WorldWideScience

Sample records for maximum lift coefficients

  1. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  2. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv 2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326

  3. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Directory of Open Access Journals (Sweden)

    Phillip Burgers

    Full Text Available For a century, researchers have used the standard lift coefficient C(L to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S, compared against the total kinetic energy required for generating said lift, ½v(2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  4. Soccer Ball Lift Coefficients via Trajectory Analysis

    Science.gov (United States)

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  5. Application of thin-layer Navier-Stokes equations near maximum lift

    Science.gov (United States)

    Anderson, W. K.; Thomas, J. L.; Rumsey, C. L.

    1984-01-01

    The flowfield about a NACA 0012 airfoil at a Mach number of 0.3 and Reynolds number of 1 million is computed through an angle of attack range, up to 18 deg, corresponding to conditions up to and beyond the maximum lift coefficient. Results obtained using the compressible thin-layer Navier-Stokes equations are presented as well as results from the compressible Euler equations with and without a viscous coupling procedure. The applicability of each code is assessed and many thin-layer Navier-Stokes benchmark solutions are obtained which can be used for comparison with other codes intended for use at high angles of attack. Reasonable agreement of the Navier-Stokes code with experiment and the viscous-inviscid interaction code is obtained at moderate angles of attack. An unsteady solution is obtained with the thin-layer Navier-Stokes code at the highest angle of attack considered. The maximum lift coefficient is overpredicted, however, in comparison to experimental data, which is attributed to the presence of a laminar separation bubble near the leading edge not modeled in the computations. Two comparisons with experimental data are also presented at a higher Mach number.

  6. Soccer ball lift coefficients via trajectory analysis

    International Nuclear Information System (INIS)

    Goff, John Eric; Carre, Matt J

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  7. Soccer ball lift coefficients via trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-07-15

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  8. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    OpenAIRE

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standar...

  9. Drag power kite with very high lift coefficient

    NARCIS (Netherlands)

    Bauer, F.; Kennel, R.M.; Hackl, C.M.; Campagnolo, F.; Patt, M.; Schmehl, R.

    2018-01-01

    As an alternative to conventional wind turbines, this study considered kites with onboard wind turbines driven by a high airspeed due to crosswind flight (“drag power”). The hypothesis of this study was, that if the kite's lift coefficient is maximized, then the power, energy yield, allowed costs

  10. Maximum Acceptable Weight of Lift reflects peak lumbosacral extension moments in a Functional Capacity Evaluation test using free style, stoop, and squat lifting

    NARCIS (Netherlands)

    Kuijer, P.P.F.M.; van Oostrom, S.H.; Duijzer, K.; van Dieen, J.H.

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques - free style, stoop and squat lifting

  11. Maximum acceptable weight of lift reflects peak lumbosacral extension moments in a functional capacity evaluation test using free style, stoop and squat lifting

    NARCIS (Netherlands)

    Kuijer, P. P. F. M.; van Oostrom, S. H.; Duijzer, K.; van Dieën, J. H.

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques - free style, stoop and squat lifting

  12. Effects of squat lift training and free weight muscle training on maximum lifting load and isolinetic peak torque of young adults without impairments.

    Science.gov (United States)

    Yeung, S S; Ng, G Y

    2000-06-01

    Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.

  13. Maximum Acceptable Weight of Lift reflects peak lumbosacral extension moments in a Functional Capacity Evaluation test using free style, stoop, and squat lifting

    OpenAIRE

    Kuijer, P.P.F.M.; van Oostrom, S.H.; Duijzer, K.; van Dieen, J.H.

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques - free style, stoop and squat lifting from knee to waist level - using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic para...

  14. Design of wind turbine airfoils based on maximum power coefficient

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2010-01-01

    Based on the blade element momentum (BEM) theory, the power coefficient of a wind turbine can be expressed in function of local tip speed ratio and lift-drag ratio. By taking the power coefficient in a predefined range of angle of attack as the final design objective and combining with an airfoil...

  15. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  16. Maximum acceptable weight of lift reflects peak lumbosacral extension moments in a functional capacity evaluation test using free style, stoop and squat lifting.

    Science.gov (United States)

    Kuijer, P P F M; van Oostrom, S H; Duijzer, K; van Dieën, J H

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques--free style, stoop and squat lifting from knee to waist level--using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic parameters increased with the load mass lifted, and whether the magnitudes of the kinetic parameters were consistent across techniques when lifting MAWL. MAWL was significantly different between techniques (p = 0.03). The peak lumbosacral extension moment met both criteria: it had the highest association with the load masses lifted (r > 0.9) and was most consistent between the three techniques when lifting MAWL (ICC = 0.87). In conclusion, MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. Tests of maximum acceptable weight of lift (MAWL) from knee to waist height are used to assess work capacity of individuals with low-back disorders. This article shows that the MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. This suggests that standardisation of lifting technique used in tests of the MAWL would be indicated if the aim is to assess the capacity of the low back.

  17. An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles

    Science.gov (United States)

    Ni, Zao; Su, Tsung-chow; Dhanak, Manhar

    2018-04-01

    Experimental data for untwisted airfoils are utilized to propose a model for predicting the lift coefficients of twisted airfoils with leading-edge tubercles. The effectiveness of the empirical model is verified through comparison with results of a corresponding computational fluid-dynamic (CFD) study. The CFD study is carried out for both twisted and untwisted airfoils with tubercles, the latter shown to compare well with available experimental data. Lift coefficients of twisted airfoils predicted from the proposed empirically-based model match well with the corresponding coefficients determined using the verified CFD study. Flow details obtained from the latter provide better insight into the underlying mechanism and behavior at stall of twisted airfoils with leading edge tubercles.

  18. Computation of drag and lift coefficients for simple two-dimensional objects with Reynolds number Re = 420 000

    Directory of Open Access Journals (Sweden)

    Matas Richard

    2012-04-01

    Full Text Available The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.

  19. Effect of background music on maximum acceptable weight of manual lifting tasks.

    Science.gov (United States)

    Yu, Ruifeng

    2014-01-01

    This study used the psychophysical approach to investigate the impact of tempo and volume of background music on the maximum acceptable weight of lift (MAWL), heart rate (HR) and rating of perceived exertion (RPE) of participants engaged in lifting. Ten male college students participated in this study. They lifted a box from the floor, walked 1-2 steps as required, placed the box on a table and walked back twice per minute. The results showed that the tempo of music had a significant effect on both MAWL and HR. Fast tempo background music resulted in higher MAWL and HR values than those resulting from slow tempo music. The effects of both the tempo and volume on the RPE were insignificant. The results of this study suggest fast tempo background music may be used in manual materials handling tasks to increase performance without increasing perceived exertion because of its ergogenic effect on human psychology and physiology.

  20. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    Science.gov (United States)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  1. Two-dimensional unsteady lift problems in supersonic flight

    Science.gov (United States)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  2. Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators

    Science.gov (United States)

    Yao, Junkai; Zhou, Danjie; He, Haibo; He, Chengjun; Shi, Zhiwei; Du, Hai

    2017-04-01

    The effects of the arrangement position and control parameters of nanosecond dielectric barrier discharge (NS-DBD) plasma actuators on lift enhancement for flying wing aircraft were investigated through wind tunnel experiments at a flow speed of 25 m s-1. The aerodynamic forces and moments were obtained by a six-component balance at angles of attack ranging from -4° to 28°. The lift, drag and pitching moment coefficients were compared for the cases with and without plasma control. The results revealed that the maximum control effect was achieved by placing the actuator at the leading edge of the inner and middle wing, for which the maximum lift coefficient increased by 37.8% and the stall angle of attack was postponed by 8° compared with the plasma-off case. The effects of modulation frequency and discharge voltage were also investigated. The results revealed that the lift enhancement effect of the NS-DBD plasma actuators was strongly influenced by the modulation frequency. Significant control effects were obtained at f = 70 Hz, corresponding to F + ≈ 1. The result for the pitching moment coefficient demonstrated that the plasma actuator can induce the reattachment of the separation flows when it is actuated. However, the results indicated that the discharge voltage had a negligible influence on the lift enhancement effect.

  3. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    National Research Council Canada - National Science Library

    Chu, Peter C; Fan, Chenwu; Gefken, Paul R

    2008-01-01

    Prediction of rigid body falling through water column with a high speed (such as Mk-84 bomb) needs formulas for drag/lift and torque coefficients, which depend on various physical processes such as supercavitation and bubbles...

  4. Wingtip Vortices and Free Shear Layer Interaction in the Vicinity of Maximum Lift to Drag Ratio Lift Condition

    Science.gov (United States)

    Memon, Muhammad Omar

    Cost-effective air-travel is something everyone wishes for when it comes to booking flights. The continued and projected increase in commercial air travel advocates for energy efficient airplanes, reduced carbon footprint, and a strong need to accommodate more airplanes into airports. All of these needs are directly affected by the magnitudes of drag these aircraft experience and the nature of their wingtip vortex. A large portion of the aerodynamic drag results from the airflow rolling from the higher pressure side of the wing to the lower pressure side, causing the wingtip vortices. The generation of this particular drag is inevitable however, a more fundamental understanding of the phenomenon could result in applications whose benefits extend much beyond the relatively minuscule benefits of commonly-used winglets. Maximizing airport efficiency calls for shorter intervals between takeoffs and landings. Wingtip vortices can be hazardous for following aircraft that may fly directly through the high-velocity swirls causing upsets at vulnerably low speeds and altitudes. The vortex system in the near wake is typically more complex since strong vortices tend to continue developing throughout the near wake region. Several chord lengths distance downstream of a wing, the so-called fully rolled up wing wake evolves into a combination of a discrete wingtip vortex pair and a free shear layer. Lift induced drag is generated as a byproduct of downwash induced by the wingtip vortices. The parasite drag results from a combination of form/pressure drag and the upper and lower surface boundary layers. These parasite effects amalgamate to create the free shear layer in the wake. While the wingtip vortices embody a large portion of the total drag at lifting angles, flow properties in the free shear layer also reveal their contribution to the aerodynamic efficiency of the aircraft. Since aircraft rarely cruise at maximum aerodynamic efficiency, a better understanding of the balance

  5. Local vibrations and lift performance of low Reynolds number airfoil

    Directory of Open Access Journals (Sweden)

    TariqAmin Khan

    2017-06-01

    Full Text Available The 2D incompressible Navier-Stokes equations are solved based on the finite volume method and dynamic mesh technique is used to carry out partial fluid structure interaction. The local flexible structure (hereinafter termed as flexible structure vibrates in a single mode located on the upper surface of the airfoil. The Influence of vibration frequency and amplitude are examined and the corresponding fluid flow characteristics are investigated which add complexity to the inherent problem in unsteady flow. The study is conducted for flow over NACA0012 airfoil at 600≤Re≤3000 at a low angle of attack. Vibration of flexible structure induces a secondary vortex which modifies the pressure distribution and lift performance of the airfoil. At some moderate vibration amplitude, frequency synchronization or lock-in phenomenon occurs when the vibration frequency is close to the characteristic frequency of rigid airfoil. Evolution and shedding of vortices corresponding to the deformation of flexible structure depends on the Reynolds number. In the case of Re≤1000, the deformation of flexible structure is considered in-phase with the vortex shedding i.e., increasing maximum lift is linked with the positive deformation of flexible structure. At Re=1500 a phase shift of about 1/π exists while they are out-of-phase at Re>1500. Moreover, the oscillation amplitude of lift coefficient increases with increasing vibration amplitude for Re≤1500 while it decreases with increasing vibration amplitude for Re>1500. As a result of frequency lock-in, the average lift coefficient is increased with increasing vibration amplitude for all investigated Reynolds numbers (Re. The maximum increase in the average lift coefficient is 19.72% within the range of investigated parameters.

  6. The effect of electrohydrodynamic force on the lift coefficient of a NACA 0015 airfoil

    Science.gov (United States)

    Yusof, Y.; Hossain, A.; Abdullah, A. H.; Nasir, Rizal M. E.; Hamid, A.; Muthmainnah, N.; N, M.

    2017-11-01

    Lift, the force component that is perpendicular to the line of flight, is generated when a small aircraft moves through the air. With the help of the sets of flaps and slats on its wing, the pilot controls his aircraft manoeuvring in the air. In this study, we preferred to cut the drawbacks of the flaps system by introducing the electrohydrodynamic actuator. Widely known as plasma actuator, it is able to improve the induced lift force as well as the efficiency of a small aircraft system. A dielectric-barrier-discharge actuator using a 6 kV AC power supply was developed and tested on a NACA 0015 airfoil using copper as the electrodes and kapton as its dielectric component. The experimental results showed that it was successful in presenting a positive effect of the plasma actuator on the lift coefficient of the airfoil at smaller angle of attack, where enhancements ranged between 0.7% and 1.8%. However, at a higher angle, the results were not as swayed as it was desired since the energy exerted by the plasma actuator on the lift performance of the airfoil was inadequate. Further tests are needed using higher rated voltage supply and other equipment to improve the capability of the actuator in refining the aerodynamic performance of the airfoil.

  7. Selective effects of weight and inertia on maximum lifting.

    Science.gov (United States)

    Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S

    2013-03-01

    A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Dynamic lift measurements on a FX79W151A airfoil via pressure distribution on the wind tunnel walls

    Energy Technology Data Exchange (ETDEWEB)

    Wolken-Moehlmann, Gerrit [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany); Knebel, Pascal [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany); Barth, Stephan [ECN Wind Energy, Energy research Centre of the (Netherlands); Peinke, Joachim [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany)

    2007-07-15

    We report on an experimental setup for measurements of dynamic stall for airfoils via the pressure distribution over wind tunnel walls. This measuring technique, hitherto used for lift measurements under static conditions, is also an adequate method for dynamic conditions until stall occurs. A step motor is used, allowing for sinusoidal as well as non-sinusoidal and stochastic pitching to simulate fast fluctuating flow conditions. Measurements with sinusoidal pitching and constant angular velocities were done and show dynamic stall characteristics. Under dynamic stall conditions, maximum lift coefficients were up to 80% higher than the maximum for static lift.

  9. Identification of variations of angle of attack and lift coefficient for a large horizontal-axis wind turbine

    DEFF Research Database (Denmark)

    Rezaeiha, Abdolrahim; Arjomandi, Maziar; Kotsonis, Marios

    2015-01-01

    and the aggregate effect of elements on variations of mean value and standard deviation of the angle of attack and lift coefficient in order to distinguish the major contributing factors. The results of the current study is of paramount importance in the design of active load control systems for wind turbine....

  10. Determining Changes in Electromyography Indices when Measuring Maximum Acceptable Weight of Lift in Iranian Male Students.

    Science.gov (United States)

    Salehi Sahl Abadi, A; Mazloumi, A; Nasl Saraji, G; Zeraati, H; Hadian, M R; Jafari, A H

    2018-03-01

    In spite of the increasing degree of automation in industry, manual material handling (MMH) is still performed in many occupational settings. The aim of the current study was to determine the maximum acceptable weight of lift using psychophysical and electromyography indices. This experimental study was conducted among 15 male students recruited from Tehran University of Medical Sciences. Each participant performed 18 different lifting tasks which involved three lifting frequencies, three lifting heights and two box sizes. Each set of experiments was conducted during the 20 min work period using free-style lifting technique and subjective as well as objective assessment methodologies. SPSS version 18 software was used for descriptive and analytical analyses by Friedman, Wilcoxon and Spearman correlation techniques. The results demonstrated that muscle activity increased with increasing frequency, height of lift and box size (P<0.05). Meanwhile, MAWLs obtained in this study are lower than those in Snook table (P<0.05). In this study, the level of muscle activity in percent MVC in relation to the erector spine muscles in L3 and T9 regions as well as left and right abdominal external oblique muscles were at 38.89%, 27.78%, 11.11% and 5.55% in terms of muscle activity is more than 70% MVC, respectively. The results of Wilcoxon test revealed that for both small and large boxes under all conditions, significant differences were detected between the beginning and end of the test values for MPF of erector spine in L3 and T9 regions, and left and right abdominal external oblique muscles (P<0.05). The results of Spearman correlation test showed that there was a significant relation between the MAWL, RMS and MPF of the muscles in all test conditions (P<0.05). Based on the results of this study, it was concluded if muscle activity is more than 70% of MVC, the values of Snook tables should be revisited. Furthermore, the biomechanical perspective should receive special attention

  11. Speed Estimation in Geared Wind Turbines Using the Maximum Correlation Coefficient

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Marhadi, Kun S.; Jensen, Bogi Bech

    2015-01-01

    to overcome the above mentioned issues. The high speed stage shaft angular velocity is calculated based on the maximum correlation coefficient between the 1 st gear mesh frequency of the last gearbox stage and a pure sinus tone of known frequency and phase. The proposed algorithm utilizes vibration signals...

  12. Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature

    Science.gov (United States)

    Yoo, Paul

    2013-01-01

    Investigation of sonic boom has been one of the major areas of study in aeronautics due to the benefits a low-boom aircraft has in both civilian and military applications. This work conducts a numerical analysis of the effects of streamwise lift distribution on the shock coalescence characteristics. A simple wing-canard-stabilator body model is used in the numerical simulation. The streamwise lift distribution is varied by fixing the canard at a deflection angle while trimming the aircraft with the wing and the stabilator at the desired lift coefficient. The lift and the pitching moment coefficients are computed using the Missile DATCOM v. 707. The flow field around the wing-canard- stabilator body model is resolved using the OVERFLOW-2 flow solver. Overset/ chimera grid topology is used to simplify the grid generation of various configurations representing different streamwise lift distributions. The numerical simulations are performed without viscosity unless it is required for numerical stability. All configurations are simulated at Mach 1.4, angle-of-attack of 1.50, lift coefficient of 0.05, and pitching moment coefficient of approximately 0. Four streamwise lift distribution configurations were tested.

  13. Performance investigations on modified vertical axis water turbine: Combination of lift and drag

    Science.gov (United States)

    Baumatary, Mithinga; Biswas, Angimitra; Misra, Rahul Dev

    2018-04-01

    Extracting energy from the water has been followed since decades due to environmental friendly. Now a days everyone is running after clean energy, therefore extracting energy from the water turbine is a good approach. The main idea of this study is to investigate the performance of a new design turbine which is a combination of the concepts of lift and drag turbine. The main purpose of the study is to accumulate maximum energy by considering advantages of two different types of turbine. The maximum coefficient of power is 0.141 at free stream velocity of 0.5 m/s. The modified new design turbine consist of straight section and the curve section. The length of the straight section influences the performance of the turbine. Investigation on the optimization of straight section has been carried out in this paper. As this type of turbine have opted the advantages of both lift and drag it has turned out to be fruitful.

  14. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    Science.gov (United States)

    Broeren, Andy P.; Riley, James T.

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flowoff characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24 percent on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3 percent on the PIWT model at 8 angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2 percent. Therefore, for cases resulting in PIWT model lift loss from 7.3 to 9.2 percent, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  15. Creating drag and lift curves from soccer trajectories

    Science.gov (United States)

    Goff, John Eric; Kelley, John; Hobson, Chad M.; Seo, Kazuya; Asai, Takeshi; Choppin, S. B.

    2017-07-01

    Trajectory analysis is an alternative to using wind tunnels to measure a soccer ball’s aerodynamic properties. It has advantages over wind tunnel testing such as being more representative of game play. However, previous work has not presented a method that produces complete, speed-dependent drag and lift coefficients. Four high-speed cameras in stereo-calibrated pairs were used to measure the spatial co-ordinates for 29 separate soccer trajectories. Those trajectories span a range of launch speeds from 9.3 to 29.9 m s-1. That range encompasses low-speed laminar flow of air over a soccer ball, through the drag crises where air flow is both laminar and turbulent, and up to high-speed turbulent air flow. Results from trajectory analysis were combined to give speed-dependent drag and lift coefficient curves for the entire range of speeds found in the 29 trajectories. The average root mean square error between the measured and modelled trajectory was 0.028 m horizontally and 0.034 m vertically. The drag and lift crises can be observed in the plots of drag and lift coefficients respectively.

  16. A Maximum Likelihood Approach to Determine Sensor Radiometric Response Coefficients for NPP VIIRS Reflective Solar Bands

    Science.gov (United States)

    Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong

    2011-01-01

    Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.

  17. Lift hysteresis at stall as an unsteady boundary-layer phenomenon

    Science.gov (United States)

    Moore, Franklin K

    1956-01-01

    Analysis of rotating stall of compressor blade rows requires specification of a dynamic lift curve for the airfoil section at or near stall, presumably including the effect of lift hysteresis. Consideration of the magnus lift of a rotating cylinder suggests performing an unsteady boundary-layer calculation to find the movement of the separation points of an airfoil fixed in a stream of variable incidence. The consideration of the shedding of vorticity into the wake should yield an estimate of lift increment proportional to time rate of change of angle of attack. This increment is the amplitude of the hysteresis loop. An approximate analysis is carried out according to the foregoing ideas for a 6:1 elliptic airfoil at the angle of attack for maximum lift. The assumptions of small perturbations from maximum lift are made, permitting neglect of distributed vorticity in the wake. The calculated hysteresis loop is counterclockwise. Finally, a discussion of the forms of hysteresis loops is presented; and, for small reduced frequency of oscillation, it is concluded that the concept of a viscous "time lag" is appropriate only for harmonic variations of angle of attack with time at mean conditions other than maximum lift.

  18. Three-dimensional motion analysis of the lumbar spine during "free squat" weight lift training.

    Science.gov (United States)

    Walsh, James C; Quinlan, John F; Stapleton, Robert; FitzPatrick, David P; McCormack, Damian

    2007-06-01

    Heavy weight lifting using a squat bar is a commonly used athletic training exercise. Previous in vivo motion studies have concentrated on lifting of everyday objects and not on the vastly increased loads that athletes subject themselves to when performing this exercise. Athletes significantly alter their lumbar spinal motion when performing squat lifting at heavy weights. Controlled laboratory study. Forty-eight athletes (28 men, 20 women) performed 6 lifts at 40% maximum, 4 lifts at 60% maximum, and 2 lifts at 80% maximum. The Zebris 3D motion analysis system was used to measure lumbar spine motion. Exercise was performed as a "free" squat and repeated with a weight lifting support belt. Data obtained were analyzed using SAS. A significant decrease (P free squat or when lifting using a support belt in any of the groups studied. Weight lifting using a squat bar causes athletes to significantly hyperextend their lumbar spines at heavier weights. The use of a weight lifting support belt does not significantly alter spinal motion during lifting.

  19. Back muscle strength, lifting, and stooped working postures.

    Science.gov (United States)

    Poulsen, E; Jørgensen, K

    1971-09-01

    When lifting loads and working in a forward stooped position, the muscles of the back rather than the ligaments and bony structures of the spine should overcome the gravitational forces. Formulae, based on measurements of back muscle strength, for prediction of maximal loads to be lifted, and for the ability to sustain work in a stooped position, have been worked out and tested in practical situations. From tests with 50 male and female subjects the simplest prediction formulae for maximum loads were: max. load = 1.10 x isometric back muscle strength for men; and max. load = 0.95 x isometric back muscle strength - 8 kg for women. Some standard values for maximum lifts and permissible single and repeated lifts have been calculated for men and women separately and are given in Table 1. From tests with 65 rehabilitees it was found that the maximum isometric strength of the back muscles measured at shoulder height should exceed 2/3 of the body weight, if fatigue and/or pain in the back muscles is to be avoided during work in a standing stooped position.

  20. CFD Study of a New Annular Lift Fan Configuration with High Lift Efficiency

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2017-03-01

    Full Text Available A new annular lift fan configuration that has very high lift efficiency is explored by using a numerical scheme. The inlet lip radius and diffuser angle are maximized by semicircle duct walls and the location of the lift fan is moved from the throat to the diffuser area to maximize the diffusion effect of the ducted fan. The improved lift fan achieves the figure of merit of 0.772 and the power loading of 9.03 lbs/hp without ground effect, very close to the theoretical limit. Under the ground effect, the figure of merit reaches 0.822 with the power loading of 9.62 lbs/hp. The improved lift efficiency deteriorates the transition characteristics with higher momentum drag and pitching moment. However, with the aid of jet thrusts directly providing part of the lift during transition, the peak of momentum drag and pitching moment can be lowered. A total thrust to weight ratio of 0.7 is enough for all of the requirements in transition and in hover and for the maximum speed of 0.75 Mach in cruise flight.

  1. Comparative Kinematic Analysis of the Snatch Lifts in Elite Male Adolescent Weightlifters

    Directory of Open Access Journals (Sweden)

    Erbil Harbili

    2014-06-01

    Full Text Available The purpose of the study was to compare the linear kinematics of the barbell and the angular kinematics of the lower limb during the snatch lifts of two different barbell weights in elite male adolescent weightlifters. In the national team level, nine elite male adolescent weightlifters participated in the study. The snatch lifts were recorded by two video cameras under competitive conditions in preparation period before the European Junior Championship (Sony MiniDv PAL- 50 field/s and the two heaviest successful lifts were selected for kinematic analysis. The little toe, ankle, knee, hip, and shoulder on the body and one point on the barbell were digitized using Ariel Performance Analysis System (APAS, San Diego, CA, USA. Significant decreases were found in the maximum barbell height, the relative power output during the second pull, and the maximum vertical velocity of the barbell during the second pull of the heaviest lift (p < 0.05. Maximum extension velocity of the hip joint significantly increased during the first pull of the heaviest lift (p < 0.05. As the mass of the barbell increased, the maximum vertical velocity and the maximum height of the barbell and relative power output during the second pull decreased in the heaviest lift performed by adolescent weightlifters. Coaches should pay attention to assistant exercises to increase explosive strength during the second pull with maximum strength in male adolescent weightlifters.

  2. Design of a wind turbine rotor for maximum aerodynamic efficiency

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Aagaard Madsen, Helge; Gaunaa, Mac

    2009-01-01

    The design of a three-bladed wind turbine rotor is described, where the main focus has been highest possible mechanical power coefficient, CP, at a single operational condition. Structural, as well as off-design, issues are not considered, leading to a purely theoretical design for investigating...... maximum aerodynamic efficiency. The rotor is designed assuming constant induction for most of the blade span, but near the tip region, a constant load is assumed instead. The rotor design is obtained using an actuator disc model, and is subsequently verified using both a free-wake lifting line method...

  3. Blade Section Lift Coefficients for Propellers at Extreme Off-Design Conditions

    National Research Council Canada - National Science Library

    Shen, Young

    1997-01-01

    The Propeller Force Module (PFM) code developed by Analytical Methods Inc. (AMI) for calculating propeller side forces during maneuvering simulation studies requires inputs of propeller blade sectional lift, drag, and moment data...

  4. Airfoil design: Finding the balance between design lift and structural stiffness

    International Nuclear Information System (INIS)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik; Vronsky, Tomas

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup, airfoils were designed with relative thicknesses between 18% and 36%, a structural box height of 85% of the relative thickness, and varying box widths in chordwise direction between 20% and 40% of the chord length. The results from these airfoil designs showed that for a given flapwise stiffness, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were supported by an analysis of the three airfoil families Riso-C2, DU and FFA, where the lift-drag ratio as a function of flapwise stiffness was decreasing, but relatively independent of the airfoil design, and the design lift coefficient was varying depending on the design philosophy. To make the analysis complete also design lift and lift- drag ratio as a function of edgewise and torsional stiffness were shown

  5. Effect of Non-Equilibrium Condensation on Force Coefficients in Transonic Airfoil Flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Min; Kang, Hui Bo; Kwon, Young Doo; Kwon, Soon Bum [Kyungpook National Univeristy, Daegu (Korea, Republic of); Jeon, Heung Kyun [Daegu Health College, Daegu (Korea, Republic of)

    2014-12-15

    The present study investigated the effects of non-equilibrium condensation with the angle of attack on the coefficients of pressure, lift, and drag in the transonic 2-D flow of NACA0012 by numerical analysis of the total variation diminishing (TVD) scheme. At T{sub 0}=298 K and α=3°, the lift coefficients for M{sub ∞}=0.78 and 0.81 decreased monotonically with increasing Φ{sub 0}. In contrast, for M{sub ∞} corresponding to the Mach number of the force break, CL increased with Φ{sub 0}. For α=3° and Φ{sub 0}=0%, CD increased markedly as M{sub ∞} increased. However, at Φ{sub 0}=60% and α=3°, which corresponded to the case of the condensation having a large influence, CD increased slightly as M{sub ∞} increased. The decrease in profile drag by non-equilibrium condensation grew as the angle of attack and stagnation relative humidity increased for the same free stream transonic Mach number. At Φ{sub 0}=0%, the coefficient of the wave drag increased with the attack angle and free stream Mach number. When Φ{sub 0}>50%, the coefficient of the wave drag decreased as α and M{sub ∞} increased. Lowering Φ{sub 0} and increasing M{sub ∞} increased the maximum Mach number.

  6. MAXIMUM NUMBER OF REPETITIONS, TOTAL WEIGHT LIFTED AND NEUROMUSCULAR FATIGUE IN INDIVIDUALS WITH DIFFERENT TRAINING BACKGROUNDS

    Directory of Open Access Journals (Sweden)

    Valeria Panissa

    2013-04-01

    Full Text Available The aim of this study was to evaluate the performance, as well as neuromuscular activity, in a strength task in subjects with different training backgrounds. Participants (n = 26 were divided into three groups according to their training backgrounds (aerobic, strength or mixed and submitted to three sessions: (1 determination of the maximum oxygen uptake during the incremental treadmill test to exhaustion and familiarization of the evaluation of maximum strength (1RM for the half squat; (2 1RM determination; and (3 strength exercise, four sets at 80�0of the 1RM, in which the maximum number of repetitions (MNR, the total weight lifted (TWL, the root mean square (RMS and median frequency (MF of the electromyographic (EMG activity for the second and last repetition were computed. There was an effect of group for MNR, with the aerobic group performing a higher MNR compared to the strength group (P = 0.045, and an effect on MF with a higher value in the second repetition than in the last repetition (P = 0.016. These results demonstrated that individuals with better aerobic fitness were more fatigue resistant than strength trained individuals. The absence of differences in EMG signals indicates that individuals with different training backgrounds have a similar pattern of motor unit recruitment during a resistance exercise performed until failure, and that the greater capacity to perform the MNR probably can be explained by peripheral adaptations.

  7. The effects of NACA 0012 airfoil modification on aerodynamic performance improvement and obtaining high lift coefficient and post-stall airfoil

    Science.gov (United States)

    Sogukpinar, Haci

    2018-02-01

    In this study, aerodynamic performances of NACA 0012 airfoils with distinct modification are numerically investigated to obtain high lift coefficient and post-stall airfoils. NACA 0012 airfoil is divided into two part thought chord line then suction sides kept fixed and by changing the thickness of the pressure side new types of airfoil are created. Numerical experiments are then conducted by varying thickness of NACA 0012 from lower surface and different relative thicknesses asymmetrical airfoils are modified and NACA 0012-10, 0012-08, 0012-07, 0012-06, 0012-04, 0012-03, 0012-02, 0012-01 are created and simulated by using COMSOL software.

  8. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    Science.gov (United States)

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  9. A Maximum Power Transfer Tracking Method for WPT Systems with Coupling Coefficient Identification Considering Two-Value Problem

    Directory of Open Access Journals (Sweden)

    Xin Dai

    2017-10-01

    Full Text Available Maximum power transfer tracking (MPTT is meant to track the maximum power point during the system operation of wireless power transfer (WPT systems. Traditionally, MPTT is achieved by impedance matching at the secondary side when the load resistance is varied. However, due to a loosely coupling characteristic, the variation of coupling coefficient will certainly affect the performance of impedance matching, therefore MPTT will fail accordingly. This paper presents an identification method of coupling coefficient for MPTT in WPT systems. Especially, the two-value issue during the identification is considered. The identification approach is easy to implement because it does not require additional circuit. Furthermore, MPTT is easy to realize because only two easily measured DC parameters are needed. The detailed identification procedure corresponding to the two-value issue and the maximum power transfer tracking process are presented, and both the simulation analysis and experimental results verified the identification method and MPTT.

  10. Airfoil design: Finding the balance between design lift and structural stiffness

    DEFF Research Database (Denmark)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup......, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared...... to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were...

  11. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  12. Regression Models for Predicting Force Coefficients of Aerofoils

    Directory of Open Access Journals (Sweden)

    Mohammed ABDUL AKBAR

    2015-09-01

    Full Text Available Renewable sources of energy are attractive and advantageous in a lot of different ways. Among the renewable energy sources, wind energy is the fastest growing type. Among wind energy converters, Vertical axis wind turbines (VAWTs have received renewed interest in the past decade due to some of the advantages they possess over their horizontal axis counterparts. VAWTs have evolved into complex 3-D shapes. A key component in predicting the output of VAWTs through analytical studies is obtaining the values of lift and drag coefficients which is a function of shape of the aerofoil, ‘angle of attack’ of wind and Reynolds’s number of flow. Sandia National Laboratories have carried out extensive experiments on aerofoils for the Reynolds number in the range of those experienced by VAWTs. The volume of experimental data thus obtained is huge. The current paper discusses three Regression analysis models developed wherein lift and drag coefficients can be found out using simple formula without having to deal with the bulk of the data. Drag coefficients and Lift coefficients were being successfully estimated by regression models with R2 values as high as 0.98.

  13. Quadratic Interpolation and Linear Lifting Design

    Directory of Open Access Journals (Sweden)

    Joel Solé

    2007-03-01

    Full Text Available A quadratic image interpolation method is stated. The formulation is connected to the optimization of lifting steps. This relation triggers the exploration of several interpolation possibilities within the same context, which uses the theory of convex optimization to minimize quadratic functions with linear constraints. The methods consider possible knowledge available from a given application. A set of linear equality constraints that relate wavelet bases and coefficients with the underlying signal is introduced in the formulation. As a consequence, the formulation turns out to be adequate for the design of lifting steps. The resulting steps are related to the prediction minimizing the detail signal energy and to the update minimizing the l2-norm of the approximation signal gradient. Results are reported for the interpolation methods in terms of PSNR and also, coding results are given for the new update lifting steps.

  14. Reliability of one-repetition maximum performance in people with chronic heart failure.

    Science.gov (United States)

    Ellis, Rachel; Holland, Anne E; Dodd, Karen; Shields, Nora

    2018-02-24

    Evaluate intra-rater and inter-rater reliability of the one-repetition maximum strength test in people with chronic heart failure. Intra-rater and inter-rater reliability study. A public tertiary hospital in northern metropolitan Melbourne. Twenty-four participants (nine female, mean age 71.8 ± 13.1 years) with mild to moderate heart failure of any aetiology. Lower limb strength was assessed by determining the maximum weight that could be lifted using a leg press. Intra-rater reliability was tested by one assessor on two separate occasions . Inter-rater reliability was tested by two assessors in random order. Intra-class correlation coefficients and 95% confidence intervals were calculated. Bland and Altman analyses were also conducted, including calculation of mean differences between measures ([Formula: see text]) and limits of agreement . Ten intra-rater and 21 inter-rater assessments were completed. Excellent intra-rater (intra-class correlation coefficient 2,1 0.96) and inter-rater (intra-class correlation coefficient 2,1 0.93) reliability was found. Intra-rater assessment showed less variability (mean difference 4.5 kg, limits of agreement -8.11 to 17.11 kg) than inter-rater agreement (mean difference -3.81 kg, limits of agreement -23.39 to 15.77 kg). One-repetition maximum determined using a leg press is a reliable measure in people with heart failure. Given its smaller limits of agreement, intra-rater testing is recommended. Implications for Rehabilitation Using a leg press to determine a one-repetition maximum we were able to demonstrate excellent inter-rater and intra-rater reliability using an intra-class correlation coefficient. The Bland and Altman levels of agreement were wide for inter-rater reliability and so we recommend using one assessor if measuring change in strength within an individual over time.

  15. Does team lifting increase the variability in peak lumbar compression in ironworkers?

    Science.gov (United States)

    Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W

    2012-01-01

    Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.

  16. Normal loads program for aerodynamic lifting surface theory. [evaluation of spanwise and chordwise loading distributions

    Science.gov (United States)

    Medan, R. T.; Ray, K. S.

    1974-01-01

    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.

  17. Wind tunel tests of Risoe-B1-18 and Risoe-B1-24

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Bak, C.; Gaunaa, M.; Antoniou, I.

    2003-01-01

    This report contains 2D measurements of the Risoe-B1-18 and Risoe-B1-24 airfoils. The aerodynamic properties were derived from pressure measurements on the airfoil surface and in the wake. The measurements were conducted in the VELUX open jet wind tunnel, which has a background turbulence intensity of 1%, and an inlet flow velocity of 42 m/s. The airfoil sections had a chord of 0.600 m giving a Reynolds number of 1.6Oe106. The span was 1.9 m and end plates were used to minimize 3D flow effects. The measurements comprised both static and dynamic inflow. Static inflow covered angles of attack from 5o to 30 deg. Dynamic inflow was obtained by pitching the airfoil in a harmonic motion around various mean angles of attack. The test matrix involved smooth flow, various kinds of leading edge roughness, stall strips, vortex generators and Gurney flaps in different combinations. The quality of the measurements was good and the agreement between measurements and numerical CFD predictions with EllipSys2D was good. For both airfoils predictions with turbulent flow captured very well the shapes of lift and drag curves as well as the magnitude of maximum lift. Measurements of Risoe-B1-18 showed that the maximum lift coefficient was 1.64 at an angle of attack of approximately 13 deg. The airfoil was not very sensitive to leading edge roughness despite its high maximum lift. Measurements with stall strips showed that stall strips could control the level of maximum lift. The Risoe-B1-24 measurements showed that the maximum lift coefficient was 1.62 at an angle of attack of approximately 14 deg. The airfoil was only little sensitive to leading edge roughness despite its high relative thickness and high maximum lift. Measurements with delta wing shaped vortex generators increased the maximum lift coefficient to 2.02 and measurements with Gurney flaps increased the maximum lift coefficient to 1.85. Measurements with combination of vortex generators and Gurney flaps showed a maximum

  18. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    Directory of Open Access Journals (Sweden)

    E. F. Shair

    2017-01-01

    Full Text Available Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs, where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG signal is used to monitor the workers’ muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird’s eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.

  19. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    Science.gov (United States)

    Marhaban, M. H.; Abdullah, A. R.

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251

  20. Lift of a rotating circular cylinder in unsteady flows

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Mandviwalla, Xerxes; Vita, Luca

    2012-01-01

    A cylinder rotating in steady current experiences a lift known as the Magnus effect. In the present study the effect of waves on the Magnus effect has been investigated. This situation is experienced with the novel floating offshore vertical axis wind turbine (VAWT) concept called the DEEPWIND...... concept, which incorporates a rotating spar buoy and thereby utilizes seawater as a roller-bearing. The a priori assumption and the results suggest that the lift in waves, to a first approximation, may be represented by a formulation similar to the well-known Morison formulation. The force coefficients...

  1. Vortex lift augmentation by suction on a 60 deg swept Gothic wing

    Science.gov (United States)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1982-01-01

    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  2. 46 CFR 170.095 - Data submittal for a vessel equipped to lift.

    Science.gov (United States)

    2010-10-01

    ... vessel is engaged in lifting and is required to comply with subpart B of part 173 of this chapter: (a) A graph of maximum hook load versus maximum crane radius. (b) A table of crane radius versus the maximum... transverse moments at which the crane is to operate. ...

  3. Maximum Simulated Likelihood and Expectation-Maximization Methods to Estimate Random Coefficients Logit with Panel Data

    DEFF Research Database (Denmark)

    Cherchi, Elisabetta; Guevara, Cristian

    2012-01-01

    with cross-sectional or with panel data, and (d) EM systematically attained more efficient estimators than the MSL method. The results imply that if the purpose of the estimation is only to determine the ratios of the model parameters (e.g., the value of time), the EM method should be preferred. For all......The random coefficients logit model allows a more realistic representation of agents' behavior. However, the estimation of that model may involve simulation, which may become impractical with many random coefficients because of the curse of dimensionality. In this paper, the traditional maximum...... simulated likelihood (MSL) method is compared with the alternative expectation- maximization (EM) method, which does not require simulation. Previous literature had shown that for cross-sectional data, MSL outperforms the EM method in the ability to recover the true parameters and estimation time...

  4. Effects of grit roughness and pitch oscillations on the S810 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, R.R.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-01-01

    An S810 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory 3 x 5 subsonic wind tunnel under steady state and unsteady conditions. The test defined baseline conditions for steady state angles of attack from -20{degrees} to +40{degrees} and examined unsteady behavior by oscillating the model about its pitch axis for three mean angles, three frequencies, and two amplitudes. For all cases, Reynolds numbers of 0.75, 1, 1.25, and 1.5 million were used. In addition, the above conditions were repeated after the application of leading edge grit roughness (LEGR) to determine contamination effects on the airfoil performance. Baseline steady state results of the S810 testing showed a maximum lift coefficient of 1.15 at 15.2{degrees}angle of attack. The application of LEGR reduced the maximum lift coefficient by 12% and increased the 0.0085 minimum drag coefficient value by 88%. The zero lift pitching moment of -0.0286 showed a 16% reduction in magnitude to -0.0241 with LEGR applied. Data were also obtained for two pitch oscillation amplitudes: {plus_minus}5.5{degrees} and {plus_minus}10{degrees}. The larger amplitude consistently gave a higher maximum lift coefficient than the smaller amplitude and both sets of unsteady maximum lift coefficients were greater than the steady state values. Stall was delayed on the airfoil while the angle of attack was increasing, thereby causing an increase in maximum lift coefficient. A hysteresis behavior was exhibited for all the unsteady test cases. The hysteresis loops were larger for the higher reduced frequencies and for the larger amplitude oscillations. In addition to the hysteresis behavior, an unusual feature of these data were a sudden increase in the lift coefficient where the onset of stall was expected. As in the steady case, the effect of LEGR in the unsteady case was to reduce the lift coefficient at high angles of attack.

  5. Experimental and simulated control of lift using trailing edge devices

    Science.gov (United States)

    Cooperman, A.; Blaylock, M.; van Dam, C. P.

    2014-12-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.

  6. Regional changes in spine posture at lift onset with changes in lift distance and lift style

    NARCIS (Netherlands)

    Gill, K.P.; Bennet, S.J.; Savelsbergh, G.J.P.; van Dieen, J.H.

