Madhu; Tsui, Wai Hon; Leon, Mony J. de; Pupi, Alberto

    2006-01-01

    This study was designed to examine the utility of visual inspection of medial temporal lobe (MTL) metabolism in the diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD) using FDG-PET scans. Seventy-five subjects [27 normal controls (NL), 26 MCI, and 22 AD] with FDG-PET and MRI scans were included in this study. We developed a four-point visual rating scale to evaluate the presence and severity of MTL hypometabolism on FDG-PET scans. The visual MTL ratings were compared with quantitative glucose metabolic rate (MR glc ) data extracted using regions of interest (ROIs) from the MRI-coregistered PET scans of all subjects. A standard rating evaluation of neocortical hypometabolism was also completed. Logistic regressions were used to determine and compare the diagnostic accuracy of the MTL and cortical ratings. For both MTL and cortical ratings, high intra- and inter-rater reliabilities were found (p values glc measures (p values <0.001). The combination of MTL and cortical ratings significantly improved the diagnostic accuracy over the cortical rating alone, with 100% of AD, 77% of MCI, and 85% of NL cases being correctly identified. This study shows that the visual rating of MTL hypometabolism on PET is reliable, yields a diagnostic accuracy equal to the quantitative ROI measures, and is clinically useful and more sensitive than cortical ratings for patients with MCI. We suggest this method be further evaluated for its potential in the early diagnosis of AD. (orig.)

  4. Natural selection drove metabolic specialization of the chromatophore in Paulinella chromatophora.

    Science.gov (United States)

    Valadez-Cano, Cecilio; Olivares-Hernández, Roberto; Resendis-Antonio, Osbaldo; DeLuna, Alexander; Delaye, Luis

    2017-04-14

    Genome degradation of host-restricted mutualistic endosymbionts has been attributed to inactivating mutations and genetic drift while genes coding for host-relevant functions are conserved by purifying selection. Unlike their free-living relatives, the metabolism of mutualistic endosymbionts and endosymbiont-originated organelles is specialized in the production of metabolites which are released to the host. This specialization suggests that natural selection crafted these metabolic adaptations. In this work, we analyzed the evolution of the metabolism of the chromatophore of Paulinella chromatophora by in silico modeling. We asked whether genome reduction is driven by metabolic engineering strategies resulted from the interaction with the host. As its widely known, the loss of enzyme coding genes leads to metabolic network restructuring sometimes improving the production rates. In this case, the production rate of reduced-carbon in the metabolism of the chromatophore. We reconstructed the metabolic networks of the chromatophore of P. chromatophora CCAC 0185 and a close free-living relative, the cyanobacterium Synechococcus sp. WH 5701. We found that the evolution of free-living to host-restricted lifestyle rendered a fragile metabolic network where >80% of genes in the chromatophore are essential for metabolic functionality. Despite the lack of experimental information, the metabolic reconstruction of the chromatophore suggests that the host provides several metabolites to the endosymbiont. By using these metabolites as intracellular conditions, in silico simulations of genome evolution by gene lose recover with 77% accuracy the actual metabolic gene content of the chromatophore. Also, the metabolic model of the chromatophore allowed us to predict by flux balance analysis a maximum rate of reduced-carbon released by the endosymbiont to the host. By inspecting the central metabolism of the chromatophore and the free-living cyanobacteria we found that by

  5. Resting metabolic rate of obese patients under very low calorie ketogenic diet

    OpenAIRE

    Gomez-Arbelaez, Diego; Crujeiras, Ana B.; Castro, Ana I.; Martinez-Olmos, Miguel A.; Canton, Ana; Ordoñez-Mayan, Lucia; Sajoux, Ignacio; Galban, Cristobal; Bellido, Diego; Casanueva, Felipe F.

    2018-01-01

    Background The resting metabolic rate (RMR) decrease, observed after an obesity reduction therapy is a determinant of a short-time weight regain. Thus, the objective of this study was to evaluate changes in RMR, and the associated hormonal alterations in obese patients with a very low-calorie ketogenic (VLCK)-diet induced severe body weight (BW) loss. Method From 20 obese patients who lost 20.2 kg of BW after a 4-months VLCK-diet, blood samples and body composition analysis, determined by DXA...

  6. Does basal metabolic rate predict weight gain?12

    Science.gov (United States)

    Anthanont, Pimjai; Jensen, Michael D

    2016-01-01

    Background: Some previous studies have indicated that a low basal metabolic rate (BMR) is an independent predictor of future weight gain, but low rates of follow-up and highly select populations may limit the ability to generalize the results. Objective: We assessed whether adults with a low BMR gain more weight than do adults with a high BMR who are living in a typical Western environment. Design: We extracted BMR, body-composition, demographic, and laboratory data from electronic databases of 757 volunteers who were participating in our research protocols at the Mayo Clinic between 1995 and 2012. Research study volunteers were always weight stable, had no acute illnesses and no confounding medication use, and were nonsmokers. The top and bottom 15th percentiles of BMR, adjusted for fat-free mass (FFM), fat mass, age, and sex, were identified. Follow-up electronic medical record system data were available for 163 subjects, which allowed us to determine their subsequent weight changes for ≥3 y (mean: ∼9.7 y). Results: By definition, the BMR was different in the high-BMR group (2001 ± 317 kcal/d; n = 86) than in the low-BMR group (1510 ± 222 kcal/d; n = 77), but they were comparable with respect to age, body mass index, FFM, and fat mass. Rates of weight gain were not greater in the bottom BMR group (0.3 ± 1.0 kg/y) than in the top BMR group (0.5 ± 1.5 kg/y) (P = 0.17). Conclusion: Adults with low BMRs did not gain more weight than did adults with high BMRs, implying that habitual differences in food intake or activity counterbalance variations in BMR as a risk factor for weight gain in a typical Western population. PMID:27581474

  7. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish.

    Science.gov (United States)

    Gingerich, Andrew James; Philipp, David P; Suski, Cory D

    2010-03-01

    The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

  8. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Andrew J.; Philipp, D. P.; Suski, C. D.

    2010-11-20

    The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

  9. Spatial variation in the relationship between performance and metabolic rate in wild juvenile Atlantic salmon

    Science.gov (United States)

    Grethe Robertsen; John D. Armstrong; Keith H. Nislow; Ivar Herfindal; Simon McKelvey; Sigurd Einum; Martin. Genner

    2014-01-01

    Maintenance of metabolic rate (MR, the energy cost of self-maintenance) is linked to behavioural traits and fitness and varies substantially within populations. Despite having received much attention, the causes and consequences of this variation remain obscure. Theoretically, such within-population variation in fitness-related traits can be maintained by environmental...

  10. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox

    DEFF Research Database (Denmark)

    Snoep, Jacky L.; Jensen, Peter Ruhdal; Groeneveld, Philip

    1994-01-01

    how, paradoxically, one can determine control of growth rate, of growth yield and of other fluxes in a chemostat. We develop metabolic control analysis for the chemostat. this analysis does not depend on the particular way in which specific growth rate varies with the concentration of the growth...

  11. Food composition influences metabolism, heart rate and organ growth during digestion in Python regius.

    Science.gov (United States)

    Henriksen, Poul Secher; Enok, Sanne; Overgaard, Johannes; Wang, Tobias

    2015-05-01

    Digestion in pythons is associated with a large increase in oxygen consumption (SDA), increased cardiac output and growth in visceral organs assisting in digestion. The processes leading to the large postprandial rise in metabolism in snakes is subject to opposing views. Gastric work, protein synthesis and organ growth have each been speculated to be major contributors to the SDA. To investigate the role of food composition on SDA, heart rate (HR) and organ growth, 48 ball pythons (Python regius) were fed meals of either fat, glucose, protein or protein combined with carbonate. Our study shows that protein, in the absence or presence of carbonate causes a large SDA response, while glucose caused a significantly smaller SDA response and digestion of fat failed to affect metabolism. Addition of carbonate to the diet to stimulate gastric acid secretion did not increase the SDA response. These results support protein synthesis as a major contributor to the SDA response and show that increased gastric acid secretion occurs at a low metabolic cost. The increase in metabolism was supported by tachycardia caused by altered autonomic regulation as well as an increased non-adrenergic, non-cholinergic (NANC) tone in response to all diets, except for the lipid meal. Organ growth only occurred in the small intestine and liver in snakes fed on a high protein diet. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism.

    Science.gov (United States)

    Biswas, Ranjita; Wilson, Charlotte M; Giannone, Richard J; Klingeman, Dawn M; Rydzak, Thomas; Shah, Manesh B; Hettich, Robert L; Brown, Steven D; Guss, Adam M

    2017-01-01

    Metabolic engineering is a commonly used approach to develop organisms for an industrial function, but engineering aimed at improving one phenotype can negatively impact other phenotypes. This lack of robustness can prove problematic. Cellulolytic bacterium Clostridium thermocellum is able to rapidly ferment cellulose to ethanol and other products. Recently, genes involved in H 2 production, including the hydrogenase maturase hydG and NiFe hydrogenase ech , were deleted from the chromosome of C. thermocellum . While ethanol yield increased, the growth rate of Δ hydG decreased substantially compared to wild type. Addition of 5 mM acetate to the growth medium improved the growth rate in C. thermocellum ∆hydG , whereas wild type remained unaffected. Transcriptomic analysis of the wild type showed essentially no response to the addition of acetate. However, in C. thermocellum ΔhydG , 204 and 56 genes were significantly differentially regulated relative to wild type in the absence and presence of acetate, respectively. Genes, Clo1313_0108-0125, which are predicted to encode a sulfate transport system and sulfate assimilatory pathway, were drastically upregulated in C. thermocellum ΔhydG in the presence of added acetate. A similar pattern was seen with proteomics. Further physiological characterization demonstrated an increase in sulfide synthesis and elimination of cysteine consumption in C. thermocellum ΔhydG . Clostridium thermocellum ΔhydGΔech had a higher growth rate than ΔhydG in the absence of added acetate, and a similar but less pronounced transcriptional and physiological effect was seen in this strain upon addition of acetate. Sulfur metabolism is perturbed in C. thermocellum ΔhydG strains, likely to increase flux through sulfate reduction to act either as an electron sink to balance redox reactions or to offset an unknown deficiency in sulfur assimilation.

  13. Length and GC content variability of introns among teleostean genomes in the light of the metabolic rate hypothesis.

    Science.gov (United States)

    Chaurasia, Ankita; Tarallo, Andrea; Bernà, Luisa; Yagi, Mitsuharu; Agnisola, Claudio; D'Onofrio, Giuseppe

    2014-01-01

    A comparative analysis of five teleostean genomes, namely zebrafish, medaka, three-spine stickleback, fugu and pufferfish was performed with the aim to highlight the nature of the forces driving both length and base composition of introns (i.e., bpi and GCi). An inter-genome approach using orthologous intronic sequences was carried out, analyzing independently both variables in pairwise comparisons. An average length shortening of introns was observed at increasing average GCi values. The result was not affected by masking transposable and repetitive elements harbored in the intronic sequences. The routine metabolic rate (mass specific temperature-corrected using the Boltzmann's factor) was measured for each species. A significant correlation held between average differences of metabolic rate, length and GC content, while environmental temperature of fish habitat was not correlated with bpi and GCi. Analyzing the concomitant effect of both variables, i.e., bpi and GCi, at increasing genomic GC content, a decrease of bpi and an increase of GCi was observed for the significant majority of the intronic sequences (from ∼ 40% to ∼ 90%, in each pairwise comparison). The opposite event, concomitant increase of bpi and decrease of GCi, was counter selected (from hypothesis that the metabolic rate plays a key role in shaping genome architecture and evolution of vertebrate genomes.

  14. Novel approach for evaluation of air change rate in naturally ventilated occupied spaces based on metabolic CO2 time variation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Markov, Detelin G.

    2014-01-01

    IAQ in many residential buildings relies on non-organized natural ventilation. Accurate evaluation of air change rate (ACR) in this situation is difficult due to the nature of the phenomenon - intermittent infiltration-exfiltration periods of mass exchange between the room air and the outdoor air...... at low rate. This paper describes a new approach for ACR evaluation in naturally ventilated occupied spaces. Actual metabolic CO2 time variation record in an interval of time is compared with the computed variation of metabolic CO2 for the same time interval under reference conditions: sleeping occupants...

  15. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown...... that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction...... of the thermokinetic description of reaction rates to include the influence of effecters. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can...

  16. THE EFFECT OF HYPOXIA ON THE MAXIMUM MATABOLIC RATE AND SPECIFIC DYNAMIC ACTION IN ATLANTIC COD Gadus morhua

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    John Fleng Steffensen' and Anders Drud Jordan Aquaculture 2010 - San Diego - Physiological Insights Towards Improving Fish Culture. Hypoxia is an increasing problem in coastal near areas and estuaries. Hypoxia can also be a problem in aquaculture systems with a high degree of recirculating water...... reduced the Scope for Activity by 55 % in nonnoxia. In hypoxia the effect was more pronounced with a 69 % reduction of the scope for activity. In conclusion hypoxia prolong the postabsorptive state of fi sh by limiting the peak metabolic rate, causing that less food is assimilated over a certain period...

  17. Gender dependent rate of metabolism of the opioid receptor-PET ligand [18F]fluoroethyl-diprenorphine

    International Nuclear Information System (INIS)

    Henriksen, G.; Spilker, M.E.; Hauser, A.I.; Boecker, H.; Schwaiger, M.; Wester, H.J.; Sprenger, T.; Platzer, S.; Toelle, T.R.

    2006-01-01

    Aim: The morphinane-derivate 6-O-(2-[ 18 F]fluoroethyl)-6-O-desmethyldiprenorphine ([ 18 F]FDPN) is a non-selective opioid receptor ligand currently used in positron emission tomography (PET). Correction for plasma metabolites of the arterial input function is necessary for quantitative measurements of [ 18 ]FDPN binding. A study was undertaken to investigate if there are gender dependent differences in the rate of metabolism of [ 18 F]FDPN. Methods: The rate of metabolism of [ 18 F]FDPN was mathematically quantified by fitting a bi-exponential function to each individual's dynamic metabolite data. Results: No statistically significant gender differences were found for age, weight, body mass index or dose. However, significant differences (p 18 F]FDPN faster than men. These differences were found in the contribution of the fast and slow kinetic components of the model describing the distribution of radioactive species in plasma, indicating a higher rate of enzyme-dependent degradation of [ 18 F]FDPN in women than in men. Conclusion: The findings reinforce the need for individualized metabolite correction during [ 18 F]FDPN-PET scans and also indicate that in certain cases, grouping according to gender could be performed in order to minimize methodological errors of the input function prior to kinetic analyses. (orig.)

  18. Identical metabolic rate and thermal conductance in Rock Sandpiper (Calidris ptilocnemis) subspecies with contrasting nonbreeding life histories

    Science.gov (United States)

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; Piersma, Theunis

    2013-01-01

    Closely related species or subspecies can exhibit metabolic differences that reflect site-specific environmental conditions. Whether such differences represent fixed traits or flexible adjustments to local conditions, however, is difficult to predict across taxa. The nominate race of Rock Sandpiper (Calidris ptilocnemis) exhibits the most northerly nonbreeding distribution of any shorebird in the North Pacific, being common during winter in cold, dark locations as far north as upper Cook Inlet, Alaska (61°N). By contrast, the tschuktschorum subspecies migrates to sites ranging from about 59°N to more benign locations as far south as ~37°N. These distributional extremes exert contrasting energetic demands, and we measured common metabolic parameters in the two subspecies held under identical laboratory conditions to determine whether differences in these parameters are reflected by their nonbreeding life histories. Basal metabolic rate and thermal conductance did not differ between subspecies, and the subspecies had a similar metabolic response to temperatures below their thermoneutral zone. Relatively low thermal conductance values may, however, reflect intrinsic metabolic adaptations to northerly latitudes. In the absence of differences in basic metabolic parameters, the two subspecies’ nonbreeding distributions will likely be more strongly influenced by adaptations to regional variation in ecological factors such as prey density, prey quality, and foraging habitat.

  19. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  20. Ocean acidification alters early successional coral reef communities and their rates of community metabolism.

    Directory of Open Access Journals (Sweden)

    Sam H C Noonan

    Full Text Available Ocean acidification is expected to alter community composition on coral reefs, but its effects on reef community metabolism are poorly understood. Here we document how early successional benthic coral reef communities change in situ along gradients of carbon dioxide (CO2, and the consequences of these changes on rates of community photosynthesis, respiration, and light and dark calcification. Ninety standardised benthic communities were grown on PVC tiles deployed at two shallow-water volcanic CO2 seeps and two adjacent control sites in Papua New Guinea. Along the CO2 gradient, both the upward facing phototrophic and the downward facing cryptic communities changed in their composition. Under ambient CO2, both communities were dominated by calcifying algae, but with increasing CO2 they were gradually replaced by non-calcifying algae (predominantly green filamentous algae, cyanobacteria and macroalgae, which increased from ~30% to ~80% cover. Responses were weaker in the invertebrate communities, however ascidians and tube-forming polychaetes declined with increasing CO2. Differences in the carbonate chemistry explained a far greater amount of change in communities than differences between the two reefs and successional changes from five to 13 months, suggesting community successions are established early and are under strong chemical control. As pH declined from 8.0 to 7.8, rates of gross photosynthesis and dark respiration of the 13-month old reef communities (upper and cryptic surfaces combined significantly increased by 10% and 20%, respectively, in response to altered community composition. As a consequence, net production remained constant. Light and dark calcification rates both gradually declined by 20%, and low or negative daily net calcification rates were observed at an aragonite saturation state of <2.3. The study demonstrates that ocean acidification as predicted for the end of this century will strongly alter reef communities, and

  1. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates

    Directory of Open Access Journals (Sweden)

    Arike Liisa

    2011-02-01

    Full Text Available Abstract Background Lactococcus lactis is recognised as a safe (GRAS microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth. Results Using glucose limited continuous cultivations, specific growth rate dependent metabolism of L. lactis including utilization of amino acids was studied based on extracellular metabolome, global transcriptome and proteome analysis. A new growth medium was designed with reduced amino acid concentrations to increase precision of measurements of consumption of amino acids. Consumption patterns were calculated for all 20 amino acids and measured carbon balance showed good fit of the data at all growth rates studied. It was observed that metabolism of L. lactis became more efficient with rising specific growth rate in the range 0.10 - 0.60 h-1, indicated by 30% increase in biomass yield based on glucose consumption, 50% increase in efficiency of nitrogen use for biomass synthesis, and 40% reduction in energy spilling. The latter was realized by decrease in the overall product formation and higher efficiency of incorporation of amino acids into biomass. L. lactis global transcriptome and proteome profiles showed good correlation supporting the general idea of transcription level control of bacterial metabolism, but the data indicated that substrate transport systems together with lower part of glycolysis in L. lactis were presumably under allosteric control. Conclusions The current study demonstrates advantages of the usage of strictly controlled continuous cultivation methods combined with multi-omics approach for quantitative understanding of amino acid and energy metabolism of L. lactis which is a valuable new knowledge for development of balanced growth media, gene manipulations for desired product

  2. Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes.

    Science.gov (United States)

    Verrier, Delphine; Groscolas, René; Guinet, Christophe; Arnould, John P Y

    2009-11-01

    Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 +/- 3.3 days) were investigated at 7 mo of age. Within 4-6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate (5.9 +/- 0.1 ml O(2)xkg(-1)xday(-1)) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 +/- 10 kJxkg(-1)xday(-1)) and water influx (7.9 +/- 0.9 mlxkg(-1)xday(-1)) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as beta-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.

  3. Experimental sources of variation in avian energetics: estimated basal metabolic rate decreases with successive measurements.

    Science.gov (United States)

    Jacobs, Paul J; McKechnie, Andrew E

    2014-01-01

    Basal metabolic rate (BMR) is one of the most widely used metabolic variables in endotherm ecological and evolutionary physiology. Surprisingly few studies have investigated how BMR is influenced by experimental and analytical variables over and above the standardized conditions required for minimum normothermic resting metabolism. We tested whether avian BMR is affected by habituation to the conditions experienced during laboratory gas exchange measurements by measuring BMR five times in succession in budgerigars (Melopsittacus undulatus) housed under constant temperature and photoperiod. Both the magnitude and the variability of BMR decreased significantly with repeated measurements, from 0.410 ± 0.092 W (n = 9) during the first measurement to 0.285 ± 0.042 W (n = 9) during the fifth measurement. Thus, estimated BMR decreased by ∼30% within individuals solely on account of the number of times they had previously experienced the experimental conditions. The most likely explanation for these results is an attenuation with repeated exposure of the acute stress response induced by birds being handled and placed in respirometry chambers. Our data suggest that habituation to experimental conditions is potentially an important determinant of observed BMR, and this source of variation needs to be taken into account in future studies of metabolic variation among individuals, populations, and species.

  4. Impact of concentration and rate of intraluminal drug delivery on absorption and gut wall metabolism of verapamil in humans.

    Science.gov (United States)

    Glaeser, Hartmut; Drescher, Siegfried; Hofmann, Ute; Heinkele, Georg; Somogyi, Andrew A; Eichelbaum, Michel; Fromm, Martin F

    2004-09-01

    In humans gut wall metabolism can be quantitatively as important as hepatic drug metabolism in limiting the systemic exposure to drugs after oral administration. However, it has been proposed that the role of gut wall metabolism might be overemphasized, because high luminal drug concentrations would lead to a saturation of gut wall metabolism. Therefore we investigated the impact of concentration and rate of intraluminal drug delivery on absorption (F(abs)) and gastrointestinal extraction (E(GI)) of a luminally administered cytochrome P450 (CYP) 3A4 substrate (verapamil) using a multilumen perfusion catheter in combination with a stable isotope technique. Two 20-cm-long, adjacent jejunal segments were isolated with the multilumen perfusion catheter in 7 subjects. In this study 80 mg of unlabeled verapamil (d0-verapamil 15 min) was infused into one segment over a 15-minute period, 80 mg of 3-fold deuterated verapamil (d3-verapamil 240 min) was administered over a 240-minute period into the other segment, and simultaneously, 5 mg of 7-fold deuterated verapamil (d7-verapamil) was injected intravenously over a 15-minute period. The rate of intraluminal drug delivery had only a modest effect on bioavailability of the verapamil isotopes (after correction for F abs ) (F/F abs d3-verapamil 240 min versus d0-verapamil 15 min, 0.24 +/- 0.10 versus 0.20 +/- 0.09; P d3-verapamil 240 min was 0.50 +/- 0.18 compared with 0.59 +/- 0.14 for d0 -verapamil 15 min ( P d0-verapamil 15 min ) correlated strongly with E GI (d3-verapamil 240 min ) (r = 0.94, P d0-verapamil 15 min /d3-verapamil 240 min (r = 0.62, P =.03). Substantial gut wall metabolism of verapamil occurs in humans and can be predicted from ex vivo data by use of shed enterocytes. The different intraluminal concentrations and rates of intraluminal drug delivery did not lead to a pronounced saturation of intestinal drug metabolism.

  5. Regional rates of myocardial fatty acid metabolism: comparison with coronary angiography and ventriculography.

    Science.gov (United States)

    Schad, N; Wagner, R K; Hallermeier, J; Daus, H J; Vattimo, A; Bertelli, P

    1990-01-01

    In 50 patients, 1 mCi 123I phenylpentadecanoic acid (IPPA) was injected at peak ergometric stress and 1500 frames were acquired (1 frame/s) with a high count rate gamma camera. Parametric images of rates of decrease and increase for different time intervals after stress were compared with coronary angiography and LV ventriculography, separately evaluating the 3 main coronary territories: 18/150 territories supplied by normal coronaries presented rather homogeneous regional clearing rates, whereas a gradual decrease in clearing rates towards the end of the territory (frequently with peripheral defects) was seen in all 87/150 territories with significant coronary narrowing. In local correspondence to clearing defects, initial IPPA accumulations could be observed with later onset of clearing between 10 and 25 min. 44/150 territories presented abnormal clearing rates, mostly with a patchy pattern, with normal coronary anatomy, but all except one had LV dysfunction and a clinical diagnosis of cardiomyopathy, diabetes mellitus or hypertensive disease. Twenty four of the 41 patients with CAD had, in correspondence to a prior myocardial infarction, minimum or missing metabolic activity frequently in circumscribed zones, partly separated by bridges of still viable tissue with preserved but reduced clearing rates.

  6. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.

    Science.gov (United States)

    Terblanche, John S; Clusella-Trullas, Susana; Chown, Steven L

    2010-09-01

    Investigation of gas exchange patterns and modulation of metabolism provide insight into metabolic control systems and evolution in diverse terrestrial environments. Variation in metabolic rate in response to environmental conditions has been explained largely in the context of two contrasting hypotheses, namely metabolic depression in response to stressful or resource-(e.g. water) limited conditions, or elevation of metabolism at low temperatures to sustain life in extreme conditions. To deconstruct the basis for metabolic rate changes in response to temperature variation, here we undertake a full factorial study investigating the longer- and short-term effects of temperature exposure on gas exchange patterns. We examined responses of traits of gas exchange [standard metabolic rate (SMR); discontinuous gas exchange (DGE) cycle frequency; cuticular, respiratory and total water loss rate (WLR)] to elucidate the magnitude and form of plastic responses in the dung beetle, Scarabaeus spretus. Results showed that short- and longer-term temperature variation generally have significant effects on SMR and WLR. Overall, acclimation to increased temperature led to a decline in SMR (from 0.071+/-0.004 ml CO(2) h(-1) in 15 degrees C-acclimated beetles to 0.039+/-0.004 ml CO(2) h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) modulated by reduced DGE frequency (15 degrees C acclimation: 0.554+/-0.027 mHz, 20 degrees C acclimation: 0.257+/-0.030 mHz, 25 degrees C acclimation: 0.208+/-0.027 mHz recorded at 20 degrees C), reduced cuticular WLRs (from 1.058+/-0.537 mg h(-1) in 15 degrees C-acclimated beetles to 0.900+/-0.400 mg h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) and reduced total WLR (from 4.2+/-0.5 mg h(-1) in 15 degrees C-acclimated beetles to 3.1+/-0.5 mg h(-1) in 25 degrees C-acclimated beetles measured at 25 degrees C). Respiratory WLR was reduced from 2.25+/-0.40 mg h(-1) in 15 degrees C-acclimated beetles to 1.60+/-0.40 mg h

  7. Changes in Body Compositions and Basal Metabolic Rates during Treatment of Graves’ Disease

    Directory of Open Access Journals (Sweden)

    Min Joo Kim

    2018-01-01

    Full Text Available Objectives. Because thyroid hormone is an important determinant of body weight and basal metabolic rate, we investigated the changes in the basal metabolic rate and body composition sequentially after treatment for Graves’ disease. Methods. A prospective cohort study was performed with six women newly diagnosed with Graves’ disease. During a 52-week treatment of methimazole, body composition, resting respiratory expenditure (REE, and handgrip strength were measured consecutively. Results. After methimazole treatment, body weight was initially increased (0–8 weeks, subsequently plateaued (8–24 weeks, and gradually decreased in the later period (24–52 weeks despite the decreased food intake. The measured REE was 40% higher than the predicted REE at baseline, and it gradually decreased after treatment. REE positively correlated with thyroid hormone levels, peripheral deiodinase activity, and thyroid’s secretory capacity. Body compositional analyses showed that the fat mass increased during an earlier period (4–12 weeks, while the lean mass increased significantly during the later period (26–52 weeks. Consistent with the lean mass changes, muscle strength also significantly increased during the later period. Conclusions. Treatment of Graves’ disease increased body weight and fat mass transiently with decreased REE. However, long-term compositional changes moved in a beneficial direction increasing lean mass and reinforcing muscle strength, following decreasing fat percentages.

  8. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

    Science.gov (United States)

    Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W

    2015-06-05

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Metabolic safety-margins do not differ between cows of high and low genetic merit for milk production

    DEFF Research Database (Denmark)

    Knight, Christopher Harold; Alamer, Mohammed A; Sorensen, Annette

    2004-01-01

    Three galactopoietic stimuli, frequent milking (4X), bovine somatotrophin (bST) and thyroxine (T4) were used in an additive stair-step design to achieve maximum output (metabolic capacity) in six peak-lactation cows of high genetic merit (HT) and six of low genetic merit (LT). A further six of ea...... the commonly held belief that selective breeding of dairy cows for high milk production has rendered them markedly more susceptible to metabolic disturbances.......Three galactopoietic stimuli, frequent milking (4X), bovine somatotrophin (bST) and thyroxine (T4) were used in an additive stair-step design to achieve maximum output (metabolic capacity) in six peak-lactation cows of high genetic merit (HT) and six of low genetic merit (LT). A further six of each...... elevated heart rate and significant loss of body weight and condition compared with the combination of 4X and bST. As a result, treatments were discontinued, on an individual cow basis, before completion of this 6-week phase. Time on experiment did not differ between HT and LT. The results do not support...

  10. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.

    Science.gov (United States)

    Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng

    Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.

  11. Effects of pre- and postnatal polychlorinated biphenyl exposure on metabolic rate and thyroid hormones of white-footed mice

    Science.gov (United States)

    French, J.B.; Voltura, M.B.; Tomasi, T.E.

    2001-01-01

    Energy budgets have proven to be a valuable tool for predicting life history from physiological data in terrestrial vertebrates, yet these concepts have not been applied to the physiological effects of contaminants. Contaminants might affect energy budgets by imposing an additional metabolic cost or by reducing the overall amount of energy taken in; either process will reduce the energy available for production (i.e., growth or reproduction). This study examined whole animal energetic effects of polychlorinated biphenyl (PCB) exposure in white-footed mice (Peromyscus leucopus). Exposure to PCBs is known to reduce concentrations of plasma thyroid hormones, and thyroid hormones exert strong control over the rate of energy metabolism in mammals. Peromyscus leucopus that were proven breeders were fed PCBs in their food at 0, 10, and 25 ppm. Through lactation, offspring were exposed to PCB from conception and were maintained on the maternal diet to adulthood. No effects were seen on energy metabolism (O-2 consumption, measured in adulthood) or on growth, but there were large dose-dependent decreases in thyroid hormone concentrations, particularly T-4. The apparent disparity in our data between unchanged metabolic rates and 50% reductions in T-4 concentrations can be rationalized by noting that free T-3 (the fraction not bound to plasma protein) in treated mice was not significantly different from controls and that metabolism is most strongly influenced by free T-3. Overall, this study did not demonstrate any energetic consequences of PCB exposure in P. leucopus at dietary concentrations up to 25 ppm.

  12. Prolonged non-metabolic heart rate variability reduction as a physiological marker of psychological stress in daily life

    NARCIS (Netherlands)

    Verkuil, B.; Brosschot, J.F.; Tollenaar, M.S.; Lane, R.D.; Thayer, J.F.

    2016-01-01

    BACKGROUND Prolonged cardiac activity that exceeds metabolic needs can be detrimental for somatic health. Psychological stress could result in such "additional cardiac activity." PURPOSE In this study, we examined whether prolonged additional reductions in heart rate variability (AddHRVr) can be

  13. The mechanics of granitoid systems and maximum entropy production rates.

    Science.gov (United States)

    Hobbs, Bruce E; Ord, Alison

    2010-01-13

    A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate. This journal is © 2010 The Royal Society

  14. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  15. Length and GC content variability of introns among teleostean genomes in the light of the metabolic rate hypothesis.

    Directory of Open Access Journals (Sweden)

    Ankita Chaurasia

    Full Text Available A comparative analysis of five teleostean genomes, namely zebrafish, medaka, three-spine stickleback, fugu and pufferfish was performed with the aim to highlight the nature of the forces driving both length and base composition of introns (i.e., bpi and GCi. An inter-genome approach using orthologous intronic sequences was carried out, analyzing independently both variables in pairwise comparisons. An average length shortening of introns was observed at increasing average GCi values. The result was not affected by masking transposable and repetitive elements harbored in the intronic sequences. The routine metabolic rate (mass specific temperature-corrected using the Boltzmann's factor was measured for each species. A significant correlation held between average differences of metabolic rate, length and GC content, while environmental temperature of fish habitat was not correlated with bpi and GCi. Analyzing the concomitant effect of both variables, i.e., bpi and GCi, at increasing genomic GC content, a decrease of bpi and an increase of GCi was observed for the significant majority of the intronic sequences (from ∼ 40% to ∼ 90%, in each pairwise comparison. The opposite event, concomitant increase of bpi and decrease of GCi, was counter selected (from <1% to ∼ 10%, in each pairwise comparison. The results further support the hypothesis that the metabolic rate plays a key role in shaping genome architecture and evolution of vertebrate genomes.

  16. Molecular evolutionary rates are not correlated with temperature and latitude in Squamata: an exception to the metabolic theory of ecology?

    Science.gov (United States)

    Rolland, Jonathan; Loiseau, Oriane; Romiguier, Jonathan; Salamin, Nicolas

    2016-05-20

    The metabolic theory of ecology stipulates that molecular evolutionary rates should correlate with temperature and latitude in ectothermic organisms. Previous studies have shown that most groups of vertebrates, such as amphibians, turtles and even endothermic mammals, have higher molecular evolutionary rates in regions where temperature is high. However, the association between molecular evolutionary rates and temperature or latitude has never been tested in Squamata. We used a large dataset including the spatial distributions and environmental variables for 1,651 species of Squamata and compared the contrast of the rates of molecular evolution with the contrast of temperature and latitude between sister species. Using major axis regressions and a new algorithm to choose independent sister species pairs, we found that temperature and absolute latitude were not associated with molecular evolutionary rates. This absence of association in such a diverse ectothermic group questions the mechanisms explaining current pattern of species diversity in Squamata and challenges the presupposed universality of the metabolic theory of ecology.

  17. Physiological effects of bioceramic material: harvard step, resting metabolic rate and treadmill running assessments.

    Science.gov (United States)

    Leung, Ting-Kai; Kuo, Chia-Hua; Lee, Chi-Ming; Kan, Nai-Wen; Hou, Chien-Wen

    2013-12-31

    Previous biomolecular and animal studies have shown that a room-temperature far-infrared-rayemitting ceramic material (bioceramic) demonstrates physical-biological effects, including the normalization of psychologically induced stress-conditioned elevated heart rate in animals. In this clinical study, the Harvard step test, the resting metabolic rate (RMR) assessment and the treadmill running test were conducted to evaluate possible physiological effects of the bioceramic material in human patients. The analysis of heart rate variability (HRV) during the Harvard step test indicated that the bioceramic material significantly increased the high-frequency (HF) power spectrum. In addition, the results of RMR analysis suggest that the bioceramic material reduced oxygen consumption (VO2). Our results demonstrate that the bioceramic material has the tendency to stimulate parasympathetic responses, which may reduce resting energy expenditure and improve cardiorespiratory recovery following exercise.

  18. A simulation study of Linsley's approach to infer elongation rate and fluctuations of the EAS maximum depth from muon arrival time distributions

    International Nuclear Information System (INIS)

    Badea, A.F.; Brancus, I.M.; Rebel, H.; Haungs, A.; Oehlschlaeger, J.; Zazyan, M.

    1999-01-01

    The average depth of the maximum X m of the EAS (Extensive Air Shower) development depends on the energy E 0 and the mass of the primary particle, and its dependence from the energy is traditionally expressed by the so-called elongation rate D e defined as change in the average depth of the maximum per decade of E 0 i.e. D e = dX m /dlog 10 E 0 . Invoking the superposition model approximation i.e. assuming that a heavy primary (A) has the same shower elongation rate like a proton, but scaled with energies E 0 /A, one can write X m = X init + D e log 10 (E 0 /A). In 1977 an indirect approach studying D e has been suggested by Linsley. This approach can be applied to shower parameters which do not depend explicitly on the energy of the primary particle, but do depend on the depth of observation X and on the depth X m of shower maximum. The distribution of the EAS muon arrival times, measured at a certain observation level relatively to the arrival time of the shower core reflect the pathlength distribution of the muon travel from locus of production (near the axis) to the observation locus. The basic a priori assumption is that we can associate the mean value or median T of the time distribution to the height of the EAS maximum X m , and that we can express T = f(X,X m ). In order to derive from the energy variation of the arrival time quantities information about elongation rate, some knowledge is required about F i.e. F = - ∂ T/∂X m ) X /∂(T/∂X) X m , in addition to the variations with the depth of observation and the zenith-angle (θ) dependence, respectively. Thus ∂T/∂log 10 E 0 | X = - F·D e ·1/X v ·∂T/∂secθ| E 0 . In a similar way the fluctuations σ(X m ) of X m may be related to the fluctuations σ(T) of T i.e. σ(T) = - σ(X m )· F σ ·1/X v ·∂T/∂secθ| E 0 , with F σ being the corresponding scaling factor for the fluctuation of F. By simulations of the EAS development using the Monte Carlo code CORSIKA the energy and angle

  19. Water exchange rate in RAS and dietary inclusion of micro-minerals influence growth, body composition and mineral metabolism in common carp

    NARCIS (Netherlands)

    Antony Jesu Prabhu, P.; Kaushik, S.J.; Geurden, I.; Stouten, T.; Fontagné-dicharry, S.; Veron, V.; Mariojouls, C.; Verreth, J.A.J.; Eding, E.H.; Schrama, J.W.

    2017-01-01

    Recirculation aquaculture systems (RASs) operated at low water exchange rates are known to accumulate minerals in the water. This study examined the dietary mineral requirement and metabolism in common carp reared in RAS of contrasting water exchange rates. Two independent RAS (water exchange rates,

  20. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    Directory of Open Access Journals (Sweden)

    Klipp Edda

    2006-12-01

    Full Text Available Abstract Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases.

  1. [Measurement of regional cerebral metabolism rate of glucose in patients with Alzheimer's disease in different levels of severity].

    Science.gov (United States)

    Xiao, Shi-fu; Cao, Qiu-yun; Xue, Hai-bo; Liu, Yong-chang; Zuo, Chuan-tao; Jiang, Kai-da; Zhang, Ming-yuan

    2005-11-09

    To measure the changes of regional cerebral metabolism rate of glucose (rCMRglc) in patients with Alzheimer's disease (AD) and explore their value to diagnosis of AD. 10 patients with AD who met the diagnostic criteria of DSM-IV and 10 normal controls (NC) were assessed with (18)F-2-fluoro-deoxy-D-glucose positron emission tomography (PET). The two groups were matched in age, gender and education. The mean total scores of the mini-mental status examination (MMSE) were 16.5 +/- 6.1 for AD and 28.7 +/- 1.6 for NC. The mean total memory quotient of Wechsler Memory Scales (MQ) were 32.3 +/- 19.6 for AD and 93.1 +/- 9.0 for NC. Comparing to NC, the AD groups showed statistically significant decline of rCMRglc in frontal lobe, temporal lobe and the hippocampal formation with decreased rates ranged from 3.3% to 28.4% (P upper and middle frontal gyri, middle temporal gyrus, orbital gyrus and anterior cingulate gyrus, in which areas the metabolism decreased over 20% compared to NC. The hypo-metabolism was correlated to the severity of dementia. Discriminant analysis demonstrated that the variables of right inferior temporal gyrus, left upper temporal gyrus, left hippocampus and right insular lobe were entered into the discriminant functions and the total discriminant accuracy reached 100%. (18)F-FDG PET is a very sensitive tool in measurement of the changes of rCMRglc in patients with AD. The findings show a frontal-temporal type of metabolism in AD patients and suggest that hypo-metabolism in hippocampal formation and temporal lobe is helpful in early detection of AD.

  2. Regional rates of myocardial fatty acid metabolism: Comparison with coronary angiography and ventriculography

    International Nuclear Information System (INIS)

    Schad, N.; Vattimo, A.; Bertelli, P.

    1990-01-01

    In 50 patients, 1 mCi 123 I phenylpentadecanoic acid (IPPA) was injected at peak ergometric stress and 1500 frames were acquired (1 frame/s) with a high count rate gamma camera. Parametric images of rates of decrease and increase for different time intervals after stress were compared with coronary angiography and LV ventriculography, separately evaluating the 3 main coronary territories: 18/150 territories supplied by normal coronaries presented rather homogeneous regional clearing rates, whereas a gradual decrease in clearing rates towards the end of the territory (frequently with peripheral defects) was seen in all 87/150 territories with significant coronary narrowing. In local correspondence to clearing defects, initial IPPA accumulations could be observed with later onset of clearing between 10 and 25 min. In all 44/150 territories presented abnormal clearing rates, mostly with a patchy pattern, with normal coronary anatomy, but all except one had LV dysfunction and a clinical diagnosis of cardiomyopathy, diabetes mellitus or hypertensive disease. Twenty four of the 41 patients with CAD had, in correspondence to a prior myocardial infarction, minimum or missing metabolic activity frequently in circumscribed zones, partly separated by bridges of still viable tissue with preserved but reduced clearing rates. (orig.)

  3. Evaluation of heart rate reserve and high-sensitivity C-reactive protein in individuals with and without metabolic syndrome in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Yosef Khaledi

    2012-06-01

    Full Text Available    BACKGROUND: Lack of heart rate increase proportionate to exercise causes poor prognosis. Moreover, inflammatory factors such as C-reactive protein (CRP are associated with atherosclerosis. The current study compared these two indices in individuals with and without metabolic syndrome in Isfahan, Iran.    METHODS: This study was performed on 203 people without and 123 patients with metabolic syndrome who were randomly selected from the participants of the Isfahan Cohort Study. The demographic data, waist circumference, blood pressure, height, and weight of the participants were recorded. Moreover, serum triglyceride (TG, fasting blood sugar (FBS, total cholesterol, high density lipoprotein (HDL, low density lipoprotein (LDL, and high-sensitivity CRP (hs-CRP levels were measured. Exercise test was carried out according to the Bruce standard protocol and heart rate reserve (HRR was determined and recorded. The age-adjusted data was analyzed using generalized linear regression and student's t-test in SPSS15.    RESULTS: The mean ages of participants without and with metabolic syndrome were 54.16 ± 8.61 and 54.29 ± 7.6 years, respectively. The corresponding values for mean LDL levels were 116.17 ± 24.04 and 120.12 ± 29.55 mg/dl. TG levels were 140.38 ± 61.65 and 259.99 ± 184.49 mg/dl for subjects without and with the metabolic syndrome, respectively. The mean FBS levels were 81.81 ± 9.90 mg/dl in the participants without the syndrome and 107.13 ± 48.46 mg/dl in those with metabolic syndrome. The mean systolic blood pressure was 116.06 ± 13.69 mmHg in persons without metabolic syndrome and 130.73 ± 15.15 mmHg in patients with the syndrome. The values for mean diastolic levels in the two groups were 76.52 ± 6.69 and 82.84 ± 8.7 mmHg, respectively. While the two groups were not significantly different in terms of HRR (P = 0.27, hs-CRP levels in the metabolic syndrome group was significantly higher than the other group (P = 0.02.

  4. Intraspecific allometry of standard metabolic rate in green iguanas, Iguana iguana.

    Science.gov (United States)

    Maxwell, Lara K; Jacobson, Elliott R; McNab, Brian K

    2003-10-01

    To study the allometric relationship between standard metabolic rate and body mass (mass range 16-3627 g) in green iguanas, Iguana iguana (n=32), we measured rates of oxygen consumption (V(O(2))) at 30 degrees C during scotophase. The relationship could be described as: V(O(2))(ml h(-1))=0.478W(0.734). The resulting mass exponent was similar to the 3/4 power commonly used in interspecific curves (P>0.05), but differed from a proposed intraspecific value of 2/3 (Piguanas did not differ (P>0.05). The mass adjusted V(O(2)) was higher than predicted from generalized squamate curves. The mean mass exponent of intra-individual allometric equations of iguanas (n=7) at varying masses during ontogeny did not differ from that of the pooled equation, indicating that scaling of V(O(2)) is similar for both between and within individuals. Thermal acclimation, compensatory changes in V(O(2)) with prolonged exposure to a constant temperature, was not observed in juvenile iguanas (n=11) between 1 and 5 weeks of acclimation at 30 degrees C.

  5. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects.

    Science.gov (United States)

    Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A

    2012-05-01

    It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Effects of high fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects

    Science.gov (United States)

    Le, MyPhuong T.; Frye, Reginald F.; Rivard, Christopher J.; Cheng, Jing; McFann, Kim K.; Segal, Mark S.; Johnson, Richard J.; Johnson, Julie A.

    2011-01-01

    Objective It is unclear whether high fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared to sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- versus sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Materials/Methods Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hr. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Results Fructose area under the curve and maximum concentration, dose normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared to sucrose-sweetened beverages. Conclusions Compared to sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. PMID:22152650

  7. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    Science.gov (United States)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  8. Water turnover rate and its metabolism in defaunated, refaunated and faunated male buffalo calves

    International Nuclear Information System (INIS)

    Chaudhary, L.C.; Srivastava, Arun

    1993-01-01

    In tropical countries like India, environment climatic conditions are variable throughout the year ranging from favourable to very hostile. The high temperature and humidity and often limited supply of water causes low productivity of livestock even when good quality of feed is supplied in required quantity. The turnover rate of water is related to environmental temperature, feed supply, protein or electrolyte content of the diet and also on physiological status of the animals.In the present experiment tritiated water dilution technique was used in an attempt to study the effect of removing ciliate protozoa from the rumen (defaunation) on water metabolism and its turnover rate in buffalo calves given wheat straw and concentrate mixture. (author). 18 refs., 2 tabs

  9. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-05-01

    Full Text Available Trichloroethylene (TCE is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL, initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE/mg (biomass and 5.1 μg (TCE/mg (phenol, respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%. When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively. This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  10. Effect of temperature on the standard metabolic rates of juvenile and adult Exopalaemon carinicauda

    Science.gov (United States)

    Zhang, Chengsong; Li, Fuhua; Xiang, Jianhai

    2015-03-01

    Ridgetail white prawn ( Exopalaemon carinicauda) are of significant economic importance in China where they are widely cultured. However, there is little information on the basic biology of this species. We evaluated the effect of temperature (16, 19, 22, 25, 28, 31, and 34°C) on the standard metabolic rates (SMRs) of juvenile and adult E. carinicauda in the laboratory under static conditions. The oxygen consumption rate (OCR), ammonia-N excretion rate (AER), and atomic ratio of oxygen consumed to nitrogen consumed (O:N ratio) of juvenile and adult E. carinicauda were significantly influenced by temperature ( P 0.05). The O:N ratio in juveniles was significantly higher than that in the adults over the entire temperature range ( P values. Results from the present study may be used to guide pond culture production of E. carinicauda.

  11. Late development of homoeothermy in mink (Mustela vison) kits - a strategy for maximum survival rate

    DEFF Research Database (Denmark)

    Tauson, A-H; Chwalibog, André; Tygesen, M P

    2006-01-01

    and after the experiments and evaporative water losses (EWL) were calculated. When exposed to L temperature, single kits responded with a very low HE until 29 days of age, and groups of kits until 14 days of age. It was not until they reached an age of approximately 6 weeks that single kits showed a clear...... thermoregulatory response to the L temperature by increased HE, whereas groups of kits showed increased HE from 29th day onwards. When kept at H temperature, HE was low initially, but all kits showed elevated HE at 8 days of age, and the metabolic rate was similar for single kits and kits huddling in groups....... Evaporative water losses was higher among single than among groups of kits and slightly lower but more variable for animals at L than at H temperature. It was concluded that mink kits develop functional homoeothermy at an age of close to 6 weeks and that the failure of very young kits to thermoregulate...

  12. Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging

    Directory of Open Access Journals (Sweden)

    Grills Inga

    2007-05-01

    Full Text Available Abstract Background To correlate the metabolic changes with size changes for tumor response by concomitant PET-CT evaluation of lung cancers after radiotherapy. Methods 36 patients were studied pre- and post-radiotherapy with18FDG PET-CT scans at a median interval of 71 days. All of the patients were followed clinically and radiographically after a mean period of 342 days for assessment of local control or failure rates. Change in size (sum of maximum orthogonal diameters was correlated with that of maximum standard uptake value (SUV of the primary lung cancer before and after conventional radiotherapy. Results There was a significant reduction in both SUV and size of the primary cancer after radiotherapy (p Conclusion Correlating and incorporating metabolic change by PET into size change by concomitant CT is more sensitive in assessing therapeutic response than CT alone.

  13. The effect of long term combined yoga practice on the basal metabolic rate of healthy adults

    Directory of Open Access Journals (Sweden)

    Nagendra HR

    2006-08-01

    Full Text Available Abstract Background Different procedures practiced in yoga have stimulatory or inhibitory effects on the basal metabolic rate when studied acutely. In daily life however, these procedures are usually practiced in combination. The purpose of the present study was to investigate the net change in the basal metabolic rate (BMR of individuals actively engaging in a combination of yoga practices (asana or yogic postures, meditation and pranayama or breathing exercises for a minimum period of six months, at a residential yoga education and research center at Bangalore. Methods The measured BMR of individuals practicing yoga through a combination of practices was compared with that of control subjects who did not practice yoga but led similar lifestyles. Results The BMR of the yoga practitioners was significantly lower than that of the non-yoga group, and was lower by about 13 % when adjusted for body weight (P Conclusion This study shows that there is a significantly reduced BMR, probably linked to reduced arousal, with the long term practice of yoga using a combination of stimulatory and inhibitory yogic practices.

  14. Carbon Dioxide Impacts in the Deep-Sea: Is Maintaining a Metabolically Required CO2 Efflux Rate Challenging?

    Science.gov (United States)

    Peltzer, E. T.; Hofmann, A. F.; Brewer, P. G.

    2011-12-01

    Increasing ocean acidification from fossil fuel CO2 invasion, from temperature driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Here we describe the rate problem for animals who must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary of marine animals in a changing ocean in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2 - HCO3- - CO3= acid-base system needs to be considered. These reactions appear as an enhancement factor which significantly facilitates CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations. Possibly as an adaptation to this chemical advantage marine animals typically can respond to external CO2 stress simply by metabolic adjustment. This is energetically more favorable than having to resort to mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that the combination of an increase in T combined with declining O2 poses a greater respiratory challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life from the combined effects of changing T, O2, and CO2 than can be estimated from single variable studies.