    2007-01-01

    STUDY DESIGN. Repeated measures experiment. OBJECTIVE. To determine the effect of changes in horizontal lift distance on the amount of flexion, at lift onset, in different spine regions when using different lift styles. SUMMARY OF BACKGROUND DATA. By approximating spine bending during lifting as a

  7. Simulation data for an estimation of the maximum theoretical value and confidence interval for the correlation coefficient.

    Science.gov (United States)

    Rocco, Paolo; Cilurzo, Francesco; Minghetti, Paola; Vistoli, Giulio; Pedretti, Alessandro

    2017-10-01

    The data presented in this article are related to the article titled "Molecular Dynamics as a tool for in silico screening of skin permeability" (Rocco et al., 2017) [1]. Knowledge of the confidence interval and maximum theoretical value of the correlation coefficient r can prove useful to estimate the reliability of developed predictive models, in particular when there is great variability in compiled experimental datasets. In this Data in Brief article, data from purposely designed numerical simulations are presented to show how much the maximum r value is worsened by increasing the data uncertainty. The corresponding confidence interval of r is determined by using the Fisher r → Z transform.

  8. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective.

    Science.gov (United States)

    Nabawy, Mostafa R A; Crowther, William J

    2017-07-01

    The presence of a stable leading edge vortex (LEV) on steadily revolving wings increases the maximum lift coefficient that can be generated from the wing and its role is important to understanding natural flyers and flapping wing vehicles. In this paper, the role of LEV in lift augmentation is discussed under two hypotheses referred to as 'additional lift' and 'absence of stall'. The 'additional lift' hypothesis represents the traditional view. It presumes that an additional suction/circulation from the LEV increases the lift above that of a potential flow solution. This behaviour may be represented through either the 'Polhamus leading edge suction' model or the so-called 'trapped vortex' model. The 'absence of stall' hypothesis is a more recent contender that presumes that the LEV prevents stall at high angles of attack where flow separation would normally occur. This behaviour is represented through the so-called 'normal force' model. We show that all three models can be written in the form of the same potential flow kernel with modifiers to account for the presence of a LEV. The modelling is built on previous work on quasi-steady models for hovering wings such that model parameters are determined from first principles, which allows a fair comparison between the models themselves, and the models and experimental data. We show that the two models which directly include the LEV as a lift generating component are built on a physical picture that does not represent the available experimental data. The simpler 'normal force' model, which does not explicitly model the LEV, performs best against data in the literature. We conclude that under steady conditions the LEV as an 'absence of stall' model/mechanism is the most satisfying explanation for observed aerodynamic behaviour. © 2017 The Author(s).

  9. Tornado lift

    OpenAIRE

    Ivanchin, Alexander

    2010-01-01

    It is shown that one of the causes for tornado is Tornado Lift. At increasing vortex diameter its kinetic energy decreases to keep the moment of momentum constant. A kinetic energy gradient of such vortex is Tornado Lift. Evaluation shows that contribution of Tornado Lift in air lifting in a tornado is comparable to buoyancy according to the order of magnitude.

  10. Experimental and simulated control of lift using trailing edge devices

    International Nuclear Information System (INIS)

    Cooperman, A; Blaylock, M; Van Dam, C P

    2014-01-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust

  11. An eight-legged tactile sensor to estimate coefficient of static friction.

    Science.gov (United States)

    Wei Chen; Rodpongpun, Sura; Luo, William; Isaacson, Nathan; Kark, Lauren; Khamis, Heba; Redmond, Stephen J

    2015-08-01

    It is well known that a tangential force larger than the maximum static friction force is required to initiate the sliding motion between two objects, which is governed by a material constant called the coefficient of static friction. Therefore, knowing the coefficient of static friction is of great importance for robot grippers which wish to maintain a stable and precise grip on an object during various manipulation tasks. Importantly, it is most useful if grippers can estimate the coefficient of static friction without having to explicitly explore the object first, such as lifting the object and reducing the grip force until it slips. A novel eight-legged sensor, based on simplified theoretical principles of friction is presented here to estimate the coefficient of static friction between a planar surface and the prototype sensor. Each of the sensor's eight legs are straight and rigid, and oriented at a specified angle with respect to the vertical, allowing it to estimate one of five ranges (5 = 8/2 + 1) that the coefficient of static friction can occupy. The coefficient of friction can be estimated by determining whether the legs have slipped or not when pressed against a surface. The coefficients of static friction between the sensor and five different materials were estimated and compared to a measurement from traditional methods. A least-squares linear fit of the sensor estimated coefficient showed good correlation with the reference coefficient with a gradient close to one and an r(2) value greater than 0.9.

  12. A hypersonic lift mechanism with decoupled lift and drag surfaces

    Science.gov (United States)

    Xu, YiZhe; Xu, ZhiQi; Li, ShaoGuang; Li, Juan; Bai, ChenYuan; Wu, ZiNiu

    2013-05-01

    In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.

  13. Optimal control of lift/drag ratios on a rotating cylinder

    Science.gov (United States)

    Ou, Yuh-Roung; Burns, John A.

    1992-01-01

    We present the numerical solution to a problem of maximizing the lift to drag ratio by rotating a circular cylinder in a two-dimensional viscous incompressible flow. This problem is viewed as a test case for the newly developing theoretical and computational methods for control of fluid dynamic systems. We show that the time averaged lift to drag ratio for a fixed finite-time interval achieves its maximum value at an optimal rotation rate that depends on the time interval.

  14. Variable Lifting Index (VLI): A New Method for Evaluating Variable Lifting Tasks.

    Science.gov (United States)

    Waters, Thomas; Occhipinti, Enrico; Colombini, Daniela; Alvarez-Casado, Enrique; Fox, Robert

    2016-08-01

    We seek to develop a new approach for analyzing the physical demands of highly variable lifting tasks through an adaptation of the Revised NIOSH (National Institute for Occupational Safety and Health) Lifting Equation (RNLE) into a Variable Lifting Index (VLI). There are many jobs that contain individual lifts that vary from lift to lift due to the task requirements. The NIOSH Lifting Equation is not suitable in its present form to analyze variable lifting tasks. In extending the prior work on the VLI, two procedures are presented to allow users to analyze variable lifting tasks. One approach involves the sampling of lifting tasks performed by a worker over a shift and the calculation of the Frequency Independent Lift Index (FILI) for each sampled lift and the aggregation of the FILI values into six categories. The Composite Lift Index (CLI) equation is used with lifting index (LI) category frequency data to calculate the VLI. The second approach employs a detailed systematic collection of lifting task data from production and/or organizational sources. The data are organized into simplified task parameter categories and further aggregated into six FILI categories, which also use the CLI equation to calculate the VLI. The two procedures will allow practitioners to systematically employ the VLI method to a variety of work situations where highly variable lifting tasks are performed. The scientific basis for the VLI procedure is similar to that for the CLI originally presented by NIOSH; however, the VLI method remains to be validated. The VLI method allows an analyst to assess highly variable manual lifting jobs in which the task characteristics vary from lift to lift during a shift. © 2015, Human Factors and Ergonomics Society.

  15. Analysis of data from water lift powered by solar energy pump

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Paulo Takashi [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil); Ricieri, Reinaldo Prandini [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Dept. de Engenharia Agricola], E-mail: ricieri@unioeste.br; Halmeman, Maria Cristina Rodrigues [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Gnoatto, Estor; Kavanagh; Brenneisen, Paulo Job [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: gnoatto@utfpr.edu.br, kavanagh@utfpr.edu.br, brenneisen@utfpr.edu.br

    2008-07-01

    Due to the high costs to install electricity in remote locations, away from the regular urban electrical installations, photovoltaic solar energy has ample application in public illumination, water pumping, health services offices, etc. With the purpose to contribute to a better use of this kind of energy, this project aimed in analyzing the outflow and efficiency of a motor pump powered by photovoltaic panels, the irradiation necessary to activate it for water lift, collecting data at every 6- meter height, ranging from 6,2 to 18,2 meters. This study is part of a development project of the Universidade Tecnologica Federal do Parana (UTFPR), by making use of photovoltaic panels, motor pump, pyranometers, thermocouple type K, pressure transducer and outflow transducer. The data show a maximum average outflow of 584,299 Lh{sup -1} and maximum efficiency of 23,338% for a lift of 18,2 m. There is also the need of irradiation for the activation of the motor pump proportional to the height of the lift, in a polynomial dependence of the third order. (author)

  16. Effects of grit roughness and pitch oscillations on the NACA 4415 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, M.J.; Reuss Ramsay, R.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-07-01

    A NACA 4415 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory 3 x 5 subsonic wind tunnel under steady state and unsteady conditions. The test defined baseline conditions for steady state angles of attack from {minus}10{degree} to +40{degree} and examined unsteady behavior by oscillating the model about its pitch axis for three mean angles, three frequencies, and two amplitudes. For all cases, Reynolds numbers of 0.75, 1, 1.25, and 1.5 million were used. In addition, these were repeated after the application of leading edge grit roughness (LEGR) to determine contamination effects on the airfoil performance. Steady state results of the NACA 4415 testing at Reynolds number of 1.25 million showed a baseline maximum lift coefficient of 1.30 at 12.3{degree} angle of attack. The application of LEGR reduced the maximum lift coefficient by 20% and increased the 0.0090 minimum drag coefficient value by 62%. The zero lift pitching moment of {minus}0.0967 showed a 13% reduction in magnitude to {minus}0.0842 with LEGR applied. Data were also obtained for two pitch oscillation amplitudes: {+-}5.5{degree} and {+-}10{degree}. The larger amplitude consistently gave a higher maximum lift coefficient than the smaller amplitude, and both unsteady maximum lift coefficients were greater than the steady state values. Stall is delayed on the airfoil while the angle of attack is increasing, thereby causing an increase in maximum lift coefficient. A hysteresis behavior was exhibited for all the unsteady test cases. The hysteresis loops were larger for the higher reduced frequencies and for the larger amplitude oscillations. As in the steady case, the effect of LEGR in the unsteady case was to reduce the lift coefficient at high angles of attack. In addition, with LEGR, the hysteresis behavior persisted into lower angles of attack than for the clean case.

  17. Numerical Characterisation of Active Drag and Lift Control for a Circular Cylinder in Cross-Flow

    Directory of Open Access Journals (Sweden)

    Philip McDonald

    2017-11-01

    Full Text Available Synthetic jet actuators have shown promise to control drag and lift for a bluff body in cross-flow. Using unsteady RANS CFD modelling, a significant modification of the drag coefficient for a circular cylinder in cross-flow at R e = 3900 is achieved by varying the actuation frequency. The variation in actuation frequency corresponds to a range in Stokes number of 2.4 < S t o < 6.4. The trends in drag coefficient modification largely agree with the findings of past publications, achieving a maximum drag reduction at S t o = 4.9 for a fixed jet Reynolds number of the synthetic jet of R e U ¯ o = 12. A decrease in the adverse pressure gradient near the jet orifice correlated with a momentum increase in the viscous sublayer and stronger vortical structures at the rear of the cylinder. In these same conditions, a decrease in turbulence intensity was observed in the far field wake, which is a relevant finding in the context of wind and tidal turbine arrays.

  18. Study on process design of partially-balanced, hydraulically lifting vertical ship lift

    Science.gov (United States)

    Xin, Shen; Xiaofeng, Xu; Lu, Zhang; Bing, Zhu; Fei, Li

    2017-11-01

    The hub ship lift in Panjin is the first navigation structure in China for the link between the inland and open seas, which adopts a novel partially-balanced, hydraulically lifting ship lift; it can meet such requirements as fast and sharp water level change in open sea, large draft of a yacht, and launching of a ship reception chamber; its balancing weight system can effectively reduce the load of the primary lifting cylinder, and optimize the force distribution of the ship reception chamber. The paper provides an introduction to main equipment, basic principles, main features and system composition of a ship lift. The unique power system and balancing system of the completed ship lift has offered some experience for the construction of the tourism-type ship lifts with a lower lifting height.

  19. Safe lifting in patients with chronic low back pain : Comparing FCE lifting task and NIOSH lifting guideline

    NARCIS (Netherlands)

    Kuijer, Wietske; Dijkstra, Pieter U.; Brouwer, Sandra; Reneman, Michiel F.; Groothoff, Johan W.; Geertzen, Jan H. B.

    2006-01-01

    Introduction: Both the floor-to-waist lifting task of the Isernhagen Work Systems Functional Capacity Evaluation (IWS FCE) and recommended weight limit (RWL) of the NIOSH produce safe lifting weights and are used world-wide nowadays. It is unknown whether they produce similar safe lifting weights.

  20. Project, Aerodynamic, Thermal and Ballistic Analysis of a Lifting-Body Reentry Vehicle

    Directory of Open Access Journals (Sweden)

    A. N. Eliseev

    2015-01-01

    Full Text Available The objective of this article is to assess the prospects for an increasingly maneuverable reentry vehicle (RV of class "lifting body". In this regard, a project aerodynamic thermal and ballistic analysis has been conducted and the results have been compared with some well-known projects of the RV of the same class, made both in our country and abroad.The project analysis begins with finding a position of the "lifting body" vehicle in the classification system. Said classification distribution allows correct formulation of requirements for the conceptual structure of an aerospace vehicle at the initial stage of design in terms of system positions, since just the initial phase of the design often determines the success of the whole program.Then the paper compares design characteristics of the RV of class "lifting body" with vehicles such as X-15 rocket plane, the orbiter "Space Shuttle», M2-F2, HL-10, SV-5, and NASP "Hermes". It also gives a comparative estimate of the "lifting body" RV mass in a wide range of dimensions. The paper shows the sustainability of various landing complexes with reference to the Russian experience in developing the RV " Soyuz", and the conditions for using the vehicles of class "lifting body" in space programs.The aerodynamic analysis uses method for the approximate Newtonian theory to calculate aerodynamic characteristics of the perspective RV of class "lifting body" in the hypersonic descent phase. To obtain the desired aerodynamic performance and reduce balancing weight is contemplated a possibility to provide balance by introducing additional boards. The ballistic analysis considers four modes of descent:1. zero roll descent;2. maximum cross-range descent without restriction;3. maximum cross-range descent with restriction of maximum overload and maximum temperature;4. ballistic descent.To calculate the RV ballistic characteristics a system of equations of the vehicle motion in the atmosphere is used. The vehicle

  1. Lifting index of the niosh lifting equation and low back pain

    Directory of Open Access Journals (Sweden)

    Eliana Remor Teixeira

    2011-09-01

    Full Text Available The purpose of this study is to assess the relationship of the Lifting Index obtained through the application of the NIOSH Lifting Equation and the incidence of low back pain among forty-eight workers involved in manual lifting tasks. It was applied the equation in eleven tasks and the workers were interviewed. The most unfavorable conditions presented themselves in the lifting destination. The variables that most contributed to the inadequate values of the Lifting Index were: the horizontal location, the lifting frequency and the vertical distance, beyond the high weight of the load. The incidence of low back pain in the last twelve months was 19%, whereas the incidence of work-related low back pain in the same period was 10%. In 72.7% of the tasks evaluated the Composite Lifting Index was more than three, which are considered as high ergonomic risk.

  2. Effects of lifting tempo on one repetition maximum and hormonal responses to a bench press protocol.

    Science.gov (United States)

    Headley, Samuel A; Henry, Kelley; Nindl, Bradley C; Thompson, Brian A; Kraemer, William J; Jones, Margaret T

    2011-02-01

    This study was carried out in 2 parts: part 1 was designed to measure the 1 repetition maximum (1RM) bench press with 2 different moderate-velocity tempos (2/0/2) vs. (2/0/4) in male lifters while part 2 compared the hormonal responses at the same tempos as described in part 1. In both parts 1 and 2, the 1RMs (lbs) were higher on the 2/0/2 tempo than on the 2/0/4 tempo. The change in plasma volume (PV) was greater after the 2/0/4 tempo (-5.7 ± 1.7% vs. 0.96 ± 1.2%, p < 0.05). All blood parameters were significantly (p < 0.05) higher post-exercise compared with baseline. With PV corrected, insulin-like growth factor 1 (IGF-1) (ng·mL⁻¹) was higher with the 2/0/2 tempo only (pre-exercise: 277.4 ± 21.8, post-exercise: 308.1 ± 22.9; 2/0/4 tempo pre-exercise: 277.2 ± 17.6, post-exercise: 284.8 ± 21.2). In conclusion, heavier loads can be lifted and more total work can be performed using a (2/0/2) tempo compared with a slower (2/0/4) tempo, but with the exception of IGF-1, the hormonal responses are similar. Individuals may get the same metabolic responses to training by using different tempos, but they will need to use less weight at a slower tempo.

  3. Lift and Drag on Cylinder of Octagonal Cross-Section in a Turbulent Stream

    Directory of Open Access Journals (Sweden)

    Md. Jomir Hossain

    2013-12-01

    Full Text Available An experimental investigation of surface static pressure distributions on octagonal cylinder in uniform and turbulent flows was carried out. The study was performed on both the single cylinder and the group of two cylinders, two cylinders were used, one was at the upstream side, and the other was at the downstream side of the flow. They were placed centrally along the flow direction. The inter-spacing space between the two cylinders was varied at 1D, 2D, 3D, 4D, 5D, 6D, 7D and 8D, where D is the width of the cylinder across the flow direction. The pressure coefficients were calculated from the measured values of the surface static pressure distribution on the cylinder. Then the drag and lift coefficients were obtained from the pressure coefficients by the numerical integration method. It was observed that at various angles of attack, the values of the lift coefficients and drag coefficients were insignificant compared to those for a sharp-edged square cylinder. The strength of the vortex shedding was shown to be reduced as the intensity of the incident turbulence was increased. Measurements of drag at various angles of attack (0° to 40° showed that with increase in turbulence level the minimum drag occurred at smaller values of angle of attack.

  4. Lift truck safety review

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  5. Lift truck safety review

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter's Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given

  6. Thermal lift generation and drag reduction in rarefied aerodynamics

    Science.gov (United States)

    Pekardan, Cem; Alexeenko, Alina

    2016-11-01

    With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.

  7. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    Science.gov (United States)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  8. Customized lifting multiwavelet packet information entropy for equipment condition identification

    International Nuclear Information System (INIS)

    Chen, Jinglong; Zi, Yanyang; He, Zhengjia; Chen, Xuefeng; Zuo, Ming J; Yuan, Jing

    2013-01-01

    Condition identification of mechanical equipment from vibration measurement data is significant to avoid economic loss caused by unscheduled breakdowns and catastrophic accidents. However, this task still faces challenges due to the complexity of equipment and the harsh environment. This paper provides a possibility for equipment condition identification by proposing a method called customized lifting multiwavelet packet information entropy. Benefiting from the properties of multi-resolution analysis and multiple wavelet basis functions, the multiwavelet method has advantages in characterizing non-stationary vibration signals. In order to realize the accurate detection and identification of the condition features, a customized lifting multiwavelet packet is constructed via a multiwavelet lifting scheme. Then the vibration signal from the mechanical equipment is processed by the customized lifting multiwavelet packet transform. The relative energy in each frequency band of the multiwavelet packet transform coefficients that equals a percentage of the whole signal energy is taken as the probability. The normalized information entropy is obtained based on the relative energy to describe the condition of a mechanical system. The proposed method is applied to the condition identification of a rolling mill and a demountable disk–drum aero-engine. The results support the feasibility of the proposed method in equipment condition identification. (paper)

  9. A status report on artificial lift systems and challenges in North Dakota horizontal completions

    Energy Technology Data Exchange (ETDEWEB)

    Fangmeier, K. [Amerada Hess Corp., ND (United States)

    2005-07-01

    Partially pressure depleted reservoirs and unfavorable horizontal flow geometries can impact artificial lift designs and diagnostics. In addition, terrain slugging, drilling fines, high gas volume fractions, H{sub 2}S gas and high bottom hole temperatures also pose challenges. This paper provides an overview of various systems utilized by Amerada Hess, a company which examines methods of reducing gas lift gas volumes to achieve maximum flow. A description of naturally fractured reservoirs and limited natural fractures was provided. A comparison was presented between the original conditions at Beaver Lodge Madison and existing conditions with horizontal development. Various artificial lift challenges were examined. It was suggested that high volume lift utilizing gas lift was the preferred artificial lift system for high volume wells. It was noted that downhole sensors can be used as an indicator of potential run life. However, reliability is limited by downhole operating temperatures and electrical ground faults. A comparison of friendly and unfriendly flow systems was presented, as well as a gas lift pressure chart. A summary of average gas volume systems was provided as well as an example of a response to increase drawdown. Examples of downhole Electric Submersible Pump (ESP) sensors were provided, as well as possible flowing pressure profiles in horizontal completion because of the constraints of lift capacity. It was concluded that a single point injection and proven gas lift system is the next step in high volume lift strategy. 2 tabs, 16 figs.

  10. Applications of low lift to drag ratio aerobrakes using angle of attack variation for control

    Science.gov (United States)

    Mulqueen, J. A.

    1991-01-01

    Several applications of low lift to drag ratio aerobrakes are investigated which use angle of attack variation for control. The applications are: return from geosynchronous or lunar orbit to low Earth orbit; and planetary aerocapture at Earth and Mars. A number of aerobrake design considerations are reviewed. It was found that the flow impingement behind the aerobrake and the aerodynamic heating loads are the primary factors that control the sizing of an aerobrake. The heating loads and other loads, such as maximum acceleration, are determined by the vehicle ballistic coefficient, the atmosphere entry conditions, and the trajectory design. Several formulations for defining an optimum trajectory are reviewed, and the various performance indices that can be used are evaluated. The 'nearly grazing' optimal trajectory was found to provide the best compromise between the often conflicting goals of minimizing the vehicle propulsive requirements and minimizing vehicle loads. The relationship between vehicle and trajectory design is investigated further using the results of numerical simulations of trajectories for each aerobrake application. The data show the sensitivity of the trajectories to several vehicle parameters and atmospheric density variations. The results of the trajectory analysis show that low lift to drag ratio aerobrakes, which use angle of attack variation for control, can potentially be used for a wide range of aerobrake applications.

  11. Numerical Investigation of Effect of Parameters on Hovering Efficiency of an Annular Lift Fan Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2016-10-01

    Full Text Available The effects of various parameters on the hovering performance of an annular lift fan aircraft are investigated by using numerical scheme. The pitch angle, thickness, aspect ratio (chord length, number of blades, and radius of duct inlet lip are explored to optimize the figure of merit. The annular lift fan is also compared with a conventional circular lift fan of the same features with the same disc loading and similar geometry. The simulation results show that the pitch angle of 27°, the thickness of 4% chord length, the aspect ratio of 3.5~4.0, 32 blades, and the radius of inlet lip of 4.7% generate the maximum figure of merit of 0.733. The optimized configuration can be used for further studies of the annular lift fan aircraft.

  12. Deep-water subsea lifting operations

    Energy Technology Data Exchange (ETDEWEB)

    Nestegaard, Arne; Boee, Tormod

    2010-07-01

    Significant costs are related to marine operations in the installation phase of deep water subsea field developments. In order to establish safe operational criteria and procedures for the installation, detailed planning is necessary, including numerical modelling and analysis of the environmental conditions and hydrodynamic loads on the installed object as well as the installation equipment. This paper presents recommendations for modelling and analysis of deep water subsea lifting operations developed for the new DNV RP-H103 [1]. During installation of subsea structures, the highest dynamic forces are most often encountered in the splash zone. Recommendations for estimation of maximum forces will be presented. For small structures and tools, installation through the moon pool of a small installation vessel is often preferred. Calculation methods for loading on structures installed through a moon pool will be presented. During intervention or installation in deep water a significant amplification of amplitude and forces can be experienced when the frequency range of vertical crane tip motion coincides with the natural vertical oscillation of the lift wire and load. Vertical resonance may reduce the operability of the operation. Simplified calculation methods for such operations are presented. (Author)

  13. Evaluation of team lifting on work demands, workload and workers' evaluation: an observational field study.

    Science.gov (United States)

    Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Frings-Dresen, Monique H W

    2014-11-01

    The objective of this study was to assess differences in work demands, energetic workload and workers' discomfort and physical effort in two regularly observable workdays in ironwork; one where loads up to 50kg were handled with two persons manually (T50) and one where loads up to 100kg were handled manually with four persons (T100). Differences between these typical workdays were assessed with an observational within-subject field study of 10 ironworkers. No significant differences were found for work demands, energetic workload or discomfort between T50 and T100 workdays. During team lifts, load mass exceeded 25kg per person in 57% (T50 workday) and 68% (T100 workday) of the lifts. Seven ironworkers rated team lifting with two persons as less physically demanding compared with lifting with four persons. When loads heavier than 25kg are lifted manually with a team, regulations of the maximum mass weight are frequently violated. Loads heavier than 25kg are frequently lifted during concrete reinforcement work and should be lifted by a team of persons. However, the field study showed that loads above 25kg are most of the time not lifted with the appropriate number of workers. Therefore, loads heavier than 25kg should be lifted mechanically. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Determining the number of fingers in the lifting Hele-Shaw problem

    Science.gov (United States)

    Miranda, Jose; Dias, Eduardo

    2013-11-01

    The lifting Hele-Shaw cell flow is a variation of the celebrated radial viscous fingering problem for which the upper cell plate is lifted uniformly at a specified rate. This procedure causes the formation of intricate interfacial patterns. Most theoretical studies determine the total number of emerging fingers by maximizing the linear growth rate, but this generates discrepancies between theory and experiments. In this work, we tackle the number of fingers selection problem in the lifting Hele-Shaw cell by employing the recently proposed maximum-amplitude criterion. Our linear stability analysis accounts for the action of capillary, viscous normal stresses, and wetting effects, as well as the cell confinement. The comparison of our results with very precise laboratory measurements for the total number of fingers shows a significantly improved agreement between theoretical predictions and experimental data. We thank CNPq (Brazilian Sponsor) for financial support.

  15. Face-Lift

    Science.gov (United States)

    ... or sun damage, you might also consider a skin-resurfacing procedure. A face-lift can be done in combination with some other cosmetic procedures, such as a brow lift or eyelid surgery. Why it's done As you get older, your facial skin changes — sagging and becoming loose. This can make ...

  16. Lift-and-fill face lift: integrating the fat compartments.

    Science.gov (United States)

    Rohrich, Rod J; Ghavami, Ashkan; Constantine, Fadi C; Unger, Jacob; Mojallal, Ali

    2014-06-01

    Recent discovery of the numerous fat compartments of the face has improved our ability to more precisely restore facial volume while rejuvenating it through differential superficial musculoaponeurotic system treatment. Incorporation of selective fat compartment volume restoration along with superficial musculoaponeurotic system manipulation allows for improved control in recontouring while addressing one of the key problems in facial aging, namely, volume deflation. This theory was evaluated by assessing the contour changes from simultaneous face "lifting" and "filling" through fat compartment-guided facial fat transfer. A review of 100 face-lift patients was performed. All patients had an individualized component face lift with fat grafting to the nasolabial fold, deep malar, and high/lateral malar fat compartment locations. Photographic analysis using a computer program was conducted on oblique facial views preoperatively and postoperatively, to obtain the most projected malar contour point. Two independent observers visually evaluated the malar prominence and nasolabial fold improvements based on standardized photographs. Nasolabial fold improved by at least one grade in 81 percent and by over one grade in 11 percent. Malar prominence average projection increase was 13.47 percent and the average amount of lift was 12.24 percent. The malar prominence score improved by at least one grade in 62 percent of the patients postoperatively, and 9 percent had a greater than one grade improvement. Twenty-eight percent of the patients had a convex malar prominence postoperatively compared with 6 percent preoperatively. Malar prominence improved by at least one grade in 63 percent and by over one grade in 10 percent. The lift-and-fill face lift merges two key concepts in facial rejuvenation: (1) effective tissue manipulation by means of lifting and tightening in differential vectors according to original facial asymmetry and shape; and (2) selective fat compartment filling

  17. A Comparison of Thermal Models for Temperature Profiles in Gas-Lift Wells

    Directory of Open Access Journals (Sweden)

    Langfeng Mu

    2018-02-01

    Full Text Available Gas lift is a simple, reliable artificial lift method which is frequently used in offshore oil field developments. In order to enhance the efficiency of production by gas lift, it is vital to exactly predict the distribution of temperature-field for fluid within the wellbore. A new mechanistic model is developed for computing flowing fluid temperature profiles in both conduits simultaneously for a continuous-flow gas-lift operation. This model assumes steady heat transfer in the formation, as well as steady heat transfer in the conduits. A micro-units discrete from the wellbore, whose heat transfer process is analyzed and whose heat transfer equation is set up according to the law of conservation of energy. A simplified algebraic solution to our model is conducted to analyze the temperature profile. Sensitivity analysis was conducted with the new model. The results indicate that mass flow rate of oil and the tubing overall heat transfer coefficient are the main factors that influence the temperature distribution inside the tubing and that the mass flow rate of oil is the main factor affecting temperature distribution in the annulus. Finally, the new model was tested in three various wells and compared with other models. The results showed that the new model is more accurate and provides significant references for temperature prediction in gas lift well.

  18. The new Toyota variable valve timing and lift system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Fuwa, N.; Yoshihara, Y. [Toyota Motor Corporation (Japan); Hori, K. [Toyota Boshoku Corporation (Japan)

    2007-07-01

    A continuously variable valve timing (duration and phase) and lift system was developed. This system was applied to the valvetrain of a new 2.0L L4 engine (3ZRFAE) for the Japanese market. The system has rocker arms, which allow continuously variable timing and lift, situated between a conventional roller-rocker arm and the camshaft, an electromotor actuator to drive it and a phase mechanism for intake and exhaust camshafts (Dual VVT-i). The rocking center of the rocker arm is stationary, and the axial linear motion of a helical spline changes the initial phase of the rocker arm which varies the timing and lift. The linear motion mechanism uses an original planetary roller screw and is driven by a brushless motor with a built-in electric control unit. Since the rocking center and the linear motion helical spline center coincide, a compact cylinder head design was possible, and the cylinder head is a common design with a conventional engine. Since the ECU controls intake valve duration and timing, a fuel economy gain of maximum 10% (depending on driving condition) is obtained by reducing light to medium load pumping losses. Also intake efficiency was maximized throughout the speed range, resulting in a power gain of 10%. Further, HC emissions were reduced due to increased air speed at low valve lift. (orig.)

  19. Neck lift my way: an update.

    Science.gov (United States)

    Feldman, Joel J

    2014-12-01

    The author updates prior descriptions of an approach to the surgical neck lift that aims for a maximum degree of control over the size, shape, and position of every anatomical feature of the neck that is negatively affecting its appearance. A 38-year clinical experience guided the development of the operative tactics that define the strategy. Data collected from a records review of 522 consecutive neck lifts performed during the 10-year period 2004 through 2013 further inform the report. The approach has eight features: (1) nearly routine use of open submental access to all tissue layers of the central neck, including a regimen that curbed the problems that may attend an extensive tissue dissection; (2) management of lax neck skin by lateral excision using a specific postauricular incision, or by using the nonexcisional method of redistribution; (3) open lipectomy for precise removal of excess subcutaneous neck and jawline fat; (4) individualized modifications to subplatysmal fat, perihyoid fascia, and anterior digastric muscles; (5) treatment of large, ptotic, or malpositioned submandibular salivary glands by partial excision using a transcutaneous traction suture; (6) the current version of the corset platysmaplasty, which is used to treat static paramedian platysma muscle bands, and to avoid contour imperfections following subplatysmal maneuvers; (7) an approach that facilitates an isolated neck lift; and (8) durable results. Case examples demonstrate outcomes. Although the updated approach remains relatively complex and invasive, the author believes that the ends justify the means.

  20. RELIABILITY OF THE ONE REPETITION-MAXIMUM POWER CLEAN TEST IN ADOLESCENT ATHLETES

    Science.gov (United States)

    Faigenbaum, Avery D.; McFarland, James E.; Herman, Robert; Naclerio, Fernando; Ratamess, Nicholas A.; Kang, Jie; Myer, Gregory D.

    2013-01-01

    Although the power clean test is routinely used to assess strength and power performance in adult athletes, the reliability of this measure in younger populations has not been examined. Therefore, the purpose of this study was to determine the reliability of the one repetition maximum (1 RM) power clean in adolescent athletes. Thirty-six male athletes (age 15.9 ± 1.1 yrs, body mass 79.1 ± 20.3 kg, height 175.1 ±7.4 cm) who had more than 1 year of training experience with weightlifting exercises performed a 1 RM power clean on two nonconsecutive days in the afternoon following standardized procedures. All test procedures were supervised by a senior level weightlifting coach and consisted of a systematic progression in test load until the maximum resistance that could be lifted for one repetition using proper exercise technique was determined. Data were analyzed using an intraclass correlation coefficient (ICC [2,k]), Pearson correlation coefficient (r), repeated measures ANOVA, Bland-Altman plot, and typical error analyses. Analysis of the data revealed that the test measures were highly reliable demonstrating a test-retest ICC of 0.98 (95% CI = 0.96–0.99). Testing also demonstrated a strong relationship between 1 RM measures on trial 1 and trial 2 (r=0.98, pinjuries occurred during the study period and the testing protocol was well-tolerated by all subjects. These findings indicate that 1 RM power clean testing has a high degree of reproducibility in trained male adolescent athletes when standardized testing procedures are followed and qualified instruction is present. PMID:22233786

  1. Lift scheduling organization : Lift Concept for Lemminkainen

    OpenAIRE

    Mingalimov, Iurii

    2015-01-01

    The purpose of the work was to make a simple schedule for the main contractors and clients to check and control workflow connected with lifts. It gathers works with electricity, construction, engineering networks, installing equipment and commissioning works. The schedule was carried out during working on the building site Aino in Saint Petersburg in Lemminkӓinen. The duration of work was 5 months. The lift concept in Lemminkӓinen is very well controlled in comparison with other buil...

  2. Liftings in Finite Graphs and Linkages in Infinite Graphs with Prescribed Edge-Connectivity

    DEFF Research Database (Denmark)

    Ok, Seongmin; Richter, R. Bruce; Thomassen, Carsten

    2016-01-01

    Let G be a graph and let s be a vertex of G. We consider the structure of the set of all lifts of two edges incident with s that preserve edge-connectivity. Mader proved that two mild hypotheses imply there is at least one pair that lifts, while Frank showed (with the same hypotheses......) that there are at least (deg(s) - 1)/2 disjoint pairs that lift. We consider the lifting graph: its vertices are the edges incident with s, two being adjacent if they form a liftable pair. We have three main results, the first two with the same hypotheses as for Mader’s Theorem. (i)Let F be a subset of the edges incident...... with s. We show that F is independent in the lifting graph of G if and only if there is a single edge-cut C in G of size at most r + 1 containing all the edges in F, where r is the maximum number of edge-disjoint paths from a vertex (not s) in one component of G - C to a vertex (not s) in another...

  3. Lifting strength in two-person teamwork.

    Science.gov (United States)

    Lee, Tzu-Hsien

    2016-01-01

    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  4. Thread-Lift Sutures: Still in the Lift? A Systematic Review of the Literature.

    Science.gov (United States)

    Gülbitti, Haydar Aslan; Colebunders, Britt; Pirayesh, Ali; Bertossi, Dario; van der Lei, Berend

    2018-03-01

    In 2006, Villa et al. published a review article concerning the use of thread-lift sutures and concluded that the technique was still in its infancy but had great potential to become a useful and effective procedure for nonsurgical lifting of sagged facial tissues. As 11 years have passed, the authors now performed again a systematic review to determine the real scientific current state of the art on the use of thread-lift sutures. A systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using the PubMed database and using the Medical Subject Headings search term "Rhytidoplasty." "Rhytidoplasty" and the following entry terms were included by this Medical Subject Headings term: "facelift," "facelifts," "face Lift," "Face Lifts," "Lift," "Face," "Lifts," "Platysmotomy," "Platysmotomies," "Rhytidectomy," "Rhytidectomies," "Platysmaplasty," "and "Platysmaplasties." The Medical Subject Headings term "Rhytidoplasty" was combined with the following search terms: "Barbed suture," "Thread lift," "APTOS," "Suture suspension," "Percutaneous," and "Silhouette suture." RefWorks was used to filter duplicates. Three of the authors (H.A.G., B.C., and B.L.) performed the search independently. The initial search with all search terms resulted in 188 articles. After filtering the duplicates and the articles about open procedures, a total of 41 articles remained. Of these, the review articles, case reports, and letters to the editor were subsequently excluded, as were reports dealing with nonbarbed sutures, such as Vicryl and Prolene with Gore-Tex. This resulted in a total of 12 articles, seven additional articles since the five articles reviewed by Villa et al. The authors' review demonstrated that, within the past decade, little or no substantial evidence has been added to the peer-reviewed literature to support or sustain the promising statement about thread-lift sutures as made by Villa et al. in 2006 in terms of

  5. Unsteady aerodynamic coefficients obtained by a compressible vortex lattice method.

    OpenAIRE

    Fabiano Hernandes

    2009-01-01

    Unsteady solutions for the aerodynamic coefficients of a thin airfoil in compressible subsonic or supersonic flows are studied. The lift, the pitch moment, and pressure coefficients are obtained numerically for the following motions: the indicial response (unit step function) of the airfoil, i.e., a sudden change in the angle of attack; a thin airfoil penetrating into a sharp edge gust (for several gust speed ratios); a thin airfoil penetrating into a one-minus-cosine gust and sinusoidal gust...

  6. Unsteady Navier-Stokes computations over airfoils using both fixed and dynamic meshes

    Science.gov (United States)

    Rumsey, Christopher L.; Anderson, W. Kyle

    1989-01-01

    A finite volume implicit approximate factorization method which solves the thin layer Navier-Stokes equations was used to predict unsteady turbulent flow airfoil behavior. At a constant angle of attack of 16 deg, the NACA 0012 airfoil exhibits an unsteady periodic flow field with the lift coefficient oscillating between 0.89 and 1.60. The Strouhal number is 0.028. Results are similar at 18 deg, with a Strouhal number of 0.033. A leading edge vortex is shed periodically near maximum lift. Dynamic mesh solutions for unstalled airfoil flows show general agreement with experimental pressure coefficients. However, moment coefficients and the maximum lift value are underpredicted. The deep stall case shows some agreement with experiment for increasing angle of attack, but is only qualitatively comparable past stall and for decreasing angle of attack.

  7. The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

    Directory of Open Access Journals (Sweden)

    Kasey O. Greenland

    2013-06-01

    Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

  8. Scaling of lifting forces in relation to object size in whole body lifting

    NARCIS (Netherlands)

    Kingma, I.; van Dieen, J.H.; Toussaint, H.M.

    2005-01-01

    Subjects prepare for a whole body lifting movement by adjusting their posture and scaling their lifting forces to the expected object weight. The expectancy is based on visual and haptic size cues. This study aimed to find out whether lifting force overshoots related to object size cues disappear or

  9. Absorption and scattering coefficients estimation in two-dimensional participating media using the generalized maximum entropy and Levenberg-Marquardt methods

    International Nuclear Information System (INIS)

    Berrocal T, Mariella J.; Roberty, Nilson C.; Silva Neto, Antonio J.; Universidade Federal, Rio de Janeiro, RJ

    2002-01-01

    The solution of inverse problems in participating media where there is emission, absorption and dispersion of the radiation possesses several applications in engineering and medicine. The objective of this work is to estimative the coefficients of absorption and dispersion in two-dimensional heterogeneous participating media, using in independent form the Generalized Maximum Entropy and Levenberg Marquardt methods. Both methods are based on the solution of the direct problem that is modeled by the Boltzmann equation in cartesian geometry. Some cases testes are presented. (author)

  10. An Investigation on Gas Lift Performance Curve in an Oil-Producing Well

    Directory of Open Access Journals (Sweden)

    Deni Saepudin

    2007-01-01

    Full Text Available The main objective in oil production system using gas lift technique is to obtain the optimum gas injection rate which yields the maximum oil production rate. Relationship between gas injection rate and oil production rate is described by a continuous gas lift performance curve (GLPC. Obtaining the optimum gas injection rate is important because excessive gas injection will reduce production rate, and also increase the operation cost. In this paper, we discuss a mathematical model for gas lift technique and the characteristics of the GLPC for a production well, for which one phase (liquid is flowing in the reservoir, and two phases (liquid and gas in the tubing. It is shown that in certain physical condition the GLPC exists and is unique. Numerical computations indicate unimodal properties of the GLPC. It is also constructed here a numerical scheme based on genetic algorithm to compute the optimum oil production.

  11. The drag and lift of different non-spherical particles from low to high Re

    Science.gov (United States)

    Sanjeevi, Sathish K. P.; Padding, Johan

    2017-11-01

    The present work investigates a simplified drag and lift model that can be used for different non-spherical particles. The flow around different non-spherical particles is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient CD , ϕ at different incident angles ϕ for a wide range of Reynolds numbers (Re). We show that the sine-squared drag law CD , ϕ =CD , ϕ =0° +(CD , ϕ =90° -CD , ϕ =0°) sin2 ϕ holds up to large Reynolds numbers Re = 2000 . The sine-squared dependence of CD occurs at Stokes flow (very low Re) due to linearity of the flow fields. We explore the physical origin behind the sine-squared law at high Re , and reveal that surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag, at higher Re , for different incident angles. Similarly, we find that the equivalent theoretical equation of lift coefficient CL can provide a decent approximation, even at high Re , for elongated particles. Such a drag and lift law valid at high Re is very much useful for Euler-Lagrangian fluidization simulations of the non-spherical particles. European Research Council (ERC) consolidator Grant scheme, Contract No. 615096 (NonSphereFlow).

  12. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator

    Directory of Open Access Journals (Sweden)

    Han Menghu

    2015-04-01

    Full Text Available Experimental investigation of aerodynamic control on a 35° swept flying wing by means of nanosecond dielectric barrier discharge (NS-DBD plasma was carried out at subsonic flow speed of 20–40 m/s, corresponding to Reynolds number of 3.1 × 105–6.2 × 105. In control condition, the plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag ratio and an increase of 2° at stall angle of attack could be achieved compared with the baseline case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated. And the results revealed that control efficiency demonstrated strong dependence on pulsed frequency. Moreover, the results of pitching moment coefficient indicated that the breakdown of leading edge vortices could be delayed by plasma actuator at low pulsed frequencies.

  13. Application of a Full Reynolds Stress Model to High Lift Flows

    Science.gov (United States)

    Lee-Rausch, E. M.; Rumsey, C. L.; Eisfeld, B.