  15. Basal metabolic rate is positively correlated with parental investment in laboratory mice

    Science.gov (United States)

    Sadowska, Julita; Gębczyński, Andrzej K.; Konarzewski, Marek

    2013-01-01

    The assimilation capacity (AC) hypothesis for the evolution of endothermy predicts that the maternal basal metabolic rate (BMR) should be positively correlated with the capacity for parental investment. In this study, we provide a unique test of the AC model based on mice from a long-term selection experiment designed to produce divergent levels of BMR. By constructing experimental families with cross-fostered litters, we were able to control for the effect of the mother as well as the type of pup based on the selected lines. We found that mothers with genetically determined high levels of BMR were characterized by higher parental investment capacity, measured as the offspring growth rate. We also found higher food consumption and heavier visceral organs in the females with high BMR. These findings suggested that the high-BMR females have higher energy acquisition abilities. When the effect of the line type of a foster mother was controlled, the pup line type significantly affected the growth rate only in the first week of life, with young from the high-BMR line type growing more rapidly. Our results support the predictions of the AC model. PMID:23282996

  16. Dietary supplement increases plasma norepinephrine, lipolysis, and metabolic rate in resistance trained men

    Directory of Open Access Journals (Sweden)

    Schilling Brian K

    2009-01-01

    Full Text Available Abstract Background Dietary supplements targeting fat loss and increased thermogenesis are prevalent within the sport nutrition/weight loss market. While some isolated ingredients have been reported to be efficacious when used at high dosages, in particular in animal models and/or via intravenous delivery, little objective evidence is available pertaining to the efficacy of a finished product taken by human subjects in oral form. Moreover, many ingredients function as stimulants, leading to increased hemodynamic responses. The purpose of this investigation was to determine the effects of a finished dietary supplement on plasma catecholamine concentration, markers of lipolysis, metabolic rate, and hemodynamics. Methods Ten resistance trained men (age = 27 ± 4 yrs; BMI = 25 ± 3 kg· m-2; body fat = 9 ± 3%; mean ± SD ingested a dietary supplement (Meltdown®, Vital Pharmaceuticals or a placebo, in a random order, double blind cross-over design, with one week separating conditions. Fasting blood samples were collected before, and at 30, 60, and 90 minutes post ingestion and were assayed for epinephrine (EPI, norepinephrine (NE, glycerol, and free fatty acids (FFA. Area under the curve (AUC was calculated for all variables. Gas samples were collected from 30–60 minutes post ingestion for measurement of metabolic rate. Heart rate and blood pressure were recorded at all blood collection times. Results AUC was greater for the dietary supplement compared to the placebo for NE (1332 ± 128 pg·mL-1·90 min-1 vs. 1003 ± 133 pg·mL-1·90 min-1; p = 0.03, glycerol (44 ± 3 μg·mL-1·90 min-1 vs. 26 ± 2 μg·mL-1·90 min-1; p -1·90 min-1 vs. 0.88 ± 0.12 mmol·L-1·90 min-1; p = 0.0003. No difference between conditions was noted for EPI AUC (p > 0.05. For all variables, values were highest at 90 minutes post ingestion. Total kilocalorie expenditure during the 30 minute collection period was 29.6% greater (p = 0.02 for the dietary supplement (35 ± 3

  17. Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae in Glucose-Limited Chemostats

    Science.gov (United States)

    Sárvári Horváth, Ilona; Franzén, Carl Johan; Taherzadeh, Mohammad J.; Niklasson, Claes; Lidén, Gunnar

    2003-01-01

    Effects of furfural on the aerobic metabolism of the yeast Saccharomyces cerevisiae were studied by performing chemostat experiments, and the kinetics of furfural conversion was analyzed by performing dynamic experiments. Furfural, an important inhibitor present in lignocellulosic hydrolysates, was shown to have an inhibitory effect on yeast cells growing respiratively which was much greater than the inhibitory effect previously observed for anaerobically growing yeast cells. The residual furfural concentration in the bioreactor was close to zero at all steady states obtained, and it was found that furfural was exclusively converted to furoic acid during respiratory growth. A metabolic flux analysis showed that furfural affected fluxes involved in energy metabolism. There was a 50% increase in the specific respiratory activity at the highest steady-state furfural conversion rate. Higher furfural conversion rates, obtained during pulse additions of furfural, resulted in respirofermentative metabolism, a decrease in the biomass yield, and formation of furfuryl alcohol in addition to furoic acid. Under anaerobic conditions, reduction of furfural partially replaced glycerol formation as a way to regenerate NAD+. At concentrations above the inlet concentration of furfural, which resulted in complete replacement of glycerol formation by furfuryl alcohol production, washout occurred. Similarly, when the maximum rate of oxidative conversion of furfural to furoic acid was exceeded aerobically, washout occurred. Thus, during both aerobic growth and anaerobic growth, the ability to tolerate furfural appears to be directly coupled to the ability to convert furfural to less inhibitory compounds. PMID:12839784

  18. Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex.

    Science.gov (United States)

    Sonnay, Sarah; Poirot, Jordan; Just, Nathalie; Clerc, Anne-Catherine; Gruetter, Rolf; Rainer, Gregor; Duarte, João M N

    2018-03-01

    Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (V NT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of V NT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes. © 2017 Wiley Periodicals, Inc.

  19. Essential fatty acids influence metabolic rate and tolerance of hypoxia in Dover sole ( Solea solea ) larvae and juveniles

    DEFF Research Database (Denmark)

    McKenzie, David; Lund, Ivar; Pedersen, Per Bovbjerg

    2008-01-01

    Dover sole (Solea solea, Linneaus 1758) were raised from first feeding on brine shrimp (Artemia sp.) with different contents and compositions of the essential fatty acids (EFA) arachidonic acid (ARA, 20:4n - 6); eicosapentaenoic acid (EPA, 20:5n - 3), and docosahexaenoic acid (DHA, 22:6n - 3......), and their metabolic rate and tolerance to hypoxia measured prior to and following metamorphosis and settlement. Four dietary Artemia preparations were compared: (1) un-enriched; (2) enriched with a commercial EFA mixture (Easy DHA SELCO Emulsion); (3) enriched with a marine fish oil combination (VEVODAR and Incromega...... DHA) to provide a high ratio of ARA to DHA, and (4) enriched with these fish oils to provide a low ratio of ARA to DHA. Sole fed un-enriched Artemia were significantly less tolerant to hypoxia than the other dietary groups. Larvae from this group had significantly higher routine metabolic rate (RMR...

  20. Maximum type 1 error rate inflation in multiarmed clinical trials with adaptive interim sample size modifications.

    Science.gov (United States)

    Graf, Alexandra C; Bauer, Peter; Glimm, Ekkehard; Koenig, Franz

    2014-07-01

    Sample size modifications in the interim analyses of an adaptive design can inflate the type 1 error rate, if test statistics and critical boundaries are used in the final analysis as if no modification had been made. While this is already true for designs with an overall change of the sample size in a balanced treatment-control comparison, the inflation can be much larger if in addition a modification of allocation ratios is allowed as well. In this paper, we investigate adaptive designs with several treatment arms compared to a single common control group. Regarding modifications, we consider treatment arm selection as well as modifications of overall sample size and allocation ratios. The inflation is quantified for two approaches: a naive procedure that ignores not only all modifications, but also the multiplicity issue arising from the many-to-one comparison, and a Dunnett procedure that ignores modifications, but adjusts for the initially started multiple treatments. The maximum inflation of the type 1 error rate for such types of design can be calculated by searching for the "worst case" scenarios, that are sample size adaptation rules in the interim analysis that lead to the largest conditional type 1 error rate in any point of the sample space. To show the most extreme inflation, we initially assume unconstrained second stage sample size modifications leading to a large inflation of the type 1 error rate. Furthermore, we investigate the inflation when putting constraints on the second stage sample sizes. It turns out that, for example fixing the sample size of the control group, leads to designs controlling the type 1 error rate. © 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Releasable activity and maximum permissible leakage rate within a transport cask of Tehran Research Reactor fuel samples

    Directory of Open Access Journals (Sweden)

    Rezaeian Mahdi

    2015-01-01

    Full Text Available Containment of a transport cask during both normal and accident conditions is important to the health and safety of the public and of the operators. Based on IAEA regulations, releasable activity and maximum permissible volumetric leakage rate within the cask containing fuel samples of Tehran Research Reactor enclosed in an irradiated capsule are calculated. The contributions to the total activity from the four sources of gas, volatile, fines, and corrosion products are treated separately. These calculations are necessary to identify an appropriate leak test that must be performed on the cask and the results can be utilized as the source term for dose evaluation in the safety assessment of the cask.

  2. Nonmonotonous changes of thymus nuclei lipid metabolism upon chronic gamma-radiation of rats at a dose-rate of 3 c Gy/Day

    International Nuclear Information System (INIS)

    Kulagina, T.P.; Kolomijtseva, I.K.; Moiseeva, S.A.; Kuzin, A.M.

    2000-01-01

    The dynamics of changes in the thymus nuclei lipid metabolism under chronic gamma-radiation in low doses with the dose rate of 3 cGy/day is studied. It is shown, that at the 25 cGy dose rate there takes place activation of exchange in the fatly-acid part of the phospholipid molecule with simultaneous activation of the cholesterol and fatty acids synthesis. The synthesis of cholesterol and fatty acids at 50 cGy remains activated, whereas metabolism of the fatty-acid part of the phospholipids molecule is sharply depressed. The identified changes reveal the similarity with the processes, proceeding by the apoptose induction. At the same time the dynamics of the thymocyte nuclei lipid exchange in the process of adaptation to the long radiation effect as nonmonotonous metabolic response to low dose impact is characterized for the first time [ru

  3. Maximum Evaporation Rates of Water Droplets Approaching Obstacles in the Atmosphere Under Icing Conditions

    Science.gov (United States)

    Lowell, H. H.

    1953-01-01

    When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius

  4. Metabolic syndrome but not obesity measures are risk factors for accelerated age-related glomerular filtration rate decline in the general population.

    Science.gov (United States)

    Stefansson, Vidar T N; Schei, Jørgen; Solbu, Marit D; Jenssen, Trond G; Melsom, Toralf; Eriksen, Bjørn O

    2018-05-01

    Rapid age-related glomerular filtration rate (GFR) decline increases the risk of end-stage renal disease, and a low GFR increases the risk of mortality and cardiovascular disease. High body mass index and the metabolic syndrome are well-known risk factors for patients with advanced chronic kidney disease, but their role in accelerating age-related GFR decline independent of cardiovascular disease, hypertension and diabetes is not adequately understood. We studied body mass index, waist circumference, waist-hip ratio and metabolic syndrome as risk factors for accelerated GFR decline in 1261 middle-aged people representative of the general population without diabetes, cardiovascular disease or kidney disease. GFR was measured as iohexol clearance at baseline and repeated after a median of 5.6 years. Metabolic syndrome was defined as fulfilling three out of five criteria, based on waist circumference, blood pressure, glucose, high-density lipoprotein cholesterol and triglycerides. The mean GFR decline rate was 0.95 ml/min/year. Neither the body mass index, waist circumference nor waist-hip ratio predicted statistically significant changes in age-related GFR decline, but individuals with baseline metabolic syndrome had a significant mean of 0.30 ml/min/year faster decline than individuals without metabolic syndrome in a multivariable adjusted linear regression model. This association was mainly driven by the triglyceride criterion of metabolic syndrome, which was associated with a significant 0.36 ml/min/year faster decline when analyzed separately. Results differed significantly when GFR was estimated using creatinine and/or cystatin C. Thus, metabolic syndrome, but not the body mass index, waist circumference or waist-hip ratio, is an independent risk factor for accelerated age-related GFR decline in the general population. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  5. 78 FR 13999 - Maximum Interest Rates on Guaranteed Farm Loans

    Science.gov (United States)

    2013-03-04

    ..., cost-plus, flat-rate, or market based) to price guaranteed loans, provided the rates do not exceed the... (LIBOR) or the 5-year Treasury note rate, unless the lender uses a formal written risk-based pricing... cost in the form of a lower interest rate than the borrower would otherwise receive. Therefore, the FSA...

  6. Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-evaluation of depth-related changes

    Science.gov (United States)

    Gerringer, M. E.; Drazen, J. C.; Yancey, P. H.

    2017-07-01

    Metabolic enzyme activities of muscle tissue have been useful and widely-applied indicators of whole animal metabolic capacity, particularly in inaccessible systems such as the deep sea. Previous studies have been conducted at atmospheric pressure, regardless of organism habitat depth. However, maximum reaction rates of some of these enzymes are pressure dependent, complicating the use of metabolic enzyme activities as proxies of metabolic rates. Here, we show pressure-related rate changes in lactate and malate dehydrogenase (LDH, MDH) and pyruvate kinase (PK) in six fish species (2 hadal, 2 abyssal, 2 shallow). LDH maximal reaction rates decreased with pressure for the two shallow species, but, in contrast to previous findings, it increased for the four deep species, suggesting evolutionary changes in LDH reaction volumes. MDH maximal reaction rates increased with pressure in all species (up to 51±10% at 60 MPa), including the tide pool snailfish, Liparis florae (activity increase at 60 MPa 44±9%), suggesting an inherent negative volume change of the reaction. PK was inhibited by pressure in all species tested, including the hadal liparids (up to 34±3% at 60 MPa), suggesting a positive volume change during the reaction. The addition of 400 mM TMAO counteracted this inhibition at both 0.5 and 2.0 mM ADP concentrations for the hadal liparid, Notoliparis kermadecensis. We revisit depth-related trends in metabolic enzyme activities according to these pressure-related rate changes and new data from seven abyssal and hadal species from the Kermadec and Mariana trenches. Results show that, with abyssal and hadal species, pressure-related rate changes are another variable to be considered in the use of enzyme activities as proxies for metabolic rate, in addition to factors such as temperature and body mass. Intraspecific increases in tricarboxylic acid cycle enzymes with depth of capture, independent of body mass, in two hadal snailfishes suggest improved nutritional

  7. The effect of psychological stress on diet-induced thermogenesis and resting metabolic rate.

    Science.gov (United States)

    Weststrate, J A; Van der Kooy, K; Deurenberg, P; Hautvast, J G

    1990-04-01

    The effect of psychological stress on resting metabolic rate (RMR) and diet-induced thermogenesis (DIT) was assessed in 12 healthy young non-obese men of body weight 70.2 +/- 1.2 kg (mean +/- s.e.m.) and age 25 +/- 0.6 years. Two types of commercially available motion pictures (video films) were shown to the subjects during the measurements, ie stress-inducing horror films and as a control, romantic family films. The study was conducted according to a cross-over design. RMR and respiratory quotients were not significantly influenced by the type of film shown to the subjects. DIT, assessed over 4 h, was significantly increased by the stress-inducing treatment, 0.95 +/- 0.05 kJ/min (mean +/- s.e.m.) versus 0.76 +/- 0.06 kJ/min (control). No significant effect was observed of psychological stress on postprandial substrate oxidation rates, nutrient balances, and urinary catecholamine excretion.

  8. Descriptive epidemiology of metabolic syndrome among obese adolescent population.

    Science.gov (United States)

    Mahbuba, Sharmin; Mohsin, Fauzia; Rahat, Farhana; Nahar, Jebun; Begum, Tahmina; Nahar, Nazmun

    2018-05-01

    The study was done to assess the magnitude of problems of metabolic syndrome among obese adolescents. It was a cross-sectional study done from January 2013 to June 2014 in paediatric endocrine outpatient department in BIRDEM General Hospital, Dhaka, Bangladesh. Total 172 adolescents having exogenous obesity aged 10-18 years were included. Impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (DM) were defined as per WHO criteria.The adolescents having Body Mass Index (BMI) ≥95th centile were classified as obese.Waist circumference was measured at the level midway between the lower rib margin & the iliac crest, at the level of umbilicus with the person breathing out gently in centimeter. Hip circumference was measured at the maximum width over the buttocks at the level of the greater trochanters in centimeter. Among 172 obese adolescents, metabolic syndrome was found in 66 patients (38.4%). The commonest metabolic abnormality among those having metabolic syndrome was low HDL level (77.3%) followed by high triglyceride level(71.2%). Glucose intolerance (IFG and/or IGT) was found in 16.7%, Type 2 DM in 10.6%, systolic hypertension in 10.7% and diastolic hypertension in 12.1%. Triglyceride (p = 0.042) and Cholesterol level (p = 0.016) were significantly higher and HDL-cholesterol level (p = 0.000) was significantly lower among obese adolescents having metabolic syndrome. Less physical activity (p = 0.04) was significantly related to the development of metabolic syndrome. On logistic regression analysis male sex, family history of obesity and low HDL-cholesterol correlated to metabolic syndrome. The High rate of metabolic syndrome among obese adolescents is alarming. Copyright © 2018 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  9. Estimation of the players maximum heart rate in real game situations in team sports: a practical propose

    Directory of Open Access Journals (Sweden)

    Jorge Cuadrado Reyes

    2011-05-01

    Full Text Available Abstract   This  research developed a logarithms  for calculating the maximum heart rate (max. HR for players in team sports in  game situations. The sample was made of  thirteen players (aged 24 ± 3   to a  Division Two Handball team. HR was initially measured by Course Navette test.  Later, twenty one training sessions were conducted  in which HR and Rate of Perceived Exertion (RPE, were  continuously monitored, in each task. A lineal regression analysis was done  to help find a max. HR prediction equation from the max. HR of the three highest intensity sessions. Results from  this equation correlate significantly with data obtained in the Course Navette test and with those obtained by other indirect methods. The conclusion of this research is that this equation provides a very useful and easy way to measure the max. HR in real game situations, avoiding non-specific analytical tests and, therefore laboratory testing..   Key words: workout control, functional evaluation, prediction equation.

  10. Noise effect in metabolic networks

    International Nuclear Information System (INIS)

    Zheng-Yan, Li; Zheng-Wei, Xie; Tong, Chen; Qi, Ouyang

    2009-01-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states. (cross-disciplinary physics and related areas of science and technology)

  11. Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimer's disease using FDG-PET

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, Lisa [New York University School of Medicine, Department of Psychiatry, New York, NY (United States); University of Florence, Department of Clinical Pathophysiology, Nuclear Medicine Unit, Florence (Italy); New York University School of Medicine, Center for Brain Health, New York, NY (United States); Santi, Susan De; Li, Yi; Li, Juan; Zhan, Jiong; Boppana, Madhu [New York University School of Medicine, Department of Psychiatry, New York, NY (United States); Tsui, Wai Hon; Leon, Mony J. de [New York University School of Medicine, Department of Psychiatry, New York, NY (United States); Nathan Kline Institute, Orangeburg, NY (United States); Pupi, Alberto [University of Florence, Department of Clinical Pathophysiology, Nuclear Medicine Unit, Florence (Italy)

    2006-02-01

    This study was designed to examine the utility of visual inspection of medial temporal lobe (MTL) metabolism in the diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD) using FDG-PET scans. Seventy-five subjects [27 normal controls (NL), 26 MCI, and 22 AD] with FDG-PET and MRI scans were included in this study. We developed a four-point visual rating scale to evaluate the presence and severity of MTL hypometabolism on FDG-PET scans. The visual MTL ratings were compared with quantitative glucose metabolic rate (MR{sub glc}) data extracted using regions of interest (ROIs) from the MRI-coregistered PET scans of all subjects. A standard rating evaluation of neocortical hypometabolism was also completed. Logistic regressions were used to determine and compare the diagnostic accuracy of the MTL and cortical ratings. For both MTL and cortical ratings, high intra- and inter-rater reliabilities were found (p values <0.001). The MTL rating was highly correlated with and yielded a diagnostic accuracy equivalent to the ROI MR{sub glc} measures (p values <0.001). The combination of MTL and cortical ratings significantly improved the diagnostic accuracy over the cortical rating alone, with 100% of AD, 77% of MCI, and 85% of NL cases being correctly identified. This study shows that the visual rating of MTL hypometabolism on PET is reliable, yields a diagnostic accuracy equal to the quantitative ROI measures, and is clinically useful and more sensitive than cortical ratings for patients with MCI. We suggest this method be further evaluated for its potential in the early diagnosis of AD. (orig.)

  12. Bilateral Diabetic Papillopathy and Metabolic Control

    DEFF Research Database (Denmark)

    Ostri, Christoffer; Lund-Andersen, Henrik; Sander, Birgit

    2010-01-01

    OBJECTIVE: The pathogenesis of diabetic papillopathy largely is unknown, but case reports suggest that it may follow rapidly improved metabolic control. The present study was designed to investigate this hypothesis. DESIGN: Retrospective case-control study. PARTICIPANTS: Two thousand sixty......-six patients with type 1 diabetes. METHODS: Review of clinical, photographic, and clinical chemistry records from a large diabetology and ophthalmology unit between 2001 and 2008. MAIN OUTCOME MEASURES: Simultaneous, bilateral diabetic papillopathy. RESULTS: The mean follow-up was 4.9 years. During 10 020...... patient-years of observation, bilateral diabetic papillopathy developed in 5 patients. During the year preceding this incident, all 5 patients had experienced a decrease in glycosylated hemoglobin A(1c) (HbA(1C)) at a maximum rate of -2.5 (mean) percentage points per quarter year, which was significantly...

  13. The effect of temperature and body weight on the routine metabolic rate and postprandial metabolic response in mulloway, Argyrosomus japonicus.

    Science.gov (United States)

    Pirozzi, Igor; Booth, Mark A

    2009-09-01

    Specific dynamic action (SDA) is the energy expended on the physiological processes associated with meal digestion and is strongly influenced by the characteristics of the meal and the body weight (BW) and temperature of the organism. This study assessed the effects of temperature and body weight on the routine metabolic rate (RMR) and postprandial metabolic response in mulloway, Argyrosomus japonicus. RMR and SDA were established at 3 temperatures (14, 20 and 26 degrees C). 5 size classes of mulloway ranging from 60 g to 1.14 kg were used to establish RMR with 3 of the 5 size classes (60, 120 and 240 g) used to establish SDA. The effect of body size on the mass-specific RMR (mg O(2) kg(-1) h(-1)) varied significantly depending on the temperature; there was a greater relative increase in the mass-specific RMR for smaller mulloway with increasing temperature. No statistical differences were found between the mass exponent (b) values at each temperature when tested against H(0): b=0.8. The gross RMR of mulloway (mg O(2) fish(-1) h(-1)) can be described as function of temperature (T; 14-26 degrees C) as: (0.0195T-0.0454)BW(g)(0.8) and the mass-specific RMR (mg O(2) kg(-1) h(-1)) can be described as: (21.042T-74.867)BW(g)(-0.2). Both SDA duration and time to peak SDA were influenced by temperature and body weight; SDA duration occurred within 41-89 h and peak time occurred within 17-38 h of feeding. The effect of body size on peak metabolic rate varied significantly depending on temperature, generally increasing with temperature and decreasing with increasing body size. Peak gross oxygen consumption (MO(2): mg O(2) fish(-1) h(-1)) scaled allometrically with BW. Temperature, but not body size, significantly affected SDA scope, although the difference was numerically small. There was a trend for MO(2) above RMR over the SDA period to increase with temperature; however, this was not statistically significant. The average proportion of energy expended over the SDA period

  14. Environment, migratory tendency, phylogeny and basal metabolic rate in birds.

    Directory of Open Access Journals (Sweden)

    Walter Jetz

    Full Text Available Basal metabolic rate (BMR represents the minimum maintenance energy requirement of an endotherm and has far-reaching consequences for interactions between animals and their environments. Avian BMR exhibits considerable variation that is independent of body mass. Some long-distance migrants have been found to exhibit particularly high BMR, traditionally interpreted as being related to the energetic demands of long-distance migration. Here we use a global dataset to evaluate differences in BMR between migrants and non-migrants, and to examine the effects of environmental variables. The BMR of migrant species is significantly higher than that of non-migrants. Intriguingly, while the elevated BMR of migrants on their breeding grounds may reflect the metabolic machinery required for long-distance movements, an alternative (and statistically stronger explanation is their occupation of predominantly cold high-latitude breeding areas. Among several environmental predictors, average annual temperature has the strongest effect on BMR, with a 50% reduction associated with a 20 degrees C gradient. The negative effects of temperature variables on BMR hold separately for migrants and non-migrants and are not due their different climatic associations. BMR in migrants shows a much lower degree of phylogenetic inertia. Our findings indicate that migratory tendency need not necessarily be invoked to explain the higher BMR of migrants. A weaker phylogenetic signal observed in migrants supports the notion of strong phenotypic flexibility in this group which facilitates migration-related BMR adjustments that occur above and beyond environmental conditions. In contrast to the findings of previous analyses of mammalian BMR, primary productivity, aridity or precipitation variability do not appear to be important environmental correlates of avian BMR. The strong effects of temperature-related variables and varying phylogenetic effects reiterate the importance of

  15. Effects of Time-Release Caffeine Containing Supplement on Metabolic Rate, Glycerol Concentration and Performance

    Directory of Open Access Journals (Sweden)

    Adam M. Gonzalez, Jay R. Hoffman, Adam J. Wells, Gerald T. Mangine, Jeremy R. Townsend, Adam R. Jajtner, Ran Wang, Amelia A. Miramonti, Gabriel J. Pruna, Michael B. LaMonica, Jonathan D. Bohner, Mattan W. Hoffman, Leonardo P. Oliveira, David H. Fukuda, Maren S. Fragala, Jeffrey R. Stout

    2015-06-01

    Full Text Available This study compared caffeine pharmacokinetics, glycerol concentrations, metabolic rate, and performance measures following ingestion of a time-release caffeine containing supplement (TR-CAF versus a regular caffeine capsule (CAF and a placebo (PL. Following a double-blind, placebo-controlled, randomized, cross-over design, ten males (25.9 ± 3.2 y who regularly consume caffeine ingested capsules containing either TR-CAF, CAF, or PL. Blood draws and performance measures occurred at every hour over an 8-hour period. Plasma caffeine concentrations were significantly greater (p < 0.05 in CAF compared to TR-CAF during hours 2-5 and significantly greater (p = 0.042 in TR-CAF compared to CAF at hour 8. There were no significant differences between trials in glycerol concentrations (p = 0.86 or metabolic measures (p = 0.17-0.91. Physical reaction time was significantly improved for CAF at hour 5 (p=0.01 compared to PL. Average upper body reaction time was significantly improved for CAF and TR-CAF during hours 1-4 (p = 0.04 and p = 0.01, respectively and over the 8-hour period (p = 0.04 and p = 0.001, respectively compared to PL. Average upper body reaction time was also significantly improved for TR-CAF compared to PL during hours 5-8 (p = 0.004. TR-CAF and CAF showed distinct pharmacokinetics yielding modest effects on reaction time, yet did not alter glycerol concentration, metabolic measures, or other performance measures.

  16. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.

    Science.gov (United States)

    Kawaguchi, Hideo; Yoshihara, Kumiko; Hara, Kiyotaka Y; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2018-05-17

    L-Arabinose is the second most abundant component of hemicellulose in lignocellulosic biomass, next to D-xylose. However, few microorganisms are capable of utilizing pentoses, and catabolic genes and operons enabling bacterial utilization of pentoses are typically subject to carbon catabolite repression by more-preferred carbon sources, such as D-glucose, leading to a preferential utilization of D-glucose over pentoses. In order to simultaneously utilize both D-glucose and L-arabinose at the same rate, a modified metabolic pathway was rationally designed based on metabolome analysis. Corynebacterium glutamicum ATCC 31831 utilized D-glucose and L-arabinose simultaneously at a low concentration (3.6 g/L each) but preferentially utilized D-glucose over L-arabinose at a high concentration (15 g/L each), although L-arabinose and D-glucose were consumed at comparable rates in the absence of the second carbon source. Metabolome analysis revealed that phosphofructokinase and pyruvate kinase were major bottlenecks for D-glucose and L-arabinose metabolism, respectively. Based on the results of metabolome analysis, a metabolic pathway was engineered by overexpressing pyruvate kinase in combination with deletion of araR, which encodes a repressor of L-arabinose uptake and catabolism. The recombinant strain utilized high concentrations of D-glucose and L-arabinose (15 g/L each) at the same consumption rate. During simultaneous utilization of both carbon sources at high concentrations, intracellular levels of phosphoenolpyruvate declined and acetyl-CoA levels increased significantly as compared with the wild-type strain that preferentially utilized D-glucose. These results suggest that overexpression of pyruvate kinase in the araR deletion strain increased the specific consumption rate of L-arabinose and that citrate synthase activity becomes a new bottleneck in the engineered pathway during the simultaneous utilization of D-glucose and L-arabinose. Metabolome analysis

  17. Differential effects of simple vs. complex carbohydrates on VLDL secretion rates and HDL metabolism in the guinea pig.