    2016-01-01

    A recently developed second-moment Reynolds stress model was applied to two challenging high-lift flows: (1) transonic flow over the ONERA M6 wing, and (2) subsonic flow over the DLR-F11 wing-body configuration from the second AIAA High Lift Prediction Workshop. In this study, the Reynolds stress model results were contrasted with those obtained from one- and two{equation turbulence models, and were found to be competitive in terms of the prediction of shock location and separation. For an ONERA M6 case, results from multiple codes, grids, and models were compared, with the Reynolds stress model tending to yield a slightly smaller shock-induced separation bubble near the wing tip than the simpler models, but all models were fairly close to the limited experimental surface pressure data. For a series of high-lift DLR{F11 cases, the range of results was more limited, but there was indication that the Reynolds stress model yielded less-separated results than the one-equation model near maximum lift. These less-separated results were similar to results from the one-equation model with a quadratic constitutive relation. Additional computations need to be performed before a more definitive assessment of the Reynolds stress model can be made.

  14. Low-Lift Drag of the Grumman F9F-9 Airplane as Obtained by a 1/7.5-Scale Rocket-Boosted Model and by Three 1/45.85-Scale Equivalent-Body Models between Mach Numbers of 0.8 and 1.3, TED No. NACA DE 391

    Science.gov (United States)

    Stevens, Joseph E.

    1955-01-01

    Low-lift drag data are presented herein for one 1/7.5-scale rocket-boosted model and three 1/45.85-scale equivalent-body models of the Grumman F9F-9 airplane, The data were obtained over a Reynolds number range of about 5 x 10(exp 6) to 10 x 10(exp 6) based on wing mean aerodynamic chord for the rocket model and total body length for the equivalent-body models. The rocket-boosted model showed a drag rise of about 0,037 (based on included wing area) between the subsonic level and the peak supersonic drag coefficient at the maximum Mach number of this test. The base drag coefficient measured on this model varied from a value of -0,0015 in the subsonic range to a maximum of about 0.0020 at a Mach number of 1.28, Drag coefficients for the equivalent-body models varied from about 0.125 (based on body maximum area) in the subsonic range to about 0.300 at a Mach number of 1.25. Increasing the total fineness ratio by a small amount raised the drag-rise Mach number slightly.

  15. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    Science.gov (United States)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  16. New heavy-lift system under construction

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Heavy-lift availability is at a premium, and the market is eager for alternatives to meet the demand. An alternative heavy-lift solution from SeaMetric - which has two multi-purpose heavy-lift vessels under construction in China - will be available in the first quarter of 2011. The TML system is based on buoyancy and ballast tanks, with four lifting arms mounted on two identical vessels, each vessel measuring 140 x 40 x 10.75 metres. To perform a lift, one TML with lifting arms is positioned on each side of the object. Using seawater pumps, lift force is created by de ballasting the buoyancy tanks and at the same time ballasting the ballast tanks. (AG). tab., ills

  17. 3D Navier-Stokes simulations of a rotor designed for maximum aerodynamic efficiency

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Madsen Aagaard, Helge; Gaunaa, Mac

    2007-01-01

    a constant load was assumed. The rotor design was obtained using an Actuator Disc model and was subsequently verified using both a free wake Lifting Line method and a full 3D Navier-Stokes solver. Excellent agreement was obtained using the three models. Global mechanical power coefficient, CP, reached...... a value of slightly above 0.51, while global thrust coefficient, CT, was 0.87. The local power coefficient, Cp, increased to slightly above the Betz limit on the inner part of the rotor as well as the local thrust coefficient, Ct, increased to a value above 1.1. This agrees well with the theory of de...

  18. Analysis of multicriteria models application for selection of an optimal artificial lift method in oil production

    Directory of Open Access Journals (Sweden)

    Crnogorac Miroslav P.

    2016-01-01

    Full Text Available In the world today for the exploitation of oil reservoirs by artificial lift methods are applied different types of deep pumps (piston, centrifugal, screw, hydraulic, water jet pumps and gas lift (continuous, intermittent and plunger. Maximum values of oil production achieved by these exploitation methods are significantly different. In order to select the optimal exploitation method of oil well, the multicriteria analysis models are used. In this paper is presented an analysis of the multicriteria model's application known as VIKOR, TOPSIS, ELECTRE, AHP and PROMETHEE for selection of optimal exploitation method for typical oil well at Serbian exploration area. Ranking results of applicability of the deep piston pumps, hydraulic pumps, screw pumps, gas lift method and electric submersible centrifugal pumps, indicated that in the all above multicriteria models except in PROMETHEE, the optimal method of exploitation are deep piston pumps and gas lift.

  19. "Central command" and insular activation during attempted foot lifting in paraplegic humans

    DEFF Research Database (Denmark)

    Lonsdale, Markus Nowak; Holm, Søren; Biering-Sørensen, Fin

    2005-01-01

    The relationship between cardiovascular regulation and brain activation was investigated during attempted foot lifting in paraplegic subjects and during rhythmic handgrip exercise at one-third of maximum voluntary contraction force. Brain areas of interest were the primary sensory-motor area...... activation tasks, heart rate and mean arterial pressure increased. PET activation responses (P analysis...

  20. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    ideas to get expressions for lift and moment that are remarkably accurate. The pressure ... ating a lift force, leads to a nose-up or nose-down moment also. .... venient to use for a fluid since we would like to deal with a flow .... energy to get lift?

  1. Theoretical-experimental assesment of braking sistems for inclined lifts according to EN 81:22-2014

    Energy Technology Data Exchange (ETDEWEB)

    Valles Fernandez, B.; Martin Lopez, A.L.; Alcala, E.

    2016-07-01

    The inclined lifts, in case of emergency braking, can experience high longitudinal decelerations that can lead to passengers’ collisions with lift walls and interior elements. In 2014 the CEN/TC10 WG1 published the part 22 of the norm series 81 with regard to the construction elements and installation of electrical lifts with inclined trajectory. This norm stablishes, amongst other requirements, the maximum and minimum deceleration levels in both longitudinal and vertical directions. Both requirements, in opposite senses and the definition of the braking system, do not cause design difficulties in case of high slopes, but in case of lifts with the slope under a certain level they can be needed, to guarantee the fulfilment of the norm, elements that allow and additional relative displacement between the braking system and the cabin. To define the performances and the optimal behaviour of these systems it has been defined a simulation model of the dynamical behaviour of the lift under the conditions of the norm tests. Additionally, in this work it is presented a calculation methodology to define the cabin allowable weight corridor, for each braking effort made by each safety gear model, and the simulations have been validated with the results of tests with different braking efforts, weights and lift slopes. The present work has been performed in cooperation with Thyssen Krupp Elevadores with the aim of improving the knowledge of the brake dynamics of inclined lifts. (Author)

  2. Helicopter Toy and Lift Estimation

    Science.gov (United States)

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  3. Positioning and tail rotor of a small horizontal axis wind turbine of due to the influence of drag coefficient and lift affecting vane cola

    International Nuclear Information System (INIS)

    Farinnas Wong, E. Y.; Jauregui Rigo, S.; Betancourt Mena, J.

    2009-01-01

    In the present investigation was carried out an assessment on the state of technology on guidance systems and tail protection when used in small horizontal axis wind turbines, work was improved methodological approach for the development of guidance systems queue by time of these machines, to incorporate the use of coefficients of lift and drag behavior varies according to the aspect ratio, using the principles of continuum mechanics and CFD methods. Two versions are analyzed , original and updated, the wind turbine CEET-01, on which the author would have been granted a Certificate of Patent of Invention and one of Industrial Model, the updated version was derived from the procedure proposed by the author, this presents a holder for the longest vane and a larger area in the vane. In addition to analyzing the amount and cost of power generated and the capacity factor at three locations in the province of Villa Clara it was concluded that the updated variant of the turbine CEET-01 is superior to the original

  4. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  5. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2003-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  6. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2004-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  7. Numerical calculation of aerodynamics wind turbine blade S809 airfoil and comparison of theoretical calculations with experimental measurements and confirming with NREL data

    Science.gov (United States)

    Sogukpinar, Haci; Bozkurt, Ismail

    2018-02-01

    Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.

  8. Aerodynamic coefficients in generalized unsteady thin airfoil theory

    Science.gov (United States)

    Williams, M. H.

    1980-01-01

    Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).

  9. Doubling the annual coefficient of performance of air-conditioning units by taking advantage of small temperature lifts; Verdoppelung der Jahresarbeitszahl von Klimakaelteanlagen durch Ausnuetzung eines kleinen Temperaturhubes

    Energy Technology Data Exchange (ETDEWEB)

    Wellig, B.; Kegel, B.; Meier, M.

    2006-07-01

    The seasonal performance factor (SPF) of chilled water systems (CWS) is closely related to the temperature lift, i.e. the difference between the temperature of the heat source and the heat sink. In many applications in building services engineering, a temperature lift of 10-20 K is in principle sufficient. However, the potential for highly efficient refrigerating systems is not fully exploited as standard chillers are designed for lifts of 30-60 K. The exergy analysis of typical CWS shows that the external exergy losses are greater than the exergy losses of the chiller. The second-law (or exergetic) efficiency is usually far below 10%. It is therefore important to avoid unnecessarily high temperature lifts. Measurements on refrigeration systems in two office buildings have shown that even in state-of-the-art CWS, considerable energy savings (up to 50%) can be achieved by persistent use of small temperature lifts. However, SPF-values around 5-6 can hardly be exceeded in systems with electric driven chillers. SPFs higher than 10 or even above 20 can only be reached with optimized free cooling processes. Basic decisions, which ultimately lead to CWS with unnecessarily high temperature lifts, are taken in the early project stages. Therefore, this study presents guidelines for the design and operation of CWS with small temperature lifts. The implementation of these simple measures will lead to a considerable reduction of energy consumption and operating costs. (author)

  10. Analysis of offshore platforms lifting with fixed pile structure type (fixed platform) based on ASD89

    Science.gov (United States)

    Sugianto, Agus; Indriani, Andi Marini

    2017-11-01

    Platform construction GTS (Gathering Testing Sattelite) is offshore construction platform with fix pile structure type/fixed platform functioning to support the mining of petroleum exploitation. After construction fabrication process platform was moved to barges, then shipped to the installation site. Moving process is generally done by pull or push based on construction design determined when planning. But at the time of lifting equipment/cranes available in the work area then the moving process can be done by lifting so that moving activity can be implemented more quickly of work. This analysis moving process of GTS platform in a different way that is generally done to GTS platform types by lifting using problem is construction reinforcement required, so the construction can be moved by lifting with analyzing and checking structure working stress that occurs due to construction moving process by lifting AISC code standard and analysis using the SAP2000 structure analysis program. The analysis result showed that existing condition cannot be moved by lifting because stress ratio is above maximum allowable value that is 0.950 (AISC-ASD89). Overstress occurs on the member 295 and 324 with stress ratio value 0.97 and 0.95 so that it is required structural reinforcement. Box plate aplication at both members so that it produces stress ratio values 0.78 at the member 295 and stress ratio of 0.77 at the member 324. These results indicate that the construction have qualified structural reinforcement for being moved by lifting.

  11. Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine

    Science.gov (United States)

    Sogukpinar, Haci; Bozkurt, Ismail

    2017-02-01

    In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.

  12. Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem

    Directory of Open Access Journals (Sweden)

    Roshan Sharma

    2012-01-01

    Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.

  13. Lift conference | 5-7 February

    CERN Multimedia

    2014-01-01

    Since 2006, Lift Events explore the business and social implications of new technologies through the organisation of international event series and open innovation programs in Europe, Asia and America. The next conference will be held on 5-7 February in Geneva.   (Image: © Lift Conference) The Lift Conference is one of the leading conferences on innovation in Europe and a key annual meeting for individuals and organizations wishing to understand and anticipate trends and innovation. Held every year in February in Geneva (5-7 February 2014), the Lift Conference is a three-day event consisting of talks, interactive workshops, exhibitions, and discussions bringing together over 1’000 participants from all society’s sectors and industries in a dynamic and informal environment with the aim to learn, connect, share and leverage innovation opportunities.   Extraordinary speakers will take to the stage at Lift14: Porter Erisman, former VP of Alibaba.com turned...

  14. Lift production through asymmetric flapping

    Science.gov (United States)

    Jalikop, Shreyas; Sreenivas, K. R.

    2009-11-01

    At present, there is a strong interest in developing Micro Air Vehicles (MAV) for applications like disaster management and aerial surveys. At these small length scales, the flight of insects and small birds suggests that unsteady aerodynamics of flapping wings can offer many advantages over fixed wing flight, such as hovering-flight, high maneuverability and high lift at large angles of attack. Various lift generating mechanims such as delayed stall, wake capture and wing rotation contribute towards our understanding of insect flight. We address the effect of asymmetric flapping of wings on lift production. By visualising the flow around a pair of rectangular wings flapping in a water tank and numerically computing the flow using a discrete vortex method, we demonstrate that net lift can be produced by introducing an asymmetry in the upstroke-to-downstroke velocity profile of the flapping wings. The competition between generation of upstroke and downstroke tip vortices appears to hold the key to understanding this lift generation mechanism.

  15. Temporal flow instability for Magnus-Robins effect at high rotation rates

    Science.gov (United States)

    Sengupta, T. K.; Kasliwal, A.; de, S.; Nair, M.

    2003-06-01

    The lift and drag coefficients of a circular cylinder, translating and spinning at a supercritical rate is studied theoretically to explain the experimentally observed violation of maximum mean lift coefficient principle, that was proposed heuristically by Prandtl on the basis of inviscid flow model. It is also noted experimentally that flow past a rotating and translating cylinder experiences temporal instability-a fact not corroborated by any theoretical studies so far. In the present paper we report very accurate solution of Navier-Stokes equation that displays the above-mentioned instability and the violation of the maximum limit. The calculated lift coefficient exceeds the limit of /4π, instantaneously as well as in time-averaged sense. The main purpose of the present paper is to explain the observed temporal instability sequence in terms of a new theory of instability based on full Navier-Stokes equation that does not require making any assumption about the flow field, unlike other stability theories.

  16. Direct lifts of coupled cell networks

    Science.gov (United States)

    Dias, A. P. S.; Moreira, C. S.

    2018-04-01

    In networks of dynamical systems, there are spaces defined in terms of equalities of cell coordinates which are flow-invariant under any dynamical system that has a form consistent with the given underlying network structure—the network synchrony subspaces. Given a network and one of its synchrony subspaces, any system with a form consistent with the network, restricted to the synchrony subspace, defines a new system which is consistent with a smaller network, called the quotient network of the original network by the synchrony subspace. Moreover, any system associated with the quotient can be interpreted as the restriction to the synchrony subspace of a system associated with the original network. We call the larger network a lift of the smaller network, and a lift can be interpreted as a result of the cellular splitting of the smaller network. In this paper, we address the question of the uniqueness in this lifting process in terms of the networks’ topologies. A lift G of a given network Q is said to be direct when there are no intermediate lifts of Q between them. We provide necessary and sufficient conditions for a lift of a general network to be direct. Our results characterize direct lifts using the subnetworks of all splitting cells of Q and of all split cells of G. We show that G is a direct lift of Q if and only if either the split subnetwork is a direct lift or consists of two copies of the splitting subnetwork. These results are then applied to the class of regular uniform networks and to the special classes of ring networks and acyclic networks. We also illustrate that one of the applications of our results is to the lifting bifurcation problem.

  17. Vertical vector face lift.

    Science.gov (United States)

    Somoano, Brian; Chan, Joanna; Morganroth, Greg

    2011-01-01

    Facial rejuvenation using local anesthesia has evolved in the past decade as a safer option for patients seeking fewer complications and minimal downtime. Mini- and short-scar face lifts using more conservative incision lengths and extent of undermining can be effective in the younger patient with lower face laxity and minimal loose, elastotic neck skin. By incorporating both an anterior and posterior approach and using an incision length between the mini and more traditional face lift, the Vertical Vector Face Lift can achieve longer-lasting and natural results with lesser cost and risk. Submentoplasty and liposuction of the neck and jawline, fundamental components of the vertical vector face lift, act synergistically with superficial musculoaponeurotic system plication to reestablish a more youthful, sculpted cervicomental angle, even in patients with prominent jowls. Dramatic results can be achieved in the right patient by combining with other procedures such as injectable fillers, chin implants, laser resurfacing, or upper and lower blepharoplasties. © 2011 Wiley Periodicals, Inc.

  18. Wind tower service lift

    Science.gov (United States)

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  19. JWST Lifting System

    Science.gov (United States)

    Tolleson, William

    2012-01-01

    A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.

  20. Operator expansions in the minimal subtraction scheme. II. Explicit formulas for coefficient functions

    International Nuclear Information System (INIS)

    Chetyrkin, K.G.

    1989-01-01

    It is shown in an arbitrary model that the coefficient functions of the operator expansion (renormalized in the minimal subtraction scheme) are finite. Explicit formulas convenient for calculating them in practice are obtained. The gluing method and the formalism of the R* operation are used to transform the formulas in such a way that the coefficient functions can be expressed in terms of ordinary diagrams containing neither nonstandard propagators nor an additional loop integration. An important feature of the representation for the coefficient functions is that the R* operation, which subtracts simultaneously the ultraviolet and infrared divergences, guarantees the existence of the coefficient functions in the limit when the dimensional regularization is lifted without any restrictions

  1. Business Profile of Boat Lift Net and Stationary Lift Net Fishing Gear in Morodemak Waters Central Java

    Science.gov (United States)

    Hapsari, Trisnani D.; Jayanto, Bogi B.; Fitri, Aristi D. P.; Triarso, I.

    2018-02-01

    Lift net is one of the fishing gears that is used widely in the Morodemak coastal fishing port (PPP) for catching pelagic fish. The yield of fish captured by these fishing gear has high economic value, such as fish belt (Trichiurus sp), squids (Loligo sp) and anchovies (Stelophorus sp). The aims of this research were to determine the technical aspects of boat lift net and stationary lift net fishing gear in Morodemak Waters Demak Regency; to find out the financial aspect of those fishing gears and to analyze the financial feasibility by counting PP, NPV, IRR, and B/C ratio criteria. This research used case study method with descriptive analysis. The sampling method was purposive sampling with 22 fishermen as respondents. The result of the research showed that the average of boat lift net acceptance was Rp 388,580,000. The financial analysis of fisheries boat lift net with the result of NPV Rp 836,149,272, PP 2.44 years, IRR value 54%, and B/C ratio 1.73. The average of stationary lift net acceptance was Rp 27,750,000. The financial analysis lift net with the result of NPV Rp 37,937,601; PP 1.96 years, IRR value 86%, and B/C ratio 1.32. This research had a positive NPV value, B/C ratio >1, and IRR > discount rate (12 %). This study concluded that the fishery business of boat lift net and stationary lift net in Morodemak coastal fishing port (PPP) was worth running.

  2. A comparative analysis of lumbar spine mechanics during barbell- and crate-lifting: implications for occupational lifting task assessments.

    Science.gov (United States)

    Zehr, Jackie D; Carnegie, Danielle R; Welsh, Timothy N; Beach, Tyson A C

    2018-03-19

    To compare the effects of object handled and handgrip used on lumbar spine motion and loading during occupational lifting task simulations. Eight male and eight female volunteers performed barbell and crate lifts with a pronated (barbell) and a neutral (crate) handgrip. The mass of barbells/crates lifted was identical across the objects and fixed at 11.6 and 9.3 kg for men and women, respectively. The initial heights of barbells/crates were individualized to mid-shank level. Body segment kinematics and foot-ground reaction kinetics were collected, and then input into an electromyography-assisted dynamic biomechanical model to quantify lumbar spine motion and loading. Lumbar compression and net lumbosacral moment magnitudes were 416 N and 17 Nm lower when lifting a barbell than when lifting a crate (p  0.392) or flexion/extension velocities (p > 0.085). Crate- and barbell-lifting tasks can be used interchangeably if assessing lifting mechanics based on peak spine motion variables. If assessments are based on the spine loading responses to task demands, however, then crate- and barbell-lifting tasks cannot be used interchangeably.

  3. Occupational lifting of heavy loads and preterm birth:

    DEFF Research Database (Denmark)

    Runge, Stine Bjerrum; Pedersen, Jacob Krabbe; Svendsen, Susanne Wulff

    2013-01-01

    To examine the association between occupational lifting during pregnancy and preterm birth. The risk of preterm birth was estimated for total burden lifted per day and number of medium and heavy loads lifted per day.......To examine the association between occupational lifting during pregnancy and preterm birth. The risk of preterm birth was estimated for total burden lifted per day and number of medium and heavy loads lifted per day....

  4. Thread-Lift Sutures : Still in the Lift? A Systematic Review of the Literature

    NARCIS (Netherlands)

    Gulbitti, Haydar Aslan; Colebunders, Britt; Pirayesh, Ali; Bertossi, Dario; van der Lei, Berend

    Background: In 2006, Villa et al. published a review article concerning the use of thread-lift sutures and concluded that the technique was still in its infancy but had great potential to become a useful and effective procedure for nonsurgical lifting of sagged facial tissues. As 11 years have

  5. Thread-Lift Sutures : Still in the Lift? A Systematic Review of the Literature

    NARCIS (Netherlands)

    Gülbitti, Haydar Aslan; Colebunders, Britt; Pirayesh, Ali; Bertossi, Dario; van der Lei, Berend

    2018-01-01

    BACKGROUND: In 2006, Villa et al. published a review article concerning the use of thread-lift sutures and concluded that the technique was still in its infancy but had great potential to become a useful and effective procedure for nonsurgical lifting of sagged facial tissues. As 11 years have

  6. The Betz-Joukowsky limit for the maximum power coefficient of wind turbines

    DEFF Research Database (Denmark)

    Okulov, Valery; van Kuik, G.A.M.

    2009-01-01

    The article addresses to a history of an important scientific result in wind energy. The maximum efficiency of an ideal wind turbine rotor is well known as the ‘Betz limit’, named after the German scientist that formulated this maximum in 1920. Also Lanchester, a British scientist, is associated...

  7. Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil

    Directory of Open Access Journals (Sweden)

    Sohrab Gholamhosein Pouryoussefi

    2016-06-01

    Full Text Available In this paper, the effects of icing on an NACA 23012 airfoil have been studied. Experiments were applied on the clean airfoil, runback ice, horn ice, and spanwise ridge ice at a Reynolds number of 0.6 × 106 over angles of attack from −8° to 20°, and then results are compared. Generally, it is found that ice accretion on the airfoil can contribute to formation of a flow separation bubble on the upper surface downstream from the leading edge. In addition, it is made clear that spanwise ridge ice provides the greatest negative effect on the aerodynamic performance of the airfoil. In this case, the stall angle drops about 10° and the maximum lift coefficient reduces about 50% which is hazardous for an airplane. While horn ice leads to a stall angle drop of about 4° and a maximum lift coefficient reduction to 21%, runback ice has the least effect on the flow pattern around the airfoil and the aerodynamic coefficients so as the stall angle decreases 2° and the maximum lift reduces about 8%.

  8. Analysis on shock wave speed of water hammer of lifting pipes for deep-sea mining

    Science.gov (United States)

    Zhou, Zhi-jin; Yang, Ning; Wang, Zhao

    2013-04-01

    Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.

  9. Wingless Flight: The Lifting Body Story

    Science.gov (United States)

    Reed, R. Dale; Lister, Darlene (Editor); Huntley, J. D. (Editor)

    1997-01-01

    Wingless Flight tells the story of the most unusual flying machines ever flown, the lifting bodies. It is my story about my friends and colleagues who committed a significant part of their lives in the 1960s and 1970s to prove that the concept was a viable one for use in spacecraft of the future. This story, filled with drama and adventure, is about the twelve-year period from 1963 to 1975 in which eight different lifting-body configurations flew. It is appropriate for me to write the story, since I was the engineer who first presented the idea of flight-testing the concept to others at the NASA Flight Research Center. Over those twelve years, I experienced the story as it unfolded day by day at that remote NASA facility northeast of los Angeles in the bleak Mojave Desert. Benefits from this effort immediately influenced the design and operational concepts of the winged NASA Shuttle Orbiter. However, the full benefits would not be realized until the 1990s when new spacecraft such as the X-33 and X-38 would fully employ the lifting-body concept. A lifting body is basically a wingless vehicle that flies due to the lift generated by the shape of its fuselage. Although both a lifting reentry vehicle and a ballistic capsule had been considered as options during the early stages of NASA's space program, NASA initially opted to go with the capsule. A number of individuals were not content to close the book on the lifting-body concept. Researchers including Alfred Eggers at the NASA Ames Research Center conducted early wind-tunnel experiments, finding that half of a rounded nose-cone shape that was flat on top and rounded on the bottom could generate a lift-to-drag ratio of about 1.5 to 1. Eggers' preliminary design sketch later resembled the basic M2 lifting-body design. At the NASA Langley Research Center, other researchers toyed with their own lifting-body shapes. Meanwhile, some of us aircraft-oriented researchers at the, NASA Flight Research Center at Edwards Air

  10. Simplified theory of an active lift turbine with controlled displacement

    OpenAIRE

    Lecanu , Pierre ,; Breard , Joel; Mouazé , Dominique

    2016-01-01

    It is presented in this article, a simplified theory of the active lift turbine which has been the subject of several patent[4, 5, 11]. A simplified theory is proposed to extend the Betz limit of the yield on vertical axis wind turbine. This work can be extended either on wind driven or marine current turbine. Based on kinetic energy calculation , that theory demonstrates that the radial force acting on the blade can be used to extend the maximum recoverable power, mainly by transforming a li...

  11. Wavelets and the Lifting Scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  12. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2012-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  13. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2009-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  14. Heterotic weight lifting

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2010-01-01

    We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of N=2 minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of N=2 minimal models. This is achieved by replacing one minimal model plus the superfluous E 8 factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of SO(10), SU(5) or other subgroups, including just SU(3)xSU(2)xU(1). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with three chiral families can be obtained. Based on a first scan of about 10% of the lifted Gepner models we can construct, we have collected more than 10,000 distinct spectra with three families, including examples without mirror fermions. We present an example where the GUT group is completely broken to the standard model, but the resulting and inevitable fractionally charged particles are confined by an additional gauge group factor.

  15. Heterotic weight lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2010-03-21

    We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of N=2 minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of N=2 minimal models. This is achieved by replacing one minimal model plus the superfluous E{sub 8} factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of SO(10), SU(5) or other subgroups, including just SU(3)xSU(2)xU(1). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with three chiral families can be obtained. Based on a first scan of about 10% of the lifted Gepner models we can construct, we have collected more than 10,000 distinct spectra with three families, including examples without mirror fermions. We present an example where the GUT group is completely broken to the standard model, but the resulting and inevitable fractionally charged particles are confined by an additional gauge group factor.

  16. Lambda-lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, O.; Schultz, U.P.

    2004-01-01

    -lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters......Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...

  17. Comparative analysis of top-lit bubble column and gas-lift bioreactors for microalgae-sourced biodiesel production

    International Nuclear Information System (INIS)

    Seyed Hosseini, Nekoo; Shang, Helen; Ross, Gregory M.; Scott, John Ashley

    2016-01-01

    Highlights: • Top-lit gas-lift and bubble columns were studied as deep algal cultivation tank. • A theoretical energy requirement analysis and a hydrodynamic model were developed. • Areal productivities of both bioreactors were notably higher than traditional raceways. • A gas-lift reactor sparged with 6% carbon dioxide achieved the highest lipid production. • Hydrodynamic and light stresses increased the lipid content suitable for biodiesel. - Abstract: The development of top-lit one-meter deep bioreactors operated as either a gas-lift or bubble column system using air and carbon dioxide enriched air was studied. The goal was high productivity cultivation of algae with elevated lipid levels suitable for conversion into biodiesel. A theoretical energy requirement analysis and a hydrodynamic model were developed to predict liquid circulation velocities in the gas-lift bioreactor, which agreed well with experimental measurements. The influence of operational parameters such as design of bioreactor, gas flow rates and carbon dioxide concentration on the growth and lipid volumetric production of Scenedesmus dimorphus was evaluated using factorial design. While biomass productivity was 12% higher in the bubble column bioreactor (68.2 g_d_w m"−"2 day"−"1), maximum lipid volumetric production (0.19 g_L_i_p_i_d L"−"1) was found in a gas-lift bioreactor sparged with 6% carbon dioxide due to hydrodynamic and light stresses.

  18. Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients

    Directory of Open Access Journals (Sweden)

    Yuejun Chen

    2018-02-01

    Full Text Available Rectangular short-crested weirs are widely used for simple structure and high discharge capacity. As one of the most important and influential factors of discharge capacity, side slope can improve the hydraulic characteristics of weirs at special conditions. In order to systemically study the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient in a rectangular short-crested weir the Volume of Fluid (VOF method and the Renormalization Group (RNG κ-ε turbulence model are used. In this study, the slope coefficient ranges from V to 3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm. Comparisons of discharge coefficients and free surface profiles between simulated and laboratory results display a good agreement. The simulated results show that the difference of discharge coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases. For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There exists a difference between upstream and downstream slope coefficients in the influence range of free surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression is a function of upstream and downstream slope coefficients.

  19. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  20. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    Science.gov (United States)

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  1. Win a lift to the future!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The Communication Group is organising a competition offering people at CERN the chance to submit their ideas and win a ticket to the Lift10 Conference, which will be held in Geneva from 5 to7 May.   Lift is a community of technology "pioneers", created in 2006. It now involves more than 4,000 people from over 60 countries, who meet regularly in Europe and in Asia to explore the social implications of new technologies and the major shifts ahead. CERN is one of the academic partners of the next Lift conference, whose theme is "Connected people”. For this occasion, 10 free tickets to the conference will be awarded to the "CERNois" who come up with the best answers to the question: “How would you contribute to Lift10?” Those taking part in the competition can choose from among the following categories: - run workshop(s); - cover the conference on a blog; - coordinate a discussion during the breaks; - organize a lift@home ...

  2. Modeling lift operations with SASmacr Simulation Studio

    Science.gov (United States)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  3. Masculinity and Lifting Accidents among Danish Ambulance Personnel

    DEFF Research Database (Denmark)

    Hansen, Claus D.; Nielsen, Kent J

    Background Work injuries related to lifting are the most prevalent among ambulance personnel (AP) despite the introduction of ‘assistive technologies’ (AT) that help reduce situations of manual lifting. One third of the AP report using AT only ‘sometimes’ and 10% report having lifted a patient...... alone. Aim This presentation investigates whether failure to use AT is linked to male ambulance workers’ gender identity? Is lifting patients alone a way of performing masculinity for AP’s? Method Data is taken from MARS, a panel study of AP workers in Denmark (n = 1606). Information from questionnaires...... measuring traditional male role norms (MRNI), safety attitudes and safety behavior will be linked to company register information on work injuries categorized as lifting accidents. Logistic regression is used to analyse associations between masculinity, lifting behavior, and lifting accidents. Results...

  4. AFC-Enabled Simplified High-Lift System Integration Study

    Science.gov (United States)

    Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin

    2014-01-01

    The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.

  5. Can a new behaviorally oriented training process to improve lifting technique prevent occupationally related back injuries due to lifting?

    Science.gov (United States)

    Lavender, Steven A; Lorenz, Eric P; Andersson, Gunnar B J

    2007-02-15

    A prospective randomized control trial. To determine the degree to which a new behavior-based lift training program (LiftTrainer; Ascension Technology, Burlington, VT) could reduce the incidence of low back disorder in distribution center jobs that require repetitive lifting. Most studies show programs aimed at training lifting techniques to be ineffective in preventing low back disorders, which may be due to their conceptual rather than behavioral learning approach. A total of 2144 employees in 19 distribution centers were randomized into either the LiftTrainer program or a video control group. In the LiftTrainer program, participants were individually trained in up to 5, 30-minute sessions while instrumented with motion capture sensors to quantify the L5/S1 moments. Twelve months following the initial training, injury data were obtained from company records. Survival analyses (Kaplan-Meier) indicated that there was no difference in injury rates between the 2 training groups. Likewise, there was no difference in the turnover rates. However, those with a low (<30 Nm) average twisting moment at the end of the first session experienced a significantly (P < 0.005) lower rate of low back disorder than controls. While overall the LiftTrainer program was not effective, those with twisting moments below 30 Nm reported fewer injuries, suggesting a shift in focus for "safe" lifting programs.

  6. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    Lambda-lifting is a program transformation used in compilers and in partial evaluators and that operates in cubic time. In this article, we show how to reduce this complexity to quadratic time. Lambda-lifting transforms a block-structured program into a set of recursive equations, one for each...... local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters that yields the cubic factor in the traditional formulation of lambda-lifting, which...... is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity of lambda-lifting from O(n 3 log n)toO(n2 log n), where n is the size of the program. Since a lambda-lifter can output...

  7. 33 CFR 118.85 - Lights on vertical lift bridges.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  8. Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

    Directory of Open Access Journals (Sweden)

    B.W. Nam

    2017-09-01

    Full Text Available The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

  9. 77 FR 20558 - Federal Motor Vehicle Safety Standards; Platform Lifts for Motor Vehicles; Platform Lift...

    Science.gov (United States)

    2012-04-05

    ... unrelated to the barrier's safety. Lift-U also questioned the agency's statement that it could be difficult... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 571 [Docket No. NHTSA-2012-0039] RIN 2127-AJ93 Federal Motor Vehicle Safety Standards; Platform Lifts for...

  10. Fuel Cell Hydroge Manifold for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham

    . Battery driven lift trucks are being used more and more in different companies to reduce their emissions. However, battery driven lift trucks need long time to recharge and may be out of work for a long time. Fuel cell driven lift trucks diminish this problem and are therefore getting more attention...

  11. Application of lift and squeeze technique in phacoemulsification of hypermature cataract

    Directory of Open Access Journals (Sweden)

    Geng-Ying Li

    2014-07-01

    Full Text Available AIM: To evaluate the effectiveness and security of lift and squeeze technique in phacoemulsification of hypermature cataract.METHODS: From June 2010 to June 2013, totally 156 eyes with hypermature cataract, which received phacoemulsification in our hospital, were enrolled. Lift and squeeze technique was used to chop the nucleus, and 1g/L Trypan blue was used for capsulorhexis. Average time of phaco complication, corneal edema and visual outcome were recorded.RESULTS: The best-corrected visual acuity(BCVA was 0.1-0.4 in 15 eyes(9.6%, 0.5-0.7 in 82(52.6%eyes, and 0.8-1.0 in 59(37.8%eyes at 3mo after surgery. The phaco time was 25-56s(average 42±10s, the maximum phaco power was 30%. Posterior capsular rupture and vitreous loss happened in 2 eyes(1.3%, and the IOLs were implanted in the sulcus. Corneal edema classified at grade Ⅰ were seen in 12 eyes(7.7%, and 5 eyes(3.2%at gradeⅡ, no eye at grade Ⅲ and grade Ⅳ. The mean endothelial cell loss was 8.7% at 3mo.CONCLUSION: Crystalline lens capsule staining with Trypan blue increase the success rate of intact continuous curvilinear capsulorhexis(CCC. The lift and squeeze technique reduces the stress on the zonules and capsule, and decreases the phaco time and phaco power.

  12. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  13. On the Fetch Dependent Drag Coefficient over Coastal and Inland Seas

    DEFF Research Database (Denmark)

    Geernaert, G. L.; Smith, J. A.

    a maximum when the phase speed of the dominant wind wave has a value near 7 u*, where u* is the friction velocity. This corresponds to a maximum near 2 km fetch during moderate windspeed, and the maximum value of the drag coefficient corresponds to an increased fetch of 13 km for windspeeds of 20 m/sec. We......The drag coefficient has been postulated by many investigators to depend on fetch. For constant windspeed and stability, laboratory data generally show an increasing drag coefficient with fetch while field observations show a decreasing dependence. In this study, we show that if one combines...... the spectral form of the roughness length proposed by Kitaigorodskii with the JONSWAP wave spectrum and extrapolate to very short fetch, then the predicted drag coefficient exhibits a behaviour which coarsely reproduces field and laboratory observations. The results indicate that the drag coefficient exhibits...

  14. Using verbal instructions to influence lifting mechanics - Does the directive "lift with your legs, not your back" attenuate spinal flexion?

    Science.gov (United States)

    Beach, Tyson A C; Stankovic, Tatjana; Carnegie, Danielle R; Micay, Rachel; Frost, David M

    2018-02-01

    "Use your legs" is commonly perceived as sound advice to prevent lifting-related low-back pain and injuries, but there is limited evidence that this directive attenuates the concomitant biomechanical risk factors. Body segment kinematic data were collected from 12 men and 12 women who performed a laboratory lifting/lowering task after being provided with different verbal instructions. The main finding was that instructing participants to lift "without rounding your lower back" had a greater effect on the amount of spine flexion they exhibited when lifting/lowering than instructing them to lift "with your legs instead of your back" and "bend your knees and hips". It was concluded that if using verbal instructions to discourage spine flexion when lifting, the instructions should be spine- rather than leg-focused. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. CERN takes off at Lift11

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    CERN was especially featured at the Lift11 conference, held in Geneva early this month. Tara Shears delivered a keynote speech at the event, while Paul Oortman Gerlings (DGS-SEE) and Erik van der Bij (BE-CO) – winners of the Bulletin’s Lift11 competition – organised the CERN workshop.   Paul Oortman Gerlings takes questions at CERN's Lift11 workshop. Lift11 was an opportunity for CERN to reach today’s innovators and developers. “The event was filled with people eager to learn new ideas, who were not afraid to ask questions,” says Tara Shears, physicist from the LHCb Collaboration who presented an update on the status of the LHC. “People were amazed by what goes on inside CERN, by our science, our facilities – even by the way we carry out our day-to-day work. It is a branch of fundamental research that really seems to inspire everyone.” A small Lift11 group had the chance to take a tour of CERN, ...

  16. Visual perception of fatigued lifting actions.

    Science.gov (United States)

    Fischer, Steven L; Albert, Wayne J; McGarry, Tim

    2012-12-01

    Fatigue-related changes in lifting kinematics may expose workers to undue injury risks. Early detection of accumulating fatigue offers the prospect of intervention strategies to mitigate such fatigue-related risks. In a first step towards this objective, this study investigated whether fatigue detection was accessible to visual perception and, if so, what was the key visual information required for successful fatigue discrimination. Eighteen participants were tasked with identifying fatigued lifts when viewing 24 trials presented using both video and point-light representations. Each trial comprised a pair of lifting actions containing a fresh and a fatigued lift from the same individual presented in counter-balanced sequence. Confidence intervals demonstrated that the frequency of correct responses for both sexes exceeded chance expectations (50%) for both video (68%±12%) and point-light representations (67%±10%), demonstrating that fatigued lifting kinematics are open to visual perception. There were no significant differences between sexes or viewing condition, the latter result indicating kinematic dynamics as providing sufficient information for successful fatigue discrimination. Moreover, results from single viewer investigation reported fatigue detection (75%) from point-light information describing only the kinematics of the box lifted. These preliminary findings may have important workplace applications if fatigue discrimination rates can be improved upon through future research. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Project LIFT: Year 1 Report

    Science.gov (United States)

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) is currently in the second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  18. Sensorimotor memory biases weight perception during object lifting

    Directory of Open Access Journals (Sweden)

    Vonne evan Polanen

    2015-12-01

    Full Text Available When lifting an object, the brain uses visual cues and an internal object representation to predict its weight and scale fingertip forces accordingly. Once available, tactile information is rapidly integrated to update the weight prediction and refine the internal object representation. If visual cues cannot be used to predict weight, force planning relies on implicit knowledge acquired from recent lifting experience, termed sensorimotor memory. Here, we investigated whether perception of weight is similarly biased according to previous lifting experience and how this is related to force scaling. Participants grasped and lifted series of light or heavy objects in a semi-randomized order and estimated their weights. As expected, we found that forces were scaled based on previous lifts (sensorimotor memory and these effects increased depending on the length of recent lifting experience. Importantly, perceptual weight estimates were also influenced by the preceding lift, resulting in lower estimations after a heavy lift compared to a light one. In addition, the weight estimations were negatively correlated with the magnitude of planned force parameters. This perceptual bias was only found if the current lift was light, but not heavy since the magnitude of sensorimotor memory effects had, according to Weber’s law, relatively less impact on heavy compared to light objects. A control experiment tested the importance of active lifting in mediating these perceptual changes and showed that when weights are passively applied on the hand, no effect of previous sensory experience is found on perception. These results highlight how fast learning of novel object lifting dynamics can shape weight perception and demonstrate a tight link between action planning and perception control. If predictive force scaling and actual object weight do not match, the online motor corrections, rapidly implemented to downscale forces, will also downscale weight estimation in

  19. Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft

    Science.gov (United States)

    Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David

    1993-01-01

    Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.

  20. Breast lift

    Science.gov (United States)

    ... and areola may be moved. Sometimes, women have breast augmentation (enlargement with implants) when they have a breast lift. Why the ... MD, FACS, general surgery practice specializing in breast cancer, Virginia Mason Medical Center, Seattle, WA. Also reviewed ...

  1. Lower complexity bounds for lifted inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2015-01-01

    instances of the model. Numerous approaches for such “lifted inference” techniques have been proposed. While it has been demonstrated that these techniques will lead to significantly more efficient inference on some specific models, there are only very recent and still quite restricted results that show...... the feasibility of lifted inference on certain syntactically defined classes of models. Lower complexity bounds that imply some limitations for the feasibility of lifted inference on more expressive model classes were established earlier in Jaeger (2000; Jaeger, M. 2000. On the complexity of inference about...... that under the assumption that NETIME≠ETIME, there is no polynomial lifted inference algorithm for knowledge bases of weighted, quantifier-, and function-free formulas. Further strengthening earlier results, this is also shown to hold for approximate inference and for knowledge bases not containing...

  2. Lifting devices in nuclear facilities

    International Nuclear Information System (INIS)

    The rule is valid for lifts, cranes, winches, rail travel trolleys, load lifting devices and fuel element changing devices for light-water reactors, insofar as these are used in plants to produce or to fission nuclear fuels or to process irradiated nuclear fuels or in the storage or other use of nuclear fuels. (LH) [de

  3. Sikkerhedsbestemmelser for beskæringsarbejde fra lift

    DEFF Research Database (Denmark)

    Jakobsen, Ole Sejr; Theilby, Frans

    2010-01-01

    Brug af lift til beskæring og fældning af træer er blevet udbredt i den grønne sektor. Som bruger er det vigtigt at kende den lift, man har valgt, og at arbejdet med motorsav foregår efter Arbejdstilsynets regler og anbefalinger.......Brug af lift til beskæring og fældning af træer er blevet udbredt i den grønne sektor. Som bruger er det vigtigt at kende den lift, man har valgt, og at arbejdet med motorsav foregår efter Arbejdstilsynets regler og anbefalinger....

  4. Effect of training and lifting equipment for preventing back pain in lifting and handling: systematic review

    NARCIS (Netherlands)

    Martimo, Kari-Pekka; Verbeek, Jos; Karppinen, Jaro; Furlan, Andrea D.; Takala, Esa-Pekka; Kuijer, P. Paul F. M.; Jauhiainen, Merja; Viikari-Juntura, Eira

    2008-01-01

    To determine whether advice and training on working techniques and lifting equipment prevent back pain in jobs that involve heavy lifting. Medline, Embase, CENTRAL, Cochrane Back Group's specialised register, CINAHL, Nioshtic, CISdoc, Science Citation Index, and PsychLIT were searched up to

  5. Occupational lifting and pelvic pain during pregnancy:

    DEFF Research Database (Denmark)

    Larsen, Pernille Stemann; Strandberg-Larsen, Katrine; Juhl, Mette

    2013-01-01

    OBJECTIVES: Pelvic pain during pregnancy is a common ailment, and the disease is a major cause of sickness absence during pregnancy. It is plausible that occupational lifting may be a risk factor of pelvic pain during pregnancy, but no previous studies have examined this specific exposure. The aim...... of this study was to examine the association between occupational lifting and pelvic pain during pregnancy. METHODS: The study comprised 50 143 pregnant women, enrolled in the Danish National Birth Cohort in the period from 1996-2002. During pregnancy, the women provided information on occupational lifting...... (weight load and daily frequency), and six months post partum on pelvic pain. Adjusted odds ratios for pelvic pain during pregnancy according to occupational lifting were calculated by logistic regression. RESULTS: Any self-reported occupational lifting (>1 time/day and loads weighing >10 kg...

  6. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    Science.gov (United States)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  7. Back injury prevention: a lift team success story.

    Science.gov (United States)

    Hefti, Kelly S; Farnham, Richard J; Docken, Lisa; Bentaas, Ruth; Bossman, Sharon; Schaefer, Jill

    2003-06-01

    Work related back injuries among hospital personnel account for high volume, high cost workers' compensation claims. These injuries can be life altering experiences, affecting both the personal and professional lives of injured workers. Lifting must be viewed as a skill involving specialized training and mandated use of mechanical equipment, rather than as a random task performed by numerous health care providers. The use of a lift team specially trained in body mechanics, lifting techniques, and the use of mandated mechanical equipment can significantly affect injury data, financial outcomes, and employee satisfaction. The benefits of a lift team extend beyond the effect on injury and financial outcomes--they can be used for recruitment and retention strategies, and team members serve as mentors to others by demonstrating safe lifting techniques. Ultimately, a lift team helps protect a valuable resource--the health care worker.

  8. Containment vessel bottom head transport and lifting technique

    International Nuclear Information System (INIS)

    Zheng Donghong; Tian Shiyong; Hu Dequan; Xiao Hongtao

    2013-01-01

    The challengeable transport and lifting techniques and high safety assurance measures are needed for the onsite construction of the AP1000 containment vessel bottom head (CVBH), which is a large component with heavy weight, big size, high center of gravity, and easy to deformation. During transport, the infra structural road foundation is heavily loaded with big turning radius, and the requirement for synchronization of transport vehicles is strict. During lifting, the crane lifting capacities are high, requirement for the lifting and rigging tools is strict, nuclear island being put into place is difficult, and the crane operating foundation is heavily loaded. The transport and lifting techniques and safety assurance measures for CVBH are elaborated in detail, so as to provide a reference for the follow-up transport and lifting of large components of nuclear island. (authors)

  9. New F-theory lifts

    International Nuclear Information System (INIS)

    Collinucci, Andres

    2009-01-01

    In this note, a procedure is developed to explicitly construct non-trivial F-theory lifts of perturbative IIB orientifold models on Calabi-Yau complete intersections in toric varieties. This procedure works on Calabi-Yau orientifolds where the involution coordinate can have arbitrary projective weight, as opposed to the well-known hypersurface cases where it has half the weight of the equation defining the CY threefold. This opens up the possibility of lifting more general setups, such as models that have O3-planes.

  10. The hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron

    CERN Document Server

    Zhao Zhen Lu; Chen Rong Fan; Chu Cheng Jie

    2002-01-01

    The oil-line structure, control system and their working principles of the hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron are introduced. The six years practice proves that the specification of the system matches the requirements: the oil cylinder maximum stroke of 850 mm, the eight slot positioning dowels repositioning accuracy of +-0.01 mm, the two oil cylinders moving in step accuracy of 5-10 mm. The system is safe, reliable and easy to be operated

  11. Relative importance of expertise, lifting height and weight lifted on posture and lumbar external loading during a transfer task in manual material handling.

    Science.gov (United States)

    Plamondon, André; Larivière, Christian; Delisle, Alain; Denis, Denys; Gagnon, Denis

    2012-01-01

    The objective of this study was to measure the effect size of three important factors in manual material handling, namely expertise, lifting height and weight lifted. The effect of expertise was evaluated by contrasting 15 expert and 15 novice handlers, the effect of the weight lifted with a 15-kg box and a 23-kg box and the effect of lifting height with two different box heights: ground level and a 32 cm height. The task consisted of transferring a series of boxes from a conveyor to a hand trolley. Lifting height and weight lifted had more effect size than expertise on external back loading variables (moments) while expertise had low impact. On the other hand, expertise showed a significant effect of posture variables on the lumbar spine and knees. All three factors are important, but for a reduction of external back loading, the focus should be on the lifting height and weight lifted. The objective was to measure the effect size of three important factors in a transfer of boxes from a conveyor to a hand trolley. Lifting height and weight lifted had more effect size than expertise on external back loading variables but expertise was a major determinant in back posture.

  12. A Real-Time Lift Detection Strategy for a Hip Exoskeleton.

    Science.gov (United States)

    Chen, Baojun; Grazi, Lorenzo; Lanotte, Francesco; Vitiello, Nicola; Crea, Simona

    2018-01-01

    Repetitive lifting of heavy loads increases the risk of back pain and even lumbar vertebral injuries to workers. Active exoskeletons can help workers lift loads by providing power assistance, and therefore reduce the moment and force applied on L5/S1 joint of human body when performing lifting tasks. However, most existing active exoskeletons for lifting assistance are unable to automatically detect user's lift movement, which limits the wide application of active exoskeletons in factories. In this paper, we propose a simple but effective lift detection strategy for exoskeleton control. This strategy uses only exoskeleton integrated sensors, without any extra sensors to capture human motion intentions. This makes the lift detection system more practical for applications in manufacturing environments. Seven healthy subjects participated in this research. Three different sessions were carried out, two for training and one for testing the algorithm. In the two training sessions, subjects were asked to wear a hip exoskeleton, controlled in transparent mode, and perform repetitive lifting and a locomotion circuit; lifting was executed with different techniques. The collected data were used to train the lift detection model. In the testing session, the exoskeleton was controlled in order to deliver torque to assist the lifting action, based on the lift detection made by the trained algorithm. The across-subject average accuracy of lift detection during online test was 97.97 ± 1.39% with subject-dependent model. Offline, the algorithm was trained with data acquired from all subjects to verify its performance for subject-independent detection, and an accuracy of 97.48 ± 1.53% was achieved. In addition, timeliness of the algorithm was quantitatively evaluated and the time delay was exoskeleton in assisting subjects in performing load lifting tasks. These results validate the promise of applying the proposed lift detection strategy for exoskeleton control aiming at lift

  13. Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector

    International Nuclear Information System (INIS)

    Payri, Raúl; Salvador, F.J.; Manin, Julien; Viera, Alberto

    2016-01-01

    the parameters studied. Coefficients of the correlations were compared with results for the single orifice injector, this showed that variations of test conditions have the same impact on ignition delay and lift-off length regardless the nozzle orifice configuration.

  14. CFD Study of Drag and Lift of Sepak Takraw Ball at Different Face Orientations

    Directory of Open Access Journals (Sweden)

    Abdul Syakir Abdul Mubin

    2015-01-01

    Full Text Available There have been a significant number of researches on computational fluid dynamic (CFD analysis of balls used in sports such as golf balls, tennis balls, and soccer balls. Sepak takraw is a high speed court game predominantly played in Southeast Asia using mainly the legs and head. The sepak takraw ball is unique because it is not enclosed and made of woven plastic. Hence a study of its aerodynamicswould give insight into its behaviour under different conditions of play. In this study the dynamics of the fluid around a static sepak takraw ball was investigated at different wind speeds for three different orientations using CFD. It was found that although the drag did not differ very much, increasing the wind velocity causes an increase in drag. The lift coefficientvaries as the velocity increases and does not show a regular pattern. The drag and lift coefficients are influenced by the orientation of the sepak takraw ball.

  15. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach.

    Science.gov (United States)

    Loturco, Irineu; Kobal, Ronaldo; Moraes, José E; Kitamura, Katia; Cal Abad, César C; Pereira, Lucas A; Nakamura, Fábio Y

    2017-04-01

    Loturco, I, Kobal, R, Moraes, JE, Kitamura, K, Cal Abad, CC, Pereira, LA, and Nakamura, FY. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res 31(4): 1127-1131, 2017-The aim of this study was to determine the force-velocity relationship and test the possibility of determining the 1 repetition maximum (1RM) in "free weight" and Smith machine bench presses. Thirty-six male top-level athletes from 3 different sports were submitted to a standardized 1RM bench press assessment (free weight or Smith machine, in randomized order), following standard procedures encompassing lifts performed at 40-100% of 1RM. The mean propulsive velocity (MPV) was measured in all attempts. A linear regression was performed to establish the relationships between bar velocities and 1RM percentages. The actual and predicted 1RM for each exercise were compared using a paired t-test. Although the Smith machine 1RM was higher (10% difference) than the free weight 1RM, in both cases the actual and predicted values did not differ. In addition, the linear relationship between MPV and percentage of 1RM (coefficient of determination ≥95%) allow determination of training intensity based on the bar velocity. The linear relationships between the MPVs and the relative percentages of 1RM throughout the entire range of loads enable coaches to use the MPV to accurately monitor their athletes on a daily basis and accurately determine their actual 1RM without the need to perform standard maximum dynamic strength assessments.

  16. The Cumulative Lifting Index (CULI) for the Revised NIOSH Lifting Equation: Quantifying Risk for Workers With Job Rotation.

    Science.gov (United States)

    Garg, Arun; Kapellusch, Jay M

    2016-08-01

    The objectives were to: (a) develop a continuous frequency multiplier (FM) for the Revised NIOSH Lifting Equation (RNLE) as a function of lifting frequency and duration of a lifting task, and (b) describe the Cumulative Lifting Index (CULI), a methodology for estimating physical exposure to workers with job rotation. The existing FM for the RNLE (FME) does not differentiate between task duration >2 hr and <8 hr, which makes quantifying physical exposure to workers with job rotation difficult and presents challenges to job designers. Using the existing FMs for 1, 2, and 8 hr of task durations, we developed a continuous FM (FMP) that extends to 12 hr per day. We simulated 157,500 jobs consisting of two tasks each and, using different combinations of Frequency Independent Lifting Index, lifting frequency and duration of lifting. Biomechanical stresses were estimated using the CULI, time-weighted average (TWA), and peak exposure. The median difference between FME and FMP was ±1% (range: 0%-15%). Compared to CULI, TWA underestimated risk of low-back pain (LBP) for 18% to 30% of jobs, and peak exposure for an assumed 8-hr work shift overestimated risk of LBP for 20% to 25% of jobs. Peak task exposure showed 90% agreement with CULI but ignored one of two tasks. The CULI partially addressed the underestimation of physical exposure using the TWA approach and overestimation of exposure using the peak-exposure approach. The proposed FM and CULI may provide more accurate physical exposure estimates, and therefore estimated risk of LBP, for workers with job rotation. © 2016, Human Factors and Ergonomics Society.

  17. 21 CFR 880.5500 - AC-powered patient lift.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or other...

  18. Low-back loading in lifting two loads beside the body compared to lifting one load in front of the body

    NARCIS (Netherlands)

    Faber, G.S.; Kingma, I.; Bakker, A.J.; van Dieen, J.H.

    2009-01-01

    Low-back load during manual lifting is considered an important risk factor for the occurrence of low-back pain. Splitting a load, so it can be lifted beside the body (one load in each hand), instead of in front of the body, can be expected to reduce low-back load. Twelve healthy young men lifted 10

  19. Computational Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Jeffrey K.; Viken, Sally A.; Carter, Melissa B.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of the wing for the distributed electric propulsion X-57 Maxwell airplane configuration at cruise and takeoff/landing conditions was completed. Two unstructured-mesh, Navier-Stokes computational fluid dynamics methods, FUN3D and USM3D, were used to predict the wing performance. The goal of the X-57 wing and distributed electric propulsion system design was to meet or exceed the required lift coefficient 3.95 for a stall speed of 58 knots, with a cruise speed of 150 knots at an altitude of 8,000 ft. The X-57 Maxwell airplane was designed with a small, high aspect ratio cruise wing that was designed for a high cruise lift coefficient (0.75) at angle of attack of 0deg. The cruise propulsors at the wingtip rotate counter to the wingtip vortex and reduce induced drag by 7.5 percent at an angle of attack of 0.6deg. The unblown maximum lift coefficient of the high-lift wing (with the 30deg flap setting) is 2.439. The stall speed goal performance metric was confirmed with a blown wing computed effective lift coefficient of 4.202. The lift augmentation from the high-lift, distributed electric propulsion system is 1.7. The predicted cruise wing drag coefficient of 0.02191 is 0.00076 above the drag allotted for the wing in the original estimate. However, the predicted drag overage for the wing would only use 10.1 percent of the original estimated drag margin, which is 0.00749.

  20. Effects of a Belt on Intra-Abdominal Pressure during Weight Lifting.

    Science.gov (United States)

    1988-03-01

    potentially injurious b compressive forces on spinal discs during lifting. To investigate the effects of a standard lifting belt on lAP and lifting mechanics... injurious compressive forces on spinal discs during lifting. To investigate the effects of a standard lifting belt on IAP and lifting ! mechanics... weightlifting (7,9). Both olympic and power lifters have used lifting belts for many years, yet virtually no research has been reported which examines

  1. Pig lift applications in offshore dry completion wells; Aplicacao do pig lift em pocos offshore de completacao seca

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Paulo C.R.; Faria, Rogerio Costa; Almeida, Alcino Resende [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2000-07-01

    Production increases of 10% to 130% have been obtained with pig lift installations on offshore oil wells in the Cacao Field, southeast Brazil. At the present time 3 wells out of 5 are being produced with pig lift. These deep, highly deviated wells with little space on the platform to the required surface equipment presented a challenge to pig lift technology. However, these difficulties were overcame and the benefits obtained helped to maintain the economical attractiveness of the platform. (author)

  2. A Practical Approach To Lift-Off

    Science.gov (United States)

    Jones, Susan K.; Chapman, Richard C.; Pavelchek, Edward K.

    1987-08-01

    Lift-off technology provides an alternate metal patterning technology to that of subtractive etching. In this raper, we describe an image reversal process which provides a practical means for reliably producing resist stencils which are required for successful lift-off in a 2.0 μm metal pitch CMOS process, as well as for experimental submicron processing. Experimental data and PROSIM simulations are presented to show the effects of patterning exposure dose, flood exposure dose, develop time, and focus parameters on resist linewidths as well as for control of resist retrograde (undercut) sidewall angles. Deposition and subsequent lift-off of Al/Cu alloys and sandwich metallizations is demonstrated. Because the image reversal process enables pattern definition at the top of the resist film, it is demonstrated that thicker resist films can be used to produce finer resolution of lift-off stencils over topography than would have been expected without resorting to multilayer resist structures.

  3. Waste Package Lifting Calculation

    International Nuclear Information System (INIS)

    H. Marr

    2000-01-01

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation

  4. Null lifts and projective dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cariglia, Marco, E-mail: marco@iceb.ufop.br

    2015-11-15

    We describe natural Hamiltonian systems using projective geometry. The null lift procedure endows the tangent bundle with a projective structure where the null Hamiltonian is identified with a projective conic and induces a Weyl geometry. Projective transformations generate a set of known and new dualities between Hamiltonian systems, as for example the phenomenon of coupling-constant metamorphosis. We conclude outlining how this construction can be extended to the quantum case for Eisenhart–Duval lifts.

  5. 'Natural Gas lift', a New Tool for Nigeria

    International Nuclear Information System (INIS)

    Lucas, C. D.

    2003-01-01

    Gas lift is the most common means of artificial lift in the Niger Delta and has been widely applied worldwide. The advent of remote monitoring and control devises (RMC) has added a new option in artificiallift, 'natural gas lift'. 'Natural gas lift' is an extension RMC in which a gas zone and one or more oil zones are produced through the same tubing string, using the gas enhance the production of the oil zones. The flow of gas is maintained in the optimal range using down hole chokes that are controlled from the surface. The gas flow rate is monitored using downhole pressure and .temperature gauges. The use of 'natural gas lift' has the advantages of gas lift but without the cost associated with gas lift; gas supply wells, compression etc. This is especially critical in areas that are remote from other facilities or in subsea completions where access to the wells is limited. Stacked reservoirs and frequent inclusion of both oil and gas reservoirs in the same field, as found in the Niger Delta, makes Nigeria a prime candidate for this technology. An example of this production from the North Sea will be presented along with a potential application using data from the Niger Delta. Design elements of the monitoring and control systems will be covered and the advantages and drawbacks of this application will be discussed

  6. Central Hemodynamics Measured During 5 Repetition Maximum Free Weight Resistance Exercise.

    Science.gov (United States)

    Howard, Jonathan S; McLester, Cherilyn N; Evans, Thomas W; McLester, John R; Calloway, Jimmy P

    2018-01-01

    The PhysioFlow™ is a piece of equipment that uses bioimpedance cardiography to measure central hemodynamics. The purpose of this research was to explore the novel approach of monitoring central hemodynamics during free weight resistance exercise using bioimpedance cardiography throughout a 5 repetition maximum (5RM). Thirty participants ranging from beginner to advanced lifters (16 males and 14 females) completed a 5RM for back squat, seated push press, and bicep curl while connected to the PhysioFlow™ to assess the response of heart rate (HR), stroke volume (SV), cardiac output (Q), and ejection fraction (EF). Participants were cued for form and to breathe normally throughout the lifts. The PhysioFlow™ detected an increase in HR and Q for all lifts between rest and each repetition ( p 0.05) and no changes in EF or SV were detected when all repetitions were compared to each other for all lifts ( p > 0.05). In conclusion, the PhysioFlow™ was able to detect changes in HR and Q during dynamic free weight resistance exercise. This novel approach may provide a mechanism for monitoring central hemodynamics during free weight resistance training. However, more research needs to be conducted as the exercise protocol for this investigation did not allow for a comparison to a reference method.

  7. The Design of Wheelchair Lifting Mechanism and Control System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cong; WANG Zheng-xing; JIANG Shi-hong; ZHANG Li; LIU Zheng-yu

    2014-01-01

    In order to achieve a wheelchair lift function, this paper designs a tri-scissors mechanism. Through the so-called H-type transmission and L-type swing rod, the three scissors mechanisms lift in the same rate with only one liner motor while ensuring the stability of the lift. Finite element analysis in ANSYS is performed to verify the material strength. The control system with Sunplus SCM achieves the voice control of wheelchair walking and lifting.

  8. A low-dimensional tool for predicting force decomposition coefficients for varying inflow conditions

    KAUST Repository

    Ghommem, Mehdi

    2013-01-01

    We develop a low-dimensional tool to predict the effects of unsteadiness in the inflow on force coefficients acting on a circular cylinder using proper orthogonal decomposition (POD) modes from steady flow simulations. The approach is based on combining POD and linear stochastic estimator (LSE) techniques. We use POD to derive a reduced-order model (ROM) to reconstruct the velocity field. To overcome the difficulty of developing a ROM using Poisson\\'s equation, we relate the pressure field to the velocity field through a mapping function based on LSE. The use of this approach to derive force decomposition coefficients (FDCs) under unsteady mean flow from basis functions of the steady flow is illustrated. For both steady and unsteady cases, the final outcome is a representation of the lift and drag coefficients in terms of velocity and pressure temporal coefficients. Such a representation could serve as the basis for implementing control strategies or conducting uncertainty quantification. Copyright © 2013 Inderscience Enterprises Ltd.

  9. A low-dimensional tool for predicting force decomposition coefficients for varying inflow conditions

    KAUST Repository

    Ghommem, Mehdi; Akhtar, Imran; Hajj, M. R.

    2013-01-01

    We develop a low-dimensional tool to predict the effects of unsteadiness in the inflow on force coefficients acting on a circular cylinder using proper orthogonal decomposition (POD) modes from steady flow simulations. The approach is based on combining POD and linear stochastic estimator (LSE) techniques. We use POD to derive a reduced-order model (ROM) to reconstruct the velocity field. To overcome the difficulty of developing a ROM using Poisson's equation, we relate the pressure field to the velocity field through a mapping function based on LSE. The use of this approach to derive force decomposition coefficients (FDCs) under unsteady mean flow from basis functions of the steady flow is illustrated. For both steady and unsteady cases, the final outcome is a representation of the lift and drag coefficients in terms of velocity and pressure temporal coefficients. Such a representation could serve as the basis for implementing control strategies or conducting uncertainty quantification. Copyright © 2013 Inderscience Enterprises Ltd.

  10. Isolated neck-lifting procedure: isolated stork lift.

    Science.gov (United States)

    Barbarino, Sheila C; Wu, Allan Y; Morrow, David M

    2013-04-01

    Many patients desire cosmetic improvement of neck laxity when consulting with a plastic surgeon about their face. Neck laxity and loss of the cervicomental angle can be due to multiple components of aging such as skin quality/elasticity, loss of platysma muscle tone, and submental fat accumulation. Traditionally, the procedure of choice for patients with an aging lower face and neck is a cervicofacial rhytidectomy. However, occasionally, a patient wishes to have no other facial surgery than an improvement of their excessive skin of the anterior, lateral, and/or posterior neck. In other instances, a patient may present with having had a face/neck-lifting procedure that left objectionable vertical/diagonal lines at the lateral neck. In both these instances, a surgeon should consider an isolated stork lift (ISL) procedure. An ISL procedure avoids and/or corrects problematic vertical/diagonal lateral neck folds by "walking" the excess skin flaps around the posterior inferior occipital hairline bilaterally, bringing the flaps together at the lateral and posterior neck, which sometimes involves a midline posterior dart excision of the dog ear. A patient presenting with excessive skin of the neck (anterior, lateral, and/or posterior) and/or residual vertical/diagonal skin folds is an excellent candidate for the ISL. The ISL procedure was performed on 273 patients over a 2-year period at The Morrow Institute. Patients were included if they had excessive skin of the anterior, lateral, and/or posterior neck and/or diagonal/vertical lateral bands and did not desire a full face-lifting procedure. Patients were excluded from this study if they would not accept having longer hair in order to cover the scar along the posterior inferior occipital hairline or a midline T-flap skin closure scar at the base of the posterior midline neck. Under a combination of local anesthesia and IV sedation, a postauricular face-lift incision was made that was extended in a circumoccipital fashion

  11. [Origin of lifting and lowering theory and its herb pair study].

    Science.gov (United States)

    Guo, Zhao-Juan; Yuan, Yi-Ping; Kong, Li-Ting; Jia, Xiao-Yu; Wang, Ning-Ning; Dai, Ying; Zhai, Hua-Qiang

    2017-08-01

    Lifting and lowering theory is one of the important basis for guiding clinical medication. Through the study of ancient books and literature, we learned that lifting and lowering theory was originated in Huangdi Neijing, practiced more in the Shanghan Zabing Lun, established in Yixue Qiyuan, and developed in Compendium of Materia Medica and now. However, lifting and lowering theory is now mostly stagnated in the theoretical stage, with few experimental research. In the clinical study, the guiding role of lifting and lowering theory to prescriptions?mainly includes opposite?role?of lift and lower medicine property, mutual promotion of lift and lower medicine property, main role of lift medicine property and main role of lower medicine property. Under the guidance of lifting and lowering theory, the herb pair compatibility include herb combination of lift medicine property, herb combination of lift and lower medicine property and herb combination of lower medicine property. Modern biological technology was used in this study to carry out experimental research on the lifting and lowering theory, revealing the scientific connotation of it, which will help to promote clinical rational drug use. Copyright© by the Chinese Pharmaceutical Association.

  12. Drag Coefficient Estimation in Orbit Determination

    Science.gov (United States)

    McLaughlin, Craig A.; Manee, Steve; Lichtenberg, Travis

    2011-07-01

    Drag modeling is the greatest uncertainty in the dynamics of low Earth satellite orbits where ballistic coefficient and density errors dominate drag errors. This paper examines fitted drag coefficients found as part of a precision orbit determination process for Stella, Starlette, and the GEOSAT Follow-On satellites from 2000 to 2005. The drag coefficients for the spherical Stella and Starlette satellites are assumed to be highly correlated with density model error. The results using MSIS-86, NRLMSISE-00, and NRLMSISE-00 with dynamic calibration of the atmosphere (DCA) density corrections are compared. The DCA corrections were formulated for altitudes of 200-600 km and are found to be inappropriate when applied at 800 km. The yearly mean fitted drag coefficients are calculated for each satellite for each year studied. The yearly mean drag coefficients are higher for Starlette than Stella, where Starlette is at a higher altitude. The yearly mean fitted drag coefficients for all three satellites decrease as solar activity decreases after solar maximum.

  13. Experimental Investigation on Aerodynamic Control of a Wing with Distributed Plasma Actuators

    International Nuclear Information System (INIS)

    Han Menghu; Li Jun; Liang Hua; Zhao Guangyin; Niu Zhongguo

    2015-01-01

    Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to-drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack. (paper)

  14. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed

    2016-07-07

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  15. Thermally stimulating mechanically-lifted well production

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Hinson, R.A.

    1984-06-19

    A well which is producing slowly by artificial lift can be economically heated by first inflowing a nitrogen-generating solution, to form a pool of reacting liquid near the uppermost opening into the reservoir, then inflowing more solution while artificially-lifting liquid from near the lowermost opening into the reservoir at a rate substantially equalling the inflow rate.

  16. Numerical Study of Transition of an Annular Lift Fan Aircraft

    OpenAIRE

    Yun Jiang; Bo Zhang

    2016-01-01

    The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD) simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can elimin...

  17. Bilayer lift-off process for aluminum metallization

    Science.gov (United States)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  18. Study on dynamic lifting characteristics of control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao

    2012-01-01

    Based on the equations of the electric circuit and the magnetic circuit and analysis of the dynamic lifting process for the control rod drive mechanism (CRDM), coupled magnetic-electric-mechanical equations both for the static status and the dynamic status are derived. The analytical method is utilized to obtain the current and the time when the lift starts. The numerical simulation method of dynamic analysis recommended by ASME Code is utilized to simulate the dynamic lifting process of CRDM, and the dynamic features of the system with different design gaps are studied. Conclusions are drawn as: (1) the lifting-start time increases with the design gap, and the time for the lifting process is longer with larger gaps; (2) the lifting velocity increases with time; (3) the lifting acceleration increases with time, and with smaller gaps, the impact acceleration is larger. (author)

  19. Implications of NGA for NEHRP site coefficients

    Science.gov (United States)

    Borcherdt, Roger D.

    2012-01-01

    Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.

  20. Analysis of lifting beam and redesigned lifting lugs for 241-AZ-01A decant pump

    International Nuclear Information System (INIS)

    Coverdell, B.L.

    1994-01-01

    This supporting document details calculations for the proper design of a lifting beam and redesigned lifting lugs for the 241AZO1A decant pump. This design is in accordance with Standard Architectural-Civil Design Criteria, Design Loads for Facilities (DOE-RL 1989) and is safety class three. The design and fabrication is in accordance with American Institute of Steel Construction, Manual of Steel Construction, (AISC, 1989) and the Hanford Hoisting and Rigging Manual (DOE-RL 1993)

  1. Nordic noir and lifted localities

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    What I do here is to draw attention to a particular visual quality of recent Nordic noir and to relate the visuality of TV-drama to what I – with a term borrowed from Roland Robertson – dub lifted localites.......What I do here is to draw attention to a particular visual quality of recent Nordic noir and to relate the visuality of TV-drama to what I – with a term borrowed from Roland Robertson – dub lifted localites....

  2. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    Science.gov (United States)

    Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.

    2012-11-01

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

  3. Reduction of Dynamic Loads in Mine Lifting Installations

    Science.gov (United States)

    Kuznetsov, N. K.; Eliseev, S. V.; Perelygina, A. Yu

    2018-01-01

    Article is devoted to a problem of decrease in the dynamic loadings arising in transitional operating modes of the mine lifting installations leading to heavy oscillating motions of lifting vessels and decrease in efficiency and reliability of work. The known methods and means of decrease in dynamic loadings and oscillating motions of the similar equipment are analysed. It is shown that an approach based on the concept of the inverse problems of dynamics can be effective method of the solution of this problem. The article describes the design model of a one-ended lifting installation in the form of a two-mass oscillation system, in which the inertial elements are the mass of the lifting vessel and the reduced mass of the engine, reducer, drum and pulley. The simplified mathematical model of this system and results of an efficiency research of an active way of reduction of dynamic loadings of lifting installation on the basis of the concept of the inverse problems of dynamics are given.

  4. Patient Obesity Influences Pelvic Lift During Cup Insertion in Total Hip Arthroplasty Through a Lateral Transgluteal Approach in Supine Position.

    Science.gov (United States)

    Brodt, Steffen; Nowack, Dimitri; Jacob, Benjamin; Krakow, Linda; Windisch, Christoph; Matziolis, Georg

    2017-09-01

    Movement of the pelvis during implantation of total hip arthroplasty (THA) has a major influence on the positioning of the acetabular cup. Strong traction caused by retractors leads to iatrogenic pelvic lift and can thus be partly responsible for cup malpositioning. The objective of this study was to investigate such factors that influence pelvic lift. The dynamic movement of the pelvis was measured during implantation of THA in 67 patients. This was done by measuring the acceleration using the SensorLog app on a smartphone. At its maximum, the pelvis was lifted by an average of 6.7°. When impacting the press-fit cup, the surgical side was raised by 4.4° compared with the time of skin incision. This lift at the time of cup implantation correlates significantly with the body mass index and the patient's abdominal and pelvic circumference. Every surgeon performing THA must be aware of the pelvic lift during an operation. Especially in patients with a high body mass index, a large abdominal circumference, or a large pelvic circumference, there is an increased risk of malpositioning of the acetabular cup. When impacting the cup, we recommend releasing the traction of the retractor, so that the pelvis can tilt back into its natural position, and thus, the anticipated cup positioning can be implemented as exactly as possible. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Searching for ski-lift injury: an uphill struggle?

    Science.gov (United States)

    Smartt, Pam; Chalmers, David

    2010-03-01

    Injuries arising from ski-lift malfunction are rare. Most arise from skier error when embarking or disembarking, or from improper lift operation. A search of the literature failed to uncover any studies focusing specifically on ski-lift injuries. The purpose of this study was to identify and characterise ski-lift injury resulting in hospitalisation and comment on barriers to reporting and reporting omissions. New Zealand hospitalised injury discharges 2000-2005 formed the primary dataset. To aid case identification these data were linked to ACC compensated claims for the same period and the data searched for all hospitalised cases of injury arising from ski-lifts. 44 cases were identified representing 2% of snow-skiing/snowboarding cases. 28 cases (64%) were male and 16 (36%) female, the average age was 32 yrs (range 5-73 yrs). The majority of cases were snow-skiers (35 cases, 80%). Most of the injuries were serious, or potentially so, with 1 case of traumatic pneumothorax, one of pulmonary embolism (after jumping from a ski-lift) and 28 cases sustaining fractures (six to the neck-of-femur, one to the lumbar spine and one to the pubis). ICISS scores for all cases ranged from 1.00 to 0.8182 (probability of dying in hospital 0-18.18%). Only 14 (32%) cases could be easily identified from ICD-10-AM e-codes and activity codes in the discharge summary. The ICD-10-AM external cause code for ski-lift injury V98 ("other specified transport accidents") was only assigned to 39% of cases. The type of ski-lift could only be determined in 24 cases (55%). Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. The 1 Repetition Maximum Mechanics of a High-Handle Hexagonal Bar Deadlift Compared With a Conventional Deadlift as Measured by a Linear Position Transducer.

    Science.gov (United States)

    Lockie, Robert G; Moreno, Matthew R; Lazar, Adrina; Risso, Fabrice G; Liu, Tricia M; Stage, Alyssa A; Birmingham-Babauta, Samantha A; Torne, Ibett A; Stokes, John J; Giuliano, Dominic V; Davis, DeShaun L; Orjalo, Ashley J; Callaghan, Samuel J

    2018-01-01

    Lockie, RG, Moreno, MR, Lazar, A, Risso, FG, Liu, TM, Stage, AA, Birmingham-Babauta, SA, Torne, IA, Stokes, JJ, Giuliano, DV, Davis, DL, Orjalo, AJ, and Callaghan, SJ. The 1 repetition maximum mechanics of a high-handle hexagonal bar deadlift compared with a conventional deadlift as measured by a linear position transducer. J Strength Cond Res 32(1): 150-161, 2018-The high-handle hexagonal bar deadlift (HHBD), a variation of the conventional deadlift (CD), is said to reduce the lift range of motion, which may change the mechanics of the lift. However, no research has investigated this. This study compared the mechanics between a 1 repetition maximum (1RM) CD and HHBD. Thirty-one strength-trained subjects (21 men, 10 women) completed a 1RM CD and HHBD. A linear position transducer measured lift distance, duration, and work; and peak and mean power, velocity, and force. The presence of a sticking region (SR) was determined for each lift. A repeated-measures analysis of variance (ANOVA) calculated differences between 1RM CD and HHBD mechanics. A one-way ANOVA compared the mechanics of each lift between subjects who exhibited an SR or not, and the SR between the CD and HHBD. Significance was set at p mechanics between subjects with or without an SR, and no differences in SR region distance or duration between the CD and HHBD. Greater force can be generated in the HHBD, which could have implications for strength-training adaptations over time.

  7. Influence of Thickness Variation on the Flapping Performance of Symmetric NACA Airfoils in Plunging Motion

    Directory of Open Access Journals (Sweden)

    Liangyu Zhao

    2010-01-01

    Full Text Available In order to investigate the impact of airfoil thickness on flapping performance, the unsteady flow fields of a family of airfoils from an NACA0002 airfoil to an NACA0020 airfoil in a pure plunging motion and a series of altered NACA0012 airfoils in a pure plunging motion were simulated using computational fluid dynamics techniques. The “class function/shape function transformation“ parametric method was employed to decide the coordinates of these altered NACA0012 airfoils. Under specified plunging kinematics, it is observed that the increase of an airfoil thickness can reduce the leading edge vortex (LEV in strength and delay the LEV shedding. The increase of the maximum thickness can enhance the time-averaged thrust coefficient and the propulsive efficiency without lift reduction. As the maximum thickness location moves towards the leading edge, the airfoil obtains a larger time-averaged thrust coefficient and a higher propulsive efficiency without changing the lift coefficient.

  8. DETERMINATION THE PERMISSIBLE FORCES IN ASSESSING THE LIFT RESISTANT FACTOR OF FREIGHT CARS IN TRAINS

    Directory of Open Access Journals (Sweden)

    A. O. Shvets

    2016-02-01

    Full Text Available Purpose. In the analytical research are considered: 1 relationships between the longitudinal force acting on the car in the train; 2 lateral and vertical forces of interaction in the contact zone «wheel – rail»; 3 dynamic indicators of cars with the magnitude of the car lift resistance factor; 4 obtaining of the dependencies between them. Methodology. The study was conducted by an analytical method assessing the sustainability of the freight car when driving at different speeds on the straight and curved track sections. Findings. In the process of studying the motion of the train, in the investigation of transport events, as well as during the training on the simulator operator, to assess the actions of the driver, the values of the longitudinal forces in the inter car connections are used. To calculate the longitudinal compressive forces, acting on the car, in which car lift resistance factor will be equal to the allowable value (critical force. To assess the impact on the value of the longitudinal force speed, coefficients of the vertical and horizontal dynamics, as well as the wind load on the side surface of the car body are the results of calculations of motion of the empty gondola car, model № 12-532 curve radius of 250 m with a rise of 150 mm and a transverse run of body of car frame relative to the track axis of the guide section 50 mm. Originality. In this study, the technique of determining the longitudinal compressive force was shown, that is somewhat different from the standard. So, as well as assessing the impact on it the speed of rolling coefficients of vertical and horizontal dynamics and wind load on the side surface of the car body. Practical value. The authors developed proposals on the enhancement of existing methods for determining the value of the longitudinal compressive forces acting on the car in which the safety value of the car lift resistance factor will be equal to the allowable value. It will evaluate the

  9. 21 CFR 880.5510 - Non-AC-powered patient lift.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5510 Non-AC-powered patient lift. (a) Identification. A non-AC-powered patient lift is a hydraulic, battery, or mechanically powered device, either fixed or mobile, used to lift and transport a...

  10. Lift-(gasless) laparoscopic surgery under regional anesthesia.

    Science.gov (United States)

    Kruschinski, Daniel; Homburg, Shirli

    2005-01-01

    The objective of this Chapter was to investigate the feasibility and outcome of gasless laparoscopy under regional anesthesia. A prospective evaluation of Lift-(gasless) laparoscopic procedures under regional anesthesia (Canadian Task Force classification II-1) was done at three endoscopic gynecology centers (franchise system of EndGyn(r)). Sixty-three patients with gynecological diseases comprised the cohort. All patients underwent Lift-laparoscopic surgery under regional anesthesia: 10 patients for diagnostic purposes, 17 for surgery of ovarian tumors, 14 to remove fibroids, and 22 for hysterectomies. All patients were operated without conversion to general anesthesia and without perioperative or anesthesiologic complications. Lift-laparoscopy under regional anesthesia can be recommended to all patients who desire laparoscopic intervention without general anesthesia. For elderly patients, those with cardiopulmonary risks, during pregnancy, or with contraindications for general anesthesia, Lift-laparoscopy under regional anesthesia should be the procedure of choice.

  11. Predicting a 10 repetition maximum for the free weight parallel squat using the 45 degrees angled leg press.

    Science.gov (United States)

    Willardson, Jeffrey M; Bressel, Eadric

    2004-08-01

    The purpose of this research was to devise prediction equations whereby a 10 repetition maximum (10RM) for the free weight parallel squat could be predicted using the following predictor variables: 10RM for the 45 degrees angled leg press, body mass, and limb length. Sixty men were tested over a 3-week period, with 1 testing session each week. During each testing session, subjects performed a 10RM for the free weight parallel squat and 45 degrees angled leg press. Stepwise multiple regression analysis showed leg press mass lifted to be a significant predictor of squat mass lifted for both the advanced and the novice groups (p squat mass lifted for the novice group and 55% of the variance in squat mass lifted for the advanced group. Limb length and body mass were not significant predictors of squat mass lifted for either group. The following prediction equations were devised: (a) novice group squat mass = leg press mass (0.210) + 36.244 kg, (b) advanced group squat mass = leg press mass (0.310) + 19.438 kg, and (c) subject pool squat mass = leg press mass (0.354) + 2.235 kg. These prediction equations may save time and reduce the risk of injury when switching from the leg press to the squat exercise.

  12. Endoscopic brow lifts uber alles.

    Science.gov (United States)

    Patel, Bhupendra C K

    2006-12-01

    Innumerable approaches to the ptotic brow and forehead have been described in the past. Over the last twenty-five years, we have used all these techniques in cosmetic and reconstructive patients. We have used the endoscopic brow lift technique since 1995. While no one technique is applicable to all patients, the endoscopic brow lift, with appropriate modifications for individual patients, can be used effectively for most patients with brow ptosis. We present the nuances of this technique and show several different fixation methods we have found useful.

  13. The Effect of Midline Corset Platysmaplasty on Degree of Face-lift Flap Elevation During Concomitant Deep-Plane Face-lift: A Cadaveric Study.

    Science.gov (United States)

    Jacono, Andrew A; Malone, Melanie H

    2016-05-01

    The evaluation of the effects of midline platysmaplasty concomitant with rhytidectomy. To determine whether midline platysmaplasty limits the degree of lift during deep-plane face-lift. Deep-plane rhytidectomy was performed on 10 cadaveric hemifaces. The redundant skin for excision after performing the face-lift was measured with and without midline platymaplasty. Deep-plane rhytidectomy. The redundant skin was measured preauricularly in the vertical and horizontal dimension, and postauricularly after deep-plane face-lift and after adding a midline platysmaplasty. Concomitant midline platysmaplasty significantly reduced the amount of lift during concomitant deep-plane rhytidectomy preauricularly in the vertical dimension by 40.5% (from 37.0 mm excess skin redraped to 22.0 mm) and postauricularly by 23.9% (from 40.6 mm excess skin redraped to 30.9 mm) (P jawline and midface during rhytidectomy. NA.

  14. Reinforced orbitotemporal lift: contribution to midface rejuvenation.

    Science.gov (United States)

    Renó, Waldir Teixeira

    2003-02-01

    The changes in the aging face occur from progressive ptosis of the skin, fat, and muscle, in conjunction with bone absorption and cartilage atrophy. In the orbital region, hollowness and compartmentalization occur. Conventional face lift procedures correct only the skin flaccidity, and superficial musculoaponeurotic system techniques reposition the skin and platysma without repositioning the middle third of the face, creating an artificial jawline. Subperiosteal rhytidectomy disrupts the anatomy of the periorbita, which gives the patient a certain scarecrow aspect. Composite rhytidectomy associated with brow lift and blepharoplasty may offer better results, with improvement in the malar and orbital regions. The reinforced orbitotemporal lift (ROTEL) is a new procedure in a face lift that allows the orbicularis oculi muscle and all the structures connected to it to be elevated and stretched and the orbitotemporal skin to be raised, repositioning these structures and ending orbital compartmentalization. The result is an impressive improvement in the malar-orbitotemporal region, resulting in a natural and youthful appearance.

  15. Spherical projections and liftings in geometric tomography

    DEFF Research Database (Denmark)

    Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang

    2011-01-01

    We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....