    Science.gov (United States)

    Fernandez, M L; Abdel-Fattah, G; McNamara, D J

    1995-04-28

    Guinea pigs were fed isocaloric diets containing 52% (w/w) carbohydrate, either sucrose or starch, to investigate effects of simple vs. complex carbohydrates on plasma VLDL and HDL metabolism. Plasma cholesterol concentrations were not different between dietary groups while plasma triacylglycerol (TAG) and VLDL cholesterol levels were significantly increased in animals fed the sucrose diet (P < 0.05). Hepatic VLDL TAG secretion rates measured following intravenous injection of Triton WR-1339 were not affected by carbohydrate type whereas the rate of apo B secretion was 1.9-fold higher in sucrose fed animals (P < 0.02). Nascent VLDL from the sucrose group contained less TAG per apo B suggesting that the higher plasma TAG in animals fed simple carbohydrates results from increased secretion of VLDL particles with lower TAG content. Sucrose fed animals exhibited higher concentrations of hepatic free cholesterol (P < 0.01) while hepatic TAG levels and acyl CoA:cholesterol acyltransferase (ACAT) activity were not different between groups. Plasma HDL cholesterol concentrations and composition, and plasma lecithin cholesterol acyltransferase (LCAT) activity were not affected by diet yet there was a positive correlation between HDL cholesteryl ester content and LCAT activities (r = 0.70, P < 0.05). Hepatic membranes from the sucrose group had a higher hepatic HDL binding protein number (Bmax) with no changes in the dissociation constant (Kd). These results suggest that at the same carbohydrate energy intake, simple sugars induce modest changes in HDL metabolism while VLDL metabolism is affected at multiple sites, as indicated by the higher concentrations of hepatic cholesterol, dissociation in the synthesis rates of VLDL components, and compositional changes in nascent and mature VLDL.

  18. Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers

    Energy Technology Data Exchange (ETDEWEB)

    Miletto, M.; Williams, K.H.; N' Guessan, A.L.; Lovley, D.R.

    2011-04-01

    Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations, and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to

  19. Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris.

    Science.gov (United States)

    Nezammahalleh, Hassan; Ghanati, Faezeh; Adams, Thomas A; Nosrati, Mohsen; Shojaosadati, Seyed Abbas

    2016-10-01

    An electric field (EF) generator device was fabricated and applied to the treatment of Chlorella vulgaris ISC33 at three distinct concentrations before cultivation. The EF of moderate intensity (2.7kVcm(-1)) has a hormetic effect on algal growth. The highest growth stimulation of 51% was observed after 50min treatment of 0.4gL(-1) algal suspension. The influence of EF on the system was then studied from both theoretical and experimental perspectives. The growth rate increased with treatment time up to a maximum because of improved membrane permeability, and then declined afterwards due to peroxide accumulation in the medium. The contents of chlorophylls, carotenoids, soluble carbohydrates, lipids, and proteins were also measured to understand possible changes on algal metabolism. The EF treatment of algal suspension has no observable effect on the cell metabolism while both algal growth and metabolism was significantly affected by the inoculum size. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Petroleum production at Maximum Efficient Rate Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    International Nuclear Information System (INIS)

    1993-07-01

    This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government's interest is approximately 78% and CUSA's interest is approximately 22%. The government's interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS)

  1. Local cerebral metabolic rate of glucose (lCMRGlc) in treated and untreated patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Rougemont, D.; Baron, J.C.; Collard, P.; Bustany, P.; Comar, D.; Agid, Y.

    1983-06-01

    Local cerebral metabolic rate of glucose (lCMRGlc) was measured twice, using positron emission tomography and 18 F-Fluoro-2-deoxy-D-glucose ( 18 FDG), in 4 patients with Parkinson disease, first unmedicated and then treated with L-DOPA. Despite a dramatic clinical improvement, no significant changes in lCMRGlc could be detected. Moreover, no reproducible differences of lCMRGlc were found between patients with Parkinson disease and with normal brain

  2. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Science.gov (United States)

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J; Grimm, Volker

    2014-01-01

    Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  3. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    Science.gov (United States)

    Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.

    2016-01-01

    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.

  4. Phosphoinositide metabolism and metabolism-contraction coupling in rabbit aorta

    International Nuclear Information System (INIS)

    Coburn, R.F.; Baron, C.; Papadopoulos, M.T.

    1988-01-01

    The authors tested a hypothesis that metabolism-contraction coupling in vascular smooth muscle is controlled by the rate of delivery of energy to ATP-dependent reactions in the inositol phospholipid transduction system that generate second messengers exerting control on smooth muscle force. Rabbit aorta was contracted by norepinephrine (NOR) under conditions of normoxia and hypoxia, and changes in inositol phospholipid pool sizes and metabolic flux rates (J F ) were determined. J F was determined by labeling free cytosolic myo-inositol by incubation of unstimulated muscle with myo-[ 3 H]inositol and then measuring rates of incorporation of this isotope into inositol phospholipids and inositol phosphates when the muscle was activated by NOR. J F measured during maintenance of NOR-induced force was markedly inhibited during hypoxia to 40-50% of that determined during normoxia; rates of increases in inositol phosphate radioactivities were similarly depressed during NOR activation under hypoxia. The hypoxia-induced decrease in J F was associated with four- to fivefold increase in phosphatidylinositol 4-phosphate (PIP) total pool size, suggesting PIP kinase was inhibited and rate limiting. These data suggest that activation of inositol phospholipid metabolism, which generates inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol, is blunted under conditions where aerobic energy production is inhibited. Data are consistent with rate-limiting effects of decreased ATP delivery, or decreased phosphate potential, on PIP kinase and reactions that control resynthesis of phosphatidylinositol

  5. Mice divergently selected for high and low basal metabolic rates evolved different cell size and organ mass.

    Science.gov (United States)

    Maciak, S; Bonda-Ostaszewska, E; Czarnołęski, M; Konarzewski, M; Kozłowski, J

    2014-03-01

    Evolution of metabolic rates of multicellular organisms is hypothesized to reflect the evolution of their cell architecture. This is likely to stem from a tight link between the sizes of cells and nuclei, which are expected to be inversely related to cell metabolism. Here, we analysed basal metabolic rate (BMR), internal organ masses and the cell/nucleus size in different tissues of laboratory mice divergently selected for high/low mass-corrected BMR and four random-bred mouse lines. Random-bred lines had intermediate levels of BMR as compared to low- and high-BMR lines. Yet, this pattern was only partly consistent with the between-line differences in cell/nucleus sizes. Erythrocytes and skin epithelium cells were smaller in the high-BMR line than in other lines, but the cells of low-BMR and random-bred mice were similar in size. On the other hand, the size of hepatocytes, kidney proximal tubule cells and duodenum enterocytes were larger in high-BMR mice than other lines. All cell and nucleus sizes were positively correlated, which supports the role of the nucleus in cell size regulation. Our results suggest that the evolution of high BMR involves a reduction in cell size in specialized tissues, whose functions are primarily dictated by surface-to-volume ratios, such as erythrocytes. High BMR may, however, also incur an increase in cell size in tissues with an intense transcription and translation, such as hepatocytes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  6. Validation of resting metabolic rate prediction equations for teenagers

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Santos da Fonseca

    2007-09-01

    Full Text Available The resting metabolic rate (RMR can be defi ned as the minimum rate of energy spent and represents the main component of the energetic outlay. The purpose of this study is to validate equations to predict the resting metabolic rate in teenagers (103 individuals, being 51 girls and 52 boys, with age between 10 and 17 years from Florianópolis – SC – Brazil. It was measured: the body weight, body height, skinfolds and obtained the lean and body fat mass through bioimpedance. The nonproteic RMR was measured by Weir’s equation (1949, utilizing AeroSport TEEM-100 gas analyzer. The studied equations were: Harry and Benedict (1919, Schofi eld (1985, WHO/FAO/UNU (1985, Henry and Rees (1991, Molnár et al. (1998, Tverskaya et al. (1998 and Müller et al. (2004. In order to study the cross-validation of the RMR prediction equations and its standard measure (Weir 1949, the following statistics procedure were calculated: Pearson’s correlation (r ≥ 0.70, the “t” test with the signifi cance level of p0.05 in relation to the standard measure, with exception of the equations suggested for Tverskaya et al. (1998, and the two models of Müller et al (2004. Even though there was not a signifi cant difference, only the models considered for Henry and Rees (1991, and Molnár et al. (1995 had gotten constant error variation under 5%. All the equations analyzed in the study in girls had not reached criterion of correlation values of 0.70 with the indirect calorimetry. Analyzing the prediction equations of RMR in boys, all of them had moderate correlation coeffi cients with the indirect calorimetry, however below 0.70. Only the equation developed for Tverskaya et al. (1998 presented differences (p ABSTRACT0,05 em relação à medida padrão (Weir 1949, com exceção das equações sugeridas por Tverskaya et al. (1998 e os dois modelos de Müller et al (2004. Mesmo não havendo diferença signifi cativa, somente os modelos propostos por Henry e Rees (1991

  7. Basal metabolic rate can evolve independently of morphological and behavioural traits.

    Science.gov (United States)

    Mathot, K J; Martin, K; Kempenaers, B; Forstmeier, W

    2013-09-01

    Quantitative genetic analyses of basal metabolic rate (BMR) can inform us about the evolvability of the trait by providing estimates of heritability, and also of genetic correlations with other traits that may constrain the ability of BMR to respond to selection. Here, we studied a captive population of zebra finches (Taeniopygia guttata) in which selection lines for male courtship rate have been established. We measure BMR in these lines to see whether selection on male sexual activity would change BMR as a potentially correlated trait. We find that the genetic correlation between courtship rate and BMR is practically zero, indicating that the two traits can evolve independently of each other. Interestingly, we find that the heritability of BMR in our population (h(2)=0.45) is markedly higher than was previously reported for a captive zebra finch population from Norway. A comparison of the two studies shows that additive genetic variance in BMR has been largely depleted in the Norwegian population, especially the genetic variance in BMR that is independent of body mass. In our population, the slope of BMR increase with body mass differs not only between the sexes but also between the six selection lines, which we tentatively attribute to genetic drift and/or founder effects being strong in small populations. Our study therefore highlights two things. First, the evolvability of BMR may be less constrained by genetic correlations and lack of independent genetic variation than previously described. Second, genetic drift in small populations can rapidly lead to different evolvabilities across populations.

  8. Standard metabolic rates of early life stages of the diamondback terrapin (Malaclemys terrapin), an estuarine turtle, suggest correlates between life history changes and the metabolic economy of hatchlings.

    Science.gov (United States)

    Rowe, Christopher L

    2018-04-01

    I estimated standard metabolic rates (SMR) using measurements of oxygen consumption rates of embryos and unfed, resting hatchlings of the diamondback terrapin (Malaclemys terrapin) three times during embryonic development and twice during the early post-hatching period. The highest observed SMRs occurred during mid to late embryonic development and the early post-hatching period when hatchlings were still reliant on yolk reserves provided by the mother. Hatchlings that were reliant on yolk displayed per capita SMR 135 % higher than when measured 25 calendar days later after they became reliant on exogenous resources. The magnitude of the difference in hatchling SMR between yolk-reliant and exogenously feeding stages was much greater than that attributed to costs of digestion (specific dynamic action) observed in another emydid turtle, suggesting that processing of the yolk was not solely responsible for the observed difference. The pre-feeding period of yolk reliance of hatchlings corresponds with the period of dispersal from the nesting site, suggesting that elevated SMR during this period could facilitate dispersal activities. Thus, I hypothesize that the reduction in SMR after the development of feeding behaviors may reflect an energy optimization strategy in which a high metabolic expenditure in support of development and growth of the embryo and dispersal of the hatchling is followed by a substantial reduction in metabolic expenditure coincident with the individual becoming reliant on exogenous resources following yolk depletion. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Local cerebral metabolic rate of glucose (lCMRGlc) in treated and untreated patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Rougemont, D; Baron, J C; Collard, P; Bustany, P; Comar, D; Agid, Y

    1983-06-01

    Local cerebral metabolic rate of glucose (lCMRGlc) was measured twice, using positron emission tomography and /sup 18/F-Fluoro-2-deoxy-D-glucose (/sup 18/FDG), in 4 patients with Parkinson disease, first unmedicated and then treated with L-DOPA. Despite a dramatic clinical improvement, no significant changes in lCMRGlc could be detected. Moreover, no reproducible differences of lCMRGlc were found between patients with Parkinson disease and with normal brain.

  10. Metabolic rate and thyroid activity of hens in relation to the state of feathering.

    Science.gov (United States)

    Pietras, M

    1981-01-01

    Heat production, rectal temperature and thyroid activity were determined in NH X Lg hens that were 40 and 80% defeathered. Within individual groups there was a significant increase in heat production only in hens that were 80% defeathered. In comparison with the control group, defeathered chickens had higher metabolic rates during each examined period. During the third week of the experiment there was a temporary drop in the rectal temperature of the experimental birds. After nine weeks chicken with the greatest degree of defeathering had the highest thyroid weight and the highest levels of thyroxin in the blood plasma.

  11. Metabolic surgery: quo vadis?

    Science.gov (United States)

    Ramos-Leví, Ana M; Rubio Herrera, Miguel A

    2014-01-01

    The impact of bariatric surgery beyond its effect on weight loss has entailed a change in the way of regarding it. The term metabolic surgery has become more popular to designate those interventions that aim at resolving diseases that have been traditionally considered as of exclusive medical management, such as type 2 diabetes mellitus (T2D). Recommendations for metabolic surgery have been largely addressed and discussed in worldwide meetings, but no definitive consensus has been reached yet. Rates of diabetes remission after metabolic surgery have been one of the most debated hot topics, with heterogeneity being a current concern. This review aims to identify and clarify controversies regarding metabolic surgery, by focusing on a critical analysis of T2D remission rates achieved with different bariatric procedures, and using different criteria for its definition. Indications for metabolic surgery for patients with T2D who are not morbidly obese are also discussed. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  12. Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain : the Baltimore Longitudinal Study on Aging

    NARCIS (Netherlands)

    Seidell, J C; Muller, D C; Sorkin, J D; Andres, R.

    The authors followed 775 men (aged 18-98 years) participating in the Baltimore Longitudinal Study in Aging for an average of ten years. Resting metabolic rate and fasting respiratory exchange ratio (RER) were measured by indirect calorimetry on their first visit and related to subsequent weight

  13. Fluoroacetylcarnitine: metabolism and metabolic effects in mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, J; Davis, E J

    1973-01-01

    The metabolism and metabolic effects of fluoroacetylcarnitine have been investigated. Carnitineacetyltransferase transfers the fluoro-acetyl group of fluoroacetylcarnitine nearly as rapidly to CoA as the acetyl group of acetylcarnitine. Fluorocitrate is then formed by citrate synthase, but this second reaction is relatively slow. The fluorocitrate formed intramitochondrially inhibits the metabolism of citrate. In heart and skeletal muscle mitochondria the accumulated citrate inhibits citrate synthesis and the ..beta..-oxidation of fatty acids. Free acetate is formed, presumably because accumulated acetyl-CoA is hydrolyzed. In liver mitochondria the accumulation of citrate leads to a relatively increased rate of ketogenesis. Increased ketogenesis is obtained also upon the addition of citrate to the reaction mixture.

  14. Endothelial dysfunction and reduced heart rate variability in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elena Nikolaevna Smirnova

    2018-03-01

    Full Text Available According to experts of the World Health Organization (WHO, metabolic syndrome (MS can be considered as pandemy of the XXI century, because its prevalence among the population of developed countries is about 25-35%. In this study with the purpose of complex investigation of the autonomic nervous system and endothelial function we included 66 patients with MS between the ages of 25 and 61 (46.9±9.9 years. A comparison group of apparently healthy individuals (16 individuals, average age of 45.3±2.3 years; P>0.05 was studied. To evaluate the response of microvascular tone, we used the method of wavelet analysis of skin temperature oscillations during cooling of the limb. All patients underwent the study of heart rate variability. The levels of insulin, endothelin-1, and vascular endothelial growth factor were determined using enzyme immunoassay. Patients with MS had significant differences in all metabolic parameters. Our study showed that in the group of MS there is a decrease of the variability of heart rhythm compared with the healthy group. Conducting cold test revealed signs of endothelial dysfunction in the MS group, which was manifested by the decrease of the index of vasodilation in the endothelial and neurogenic frequency range. In the study group we determined the increase in biochemical markers of endothelial dysfunction, which correlated with parameters of vasodilation. Also, the presence of endothelial dysfunction significantly correlated with signs of reduction of the variability of the heart rhythm.

  15. Special K: testing the potassium link between radioactive rubidium (86Rb) turnover and metabolic rate.

    Science.gov (United States)

    Tomlinson, Sean; Mathialagan, Priya D; Maloney, Shane K

    2014-04-01

    The measurement of (86)Rb turnover recently has been suggested as a useful method for measuring field metabolic rate in small animals. We investigated a proposed mechanism of (86)Rb turnover, its analogy to K(+), by comparing the turnover of (86)Rb in a model insect, the rhinoceros beetle Xylotrupes gideon, fed a diet of plum jam or plum jam enriched with K(+) or Rb(+). The turnover of (86)Rb in the beetles on the K(+) and the Rb(+) diets was higher than that for beetles on the jam diet (F2,311=32.4; P=1.58×10(-13)). We also exposed the beetles to different ambient temperatures to induce differences in metabolic rate ( ) while feeding them the jam and K(+) diets. was higher at higher ambient temperature (Ta) for both jam (F1,11=14.56; P=0.003) and K(+) (F1,8=15.39; P=0.004) dietary groups, and the turnover of (86)Rb was higher at higher Ta for both jam (F1,11=10.80; P=0.007) and K(+) (F1,8=12.34; P=0.008) dietary groups. There was a significant relationship between (86)Rb turnover and for both the jam (F1,11=35.00; P=1.0×10(-3)) and the K(+) (F1,8=64.33; P=4.3×10(-5)) diets, but the relationship differed between the diets (F1,19=14.07; P=0.001), with a higher (86)Rb turnover in beetles on the K(+)-enriched than on the jam diet at all Ta. We conclude that (86)Rb turnover is related to K(+) metabolism, and that this is the mechanism of the relationship between (86)Rb turnover and . Studies relating (86)Rb turnover to should maintain dietary [K] as close as possible to that of natural diets for the most accurate calibrations for free-ranging animals.

  16. How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms.

    Science.gov (United States)

    Swanson, David L; McKechnie, Andrew E; Vézina, François

    2017-12-01

    Adaptive explanations for both high and low body mass-independent basal metabolic rate (BMR) in endotherms are pervasive in evolutionary physiology, but arguments implying a direct adaptive benefit of high BMR are troublesome from an energetic standpoint. Here, we argue that conclusions about the adaptive benefit of BMR need to be interpreted, first and foremost, in terms of energetics, with particular attention to physiological traits on which natural selection is directly acting. We further argue from an energetic perspective that selection should always act to reduce BMR (i.e., maintenance costs) to the lowest level possible under prevailing environmental or ecological demands, so that high BMR per se is not directly adaptive. We emphasize the argument that high BMR arises as a correlated response to direct selection on other physiological traits associated with high ecological or environmental costs, such as daily energy expenditure (DEE) or capacities for activity or thermogenesis. High BMR thus represents elevated maintenance costs required to support energetically demanding lifestyles, including living in harsh environments. BMR is generally low under conditions of relaxed selection on energy demands for high metabolic capacities (e.g., thermoregulation, activity) or conditions promoting energy conservation. Under these conditions, we argue that selection can act directly to reduce BMR. We contend that, as a general rule, BMR should always be as low as environmental or ecological conditions permit, allowing energy to be allocated for other functions. Studies addressing relative reaction norms and response times to fluctuating environmental or ecological demands for BMR, DEE, and metabolic capacities and the fitness consequences of variation in BMR and other metabolic traits are needed to better delineate organismal metabolic responses to environmental or ecological selective forces.

  17. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders.

    Science.gov (United States)

    Pistorio, Elisabetta; Luca, Maria; Luca, Antonina; Messina, Vincenzo; Calandra, Carmela

    2011-10-28

    To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI) as a new possible biomarker. 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs). The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR) official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV) and lipid metabolism has been investigated. Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  18. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders

    Directory of Open Access Journals (Sweden)

    Messina Vincenzo

    2011-10-01

    Full Text Available Abstract Objective To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI as a new possible biomarker. Methods 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs. The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV and lipid metabolism has been investigated. Results Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Conclusions Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  19. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Directory of Open Access Journals (Sweden)

    Viola Pavlova

    Full Text Available Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus. Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB congener, 2,2',4,4',55-hexaCB (CB153 in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  20. Metabolic clearance and blood production rates of estradiol in hyperthyroidism.

    Science.gov (United States)

    Ridgway, E C; Longcope, C; Maloof, F

    1975-09-01

    The metabolic clearance rate of 17beta-estradiol (MCR2), the plasma levels of 17beta-estradiol (E2)1, sex-steroid binding globulin (SSBG), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in 10 hyperthyroid subjects (7 men and 3 women). The blood production rate of 17beta-estradiol (PB2) was calculated for all subjects. Nine of the 10 hyperthyroid subjects had a decreased MCR2 which returned towards normal in 5 of the 6 subjects restudied following therapy. In all 10 subjects the levels of SSBG were increased when they were hyperthyroid and returned toward normal with therapy. It is concluded that the decrease in MCR2 is largely due to the increased binding of 17beta-estradiol to SSBG. In 7 of the 10 hyperthyroid the plasma E2 concentrations were normal whereas 3 had slightly elevated levels. In 8 of the 10 hyperthyroid the PB2 was within the normal range. Only 2 hyperthyroid subjects had slightly elevated PB2. In the 6 subjects who were restudied after therapy, there was no consistent change in PB2 which remained in the normal range in all cases. It is concluded that the MCR2 is decreased in most subjects with hyperthyroidism in association with an increase of SSBG. Despite this change in MCR2 there is no significant change in PB2. The increase in SSBG levels in hyperthyroidism appears to be a direct effect of the elevation of thyroid hormone activity and is not mediated through estrogen.

  1. Should measurement of maximum urinary flow rate and residual urine volume be a part of a "minimal care" assessment programme in female incontinence?

    DEFF Research Database (Denmark)

    Sander, Pia; Mouritsen, L; Andersen, J Thorup

    2002-01-01

    OBJECTIVE: The aim of this study was to evaluate the value of routine measurements of urinary flow rate and residual urine volume as a part of a "minimal care" assessment programme for women with urinary incontinence in detecting clinical significant bladder emptying problems. MATERIAL AND METHODS....... Twenty-six per cent had a maximum flow rate less than 15 ml/s, but only 4% at a voided volume > or =200 ml. Residual urine more than 149 ml was found in 6%. Two women had chronic retention with overflow incontinence. Both had typical symptoms with continuous leakage, stranguria and chronic cystitis...

  2. TU-FG-209-03: Exploring the Maximum Count Rate Capabilities of Photon Counting Arrays Based On Polycrystalline Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liang, A K; Koniczek, M; Antonuk, L E; El-Mohri, Y; Zhao, Q [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: Photon counting arrays (PCAs) offer several advantages over conventional, fluence-integrating x-ray imagers, such as improved contrast by means of energy windowing. For that reason, we are exploring the feasibility and performance of PCA pixel circuitry based on polycrystalline silicon. This material, unlike the crystalline silicon commonly used in photon counting detectors, lends itself toward the economic manufacture of radiation tolerant, monolithic large area (e.g., ∼43×43 cm2) devices. In this presentation, exploration of maximum count rate, a critical performance parameter for such devices, is reported. Methods: Count rate performance for a variety of pixel circuit designs was explored through detailed circuit simulations over a wide range of parameters (including pixel pitch and operating conditions) with the additional goal of preserving good energy resolution. The count rate simulations assume input events corresponding to a 72 kVp x-ray spectrum with 20 mm Al filtration interacting with a CZT detector at various input flux rates. Output count rates are determined at various photon energy threshold levels, and the percentage of counts lost (e.g., due to deadtime or pile-up) is calculated from the ratio of output to input counts. The energy resolution simulations involve thermal and flicker noise originating from each circuit element in a design. Results: Circuit designs compatible with pixel pitches ranging from 250 to 1000 µm that allow count rates over a megacount per second per pixel appear feasible. Such rates are expected to be suitable for radiographic and fluoroscopic imaging. Results for the analog front-end circuitry of the pixels show that acceptable energy resolution can also be achieved. Conclusion: PCAs created using polycrystalline silicon have the potential to offer monolithic large-area detectors with count rate performance comparable to those of crystalline silicon detectors. Further improvement through detailed circuit

  3. The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    Science.gov (United States)

    Sim, Jingwei; Cowburn, Andrew S; Palazon, Asis; Madhu, Basetti; Tyrakis, Petros A; Macías, David; Bargiela, David M; Pietsch, Sandra; Gralla, Michael; Evans, Colin E; Kittipassorn, Thaksaon; Chey, Yu C J; Branco, Cristina M; Rundqvist, Helene; Peet, Daniel J; Johnson, Randall S

    2018-04-03

    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Use of the local false discovery rate for identification of metabolic biomarkers in rat urine following Genkwa Flos-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Zuojing Li

    Full Text Available Metabolomics is concerned with characterizing the large number of metabolites present in a biological system using nuclear magnetic resonance (NMR and HPLC/MS (high-performance liquid chromatography with mass spectrometry. Multivariate analysis is one of the most important tools for metabolic biomarker identification in metabolomic studies. However, analyzing the large-scale data sets acquired during metabolic fingerprinting is a major challenge. As a posterior probability that the features of interest are not affected, the local false discovery rate (LFDR is a good interpretable measure. However, it is rarely used to when interrogating metabolic data to identify biomarkers. In this study, we employed the LFDR method to analyze HPLC/MS data acquired from a metabolomic study of metabolic changes in rat urine during hepatotoxicity induced by Genkwa flos (GF treatment. The LFDR approach was successfully used to identify important rat urine metabolites altered by GF-stimulated hepatotoxicity. Compared with principle component analysis (PCA, LFDR is an interpretable measure and discovers more important metabolites in an HPLC/MS-based metabolomic study.

  5. Effects of triiodothyronine on turnover rate and metabolizing enzymes for thyroxine in thyroidectomized rats.

    Science.gov (United States)

    Nagao, Hidenori; Sasaki, Makoto; Imazu, Tetsuya; Takahashi, Kenjo; Aoki, Hironori; Minato, Kouichi

    2014-10-29

    Previous studies in rats have indicated that surgical thyroidectomy represses turnover of serum thyroxine (T4). However, the mechanism of this process has not been identified. To clarify the mechanism, we studied adaptive variation of metabolic enzymes involved in T4 turnover. We compared serum T4 turnover rates in thyroidectomized (Tx) rats with or without infusion of active thyroid hormone, triiodothyronine (T3). Furthermore, the levels of mRNA expression and activity of the metabolizing enzymes, deiodinase type 1 (D1), type 2 (D2), uridine diphosphate-glucuronosyltransferase (UGT), and sulfotransferase were also compared in several tissues with or without T3 infusion. After the T3 infusion, the turnover rate of serum T4 in Tx rats returned to normal. Although mRNA expression and activity of D1 decreased significantly in both liver and kidneys without T3 infusion, D2 expression and activity increased markedly in the brain, brown adipose tissue, and skeletal muscle. Surprisingly, hepatic UGT mRNA expression and activity in Tx rats increased significantly in comparison with normal rats, and returned to normal after T3 infusion. This study suggests that repression of the disappearance of serum T4 in rats after Tx is a homeostatic response to decreased serum T3 concentrations. Additionally, T4 glucuronide is a storage form of T4, but may also have biological significance. These results suggest strongly that repression of deiodination of T4 by D1 in the liver and kidneys plays a major role in thyroid hormone homeostasis in Tx rats, and that hepatic UGT also plays a key role in this mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Measurement of the carrying capacity of benthic habitats using a metabolic-rate based index.

    Science.gov (United States)

    Edgar, G J

    1993-03-01

    Carrying capacities of grazed habitats are typically expressed as numbers or biomass of animals per unit area; however, such parameters are appropriate only when the body size of animals is constant because consumption and other metabolic-rate based parameters such as respiration and production are proportional to body mass raised by a power of ≈0.75 rather than 0 or 1. Habitat carrying levels are therefore better expressed in the form of an index of total community consumption by summing the body masses of individual animals after they have been scaled using a biomass exponent of ≈0.75. A parameter scaled in this way,P 20 , varied in a predictable manner when calculated for the mobile epifaunal assemblages associated with rope fibre habitats placed at marine and estuarine sites;P 20 showed no significant difference between 17 shallow, clear-water sites worldwide, but declined consistently when photosynthesis was reduced.P 20 also did not vary significantly when calculated for the mobile epifaunal communities associated with fourAmphibolis antarctica seagrass habitats in Australia ([Formula: see text] = 100 µg ·g -1 · day -1 ), and reached but did not significantly exceed a ceiling of ≈280 μg · g -1 · day -1 forSargassum plants. These results are consistent with the hypothesis that the production of shallow-water epifaunal communities of grazers is constrained by resource ceilings which can be quantified using metabolic-rate based indices. If this "production ceiling" hypothesis is correct then diffuse competition is generally more important than predation or environmental disturbance in restricting the growth of mobile epifaunal populations.

  7. Metabolic differentiation in biofilms as indicated by carbon dioxide production rates.

    Science.gov (United States)

    Bester, Elanna; Kroukamp, Otini; Wolfaardt, Gideon M; Boonzaaier, Leandro; Liss, Steven N

    2010-02-01

    The measurement of carbon dioxide production rates as an indication of metabolic activity was applied to study biofilm development and response of Pseudomonas sp. biofilms to an environmental disturbance in the form of a moving air-liquid interface (i.e., shear). A differential response in biofilm cohesiveness was observed after bubble perturbation, and the biofilm layers were operationally defined as either shear-susceptible or non-shear-susceptible. Confocal laser scanning microscopy and image analysis showed a significant reduction in biofilm thickness and biomass after the removal of the shear-susceptible biofilm layer, as well as notable changes in the roughness coefficient and surface-to-biovolume ratio. These changes were accompanied by a 72% reduction of whole-biofilm CO2 production; however, the non-shear-susceptible region of the biofilm responded rapidly after the removal of the overlying cells and extracellular polymeric substances (EPS) along with the associated changes in nutrient and O2 flux, with CO2 production rates returning to preperturbation levels within 24 h. The adaptable nature and the ability of bacteria to respond to environmental conditions were further demonstrated by the outer shear-susceptible region of the biofilm; the average CO2 production rate of cells from this region increased within 0.25 h from 9.45 +/- 5.40 fmol of CO2 x cell(-1) x h(-1) to 22.6 +/- 7.58 fmol of CO2 x cell(-1) x h(-1) when cells were removed from the biofilm and maintained in suspension without an additional nutrient supply. These results also demonstrate the need for sufficient monitoring of biofilm recovery at the solid substratum if mechanical methods are used for biofouling control.

  8. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata)

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen

    2013-01-01

    by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, MO2std or Ucrit. In contrast, data revealed strong...... swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming...

  9. The tropical lapse rate steepened during the Last Glacial Maximum

    NARCIS (Netherlands)

    Loomis, S.E.; Russell, J.M.; Verschuren, D.; Morrill, C.; De Cort, G.; Sinninghe Damsté, J.S.; Olago, D.; Eggermont, H.; Street-Perrott, F.A.; Kelly, M.A.

    2017-01-01

    The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become lesssteep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountainenvironments. However, the sensitivity of the lapse rate to climate

  10. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking

    Science.gov (United States)

    Caputo, Joshua M.; Collins, Steven H.

    2014-12-01

    Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m.s-1. Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models.

  11. Finite mixture model: A maximum likelihood estimation approach on time series data

    Science.gov (United States)

    Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-09-01

    Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.

  12. The tropical lapse rate steepened during the Last Glacial Maximum

    NARCIS (Netherlands)

    Loomis, Shannon E; Russell, James M; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F Alayne; Kelly, Meredith A

    The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate

  13. Effect of dietary restriction on immune response of laboratory mice divergently selected for basal metabolic rate.

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2012-01-01

    To study whether dietary restriction (DR; 70% of ad lib. feeding)-elicited immunosuppression results from the trade-off between the costs of mounting an immune response and the metabolic costs of maintenance, we subjected mice from two divergent lines selected for high basal metabolic rate (H-BMR) and low BMR (L-BMR) to 4 wk of DR and then challenged them with keyhole limpet hemocyanin (KLH) antigen. Those line types differ genetically with respect to BMR and to the mass of metabolically expensive internal organs, which are larger in H-BMR mice. In mice of both line types, DR resulted in a significant reduction of body mass, an immune response, and the downsizing of spleen, lymph nodes, thymus, heart, and kidneys but not small intestines. DR resulted in a greater reduction of the spleen and lymph nodes in mice of the H-BMR line type, whereas the thymus was more affected in L-BMR line type. In contrast, immunization resulted in an increase of liver mass in DR mice of both line types. A comparison of the results of current and earlier studies on the same mouse line types suggests that metabolic trade-offs involving the costs of an immune response are more apparent when animals are forced to increase energy demands (e.g., by cold exposure) compared to when energy demands are decreased through DR. Our findings also suggest that divelrgent selection on BMR resulted in between-line-type differences in T-cell- and B-cell-mediated types of an immune response. More generally, our results indicate that production of a wide repertoire of antibodies is not correlated with high BMR.

  14. Race, gender, and nicotine metabolism in adolescent smokers.

    Science.gov (United States)

    Rubinstein, Mark L; Shiffman, Saul; Rait, Michelle A; Benowitz, Neal L

    2013-07-01

    Differences in the rate of nicotine metabolism between genders and different races have been hypothesized to contribute to disparities in smoking rate, susceptibility to addiction, and ability to quit smoking. The purpose of this study was to determine the effect of race and gender on the rate of nicotine metabolism as indicated by the nicotine metabolite ratio (NMR) in adolescent smokers. One hundred and fifty-nine adolescent smokers aged 13-17 were given 2mg of deuterium-labeled cotinine (cotinine-d4). The NMR was calculated as the ratio of concentrations of deuterium-labeled 3'-hydroxycotinine (ng/ml) to cotinine-d4 (ng/ml) in saliva and is a validated biomarker of the rate of nicotine metabolism. The sample was 67.3% female and racially mixed. On average, Whites had the fastest rates of metabolism compared with both Blacks/African Americans (p smokers, racial variations in rates of nicotine metabolism were similar to those that have been reported in adult smokers. In contrast to findings in adult smokers, the NMR did not vary significantly by gender or self-reported hormone use.

  15. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xing Xian Yu

    Full Text Available Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4 in peripheral tissues. Treatment of diet-induce obese (DIO mice with FGFR4 antisense oligonucleotides (ASO specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  16. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Science.gov (United States)

    Yu, Xing Xian; Watts, Lynnetta M; Manchem, Vara Prasad; Chakravarty, Kaushik; Monia, Brett P; McCaleb, Michael L; Bhanot, Sanjay

    2013-01-01

    Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  17. Energy metabolism of synaptosomes from different neuronal systems of rat cerebellum during aging: a functional proteomic characterization.

    Science.gov (United States)

    Ferrari, Federica; Gorini, Antonella; Villa, Roberto Federico

    2015-01-01

    Functional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the cerebellar cortex of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from the glutamatergic mossy fibre endings which make synaptic contact with the granule cells of the granular layer, and the "small" synaptosomes, derived from the pre-synaptic terminals of granule cells making synaptic contact with the dendrites of Purkinje cells, were isolated by a combined differential/gradient centrifugation technique. Because most brain disorders are associated with bioenergetic changes, the maximum rate (Vmax) of selected enzymes of glycolysis, Krebs' cycle, glutamate and amino acids metabolism, and acetylcholine catabolism were evaluated. The results show that "large" and "small" synaptosomes possess specific and independent metabolic features. This study represents a reliable model to study in vivo (1) the physiopathological molecular mechanisms of some brain diseases dependent on energy metabolism, (2) the responsiveness to noxious stimuli, and (3) the effects of drugs, discriminating their action sites at subcellular level on specific neuronal pathways.

  18. Basal metabolic regulatory responses and rhythmic activity of ...

    African Journals Online (AJOL)

    ... Rattus sp. Low concentrations of kola nut extract stimulated the heart by increasing rate and force of contraction as well as metabolic rate. Higher concentrations reduced rate and amplitude of beat resulting, at still higher concentrations in heart failure. Keywords: Kolanut, extract, basal metabolic rate, mammalian heart ...

  19. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    Science.gov (United States)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  20. Size dependence in non-sperm ejaculate production is reflected in daily energy expenditure and resting metabolic rate.

    Science.gov (United States)

    Friesen, Christopher R; Powers, Donald R; Copenhaver, Paige E; Mason, Robert T

    2015-05-01

    The non-sperm components of an ejaculate, such as copulatory plugs, can be essential to male reproductive success. But the costs of these ejaculate components are often considered trivial. In polyandrous species, males are predicted to increase energy allocation to the production of non-sperm components, but this allocation is often condition dependent and the energetic costs of their production have never been quantified. Red-sided garter snakes (Thamnophis sirtalis parietalis) are an excellent model with which to quantify the energetic costs of non-sperm components of the ejaculate as they exhibit a dissociated reproductive pattern in which sperm production is temporally disjunct from copulatory plug production, mating and plug deposition. We estimated the daily energy expenditure and resting metabolic rate of males after courtship and mating, and used bomb calorimetry to estimate the energy content of copulatory plugs. We found that both daily energy expenditure and resting metabolic rate were significantly higher in small mating males than in courting males, and a single copulatory plug without sperm constitutes 5-18% of daily energy expenditure. To our knowledge, this is the first study to quantify the energetic expense of size-dependent ejaculate strategies in any species. © 2015. Published by The Company of Biologists Ltd.

  1. Velocity, aerobic power and metabolic cost of whole body and arms only front crawl swimming at various stroke rates.

    Science.gov (United States)

    Morris, Kirstin S; Osborne, Mark A; Shephard, Megan E; Skinner, Tina L; Jenkins, David G

    2016-05-01

    Stroke rate (SR) has not been considered in previous research examining the relative roles of the limbs in front-crawl performance. This study compared velocity, aerobic power ([Formula: see text]) and metabolic cost (C) between whole body (WB) and arms only (AO) front-crawl swimming across various intensities while controlling SR. Twenty Australian national swimmers performed six 200 m front-crawl efforts under two conditions: (1) WB swimming and, (2) AO swimming. Participants completed the 200 m trials under three SR conditions: "low" (22-26 stroke-cycles min(-1)), "moderate" (30-34 stroke-cycles min(-1) and "high" (38-42 stroke-cycles min(-1)). [Formula: see text] was continuously measured, with C, velocity, SR, and kick rate calculated for each effort. Regardless of the SR condition and sex, AO velocity was consistently lower than WB velocity by ~11.0 % (p  0.01). When C was expressed as a function of velocity, WB and AO regression equations differed for males (p = 0.01) but not for females (p = 0.087). Kick rate increased as SR increased (p swimming is the same. Coaches should consider these results when prescribing AO sets if their intention is to reduce the metabolic load.

  2. Intraspecific Allometry of Basal Metabolic Rate : Relations with Body Size, Temperature, Composition, and Circadian Phase in the Kestrel, Falco tinnunculus

    NARCIS (Netherlands)

    Daan, Serge; Masman, Dirkjan; Strijkstra, Arjen; Verhulst, Simon

    1989-01-01

    The relationship between body size and basal metabolic rate (BMR) in homeotherms has been treated in the literature primarily by comparison between species of mammals or birds. This paper focuses on the intraindividual changes in BMR when body mass (W) varies with different maintenance regimens. BMR

  3. Test-Retest Reliability of Rating of Perceived Exertion and Agreement With 1-Repetition Maximum in Adults.

    Science.gov (United States)

    Bove, Allyn M; Lynch, Andrew D; DePaul, Samantha M; Terhorst, Lauren; Irrgang, James J; Fitzgerald, G Kelley

    2016-09-01

    Study Design Clinical measurement. Background It has been suggested that rating of perceived exertion (RPE) may be a useful alternative to 1-repetition maximum (1RM) to determine proper resistance exercise dosage. However, the test-retest reliability of RPE for resistance exercise has not been determined. Additionally, prior research regarding the relationship between 1RM and RPE is conflicting. Objectives The purpose of this study was to (1) determine test-retest reliability of RPE related to resistance exercise and (2) assess agreement between percentages of 1RM and RPE during quadriceps resistance exercise. Methods A sample of participants with and without knee pathology completed a series of knee extension exercises and rated the perceived difficulty of each exercise on a 0-to-10 RPE scale, then repeated the procedure 1 to 2 weeks later for test-retest reliability. To determine agreement between RPE and 1RM, participants completed knee extension exercises at various percentages of their 1RM (10% to 130% of predicted 1RM) and rated the perceived difficulty of each exercise on a 0-to-10 RPE scale. Percent agreement was calculated between the 1RM and RPE at each resistance interval. Results The intraclass correlation coefficient indicated excellent test-retest reliability of RPE for quadriceps resistance exercises (intraclass correlation coefficient = 0.895; 95% confidence interval: 0.866, 0.918). Overall percent agreement between RPE and 1RM was 60%, but agreement was poor within the ranges that would typically be used for training (50% 1RM for muscle endurance, 70% 1RM and greater for strength). Conclusion Test-retest reliability of perceived exertion during quadriceps resistance exercise was excellent. However, agreement between the RPE and 1RM was poor, especially in common training zones for knee extensor strengthening. J Orthop Sports Phys Ther 2016;46(9):768-774. Epub 5 Aug 2016. doi:10.2519/jospt.2016.6498.

  4. Mothers' Maximum Drinks Ever Consumed in 24 Hours Predicts Mental Health Problems in Adolescent Offspring

    Science.gov (United States)

    Malone, Stephen M.; McGue, Matt; Iacono, William G.

    2010-01-01

    Background: The maximum number of alcoholic drinks consumed in a single 24-hr period is an alcoholism-related phenotype with both face and empirical validity. It has been associated with severity of withdrawal symptoms and sensitivity to alcohol, genes implicated in alcohol metabolism, and amplitude of a measure of brain activity associated with…

  5. Does air-breathing meet metabolic demands of the juvenile snakehead, Channa argus, in multiple conditions

    Directory of Open Access Journals (Sweden)

    Yongli Li

    2017-05-01

    Full Text Available The objective of this study was to examine how the respiratory metabolism of the snakehead Channa argus changed when it shifted from breathing water to breathing air, and how increased metabolic demands caused by temperature, feeding, and exhaustive exercise affect its survival in air. The results demonstrated that the oxygen consumption rate (MO2 of the snakehead was lower for aerial respiration than aquatic respiration by 12.1, 24.5 and 20.4% at 20, 25, and 30°C, respectively. Survival time was significantly shortened with increasing temperature and was negatively correlated with the resting MO2 in air (MO2Air. No obvious feeding metabolic response was observed in the snakeheads fed at 1% and 3% body mass levels while breathing air. The maximum MO2Air of the snakehead after exhaustive exercise was significantly higher than the resting MO2Air of the control group. The results suggest that the snakehead could survive out of water by breathing air for varying lengths of time, depending on ambient temperature and metabolic demand. Additionally, some degree of metabolic depression occurs in the snakehead when breathing air. The metabolic demand associated with exercise in the snakehead, but not that associated with feeding, can be supported by its capacity for breathing air to some extent.

  6. A validated disease specific prediction equation for resting metabolic rate in underweight patients with COPD

    Directory of Open Access Journals (Sweden)

    Anita Nordenson

    2010-09-01

    Full Text Available Anita Nordenson2, Anne Marie Grönberg1,2, Lena Hulthén1, Sven Larsson2, Frode Slinde11Department of Clinical Nutrition, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; 2Department of Internal Medicine/Respiratory Medicine and Allergology, Sahlgrenska Academy at University of Gothenburg, SwedenAbstract: Malnutrition is a serious condition in chronic obstructive pulmonary disease (COPD. Successful dietary intervention calls for calculations of resting metabolic rate (RMR. One disease-specific prediction equation for RMR exists based on mainly male patients. To construct a disease-specific equation for RMR based on measurements in underweight or weight-losing women and men with COPD, RMR was measured by indirect calorimetry in 30 women and 11 men with a diagnosis of COPD and body mass index <21 kg/m2. The following variables, possibly influencing RMR were measured: length, weight, middle upper arm circumference, triceps skinfold, body composition by dual energy x-ray absorptiometry and bioelectrical impedance, lung function, and markers of inflammation. Relations between RMR and measured variables were studied using univariate analysis according to Pearson. Gender and variables that were associated with RMR with a P value <0.15 were included in a forward multiple regression analysis. The best-fit multiple regression equation included only fat-free mass (FFM: RMR (kJ/day = 1856 + 76.0 FFM (kg. To conclude, FFM is the dominating factor influencing RMR. The developed equation can be used for prediction of RMR in underweight COPD patients.Keywords: pulmonary disease, chronic obstructive, basal metabolic rate, malnutrition, body composition

  7. Locomotor, Heart-Rate, and Metabolic Power Characteristics of Youth Women's Field Hockey: Female Athletes in Motion (FAiM) Study

    Science.gov (United States)

    Vescovi, Jason D.

    2016-01-01

    Purpose: The purpose of this study was to quantify the locomotor, heart-rate, and metabolic power characteristics of high-level youth female field hockey matches. Method: Players from the U21 and U17 Canadian women's national teams were monitored during a 4-match test series using Global Positioning System technology. Position (forward,…

  8. Metabolic Effects of Cholecystectomy: Gallbladder Ablation Increases Basal Metabolic Rate through G-Protein Coupled Bile Acid Receptor Gpbar1-Dependent Mechanisms in Mice

    Science.gov (United States)

    Cortés, Víctor; Amigo, Ludwig; Zanlungo, Silvana; Galgani, José; Robledo, Fermín; Arrese, Marco; Bozinovic, Francisco; Nervi, Flavio

    2015-01-01

    Background & Aims Bile acids (BAs) regulate energy expenditure by activating G-protein Coupled Bile Acid Receptor Gpbar1/TGR5 by cAMP-dependent mechanisms. Cholecystectomy (XGB) increases BAs recirculation rates resulting in increased tissue exposure to BAs during the light phase of the diurnal cycle in mice. We aimed to determine: 1) the effects of XGB on basal metabolic rate (BMR) and 2) the roles of TGR5 on XGB-dependent changes in BMR. Methods BMR was determined by indirect calorimetry in wild type and Tgr5 deficient (Tgr5-/-) male mice. Bile flow and BAs secretion rates were measured by surgical diversion of biliary duct. Biliary BAs and cholesterol were quantified by enzymatic methods. BAs serum concentration and specific composition was determined by liquid chromatography/tandem mass spectrometry. Gene expression was determined by qPCR analysis. Results XGB increased biliary BAs and cholesterol secretion rates, and elevated serum BAs concentration in wild type and Tgr5-/- mice during the light phase of the diurnal cycle. BMR was ~25% higher in cholecystectomized wild type mice (p <0.02), whereas no changes were detected in cholecystectomized Tgr5-/- mice compared to wild-type animals. Conclusion XGB increases BMR by TGR5-dependent mechanisms in mice. PMID:25738495

  9. To the elementary theory of critical (maximum) flow rate of two-phase mixture in channels with various sections

    International Nuclear Information System (INIS)

    Nigmatulin, B.I.; Soplenkov, K.I.

    1978-01-01

    On the basis of the concepts of two-phase dispersive flow with various structures (bubble, vapour-drop etc) in the framework of the two-speed and two-temperature one-dimension stationary model of the current with provision for phase transitions the conditions, under which a critical (maximum) flow rate of two-phase mixture is achieved during its outflowing from a channel with the pre-set geometry, have been determined. It is shown, that for the choosen set of two-phase flow equations with the known parameters of deceleration and structure one of the critical conditions is satisfied: either solution of the set of equations corresponding a critical flow rate is a special one, i.e. passes through a special point locating between minimum and outlet channel sections where the carrying phase velocity approaches the value of decelerated sound speed in the mixture or the determinator of the initial set of equations equals zero for the outlet channel sections, i.e. gradients of the main flow parameters tend to +-infinity in this section, and carrying phase velocity also approaches the value of the decelerated sound velocity in the mixture

  10. Metabolic, respiratory, and cardiological measurements during exercise and rest

    Science.gov (United States)

    1971-01-01

    Low concentration effects of CO2 on metabolic respiration and circulation were measured during work and at rest. The relationship between heart rate and metabolic rate is examined, as well as calibration procedures, and rate measurement during submaximal and standard exercise tests. Alterations in acid base and electrolytes were found during exhaustive exercise, including changes in ECG and metabolic alkalosis effects.

  11. A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism

    Directory of Open Access Journals (Sweden)

    Clare Stawski

    2017-12-01

    Full Text Available According to the “aerobic capacity model,” endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ and increasing at ambient temperatures (Ta below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles (Myodes glareolus have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (Tb during exposure to high Ta. To test these hypotheses we measured the RMR and Tb of selected and control voles at Ta from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the Tb of selected lines within the TNZ was greater than the Tb of control lines, particularly at the maximum measured Ta of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT is significantly lower in the selected lines, the LCT (26.1°C does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (−28.6°C than in control lines (−20.2°C. Thus, selection for high aerobic exercise performance, even though operating under

  12. A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism.

    Science.gov (United States)

    Stawski, Clare; Koteja, Paweł; Sadowska, Edyta T

    2017-01-01

    According to the "aerobic capacity model," endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ) and increasing at ambient temperatures (T a ) below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles ( Myodes glareolus ) have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (T b ) during exposure to high T a . To test these hypotheses we measured the RMR and T b of selected and control voles at T a from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the T b of selected lines within the TNZ was greater than the T b of control lines, particularly at the maximum measured T a of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT) is significantly lower in the selected lines, the LCT (26.1°C) does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (-28.6°C) than in control lines (-20.2°C). Thus, selection for high aerobic exercise performance, even though operating under thermally

  13. The natural selection of metabolism explains curvature in allometric scaling

    OpenAIRE

    Witting, Lars

    2016-01-01

    I simulate the evolution of metabolism and mass to explain the curvature in the metabolic allometry for placental and marsupial mammals. I assume that the release of inter-specific competition by the extinction of dinosaurs 65 million years ago made it possible for each clade to diversity into a multitude of species across a wide range of niches. The natural selection of metabolism and mass was then fitted to explain the maximum observed body masses over time, as well as the current inter-spe...

  14. Evaluation of Specific Metabolic Rates of Major Organs and Tissues: Comparison Between Nonobese and Obese Women

    OpenAIRE

    Wang, ZiMian; Ying, Zhiliang; Bosy-Westphal, Anja; Zhang, Junyi; Heller, Martin; Later, Wiebke; Heymsfield, Steven B.; Müller, Manfred J.

    2011-01-01

    Elia (1992) identified the specific resting metabolic rates (Ki) of major organs and tissues in young adults with normal weight: 200 for liver, 240 for brain, 440 for heart and kidneys, 13 for skeletal muscle, 4.5 for adipose tissue and 12 for residual mass (all units in kcal/kg per day). The aim of the present study was to assess the applicability of Elia’s Ki values for obese adults. A sample of young women (n = 80) was divided into two groups, nonobese (BMI

  15. Effects of antiseptic mouthwash on resting metabolic rate: A randomized, double-blind, crossover study.

    Science.gov (United States)

    Sundqvist, Michaela L; Lundberg, Jon O; Weitzberg, Eddie

    2016-12-30

    The nitrate-nitrite-nitric oxide pathway has emerged as a significant source of nitric oxide (NO) bioactivity. Dietary intake of inorganic nitrate has a number of cardiovascular effects as well as a decrease in oxygen cost during exercise and a reduction in resting metabolic rate (RMR). Oral bacteria have a key role in bioactivation of inorganic nitrate since they catalyse the conversion of salivary nitrate to the more reactive nitrite anion. Recent studies demonstrate that blood pressure increases with the use of an antiseptic mouthwash, indicating that endogenous, NO-synthase derived nitrate is recycled into nitrite and NO, sufficiently to modulate cardiovascular function. Here we tested if also RMR would be affected by an antiseptic mouthwash. Seventeen healthy normotensive female subjects (23 ± 4 y) participated in this randomized, double-blinded, crossover study. During two 3-day periods separated by 28 days the subjects consumed a diet low in nitrate combined with rinsing their mouth three times daily with a chlorhexidine-containing mouthwash (mouthwash) or placebo mouthwash (placebo) with similar taste but no antiseptic properties. Resting metabolic rate (RMR) was measured by indirect calorimetry and 24 h ambulatory blood pressure recordings were obtained after each intervention together with blood, saliva and urine samples. Treatment with chlorhexidine-containing mouthwash effectively reduced oral conversion of nitrate to nitrite but had no effect on plasma levels of these anions or plasma cGMP. RMR and 24 h ambulatory blood pressure were unaffected by the intervention. We conclude that in young healthy females an antiseptic mouthwash was effective in disrupting oral bacterial nitrate conversion to nitrite, but this was not associated with changes in plasma nitrite, RMR or blood pressure. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Metabolic clearance and production rates of human growth hormone

    Science.gov (United States)

    Taylor, Andrew L.; Finster, Joseph L.; Mintz, Daniel H.