  16. Heavy Lift for Exploration: Options and Utilization

    Science.gov (United States)

    Creech, Steve; Sumrall, Phil

    2010-01-01

    Every study of exploration capabilities since the Apollo Program has recommended the renewal of a heavy lift launch capability for the United States. NASA is aggressively pursuing that capability. This paper will discuss several aspects of that effort and the potential uses for that heavy lift capability. The need for heavy lift was cited most recent in the findings of the Review of U.S. Human Space Flight Plans Committee. Combined with considerations of launch availability and on-orbit operations, the Committee finds that exploration will benefit from the availability of a heavy-lift vehicle, the report said. In addition, heavy lift would enable the launching of large scientific observatories and more capable deep-space missions. It may also provide benefit in national security applications. The most recent focus of NASA s heavy lift effort is the Ares V cargo launch vehicle, which is part of the Constellation Program architecture for human exploration beyond low Earth orbit (LEO). The most recent point-of-departure configuration of the Ares V was approved during the Lunar Capabilities concept Review (LCCR) in 2008. The Ares V first stage propulsion system consists of a core stage powered by six commercial liquid hydrogen/liquid oxygen (LH2/LOX) RS-68 engines, flanked by two 5.5-segment solid rocket boosters (SRBs) based on the 5-segment Ares I first stage. The boosters use the same Polybutadiene Acrylonitrile (PBAN) propellant as the Space Shuttle. Atop the core stage is the Earth departure stage (EDS), powered by a single J-2X upper stage engine based on the Ares I upper stage engine. The 33-foot-diameter payload shroud can enclose a lunar lander, scientific instruments, or other payloads. Since LCCR, NASA has continued to refine the design through several successive internal design cycles. In addition, NASA has worked to quantify the broad national consensus for heavy lift in ways that, to the extent possible, meet the needs of the user community.

  17. Motor of Lift RSG-GAS Performance Analysis after Repair

    International Nuclear Information System (INIS)

    Asep-Saepuloh; Yayan-Andriyanto; Yuyut-Suraniyanto

    2006-01-01

    The out of order an equipment is ordinary natural process happened, above all the equipment be used continually with very old time, as for as out of order can be resulted from kinds of cause. Lift motor out of order can be result by motor is broken or happened the body shorten then affected do not function it the lift, so until done rewinding process. The rewinding is furl to repeat at motor coils. Motor of Lift represent main activator machine turning around shares pulley. Lift Motor will work if there is called in normal operation condition or the moment manual switch if done maintenance. Motor used at lift is motor three phases with two speeds that is low speed and high speed. Rewinding process must be done removed the motor from Lift machine and have to be done by professional workshop. In during function test take place, temperature at coil reach 70 o C (exceeding boundary permitted). After done installation addition thermal at motor coil hence his temperature become normal that is only reach 50 o C. (author)

  18. TCA High Lift Preliminary Assessment

    Science.gov (United States)

    Wyatt, G. H.; Polito, R. C.; Yeh, D. T.; Elzey, M. E.; Tran, J. T.; Meredith, Paul T.

    1999-01-01

    This paper presents a TCA (Technology Concept Airplane) High lift Preliminary Assessment. The topics discussed are: 1) Model Description; 2) Data Repeatability; 3) Effect of Inboard L.E. (Leading Edge) Flap Span; 4) Comparison of 14'x22' TCA-1 With NTF (National Transonic Facility) Modified Ref. H; 5) Comparison of 14'x22' and NTF Ref. H Results; 6) Effect of Outboard Sealed Slat on TCA; 7) TCA Full Scale Build-ups; 8) Full Scale L/D Comparisons; 9) TCA Full Scale; and 10) Touchdown Lift Curves. This paper is in viewgraph form.

  19. Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows

    Science.gov (United States)

    Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William

    2015-01-01

    The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.

  20. Evaluation of ceiling lifts: transfer time, patient comfort and staff perceptions.

    Science.gov (United States)

    Alamgir, Hasanat; Li, Olivia Wei; Yu, Shicheng; Gorman, Erin; Fast, Catherine; Kidd, Catherine

    2009-09-01

    Mechanical lifting devices have been developed to reduce healthcare worker injuries related to patient handling. The purpose of this study was to evaluate ceiling lifts in comparison to floor lifts based on transfer time, patient comfort and staff perceptions in three long-term care facilities with varying ceiling lift coverage. The time required to transfer or reposition patients along with patient comfort levels were recorded for 119 transfers. Transfers performed with ceiling lifts required on average less time (bed to chair transfers: 156.9 seconds for ceiling lift, 273.6 seconds for floor lift) and were found to be more comfortable for patients. In the three facilities, 143 healthcare workers were surveyed on their perceptions of patient handling tasks and equipment. For both transferring and repositioning tasks, staff preferred to use ceiling lifts and also found them to be less physically demanding. Further investigation is needed on repositioning tasks to ensure safe practice.

  1. Prediction of peak back compressive forces as a function of lifting speed and compressive forces at lift origin and destination - a pilot study.

    Science.gov (United States)

    Greenland, Kasey O; Merryweather, Andrew S; Bloswick, Donald S

    2011-09-01

    To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) back-compressive force. Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R(2) values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

  2. Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?

    Science.gov (United States)

    McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.

    2016-01-01

    The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821

  3. Cost Benefit Analysis of Boat Lifts

    Science.gov (United States)

    2014-09-01

    associated with commercial boat lifts were obtained through a market survey based on products advertised for sale to the general public. The information...from the market survey and knowledge of specific boat maintenance items susceptible to cost reduction using a boat lift were then compared to identify...transferred to the Boat Inventory Manager ( BIM ). Custodians are responsible for maintaining boats and small craft in good working order at all times

  4. SAGD gas lift completions and optimization : a field case study at Surmont

    Energy Technology Data Exchange (ETDEWEB)

    Handfield, T.C.; Nations, T.; Noonan, S.G. [ConocoPhillips Co., Houston, TX (United States)

    2008-10-15

    Gas lift completions for steam assisted gravity drainage (SAGD) producers are unique. Because of the extreme temperatures of the downhole environment, conventional gas lift valves and mandrels with a packer completion cannot be used. Most gas lifts enter the production stream downhole through open-ended tubing or nozzles, which if not properly sized could result in operational issues, such as fluid/gas slugging and pressure instabilities which negatively effect the overall lift efficiency. ConocoPhillips performed a study in 2006 to design a gas lift system for the Surmont SAGD development that would allow better control of lift gas into the production string. The wells completed with gas lift were placed on production in 2007. This paper discussed the data collection effort and analysis completed to determine the efficiency of the two types of gas lift nozzles used in the completions. It also presented the methodology for optimization of SAGD gas lift systems and recommendations for future improvement. Background information on the Surmont oil sands project, located southeast of Fort McMurray in the Athabasca oil sands was included along with a historical perspective of the SAGD Surmont gas lift experience followed by a discussion of the Surmont initial gas lift design. Last, the paper discussed the Surmont gas lift start-up and optimization. It was concluded that installation of backcheck valves in coil tubing used for gas lift may mitigate plugging issues on initial start-up and following periods of shut-down. 5 refs., 10 figs.

  5. Toward a new nanoLIFT transfer process

    International Nuclear Information System (INIS)

    Mezel, C.; Hallo, L.; Breil, J.; Souquet, A.; Guillemot, F.; Bourgeade, A.; Hebert, D.; Saut, O.

    2010-01-01

    The Laser Induced Forward Transfer (LIFT) is a direct-write technique used to print biological materials such as living cells or molecules. During the LIFT process, the biomaterial to be printed is deposited on a target submitted to a nanosecond laser shot, and the ejecta are collected onto a receiving substrate. Despite the several advantages of this technique (control of the propelled quantity, no spoiling of the substrate), it remains difficult to be employed due to the high sensitivity of its control parameters. Recently, Duocastella published some experimental results which exhibit the real-time jet formation process, under conditions similar to those present in the LIFT process. In the first Section, a typical experimental setup for LIFT process is presented. Then, simulations of Duocastella's and Guillemot's experiments are carried out to model the jet formation in water when irradiated by an ultraviolet nanosecond laser pulse. The 2D axisymmetric hydrodynamic code CHIC (Code d'Hydrodynamique et d'Implosion du CELIA) is used for these simulations with included equations of state (EOS) to take into account the behavior of water under standard conditions. Finally, an improvement of the LIFT technique which consists in using femtosecond lasers instead of nanosecond ones, is presented. It would allow to process smaller bioelements and to control the jet diameter, as it is directly related to the laser beam waist.

  6. Neurologic disorders associated with weight lifting and bodybuilding.

    Science.gov (United States)

    Busche, Kevin

    2009-02-01

    Weight lifting and other forms of strength training are becoming more common because of an increased awareness of the need to maintain individual physical fitness. Emergency room data indicate that injuries caused by weight training have become more universal over time, likely because of increased participation rates. Neurologic injuries can result from weight lifting and related practices. Although predominantly peripheral nervous system injuries have been described, central nervous system disease may also occur. This article illustrates the types of neurologic disorders associated with weight lifting.

  7. Overview of models allowing calculation of activity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Jaussaud, C.; Sorel, C

    2004-07-01

    Activity coefficients must be estimated to accurately quantify the extraction equilibrium involved in spent fuel reprocessing. For these calculations, binary data are required for each electrolyte over a concentration range sometimes exceeding the maximum solubility. The activity coefficients must be extrapolated to model the behavior of binary supersaturated aqueous solution. According to the bibliography, the most suitable models are based on the local composition concept. (authors)

  8. Lifting Safety: Tips To Help Prevent Back Injuries

    Science.gov (United States)

    ... Prevent Back Injuries Lifting Safety: Tips to Help Prevent Back Injuries Share Print Back injuries are common problems at work, home, and play. They can be caused by accidents or improper lifting technique. Below are tips to ...

  9. Evaluation of ceiling lifts in health care settings: patient outcome and perceptions.

    Science.gov (United States)

    Alamgir, Hasanat; Li, Olivia Wei; Gorman, Erin; Fast, Catherine; Yu, Shicheng; Kidd, Catherine

    2009-09-01

    Ceiling lifts have been introduced into health care settings to reduce manual patient lifting and thus occupational injuries. Although growing evidence supports the effectiveness of ceiling lifts, a paucity of research links indicators, such as quality of patient care or patient perceptions, to the use of these transfer devices. This study explored the relationship between ceiling lift coverage rates and measures of patient care quality (e.g., incidence of facility-acquired pressure ulcers, falls, urinary infections, urinary incontinence, and assaults [patient to staff] in acute and long-term care facilities), as well as patient perceptions of satisfaction with care received while using ceiling lifts in a complex care facility. Qualitative semi-structured interviews were used to generate data. A significant inverse relationship was found between pressure ulcer rates and ceiling lift coverage; however, this effect was attenuated by year. No significant relationships existed between ceiling lift coverage and patient outcome indicators after adding the "year" variable to the model. Patients generally approved of the use of ceiling lifts and recognized many of the benefits. Ceiling lifts are not detrimental to the quality of care received by patients, and patients prefer being transferred by ceiling lifts. The relationship between ceiling lift coverage and pressure ulcer rates warrants further investigation. Copyright (c) 2009, SLACK Incorporated.

  10. Lift mechanics of downhill skiing and snowboarding.

    Science.gov (United States)

    Wu, Qianhong; Igci, Yesim; Andreopoulos, Yiannis; Weinbaum, Sheldon

    2006-06-01

    This study is conducted to develop a simplified mathematical model to describe the lift mechanics of downhill skiing and snowboarding, where the lift contributions due to both the transiently trapped air and the compressed solid phase (snow crystals) are determined. To our knowledge, this is the first time that anyone has attempted to realistically estimate the relative contribution of the transiently trapped air to the total lift in skiing and snowboarding. The model uses Shimizu's empirical relation to predict the local variation in Darcy permeability due to the compression of the solid phase. The forces and moments on the skier or snowboarder are used to predict the angle of attack of the planing surface, the penetration depth at the leading edge, and the shift in the center of pressure for two typical snow types, fresh and wind-packed snow. We present numerical solutions for snowboarding and asymptotic analytic solutions for skiing for the case where there are no edging or turning maneuvers. The force and moment balance are then used to develop a theory for control and stability in response to changes in the center of mass as the individual shifts his/her weight. Our model predicts that for fine-grained, windpacked snow that when the velocity (U) of the snowboarder or skier is 20 m.s, approximately 50% of the total lift force is generated by the trapped air for snowboarding and 40% for skiing. For highly permeable fresh powder snow, the lift contribution from the pore air pressure drops substantially. This paper develops a new theoretical framework for analyzing the lift mechanics and stability of skis and snowboards that could have important applications in future ski and snowboard design.

  11. Aerodynamic optimization and mechanism design of flexible variable camber trailing-edge flap

    Directory of Open Access Journals (Sweden)

    Weishuang LU

    2017-06-01

    Full Text Available Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft. In order to improve flight efficiency during takeoff, cruise and landing states, the flexible variable camber trailing-edge flap is introduced, capable of changing its shape smoothly from 50% flap chord to the rear of the flap. Using a numerical simulation method for the case of the GA (W-2 airfoil, the multi-objective optimization of the overlap, gap, deflection angle, and bending angle of the flap under takeoff and landing configurations is studied. The optimization results show that under takeoff configuration, the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°. Under landing configuration, the flap can improve the lift coefficient at a stall angle of attack about 1.3%. Under cruise state, the flap helps to improve the lift-to-drag ratio over a wide range of lift coefficients, and the maximum increment is about 30%. Finally, a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam.

  12. A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks.

    Science.gov (United States)

    Graham, Ryan B; Brown, Stephen H M

    2012-06-01

    Stability of the spinal column is critical to bear loads, allow movement, and at the same time avoid injury and pain. However, there has been a debate in recent years as to how best to define and quantify spine stability, with the outcome being that different methods are used without a clear understanding of how they relate to one another. Therefore, the goal of the present study was to directly compare lumbar spine rotational stiffness, calculated with an EMG-driven biomechanical model, to local dynamic spine stability calculated using Lyapunov analyses of kinematic data, during a series of continuous dynamic lifting challenges. Twelve healthy male subjects performed 30 repetitive lifts under three varying load and three varying rate conditions. With an increase in the load lifted (constant rate) there was a significant increase in mean, maximum, and minimum spine rotational stiffness (pstiffness (pstiffness and a non-significant decrease in local dynamic stability (p>0.05). Weak linear relationships were found for the varying rate conditions (r=-0.02 to -0.27). The results suggest that spine rotational stiffness and local dynamic stability are closely related to one another, as they provided similar information when movement rate was controlled. However, based on the results from the changing lifting rate conditions, it is evident that both models provide unique information and that future research is required to completely understand the relationship between the two models. Using both techniques concurrently may provide the best information regarding the true effects of (in) stability under different loading and movement scenarios, and in comparing healthy and clinical populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. LIFT11 linnas

    Index Scriptorium Estoniae

    2010-01-01

    Tallinn 2011 programmi kuuluva installatsioonide festivali "Lift11" avalikule ideekonkursile esitati 129 tööd, välja valiti 17. Tutvustatakse Maarja Kase ja Ralf Lõokese tööd "L", Tomomi Hayashi tööd "Merele!", Toomas Paaveri, Teele Pehki ja Triin Talki tööd "Kalarand"

  14. Lifting bloody footwear impressions using alginate casts followed by chemical enhancement.

    Science.gov (United States)

    Wiesner, Sarena; Izraeli, Elad; Shor, Yaron; Domb, Avi

    2013-05-01

    A method for lifting bloody footwear impressions using alginate casts and enhancing the lifted impressions with amido black is presented. On rough or dark substrates, background interferences may conceal significant details of footwear impressions. Illumination with alternative light sources and chemically enhancing the bloody footwear impressions may reveal additional details, but sometimes, lifting footwear impressions prior to enhancing is the only way to expose hidden details (by using blood reagents not adequate on the original). Several cast formulations were tested for lifting the footwear impressions. The best results were achieved using Aroma fine®. Enhancement of the footwear impressions was attempted with several reagents prior to lifting, during the casting process, and on the lifted footwear impressions. Applying amido black to footwear impressions lifted with alginate produced the sharpest and most detailed footwear impressions. Alginate castings followed by chemical enhancement with amido black may produce high-quality footwear impressions for comparison. © 2013 American Academy of Forensic Sciences.

  15. Thermal conductivity coefficients of water and heavy water in the liquid state up to 3700C

    International Nuclear Information System (INIS)

    Le Neindre, B.; Bury, P.; Tufeu, R.; Vodar, B.

    1976-01-01

    The thermal conductivity coefficients of water and heavy water of 99.75 percent isotopic purity were measured using a coaxial cylinder apparatus, covering room temperature to their critical temperatures, and pressures from 1 to 500 bar for water, and from 1 to 1000 bar for heavy water. Following the behavior of the thermal conductivity coefficient of water, which shows a maximum close to 135 0 C, the thermal conductivity coefficient of heavy water exhibits a maximum near 95 0 C and near saturation pressures. This maximum is displaced to higher temperatures when the pressure is increased. Under the same temperature and pressure conditions the thermal conductivity coefficient of heavy water was lower than for water. The pressure effect was similar for water and heavy water. In the temperature range of our experiments, isotherms of thermal conductivity coefficients were almost linear functions of density

  16. Factors associated with high physical exertion during manual lifting

    DEFF Research Database (Denmark)

    Andersen, Lars L.; Sundstrup, Emil; Brandt, Mikkel

    2018-01-01

    BACKGROUND: High physical exertion during work is a risk factor for back pain and long-term sickness absence. OBJECTIVE: To investigate which factors are associated with physical exertion during manual lifting. METHODS: From 14 workplaces across Denmark, 200 blue-collar workers reported perceived...... physical exertion (Borg-CR10) during manual lifting from floor to table height of 5, 10, 20 and 30 kg at the beginning and end of the working day. The workers also responded to a questionnaire and went through testing of isometric back muscle strength. Associations were modelled using logistic regression...... during manual lifting in blue-collar workers. These factors should be considered when planning work with manual lifting for individual workers....

  17. A comparison of muscle activity in concentric and counter movement maximum bench press.

    Science.gov (United States)

    van den Tillaar, Roland; Ettema, Gertjan

    2013-01-01

    The purpose of this study was to compare the kinematics and muscle activation patterns of regular free-weight bench press (counter movement) with pure concentric lifts in the ascending phase of a successful one repetition maximum (1-RM) attempt in the bench press. Our aim was to evaluate if diminishing potentiation could be the cause of the sticking region. Since diminishing potentiation cannot occur in pure concentric lifts, the occurrence of a sticking region in this type of muscle actions would support the hypothesis that the sticking region is due to a poor mechanical position. Eleven male participants (age 21.9 ± 1.7 yrs, body mass 80.7 ± 10.9 kg, body height 1.79 ± 0.07 m) conducted 1-RM lifts in counter movement and in pure concentric bench presses in which kinematics and EMG activity were measured. In both conditions, a sticking region occurred. However, the start of the sticking region was different between the two bench presses. In addition, in four of six muscles, the muscle activity was higher in the counter movement bench press compared to the concentric one. Considering the findings of the muscle activity of six muscles during the maximal lifts it was concluded that the diminishing effect of force potentiation, which occurs in the counter movement bench press, in combination with a delayed muscle activation unlikely explains the existence of the sticking region in a 1-RM bench press. Most likely, the sticking region is the result of a poor mechanical force position.

  18. UF{sub 6} cylinder lifting equipment enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Hortel, J.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.

  19. TMI-2 reactor vessel plenum final lift

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1986-01-01

    Removal of the plenum assembly from the TMI-2 reactor vessel was necessary to gain access to the core region for defueling. The plenum was lifted from the reactor vessel by the polar crane using three specially designed pendant assemblies. It was then transferred in air to the flooded deep end of the refueling canal and lowered onto a storage stand where it will remain throughout the defueling effort. The lift and transfer were successfully accomplished on May 15, 1985 in just under three hours by a lift team located in a shielded area within the reactor building. The success of the program is attributed to extensive mockup and training activities plus thorough preparations to address potential problems. 54 refs

  20. FREIGHT CONTAINER LIFTING STANDARD

    Energy Technology Data Exchange (ETDEWEB)

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  1. Lifted Java: A Minimal Calculus for Translation Polymorphism

    DEFF Research Database (Denmark)

    Ingesman, Matthias Diehn; Ernst, Erik

    2011-01-01

    To support roles and similar notions involving multiple views on an object, languages like Object Teams and CaesarJ include mechanisms known as lifting and lowering. These mechanisms connect pairs of objects of otherwise unrelated types, and enables programmers to consider such a pair almost...... of translation polymorphism has not been proved. This paper presents a simple model that extends Featherweight Java with the core operations of translation polymorphism, provides a Coq proof that its type system is sound, and shows that the ambiguity problem associated with the so-called smart lifting mechanism...... can be eliminated by a very simple semantics for lifting....

  2. How to lift a box that is too large to fit between the knees

    NARCIS (Netherlands)

    Kingma, I.; Faber, G.S.; van Dieen, J.H.

    2010-01-01

    Many studies compared lifting techniques such as stoop and squat lifting. Results thus far show that when lifting a wide load, high back loads result, irrespective of the lifting technique applied. This study compared four lifting techniques in 11 male subjects lifting wide loads. One of these

  3. Clinical Comparison of Sinus Lift via Summers Osteotomy and Piezosurgery

    Directory of Open Access Journals (Sweden)

    Mehrdad Radvar

    2017-12-01

    Full Text Available Introduction: Sinus lift is a process that could be performed by two methods. In the closed sinus lift, hybrid materials enter a suitable position through a created cavity. Afterwards, the materials are pressed without damaging the sinus membrane, and the implants are usually placed at the same time. Closed sinus lift is carried out via osteotomy and piezosurgery, and each of the techniques has certain advantages and limitations. The present study aimed to compare the clinical results of closed sinus lift using the summers osteotomy and piezosurgery. Materials and Methods: In this study, 20 patients requiring dental implants in the posterior segment of the maxilla via sinus lift surgery were randomly divided into two groups. The first group received piezosurgery, and the second group underwent summers osteotomy for sinus lift. Postoperative Schneiderian membrane perforation, inflammation, pain, bone gain, and bone loss were compared between the groups six months after the surgery using Mann-Whitney U test and two-sample t-test. Results: In the groups receiving piezosurgery and summers osteotomy, mean sinus lift was 3.6±0.9 and 4.0±2.2 mm, pain score was 1.1±1.2 and 0.9±0.8, bone gain was 2.2±0.8 and 3.1±1.3 mm, and crestal bone loss was 1.1±1.2 and 0.9±0.8 mm, respectively. Moreover, no Schneiderian membrane perforation was observed in the two methods, and the differences between the groups were not considered significant (P>0.05. Conclusion: According to the results, the clinical outcomes of piezosurgery in sinus lift are similar to those of summers osteotomy. Therefore, piezosurgery could be a proper alternative to summers osteotomy in sinus lift surgery.

  4. Performance and Vibration Analyses of Lift-Offset Helicopters

    Directory of Open Access Journals (Sweden)

    Jeong-In Go

    2017-01-01

    Full Text Available A validation study on the performance and vibration analyses of the XH-59A compound helicopter is conducted to establish techniques for the comprehensive analysis of lift-offset compound helicopters. This study considers the XH-59A lift-offset compound helicopter using a rigid coaxial rotor system as a verification model. CAMRAD II (Comprehensive Analytical Method of Rotorcraft Aerodynamics and Dynamics II, a comprehensive analysis code, is used as a tool for the performance, vibration, and loads analyses. A general free wake model, which is a more sophisticated wake model than other wake models, is used to obtain good results for the comprehensive analysis. Performance analyses of the XH-59A helicopter with and without auxiliary propulsion are conducted in various flight conditions. In addition, vibration analyses of the XH-59A compound helicopter configuration are conducted in the forward flight condition. The present comprehensive analysis results are in good agreement with the flight test and previous analyses. Therefore, techniques for the comprehensive analysis of lift-offset compound helicopters are appropriately established. Furthermore, the rotor lifts are calculated for the XH-59A lift-offset compound helicopter in the forward flight condition to investigate the airloads characteristics of the ABC™ (Advancing Blade Concept rotor.

  5. Influence of Surgical Approach on Pelvic Lift in Hip Arthroplasty During Cup Insertion.

    Science.gov (United States)

    Brodt, Steffen; Windisch, Christoph; Krakow, Linda; Nowack, Dimitri; Matziolis, Georg

    2017-07-01

    The position of the acetabular cup is a major factor in the long-term outcome of total hip arthroplasty (THA). Malpositioning of the acetabular cup frequently has been reported with the use of a minimally invasive implantation technique. It remains unclear whether the limited visibility or the increased retractor traction and thus tilting of the pelvis during cup implantation is the cause. This study investigated the influence of iatrogenically related pelvic lift using an anterolateral minimally invasive THA technique. In a group of 30 consecutive patients who underwent THA via a minimally invasive anterolateral approach, iatrogenic lifting of the pelvis was measured with a smartphone using a 3-axis accelerometer and compared with patients in a historical age- and sex-matched control group who underwent THA using a transgluteal approach. Postoperatively, the inclination and anteversion of the cup was determined on pelvic radiographs. In the anterolateral group, the pelvis was lifted by a maximum of 6.3° and by an average of 3.9° when the acetabular cup was impacted; no difference was noted compared with the transgluteal group. In contrast, the cups in the anterolateral group showed significantly increased inclination and reduced anteversion. In both techniques, the iatrogenic tilting of the pelvis at the time of cup implantation occurred to a comparable extent. Therefore, the significant differences in postoperative radiographs cannot be attributed to increased retractor traction on exposure of the acetabulum, which means that the limited visibility must be responsible. [Orthopedics. 2017; 40(4):e589-e593.]. Copyright 2017, SLACK Incorporated.

  6. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2015-09-01

    Full Text Available The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the rotor of the Apache helicopter; the smooth transition from vertical takeoff to cruise flight needs some extra forward thrust to overcome a low peak of drag; the aircraft with the lift fan system enclosed during cruise flight theoretically may fly faster than helicopters and tiltrotors based on aerodynamic drag prediction, due to the elimination of rotor drag and compressibility effects on the rotor blade tips; and pneumatic coupling of the tip turbine and jet exhaust of a 300 m/s velocity can provide enough moment to spin the lift fan. The CFD results provide insight for future experimental study of the annular-ducted lift fan VTOL aircraft.

  7. Functional residual capacity increase during laparoscopic surgery with abdominal wall lift

    Directory of Open Access Journals (Sweden)

    Hiroshi Ueda

    Full Text Available Abstract Background and objectives: The number of laparoscopic surgeries performed is increasing every year and in most cases the pneumoperitoneum method is used. One alternative is the abdominal wall lifting method and this study was undertaken to evaluate changes of functional residual capacity during the abdominal wall lift procedure. Methods: From January to April 2013, 20 patients underwent laparoscopic cholecystectomy at a single institution. All patients were anesthetized using propofol, remifentanil and rocuronium. FRC was measured automatically by Engstrom Carestation before the abdominal wall lift and again 15 minutes after the start of the procedure. Results: After abdominal wall lift, there was a significant increase in functional residual capacity values (before abdominal wall lift 1.48 × 103 mL, after abdominal wall lift 1.64 × 103 mL (p < 0.0001. No complications such as desaturation were observed in any patient during this study. Conclusions: Laparoscopic surgery with abdominal wall lift may be appropriate for patients who have risk factors such as obesity and respiratory disease.

  8. The Revolutionary Vertical Lift Technology (RVLT) Project

    Science.gov (United States)

    Yamauchi, Gloria K.

    2018-01-01

    The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.

  9. Lifting Wing in Constructing Tall Buildings —Aerodynamic Testing

    Directory of Open Access Journals (Sweden)

    Ian Skelton

    2014-05-01

    Full Text Available This paper builds on previous research by the authors which determined the global state-of-the-art of constructing tall buildings by surveying the most active specialist tall building professionals around the globe. That research identified the effect of wind on tower cranes as a highly ranked, common critical issue in tall building construction. The research reported here presents a design for a “Lifting Wing,” a uniquely designed shroud which potentially allows the lifting of building materials by a tower crane in higher and more unstable wind conditions, thereby reducing delay on the programmed critical path of a tall building. Wind tunnel tests were undertaken to compare the aerodynamic performance of a scale model of a typical “brick-shaped” construction load (replicating a load profile most commonly lifted via a tower crane against the aerodynamic performance of the scale model of the Lifting Wing in a range of wind conditions. The data indicate that the Lifting Wing improves the aerodynamic performance by a factor of up to 50%.

  10. Testing two novel stump-lifting heads in a final felling Norway spruce stand

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, K. (Metsaeteho Oy, Helsinki (Finland)), Email: kalle.karha@metsateho.fi; Mutikainen, A. (TTS Research, Rajamaeki (Finland)), Email: arto.mutikainen@tts.fi

    2009-07-01

    The use of stump and root wood chips has increased very rapidly in the 21st century in Finland: in the year 2000, the total consumption of stump wood chips for energy generation was 10 GWh, while in 2008 it was around 1.2 TWh. Metsaeteho Oy and TTS Research tested two new stump-lifting devices for lifting stumps in a final felling Norway spruce (picea abies) stand. In the time study with the Vaekevae Stump Processor lifting head, the productivity of stump lifting was 7,5 m3 / E{sub 0}-hour when lifting spruce stumps with a diameter of 30 cm from clayey soil, and 8.3 m3 /E{sub 0}-hour when lifting spruce stumps from sandy soil. When lifting stumps with a diameter of 40 cm, the stump-lifting productivity was 9.0 m3 /E{sub 0}-h (clay) and 10,5 m3 / E{sub 0}-h (sand). The results of this relatively restricted test indicated that the Vaekevae Stump Processor is s reliable and effective stump-lifting head that enables the harvesting of high-quality stump raw material for energy generation. The stump lifting productivity of the other lifting head (Jaervinen) was lower than that of the Vaekevae Strump Processor. Some development suggestions for the Jaervinen lifting head were presented and discussed. (orig.)

  11. Monitoring device for local power peaking coefficients

    International Nuclear Information System (INIS)

    Mihashi, Ishi

    1987-01-01

    Purpose: To determine and monitor the local power peaking coefficients by a method not depending on the combination of fuel types. Constitution: Representative values for the local power distribution can be obtained by determining corresponding burn-up degrees based on the burn-up degree of each of fuel assembly segments obtained in a power distribution monitor and by the interpolation and extrapolation of void coefficients. The typical values are multiplied with compensation coefficients for the control rod effect and coefficients for compensating the effect of adjacent fuel assemblies in a calculation device to obtain typical values for the present local power distribution compensated with all of the effects. Further, the calculation device compares them with typical values of the present local power distribution to obtain an aimed local power peaking coefficient as the maximum value thereof. According to the present invention, since the local power peaking coefficients can be determined not depending on the combination of the kind of fuels, if the combination of fuel assemblies is increased upon fuel change, the amount of operation therefor is not increased. (Kamimura, M.)

  12. Monitoring device for local power peaking coefficient

    International Nuclear Information System (INIS)

    Mitsuhashi, Ishi

    1987-01-01

    Purpose: To monitor the local power peaking coefficients obtained by the method not depending on the combination of fuel types. Method: A plurality of representative values for the local power distribution determined by the nuclear constant calculation for one fuel assembly are memorized regarding each of the burn-up degree and the void coefficient on every positions and fuel types in fuel rod assemblies. While on the other hand, the representative values for the local power distribution as described above are compensated by a compensation coefficient considering the effect of adjacent segments and a control rod compensation coefficient considering the effect due to the control rod insertion relative to the just-mentioned compensation coefficient. Then, the maximum value among them is selected to determine the local power peaking coefficient at each of the times and each of the segments, which is monitored. According to this system, the calculation and the working required for the fitting work depending on the combination of fuel types are no more required at all to facilitate the maintenance as well. (Horiuchi, T.)

  13. Spatial dependence of void coefficient in the University of Arizona TRIGA research reactor

    International Nuclear Information System (INIS)

    Spriggs, Gregory D.; Doane, Harry; Wells, Robert

    1980-01-01

    The spatial dependence of the moderator void coefficient of reactivity in the axial direction was experimentally measured in the A-ring using a hollow, air-filled aluminum cylinder. It was found that the void coefficient was positive in the central region of the fuel section reaching a maximum value of approximately + .045 cents/cm 3 and was negative towards the outer edges of the fuel section reaching a maximum of - .09 cents/cm 3 . (author)

  14. Lift11 / Ingrid Ruudi

    Index Scriptorium Estoniae

    Ruudi, Ingrid, 1978-

    2010-01-01

    23. augustist 11. oktoobrini 2010 toimuvast konkursist, mille eesmärk on leida kultuuripealinna üritusena toimuva linnainstallatsioonide festivali "Lift11" tarvis installatsioonide ideekavandeid. Festivali kuraatorid on kunstiteadlased Maarin Mürk ja Ingrid Ruudi ning arhitektid Margit Aule ja Margit Argus

  15. Comparison of Methods of Teaching Children Proper Lifting ...

    African Journals Online (AJOL)

    Objective: This study was designed to determine the effects of three teaching methods on children\\'s ability to demonstrate and recall their mastery of proper lifting techniques. Method: Ninety-three primary five and six public school children who had no knowledge of proper lifting technique were assigned into three equal ...

  16. Effects of surface roughness and vortex generators on the LS(1)-0417MOD airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, R.L.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1995-12-01

    An 18-inch constant-chord model of the LS(l)-0417MOD airfoil section was tested under two dimensional steady state conditions ate University 7{times}10 Subsonic Wind Tunnel. The objective was to document section lift and moment characteristics model and air flow conditions. Surface pressure data was acquired at {minus}60{degrees} through + 230{degrees} geometric angles of attack, at a nominal 1 million Reynolds number. Cases with and without leading edge grit roughness were investigated. The leading edge mulated blade conditions in the field. Additionally, surface pressure data were acquired for Reynolds numbers of 1.5 and 2.0 million, with and without leading edge grit roughness; the angle of attack was limited to a {minus}20{degrees} to 40{degrees} range. In general, results showed lift curve slope sensitivities to Reynolds number and roughness. The maximum lift coefficient was reduced as much as 29% by leading edge roughness. Moment coefficient showed little sensitivity to roughness beyond 50{degrees} angle of attack, but the expected decambering effect of a thicker boundary layer with roughness did show at lower angles. Tests were also conducted with vortex generators located at the 30% chord location on the upper surface only, at 1 and 1.5 million Reynolds numbers, with and without leading edge grit roughness. In general, with leading edge grit roughness applied, the vortex generators restored 85 percent of the baseline level of maximum lift coefficient but with a more sudden stall break and at a higher angle of attack than the baseline.

  17. Determination of balloon gas mass and revised estimates of drag and virtual mass coefficients

    Science.gov (United States)

    Robbins, E.; Martone, M.

    1993-01-01

    In support of the NASA Balloon Program, small-scale balloons were flown with varying lifting gas and total system mass. Instrument packages were developed to measure and record acceleration and temperature data during these tests. Top fitting and instrument payload accelerations were measured from launch to steady state ascent and through ballast drop transients. The development of the small lightweight self-powered Stowaway Special instrument packages is discussed along with mathematical models developed to determine gas mass, drag and virtual mass coefficients.

  18. EFFECT OF HEEL LIFTS ON PATELLOFEMORAL JOINT STRESS DURING RUNNING.

    Science.gov (United States)

    Mestelle, Zachary; Kernozek, Thomas; Adkins, Kelly S; Miller, Jessica; Gheidi, Naghmeh

    2017-10-01

    Patellofemoral pain is a debilitating injury for many recreational runners. Excessive patellofemoral joint stress may be the underlying source of pain and interventions often focus on ways to reduce patellofemoral joint stress. Heel lifts have been used as an intervention within Achilles tendon rehabilitation programs and to address leg length discrepancies. The purpose of this study was to examine the effect of running with heel lifts on patellofemoral joint stress, patellofemoral stress impulse, quadriceps force, step length, cadence, and other related kinematic and spatiotemporal variables. A repeated-measures research design. Sixteen healthy female runners completed five running trials in a controlled laboratory setting with and without 11mm heel lifts inserted in a standard running shoe. Kinetic and kinematic data were used in combination with a static optimization technique to estimate individual muscle forces. These data were inserted into a patellofemoral joint model which was used to estimate patellofemoral joint stress and other variables during running. When running with heel lifts, peak patellofemoral joint stress and patellofemoral stress impulse were reduced by a 4.2% (p=0.049) and 9.3% (p=0.002). Initial center of pressure was shifted anteriorly 9.1% when running with heel lifts (p0.05) were shown between conditions. Heel lift use resulted in decreased patellofemoral joint stress and impulse without associated changes in step length or frequency, or other variables shown to influence patellofemoral joint stress. The center of pressure at initial contact was also more anterior using heel lifts. The use of heel lifts may have therapeutic benefits for runners with patellofemoral pain if the primary goal is to reduce patellofemoral joint stress. 3b.

  19. THE SHAPING OF SOME LIFTING AND TRANSPORTATION SYSTEMS, USING AUTODESK INVENTOR

    Directory of Open Access Journals (Sweden)

    URSE Cătălin

    2011-11-01

    Full Text Available The paper presents, through the use of Autodesk Inventor software package, several mechanisms from the structure of lifting and transportation machines, in this case lifting system with winch operated by screw,lifting system type with muffle with hook, respectively bridge crane type.

  20. Laser-induced forward transfer (LIFT) of congruent voxels

    Science.gov (United States)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  1. Advances in Engineering Software for Lift Transportation Systems

    Science.gov (United States)

    Kazakoff, Alexander Borisoff

    2012-03-01

    In this paper an attempt is performed at computer modelling of ropeway ski lift systems. The logic in these systems is based on a travel form between the two terminals, which operates with high capacity cabins, chairs, gondolas or draw-bars. Computer codes AUTOCAD, MATLAB and Compaq-Visual Fortran - version 6.6 are used in the computer modelling. The rope systems computer modelling is organized in two stages in this paper. The first stage is organization of the ground relief profile and a design of the lift system as a whole, according to the terrain profile and the climatic and atmospheric conditions. The ground profile is prepared by the geodesists and is presented in an AUTOCAD view. The next step is the design of the lift itself which is performed by programmes using the computer code MATLAB. The second stage of the computer modelling is performed after the optimization of the co-ordinates and the lift profile using the computer code MATLAB. Then the co-ordinates and the parameters are inserted into a program written in Compaq Visual Fortran - version 6.6., which calculates 171 lift parameters, organized in 42 tables. The objective of the work presented in this paper is an attempt at computer modelling of the design and parameters derivation of the rope way systems and their computer variation and optimization.

  2. Properties of lift-off structured high T/sub c/ microbridges

    International Nuclear Information System (INIS)

    Hauser, B.; Klopman, B.; Blank, D.; Rogalla, H.

    1989-01-01

    Microbridges and dc-SQUIDs were fabricated in lift-off technique from rf sputtered YBaCuO films on MgO single crystal substrates. Microwave measurements at 9GHz on microbridges and the magnetic field dependence of their critical current reveal wide bridge behavior up to temperatures near the maximum operating temperature of the bridge. Mostly a linear dependence of the critical current on the temperature is found, which is connected to high intrinsic 1/f-nose if the bridge is constant current biased slightly above the critical current. In some bridges and dc-SQUIDs regimes with a temperature dependence proportional to (1-T/T)/sup 1.5/ are found. In this case the 1/f noise level is much smaller and SQUID modulation can be followed to about 65K

  3. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial

  4. ALARA review for the deactivation of 105-N Lift Station

    International Nuclear Information System (INIS)

    Nellesen, A.L.

    1997-01-01

    This ALARA review provides a description of the engineering and administrative controls used to manage personnel exposure and to control contamination levels and airborne radioactivity concentrations, while removing water, sludge, stabilizing surfaces, and all other associated work involved in the deactivation of the 105-N Lift Station. The lift station was used as a sump and received contaminated water from the 105-N Fuel Storage Basin weirs and contaminated drains in the 105-N Building. During operation water from the lift station was pumped to the 1310-N and 1325-N cribs. Deactivation of the lift station is a critical step in completing the deactivation of N-Area

  5. Drag Reduction Through Distributed Electric Propulsion

    Science.gov (United States)

    Stoll, Alex M.; Bevirt, JoeBen; Moore, Mark D.; Fredericks, William J.; Borer, Nicholas K.

    2014-01-01

    One promising application of recent advances in electric aircraft propulsion technologies is a blown wing realized through the placement of a number of electric motors driving individual tractor propellers spaced along each wing. This configuration increases the maximum lift coefficient by providing substantially increased dynamic pressure across the wing at low speeds. This allows for a wing sized near the ideal area for maximum range at cruise conditions, imparting the cruise drag and ride quality benefits of this smaller wing size without decreasing takeoff and landing performance. A reference four-seat general aviation aircraft was chosen as an exemplary application case. Idealized momentum theory relations were derived to investigate tradeoffs in various design variables. Navier-Stokes aeropropulsive simulations were performed with various wing and propeller configurations at takeoff and landing conditions to provide insight into the effect of different wing and propeller designs on the realizable effective maximum lift coefficient. Similar analyses were performed at the cruise condition to ensure that drag targets are attainable. Results indicate that this configuration shows great promise to drastically improve the efficiency of small aircraft.

  6. iLift: A health behavior change support system for lifting and transfer techniques to prevent lower-back injuries in healthcare.

    Science.gov (United States)

    Kuipers, Derek A; Wartena, Bard O; Dijkstra, Boudewijn H; Terlouw, Gijs; van T Veer, Job T B; van Dijk, Hylke W; Prins, Jelle T; Pierie, Jean Pierre E N

    2016-12-01

    Lower back problems are a common cause of sick leave of employees in Dutch care homes and hospitals. In the Netherlands over 40% of reported sick leave is due to back problems, mainly caused by carrying out heavy work. The goal of the iLift project was to develop a game for nursing personnel to train them in lifting and transfer techniques. The main focus was not on testing for the effectiveness of the game itself, but rather on the design of the game as an autogenous trigger and its place in a behavioral change support system. In this article, the design and development of such a health behavior change support system is addressed, describing cycles of design and evaluation. (a) To define the problem space, use context and user context, focus group interviews were conducted with Occupational Therapists (n=4), Nurses (n=10) and Caregivers (n=12) and a thematic analysis was performed. We interviewed experts (n=5) on the subject of lifting and transferring techniques. (b) A design science research approach resulted in a playable prototype. An expert panel conducted analysis of video-recorded playing activities. (c) Field experiment: We performed a dynamic analysis in order to investigate the feasibility of the prototype through biometric data from player sessions (n=620) by healthcare professionals (n=37). (a) Occupational Therapists, Nurses and Caregivers did not recognise a lack of knowledge with training in lifting and transferring techniques. All groups considered their workload, time pressure and a culturally determined habit to place the patient's well being above their own as the main reason not to apply appropriate lifting and transferring techniques. This led to a shift in focus from a serious game teaching lifting and transferring techniques to a health behavior change support system containing a game with the intention to influence behavior. (b) Building and testing (subcomponents of) the prototype resulted in design choices regarding players perspective

  7. Estimation of unsteady lift on a pitching airfoil from wake velocity surveys

    Science.gov (United States)

    Zaman, K. B. M. Q.; Panda, J.; Rumsey, C. L.