    1969-01-01

    The metabolic clearance rate (MCR) of human growth hormone (HGH) was determined by the constant infusion to equilibrium technique utilizing HGH-125I. 22 control subjects had a MCR of 229 ±52 ml/min (mean ±SD). No difference was evident between sexes, or between various age groups. Patients with acromegaly demonstrated normal MCR's. Moreover, acute elevations of plasma growth hormone concentrations in normal subjects did not alter the MCR of HGH. The MCR was relatively constant from day to day and within the day when subjects were evaluated in the supine position. In contrast, the assumption of the upright position was associated with a mean 24% decrease in the MCR. These results were contrasted with the MCR of HGH observed in a small number of patients with altered thyroid function or diabetes mellitus. In six patients with hypothyroidism the MCR (131 ±36 ml/min) was significantly decreased (P < 0.001); whereas the MCR in eight patients with hyperthyroidism (240 ±57 ml/min) did not differ from control subjects. The MCR in eight patients with insulin-independent diabetes mellitus (IID) (185 ±41 ml/min) and in eight patients with insulin-dependent diabetes mellitus (IDD) (136 ±31 ml/min) were significantly different from control subjects (P = < 0.05 and P = < 0.001, respectively). These data were interpreted to indicate that the plasma HGH-removing mechanism(s) is not saturated at physiologic plasma HGH levels, that plasma HGH levels alone may not permit distinction between variations in pituitary release of the hormone and its rate of clearance from the plasma, and that the estimation of the MCR of HGH may help clarify the mechanism of abnormal plasma HGH responses to various stimuli. Production rates of HGH (PR) in control subjects (347 ±173 mμg/min) were contrasted with hyperthyroid patients (529 ±242 mμg/min, P < 0.05), hypothyroid patients (160 ±69 mμg/min, P < 0.02), IID (245 ±100 mμg/min, NS), and IDD (363 ±153 mμg/min, NS). Considerable

  17. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    Directory of Open Access Journals (Sweden)

    Christopher M. Shymansky

    2017-05-01

    Full Text Available 13C metabolic flux analysis (13C MFA is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA. In this study, all strains have the galactose metabolism deactivated (gal1Δ background so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments

  18. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    Science.gov (United States)

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

  19. Monitoring and prevalence rates of metabolic syndrome in military veterans with serious mental illness.

    Directory of Open Access Journals (Sweden)

    Sameed Ahmed M Khatana

    Full Text Available BACKGROUND: Cardiovascular disease is the leading cause of mortality among patients with serious mental illness (SMI and the prevalence of metabolic syndrome--a constellation of cardiovascular risk factors--is significantly higher in these patients than in the general population. Metabolic monitoring among patients using second generation antipsychotics (SGAs--a risk factor for metabolic syndrome--has been shown to be inadequate despite the release of several guidelines. However, patients with SMI have several factors independent of medication use that predispose them to a higher prevalence of metabolic syndrome. Our study therefore examines monitoring and prevalence of metabolic syndrome in patients with SMI, including those not using SGAs. METHODS AND FINDINGS: We retrospectively identified all patients treated at a Veterans Affairs Medical Center with diagnoses of schizophrenia, schizoaffective disorder or bipolar disorder during 2005-2006 and obtained demographic and clinical data. Incomplete monitoring of metabolic syndrome was defined as being unable to determine the status of at least one of the syndrome components. Of the 1,401 patients included (bipolar disorder: 822; schizophrenia: 222; and schizoaffective disorder: 357, 21.4% were incompletely monitored. Only 54.8% of patients who were not prescribed SGAs and did not have previous diagnoses of hypertension or hypercholesterolemia were monitored for all metabolic syndrome components compared to 92.4% of patients who had all three of these characteristics. Among patients monitored for metabolic syndrome completely, age-adjusted prevalence of the syndrome was 48.4%, with no significant difference between the three psychiatric groups. CONCLUSIONS: Only one half of patients with SMI not using SGAs or previously diagnosed with hypertension and hypercholesterolemia were completely monitored for metabolic syndrome components compared to greater than 90% of those with these characteristics

  20. Metabolic rate of nocturnal incubation in female great tits, Parus major, in relation to clutch size measured in a natural environment

    NARCIS (Netherlands)

    de Heij, Maaike E.; van der Graaf, Alexandra J.; Hafner, Dennis; Tinbergen, Joost M.

    2007-01-01

    To study the energetic costs of incubation in relation to clutch size, clutch sizes were manipulated and the metabolic rate of female great tits, Parus major (Linnaeus), during nocturnal incubation (MRinc) was measured using mobile oxygen analysers. Individuals were measured on consecutive nights

  1. Cardiorenal metabolic syndrome in the African diaspora: rationale for including chronic kidney disease in the metabolic syndrome definition.

    Science.gov (United States)

    Lea, Janice P; Greene, Eddie L; Nicholas, Susanne B; Agodoa, Lawrence; Norris, Keith C

    2009-01-01

    Chronic kidney disease (CKD) is more likely to progress to end-stage renal disease (ESRD) in African Americans while the reasons for this are unclear. The metabolic syndrome is a risk factor for the development of diabetes, cardiovascular disease, and has been recently linked to incident CKD. Historically, fewer African Americans meet criteria for the definition of metabolic syndrome, despite having higher rates of cardiovascular mortality than Caucasians. The presence of microalbuminuria portends increased cardiovascular risks and has been shown to cluster with the metabolic syndrome. We recently reported that proteinuria is a predictor of CKD progression in African American hypertensives with metabolic syndrome. In this review we explore the potential value of including CKD markers--microalbuminuria/proteinuria or low glomerular filtration rate (GFR)-in refining the cluster of factors defined as metabolic syndrome, ie, "cardiorenal metabolic syndrome."

  2. Calibrated image-derived input functions for the determination of the metabolic uptake rate of glucose with [18F]-FDG PET

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Reichkendler, Michala H.; Larsen, Rasmus

    2014-01-01

    We investigated the use of a simple calibration method to remove bias in previously proposed approaches to image-derived input functions (IDIFs) when used to calculate the metabolic uptake rate of glucose (Km) from dynamic [18F]-FDG PET scans of the thigh. Our objective was to obtain nonbiased, low...

  3. Metabolic changes in malnutrition.

    Science.gov (United States)

    Emery, P W

    2005-10-01

    This paper is concerned with malnutrition caused by inadequate intake of all the major nutrients rather than deficiency diseases relating to a single micronutrient. Three common situations are recognised: young children in third world countries with protein-energy malnutrition; adults in the same countries who are chronically adapted to subsisting on marginally inadequate diets; and patients who become malnourished as a result of chronic diseases. In all these situations infectious diseases are often also present, and this complicates the interpretation of biochemical and physiological observations. The metabolic response to starvation is primarily concerned with maintaining a supply of water-soluble substrates to supply energy to the brain. Thus there is an initial rise in metabolic rate, reflecting gluconeogenic activity. As fasting progresses, gluconeogenesis is suppressed to minimise muscle protein breakdown and ketones become the main fuel for the brain. With chronic underfeeding the basal metabolic rate per cell appears to fall, but the mechanistic basis for this is not clear. The main adaptation to chronic energy deficiency is slow growth and low adult body size, although the reduction in energy requirement achieved by this is partially offset by the preservation of the more metabolically active organs at the expense of muscle, which has a lower metabolic rate. The interaction between malnutrition and the metabolic response to trauma has been studied using an animal model. The rise in energy expenditure and urinary nitrogen excretion following surgery were significantly attenuated in malnourished rats, suggesting that malnutrition impairs the ability of the body to mobilise substrates to support inflammatory and reparative processes. However, the healing process in wounded muscle remained unimpaired in malnutrition, suggesting that this process has a high biological priority.

  4. Redox balance is key to explaining full vs. partial switching to low-yield metabolism

    Directory of Open Access Journals (Sweden)

    van Hoek Milan JA

    2012-03-01

    Full Text Available Abstract Background Low-yield metabolism is a puzzling phenomenon in many unicellular and multicellular organisms. In abundance of glucose, many cells use a highly wasteful fermentation pathway despite the availability of a high-yield pathway, producing many ATP molecules per glucose, e.g., oxidative phosphorylation. Some of these organisms, including the lactic acid bacterium Lactococcus lactis, downregulate their high-yield pathway in favor of the low-yield pathway. Other organisms, including Escherichia coli do not reduce the flux through the high-yield pathway, employing the low-yield pathway in parallel with a fully active high-yield pathway. For what reasons do some species use the high-yield and low-yield pathways concurrently and what makes others downregulate the high-yield pathway? A classic rationale for metabolic fermentation is overflow metabolism. Because the throughput of metabolic pathways is limited, influx of glucose exceeding the pathway's throughput capacity is thought to be redirected into an alternative, low-yield pathway. This overflow metabolism rationale suggests that cells would only use fermentation once the high-yield pathway runs at maximum rate, but it cannot explain why cells would decrease the flux through the high-yield pathway. Results Using flux balance analysis with molecular crowding (FBAwMC, a recent extension to flux balance analysis (FBA that assumes that the total flux through the metabolic network is limited, we investigate the differences between Saccharomyces cerevisiae and L. lactis that downregulate the high-yield pathway at increasing glucose concentrations, and E. coli, which keeps the high-yield pathway functioning at maximal rate. FBAwMC correctly predicts the metabolic switching mode in these three organisms, suggesting that metabolic network architecture is responsible for differences in metabolic switching mode. Based on our analysis, we expect gradual, "overflow-like" switching behavior in

  5. Impact of marine reserve on maximum sustainable yield in a traditional prey-predator system

    Science.gov (United States)

    Paul, Prosenjit; Kar, T. K.; Ghorai, Abhijit

    2018-01-01

    Multispecies fisheries management requires managers to consider the impact of fishing activities on several species as fishing impacts both targeted and non-targeted species directly or indirectly in several ways. The intended goal of traditional fisheries management is to achieve maximum sustainable yield (MSY) from the targeted species, which on many occasions affect the targeted species as well as the entire ecosystem. Marine reserves are often acclaimed as the marine ecosystem management tool. Few attempts have been made to generalize the ecological effects of marine reserve on MSY policy. We examine here how MSY and population level in a prey-predator system are affected by the low, medium and high reserve size under different possible scenarios. Our simulation works shows that low reserve area, the value of MSY for prey exploitation is maximum when both prey and predator species have fast movement rate. For medium reserve size, our analysis revealed that the maximum value of MSY for prey exploitation is obtained when prey population has fast movement rate and predator population has slow movement rate. For high reserve area, the maximum value of MSY for prey's exploitation is very low compared to the maximum value of MSY for prey's exploitation in case of low and medium reserve. On the other hand, for low and medium reserve area, MSY for predator exploitation is maximum when both the species have fast movement rate.

  6. Repeatability and individual correlates of basal metabolic rate and total evaporative water loss in birds : A case study in European stonechats

    NARCIS (Netherlands)

    Versteegh, Maaike A.; Heim, Barbara; Dingemanse, Niels J.; Tieleman, B. Irene

    Basal metabolic rate (BMR) and total evaporative water loss (TEWL) are thought to have evolved in conjunction with life history traits and are often assumed to be characteristic features of an animal. Physiological traits can show large intraindividual variation at short and long timescales, yet

  7. A randomized cross-over study of the acute effects of running 5 km on glucose, insulin, metabolic rate, cortisol and Troponin T

    OpenAIRE

    Keselman, Boris; Vergara, Marta; Nyberg, Sofia; Nystrom, Fredrik H.

    2017-01-01

    Background We aimed to study the impact by running 5 km, at maximal speed, on the normal variations of metabolic variables related to glucose, insulin, insulin sensitivity, cortisol, glucagon, Troponin T and metabolic rate. Material and methods Five women and 12 men 25.7 +/- 5.2 years of age with a body-mass-index of 22.5 +/- 2.3 kg/m(2) where recruited to run 5 km at individual maximal speed in the morning, and to a corresponding day of rest, followed by standardized breakfast and lunch meal...

  8. Predicting basal metabolic rates in Malaysian adult elite athletes.

    Science.gov (United States)

    Wong, Jyh Eiin; Poh, Bee Koon; Nik Shanita, Safii; Izham, Mohd Mohamad; Chan, Kai Quin; Tai, Meng De; Ng, Wei Wei; Ismail, Mohd Noor

    2012-11-01

    This study aimed to measure the basal metabolic rate (BMR) of elite athletes and develop a gender specific predictive equation to estimate their energy requirements. 92 men and 33 women (aged 18-31 years) from 15 sports, who had been training six hours daily for at least one year, were included in the study. Body composition was measured using the bioimpedance technique, and BMR by indirect calorimetry. The differences between measured and estimated BMR using various predictive equations were calculated. The novel equation derived from stepwise multiple regression was evaluated using Bland and Altman analysis. The predictive equations of Cunningham and the Food and Agriculture Organization/World Health Organization/United Nations University either over- or underestimated the measured BMR by up to ± 6%, while the equations of Ismail et al, developed from the local non-athletic population, underestimated the measured BMR by 14%. The novel predictive equation for the BMR of athletes was BMR (kcal/day) = 669 + 13 (weight in kg) + 192 (gender: 1 for men and 0 for women) (R2 0.548; standard error of estimates 163 kcal). Predicted BMRs of elite athletes by this equation were within 1.2% ± 9.5% of the measured BMR values. The novel predictive equation presented in this study can be used to calculate BMR for adult Malaysian elite athletes. Further studies may be required to validate its predictive capabilities for other sports, nationalities and age groups.

  9. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics

    Science.gov (United States)

    Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš

    2018-04-01

    We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.

  10. Maximum-Entropy Inference with a Programmable Annealer

    Science.gov (United States)

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-03-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.

  11. Carbon conversion and metabolic rate in two marine sponges

    NARCIS (Netherlands)

    Koopmans, M.; Van Rijswijk, P.; Martens, D.; Egorova-Zachernyuk, T.A.; Middelburg, J.J.; Wijffels, R.H.

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a 13C isotope pulse-chase approach. The sponges were fed 13C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total

  12. USING IN VIVO GAS UPDATE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPANE AND 2,2-DICHLOROPROPANE

    Science.gov (United States)

    USING IN VIVO GAS UPTAKE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPENE AND 2,2-DICHLOROPROPANE. Mitchell, C T, Evans, M V, Kenyon, E M. NHEERL, U.S. EPA, ORD, ETD, RTP, NC The Safe Drinking Water Act Amendments of 1996 required ...

  13. The association of ruminal pH and some metabolic parameters with conception rate at first artificial insemination in Thai dairy cows

    NARCIS (Netherlands)

    Inchaisri, C.; Somchai Chantsavang,; Noordhuizen, J.P.T.M.; Hogeveen, H.

    2013-01-01

    The objective of this study was to determine the association of metabolic parameters and cow associated factors with the conception rate at first insemination (FCR) in Thai dairy cows. The investigation was performed with 529 lactations from 32 smallholder dairy farms. At 3–6 weeks after

  14. Phosphorus-31 NMR magnetization transfer measurements of metabolic reaction rates in the rat heart and kidney in vivo

    International Nuclear Information System (INIS)

    Koretsky, A.P.

    1984-01-01

    31 P NMR is a unique tool to study bioenergetics in living cells. The application of magnetization transfer techniques to the measurement of steady-state enzyme reaction rates provides a new approach to understanding the regulation of high energy phosphate metabolism. This dissertation is concerned with the measurement of the rates of ATP synthesis in the rat kidney and of the creatine kinase catalyzed reaction in the rat heart in situ. The theoretical considerations of applying magnetization transfer techniques to intact organs are discussed with emphasis on the problems associated with multiple exchange reactions and compartmentation of reactants. Experimental measurements of the ATP synthesis rate were compared to whole kidney oxygen consumption and Na + reabsorption rates to derive ATP/O values. The problems associated with ATP synthesis rate measurements in kidney, e.g. the heterogeneity of the inorganic phosphate resonance, are discussed and experiments to overcome these problems proposed. In heart, the forward rate through creatine kinase was measured to be larger than the reverse rate. To account for the difference in forward and reverse rates a model is proposed based on the compartmentation of a small pool of ATP

  15. Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos

    DEFF Research Database (Denmark)

    Scott, Abdullah Talal Abudllah; Vadalasetty, Krishna Prasad; Sawosz, E.

    2016-01-01

    consumption — O2 and energy expenditure — EE) and development during embryogenesis. Fertilised broiler eggs were divided into six groups: a non-injected control, a placebo injected with demineralised water, two groups injected, at day one of incubation, with CuSO4 (50 and 100 mg/kg) and two groups injected....../kg Cu-NP and CuSO4 significantly increased O2 consumption and EE on the 16th and 19th day of incubation compared with the control group; Cu-NP had the largest effect on the metabolic rate. However, organ weights (intestine, heart, liver, and breast) relative to the yolk-free body weight were...

  16. Metabolic neural mapping in neonatal rats

    International Nuclear Information System (INIS)

    DiRocco, R.J.; Hall, W.G.

    1981-01-01

    Functional neural mapping by 14 C-deoxyglucose autoradiography in adult rats has shown that increases in neural metabolic rate that are coupled to increased neurophysiological activity are more evident in axon terminals and dendrites than neuron cell bodies. Regions containing architectonically well-defined concentrations of terminals and dendrites (neuropil) have high metabolic rates when the neuropil is physiologically active. In neonatal rats, however, we find that regions containing well-defined groupings of neuron cell bodies have high metabolic rates in 14 C-deoxyglucose autoradiograms. The striking difference between the morphological appearance of 14 C-deoxyglucose autoradiograms obtained from neonatal and adult rats is probably related to developmental changes in morphometric features of differentiating neurons, as well as associated changes in type and locus of neural work performed

  17. Maximum Smoke Temperature in Non-Smoke Model Evacuation Region for Semi-Transverse Tunnel Fire

    OpenAIRE

    B. Lou; Y. Qiu; X. Long

    2017-01-01

    Smoke temperature distribution in non-smoke evacuation under different mechanical smoke exhaust rates of semi-transverse tunnel fire were studied by FDS numerical simulation in this paper. The effect of fire heat release rate (10MW 20MW and 30MW) and exhaust rate (from 0 to 160m3/s) on the maximum smoke temperature in non-smoke evacuation region was discussed. Results show that the maximum smoke temperature in non-smoke evacuation region decreased with smoke exhaust rate. Plug-holing was obse...

  18. Hibernation in black bears: independence of metabolic suppression from body temperature.

    Science.gov (United States)

    Tøien, Øivind; Blake, John; Edgar, Dale M; Grahn, Dennis A; Heller, H Craig; Barnes, Brian M

    2011-02-18

    Black bears hibernate for 5 to 7 months a year and, during this time, do not eat, drink, urinate, or defecate. We measured metabolic rate and body temperature in hibernating black bears and found that they suppress metabolism to 25% of basal rates while regulating body temperature from 30° to 36°C, in multiday cycles. Heart rates were reduced from 55 to as few as 9 beats per minute, with profound sinus arrhythmia. After returning to normal body temperature and emerging from dens, bears maintained a reduced metabolic rate for up to 3 weeks. The pronounced reduction and delayed recovery of metabolic rate in hibernating bears suggest that the majority of metabolic suppression during hibernation is independent of lowered body temperature.

  19. Maximum Aerobic Capacity of Underground Coal Miners in India

    Directory of Open Access Journals (Sweden)

    Ratnadeep Saha

    2011-01-01

    Full Text Available Miners fitness test was assessed in terms of determination of maximum aerobic capacity by an indirect method following a standard step test protocol before going down to mine by taking into consideration of heart rates (Telemetric recording and oxygen consumption of the subjects (Oxylog-II during exercise at different working rates. Maximal heart rate was derived as 220−age. Coal miners reported a maximum aerobic capacity within a range of 35–38.3 mL/kg/min. It also revealed that oldest miners (50–59 yrs had a lowest maximal oxygen uptake (34.2±3.38 mL/kg/min compared to (42.4±2.03 mL/kg/min compared to (42.4±2.03 mL/kg/min the youngest group (20–29 yrs. It was found to be negatively correlated with age (r=−0.55 and −0.33 for younger and older groups respectively and directly associated with the body weight of the subjects (r=0.57 – 0.68, P≤0.001. Carriers showed maximum cardio respiratory capacity compared to other miners. Indian miners VO2max was found to be lower both compared to their abroad mining counterparts and various other non-mining occupational working groups in India.

  20. Growth and maximum size of tiger sharks (Galeocerdo cuvier) in Hawaii.

    Science.gov (United States)

    Meyer, Carl G; O'Malley, Joseph M; Papastamatiou, Yannis P; Dale, Jonathan J; Hutchinson, Melanie R; Anderson, James M; Royer, Mark A; Holland, Kim N

    2014-01-01

    Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13'17″N 109°52'14″W), in the southern Gulf of California (minimum distance between tag and recapture sites  =  approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates.

  1. Can we rely on predicted basal metabolic rate in chronic pancreatitis outpatients?

    Science.gov (United States)

    Olesen, Søren Schou; Holst, Mette; Køhler, Marianne; Drewes, Asbjørn Mohr; Rasmussen, Henrik Højgaard

    2015-04-01

    Malnutrition is a common complication to chronic pancreatitis (CP) and many patients need nutritional support. An accurate estimation of the basal metabolic rate (BMR) is essential when appropriate nutritional support is to be initiated, but in the clinical settings BMR is cumbersome to measure. We therefore investigated whether BMR can be reliable predicted from a standard formula (the Harris-Benedict equation) in CP outpatients. Twenty-eight patients with clinical stable CP and no current alcohol abuse were enrolled. Patients were stratified according to nutritional risk using the Nutrition Risk Screening 2002 system. Body composition was estimated using bioelectrical impedance. BMR was measured using indirect calorimetry and predicted using the Harris-Benedict equation based on anthropometric data. The average predicted BMR was 1371 ± 216 kcal/day compared to an average measured BMR of 1399 ± 231 kcal/day (P = 0.4). The corresponding limits of agreement were -347 to 290 kcal/day. Twenty-two patients (79%) had a measured BMR between 85 and 115% of the predicted BMR. When analysing patients stratified according to nutritional risk profiles, no differences between predicted and measured BMR were evident for any of the risk profile subgroups (all P > 0.2). The BMR was correlated to fat free mass determined by bioelectrical impedance (rho = 0.55; P = 0.003), while no effect modification was seen from nutritional risk stratification in a linear regression analysis (P = 0.4). The Harris-Benedict equation reliable predicts the measured BMR in four out of five clinical stable CP outpatients with no current alcohol abuse. Copyright © 2015 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  2. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol.

    Science.gov (United States)

    Liu, Jianming; Chan, Siu Hung Joshua; Brock-Nannestad, Theis; Chen, Jun; Lee, Sang Yup; Solem, Christian; Jensen, Peter Ruhdal

    2016-07-01

    Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well as for linking metabolic pathways to achieve redox balance and rescued growth. By comprehensive rerouting of metabolism, activation of respiration, and finally metal ion catalysis, we successfully managed to convert the homolactic bacterium Lactococcus lactis into a homo-diacetyl producer with high titer (95mM or 8.2g/L) and high yield (87% of the theoretical maximum). Subsequently, the pathway was extended to (S,S)-2,3-butanediol (S-BDO) through efficiently linking two metabolic pathways via chemical catalysis. This resulted in efficient homo-S-BDO production with a titer of 74mM (6.7g/L) S-BDO and a yield of 82%. The diacetyl and S-BDO production rates and yields obtained are the highest ever reported, demonstrating the promising combination of metabolic engineering and biocompatible chemistry as well as the great potential of L. lactis as a new production platform. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  4. Contaminants and energy expenditure in an Arctic seabird: Organochlorine pesticides and perfluoroalkyl substances are associated with metabolic rate in a contrasted manner.

    Science.gov (United States)

    Blévin, Pierre; Tartu, Sabrina; Ellis, Hugh I; Chastel, Olivier; Bustamante, Paco; Parenteau, Charline; Herzke, Dorte; Angelier, Frédéric; Gabrielsen, Geir W

    2017-08-01

    Basal metabolic rate (BMR), the minimal energetic cost of living in endotherms, is known to be influenced by thyroid hormones (THs) which are known to stimulate in vitro oxygen consumption of tissues in birds and mammals. Several environmental contaminants may act on energy expenditure through their thyroid hormone-disrupting properties. However, the effect of contaminants on BMR is still poorly documented for wildlife. Here, we investigated the relationships between three groups of contaminants (organochlorines (OCs), perfluoroalkyl substances (PFASs), and mercury) with metabolic rate (MR), considered here as a proxy of BMR and also with circulating total THs (thyroxine (TT4) and triiodothyronine (TT3)) in Arctic breeding adult black-legged kittiwakes (Rissa tridactyla) from Svalbard, during the chick rearing period. Our results indicate a negative relationship between the sum of all detected chlordanes (∑CHLs) and MR in both sexes whereas perfluorotridecanoate (PFTrA) and MR were positively related in females only. MR was not associated with mercury. Additionally, levels of TT3 were negatively related to ∑CHLs but not to PFTrA. The findings from the present study indicate that some OCs (in both sexes) and some PFASs (only in females) could disrupt fine adjustment of BMR during reproduction in adult kittiwakes. Importantly, highly lipophilic OCs and highly proteinophilic PFASs appear, at least in females, to have the ability to disrupt the metabolic rate in an opposite way. Therefore, our study highlights the need for ecotoxicological studies to include a large variety of contaminants which can act in an antagonistic manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. ON THE MAXIMUM MASS OF STELLAR BLACK HOLES

    International Nuclear Information System (INIS)

    Belczynski, Krzysztof; Fryer, Chris L.; Bulik, Tomasz; Ruiter, Ashley; Valsecchi, Francesca; Vink, Jorick S.; Hurley, Jarrod R.

    2010-01-01

    We present the spectrum of compact object masses: neutron stars and black holes (BHs) that originate from single stars in different environments. In particular, we calculate the dependence of maximum BH mass on metallicity and on some specific wind mass loss rates (e.g., Hurley et al. and Vink et al.). Our calculations show that the highest mass BHs observed in the Galaxy M bh ∼ 15 M sun in the high metallicity environment (Z = Z sun = 0.02) can be explained with stellar models and the wind mass loss rates adopted here. To reach this result we had to set luminous blue variable mass loss rates at the level of ∼10 -4 M sun yr -1 and to employ metallicity-dependent Wolf-Rayet winds. With such winds, calibrated on Galactic BH mass measurements, the maximum BH mass obtained for moderate metallicity (Z = 0.3 Z sun = 0.006) is M bh,max = 30 M sun . This is a rather striking finding as the mass of the most massive known stellar BH is M bh = 23-34 M sun and, in fact, it is located in a small star-forming galaxy with moderate metallicity. We find that in the very low (globular cluster-like) metallicity environment the maximum BH mass can be as high as M bh,max = 80 M sun (Z = 0.01 Z sun = 0.0002). It is interesting to note that X-ray luminosity from Eddington-limited accretion onto an 80 M sun BH is of the order of ∼10 40 erg s -1 and is comparable to luminosities of some known ultra-luminous X-ray sources. We emphasize that our results were obtained for single stars only and that binary interactions may alter these maximum BH masses (e.g., accretion from a close companion). This is strictly a proof-of-principle study which demonstrates that stellar models can naturally explain even the most massive known stellar BHs.

  6. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals.

    Science.gov (United States)

    Frasier, Charles C

    2015-01-01

    The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymass) (b) . Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal's characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal's means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals' skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or not MMLE can

  7. Expensive Brains: “Brainy” Rodents have Higher Metabolic Rate

    Science.gov (United States)

    Sobrero, Raúl; May-Collado, Laura J.; Agnarsson, Ingi; Hernández, Cristián E.

    2011-01-01

    Brains are the centers of the nervous system of animals, controlling the organ systems of the body and coordinating responses to changes in the ecological and social environment. The evolution of traits that correlate with cognitive ability, such as relative brain size is thus of broad interest. Brain mass relative to body mass (BM) varies among mammals, and diverse factors have been proposed to explain this variation. A recent study provided evidence that energetics play an important role in brain evolution (Isler and van Schaik, 2006). Using composite phylogenies and data drawn from multiple sources, these authors showed that basal metabolic rate (BMR) correlates with brain mass across mammals. However, no such relationship was found within rodents. Here we re-examined the relationship between BMR and brain mass within Rodentia using a novel species-level phylogeny. Our results are sensitive to parameter evaluation; in particular how species mass is estimated. We detect no pattern when applying an approach used by previous studies, where each species BM is represented by two different numbers, one being the individual that happened to be used for BMR estimates of that species. However, this approach may compromise the analysis. When using a single value of BM for each species, whether representing a single individual, or available species mean, our findings provide evidence that brain mass (independent of BM) and BMR are correlated. These findings are thus consistent with the hypothesis that large brains evolve when the payoff for increased brain mass is greater than the energetic cost they incur. PMID:21811456

  8. Comparison between Medgem and Deltatrac resting metabolic rate measurements.

    Science.gov (United States)

    Compher, C; Hise, M; Sternberg, A; Kinosian, B P

    2005-10-01

    The primary aims of this trial were to evaluate the reproducibility of a portable handheld calorimeter (Medgem) in a clinical population, and to compare its measures with a calorimeter in typical use with these patients. Cross-sectional clinical validation study. Outpatient Clinical Research Center. A total of 24 stable home nutrition support patients. In random order three measures of resting metabolic rate (RMR) were taken after a 4-h fast, 15 min rest and 2-h abstention from exercise. Two measures were taken with the same Medgem (MG) and one with the traditional calorimeter (Deltatrac). Reproducibility of MG measures and their comparability to a Deltatrac measure were assessed by Bland-Altman analysis, with >+/-250 kcal/day established a priori as a clinically unacceptable error. In addition, disagreement between the two types of measures was defined as greater than 10% difference. The mean difference between two MG measures was -6.8 kcal/day, with limits of agreement between 233 and -247 kcal/day and clinically acceptable. The mean difference between the Deltatrac and mean of two MG measures was -162 kcal/day, with limits of agreement between 577 and -253 kcal/day and clinically unacceptable. In all, 80% of the repeated MG RMR measures agreed within 10%, and the mean MG reading agreed with the Deltatrac in 60% of cases. RMR obtained using the MG calorimeter has an acceptable degree of reproducibility, and is acceptable to patients. The MG measures, however, are frequently lower than traditional measures and require further validation prior to application to practice in this vulnerable patient group.

  9. ACTION OF SYNTHETIC DETERGENTS ON THE METABOLISM OF BACTERIA.

    Science.gov (United States)

    Baker, Z; Harrison, R W; Miller, B F

    1941-01-31

    A study of the effects of synthetic detergents and wetting agents on respiration and glycolysis of Gram-positive and Gram-negative microorganisms has led to the following conclusions. 1. All the cationic detergents studied are very effective inhibitors of bacterial metabolism at 1:3000 concentration, and several are equally active at 1:30,000. Few of the anionic detergents inhibit as effectively as the cationic compounds. 2. Gram-positive and Gram-negative microorganisms are equally sensitive to the action of the cationic detergents. On the other hand, all the anionic detergents included in our studies selectively inhibit the metabolism of Gram-positive microorganisms. 3. The inhibitory action of both types of detergents is influenced markedly by hydrogen ion concentration. Cationic detergents exhibit their maximum activity in the alkaline pH range, and the anionic, in the acid range. 4. Studies of homologous series of straight chain alkyl sulfates and sulfoacetates (C(8) to C(18)) demonstrate that maximum inhibition is exerted by the 12, 14, and 16 carbon compounds (lauryl, myristyl, and cetyl). 5. It has been observed that three lauryl esters of amino acids are powerful inhibitors of bacterial metabolism. To our knowledge, the effects on bacterial metabolism of such cationic detergents (without the quaternary ammonium structure) have not been studied previously. Our results demonstrate that other cationic detergents can exhibit an inhibitory activity comparable to quaternary ammonium compounds. 6. Certain detergents stimulate bacterial metabolism at concentrations lower than the inhibiting values. This effect has been found more frequently among the anionic detergents.

  10. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.

    Directory of Open Access Journals (Sweden)

    Elad Noor

    2016-11-01

    Full Text Available Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell's capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants, but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM, a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or

  11. Environment and feeding change the ability of heart rate to predict metabolism in resting Steller sea lions (Eumetopias jubatus).

    Science.gov (United States)

    Young, Beth L; Rosen, David A S; Haulena, Martin; Hindle, Allyson G; Trites, Andrew W

    2011-01-01

    The ability to use heart rate (fh) to predict oxygen consumption rates ([Formula: see text]) in Steller sea lions and other pinnipeds has been investigated in fasting animals. However, it is unknown whether established fh:[Formula: see text] relationships hold under more complex physiological situations, such as when animals are feeding or digesting. We assessed whether fh could accurately predict [Formula: see text] in trained Steller sea lions while fasting and after being fed. Using linear mixed-effects models, we derived unique equations to describe the fh:[Formula: see text] relationship for fasted sea lions resting on land and in water. Feeding did not significantly change the fh:[Formula: see text] relationship on land. However, Steller sea lions in water displayed a different fh:[Formula: see text] relationship after consuming a 4-kg meal compared with the fasting condition. Incorporating comparable published fh:[Formula: see text] data from Steller sea lions showed a distinct effect of feeding after a 6-kg meal. Ultimately, our study illustrated that both feeding and physical environment are statistically relevant when deriving [Formula: see text] from telemetered fh, but that only environment affects the practical ability to predict metabolism from fh. Updating current bioenergetic models with data gathered using these predictive fh:[Formula: see text] equations will yield more accurate estimates of metabolic rates of free-ranging Steller sea lions under a variety of physiological, behavioral, and environmental states.

  12. n-Order and maximum fuzzy similarity entropy for discrimination of signals of different complexity: Application to fetal heart rate signals.

    Science.gov (United States)

    Zaylaa, Amira; Oudjemia, Souad; Charara, Jamal; Girault, Jean-Marc

    2015-09-01

    This paper presents two new concepts for discrimination of signals of different complexity. The first focused initially on solving the problem of setting entropy descriptors by varying the pattern size instead of the tolerance. This led to the search for the optimal pattern size that maximized the similarity entropy. The second paradigm was based on the n-order similarity entropy that encompasses the 1-order similarity entropy. To improve the statistical stability, n-order fuzzy similarity entropy was proposed. Fractional Brownian motion was simulated to validate the different methods proposed, and fetal heart rate signals were used to discriminate normal from abnormal fetuses. In all cases, it was found that it was possible to discriminate time series of different complexity such as fractional Brownian motion and fetal heart rate signals. The best levels of performance in terms of sensitivity (90%) and specificity (90%) were obtained with the n-order fuzzy similarity entropy. However, it was shown that the optimal pattern size and the maximum similarity measurement were related to intrinsic features of the time series. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [Effects of nitrogen application rate on faba bean fusarium wilt and rhizospheric microbial metabolic functional diversity].

    Science.gov (United States)

    Dong, Yan; Yang, Zhi-xian; Dong, Kun; Tang, Li; Zheng, Yi; Hu, Guo-bin

    2013-04-01

    A field plot experiment was conducted to study the effects of different nitrogen (N) application rates on the microbial functional diversity in faba bean rhizosphere and the relationships between the microbial functional diversity and the occurrence of faba bean fusarium wilt. Four nitrogen application rates were installed, i. e. , N0(0 kg hm-2 , N1 (56. 25 kg hm-2) , N2(112. 5 kg hm-2), and N3 (168.75 kg hm-2), and Biolog microbial analysis system was applied to study the damage of faba bean fusarium wilt and the rhizospheric microbial metabolic functional diversity. Applying N (N1 N2, and N3) decreased the disease index of faba bean fusarium wilt and the quantity of Fusarium oxysporum significantly, and increased the quantities of bacteria and actinomyces and the ratios of bacteria/fungi and actinomyces/fungi significantly, with the peak values of bacteria and actinomyces, bacteria/fungi, and actinomyces/fungi, and the lowest disease index and F. oxysporum density in N2. As compared with N0, applying N increased the AWCD value significantly, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources had definite differences. Under the application of N, the utilization rates of carbohydrates, carboxylic acids, and amino acids by the rhizospheric microbes were higher. Principal component analysis demonstrated that applying N changed the rhizospheric microbial community composition obviously, and the carbohydrates, carboxylic acids, and amino acids were the sensitive carbon sources differentiating the changes of the microbial community induced by N application. Applying N inhibited the utilization of carbohydrates and carboxylic acids but improved the utilization of amino acids and phenolic acids by the rhizospheric microbes, which could be one of the main reasons of applying N being able to reduce the harm of faba bean fusarium wilt. It was suggested that rationally applying N could increase the

  14. Thermal sensation and comfort with transient metabolic rates

    DEFF Research Database (Denmark)

    Goto, Tomonobu; Toftum, Jørn; Dear, R. d.

    2002-01-01

    This study investigated the effect on thermal perceptions and preferences of controlled metabolic excursions of various intensities (20%, 40%, 60% relative work load) and durations (3-30 min) imposed on subjects that alternated between sedentary activity and exercise on a treadmill. The thermal...... environment was held constant at a temperature corresponding to PMV=0 at sedentary activity. Even low activity changes of short duration (1 min at 20% relative work load) affected thermal perceptions. However, after circa 15 min of constant activity, subjective thermal responses approximated the steady...

  15. A comparison of methods of predicting maximum oxygen uptake.

    OpenAIRE

    Grant, S; Corbett, K; Amjad, A M; Wilson, J; Aitchison, T

    1995-01-01

    The aim of this study was to compare the results from a Cooper walk run test, a multistage shuttle run test, and a submaximal cycle test with the direct measurement of maximum oxygen uptake on a treadmill. Three predictive tests of maximum oxygen uptake--linear extrapolation of heart rate of VO2 collected from a submaximal cycle ergometer test (predicted L/E), the Cooper 12 min walk, run test, and a multi-stage progressive shuttle run test (MST)--were performed by 22 young healthy males (mean...

  16. Influence of a Gas Exchange Correction Procedure on Resting Metabolic Rate and Respiratory Quotient in Humans.

    Science.gov (United States)

    Galgani, Jose E; Castro-Sepulveda, Mauricio A

    2017-11-01

    The aim of this study was to determine the influence of a gas exchange correction protocol on resting metabolic rate (RMR) and respiratory quotient (RQ), assessed by a Vmax Encore 29n metabolic cart (SensorMedics Co., Yorba Linda, California) in overnight fasted and fed humans, and to assess the predictive power of body size for corrected and uncorrected RMR. Healthy participants (23 M/29 F; 34 ± 9 years old; 26.3 ± 3.7 kg/m 2 ) ingested two 3-hour-apart glucose loads (75 g). Indirect calorimetry was conducted before and hourly over a 6-hour period. Immediately after indirect calorimetry assessment, gas exchange was simulated through high-precision mass-flow regulators, which permitted the correction of RMR and RQ values. Uncorrected and corrected RMR and RQ were directly related at each time over the 6-hour period. However, uncorrected versus corrected RMR was 6.9% ± 0.5% higher (128 ± 7 kcal/d; P exchange in humans over a 6-hour period is feasible and provides information of improved accuracy. © 2017 The Obesity Society.

  17. Maximum Urine Flow Rate of Less than 15ml/Sec Increasing Risk of Urine Retention and Prostate Surgery among Patients with Alpha-1 Blockers: A 10-Year Follow Up Study.

    Directory of Open Access Journals (Sweden)

    Hsin-Ho Liu

    Full Text Available The aim of this study was to determine the subsequent risk of acute urine retention and prostate surgery in patients receiving alpha-1 blockers treatment and having a maximum urinary flow rate of less than 15ml/sec.We identified patients who were diagnosed with benign prostate hyperplasia (BPH and had a maximum uroflow rate of less than 15ml/sec between 1 January, 2002 to 31 December, 2011 from Taiwan's National Health Insurance Research Database into study group (n = 303. The control cohort included four BPH/LUTS patients without 5ARI used for each study group, randomly selected from the same dataset (n = 1,212. Each patient was monitored to identify those who subsequently developed prostate surgery and acute urine retention.Prostate surgery and acute urine retention are detected in 5.9% of control group and 8.3% of study group during 10-year follow up. Compared with the control group, there was increase in the risk of prostate surgery and acute urine retention in the study group (HR = 1.83, 95% CI: 1.16 to 2.91 after adjusting for age, comorbidities, geographic region and socioeconomic status.Maximum urine flow rate of less than 15ml/sec is a risk factor of urinary retention and subsequent prostate surgery in BPH patients receiving alpha-1 blocker therapy. This result can provide a reference for clinicians.

  18. Dynamics of pyruvate metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, Claus Rix; Jensen, Niels B.S.; Christensen, Bjarke

    2001-01-01

    The pyruvate metabolism in the lactic acid bacterium Lactococcus lactis was studied in anaerobic cultures under transient conditions. During growth of L. lactis in continuous culture at high dilution rate, homolactic product formation was observed, i.e., lactate was produced as the major end...... product. At a lower dilution rate, the pyruvate metabolism shifted towards mixed acid-product formation where formate, acetate, and ethanol were produced in addition to lactate. The regulation of the shift in pyruvate metabolism was investigated by monitoring the dynamic behavior of L. lactis...

  19. In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: Metabolic fluxes and metabolite levels

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2001-01-01

    The dynamics of galactose metabolism in Saccharomyces cerevisiae was studied by analyzing the metabolic response of the CEN.PK 113-7D wild-type strain when exposed to a galactose pulse during aerobic growth in a galactose-limited steady-state cultivation at a dilution rate of 0.097 h(-1). A fast...

  20. ORIGINAL ARTICLES Surgical practice in a maximum security prison

    African Journals Online (AJOL)

    Prison Clinic, Mangaung Maximum Security Prison, Bloemfontein. F Kleinhans, BA (Cur) .... HIV positivity rate and the use of the rectum to store foreign objects. ... fruit in sunlight. Other positive health-promoting factors may also play a role,.

  1. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

    Science.gov (United States)

    Cofré, Rodrigo; Maldonado, Cesar

    2018-01-01

    We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. We review large deviations techniques useful in this context to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.

  2. Comparing the measured basal metabolic rates in patients with chronic disorders of consciousness to the estimated basal metabolic rate calculated from common predictive equations.

    Science.gov (United States)

    Xiao, Guizhen; Xie, Qiuyou; He, Yanbin; Wang, Ziwen; Chen, Yan; Jiang, Mengliu; Ni, Xiaoxiao; Wang, Qinxian; Murong, Min; Guo, Yequn; Qiu, Xiaowen; Yu, Ronghao

    2017-10-01

    Accurately predicting the basal metabolic rate (BMR) of patients in a vegetative state (VS) or minimally conscious state (MCS) is critical to proper nutritional therapy, but commonly used equations have not been shown to be accurate. Therefore, we compared the BMR measured by indirect calorimetry (IC) to BMR values estimated using common predictive equations in VS and MCS patients. Body composition variables were measured using the bioelectric impedance analysis (BIA) technique. BMR was measured by IC in 82 patients (64 men and 18 women) with VS or MCS. Patients were classified by body mass index as underweight (BMR was estimated for each group using the Harris-Benedict (H-B), Schofield, or Cunningham equations and compared to the measured BMR using Bland-Altman analyses. For the underweight group, there was a significant difference between the measured BMR values and the estimated BMR values calculated using the H-B, Schofield, and Cunningham equations (p BMR values estimated using the H-B and Cunningham equations were different significantly from the measured BMR (p BMR in the normal-weight group. The Schofield equation showed the best concordance (only 41.5%) with the BMR values measured by IC. None of the commonly used equations to estimate BMR were suitable for the VS or MCS populations. Indirect calorimetry is the preferred way to avoid either over or underestimate of BMR values. Copyright © 2016. Published by Elsevier Ltd.

  3. Differences in the metabolic rates of exploited and unexploited fish populations: a signature of recreational fisheries induced evolution?

    Directory of Open Access Journals (Sweden)

    Jan-Michael Hessenauer

    Full Text Available Non-random mortality associated with commercial and recreational fisheries have the potential to cause evolutionary changes in fish populations. Inland recreational fisheries offer unique opportunities for the study of fisheries induced evolution due to the ability to replicate study systems, limited gene flow among populations, and the existence of unexploited reference populations. Experimental research has demonstrated that angling vulnerability is heritable in Largemouth Bass Micropterus salmoides, and is correlated with elevated resting metabolic rates (RMR and higher fitness. However, whether such differences are present in wild populations is unclear. This study sought to quantify differences in RMR among replicated exploited and unexploited populations of Largemouth Bass. We collected age-0 Largemouth Bass from two Connecticut drinking water reservoirs unexploited by anglers for almost a century, and two exploited lakes, then transported and reared them in the same pond. Field RMR of individuals from each population was quantified using intermittent-flow respirometry. Individuals from unexploited reservoirs had a significantly higher mean RMR (6% than individuals from exploited populations. These findings are consistent with expectations derived from artificial selection by angling on Largemouth Bass, suggesting that recreational angling may act as an evolutionary force influencing the metabolic rates of fishes in the wild. Reduced RMR as a result of fisheries induced evolution may have ecosystem level effects on energy demand, and be common in exploited recreational populations globally.

  4. Increased Rate of NAD Metabolism Shortens Plant Longevity by Accelerating Developmental Senescence in Arabidopsis.

    Science.gov (United States)

    Hashida, Shin-Nosuke; Itami, Taketo; Takahara, Kentaro; Hirabayashi, Takayuki; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2016-11-01

    NAD is a well-known co-enzyme that mediates hundreds of redox reactions and is the basis of various processes regulating cell responses to different environmental and developmental cues. The regulatory mechanism that determines the amount of cellular NAD and the rate of NAD metabolism remains unclear. We created Arabidopsis thaliana plants overexpressing the NAD synthase (NADS) gene that participates in the final step of NAD biosynthesis. NADS overexpression enhanced the activity of NAD biosynthesis but not the amounts of NAD + , NADH, NADP + or NADPH. However, the amounts of some intermediates were elevated, suggesting that NAD metabolism increased. The NAD redox state was greatly facilitated by an imbalance between NAD generation and degradation in response to bolting. Metabolite profiling and transcriptional analysis revealed that the drastic modulation of NAD redox homeostasis increased tricarboxylic acid flux, causing the ectopic generation of reactive oxygen species. Vascular bundles suffered from oxidative stress, leading to a malfunction in amino acid and organic acid transportation that caused early wilting of the flower stalk and shortened plant longevity, probably due to malnutrition. We concluded that the mechanism regulating the balance between NAD synthesis and degradation is important in the systemic plant response to developmental cues during the growth-phase transition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. High basal metabolic rate does not elevate oxidative stress during reproduction in laboratory mice.

    Science.gov (United States)

    Brzęk, Paweł; Książek, Aneta; Ołdakowski, Łukasz; Konarzewski, Marek

    2014-05-01

    Increased oxidative stress (OS) has been suggested as a physiological cost of reproduction. However, previous studies reported ambiguous results, with some even showing a reduction of oxidative damage during reproduction. We tested whether the link between reproduction and OS is mediated by basal metabolic rate (BMR), which has been hypothesized to affect both the rate of radical oxygen species production and antioxidative capacity. We studied the effect of reproduction on OS in females of laboratory mice divergently selected for high (H-BMR) and low (L-BMR) BMR, previously shown to differ with respect to parental investment. Non-reproducing L-BMR females showed higher oxidative damage to lipids (quantified as the level of malondialdehyde in internal organ tissues) and DNA (quantified as the level of 8-oxodG in blood serum) than H-BMR females. Reproduction did not affect oxidative damage to lipids in either line; however, it reduced damage to DNA in L-BMR females. Reproduction increased catalase activity in liver (significantly stronger in L-BMR females) and decreased it in kidneys. We conclude that the effect of reproduction on OS depends on the initial variation in BMR and varies between studied internal organs and markers of OS.

  6. Nitrogen metabolism and protozoa production rate in cattle fed on diet containing protected protein

    International Nuclear Information System (INIS)

    Singh, G.P.; Gupta, B.N.

    1992-01-01

    Nitrogen metabolism and protozoa production rate using 14 C-choline as marker were studied on 9 adult male crossbred (Tharparker x Brown Swiss) rumen fistulated animals divided into 3 groups (A, B and C). All the animals were fed concentrate mixture and wheatstraw. However, groundnut cake (GNC) in concentrate mixture was untreated in group A, 50 per cent formaldehyde treated in group B and 100 per cent formaldehyde treated in group C. Although, DM intake was similar in these groups but water intake was significantly (P<0.05) higher in control group. Total-N, ammonia-N and blood urea were significantly lower in group B and C as compared to group A. Apparent CP digestibility was not affected by addition of formaldehyde treated GNC at 50 and 100 per cent levels. However, N balances increased significantly (P<0.05) due to addition of protected protein in diet. Protozoal pool as well as production rate were significantly (P<0.01) decreased due to formaldehyde treatment of GNC protein. Thus addition of formaldehyde treated GNC in diets decreased ammonia and protozoa production but increased N retention in groups B and C. (author). 27 refs., 3 tabs., 2 figs

  7. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, K(m), for butyrate, acetate, and dissolved hydrogen were 76 muM, 0.4 mM, and 8.5 muM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 muM, whereas acetate uptake usually ceased at a concentration of 25 to 75 muM, indicating a threshold level for acetate uptake. No significant differences in K(m) values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.

  8. Effect of N-methyl deuteration on metabolism and pharmacokinetics of enzalutamide

    Directory of Open Access Journals (Sweden)

    Jiang J

    2016-07-01

    Full Text Available Jinfang Jiang,1,2,* Xuehai Pang,2,3,* Liang Li,1,2 Xiaojian Dai,1,2 Xingxing Diao,1 Xiaoyan Chen,1,2 Dafang Zhong,1,2 Yingwei Wang,2,3 Yuanwei Chen2–4 1State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 2University of Chinese Academy of Sciences, Beijing, 3Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, 4Hinova Pharmaceuticals Inc, Chengdu, People’s Republic of China *These authors contributed equally to this work Background: The replacement of hydrogen with deuterium invokes a kinetic isotope effect. Thus, this method is an attractive way to slow down the metabolic rate and modulate pharmacokinetics.Purpose: Enzalutamide (ENT acts as a competitive inhibitor of the androgen receptor and has been approved for the treatment of metastatic castration-resistant prostate cancer by the US Food and Drug Administration in 2012. To attenuate the N-demethylation pathway, hydrogen atoms of the N–CH3 moiety were replaced by the relatively stable isotope deuterium, which showed similar pharmacological activities but exhibited favorable pharmacokinetic properties.Methods: We estimated in vitro and in vivo pharmacokinetic parameters for ENT and its deuterated analog (d3-ENT. For in vitro studies, intrinsic primary isotope effects (KH/KD were determined by the ratio of intrinsic clearance (CLint obtained for ENT and d3-ENT. The CLint values were obtained by the substrate depletion method. For in vivo studies, ENT and d3-ENT were orally given to male Sprague Dawley rats separately and simultaneously to assess the disposition and metabolism of them. We also investigated the main metabolic pathway of ENT by comparing the rate of oxidation and hydrolysis in vitro. Results: The in vitro CLint (maximum velocity/Michaelis constant [Vmax/Km] of d3-ENT in rat and human liver microsomes were 49.7% and 72.9% lower than those of the non-deuterated compound, corresponding to the KH

  9. Rating Movies and Rating the Raters Who Rate Them.

    Science.gov (United States)

    Zhou, Hua; Lange, Kenneth

    2009-11-01

    The movie distribution company Netflix has generated considerable buzz in the statistics community by offering a million dollar prize for improvements to its movie rating system. Among the statisticians and computer scientists who have disclosed their techniques, the emphasis has been on machine learning approaches. This article has the modest goal of discussing a simple model for movie rating and other forms of democratic rating. Because the model involves a large number of parameters, it is nontrivial to carry out maximum likelihood estimation. Here we derive a straightforward EM algorithm from the perspective of the more general MM algorithm. The algorithm is capable of finding the global maximum on a likelihood landscape littered with inferior modes. We apply two variants of the model to a dataset from the MovieLens archive and compare their results. Our model identifies quirky raters, redefines the raw rankings, and permits imputation of missing ratings. The model is intended to stimulate discussion and development of better theory rather than to win the prize. It has the added benefit of introducing readers to some of the issues connected with analyzing high-dimensional data.