    1993-01-01

    The results of a joint experimental and computational study on the flowfield over a periodically pitched NACA0012 airfoil, and the resultant lift variation, are reported in this paper. The lift variation over a cycle of oscillation, and hence the lift hysteresis loop, is estimated from the velocity distribution in the wake measured or computed for successive phases of the cycle. Experimentally, the estimated lift hysteresis loops are compared with available data from the literature as well as with limited force balance measurements. Computationally, the estimated lift variations are compared with the corresponding variation obtained from the surface pressure distribution. Four analytical formulations for the lift estimation from wake surveys are considered and relative successes of the four are discussed.

  8. First-Order Twistor Lifts

    Directory of Open Access Journals (Sweden)

    Simões BrunoAscenso

    2010-01-01

    Full Text Available The use of twistor methods in the study of Jacobi fields has proved quite fruitful, leading to a series of results. L. Lemaire and J. C. Wood proved several properties of Jacobi fields along harmonic maps from the two-sphere to the complex projective plane and to the three- and four-dimensional spheres, by carefully relating the infinitesimal deformations of the harmonic maps to those of the holomorphic data describing them. In order to advance this programme, we prove a series of relations between infinitesimal properties of the map and those of its twistor lift. Namely, we prove that isotropy and harmonicity to first order of the map correspond to holomorphicity to first order of its lift into the twistor space, relatively to the standard almost complex structures and . This is done by obtaining first-order analogues of classical twistorial constructions.

  9. First-Order Twistor Lifts

    Directory of Open Access Journals (Sweden)

    Bruno Ascenso Simões

    2010-01-01

    Full Text Available The use of twistor methods in the study of Jacobi fields has proved quite fruitful, leading to a series of results. L. Lemaire and J. C. Wood proved several properties of Jacobi fields along harmonic maps from the two-sphere to the complex projective plane and to the three- and four-dimensional spheres, by carefully relating the infinitesimal deformations of the harmonic maps to those of the holomorphic data describing them. In order to advance this programme, we prove a series of relations between infinitesimal properties of the map and those of its twistor lift. Namely, we prove that isotropy and harmonicity to first order of the map correspond to holomorphicity to first order of its lift into the twistor space, relatively to the standard almost complex structures J1 and J2. This is done by obtaining first-order analogues of classical twistorial constructions.

  10. Shape memory alloy resetable spring lift for pedestrian protection

    Science.gov (United States)

    Barnes, Brian M.; Brei, Diann E.; Luntz, Jonathan E.; Strom, Kenneth; Browne, Alan L.; Johnson, Nancy

    2008-03-01

    Pedestrian protection has become an increasingly important aspect of automotive safety with new regulations taking effect around the world. Because it is increasingly difficult to meet these new regulations with traditional passive approaches, active lifts are being explored that increase the "crush zone" between the hood and rigid under-hood components as a means of mitigating the consequences of an impact with a non-occupant. Active lifts, however, are technically challenging because of the simultaneously high forces, stroke and quick timing resulting in most of the current devices being single use. This paper introduces the SMArt (Shape Memory Alloy ReseTable) Spring Lift, an automatically resetable and fully reusable device, which couples conventional standard compression springs to store the energy required for a hood lift, with Shape Memory Alloys actuators to achieve both an ultra high speed release of the spring and automatic reset of the system for multiple uses. Each of the four SMArt Device subsystems, lift, release, lower and reset/dissipate, are individually described. Two identical complete prototypes were fabricated and mounted at the rear corners of the hood, incorporated within a full-scale vehicle testbed at the SMARTT (Smart Material Advanced Research and Technology Transfer) lab at University of Michigan. Full operational cycle testing of a stationary vehicle in a laboratory setting confirms the ultrafast latch release, controlled lift profile, gravity lower to reposition the hood, and spring recompression via the ratchet engine successfully rearming the device for repeat cycles. While this is only a laboratory demonstration and extensive testing and development would be required for transition to a fielded product, this study does indicate that the SMArt Lift has promise as an alternative approach to pedestrian protection.

  11. Study of lifting operation of a tripod foundation for offshore wind turbine

    Science.gov (United States)

    Zhu, H.; Li, L.; Ong, M. C.

    2017-12-01

    This study addresses numerical analysis of the installation of a tripod foundation using a heavy lift vessel (HLV). Limiting sea states are firstly predicted in the frequency domain based on crane tip vertical motions using linear transfer functions. Then, numerical modelling and simulations are carried out in the time domain to analyse the coupled dynamic system taking into consideration of the nonlinearities of the system. In time-domain analysis, two lifting phases are brought into focus, i.e., the lift-off and the lowering phases. For the lift-off phase, two scenarios are considered, i.e., lift-off from the own deck of the HLV and lift-off from a transport barge. Moreover, comparative studies using two types of installation vessels, a floating vessel and a Jack-up, are investigated for the lowering process. Critical responses including the motions of the tripod and the lift wire tensions are presented and compared under various environmental and loading conditions.

  12. Knees Lifted High

    Centers for Disease Control (CDC) Podcasts

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Knees Lifted High gives children fun ideas for active outdoor play.

  13. Mannesmann Demag crawler cranes give plants a big lift

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Preassembly of large reactor components reduces construction costs, but creates the need for cranes with larger lifting capacities. A German company is extending its range with a new crawler crane which will lift up to 1600t. (author)

  14. A Simple Method for High-Lift Propeller Conceptual Design

    Science.gov (United States)

    Patterson, Michael; Borer, Nick; German, Brian

    2016-01-01

    In this paper, we present a simple method for designing propellers that are placed upstream of the leading edge of a wing in order to augment lift. Because the primary purpose of these "high-lift propellers" is to increase lift rather than produce thrust, these props are best viewed as a form of high-lift device; consequently, they should be designed differently than traditional propellers. We present a theory that describes how these props can be designed to provide a relatively uniform axial velocity increase, which is hypothesized to be advantageous for lift augmentation based on a literature survey. Computational modeling indicates that such propellers can generate the same average induced axial velocity while consuming less power and producing less thrust than conventional propeller designs. For an example problem based on specifications for NASA's Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) flight demonstrator, a propeller designed with the new method requires approximately 15% less power and produces approximately 11% less thrust than one designed for minimum induced loss. Higher-order modeling and/or wind tunnel testing are needed to verify the predicted performance.

  15. correlation between maximum dry density and cohesion of ...

    African Journals Online (AJOL)

    HOD

    investigation on sandy soils to determine the correlation between relative density and compaction test parameter. Using twenty soil samples, they were able to develop correlations between relative density, coefficient of uniformity and maximum dry density. Khafaji [5] using standard proctor compaction method carried out an ...

  16. An Extensional Characterization of Lambda-Lifting and Lambda-Dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier

    1999-01-01

    Lambda-lifting and lambda-dropping respectively transform a block-structured functional program into recursive equations and vice versa. Lambda-lifting was developed in the early 80’s, whereas lambda-dropping is more recent. Both are split into an analysis and a transformation. Published work......, however, has only concentrated on the analysis parts. We focus here on the transformation parts and more precisely on their correctness, which appears never to have been proven. To this end, we define extensional versions of lambda-lifting and lambda-dropping and establish their correctness with respect...

  17. Development of a Marine Propeller With Nonplanar Lifting Surfaces

    DEFF Research Database (Denmark)

    Andersen, Poul; Friesch, Jürgen; Kappel, Jens J.

    2005-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or winglet at the wingtip has been developed for aircraft, the application of the nonplanar principle to marine propellers, dealt...... with in this paper, has led to the KAPPEL propeller with blades curved toward the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental, and practical approach to develop and design marine propellers with nonplanar lifting surfaces has resulted in propellers...

  18. An Extensional Characterization of Lambda-Lifting and Lambda-Dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier

    1998-01-01

    Lambda-lifting and lambda-dropping respectively transform a block-structured functional program into recursive equations and vice versa. Lambda-lifting was developed in the early 80’s, whereas lambda-dropping is more recent. Both are split into an analysis and a transformation. Published work......, however, has only concentrated on the analysis parts. We focus here on the transformation parts and more precisely on their correctness, which appears never to have been proven. To this end, we define extensional versions of lambda-lifting and lambda-dropping and establish their correctness with respect...

  19. 3-dimensional Simulation of an Air-lift Pump from Bubbly to Slug Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hongrae; Jo, Daeseong [Kyungpook National Univ, Daegu (Korea, Republic of)

    2015-10-15

    The air-lift pump has been used in various applications with its merit that it can pump up without any moving parts. E.g. coffee percolator, petroleum industry, suction dredge, OTEC i.e. ocean thermal energy conversion and so on. By the merit, it has high durability for high temperature water or vapor, and fluid-solid mixture like waste water, muddy water and crude, which cause problems when it's pumped up with general pumps. In this regard, the air-lift pump has been one of the most desirable technology. A typical air-lift pump configuration is illustrated in Figure 01. The principle of this pump is very simple. When air is injected from the injector at bottom of a submerged tube, i.e., air bubbles are suspended in the liquid, the average density of the mixture in the tube is less than that of the surrounding fluid in the reservoir. Then hydrostatic pressure over the length of the tube is decreased. This buoyancy force causes a pumping action. The comparison of the simulated results, experimental result, and theoretical result is been able by data shown as Figure 04. They have similar trends but they also have a little differences because there are some limits of simulating the flow regimes. At the different flow condition, different coefficients for friction factor or pressure drop should be used, but this simulation uses a laminar condition and the theoretical equations are valid only for slug regime where the air flow rate is lower than the other regimes. From these causes, the differences has arisen, and difference comes bigger as the air flow rate increases, i.e., becoming annular flow regime or churn flow regime.

  20. Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings

    Science.gov (United States)

    Rudolph, Peter K. C.

    1998-01-01

    The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that

  1. Measurement and characterization of lift forces on drops and bubbles in microchannels

    Science.gov (United States)

    Stan, Claudiu; Guglielmini, Laura; Ellerbee, Audrey; Caviezel, Daniel; Whitesides, George; Stone, Howard

    2013-11-01

    The transverse motion of drops and bubbles within liquids flowing in pipes and channels is determined by the combination of several types of hydrodynamic lift forces with external forces. In microfluidic channels, lift forces have been used to position and sort particles with high efficiency and high accuracy. We measured lift forces on drops and bubbles and discriminated between different lift mechanisms under conditions characterized by low particle capillary numbers (0.0003 bubbles. We will present new experimental data that supports a dynamic interfacial mechanism for the second type of lift force, and discuss possible avenues for creating an analytical model for it.

  2. Lifting device for drilling rods

    Energy Technology Data Exchange (ETDEWEB)

    Radzivilovich, L L; Laptev, A G; Lipkovich, V A

    1982-01-01

    A lifter is proposed for drilling rods including a spacer stand with rotating bracket, boom with by-pass rollers, spacing and lifting hydrocylinders with rods and flexible tie mechanism. In order to improve labor productivity by improving maneuverability and to increase the maintenance zone, the lifter is equipped with a hydrocylinder of advance and a cross piece which is installed with the possibility of forward and rotational movement on the stand, and in which by means of the hydrocylinder of advance a boom is attached. Within the indicated boom there is a branch of the flexible tie mechanism with end attached with the possibility of regulation over the length on a rotating bracket, while the rod of the lifting hydrocylinder is connected to the cross piece.

  3. Effect of retardation coefficient for radionuclide migration on assessment results of environmental impact

    International Nuclear Information System (INIS)

    Wang Zhiming

    2004-01-01

    Environmental impact report is an important content in enforcing environmental impact assessment system. Effect of retardation coefficient used in models of radionuclide migration in geological media on the calculated results of maximum concentration of calculated points at the lower reaches is discussed in this paper. It is shown from experimental results that the retardation coefficient is not a constant. And it is shown from calculated results that retardation coefficient obviously affect the calculated results of maximum concentration of calculated point at the lower reaches. Conservation level of the assessment results would considerably be affected, and hence confidence level of results would be affected if the aspects are not paid enough attention and solved. The paper suggests that retardation coefficient used in migration models should directly be obtained by measurement in the field or in column, rather than using the result derived from distribution coefficients according to some formula in order to prevent the nonconservative results

  4. Testing lifting systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kling, H.; Laug, R.

    1984-01-01

    Lifting systems in nuclear facilities must be inspected at regular intervals after having undergone their first acceptance test. These inspections are frequently carried out by service firms which not only employ the skilled personnel required for such jobs but also make available the necessary test equipment. The inspections in particular include a number of sophisticated load tests for which test load systems have been developed to allow lifting systems to be tested so that reactor specific boundary conditions are taken into account. In view of the large number of facilities to be inspected, the test load system is a modular system. (orig.) [de

  5. Cooperative control system of the floating cranes for the dual lifting

    Directory of Open Access Journals (Sweden)

    Mihee Nam

    2018-01-01

    Full Text Available This paper proposes a dual lifting and its cooperative control system with two different kinds of floating cranes. The Mega-erection and Giga-erection in the ship building are used to handle heavier and wider blocks and modules as ships and off-shore platforms are enlarged. However, there is no equipment to handle such Tera-blocks. In order to overcome the limit on performance of existing floating cranes, the dual lifting is proposed in this research. In the dual lifting, two floating cranes are well-coordinated to add up the lift capabilities of both cranes without any loss such that virtually a single crane is lifting, maneuvering and unloading. Two main constraints for the dual lifting are as follows: First, two barges of floating cranes should be constrained as a rigid body not to cause a relative motion between two barges and main hooks of the two cranes should be controlled as main hooks of a single crane. In order words, it is necessary to develop the cooperative control of two floating cranes in order to sustain a center of gravity of the module and minimize the tilting angle during the lifting and unloading by the two floating cranes. Two floating cranes are handled as a master-slave system. The master crane is able to gather information about all working conditions and make a decision to control the individual hook speed, which communicates the slave crane by TCP/IP. The developed control system has been embedded in the real floating crane systems and the dual lifting has been demonstrated five times at SHI shipyard in 2015. The moving angles of the lifting module are analyzed and verified to be suitable for hoisting control. It is verified that the dual lifting can be applied for many heavier and wider blocks and modules to shorten the construction time of ships and off-shore platforms.

  6. Compressible flows with periodic vortical disturbances around lifting airfoils. Ph.D. Thesis - Notre Dame Univ.

    Science.gov (United States)

    Scott, James R.

    1991-01-01

    A numerical method is developed for solving periodic, three-dimensional, vortical flows around lifting airfoils in subsonic flow. The first-order method that is presented fully accounts for the distortion effects of the nonuniform mean flow on the convected upstream vortical disturbances. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Using an elliptic coordinate transformation, the unsteady boundary value problem is solved in the frequency domain on grids which are determined as a function of the Mach number and reduced frequency. The numerical scheme is validated through extensive comparisons with known solutions to unsteady vortical flow problems. In general, it is seen that the agreement between the numerical and analytical results is very good for reduced frequencies ranging from 0 to 4, and for Mach numbers ranging from .1 to .8. Numerical results are also presented for a wide variety of flow configurations for the purpose of determining the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. It is seen that each of these parameters can have a significant effect on the unsteady airfoil response to the incident disturbances, and that the effect depends strongly upon the reduced frequency and the dimensionality of the gust. For a one-dimensional (transverse) or two-dimensional (transverse and longitudinal) gust, the results indicate that airfoil thickness increases the unsteady lift and moment at the low reduced frequencies but decreases it at the high reduced frequencies. The results show that an increase in airfoil Mach number leads to a significant increase in the unsteady lift and moment for the low reduced frequencies, but a

  7. Modeling of load lifting process with unknown center of gravity position

    Science.gov (United States)

    Kamanin, Y. N.; Zhukov, M. I.; Panichkin, A. V.; Redelin, R. A.

    2018-03-01

    The article proposes a new type of lifting beams that allows one to lift loads where the position of the center of gravity is unknown beforehand. The benefit of implementing this type of traverse is confirmed by the high demand for this product from the industrial enterprises and lack of their availability on the market. In conducted studies, the main kinematic and dynamic dependencies of the load lifting process with an unknown position of the center of gravity were described allowing for design and verification calculations of the traverse with flexible slings and an adjustable bail to be carried out. The obtained results can be useful to engineers and employees of enterprises engaged in the design and manufacturing of the lifting equipment and scientists doing research in “Carrying and lifting machines”.

  8. Characterization of Oscillatory Lift in MFC Airfoils

    OpenAIRE

    Lang Jr, Joseph Reagle

    2014-01-01

    The purpose of this research is to characterize the response of an airfoil with an oscillatory morphing, Macro-fiber composite (MFC) trailing edge. Correlation of the airfoil lift with the oscillatory input is presented. Modal analysis of the test airfoil and apparatus is used to determine the frequency response function. The effects of static MFC inputs on the FRF are presented and compared to the unactuated airfoil. The transfer function is then used to determine the lift component du...

  9. Power coefficient anomaly in JOYO

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H

    1980-12-15

    Operation of the JOYO experimental fast reactor with the MK-I core has been divided into two phases: (1) 50 MWt power ascension and operation; and (2) 75 MWt power ascension and operation. The 50 MWt power-up tests were conducted in August 1978. In these tests, the measured reactivity loss due to power increases from 15 MWt to 50 MWt was 0.28% ..delta.. K/K, and agreed well with the predicted value of 0.27% ..delta.. K/K. The 75 MWt power ascension tests were conducted in July-August 1979. In the process of the first power increase above 50 MWt to 65 MWt conducted on July 11, 1979, an anomalously large negative power coefficient was observed. The value was about twice the power coefficient values measured in the tests below 50 MW. In order to reproduce the anomaly, the reactor power was decreased and again increased up to the maximum power of 65 MWt. However, the large negative power coefficient was not observed at this time. In the succeeding power increase from 65 MWt to 75 MWt, a similar anomalous power coefficient was again observed. This anomaly disappeared in the subsequent power ascensions to 75 MWt, and the magnitude of the power coefficient gradually decreased with power cycles above the 50 MWt level.

  10. Face-Lift Satisfaction Using the FACE-Q.

    Science.gov (United States)

    Sinno, Sammy; Schwitzer, Jonathan; Anzai, Lavinia; Thorne, Charles H

    2015-08-01

    Face lifting is one of the most common operative procedures for facial aging and perhaps the procedure most synonymous with plastic surgery in the minds of the lay public, but no verifiable documentation of patient satisfaction exists in the literature. This study is the first to examine face-lift outcomes and patient satisfaction using a validated questionnaire. One hundred five patients undergoing a face lift performed by the senior author (C.H.T.) using a high, extended-superficial musculoaponeurotic system with submental platysma approximation technique were asked to complete anonymously the FACE-Q by e-mail. FACE-Q scores were assessed for each domain (range, 0 to 100), with higher scores indicating greater satisfaction with appearance or superior quality of life. Fifty-three patients completed the FACE-Q (50.5 percent response rate). Patients demonstrated high satisfaction with facial appearance (mean ± SD, 80.7 ± 22.3), and quality of life, including social confidence (90.4 ± 16.6), psychological well-being (92.8 ± 14.3), and early life impact (92.2 ± 16.4). Patients also reported extremely high satisfaction with their decision to undergo face lifting (90.5 ± 15.9). On average, patients felt they appeared 6.9 years younger than their actual age. Patients were most satisfied with the appearance of their nasolabial folds (86.2 ± 18.5), cheeks (86.1 ± 25.4), and lower face/jawline (86.0 ± 20.6), compared with their necks (78.1 ± 25.6) and area under the chin (67.9 ± 32.3). Patients who responded in this study were extremely satisfied with their decision to undergo face lifting and the outcomes and quality of life following the procedure.

  11. Lifted linear phase filter banks and the polyphase-with-advance representation

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C. M. (Christopher M.); Wohlberg, B. E. (Brendt E.)

    2004-01-01

    A matrix theory is developed for the noncausal polyphase-with-advance representation that underlies the theory of lifted perfect reconstruction filter banks and wavelet transforms as developed by Sweldens and Daubechies. This theory provides the fundamental lifting methodology employed in the ISO/IEC JPEG-2000 still image coding standard, which the authors helped to develop. Lifting structures for polyphase-with-advance filter banks are depicted in Figure 1. In the analysis bank of Figure 1(a), the first lifting step updates x{sub 0} with a filtered version of x{sub 1} and the second step updates x{sub 1} with a filtered version of x{sub 0}; gain factors 1/K and K normalize the lowpass- and highpass-filtered output subbands. Each of these steps is inverted by the corresponding operations in the synthesis bank shown in Figure 1(b). Lifting steps correspond to upper- or lower-triangular matrices, S{sub i}(z), in a cascade-form decomposition of the polyphase analysis matrix, H{sub a}(z). Lifting structures can also be implemented reversibly (i.e., losslessly in fixed-precision arithmetic) by rounding the lifting updates to integer values. Our treatment of the polyphase-with-advance representation develops an extensive matrix algebra framework that goes far beyond the results of. Specifically, we focus on analyzing and implementing linear phase two-channel filter banks via linear phase lifting cascade schemes. Whole-sample symmetric (WS) and half-sample symmetric (HS) linear phase filter banks are characterized completely in terms of the polyphase-with-advance representation. The theory benefits significantly from a number of new group-theoretic structures arising in the polyphase-with-advance matrix algebra from the lifting factorization of linear phase filter banks.

  12. 2005 ACGIH Lifting TLV: Employee-Friendly Presentation and Guidance for Professional Judgment

    Energy Technology Data Exchange (ETDEWEB)

    Splittstoesser, Riley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Farrell, Daniel Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, John [Savannah River Site (SRS), Aiken, SC (United States); McMahon, Terrence [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sastry, Nikhil [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tiemeier, Mark [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-05-22

    The American Council of Governmental Industrial Hygienists (ACGIH) Lifting Threshold Limit Values (TLVs) provide a tool to reduce incidence of low back and shoulder injuries. However, application of the TLV is too complicated for floor-level workers and relies on professional judgment to assess commonly encountered tasks. This paper presents an Employee-Friendly Simplified Format of the TLV that has been adapted from Table 1 of the Lifting TLV presented in the 2005 TLVs and BEIs Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. This simplified format can be employed by floor-level workers to self-assess lifting tasks. The Ergonomics Project Team also provides research-based guidance for applying professional judgment consistent with standard industry practice: Extended Work Shifts – Reduce weight by 20% for shifts lasting 8 to 12 hours; Constrained Lower Body Posture – Reduce weight by 25% when lifting in such postures; Infrequently Performed LiftsLift up to 15 lbs. ≤3 lifts per hour within the zones marked “No safe limit for repetitive lifting” in the TLVs Table 1; Asymmetry beyond 30° – Reduce weight by 10 lbs. for lifts with up to 60° asymmetry from sagittal plane.

  13. Lift, drag, and guidance forces on alternating polarity magnets, using loop guideways

    International Nuclear Information System (INIS)

    Lindenbaum, S.D.; Lee, M.S.

    1975-01-01

    Exact solutions of track current, lift force, and drag force, together with their velocity dependence, have been computed for a vehicle carrying a finite number of fixed current alternating polarity superconducting magnets, suspended at various heights over structured track guideways of the single- and double-loop (''null'') types. Results for the double-loop case are compared with those of a previously reported approximate analysis. The analytical method is then applied to a study of a low-drag guidance loop guideway which is integrable with lift loop guideways utilizing a common set of vehicle magnets. Solutions are obtained for guidance track restoring forces, lateral destabilization forces, and lift force degradation as functions of lateral displacement from symmetry. The dependence of lift, drag, and lift-to-drag on track loop parameters is studied and the linear dependence of lift-to-drag on loop time constant confirmed. The contribution to the forces made by successive addition of alternating polarity magnets is calculated and the marked reduction in lift force pulsation noted

  14. 75 FR 27662 - Special Conditions: Boeing 747-468, Installation of a Medical Lift

    Science.gov (United States)

    2010-05-18

    ... electrical motors, mounted to the rear wall, between the struts. A lifting gear-drive with shafts and gear... OPERATE LIFT DURING TAXI, TAKEOFF, LANDING, OR TURBULENCE. c. AN APPROVED MEDICAL STRETCHER OR WHEELCHAIR... operation. b. Operate the lift. c. Stow the lift for non-operation such as during TTL and turbulence. d...

  15. Transport of timber by rope-and-pulley lift in steep seams

    Energy Technology Data Exchange (ETDEWEB)

    Spaniol, J

    1980-11-01

    This paper describes the rope-and-pulley lift used to transport timber and small items of equipment, which has been installed in tubbing in the return air drop-hole. Gives details of how the lift works and the equipment involved (winch, rope, slings, pulleys, safety and signalling arrangements). Looks at the future prospects of installing these lifts. (In French)

  16. Impact of pulsed jet actuators on aircraft mass and fuel consumption

    NARCIS (Netherlands)

    Bertels, F.G.A.; van Dijk, R.E.C.; Elmendorp, R.J.M.; Vos, R.

    2016-01-01

    Pulsed jet actuators (PJAs) are one of the candidate technologies to be integrated in Fowler flaps to increase the maximum lift coefficient of transport aircraft in the landing configuration. The total system consists of the actuators plus sensors, a piping system to supply pressurized air and a

  17. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  18. Modeling and Design of Hybrid PEM Fuel Cell Systems for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham

    driven lift trucks are being used more and more in different companies to reduce their emissions. However, battery driven lift trucks need a long time to recharge and thus may be out of work for a long time. Fuel cell driven lift trucks diminish this problem and are therefore getting more attention...... in a fork-lift truck. In order for the ejector to operate in the largest possible range of load, different approaches (with fixed nozzle and variable nozzle ejectors) have been investigated. Different geometries have been studied in order to optimize the ejector. The optimization is carried out not only...... a virtual fork-lift system. This investigation examines important performance metrics, such as hydrogen consumption and battery SOC as a function of the fuel cell and battery size, control strategy, drive cycle, and load variation for a fork-lift truck system. This study can be used as a benchmark...

  19. Leading-edge vortex lifts swifts.

    Science.gov (United States)

    Videler, J J; Stamhuis, E J; Povel, G D E

    2004-12-10

    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60 degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel. Interactions with the flow were measured quantitatively with digital particle image velocimetry at Reynolds numbers realistic for the gliding flight of a swift between 3750 and 37,500. The results show that gliding swifts can generate stable leading-edge vortices at small (5 degrees to 10 degrees) angles of attack. We suggest that the flow around the arm-wings of most birds can remain conventionally attached, whereas the swept-back hand-wings generate lift with leading-edge vortices.

  20. Occupational lifting, fetal death and preterm birth

    DEFF Research Database (Denmark)

    Mocevic, Emina; Svendsen, Susanne Wulff; Jørgensen, Kristian Tore

    2014-01-01

    OBJECTIVE: We examined the association between occupational lifting during pregnancy and risk of fetal death and preterm birth using a job exposure matrix (JEM). METHODS: For 68,086 occupationally active women in the Danish National Birth Cohort, interview information on occupational lifting...... the JEM. We used Cox regression models with gestational age as underlying time variable and adjustment for covariates. RESULTS: We observed 2,717 fetal deaths and 3,128 preterm births within the study cohort. No exposure-response relation was observed for fetal death, but for women with a prior fetal...... death, we found a hazard ratio (HR) of 2.87 (95% CI 1.37, 6.01) for stillbirth (fetal death ≥22 completed gestational weeks) among those who lifted >200 kg/day. For preterm birth, we found an exposure-response relation for primigravid women, reaching a HR of 1.43 (95% CI 1.13, 1.80) for total loads >200...

  1. Lift 2013⎜February 6 to 8

    CERN Multimedia

    2013-01-01

    The Lift Conference returns to the Centre International de Conférence de Genève, with speakers ranging from a science fiction author to a cognitive neuroscience researcher. As one of the foremost talk events of Europe, Lift 2013 seeks to discover new trends and turn them into opportunities.   The three-day conference is designed to engage and arouse intellectual curiosity by exploring the business and social implications of technological innovation. This year’s schedule also includes discussion of the political implications of technology and the impact of the online market on the future of economy. Alongside talks, workshops will be held on a wide range of topics, including the relationship between entrepreneur and investor, designs that influence social behaviour, and how ordinary people are changing the urban space. Lift 2013 also seeks to promote new business ventures and will award prizes to the start-up company that succeeds in convincing the audience an...

  2. Group Lifting Structures For Multirate Filter Banks, II: Linear Phase Filter Banks

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, Christopher M [Los Alamos National Laboratory

    2008-01-01

    The theory of group lifting structures is applied to linear phase lifting factorizations for the two nontrivial classes of two-channel linear phase perfect reconstruction filter banks, the whole-and half-sample symmetric classes. Group lifting structures defined for the reversible and irreversible classes of whole-and half-sample symmetric filter banks are shown to satisfy the hypotheses of the uniqueness theorem for group lifting structures. It follows that linear phase lifting factorizations of whole-and half-sample symmetric filter banks are therefore independent of the factorization methods used to compute them. These results cover the specification of user-defined whole-sample symmetric filter banks in Part 2 of the ISO JPEG 2000 standard.

  3. Lifting devices with minimum effort for testing, maintenance and repair at the example of a lifting rig for core internals

    Energy Technology Data Exchange (ETDEWEB)

    Pache, Martin [Westinghouse Electric Germany GmbH (Germany); Wiesendanger, Robert [Kernkraftwerk Beznau, NOK (Switzerland)

    2008-07-01

    Beznau is a Westinghouse built nuclear power plant in the Aargau area Switzerland. It consists of two PWR units, each providing 365 MWe net capacity. The units were set into operation in 1969 and 1972, respectively, and hold an unlimited license for operation, provided they continue to fulfill current legal and security requirements. Beznau's previous lifting rigs for core internals required a high effort in testing and maintenance. Moreover, a damage to one of the rigs nearly resulted in the inoperability of the rig. However, no element of the load chain was affected, so there was no danger of a crash, but it could have caused an extended outage. Hence, it was decided to replace the lifting rigs with a state-of-the-art functional design that reflects modern requirements on maintenance and testing. Although the plant was built to ASME standards and codes, the new lifting rigs have been designed to German KTA code for lifting devices (KTA 3902 / 3903 for equipment with increased requirements, as per section 4.3 of KTA 3902). Given KTA's demands on periodic testing, one main requirement on the new design was to minimize the testing effort for the new rigs. (orig.)

  4. Does team lifting increase the variability in peak lumbar compression in ironworkers?

    NARCIS (Netherlands)

    Faber, Gert; Visser, Steven; van der Molen, Henk F.; Kuijer, P. Paul F. M.; Hoozemans, Marco J. M.; van Dieën, Jaap H.; Frings-Dresen, Monique H. W.

    2012-01-01

    Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared

  5. CH-53K Heavy Lift Replacement Helicopter (CH-53K)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-390 CH-53K Heavy Lift Replacement Helicopter (CH-53K) As of FY 2017 President’s Budget...December 2015 SAR March 4, 2016 10:04:18 UNCLASSIFIED 4 Col Henry Vanderborght PMA-261 Heavy Lift Helicopters Program Executive Office - Air, Anti...757-5780 Fax: 301-757-5109 DSN Phone: 757-5780 DSN Fax: 757-5109 Date Assigned: May 29, 2014 Program Information Program Name CH-53K Heavy Lift

  6. Managing cultural diversity in healthcare partnerships: the case of LIFT.

    Science.gov (United States)

    Mannion, Russell; Brown, Sally; Beck, Matthias; Lunt, Neil

    2011-01-01

    The National Health Service (NHS) Local Improvement Finance Trust (LIFT) programme was launched in 2001 as an innovative public-private partnership to address the historical under-investment in local primary care facilities in England. The organisations from the public and private sector that comprise a local LIFT partnership each have their own distinctive norms of behaviour and acceptable working practices - ultimately different organisational cultures. The purpose of this article is to assess the role of organisational culture in facilitating (or impeding) LIFT partnerships and to contribute to an understanding of how cultural diversity in public-private partnerships is managed at the local level. The approach taken was qualitative case studies, with data gathering comprising interviews and a review of background documentation in three LIFT companies purposefully sampled to represent a range of background factors. Elite interviews were also conducted with senior policy makers responsible for implementing LIFT policy at the national level. Interpreting the data against a conceptual framework designed to assess approaches to managing strategic alliances, the authors identified a number of key differences in the values, working practices and cultures in public and private organisations that influenced the quality of joint working. On the whole, however, partners in the three LIFT companies appeared to be working well together, with neither side dominating the development of strategy. Differences in culture were being managed and accommodated as partnerships matured. As LIFT develops and becomes the primary source of investment for managing, developing and channelling funding into regenerating the primary care infrastructure, further longitudinal work might examine how ongoing partnerships are working, and how changes in the cultures of public and private partners impact upon wider relationships within local health economies and shape the delivery of patient care

  7. Cleft-lift operation for pilonidal sinuses under tumescent local anesthesia

    DEFF Research Database (Denmark)

    Bertelsen, Claus Anders

    2011-01-01

    The use of tumescent local anesthesia in the Bascom cleft-lift procedure has not been described before.......The use of tumescent local anesthesia in the Bascom cleft-lift procedure has not been described before....

  8. Laser-induced forward transfer (LIFT) of congruent voxels

    Energy Technology Data Exchange (ETDEWEB)

    Piqué, Alberto, E-mail: pique@nrl.navy.mil [Materials Science and Technology Division, Code 6364, Naval Research Laboratory, Washington, DC 20375 (United States); Kim, Heungsoo; Auyeung, Raymond C.Y.; Beniam, Iyoel [Materials Science and Technology Division, Code 6364, Naval Research Laboratory, Washington, DC 20375 (United States); Breckenfeld, Eric [National Research Council Fellow at the Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-06-30

    Highlights: • Laser-induced forward transfer (LIFT) is demonstrated with high viscosity Ag nanopaste. • Under the right conditions (viscosity and fluence) the transfer of congruent voxels was achieved. • For viscosities under 100 Pa s, congruent voxel transfer of silver nano-suspensions is only possible under a very narrow range of conditions. • For viscosities over 100 Pa s, congruent voxel transfer of silver nano-pastes works over a wider range of fluences, donor substrate thickness, gap distances and voxel areas. • The laser transfer of congruent voxels can be used for printing electronic patterns in particular interconnects. - Abstract: Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D

  9. Laser-induced forward transfer (LIFT) of congruent voxels

    International Nuclear Information System (INIS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C.Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-01-01

    Highlights: • Laser-induced forward transfer (LIFT) is demonstrated with high viscosity Ag nanopaste. • Under the right conditions (viscosity and fluence) the transfer of congruent voxels was achieved. • For viscosities under 100 Pa s, congruent voxel transfer of silver nano-suspensions is only possible under a very narrow range of conditions. • For viscosities over 100 Pa s, congruent voxel transfer of silver nano-pastes works over a wider range of fluences, donor substrate thickness, gap distances and voxel areas. • The laser transfer of congruent voxels can be used for printing electronic patterns in particular interconnects. - Abstract: Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D

  10. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight.

    Directory of Open Access Journals (Sweden)

    Mostafa R A Nabawy

    Full Text Available A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values.

  11. Lifting simulation of an offshore supply vessel considering various operating conditions

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Jeong

    2016-06-01

    Full Text Available Recently, an offshore support vessel is being widely used to install an offshore structure such as a subsea equipment which is laid on its deck. The lifting operation which is one of the installation operations includes lifting off, lifting in the air, splash zone crossing, deep submerging, and finally landing of the structure with an offshore support vessel crane. There are some major considerations during this operation. Especially, when lifting off the structure, if operating conditions such as ocean environmental loads and hoisting (or lowering speed are bad, the excess of tension of wire ropes of the crane and the collision between the offshore support vessel and the structure can be occurred due to the relative motion between them. To solve this problem, this study performs the lifting simulation while the offshore support vessel installs the structure. The simulation includes the calculation of dynamic responses of the offshore support vessel and the equipment, including the wire tension and the collision detection. To check the applicability of the simulation, it is applied to some lifting steps by varying operating conditions. As a result, it is confirmed that the conditions affect the operability of those steps.

  12. Canadian East Coast offshore petroleum industry safe lifting practices respecting offshore pedestal cranes, offshore containers, loose gear, other lifting devices, and operational best practices : standard practices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    This document was developed by a working group with representatives from the petroleum industry, the Offshore Petroleum Boards and Certifying Authorities. It outlines industry best practices for operators responsible for the management, planning and execution of offshore lifting operations. Its purpose is to assist in the interpretation of applicable legislation and standards. Considered within the practice are safe design requirements, manufacture, certification, testing, maintenance and inspection requirements for pedestal cranes, offshore containers, loose gear and lifting devices. Operational best practices for lifting operations are also included along with a section that identifies additional requirements for personnel lifting operations, including personnel transfers by crane and man-riding operations. 82 refs., 2 tabs., 4 figs., 3 appendices.

  13. Heavy Lift Launch Capability with a New Hydrocarbon Engine

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.

  14. [Care and optimal management of the face- and neck-lift patients].

    Science.gov (United States)

    Delay, E

    2017-10-01

    Surgical and case management for patients demanding a face- and neck-lift are very important. The purpose of this paper is to help the plastic surgeons with information and recommendations useful for the best medical care of patients requiring a face- and neck-lift. The first consultation is the most important contact with the patient. The preoperative discussion helps to define patient demands and to evaluate eventual contraindications for surgery. The clinical exam and patient requirements are useful in the construction of the therapeutic proposition. This proposition is then confronted with patients' expectations and demands. The confrontation between the surgical proposition and patients' expectations allows to evaluate if it is appropriate, or not, to operate. At the end of the first consultation, the patient receives the information sheets of the French Plastic Surgery Society (SOFCPRE) according to the proposed surgical treatment. The second consultation makes it possible to verify the pertinence of the surgical act, to reiterate the preoperative recommendations, to confirm that the information given to the patient was well understood and to obtain the written consent from the patient. The written consent should include the fact that the patient received the information sheets of the SOFCPRE, that they were read and understood, and that the surgeon has transmitted the necessary information in order for the patient to take an informed and free decision to pursue with the surgery. The follow-up after surgery is as important as the surgery itself. In some cases, cosmetic gestures can be performed in the following months to obtain the best results possible and the highest satisfaction. The face- and neck-lift is an "adventure" for the patients and the postoperative difficulties should not be underestimated. However, the caring and professional support of the plastic surgeon and the support of someone of the patients' entourage can help the patient overcome this

  15. Fatigue-related changes in the coordination of lifting and their effect of low back load

    NARCIS (Netherlands)

    Van Dieën, Jaap H.; Toussaint, Huub M.; Maurice, Cora; Mientjes, Martine

    1996-01-01

    In this study, changes in movement coordination caused by fatigue that developed during repetitive lifting were examined. Five men performed 6 times a 5-min bout of lifting an 8-kg barbell at 15 lifts/min, using two lifting techniques; one minimized trunk rotation (squat lift), and the other

  16. Software design to calculate and simulate the mechanical response of electromechanical lifts

    Science.gov (United States)

    Herrera, I.; Romero, E.

    2016-05-01

    Lift engineers and lift companies which are involved in the design process of new products or in the research and development of improved components demand a predictive tool of the lift slender system response before testing expensive prototypes. A method for solving the movement of any specified lift system by means of a computer program is presented. The mechanical response of the lift operating in a user defined installation and configuration, for a given excitation and other configuration parameters of real electric motors and its control system, is derived. A mechanical model with 6 degrees of freedom is used. The governing equations are integrated step by step through the Meden-Kutta algorithm in the MATLAB platform. Input data consists on the set point speed for a standard trip and the control parameters of a number of controllers and lift drive machines. The computer program computes and plots very accurately the vertical displacement, velocity, instantaneous acceleration and jerk time histories of the car, counterweight, frame, passengers/loads and lift drive in a standard trip between any two floors of the desired installation. The resulting torque, rope tension and deviation of the velocity plot with respect to the setpoint speed are shown. The software design is implemented in a demo release of the computer program called ElevaCAD. Further on, the program offers the possibility to select the configuration of the lift system and the performance parameters of each component. In addition to the overall system response, detailed information of transients, vibrations of the lift components, ride quality levels, modal analysis and frequency spectrum (FFT) are plotted.

  17. Design of the new Risoe-A1 airfoil family for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P; Dahl, K S [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    A new airfoil family for wind turbines was developed by use of a design method using numerical optimization and the flow solver, XFOIL. The results were evaluated with the Navier-Stokes solver EllipSys2D. The airfoil family constitutes 6 airfoils ranging in thickness from 15% to 30%. The airfoils were designed to have a maximum lift coefficient around 1.5 in natural conditions and high lift-drag ratios below maximum lift. Insensitivity to leading edge roughness was obtained by securing that transition from laminar to turbulent flow on the suction side occurred close to the leading edge just before stall. The airfoil family was designed for a 600 kW wind turbine and provides a basis for further enhancing the characteristics of airfoils for wind turbines and to tailor airfoils for specific rotor sizes and power regulation principles. (au) EFP-95; EFP-98. 16 refs.

  18. Autoignited lifted flames of dimethyl ether in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.

    2018-05-16

    Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.

  19. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  20. Autoignited lifted flames of dimethyl ether in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.; Choi, Byung Chul; Chung, Suk-Ho

    2018-01-01

    Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.

  1. Determination of the temperature coefficients and the kinetic parameters for the HTTR safety analysis

    International Nuclear Information System (INIS)

    Tokuhara, K.; Nakata, T.; Murata, I.; Yamashita, K.; Shindo, R.