  10. Aggravation of Irradiation Induced Impairment in Protein Metabolism in Albino Rate Subjected to Oral Injection of Kelthane Miticide

    International Nuclear Information System (INIS)

    Yousri, R.M.; Abu Ghadeer, A.R.M.; Abbady, M.M.; Helmy, A.S.; Abdallah, N.M.

    1998-01-01

    The combined effect of both whole body gamma radiation exposure and administration of organo chlorine miticide k elthane o n protein metabolism was investigated in male albino rats. Kelthane was orally given at a dose level of 100 mg/kg body weight over a period of seven days. Irradiation process permitted the rats to receive one Gray every other day at a weekly cumulative dose of 3 Gy up to a total dose of 15 Gy. The biochemical assays included total proteins, protein fractions, free amino acids (FAAS) and urea level in blood serum as well as protein content and its FAAS in urine . The data revealed significant changes in the protein parameters due to whole body gamma irradiation. These changes were shown to be dose and time dependent which reached their maximum at the end of the experimentation period. The alterations were more pronounced in animal groups exposed to gamma radiation and received keltane pesticide

  11. Metabolic rate and its relationship with ascites in chicken genotypes

    NARCIS (Netherlands)

    Malan, D.D.; Scheele, C.W.; Buyse, J.; Kwakernaak, C.; Siebrits, F.K.; Klis, van der J.D.; Decuypere, E.

    2003-01-01

    This review addresses the suggestion that the decline in dairy reproductive performance, as increasingly observed these days, may be due to a hampered process of metabolic adaptation in early lactating cows. In our opinion, adaptation to the negative energy balance is a gradual process. Because

  12. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running.

    Directory of Open Access Journals (Sweden)

    Thomas K Uchida

    Full Text Available Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2-5 m/s with tendon force-strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2-3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail.

  13. Morph-specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon.

    Science.gov (United States)

    Friesen, Christopher R; Johansson, Rasmus; Olsson, Mats

    2017-08-01

    Polymorphism has fascinated biologists for over a century because morphs persist within populations through evolutionary time in spite of showing disparate behavioral and physiological phenotypes; any one morph should go to fixation with the slightest fitness advantage over the others. Surely there must be trade-offs that balance selection on them. The polychromatic morphs of the Australian painted dragon lizard, Ctenophorus pictus, are one such system. The male color morphs of painted dragons have different physiological and behavioral traits including reproductive tactics, hormone levels, and the rate of body condition loss through the reproductive season. Due to their differences in physiology and reproductive tactics, we tested the hypotheses that male morphs would differ in resting metabolic rates (RMRs) and that the morphs' RMR would decline at different rates through the mating season. We found that bib-morphs (yellow gular patch) differ in RMR with bibbed (more aggressive) males having consistently higher RMR than non-bibbed males. Furthermore, we show that male dragons experience a decline in RMR as they age from reproductively active to inactive. We also found that the RMR of bibbed males has higher repeatability than non-bibbed males. Our results reinforce previous hypotheses about the morph-specific costs of bearing a gular patch in painted dragons. © 2017 Wiley Periodicals, Inc.

  14. Effects of hiking at moderate and low altitude on cardiovascular parameters in male patients with metabolic syndrome: Austrian Moderate Altitude Study.

    Science.gov (United States)

    Neumayr, Günther; Fries, Dietmar; Mittermayer, Markus; Humpeler, Egon; Klingler, Anton; Schobersberger, Wolfgang; Spiesberger, Reinhard; Pokan, Rochus; Schmid, Peter; Berent, Robert

    2014-09-01

    Physical activity is a cornerstone in therapy for patients with metabolic syndrome. Walking and hiking in a mountain scenery represents an ideal approach to make them move. The Austrian Moderate Altitude Study (AMAS) 2000 main study is a randomized controlled trial to investigate the cardiovascular effects of hiking at moderate altitude on patients with metabolic syndrome compared with a control group at low altitude, to assess a potential altitude-specific effect. Seventy-one male patients with metabolic syndrome were randomly assigned to a moderate altitude group (at 1700 m), with 36 participants, or to a low altitude group (at 200 m), with 35 participants. The 3-week vacation program included 12 hiking tours (4 per week, average duration 2.5 hours, intensity 55% to 65% of heart rate maximum). Physical parameters, performance capacity, 24-hour blood pressure, and heart rate profiles were obtained before, during, and after the stay. In both groups, we found a significant mean weight loss of -3.13 kg; changes in performance capacity were minor. Systolic, diastolic, and mean arterial pressures and circadian heart rate profiles were significantly reduced in both groups, with no differences between them. Consequently, the pressure-rate product was reduced as well. All study participants tolerated the vacation well without any adverse events. A 3-week hiking vacation at moderate or low altitude is safe for patients with metabolic syndrome and provides several improvements in their cardiovascular parameters. The cardiovascular benefits achieved are more likely to be the result of regular physical activity than the altitude-specific effect of a mountain environment. Copyright © 2014 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  15. Role of the metabolism of parathyroid hormone

    International Nuclear Information System (INIS)

    Teitelbaum, A.P.

    1978-01-01

    The heterogeneity of parathyroid hormone (PTH) in plasma has prompted investigations of the metabolism of PTH and its relationship to hormone action. The time course of tissue distribution and metabolism of electrolytically iodinated PTH (E-PTH) previously shown to retain biological activity was compared with that of inactive PTH iodinated with Chloramine-T (CT-PTH). Labeled PTH (0.4 μg) was injected in the saphenous veins of anesthetized rats which were sacrificed at 1, 3, 5, 10, and 20 min. Tissue extracts from kidney, liver, and serum were chromatographed to separate intact PTH from its metabolites. In the kidney, the initial rate of degradation of E-PTH was greater than that of CT-PTH. The difference in initial rates of metabolism may be due, in part, to receptor-specific hydrolysis on peritubular cell membranes which selectively act on biologically active PTH molecules. PTH-responsive adenyl cyclase activity in isolated kidney cortex plasma membranes was measured and PTH metabolism was monitored simultaneously. When degradation was completely blocked by histone f 3 (1 mg/ml), adenyl cyclase activity was significantly increased over control. In addition, when adenyl cyclase activity was negligible, the rate of PTH degradation by the membranes was not significantly diminished. Consistent with the in vivo data was the observation that E-PTH is metabolized by these membranes at a greater rate than CT-PTH. The data demonstrate the existence of a receptor-specific metabolism at sites which are independent of PTH receptor mediated adenyl cyclase activity

  16. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  17. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.

    Science.gov (United States)

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-04-01

    Inspired by the springlike action of biological legs, running-specific prostheses are designed to enable athletes with lower-limb amputations to run. However, manufacturer's recommendations for prosthetic stiffness and height may not optimize running performance. Therefore, we investigated the effects of using different prosthetic configurations on the metabolic cost and biomechanics of running. Five athletes with bilateral transtibial amputations each performed 15 trials on a force-measuring treadmill at 2.5 or 3.0 m/s. Athletes ran using each of 3 different prosthetic models (Freedom Innovations Catapult FX6, Össur Flex-Run, and Ottobock 1E90 Sprinter) with 5 combinations of stiffness categories (manufacturer's recommended and ± 1) and heights (International Paralympic Committee's maximum competition height and ± 2 cm) while we measured metabolic rates and ground reaction forces. Overall, prosthetic stiffness [fixed effect (β) = 0.036; P = 0.008] but not height ( P ≥ 0.089) affected the net metabolic cost of transport; less stiff prostheses reduced metabolic cost. While controlling for prosthetic stiffness (in kilonewtons per meter), using the Flex-Run (β = -0.139; P = 0.044) and 1E90 Sprinter prostheses (β = -0.176; P = 0.009) reduced net metabolic costs by 4.3-4.9% compared with using the Catapult prostheses. The metabolic cost of running improved when athletes used prosthetic configurations that decreased peak horizontal braking ground reaction forces (β = 2.786; P = 0.001), stride frequencies (β = 0.911; P < 0.001), and leg stiffness values (β = 0.053; P = 0.009). Remarkably, athletes did not maintain overall leg stiffness across prosthetic stiffness conditions. Rather, the in-series prosthetic stiffness governed overall leg stiffness. The metabolic cost of running in athletes with bilateral transtibial amputations is influenced by prosthetic model and stiffness but not height. NEW & NOTEWORTHY We measured the

  18. A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells

    Science.gov (United States)

    Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.

    2018-03-01

    Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.

  19. Physical mechanism or evolutionary trade-off? Factors dictating the relationship between metabolic rate and ambient temperature in carabid beetles.

    Science.gov (United States)

    Gudowska, Agnieszka; Schramm, Bartosz W; Czarnoleski, Marcin; Kozłowski, Jan; Bauchinger, Ulf

    2017-08-01

    The tight association between ambient temperature (T) and metabolic rate (MR) is a common occurrence in ectotherms, but the determinants of this association are not fully understood. This study examined whether the relationship between MR and T is the same among individuals, as predicted by the Universal Temperature Dependence hypothesis, or whether this relationship differs between them. We used flow-through respirometry to measure standard MR and to determine gas exchange patterns for 111 individuals of three Carabidae species which differ in size (Abax ovalis, Carabus linnei and C. coriaceus), exposed to four different temperatures (ten individuals of each species measured at 6, 11, 16 and 21°C). We found a significant interaction between ln body mass and the inverse of temperature, indicating that in a given species, the effect of temperature on MR was weaker in larger individuals than in smaller individuals. Overall, this finding shows that the thermal dependence of MR is not body mass invariant. We observed three types of gas exchange patterns among beetles: discontinuous, cyclic and continuous. Additionally, the appearance of these patterns was associated with MR and T. Evolution in diverse terrestrial environments could affect diverse ventilation patterns, which accommodate changes in metabolism in response to temperature variation. In conclusion, explaining the variance in metabolism only through fundamental physical laws of thermodynamics, as predicted by the Universal Temperature Dependence hypothesis, appears to oversimplify the complexity of nature, ignoring evolutionary trade-offs that should be taken into account in the temperature - metabolism relationship. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Basal metabolic rate and body composition of elite Japanese male athletes.

    Science.gov (United States)

    Koshimizu, Takako; Matsushima, Yoshiko; Yokota, Yukari; Yanagisawa, Kae; Nagai, Satsuki; Okamura, Koji; Komatsu, Yutaka; Kawahara, Takashi

    2012-01-01

    The estimated energy requirement is important for adequate nutritional management in athletes. The energy requirement can be estimated from the basal metabolic rate (BMR). However, there is little data regarding the BMR of Japanese athletes. This study measured the BMR and body composition of 81 elite Japanese male athletes in different sports categories: endurance (E), strength, power and sprint (S) and ball game (B). The factors influencing the BMR were also investigated. The BMR and body composition were measured by indirect calorimetry and an air-displacement plentysmograph device (the BOD POD), respectively. The BMR per lean body mass (LBM) differed significantly among the three groups. The BMR was significantly correlated with the body weight (BW) and LBM in all groups. A multiple-regression analysis showed that the LBM was the most powerful predictor in the E and S groups, whereas the BW was the most powerful predictor in the B group. The BW appears to become an important predictor as the BW of athletes increases. Additionally, height was the second explanatory variable in the S and B groups, thus suggesting that height needs to be considered for the BMR in these groups. Therefore, the BMR in elite athletes needs to be estimated according to their body composition.

  1. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats.

    Science.gov (United States)

    McGuire, Liam P; Mayberry, Heather W; Willis, Craig K R

    2017-12-01

    Fungal diseases of wildlife typically manifest as superficial skin infections but can have devastating consequences for host physiology and survival. White-nose syndrome (WNS) is a fungal skin disease that has killed millions of hibernating bats in North America since 2007. Infection with the fungus Pseudogymnoascus destructans causes bats to rewarm too often during hibernation, but the cause of increased arousal rates remains unknown. On the basis of data from studies of captive and free-living bats, two mechanistic models have been proposed to explain disease processes in WNS. Key predictions of both models are that WNS-affected bats will show 1 ) higher metabolic rates during torpor (TMR) and 2 ) higher rates of evaporative water loss (EWL). We collected bats from a WNS-negative hibernaculum, inoculated one group with P. destructans , and sham-inoculated a second group as controls. After 4 mo of hibernation, TMR and EWL were measured using respirometry. Both predictions were supported, and our data suggest that infected bats were more affected by variation in ambient humidity than controls. Furthermore, disease severity, as indicated by the area of the wing with UV fluorescence, was positively correlated with EWL, but not TMR. Our results provide the first direct evidence that heightened energy expenditure during torpor and higher EWL independently contribute to WNS pathophysiology, with implications for the design of potential treatments for the disease. Copyright © 2017 the American Physiological Society.

  2. Extracting volatility signal using maximum a posteriori estimation

    Science.gov (United States)

    Neto, David

    2016-11-01

    This paper outlines a methodology to estimate a denoised volatility signal for foreign exchange rates using a hidden Markov model (HMM). For this purpose a maximum a posteriori (MAP) estimation is performed. A double exponential prior is used for the state variable (the log-volatility) in order to allow sharp jumps in realizations and then log-returns marginal distributions with heavy tails. We consider two routes to choose the regularization and we compare our MAP estimate to realized volatility measure for three exchange rates.

  3. Modelling of the metabolism of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Posten, C; Thoma, M

    1986-01-01

    In order to optimize fermentations with respect to media, reactor configuration, and control a structured model of the metabolism of Zymononas mobilis has been developed. The model is based on structure of metabolism, rate limiting steps, energy balance and metabolic elemental balances. A three-fold effect of ethanol has been observed concerning substrate-turnover, ammonia uptake and energy consumption. In addition to the metabolic view a structured cell-membrane-model should be considered.

  4. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals

    Directory of Open Access Journals (Sweden)

    Charles C. Frasier

    2015-09-01

    Full Text Available The Mass, Metabolism and Length Explanation (MMLE was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymassb. Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal’s characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal’s means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals’ skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or

  5. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division.

    Science.gov (United States)

    Nelissen, Hilde; Rymen, Bart; Jikumaru, Yusuke; Demuynck, Kirin; Van Lijsebettens, Mieke; Kamiya, Yuji; Inzé, Dirk; Beemster, Gerrit T S

    2012-07-10

    Plant growth rate is largely determined by the transition between the successive phases of cell division and expansion. A key role for hormone signaling in determining this transition was inferred from genetic approaches and transcriptome analysis in the Arabidopsis root tip. We used the developmental gradient at the maize leaf base as a model to study this transition, because it allows a direct comparison between endogenous hormone concentrations and the transitions between dividing, expanding, and mature tissue. Concentrations of auxin and cytokinins are highest in dividing tissues, whereas bioactive gibberellins (GAs) show a peak at the transition zone between the division and expansion zone. Combined metabolic and transcriptomic profiling revealed that this GA maximum is established by GA biosynthesis in the division zone (DZ) and active GA catabolism at the onset of the expansion zone. Mutants defective in GA synthesis and signaling, and transgenic plants overproducing GAs, demonstrate that altering GA levels specifically affects the size of the DZ, resulting in proportional changes in organ growth rates. This work thereby provides a novel molecular mechanism for the regulation of the transition from cell division to expansion that controls organ growth and size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Comparative analyses of basal rate of metabolism in mammals: data selection does matter.

    Science.gov (United States)

    Genoud, Michel; Isler, Karin; Martin, Robert D

    2018-02-01

    Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria (resting, postabsorptive state; thermal neutrality; adult, non-reproductive status for females) and examine potential effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a 'subsampling procedure' was also applied, in which random subsamples of different sample sizes were taken from each original data set and successively analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large clades

  7. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation.

    Science.gov (United States)

    Blundell, John E; Caudwell, Phillipa; Gibbons, Catherine; Hopkins, Mark; Naslund, Erik; King, Neil; Finlayson, Graham

    2012-09-01

    A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that "the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy". However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.

  8. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation

    Directory of Open Access Journals (Sweden)

    John E. Blundell

    2012-09-01

    Full Text Available A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that “the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy”. However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM, fat mass (FM], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate, but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.

  9. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  10. Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae.

    Science.gov (United States)

    Nijland, Jeroen G; Shin, Hyun Yong; Boender, Leonie G M; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M

    2017-06-01

    Engineering Saccharomyces cerevisiae for the utilization of pentose sugars is an important goal for the production of second-generation bioethanol and biochemicals. However, S. cerevisiae lacks specific pentose transporters, and in the presence of glucose, pentoses enter the cell inefficiently via endogenous hexose transporters (HXTs). By means of in vivo engineering, we have developed a quadruple hexokinase deletion mutant of S. cerevisiae that evolved into a strain that efficiently utilizes d-xylose in the presence of high d-glucose concentrations. A genome sequence analysis revealed a mutation (Y353C) in the general corepressor CYC8 , or SSN6 , which was found to be responsible for the phenotype when introduced individually in the nonevolved strain. A transcriptome analysis revealed altered expression of 95 genes in total, including genes involved in (i) hexose transport, (ii) maltose metabolism, (iii) cell wall function (mannoprotein family), and (iv) unknown functions (seripauperin multigene family). Of the 18 known HXTs, genes for 9 were upregulated, especially the low or nonexpressed HXT10 , HXT13 , HXT15 , and HXT16 Mutant cells showed increased uptake rates of d-xylose in the presence of d-glucose, as well as elevated maximum rates of metabolism ( V max ) for both d-glucose and d-xylose transport. The data suggest that the increased expression of multiple hexose transporters renders d-xylose metabolism less sensitive to d-glucose inhibition due to an elevated transport rate of d-xylose into the cell. IMPORTANCE The yeast Saccharomyces cerevisiae is used for second-generation bioethanol formation. However, growth on xylose is limited by pentose transport through the endogenous hexose transporters (HXTs), as uptake is outcompeted by the preferred substrate, glucose. Mutant strains were obtained with improved growth characteristics on xylose in the presence of glucose, and the mutations mapped to the regulator Cyc8. The inactivation of Cyc8 caused increased

  11. Winter metabolic depression does not change arterial baroreflex control of heart rate in the tegu lizard Salvator merianae.

    Science.gov (United States)

    Zena, Lucas A; Dantonio, Valter; Gargaglioni, Luciane H; Andrade, Denis V; Abe, Augusto S; Bícego, Kênia C

    2016-03-01

    Baroreflex regulation of blood pressure is important for maintaining appropriate tissue perfusion. Although temperature affects heart rate (fH) reflex regulation in some reptiles and toads, no data are available on the influence of temperature-independent metabolic states on baroreflex. The South American tegu lizard Salvator merianae exhibits a clear seasonal cycle of activity decreasing fH along with winter metabolic downregulation, independent of body temperature. Through pharmacological interventions (phenylephrine and sodium nitroprusside), the baroreflex control of fH was studied at ∼ 25 °C in spring-summer- and winter-acclimated tegus. In winter lizards, resting and minimum fH were lower than in spring-summer animals (respectively, 13.3 ± 0.82 versus 10.3 ± 0.81 and 11.2 ± 0.65 versus 7.97 ± 0.88 beats min(-1)), while no acclimation differences occurred in resting blood pressure (5.14 ± 0.38 versus 5.06 ± 0.56 kPa), baroreflex gain (94.3 ± 10.7 versus 138.7 ± 30.3% kPa(-1)) or rate-pressure product (an index of myocardial activity). Vagal tone exceeded the sympathetic tone of fH, especially in the winter group. Therefore, despite the lower fH, winter acclimation does not diminish the fH baroreflex responses or rate-pressure product, possibly because of increased stroke volume that may arise because of heart hypertrophy. Independent of acclimation, fH responded more to hypotension than to hypertension. This should imply that tegus, which have no pressure separation within the single heart ventricle, must have other protection mechanisms against pulmonary hypertension or oedema, presumably through lymphatic drainage and/or vagal vasoconstriction of pulmonary artery. Such a predominant fH reflex response to hypotension, previously observed in anurans, crocodilians and mammals, may be a common feature of tetrapods. © 2016. Published by The Company of Biologists Ltd.

  12. Scaling of Metabolic Scaling within Physical Limits

    Directory of Open Access Journals (Sweden)

    Douglas S. Glazier

    2014-10-01

    Full Text Available Both the slope and elevation of scaling relationships between log metabolic rate and log body size vary taxonomically and in relation to physiological or developmental state, ecological lifestyle and environmental conditions. Here I discuss how the recently proposed metabolic-level boundaries hypothesis (MLBH provides a useful conceptual framework for explaining and predicting much, but not all of this variation. This hypothesis is based on three major assumptions: (1 various processes related to body volume and surface area exert state-dependent effects on the scaling slope for metabolic rate in relation to body mass; (2 the elevation and slope of metabolic scaling relationships are linked; and (3 both intrinsic (anatomical, biochemical and physiological and extrinsic (ecological factors can affect metabolic scaling. According to the MLBH, the diversity of metabolic scaling relationships occurs within physical boundary limits related to body volume and surface area. Within these limits, specific metabolic scaling slopes can be predicted from the metabolic level (or scaling elevation of a species or group of species. In essence, metabolic scaling itself scales with metabolic level, which is in turn contingent on various intrinsic and extrinsic conditions operating in physiological or evolutionary time. The MLBH represents a “meta-mechanism” or collection of multiple, specific mechanisms that have contingent, state-dependent effects. As such, the MLBH is Darwinian in approach (the theory of natural selection is also meta-mechanistic, in contrast to currently influential metabolic scaling theory that is Newtonian in approach (i.e., based on unitary deterministic laws. Furthermore, the MLBH can be viewed as part of a more general theory that includes other mechanisms that may also affect metabolic scaling.

  13. Metabolic monitoring in New Zealand district health board mental health services.

    Science.gov (United States)

    Staveley, Aimee; Soosay, Ian; O'Brien, Anthony J

    2017-11-10

    To audit New Zealand district health boards' (DHBs) metabolic monitoring policies in relation to consumers prescribed second-generation antipsychotic medications using a best practice guideline. Metabolic monitoring policies from DHBs and one private clinic were analysed in relation to a best practice standard developed from the current literature and published guidelines relevant to metabolic syndrome. Fourteen of New Zealand's 20 DHBs currently have metabolic monitoring policies for consumers prescribed antipsychotic medication. Two of those policies are consistent with the literature-based guideline. Eight policies include actions to be taken when consumers meet criteria for metabolic syndrome. Four DHBs have systems for measuring their rates of metabolic monitoring. There is no consensus on who is clinically responsible for metabolic monitoring. Metabolic monitoring by mental health services in New Zealand reflects international experience that current levels of monitoring are low and policies are not always in place. Collaboration across the mental health and primary care sectors together with the adoption of a consensus guideline is needed to improve rates of monitoring and reduce current rates of physical health morbidities.

  14. Computational model of cellular metabolic dynamics

    DEFF Research Database (Denmark)

    Li, Yanjun; Solomon, Thomas; Haus, Jacob M

    2010-01-01

    of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data......: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase......, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development...

  15. Strong association between corticosterone levels and temperature-dependent metabolic rate in individual zebra finches

    NARCIS (Netherlands)

    Jimeno Revilla, Blanca; Hau, Michaela; Verhulst, Simon

    2017-01-01

    Glucocorticoid hormones (GCs) are often assumed to be indicators of stress. At the same time, one of their fundamental roles is to facilitate metabolic processes to accommodate changes in energetic demands. Although the metabolic function of GCs is thought to be ubiquitous across vertebrates, we are

  16. Determinação da taxa metabólica basal em cutias, Dasyprocta azarae, por calorimetria indireta Determination of the basal metabolic rate in agoutis, Dasyprocta azarae, by indirect calorimetry

    Directory of Open Access Journals (Sweden)

    Harald F.V. Brito

    2010-06-01

    necessidade de novos estudos sobre o metabolismo de Dasyprocta azarae, sugerindo-se a realização de aferição da taxa metabólica basal e aferição simultânea da concentração sérica de testosterona, estradiol e cortisol para os três grupos.The best way to compare different organisms is the basal metabolic rate, a fundamental interrelation existent among all living beings. Direct measures of oxygen and carbon dioxide concentrations by evaluation of inspired and expired air can be used to measure metabolic rate. So, this research was done in order to measure basal and specific metabolic rates in agoutis (Dasyprocta azarae, and reexamine the scaling of basal metabolism in this species. There were used 34 adult healthy agoutis (9 non-castrated males, 9 castrated males, and 16 females, that belong to the wild animal scientific breeding facility of the Natural History Museum of the Curitiba city, State of Paraná, Brazil. After a six-hour fasting the animals were placed in special boxes under controlled temperature (22.0±1.0ºC, and submitted to measuring of the basal metabolic rate, by indirect calorimetry. It was used the Deltatrac®II metabolic monitor, usually indicated to measure carbon dioxide production (VCO2 and oxygen consumption (VO2 in human beings, by measuring variations in the concentration of VCO2 and of VO2, with a precision of 0.01%. The specific metabolic rate was calculated after determination of the basal metabolic rate and the obtained data were analyzed by inductive statistics. The hypotheses tests for comparison among samples indicated that the specific metabolic rate is higher in non-castrated males than in females and castrated males (significance of 5%, and that the specific metabolic rate of females and castrated males are equivalent (significance of 1%. In addition, analysis of the correlation of experimental points indicates that another variable beyond body size affects the met