    1991-01-01

    This report describes the calculational methods which were employed to determine the temperature coefficients and the kinetic parameters for the safety analysis in the HTTR (High Temperature Engineering Test Reactor). The temperature coefficients (doppler, moderator temperature) and the kinetic parameters (prompt neutron life time; l, effective delayed neutron fraction; β eff) are important for the point model core dynamic analysis and should be evaluated properly. The temperature coefficients were calculated by the whole core model. Doppler coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of fuel temperature. The minimum and the maximum value of the evaluated doppler coefficients in a burnup cycle are -4.6x10 -5 and -1.5x10 -5 ΔK/K/deg. C respectively. The moderator temperature coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of moderator temperature. The minimum and the maximum value of the evaluated moderator temperature coefficients in a burnup cycle are -17.1x10 -5 and 0.99x10 -5 ΔK/K/deg. C respectively. In spite of positive moderator temperature coefficient, the power coefficient is always negative. Therefore the HTTR possesses inherent power-suppressing feed back characteristic in all operating condition. We surveyed the effects of the Xe existence, the control rods existence, the fuel temperature and the region in which the temperature was changed on the moderator temperature coefficients. The kinetic parameters were calculated by the perturbation method with the whole core model. The minimum and the maximum value of the evaluated effective delayed neutron fraction (β eff) are 0.0047 and 0.0065 respectively. These of the evaluated prompt neutron life time (l) are 0.67 and 0.78 ms respectively. We have surveyed the effects of the fuel depletion and the core power level on these parameters, and considered these effects on the kinetic parameters. From

  2. Asymmetric Gepner models II. Heterotic weight lifting

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2011-01-01

    A systematic study of 'lifted' Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E 8 factor by a modular isomorphic N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.

  3. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  4. Sunspots and the physics of magnetic flux tubes. III - Aerodynamic lift

    Science.gov (United States)

    Parker, E. N.

    1979-01-01

    The aerodynamic lift exerted on a magnetic flux tube by the asymmetric flow around the two sides of the tube is calculated as part of an investigation of the physics of solar flux tubes. The general hydrodynamic forces on a rigid circular cylinder in a nonuniform flow of an ideal fluid are derived from the first derivatives of the velocity field. Aerodynamic lift in a radial nonuniform flow is found to act in the direction of the flow, toward the region of increased flow velocity, while in a shear flow, lift is perpendicular to the free stream and directed toward increasing flow velocity. For a general, three dimensional, large-scale stationary incompressible equilibrium flow, an expression is also derived relating the lift per unit length to the dynamical pressure, cylinder radius and the gradient of the free-stream velocity. Evidence from an asymmetric airfoil in a uniform flow indicates that lift is enhanced in a real fluid in the presence of turbulence.

  5. Global shape optimization of airfoil using multi-objective genetic algorithm

    International Nuclear Information System (INIS)

    Lee, Ju Hee; Lee, Sang Hwan; Park, Kyoung Woo

    2005-01-01

    The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model

  6. Global shape optimization of airfoil using multi-objective genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Hee; Lee, Sang Hwan [Hanyang Univ., Seoul (Korea, Republic of); Park, Kyoung Woo [Hoseo Univ., Asan (Korea, Republic of)

    2005-10-01

    The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model.

  7. Simulation of temperature-pressure profiles and wax deposition in gas-lift wells

    Directory of Open Access Journals (Sweden)

    Sevic Snezana

    2017-01-01

    Full Text Available Gas-lift is an artificial lift method in which gas is injected down the tubing- -casing annulus and enters the production tubing through the gas-lift valves to reduce the hydrostatic pressure of the formation fluid column. The gas changes pressure, temperature and fluid composition profiles throughout the production tubing string. Temperature and pressure drop along with the fluid composition changes throughout the tubing string can lead to wax, asphaltenes and inorganic salts deposition, increased emulsion stability and hydrate formation. This paper presents a new model that can sucesfully simulate temperature and pressure profiles and fluid composition changes in oil well that operates by means of gas-lift. This new model includes a pipe-in-pipe segment (production tubing inside production casing, countercurrent flow of gas-lift gas and producing fluid, heat exchange between gas-lift gas and the surrounding ambient – ground; and gas-lift gas with the fluid in the tubing. The model enables a better understanding of the multiphase fluid flow up the production tubing. Model was used to get insight into severity and locations of wax deposition. The obtained information on wax deposition can be used to plan the frequency and depth of wax removing operations. Model was developed using Aspen HYSYS software.

  8. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  9. The hybrid assistive limb (HAL) for Care Support successfully reduced lumbar load in repetitive lifting movements.

    Science.gov (United States)

    Miura, Kousei; Kadone, Hideki; Koda, Masao; Abe, Tetsuya; Kumagai, Hiroshi; Nagashima, Katsuya; Mataki, Kentaro; Fujii, Kengo; Noguchi, Hiroshi; Funayama, Toru; Kawamoto, Hiroaki; Sankai, Yoshiyuki; Yamazaki, Masashi

    2018-05-03

    Work-related low back pain is a serious socioeconomic problem. This study examined whether HAL for Care Support, which is a newly developed wearable robot, would decrease lumbar fatigue and improve lifting performance during repetitive lifting movements. Eighteen healthy volunteers (11 men, 7 women) performed repetitive stoop lifting movements of a cardboard box weighing 12 kg as many times as possible. The first lifting trial was executed without HAL for Care Support, and the second was with it. We evaluated the VAS of lumbar fatigue as the lumbar load and the number of lifts and the lifting time as lifting performance. Without HAL for Care Support, the mean VAS of lumbar fatigue, the number of lifts and lifting time were 68 mm, 60 and 230 s; with HAL for Care Support, they were 51 mm, 87 and 332 s, respectively. Both lifting performance measures were significantly improved by using HAL for Care Support (Fig. 2). A power analysis showed that there was sufficient statistical power for the VAS of lumbar fatigue (0.99), the number of lifts (0.92), and lifting time (0.93). All participants performed their repetitive lifting trials safely. There were no adverse events caused by using HAL for Care Support. In conclusion, the HAL for Care Support can decrease lumbar load and improve the lifting performance during repetitive stoop lifting movements in healthy adults. Copyright © 2018. Published by Elsevier Ltd.

  10. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  11. NASA safety standard for lifting devices and equipment

    Science.gov (United States)

    1990-09-01

    NASA's minimum safety requirements are established for the design, testing, inspection, maintenance, certification, and use of overhead and gantry cranes (including top running monorail, underhung, and jib cranes), mobile cranes, derrick hoists, and special hoist supported personnel lifting devices (these do not include elevators, ground supported personnel lifts, or powered platforms). Minimum requirements are also addressed for the testing, inspection, and use of Hydra-sets, hooks, and slings. Safety standards are thoroughly detailed.

  12. Dynamic response of Hovercraft lift fans

    Science.gov (United States)

    Moran, D. D.

    1981-08-01

    Hovercraft lift fans are subjected to varying back pressure due to wave action and craft motions when these vehicles are operating in a seaway. The oscillatory back pressure causes the fans to perform dynamically, exhibiting a hysteresis type of response and a corresponding degradation in mean performance. Since Hovercraft motions are influenced by variations in lift fan pressure and discharge, it is important to understand completely the nature of the dynamic performance of lift fans in order to completely solve the Hovercraft seakeeping problem. The present study was performed to determine and classify the instabilities encountered in a centrifugal fan operating against time-varying back pressure. A model-scale experiment was developed in which the fan discharge was directed into a flow-measuring device, terminating in a rotating valve which produced an oscillatory back pressure superimposed upon a mean aerodynamic resistance. Pressure and local velocity were measured as functions of time at several locations in the fan volute. The measurements permitted the identification of rotating (or propagating) stall in the impeller. One cell and two cell configurations were classified and the transient condition connecting these two configurations was observed. The mechanisms which lead to rotating stall in a centrifugal compressor are presented and discussed with specific reference to Hovercraft applications.

  13. Occupational lifting during pregnancy and child's birth size in a large cohort study

    DEFF Research Database (Denmark)

    Juhl, Mette; Larsen, Pernille Stemann; Andersen, Per Kragh

    2014-01-01

    OBJECTIVES: It has been suggested that the handling of heavy loads during pregnancy is associated with impaired fetal growth. We examined the association between quantity and frequency of maternal occupational lifting and the child's size at birth, measured by weight, length, ponderal index, small......-for-gestational-age (SGA), abdominal circumference, head circumference, and placental weight. METHODS: We analyzed birth size from the Danish Medical Birth Registry of 66 693 live-born children in the Danish National Birth Cohort according to the mother's self-reported information on occupational lifting from telephone...... women with occupational lifting versus women with no lifting, but the differences were very small, and there was a statistically significant trend only for placental weight showing lighter weight with increasing number of kilos lifted per day. In jobs likely to include person-lifting, we found increased...

  14. Lifting as You Climb

    Science.gov (United States)

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  15. Parametric optimization of thermoelectric elements footprint for maximum power generation

    DEFF Research Database (Denmark)

    Rezania, A.; Rosendahl, Lasse; Yin, Hao

    2014-01-01

    The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost......-performance, and variation of efficiency in the uni-couple over a wide range of the heat transfer coefficient on the cold junction. The three-dimensional (3D) governing equations of the thermoelectricity and the heat transfer are solved using the finite element method (FEM) for temperature dependent properties of TE...... materials. The results, which are in good agreement with the previous computational studies, show that the maximum power generation and the maximum cost-performance in the module occur at An/Ap

  16. DNA Profiles from Fingerprint Lifts-Enhancing the Evidential Value of Fingermarks Through Successful DNA Typing.

    Science.gov (United States)

    Subhani, Zuhaib; Daniel, Barbara; Frascione, Nunzianda

    2018-05-25

    This study evaluated the compatibility of the most common enhancement methods and lifting techniques with DNA profiling. Emphasis is placed on modern lifting techniques (i.e., gelatin lifters and Isomark™) and historical fingerprint lifts for which limited research has been previously conducted. A total of 180 fingerprints were deposited on a glass surface, enhanced, lifted, and processed for DNA typing. DNA could be extracted and profiled for all the powders and lifts tested and from both groomed fingerprints and natural prints with no significant difference in the percentage of profile recovered. DNA profiles could also be obtained from historical fingerprint lifts (79.2% of 72 lifts) with one or more alleles detected. These results demonstrate the compatibility between different powder/lift combinations and DNA profiling therefore augmenting the evidential value of fingerprints in forensic casework. © 2018 American Academy of Forensic Sciences.

  17. Lift-up construction method of apron pavement in the airport. Kuko epuron hoso no lift up koho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H. (Ministry of Transport, Tokyo (Japan))

    1994-03-25

    Frequently used airports do not allow the period during which facilities are shutdown for cultivation in the repair work of sunk concrete pavement. The present report describes the outline of the lift-up construction method by means of prestressed concrete pavement which allows repair work only in the night. The method has been developed and demonstrated this time in the construction of off-shore development of Tokyo International Airport. The fundamental procedures are as follows: A [phi] 16cm hole is drilled with a core boring machine into the pavement slab in the sunk area; the roadbed is excavated around the hole in the volume of ca. 45cm in diameter and ca. 30cm in thickness; a reaction bed of concrete and a metal fixture of the hydraulic jack are installed; the reaction bed is exerted with a force by the jack to lift up the pavement slab; and finally the gap made between the pavement slab and the road bed is grouted with cement milk. In a demonstration test construction, lift-up of 3.5cm over ca. 3500m[sup 2] was performed during a total of four days of one day in the daytime and three days in the night. 7 figs.

  18. An evaluation of methods assessing the physical demands of manual lifting in scaffolding

    NARCIS (Netherlands)

    Beek, van der A.J.; Mathiassen, S.E.; Windhorst, J.; Burdorf, A.

    2005-01-01

    Four methods assessing the physical demands of manual lifting were compared. The scaffolding job was evaluated and three distinct scaffolding tasks were ranked using: (1) the revised NIOSH lifting equation (NIOSH method), (2) lifting guidelines for the Dutch construction industry (Arbouw method),

  19. Occupational heavy lifting and risk of ischemic heart disease and all-cause mortality

    DEFF Research Database (Denmark)

    Petersen, Christina Bjørk; Eriksen, Louise; Tolstrup, Janne S

    2012-01-01

    ABSTRACT: BACKGROUND: Occupational heavy lifting is known to impose a high cardiovascular strain, but the risk of ischemic heart disease (IHD) from occupational heavy lifting is unknown. The objective was to investigate the association between occupational heavy lifting and risk of IHD and all...... cardiovascular disease at baseline. Conventional risk factors for the outcomes IHD and all-cause mortality were controlled for in Cox analyses. RESULTS: Among men, heavy lifting was associated with increased risk for IHD (hazard ratio (HR): 1.52, 95 % Confidence interval (95 % CI): 1.15, 2.02), while a decreased...... risk was associated with occupational (HR: 0.50, 95 % CI: 0.37, 0.68) and leisure time (HR: 0.73, 95 % CI: 0.56, 0.95) physical activity. Referencing men with high occupational physical activity and no heavy lifting, men with high occupational physical activity and heavy lifting did not have...

  20. Low intake valve lift in a port fuel-injected engine

    Energy Technology Data Exchange (ETDEWEB)

    Begg, S.M.; Hindle, M.P.; Cowell, T.; Heikal, M.R. [The Sir Harry Ricardo Laboratories, Centre for Automotive Engineering, Cockcroft Building, University of Brighton, Lewes Road, Brighton, East Sussex, BN2 4GJ (United Kingdom)

    2009-12-15

    A phenomenological study of the airflow and fuel spray interaction in a variable valve gasoline engine is presented. Experiments were performed in a steady-state flow rig fitted with a modified production cylinder head. The intake valve lift was varied manually. The mass flow rates of air and fuel through the test rig were adjusted to match typical engine operating conditions. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) measurements of the airflow showed the breakdown of a single, forward tumbling vortex-like structure into a pair of high-speed, turbulent jets at low valve lifts. Two transitional phases in the flow at the valve gap were identified for valve lifts less than 1.5 mm and greater than 3 mm. At the lower limit, a jet flapping instability was recorded. A port fuel injector (PFI) spray was characterised in a quiescent, chamber and within the test rig. High Speed Photography (HSP) and Phase Doppler Anemometry (PDA) were used to measure the effects of varying valve lift upon the fuel droplet characteristics. The in-cylinder measurements showed a reduction in mean droplet diameter of up to 50%, close to the valve gap, for peak valve lifts of less than 3 mm. (author)

  1. Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading.

    Science.gov (United States)

    Kingma, Idsart; Bosch, Tim; Bruins, Louis; van Dieën, Jaap H

    2004-10-22

    This study investigated the effects of initial load height and foot placement instruction in four lifting techniques: free, stoop (bending the back), squat (bending the knees) and a modified squat technique (bending the knees and rotating them outward). A 2D dynamic linked segment model was combined with an EMG assisted trunk muscle model to quantify kinematics and low back loading in 10 subjects performing 19 different lifting movements, using 10.5 kg boxes without handles. When lifting from a 0.05 m height with the feet behind the box, squat lifting resulted in 19.9% (SD 8.7%) higher net moments (p squat and stoop lifts, as well as the interaction with lifting height, could to a large extent be explained by changes in the horizontal L5/S1 intervertebral joint position relative to the load, the upper body acceleration, and lumbar flexion. Rotating the knees outward during squat lifts resulted in moments and compression forces that were smaller than in squat lifting but larger than in stoop lifting. Shear forces were small ( < 300 N) at the L4/L5 joint and substantial (1100 - 1400 N) but unaffected by lifting technique at the L5/S1 joint. The present results show that the effects of lifting technique on low back loading depend on the task context.

  2. Asymmetric Gepner models II. Heterotic weight lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2011-05-21

    A systematic study of 'lifted' Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E{sub 8} factor by a modular isomorphic N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.

  3. Conditions of using floating cranes for lifting sunken objects on inland waterways

    OpenAIRE

    Slobodan M. Radojević

    2012-01-01

    This paper presents the conditions for using floating cranes for lifting sunken vessels and other objects on inland waterways. Basic technical data are given together with technical details for the usage of floa ting cranes for lifting sunken objects. The paper points to the importance of lifting sunken objects and their removal from inland waterways in the Republic of Serbia.

  4. Conditions of using floating cranes for lifting sunken objects on inland waterways

    Directory of Open Access Journals (Sweden)

    Slobodan M. Radojević

    2012-04-01

    Full Text Available This paper presents the conditions for using floating cranes for lifting sunken vessels and other objects on inland waterways. Basic technical data are given together with technical details for the usage of floa ting cranes for lifting sunken objects. The paper points to the importance of lifting sunken objects and their removal from inland waterways in the Republic of Serbia.

  5. An unconventional mechanism of lift production during the downstroke in a hovering bird ( Zosterops japonicus)

    Science.gov (United States)

    Chang, Yu-Hung; Ting, Shang-Chieh; Liu, Chieh-Cheng; Yang, Jing-Tang; Soong, Chyi-Yeou

    2011-11-01

    An unconventional mechanism of ventral clap is exploited by hovering passerines to produce lift. Quantitative visualization of the wake flow, analysis of kinematics and evaluation of the transient lift force was conducted to dissect the biomechanical role of the ventral clap in the asymmetrical hovering flight of passerines. The ventral clap can first abate and then augment lift production during the downstroke; the net effect of the ventral clap on lift production is, however, positive because the extent of lift augmentation is greater than the extent of lift abatement. Moreover, the ventral clap is inferred to compensate for the zero lift production of the upstroke because the clapping wings induce a substantial elevation of the lift force at the end of the downstroke. Overall, our observations shed light on the aerodynamic function of the ventral clap and offer biomechanical insight into how a bird hovers without kinematically mimicking hovering hummingbirds.

  6. An Experimental Investigation of the Effect of a Canard Control on the Lift, Drag, and Pitching Moment of an Aspect-Ratio 2.0 Triangular Wing Incorporating a Form of Conical Camber

    Science.gov (United States)

    Menees, Gene P.; Boyd, John W.

    1959-01-01

    The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.

  7. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    So how do you go about teaching them something new? By mix- ing what they know with .... the viscous terms to the Euler equations increases the order of the ... such a strange result, one can use this pressure distribution and calculate the lift ...

  8. Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist

    Science.gov (United States)

    Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey

    1999-06-01

    In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.

  9. Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers

    Science.gov (United States)

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0098 Flapping and Rotary Wing Lift at Low Reynolds Number Anya Jones MARYLAND UNIV COLLEGE PARK Final Report 02/26/2016...Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers (YIP) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0251 5c. PROGRAM...necessary if the abstract is to be limited. Standard Form 298 Back (Rev. 8/98) Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers

  10. Cooperative control system of the floating cranes for the dual lifting

    OpenAIRE

    Mihee Nam; Jinbeom Kim; Jaechang Lee; Daekyung Kim; Donghyuk Lee; Jangmyung Lee

    2018-01-01

    This paper proposes a dual lifting and its cooperative control system with two different kinds of floating cranes. The Mega-erection and Giga-erection in the ship building are used to handle heavier and wider blocks and modules as ships and off-shore platforms are enlarged. However, there is no equipment to handle such Tera-blocks. In order to overcome the limit on performance of existing floating cranes, the dual lifting is proposed in this research. In the dual lifting, two floating cranes ...

  11. Variable Eddington factors and flux-limiting diffusion coefficients

    International Nuclear Information System (INIS)

    Whalen, P.P.

    1982-01-01

    Variable Eddington factors and flux limiting diffusion coefficients arise in two common techniques of closing the moment equations of transport. The first two moment equations of the full transport equation are still frequently used to solve many problems of radiative or particle transport. An approximate analysis, developed by Levermore, exhibits the relation between the coefficients of the two different techniques. This analysis is described and then used to test the validity of several commonly used flux limiters and Eddington factors. All of the ad-hoc flux limiters have limited validity. All of the variable Eddington factors derived from some underlying description of the angular distribution function are generally valid. The use of coefficients from Minerbo's elegant maximum entropy Eddington factor analysis is suggested for use in either flux limited diffusion or variable Eddington factor equations

  12. Outcomes of polydioxanone knotless thread lifting for facial rejuvenation.

    Science.gov (United States)

    Suh, Dong Hye; Jang, Hee Won; Lee, Sang Jun; Lee, Won Seok; Ryu, Hwa Jung

    2015-06-01

    Thread lifting is a minimally invasive technique for facial rejuvenation. Various devices for thread lifting using polydioxanone (PDO) are popular in aesthetic clinics in Korea, but there have been a few studies regarding its use. To describe PDO thread and techniques adopted to counteract the descent and laxity of the face. A retrospective chart review was conducted over a 24-month period. A total of 31 thread lifting procedures were performed. On each side, 5 bidirectional cog threads were used in the procedure for the flabby skin of the nasolabial folds. And, the procedure was performed on the marionette line using 2 twin threads. In most patients (87%), the results obtained were considered satisfactory. Consensus ratings by 2 physicians found that objective outcomes were divided among "excellent," "good," "fair," and "poor." Texture wise, the outcome ratings were 13 as excellent and 9 as good. Lifting wise, ratings were 11 as excellent and 6 as good. The incidence of complications was low and not serious. Facial rejuvenation using PDO thread is a safe and effective procedure associated with only minor complications when performed on patients with modest face sagging, fine wrinkles, and marked facial pores.

  13. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  14. Eddy diffusion coefficients and their upper limits based on application of the similarity theory

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2015-07-01

    Full Text Available The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981. The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921 and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s−1 for the maximum value of the energy dissipation rate of 2 W kg−1 measured in the mesosphere and the lower thermosphere (MLT. This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s−1 estimated in the Turbulent Oxygen Mixing Experiment (TOMEX do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997 meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes

  15. The design of lifting attachments for the erection of large diameter and heavy wall pressure vessels

    International Nuclear Information System (INIS)

    Antalffy, Leslie P.; Miller, George A.; Kirkpatrick, Kenneth D.; Rajguru, Anil; Zhu, Yong

    2016-01-01

    Lifting attachments for the erection of large diameter and heavy wall pressure vessels require special consideration to ensure that their attachment to their vessel shells or heads do not overstress the vessel during the erection process when lifting these from grade onto their respective foundations. Today, in refinery and petrochemical services, large diameter vessels with diameters ranging up to 15 m and reactors with lifting weights in the range of 700–1400 tons are not uncommon. In today's fabrication market, these vessels may be purchased and fabricated in shops dispersed globally and will require unique equipment for their safe handling, transportation and subsequent erection. The challenge is to design the lifting attachments in such a manner that the attachments provide a safe, cost effective and effective solution based upon the limitations of the job site lift equipment available for erection. Such equipment for the transportation and subsequent lifting of large diameter and heavy wall pressure equipment is usually scarce and quite expensive. Planning ahead, well in advance of the lift date is almost a mandatory requirement. Usually, the specific parameters of the vessel to be lifted and the lifting equipment available at the site will dictate the type of lifting attachments to be designed for the vessel. Once the type of vessel attachment has been chosen, careful consideration must be given to the design of attachments to the pressure vessel in consideration to ensure that the vessel and lifting components are not overstressed during the lifting process. The paper also discusses different types of lifting attachments that may be attached to each end of the vessel either by bolting or welding and discusses the pros and cons of each. The paper also provides an example of a finite element analysis (FEA) of a top nozzle, a FEA of a pair of lifting trunnions and a FEA of welded on lifting lugs for buried pipe. The purpose of the paper is to outline the

  16. Effects of Inlet Modification and Rocket-Rack Extension on the Longitudinal Trim and Low-Lift Drag of the Douglas F5D-1 Airplane as Obtained with a 0.125-Scale Rocket-Boosted Model between Mach Numbers of 0.81 and 1.64, TED No. NACA AD 399

    Science.gov (United States)

    Hastings, Earl C., Jr.; Dickens, Waldo L.

    1957-01-01

    A flight investigation was conducted to determine the effects of an inlet modification and rocket-rack extension on the longitudinal trim and low-lift drag of the Douglas F5D-1 airplane. The investigation was conducted with a 0.125-scale rocket-boosted model which was flight tested at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. Results indicate that the combined effects of the modified inlet and fully extended rocket racks on the trim lift coefficient and trim angle of attack were small between Mach numbers of 0.94 and 1.57. Between Mach numbers of 1.10 and 1.57 there was an average increase in drag coefficient of about o,005 for the model with modified inlet and extended rocket racks. The change in drag coefficient due to the inlet modification alone is small between Mach numbers of 1.59 and 1.64

  17. Mathematical and empirical proof of principle for an on-body personal lift augmentation device (PLAD).

    Science.gov (United States)

    Abdoli-Eramaki, Mohammad; Stevenson, Joan M; Reid, Susan A; Bryant, Timothy J

    2007-01-01

    In our laboratory, we have developed a prototype of a personal lift augmentation device (PLAD) that can be worn by workers during manual handling tasks involving lifting or lowering or static holding in symmetric and asymmetric postures. Our concept was to develop a human-speed on-body assistive device that would reduce the required lumbar moment by 20-30% without negative consequences on other joints or lifting kinematics. This paper provides mathematical proof using simplified free body diagrams and two-dimensional moment balance equations. Empirical proof is also provided based on lifting trials with nine male subjects who executed sagittal plane lifts using three lifting styles (stoop, squat, free) and three different loads (5, 15, and 25kg) under two conditions (PLAD, No-PLAD). Nine Fastrak sensors and six in-line strap force sensors were used to estimate the reduction of compressive and shear forces on L4/L5 as well as estimate the forces transferred to the shoulders and knees. Depending on lifting technique, the PLAD applied an added 23-36Nm of torque to assist the back muscles during lifting tasks. The peak pelvic girdle contact forces were estimated and their magnitudes ranged from 221.3+/-11.2N for stoop lifting, 324.3+/-17.2N for freestyle lifts to 468.47+/-23.2N for squat lifting. The PLAD was able to reduce the compression and shear forces about 23-29% and 7.9-8.5%, respectively.

  18. Aerodynamic characteristics of wind turbine blade airfoils at high angles-of-attack

    NARCIS (Netherlands)

    Timmer, W.A.

    2010-01-01

    Airfoil characteristics at deep stall angles were investigated. It appeared that the maximum drag coefficient as a function of the airfoil upwind y/c ordinate at x/c=0.0125 can be approximated by a straight line. The lift-drag ratios in deep stall of a number of airfoils with moderate lower surface

  19. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    Science.gov (United States)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Effect of ship motion on spinal loading during manual lifting

    NARCIS (Netherlands)

    Faber, G.S.; Kingma, I.; Delleman, N.; Dieën, J. van

    2008-01-01

    This study investigated the effects of ship motion on peak spinal loading during lifting. All measurements were done on a ship at sea. In 1-min trials, which were repeated over a wide range of sailing conditions, subjects lifted an 18 kg box five times. Ship motion, whole body kinematics, ground

  1. Transient power coefficients for a two-blade Savonius wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Naterer, G. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    The wind power industry had a 29 percent growth rate in installed capacity in 2008, and technological advances are helping to speed up growth by significantly increasing wind turbine power yields. While the majority of the industry's growth has come from large horizontal axis wind turbine installations, small wind turbines can also be used in a wide variety of applications. This study predicted the transient power coefficient for a Savonius vertical axis wind turbine (VAWT) wind turbine with 2 blades. The turbine's flow field was used to analyze pressure distribution along the rotor blades in relation to the momentum, lift, and drag forces on the rotor surfaces. The integral force balance was used to predict the transient torque and power output of the turbine. The study examined the implications of the addition of a second blade on the model's ability to predict transient power outputs. Computational fluid dynamics (CFD) programs were used to verify that the formulation can be used to accurately predict the transient power coefficients of VAWTs with Savonius blades. 11 refs., 1 tab., 6 figs.

  2. Prediction of Peak Back Compressive Forces as a Function of Lifting Speed and Compressive Forces at Lift Origin and Destination - A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kasey O. Greenland

    2011-09-01

    Conclusion: SODA under-predict both static and dynamic peak back-compressive force values. Peak values are highly predictable and could be readily determined using back-compressive force assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

  3. An improved method for lifting and transporting anesthetized pigs within an animal facility

    DEFF Research Database (Denmark)

    Schumacher-Petersen, Camilla; Hammelev, Karsten Pharao; Flescher, Jens Erik

    2014-01-01

    Transporting anesthetized pigs in a laboratory setting often requires strenuous manual lifting, posing a hazard to the safety of animal care personnel and to the welfare of the pigs. The authors developed an improved approach to lifting and transporting anesthetized pigs weighing up to 350 kg using...... mechanical lifts. Different equipment was used to accommodate pigs of different sizes as well as the building designs of three animal facilities. Using the lifts, anesthetized pigs are carried on sheets to maintain their comfort while being transported. The approach refines previous methods for handling...

  4. Numerical Study of Transition of an Annular Lift Fan Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2016-09-01

    Full Text Available The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can eliminate the oscillations. The characteristics of momentum drag of the single-stage fans in transition are similar to that of the two-stage fans, but with the peak of drag lowered from 0.63 to 0.4 of the aircraft weight. The strategy to start transition from a negative angle of attack −21° further reduces the peak of drag to 0.29 of the weight. The strategy also reduces the peak of pitching torque, which needs upward extra thrusts of 0.39 of the weight to eliminate. The peak of rolling moment in transition needs differential upward thrusts of 0.04 of the weight to eliminate. The requirements for extra thrusts in transition lead to a total thrust–weight ratio of 0.7, which makes the aircraft more efficient for high speed cruise flight (higher than 0.7 Ma.

  5. Knees Lifted High

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Knees Lifted High gives children fun ideas for active outdoor play.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  6. Electromagnetic nondestructive testing at high lift-off using a magnetic image conduit

    International Nuclear Information System (INIS)

    Lee, Jin Yi; Jun, Jong Woo; Kim, Jung Min; Le, Min Hhuy

    2013-01-01

    To protect sensors from the extreme environments, such as, heat, moisture, pollution and radiation, cracks must be inspected for; this can be done by measuring the distribution of magnetic fields at high lift-off through nondestructive electro-magnetic testing. However, as the intensity of an electro-magnetic field is inversely proportional to the square of the lift-off, it becomes increasingly difficult to effective inspect a crack as the lift-off increases. In this paper, a magnetic image conduit to minimize the intensity loss of an electro-magnetic field at high lift-off is proposed, and the effectiveness of a conduit for magnetic imaging is verified by means of both theoretical and experimental approaches.

  7. A New Perceptual Mapping Model Using Lifting Wavelet Transform

    OpenAIRE

    Taha TahaBasheer; Ehkan Phaklen; Ngadiran Ruzelita

    2017-01-01

    Perceptual mappingapproaches have been widely used in visual information processing in multimedia and internet of things (IOT) applications. Accumulative Lifting Difference (ALD) is proposed in this paper as texture mapping model based on low-complexity lifting wavelet transform, and combined with luminance masking for creating an efficient perceptual mapping model to estimate Just Noticeable Distortion (JND) in digital images. In addition to low complexity operations, experiments results sho...

  8. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology

    Directory of Open Access Journals (Sweden)

    Erqing Zhang

    2014-06-01

    Full Text Available Since the measurement of mechanical sealing film thickness and just-lift-off time is very difficult, the sealing film condition monitoring method based on acoustic emission signal is proposed. The mechanical seal acoustic emission signal present obvious characteristics of time-varying nonlinear and pulsating. In this paper, the acoustic emission signal is used to monitor the seal end faces just-lift-off time and friction condition. The acoustic emission signal is decomposed by empirical mode decomposition into a series of intrinsic mode function with independent characteristics of different time scales and different frequency band. The acoustic emission signal only generated by end faces friction is obtained by eliminating the false intrinsic mode function components. The correlation coefficient of acoustic emission signal and Multi-scale Laplace Wavelet is calculated. It is proved that the maximum frequency (8000 Hz of the correlation coefficient is appeared at the spindle speed of 300 rpm. And at this time (300 rpm the end faces have just lifted off. By a set of mechanical oil seal running test, it is demonstrated that this method could accurately identify mechanical seal end faces just-lift-off time and friction condition.

  9. Feasibility study of modern airships, phase 1. Volume 2: Parametric analysis (task 3). [lift, weight (mass)

    Science.gov (United States)

    Lancaster, J. W.

    1975-01-01

    Various types of lighter-than-air vehicles from fully buoyant to semibuoyant hybrids were examined. Geometries were optimized for gross lifting capabilities for ellipsoidal airships, modified delta planform lifting bodies, and a short-haul, heavy-lift vehicle concept. It is indicated that: (1) neutrally buoyant airships employing a conservative update of materials and propulsion technology provide significant improvements in productivity; (2) propulsive lift for VTOL and aerodynamic lift for cruise significantly improve the productivity of low to medium gross weight ellipsoidal airships; and (3) the short-haul, heavy-lift vehicle, consisting of a simple combination of an ellipsoidal airship hull and existing helicopter componentry, provides significant potential for low-cost, near-term applications for ultra-heavy lift missions.

  10. Implementation and Comparison of the Lifting 5/3 and 9/7 Algorithms in MatLab on GPU

    Directory of Open Access Journals (Sweden)

    Randa Khemiri

    2016-06-01

    Full Text Available In order to accelerate the Discrete Wavelet Transform DWT, we have implemented and compared the lifting "Le Gall5/3" and "Cohen-Daubechies-Feauveau9/7" (CDF9/7 algorithms on a low cost NVIDIA’s GPU. The suggested implementation is realized in MatLab using the in-house parallel computation toolbox (PCT. Our experimental results indicate, that the speedup is proportional to the image size until it attains a maximum at 20482 pixels, beyond these values the curve decreases. The performance with GPU enhances above a factor of 2~3 compared with CPU.

  11. Design of heavy lift cargo aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the bird of the skies of the future. The heavy lift cargo aircraft which is currently being developed by me has twice the payload capacity of an Antonov...

  12. Effects of Inlet Modification and Rocket-Rack Extension on the Longitudinal Trim and Low-Lift Drag of the Douglas F5D-1 Airplane as Obtained with a 0.125-Scale Rocket-Boosted Model Between Mach Numbers of 0.81 and 1.64: TED No. NACA AD 399

    Science.gov (United States)

    Hastings, Earl C., Jr.; Dickens, Waldo L.

    1957-01-01

    A flight investigation was conducted to determine the effects of inlet modification and rocket-rack extension on the longitudinal trim and low-lift drag of the Douglas F5D-1 airplane. The investigation was conducted with a 0.125-scale rocket-boosted model between Mach Numbers of 0.81 and 1.64. This paper presents the changes in trim angle of attack, trim lift coefficient, and low-lift drag caused by the modified inlets alone over a small part of the test Mach number range and by a combination of the modified inlets and extended rocket racks throughout the remainder of the test.

  13. Assessment of the sinus lift operation by magnetic resonance imaging.

    Science.gov (United States)

    Senel, Figen Cizmeci; Duran, Serpil; Icten, Onur; Izbudak, Izlem; Cizmeci, Fulya

    2006-12-01

    Vertical bone loss in edentulous maxillary alveolar processes may necessitate a sinus lift before the placement of dental implants. We have measured and assessed maxillary sinuses meticulously before the operation and evaluated the postoperative results of the operation with magnetic resonance imaging (MRI). Thirteen edentulous maxillary regions in eight patients were included in the study. The patients were examined 1 week before and 3 months after the sinus lift operations using a 1.5 T superconductive MR imager that gave oblique sagittal T2-weighted images with slices 2 mm thick without a gap. The images that were obtained 3 months after the sinus lift operations confirmed that vertical height had increased. We obtained high quality images without any artefacts during a short examination period with a high-resolution scanner. The results showed that it is possible to assess the maxillary sinus before the sinus lift and to evaluate the postoperative results using MRI accurately in three dimensions without the risk of radiation. This makes MRI a suitable alternative to computed tomography (CT).

  14. New constructions of twistor lifts for harmonic maps

    DEFF Research Database (Denmark)

    Svensson, Martin; C. Wood, John

    2014-01-01

    We show that given a harmonic map \\varphi from a Riemann surface into a classical simply connected compact inner symmetric space, there is a J_2-holomorphic twistor lift of \\varphi (or its negative) if and only if it is nilconformal. In the case of harmonic maps of finite uniton number, we give...... algebraic formulae in terms of holomorphic data which describes their extended solutions. In particular, this gives explicit formulae for the twistor lifts of all harmonic maps of finite uniton number from a surface to the above symmetric spaces....

  15. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    Science.gov (United States)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  16. A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

    Science.gov (United States)

    Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric

    2013-01-01

    Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.

  17. A technique for measuring dynamic friction coefficient under impact loading.

    Science.gov (United States)

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  18. Leading-Edge Vortex lifts swifts

    NARCIS (Netherlands)

    Videler, JJ; Stamhuis, EJ; Povel, GDE

    2004-01-01

    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel.

  19. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    Science.gov (United States)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  20. A comparison of two lifting assessment approaches in patients with chronic low back pain

    NARCIS (Netherlands)

    Soer, Remko; Poels, Bas J. J.; Geertzen, Jan H. B.; Reneman, Michiel F.

    2006-01-01

    The Progressive Isoinertial Lifting Evaluation (PILE) and the lifting test of the WorkWell Systems Functional Capacity Evaluation (WWS) are well known as lifting performance tests. The objective of this study was to study whether the PILE and the WWS can be used interchangeably in patients with

  1. Limited vs extended face-lift techniques: objective analysis of intraoperative results.

    Science.gov (United States)

    Litner, Jason A; Adamson, Peter A

    2006-01-01

    To compare the intraoperative outcomes of superficial musculoaponeurotic system plication, imbrication, and deep-plane rhytidectomy techniques. Thirty-two patients undergoing primary deep-plane rhytidectomy participated. Each hemiface in all patients was submitted sequentially to 3 progressively more extensive lifts, while other variables were standardized. Four major outcome measures were studied, including the extent of skin redundancy and the repositioning of soft tissues along the malar, mandibular, and cervical vectors of lift. The amount of skin excess was measured without tension from the free edge to a point over the intertragal incisure, along a plane overlying the jawline. Using a soft tissue caliper, repositioning was examined by measurement of preintervention and immediate postintervention distances from dependent points to fixed anthropometric reference points. The mean skin excesses were 10.4, 12.8, and 19.4 mm for the plication, imbrication, and deep-plane lifts, respectively. The greatest absolute soft tissue repositioning was noted along the jawline, with the least in the midface. Analysis revealed significant differences from baseline and between lift types for each of the studied techniques in each of the variables tested. These data support the use of the deep-plane rhytidectomy technique to achieve a superior intraoperative lift relative to comparator techniques.

  2. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing

    Science.gov (United States)

    Kang, Chang-kwon; Shyy, Wei

    2013-01-01

    We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots. PMID:23760300

  3. International Powered Lift Conference and Exposition, Santa Clara, CA, Dec. 7-10, 1987, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The present conference on VTOL, STOVL and V/STOL fixed-wing aircraft powered lift discusses hot gas recirculation in V/STOL, flight testing of a single-engine powered lift aircraft, RAF experience with VTOL, near-term improvements of the AV-8B Harrier II, recent advancements in thrust augmentation, lift ejectors for STOVL combat aircraft, the correlation of entrainment and lift enhancement for a two-dimensional propulsive wing, the thrust efficiency of powered lift systems, and flight propulsion control integration for V/STOL aircraft. Also discussed are VSTOL design implications for tactical transports, the numerical investigation of a jet in ground effect with a cross flow, the NASA supersonic STOVL propulsion technology program, the aeroacoustics of advanced STOVL aircraft plumes, powered lift transport aircraft certification criteria status, the application of vectored thrust V/STOL experience in supersonic designs, wave drag and high speed performance of supersonic STOVL fighter configurations, and the impact of bypass ratio on thrust-to-weight for V/STOL.

  4. Wind Tunnel and Numerical Analysis of Thick Blunt Trailing Edge Airfoils

    Science.gov (United States)

    McLennan, Anthony William

    Two-dimensional aerodynamic characteristics of several thick blunt trailing edge airfoils are presented. These airfoils are not only directly applicable to the root section of wind turbine blades, where they provide the required structural strength at a fraction of the material and weight of an equivalent sharp trailing edge airfoil, but are also applicable to the root sections of UAVs having high aspect ratios, that also encounter heavy root bending forces. The Reynolds averaged Navier-Stokes code, ARC2D, was the primary numerical tool used to analyze each airfoil. The UCD-38-095, referred to as the Pareto B airfoil in this thesis, was also tested in the University of California, Davis Aeronautical Wind Tunnel. The Pareto B has an experimentally determined maximum lift coefficient of 1.64 at 14 degrees incidence, minimum drag coefficient of 0.0385, and maximum lift over drag ratio of 35.9 at a lift coefficient of 1.38, 10 degrees incidence at a Reynolds number of 666,000. Zig-zag tape at 2% and 5% of the chord was placed on the leading edge pressure and suction side of the Pareto B model in order to determine the aerodynamic performance characteristics at turbulent flow conditions. Experimental Pareto B wind tunnel data and previous FB-3500-0875 data is also presented and used to validate the ARC2D results obtained in this study. Additionally MBFLO, a detached eddy simulation Navier-Stokes code, was used to analyze the Pareto B airfoil for comparison and validation purposes.

  5. The Power Coefficient in the Theory of Energy Extraction from Tidal Channels

    Science.gov (United States)

    Cummins, P. F.

    2014-12-01

    The maximum average power available from a fence of turbines deployed in a tidal channel is given by the simple formula, Ρ=γρgaQmax, where ρga is the amplitude of pressure difference across ends of the channel, Qmax is the maximum volume flux through the channel in the undisturbed state (i.e., before turbines are deployed), and γ is a numerical coefficient. The latter depends only weakly on the underlying dynamical balance of the channel. This is shown to be consequence of quadratic drag and changes to the natural impedance of the channel as deployment of turbines impedes the flow. Additionally, it is shown that the power coefficient γ is relatively insensitive to the form of the turbine drag.

  6. Minimally invasive facial rejuvenation endolaser mid-face lift.

    Science.gov (United States)

    Badin, A Z; Casagrande, C; Roberts, T; Saltz, R; Moraes, L M; Santiago, M; Chiaratti, M G

    2001-01-01

    Endolaser mid-face lift was performed on patients in a multi-center study over a 36-month period (Feb. 1998 to Feb. 2001). It permits significant facial rejuvenation through small incisions. This technique achieves aesthetic results and wider rejuvenation while being less traumatic and creating minimal morbidity. Combined with other procedures, it rejuvenates the face by three strategic methods: soft tissue suspension, reversal of photo aging, and correction of the depletion of volume. To achieve this triple result, the mid-face lift is performed by endoscopic approach, and in every case is combined with the endoscopic lift of the frontal area. Laser resurfacing was used to reverse skin photo damage. The Ultrapulse CO2 laser and/or the Ultrafine Erbium YAG(Coherent, Inc, Palo Alto, CA) were used. The third combined procedure was the introduction of fat graft to compensate the atrophy/ptosis of fat and the depletion of bone mass (other filling materials besides fat may be used, depending on the preference of the surgeon). Our method of fixation using the Casagrande Needle (an evolution of Reverdin Needle) makes the mechanical purchase on the tissues to be suspended much easier, permitting the intra-oral and/or infra-orbital incisions to be eliminated. The present study of the technical evolution of the endolaser mid-face lift method allows us to conclude that a very satisfactory outcome has been reached, offering patients a minimally invasive procedure, which can be performed under local anesthesia, with low morbidity, imperceptible incisions, and an excellent long-term result.

  7. A new method for measuring lift forces acting on an airfoil under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wolken-Moehlmann, Gerrit; Peinke, Joachim [Institute of Physics, University of Oldenburg (Germany)

    2008-07-01

    Wind turbines operate in a turbulent atmospheric boundary layer and are exposed to strong wind fluctuations in time and space. This can induce the dynamic stall, a phenomenon that causes extra loads. Dynamic stall occurs under fast changes in the angle of attack (AoA) and was determined in detail in helicopter research. But in contrast to helicopter aerodynamics, the changes in the AoA of wind turbine airfoils are in general non-sinusoidal, and thus it seems to be difficult to use these measurements and models. Our goal is to acquire lift data under conditions more comparable to real wind turbines, including non-periodic changes in the AoA. For this purpose a closed test section for our wind tunnel was built. An airfoil with a chord length of 0.2m will be rotated by a stepping motor with angular velocities of up to 300 {sup circle} /s. With a maximum wind velocity of 50m/s, Reynolds numbers of Re=700 000 can be realized. The lift force is determined by the counter forces acting on the wind tunnel walls. These are measured by two lines of 40 pressure sensors with sampling rates up to 2kHz. The results show distinct dynamic stall characteristics. Further experiments with different parameters and foils will give a better insight in dynamic stall and a verification and improvement of existing models.

  8. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen

  9. Root region airfoil for wind turbine

    Science.gov (United States)

    Tangler, James L.; Somers, Dan M.

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

  10. Different levels of undermining in face lift - Experience of 141 consecutive cases

    Directory of Open Access Journals (Sweden)

    Panettiere Pietro

    2004-01-01

    Full Text Available CONTEXT: The most revolutionary concept in rhytidectomy is the role of Sub Muscular Aponeurotic System (SMAS, even if many alternative approaches have been proposed. The main aim of face lift is to bring back the time, preventing the "lifted-face" appearance. SETTINGS AND DESIGN: The authors present their personal experience with different levels of undermining, i.e. subperiosteal forehead lift, subcutaneous midface lift with SMAS plication and platysmal suspension, and discuss the anatomical and biomechanical elements of rhytidectomy. RESULTS: Optimal aesthetic results were achieved by repositioning the neck, face and forehead tissues in a global and harmonious fashion, without distorting face characteristics and disguising surgery trails as much as possible. CONCLUSIONS: Different levels of undermining can give good and stable aesthetic results minimizing the risks and preventing face distortion.

  11. Linnainstallatsioonide festival "Lift 11" = Urban installations festival Lift 11 / Margit Aule, Margit Argus ; intervjueerinud Margit Mutso

    Index Scriptorium Estoniae

    Aule, Margit, 1981-

    2012-01-01

    Linnainstallatsioonide festivalist "Lift 11", installatsioonidest. Festivali kuraatorid Margit Argus ja Margit Aule ning kaaskuraatorid Maarin Ektermann ja Ingrid Ruudi pälvisid EK arhitektuuri sihtkapitali 2011. a. arhitektuurialase tegevuse preemia avaliku linnaruumi mitmekesisust märkama, kasutama ning mõtestama ärgitanud ürituse korraldamise eest

  12. Propeller thrust analysis using Prandtl's lifting line theory, a comparison between the experimental thrust and the thrust predicted by Prandtl's lifting line theory

    Science.gov (United States)

    Kesler, Steven R.

    The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.

  13. Aerodynamic characteristics of wing-body configuration with two advanced general aviation airfoil sections and simple flap systems

    Science.gov (United States)

    Morgan, H. L., Jr.; Paulson, J. W., Jr.

    1977-01-01

    Aerodynamic characteristics of a general aviation wing equipped with NACA 65 sub 2-415, NASA GA(W)-1, and NASA GA(PC)-1 airfoil sections were examined. The NASA GA(W)-1 wing was equipped with plain, split, and slotted partial- and full-span flaps and ailerons. The NASA GA(PC)-1 wing was equipped with plain, partial- and full-span flaps. Experimental chordwise static-pressure distribution and wake drag measurements were obtained for the NASA GA(PC)-1 wing at the 22.5-percent spanwise station. Comparisons were made between the three wing configurations to evaluate the wing performance, stall, and maximum lift capabilities. The results of this investigation indicated that the NASA GA(W)-1 wing had a higher maximum lift capability and almost equivalent drag values compared with both the NACA 65 sub 2-415 and NASA GA(PC)-1 wings. The NASA GA(W)-1 had a maximum lift coefficient of 1.32 with 0 deg flap deflection, and 1.78 with 41.6 deg deflection of the partial-span slotted flap. The effectiveness of the NASA GA(W)-1 plain and slotted ailerons with differential deflections were equivalent. The NASA GA(PC)-1 wing with full-span flaps deflected 0 deg for the design climb configuration showed improved lift and drag performance over the cruise flap setting of -10 deg.

  14. Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off

    Science.gov (United States)

    Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Zhang, Zhiqiang; Duan, Huigao

    2015-10-01

    Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process.

  15. Development of an Active Flow Control Technique for an Airplane High-Lift Configuration

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Dickey, Eric D.; Hartwich, Peter M.; Khodadoust, Abdi

    2017-01-01

    This study focuses on Active Flow Control methods used in conjunction with airplane high-lift systems. The project is motivated by the simplified high-lift system, which offers enhanced airplane performance compared to conventional high-lift systems. Computational simulations are used to guide the implementation of preferred flow control methods, which require a fluidic supply. It is first demonstrated that flow control applied to a high-lift configuration that consists of simple hinge flaps is capable of attaining the performance of the conventional high-lift counterpart. A set of flow control techniques has been subsequently considered to identify promising candidates, where the central requirement is that the mass flow for actuation has to be within available resources onboard. The flow control methods are based on constant blowing, fluidic oscillators, and traverse actuation. The simulations indicate that the traverse actuation offers a substantial reduction in required mass flow, and it is especially effective when the frequency of actuation is consistent with the characteristic time scale of the flow.

  16. Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off

    International Nuclear Information System (INIS)

    Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Duan, Huigao; Zhang, Zhiqiang

    2015-01-01

    Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process. (paper)

  17. The NIOSH lifting equation and low-back pain, Part 1: Association with low-back pain in the backworks prospective cohort study.

    Science.gov (United States)

    Garg, Arun; Boda, Sruthi; Hegmann, Kurt T; Moore, J Steven; Kapellusch, Jay M; Bhoyar, Parag; Thiese, Matthew S; Merryweather, Andrew; Deckow-Schaefer, Gwen; Bloswick, Donald; Malloy, Elizabeth J

    2014-02-01

    The aim of this study was to evaluate relationships between the revised NIOSH lifting equation (RNLE) and risk of low-back pain (LBP). The RNLE is commonly used to quantify job physical stressors to the low back from lifting and/or lowering of loads. There is no prospective study on the relationship between RNLE and LBP that includes accounting for relevant covariates. A cohort of 258 incident-eligible workers from 30 diverse facilities was followed for up to 4.5 years. Job physical exposures were individually measured. Worker demographics, medical history, psychosocial factors, hobbies, and current LBP were obtained at baseline. The cohort was followed monthly to ascertain development of LBP and quarterly to determine changes in job physical exposure. The relationship between LBP and peak lifting index (PLI) and peak composite lifting index (PCLI) were tested in multivariate models using proportional hazards regression. Point and lifetime prevalences of LBP at baseline were 7.1% and 75.1%, respectively. During follow-up, there were 123 incident LBP cases. Factors predicting development of LBP included job physical exposure (PLI and PCLI), history of LBP, psychosocial factors, and housework. In adjusted models, risk (hazard ratio [HR]) increased per-unit increase in PLI and PCLI (p = .05 and .02; maximum HR = 4.3 and 4.2, respectively). PLI suggested a continuous increase in risk with an increase in PLI, whereas the PCLI showed elevated, but somewhat reduced, risk at higher exposures. Job physical stressors are associated with increased risk of LBP. Data suggest that the PLI and PCLI are useful metrics for estimating exposure to job physical stressors.

  18. The Exergy of Lift and Aircraft Exergy Flow Diagrams

    OpenAIRE

    Paulus, Jr., David; Gaggioli, Richard

    2010-01-01

    Aside from incidental, auxiliary loads, in level flight the principal load on the aircraft propulsion engine is the power required to provide the continuous lift. To construct an exergy flow diagram for an aircraft – for example, for the purpose of pinpointing inefficiencies and for costing – an expression is needed for the exergy delivered to and by the wings. That is, an expression is needed for the exergy of lift. The purpose of this paper is to present an expression de...

  19. Effects of the European Community directive on lifting and handling practice.

    Science.gov (United States)

    Docker, S M

    1993-07-01

    The new legislation on lifting and handling requires the application of ergonomic principles to manual handling operations. A written assessment is required for all unavoidable manual handling operations which involve the risk of injury to employees. Employers are now expected to provide equipment to enable staff to avoid lifting heavy loads.

  20. HORIZONTAL LIFTING OF 5 DHLW/DOE LONG, 12-PWR LONG AND 24-BWR WASTE PACKAGES

    International Nuclear Information System (INIS)

    V. de la Brosse

    2001-01-01

    The objective of this calculation was to determine the structural response of a 12-Pressurized Water Reactor (PWR) Long, a 24-Boiling Water Reactor (BWR) and a 5-Defense High Level Waste/Department of Energy (DHLW/DOE)--Long spent nuclear fuel waste packages lifted in a horizontal position. The scope of this calculation was limited to reporting the calculation results in terms of maximum stress intensities in the trunnion collar sleeves. In addition, the maximum stress intensities in the inner and outer shells of the waste packages were presented for illustrative purposes. The information provided by the sketches (Attachments I, II and III) is that of the potential design of the types of waste packages considered in this calculation, and all obtained results are valid for these designs only. This calculation is associated with the waste package design and was performed by the Waste Package Design Section in accordance with the ''Technical work plan for: Waste Package Design Description for LA'' (Ref. 7). AP-3.12Q, Calculations (Ref. 13), was used to perform the calculation and develop the document

  1. Development of Facial Rejuvenation Procedures: Thirty Years of Clinical Experience with Face Lifts

    Directory of Open Access Journals (Sweden)

    Byung Jun Kim

    2015-09-01

    Full Text Available Facial rejuvenation procedures can be roughly divided into face lift surgery and nonoperative, less invasive procedures, such as fat grafts, fillers, botulinum toxin injections, thread lifts, or laserbrasion. Face lift surgery or rhytidectomy is the procedure most directly associated with rejuvenation, due to its fundamental ability to restore the anatomical changes caused by aging. Various methods of face lift surgery have been developed over the last hundred years, thanks to advances in the understanding of facial anatomy and the mechanisms of aging, as well as the dedication of innovative surgeons. However, no generally applicable standard method exists, because the condition of each patient is different, and each operative method has advantages and disadvantages. Specific characteristics of the skin of Asians and their skeletal anatomy should be considered when determining the operative method to be used on Asian patients. Plastic surgeons should improve their ability to analyze the original aesthetic properties and problem areas of each patient, drawing on scientific knowledge about the aging process, and they should develop the skills necessary to perform various rejuvenative techniques. In the present article, we reviewed various face lift procedures and the current methods of modified double plane face lift, based on our clinical experience of over 30 years.

  2. Computer simulation of viscous fingering in a lifting Hele-Shaw cell

    Indian Academy of Sciences (India)

    We simulate viscous fingering generated by separating two plates with a constant force, in a lifting Hele-Shaw cell. Variation in the patterns for different fluid viscosity and lifting force is studied. Viscous fingering is strongly affected by anisotropy. We report a computer simulation study of fingering patterns, where circular or ...

  3. A fluid-solid coupling simulation method for convection heat transfer coefficient considering the under-vehicle condition

    Science.gov (United States)

    Tian, C.; Weng, J.; Liu, Y.

    2017-11-01

    The convection heat transfer coefficient is one of the evaluation indexes of the brake disc performance. The method used in this paper to calculate the convection heat transfer coefficient is a fluid-solid coupling simulation method, because the calculation results through the empirical formula method have great differences. The model, including a brake disc, a car body, a bogie and flow field, was built, meshed and simulated in the software FLUENT. The calculation models were K-epsilon Standard model and Energy model. The working condition of the brake disc was considered. The coefficient of various parts can be obtained through the method in this paper. The simulation result shows that, under 160 km/h speed, the radiating ribs have the maximum convection heat transfer coefficient and the value is 129.6W/(m2·K), the average coefficient of the whole disc is 100.4W/(m2·K), the windward of ribs is positive-pressure area and the leeward of ribs is negative-pressure area, the maximum pressure is 2663.53Pa.

  4. Modelling of Turbulent Lifted Jet Flames using flamelets: a priori assessment and a posteriori validation

    OpenAIRE

    Ruan, S; Swaminathan, Nedunchezhian; Darbyshire, O

    2014-01-01

    This study focuses on the modelling of turbulent lifted jet flames using flamelets and presumed PDF approach with interests on both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes to the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction, Z, and progress ...

  5. A New Perceptual Mapping Model Using Lifting Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Taha TahaBasheer

    2017-01-01

    Full Text Available Perceptual mappingapproaches have been widely used in visual information processing in multimedia and internet of things (IOT applications. Accumulative Lifting Difference (ALD is proposed in this paper as texture mapping model based on low-complexity lifting wavelet transform, and combined with luminance masking for creating an efficient perceptual mapping model to estimate Just Noticeable Distortion (JND in digital images. In addition to low complexity operations, experiments results show that the proposed modelcan tolerate much more JND noise than models proposed before

  6. Gurney flap—Lift enhancement, mechanisms and applications

    Science.gov (United States)

    Wang, J. J.; Li, Y. C.; Choi, K.-S.

    2008-01-01

    Since its invention by a race car driver Dan Gurney in 1960s, the Gurney flap has been used to enhance the aerodynamics performance of subsonic and supercritical airfoils, high-lift devices and delta wings. In order to take stock of recent research and development of Gurney flap, we have carried out a review of the characteristics and mechanisms of lift enhancement by the Gurney flap and its applications. Optimum design of the Gurney flap is also summarized in this paper. For the Gurney flap to be effective, it should be mounted at the trailing edge perpendicular to the chord line of airfoil or wing. The flap height must be of the order of local boundary layer thickness. For subsonic airfoils, an additional Gurney flap increases the pressure on the upstream surface of the Gurney flap, which increases the total pressure of the lower surface. At the same time, a long wake downstream of the flap containing a pair of counter-rotating vortices can delay or eliminate the flow separation near the trailing edge on the upper surface. Correspondingly, the total suction on the airfoil is increased. For supercritical airfoils, the lift enhancement of the Gurney flap mainly comes from its ability to shift the shock on the upper surface in the downstream. Applications of the Gurney flap to modern aircraft design are also discussed in this review.

  7. Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft

    Science.gov (United States)

    Suastika, K.; Apriansyah

    2018-03-01

    Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.

  8. Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Bauer DuMont, Vanessa L; Hubisz, Melissa J

    2007-01-01

    : the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of S and the dN/dS ratio. We apply the method to previously published data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba and show, in accordance with previous results, that the D...

  9. Quantification of the lift height for magnetic force microscopy using 3D surface parameters

    International Nuclear Information System (INIS)

    Nenadovic, M.; Strbac, S.; Rakocevic, Z.

    2010-01-01

    In this work, the quantitative conditions for the lift height for imaging of the magnetic field using magnetic force microscopy (MFM) were optimized. A thin cobalt film deposited on a monocrystalline silicon (1 0 0) substrate with a thickness of 55 nm and a thin nickel film deposited on a glass with a thickness of 600 nm were used as samples. The topography of the surface was acquired by tapping mode atomic force microscopy (AFM), while MFM imaging was performed in the lift mode for various lift heights. It was determined that the sensitivity of the measurements was about 10% higher for images obtained at a scan angle of 90 o compared to a scan angle of 0 deg. Therefore, the three-dimensional surface texture parameters, i.e., average roughness, skewness, kurtosis and the bearing ratio, were determined in dependence on the lift height for a scan angle of 90 deg. The results of the analyses of the surface parameters showed that the influence of the substrate and its texture on the magnetic force image could be neglected for lift heights above 40 nm and that the upper lift height limit is 100 nm. It was determined that the optimal values of the lift heights were in the range from 60 to 80 nm, depending on the nature of the sample and on the type of the tip used.

  10. Analysis of the Umbrella Roof for lifting

    International Nuclear Information System (INIS)

    Shaaban, A.

    1983-01-01

    In addition to supporting the dead loads and the operational loads, the Umbrella Roof (UR) has two major functions to which it was designed. First is to allow access for repair and removal of any of the TF coils, the upper PF coils and the Vacuum Vessel sections; and second, is to reproduce the exact positioning of the upper PF coils every time the UR is placed over the Tokamac. To provide these functions, the UR is designed to be lifted as one integrated structure to which the upper PF coils are attached. In order to ensure precise positioning of the UR, a redundant system of 13 guide pins were provided on the bottom of the radial beams, and four shear lugs were provided atop the central column. Mating reciprocals with very close tolerance for the guide pins were provided in the tops of the 13 peripheral columns. To meet close tolerances and to accommodate such high redundancy in match points, accurate analysis was necessary by which the center of gravity of the UR can be located and the deflection of all match points can be computed. Also stress analysis of the members of the UR was necessary because when the UR is lifted it is denied the midpoint support over the center column; and also the beams of the UR are not interconnected by moment-capable joints, thus if provisions are not made to support every radial beam, those which are not supported would yield and collapse. In this paper, the lifting schemes proposed for the UR are discussed and the results of the analysis performed for the elected scheme are presented. Also presented is a unique application of the NASTRAN code by which the center of gravity of the UR was located by allowing a refined model of the UR to swing until it came to rest under an arbitrary lift point

  11. Lifting CERN entrepreneurs to new heights

    CERN Multimedia

    William Rode

    2014-01-01

    How can an international research institution help employees who wish to leave their comfort zone for the risky endeavour of starting a company? CERN encourages the creation of companies as a way of disseminating technology developed here. But what else can be done to foster these initiatives?   William Rode, a technical student in CERN’s Knowledge Transfer Group, studied spin-off creations in some leading research institutions as part of his Master's thesis in entrepreneurship at the Norwegian University of Science and Technology. William, who was offered a ticket to attend the Lift14 conference in Geneva, shares some insight into how we can support entrepreneurship at CERN: "A while ago I attended the Lift conference in Geneva. The conference explores the business and social implications of technology innovation through talks and workshops, as well as through art and discussion. Innovation is at the core of the conference and is reflected in the open-mindedness of th...

  12. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul

    2012-04-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen to methane ratio. At relatively high initial temperature, addition of a small amount of hydrogen to methane improved ignition appreciably such that the liftoff height decreased significantly. In this hydrogen-assisted autoignition regime, the liftoff height increased with jet velocity, and the characteristic flow time - defined as the ratio of liftoff height to jet velocity - correlated well with the square of the adiabatic ignition delay time. At lower temperature, the autoignited lifted flame demonstrated a unique feature in that the liftoff height decreased with increasing jet velocity. Such behavior has never been observed in lifted laminar and turbulent jet flames. A transition regime existed between these two regimes at intermediate temperature. © 2011 The Combustion Institute.

  13. Behavior in exploitation of gas-lift installations with differential valves. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Bodea, I; Truica, V

    1969-07-01

    In this second installment, charts of casing and tubing pressure are shown to illustrate how they can be used as diagnostic tools, both for continuous and intermittent gas-lift installations. The desirable conditions for continuous gas lift are constant casing and tubing pressures; for intermittent gas lift, cycles of equal length and intensity. After discussion of the possible flow regimes in the production tubing, it is shown that pressure gradient and temperature measurements can also be used as diagnostic tools. The basic rules for designing a continuous flow gas-lift installation by multipoint injection are given. Application of these principles in several wells has resulted in an increase in the oil production rate, a decrease in the gas requirement, and a reduction in the frequency of well pulling jobs. A well-designed installation can be expected to function trouble- free for 2 to 4 yr.

  14. Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder

    OpenAIRE

    A. Badarudin; C. S. Oon; S. N. Kazi; N. Nik-Ghazali; Y. J. Lee; W. T. Chong

    2013-01-01

    An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appro...

  15. Impact of improved momentum transfer coefficients on the dynamics and thermodynamics of the north Indian Ocean

    Science.gov (United States)

    Parekh, Anant; Gnanaseelan, C.; Jayakumar, A.

    2011-01-01

    Long time series of in situ observations from the north Indian Ocean are used to compute the momentum transfer coefficients over the north Indian Ocean. The transfer coefficients behave nonlinearly for low winds (<4 m/s), when most of the known empirical relations assume linear relations. Impact of momentum transfer coefficients on the upper ocean parameters is studied using an ocean general circulation model. The model experiments revealed that the Arabian Sea and Equatorial Indian Ocean are more sensitive to the momentum transfer coefficients than the Bay of Bengal and south Indian Ocean. The impact of momentum transfer coefficients on sea surface temperature is up to 0.3°C-0.4°C, on mixed layer depth is up to 10 m, and on thermocline depth is up to 15 m. Furthermore, the impact on the zonal current is maximum over the equatorial Indian Ocean (i.e., about 0.12 m/s in May and 0.15 m/s in October; both May and October are the period of Wyrtki jets and the difference in current has potential impact on the seasonal mass transport). The Sverdrup transport has maximum impact in the Bay of Bengal (3 to 4 Sv in August), whereas the Ekman transport has maximum impact in the Arabian Sea (4 Sv during May to July). These highlight the potential impact of accurate momentum forcing on the results from current ocean models.

  16. Assessing Reliability of a Multi-Dimensional Scale by Coefficient Alpha

    Directory of Open Access Journals (Sweden)

    Ivan Šerbetar

    2016-04-01

    Full Text Available The purpose of the study was to assess internal consistency by calculating coefficient alpha. It presents the variation in coefficient alpha, depending on questionnaire length and the homogeneity or heterogeneity of the questionnaire. The maximum possible value for coefficient alpha was also calculated by the item elimination method. The study included 99 children aged 10. The children completed The Athletic Coping Skills Inventory – 28 (ACSI-28; Smith et al., 1995, which contains seven constructs: coping with adversity, coachability, concentration, confidence and achievement motivation, goal setting and mental preparation, peaking under pressure and freedom from worry. The results confirmed that the values of the alpha coefficient vary depending on the number and composition of items and the sample size. In terms of item structure, homogeneous constructs yielded lower values for the alpha coefficient (in a range from .48 to .61 than the questionnaire with all the constructs (alpha = .79, despite higher inter-item correlations. In terms of the number of items, the longer test generated higher alpha coefficients (alpha = .79 than the shorter test (half-sets of items = .60, .73, .69, .70. A higher overall value (alpha = .83 can be achieved by item elimination.

  17. Hydraulic lift in a neotropical savanna: experimental manipulation and model simulations

    Science.gov (United States)

    Fabian G. Scholz; Sandra J. Bucci; William A. Hoffmann; Frederick C. Meinzer; Guillermo Goldstein

    2010-01-01

    The objective of this study was to assess the magnitude of hydraulic lift in Brazilian savannas (Cerrado) and to test the hypothesis that hydraulic lift by herbaceous plants contributes substantially to slowing the decline of water potential and water storage in the upper soil layers during the dry season. To this effect, field observations of soil water content and...

  18. Analytical prediction of the unsteady lift on a rotor caused by downstream struts

    Science.gov (United States)

    Taylor, A. C., III; Ng, W. F.

    1987-01-01

    A two-dimensional, inviscid, incompressible procedure is presented for predicting the unsteady lift on turbomachinery blades caused by the upstream potential disturbance of downstream flow obstructions. Using the Douglas-Neumann singularity superposition potential flow computer program to model the downstream flow obstructions, classical equations of thin airfoil theory are then employed, to compute the unsteady lift on the upstream rotor blades. The method is applied to a particular geometry which consists of a rotor, a downstream stator, and downstream struts which support the engine casing. Very good agreement between the Douglas-Neumann program and experimental measurements was obtained for the downstream stator-strut flow field. The calculations for the unsteady lift due to the struts were in good agreement with the experiments in showing that the unsteady lift due to the struts decays exponentially with increased axial separation of the rotor and the struts. An application of the method showed that for a given axial spacing between the rotor and the strut, strut-induced unsteady lift is a very weak function of the axial or circumferential position of the stator.

  19. Lifting and protecting residential structures from subsidence damage using airbags

    International Nuclear Information System (INIS)

    Triplett, T.L.; Bennett, R.M.

    1998-01-01

    Conventional practice in protecting residential structures from subsidence damage concentrates on saving the superstructure. The foundation is sacrificed, even though it represents the structural component with the greatest replacement cost. In this study, airbags were used to lift a 20 ft x 30 ft structure to test their ability to protect both the foundation and superstructure from ground settlement. Two contiguous sides of the test foundation were unreinforced, and the other two contiguous sides incorporated footing and wall reinforcement. The airbags successfully lifted the structure without causing damage, even on the unreinforced sides. This paper gives a procedure for determining airbag spacing, and describes installation and operation techniques of the airbags. The paper then focuses on the performance of the airbags in lifting the structure, and shows that airbags can preserve existing foundations during subsidence movements

  20. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  1. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  2. Fish's Muscles Distortion and Pectoral Fins Propulsion of Lift-Based Mode

    Science.gov (United States)

    Yang, S. B.; Han, X. Y.; Qiu, J.

    As a sort of MPF(median and/or paired fin propulsion), pectoral fins propulsion makes fish easier to maneuver than other propulsion, according to the well-established classification scheme proposed by Webb in 1984. Pectoral fins propulsion is classified into oscillatory propulsion, undulatory propulsion and compound propulsion. Pectoral fins oscillatory propulsion, is further ascribable to two modes: drag-based mode and lift-based mode. And fish exhibits strong cruise ability by using lift-based mode. Therefore to robot fish design using pectoral fins lift-based mode will bring a new revolution to resources exploration in blue sea. On the basis of the wave plate theory, a kinematic model of fish’s pectoral fins lift-based mode is established associated with the behaviors of cownose ray (Rhinoptera bonasus) in the present work. In view of the power of fish’s locomotion from muscle distortion, it would be helpful benefit to reveal the mechanism of fish’s locomotion variation dependent on muscles distortion. So this study puts forward the pattern of muscles distortion of pectoral fins according to the character of skeletons and muscles of cownose ray in morphology and simulates the kinematics of lift-based mode using nonlinear analysis software. In the symmetrical fluid field, the model is simulated left-right symmetrically or asymmetrically. The results qualitatively show how muscles distortion determines the performance of fish locomotion. Finally the efficient muscles distortion associated with the preliminary dynamics is induced.

  3. KAPPEL Propeller. Development of a Marine Propeller with Non-planar Lifting Surfaces

    DEFF Research Database (Denmark)

    Kappel, J.; Andersen, Poul

    2002-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or "winglet" at the wingtip has been developed for aircraft, the application of the non-planar principle to marine propellers, dealt...... with in this paper, has led to the KAPPEL propeller with blades curved towards the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental and practical approach to develop and design marine propellers with non-planar lifting surfaces has resulted in propellers...

  4. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    KAUST Repository

    Choi, Byungchul; Chung, Suk-Ho

    2010-01-01

    regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted

  5. Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy

    Institute of Scientific and Technical Information of China (English)

    Esmaeil Ghaderi; Hossein Tohidi; Behnam Khosrozadeh

    2017-01-01

    The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy.In this strategy,fhst,the rotor speed is set at an optimal point for different wind speeds.As a result of which,the tip speed ratio reaches an optimal point,mechanical power coefficient is maximized,and wind turbine produces its maximum power and mechanical torque.Then,the maximum mechanical torque is tracked using electromechanical torque.In this technique,tracking error integral of maximum mechanical torque,the error,and the derivative of error are used as state variables.During changes in wind speed,sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking (MPPT).In this method,the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal.The result of the second order integral in this model includes control signal integrity,full chattering attenuation,and prevention from large fluctuations in the power generator output.The simulation results,calculated by using MATLAB/m-file software,have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator (PMSG).

  6. Electro—magnetic control of shear flow over a cylinder for drag reduction and lift enhancement

    International Nuclear Information System (INIS)

    Zhang Hui; Fan Bao-Chun; Chen Zhi-Hua; Chen Shuai; Li Hong-Zhi

    2013-01-01

    In this paper, the electro—magnetic control of a cylinder wake in shear flow is investigated numerically. The effects of the shear rate and Lorentz force on the cylinder wake, the distribution of hydrodynamic force, and the drag/lift phase diagram are discussed in detail. It is revealed that Lorentz force can be classified into the field Lorentz force and the wall Lorentz force and they affect the drag and lift forces independently. The drag/lift phase diagram with a shape of ''8'' consists of two closed curves, which correspond to the halves of the shedding cycle dominated by the upper and lower vortices respectively. The free stream shear (K > 0) induces the diagram to move downward and leftward, so that the average lift force directs toward the downside. With the upper Lorentz force, the diagram moves downwards and to the right by the field Lorentz force, thus resulting in the drag increase and the lift reduction, whereas it moves upward and to the left by the wall Lorentz force, leading to the drag reduction and the lift increase. Finally the diagram is dominated by the wall Lorentz force, thus moving upward and leftward. Therefore the upper Lorentz force, which enhances the lift force, can be used to overcome the lift loss due to the free stream shear, which is also obtained in the experiment. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Simultaneous oroantral communication closure, sinus‑lifting, and ...

    African Journals Online (AJOL)

    2015-10-10

    Oct 10, 2015 ... Dr. S Yanik,. Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, ... dental implants, and they require sinus‑lifting procedures long after the .... by some researchers, including third molar transplantation,. Figure 1: ...

  8. Optimisation of a novel trailing edge concept for a high lift device

    CSIR Research Space (South Africa)

    Botha, JDM

    2015-01-01

    Full Text Available This study aimed to observe the effect of a novel concept (referred to as the flap extension) implemented on the leading edge of the flap of a three element high lift device. The high lift device, consisting of a flap, main element and slat...

  9. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  10. Lumbar muscle activity during common lifts: a preliminary study using magnetic resonance imaging.

    Science.gov (United States)

    Mayer, John M; Graves, James E; Manini, Todd M; Nuzzo, James L; Ploutz-Snyder, Lori L

    2013-04-01

    The purpose of this preliminary study was to assess lumbar multifidus, erector spinae, and quadratus lumborum muscle activity during lifts as measured by changes in transverse relaxation time (T2) from magnetic resonance imaging (MRI). Thirteen healthy adults performed dynamic squat, stoop, and asymmetric stoop lifts at a standard load, with each lift followed by MRI. Increase in T2 for the multifidus and erector spinae was greater for the stoop than squat. No difference in T2 increase was noted between the multifidus and erector spinae for the squat or stoop. Increase in T2 for the contralateral multifidus was less for the asymmetric stoop than stoop. Future research using MRI and other biomechanical techniques is needed to fully characterize lumbar muscle activity during lifts for various populations, settings, postures, and loads.

  11. The influence of individual and organisational factors on nurses' behaviour to use lifting devices in healthcare.

    Science.gov (United States)

    Koppelaar, E; Knibbe, J J; Miedema, H S; Burdorf, A

    2013-07-01

    This study evaluates the influence of individual and organisational factors on nurses' behaviour to use lifting devices in healthcare. Interviews among nurses were conducted to collect individual characteristics and to establish their behaviour regarding lifting devices use. Organisational factors were collected by questionnaires and walk-through-surveys, comprising technical facilities, organisation of care, and management-efforts. Generalised-Estimating-Equations for repeated measurements were used to estimate determinants of nurses' behaviour. Important determinants of nurses' behaviour to use lifting devices were knowledge of workplace procedures (OR = 5.85), strict guidance on required lifting devices use (OR = 2.91), and sufficient lifting devices (OR = 1.92). Management-support and supportive-management-climate were associated with these determinants. Since nurses' behaviour to use lifting devices is influenced by factors at different levels, studies in ergonomics should consider how multi-level factors impact each other. An integral approach, addressing individual and organisational levels, is necessary to facilitate appropriate implementation of ergonomic interventions, like lifting devices. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  13. A Stochastic Maximum Principle for General Mean-Field Systems

    International Nuclear Information System (INIS)

    Buckdahn, Rainer; Li, Juan; Ma, Jin

    2016-01-01

    In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and we extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.

  14. A Stochastic Maximum Principle for General Mean-Field Systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckdahn, Rainer, E-mail: Rainer.Buckdahn@univ-brest.fr [Université de Bretagne-Occidentale, Département de Mathématiques (France); Li, Juan, E-mail: juanli@sdu.edu.cn [Shandong University, Weihai, School of Mathematics and Statistics (China); Ma, Jin, E-mail: jinma@usc.edu [University of Southern California, Department of Mathematics (United States)

    2016-12-15

    In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and we extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.

  15. Evaluation of the Troxler Model 4640 Thin Lift Nuclear Density Gauge. Research report (Interim)

    International Nuclear Information System (INIS)

    Solaimanian, M.; Holmgreen, R.J.; Kennedy, T.W.

    1990-07-01

    The report describes the results of a research study to determine the effectiveness of the Troxler Model 4640 Thin Lift Nuclear Density Gauge. The densities obtained from cores and the nuclear density gauge from seven construction projects were compared. The projects were either newly constructed or under construction when the tests were performed. A linear regression technique was used to investigate how well the core densities could be predicted from nuclear densities. Correlation coefficients were determined to indicate the degree of correlation between the core and nuclear densities. Using a statistical analysis technique, the range of the mean difference between core and nuclear measurements was established for specified confidence levels for each project. Analysis of the data indicated that the accuracy of the gauge is material dependent. While relatively acceptable results were obtained with limestone mixtures, the gauge did not perform satisfactorily with mixtures containing siliceous aggregate

  16. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    KAUST Repository

    Choi, Byungchul

    2010-12-01

    The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800. K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. © 2010 The Combustion Institute.

  17. Heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations

    International Nuclear Information System (INIS)

    Fahmy, A.S.A.; Mariy, A.H.; Mahmoud, S.I.; Ibrahim, N.A.

    1987-01-01

    An experimental investigation is carried out study the behaviour of heat transfer in pool boiling from a vertical and inclined heated tube at atmospheric pressure. An imperial correlation joining the different parameters affecting the heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations is developed. Two test sections (zircaloy-4 and stainless steel) of 16 n n outer diameter and 120 nm length are investigated. Four levels of heat flux are used for heating the two lest sections (e.g. 381, 518, 721 and 929 k.watt/n 2). The maximum surface temperature achieved is 146.5 degree c for both materials, and the maximum bulk temperature is 95 degree C. It is found that the average heat transfer coefficient is inversely proportional with heated length l, where it reaches a constant value in the horizontal position. The heat transfer coefficient curves at various inclinations with respect to the heated tube length pass around one point which is defined as limit length

  18. Determination of the sticking coefficient of low-energy hydrocarbon ions

    International Nuclear Information System (INIS)

    Tichmann, Klaus Markus

    2011-01-01

    The maximum lifetime of future fusion facilities like ITER will be limited by the retention of radioactive tritium in the vessel walls. The retention is significantly affected by the sticking coefficient of hydrocarbon molecules that form in the machine. Using a particle-beam experiment, this sticking coefficient was determined for multiple species at energies below 200 eV. The equipment for the production of the particle beam was optimised and a new ion source for hydrocarbon ions was developed. Simulations using molecular dynamics were performed in parallel to improve the understanding of the processes at the surface.

  19. Automation of workplace lifting hazard assessment for musculoskeletal injury prevention.

    Science.gov (United States)

    Spector, June T; Lieblich, Max; Bao, Stephen; McQuade, Kevin; Hughes, Margaret

    2014-01-01

    Existing methods for practically evaluating musculoskeletal exposures such as posture and repetition in workplace settings have limitations. We aimed to automate the estimation of parameters in the revised United States National Institute for Occupational Safety and Health (NIOSH) lifting equation, a standard manual observational tool used to evaluate back injury risk related to lifting in workplace settings, using depth camera (Microsoft Kinect) and skeleton algorithm technology. A large dataset (approximately 22,000 frames, derived from six subjects) of simultaneous lifting and other motions recorded in a laboratory setting using the Kinect (Microsoft Corporation, Redmond, Washington, United States) and a standard optical motion capture system (Qualysis, Qualysis Motion Capture Systems, Qualysis AB, Sweden) was assembled. Error-correction regression models were developed to improve the accuracy of NIOSH lifting equation parameters estimated from the Kinect skeleton. Kinect-Qualysis errors were modelled using gradient boosted regression trees with a Huber loss function. Models were trained on data from all but one subject and tested on the excluded subject. Finally, models were tested on three lifting trials performed by subjects not involved in the generation of the model-building dataset. Error-correction appears to produce estimates for NIOSH lifting equation parameters that are more accurate than those derived from the Microsoft Kinect algorithm alone. Our error-correction models substantially decreased the variance of parameter errors. In general, the Kinect underestimated parameters, and modelling reduced this bias, particularly for more biased estimates. Use of the raw Kinect skeleton model tended to result in falsely high safe recommended weight limits of loads, whereas error-corrected models gave more conservative, protective estimates. Our results suggest that it may be possible to produce reasonable estimates of posture and temporal elements of tasks

  20. Rectangular maximum-volume submatrices and their applications

    KAUST Repository

    Mikhalev, Aleksandr; Oseledets, I.V.

    2017-01-01

    We introduce a definition of the volume of a general rectangular matrix, which is equivalent to an absolute value of the determinant for square matrices. We generalize results of square maximum-volume submatrices to the rectangular case, show a connection of the rectangular volume with an optimal experimental design and provide estimates for a growth of coefficients and an approximation error in spectral and Chebyshev norms. Three promising applications of such submatrices are presented: recommender systems, finding maximal elements in low-rank matrices and preconditioning of overdetermined linear systems. The code is available online.

  1. Rectangular maximum-volume submatrices and their applications

    KAUST Repository

    Mikhalev, Aleksandr

    2017-10-18

    We introduce a definition of the volume of a general rectangular matrix, which is equivalent to an absolute value of the determinant for square matrices. We generalize results of square maximum-volume submatrices to the rectangular case, show a connection of the rectangular volume with an optimal experimental design and provide estimates for a growth of coefficients and an approximation error in spectral and Chebyshev norms. Three promising applications of such submatrices are presented: recommender systems, finding maximal elements in low-rank matrices and preconditioning of overdetermined linear systems. The code is available online.

  2. Endoscopic forehead lift in patients with male pattern baldness.

    Science.gov (United States)

    Shipchandler, Taha Z; Sultan, Babar; Byrne, Patrick J

    2012-01-01

    The presence of male pattern baldness poses a significant challenge when attempting to optimize treatment of the upper third of the face. The purpose of this study is to demonstrate and discuss results of the endoscopic forehead lift in patients with male pattern baldness. This was a retrospective case series done in an academic medical center. Eleven patients with male pattern baldness (Norwood class IV-VII) underwent endoscopic forehead lift for forehead creases and brow ptosis. All patients achieved smoothing of the forehead and elevation of the brow with no scalp anesthesia at 1 month postoperatively. All patients were pleased with the healing of their incisions in midline, paramedian, and temporal regions. Alloplastic fixation devices used were visible postoperatively in 2 patients initially. The endoscopic forehead lift is a suitable approach for treating the upper third of the face in the presence of male pattern baldness. The use of alloplastic fixation devices may be used in this patient population, but other fixation methods should be considered. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Maximum entropy principal for transportation

    International Nuclear Information System (INIS)

    Bilich, F.; Da Silva, R.

    2008-01-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  4. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  5. Lift-based up-ender and methods using same to manipulate a shipping container containing unirradiated nuclear fuel

    Science.gov (United States)

    Nilles, Michael J.

    2017-08-01

    A shipping container containing an unirradiated nuclear fuel assembly is lifted off the ground by operating a crane to raise a lifting tool comprising a winch. The lifting tool is connected with the shipping container by a rigging line connecting with the shipping container at a lifting point located on the shipping container between the top and bottom of the shipping container, and by winch cabling connecting with the shipping container at the top of the shipping container. The shipping container is reoriented by operating the winch to adjust the length of the winch cabling so as to rotate the shipping container about the lifting point. Shortening the winch cabling rotates the shipping container about the lifting point from a horizontal orientation to a vertical orientation, while lengthening the winch cabling rotates the shipping container about the lifting point from the vertical orientation to the horizontal orientation.

  6. Alignment and position visualization methods for the biomedical imaging and therapy (BMIT) MRT lift

    International Nuclear Information System (INIS)

    Bree, Michael; Miller, Denise; Kerr, Graham; Belev, George; Wysokinski, Tomasz W.; Dolton, Wade

    2016-01-01

    The Microbeam Radiation Therapy (MRT) Lift is an eight stage positioning and scanning system at the Canadian Light Source’s BMIT Facility. Alignment of the sample with the beam using the MRT Lift is a time consuming and challenging task. The BMIT Group has developed a Python-based MRT Lift positioning and control program that uses a combination of computational and iterative methods to independently adjust the sample’s X, Y, Z, pitch and roll positions. The program offers “1-Click” alignment of the sample to the beam. Use of a wireframe visualization technique enables even minute movements to be illustrated. Proposed movements and the resulting MRT Lift position can be manually verified before being applied. Optional integration with the SolidWorks modelling platform allows high quality renderings of the MRT Lift in its current or proposed position to be displayed in real time. Human factors principles are incorporated into the program with the objective of delivering easy to use controls for this complex device.

  7. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  8. Alignment and position visualization methods for the biomedical imaging and therapy (BMIT) MRT lift

    Energy Technology Data Exchange (ETDEWEB)

    Bree, Michael, E-mail: michael.bree@lightsource.ca; Miller, Denise; Kerr, Graham; Belev, George; Wysokinski, Tomasz W.; Dolton, Wade [Canadian Light Source Inc., 44 Innovation Blvd, Saskatoon, SK S7N 2V3 Canada (Canada)

    2016-07-27

    The Microbeam Radiation Therapy (MRT) Lift is an eight stage positioning and scanning system at the Canadian Light Source’s BMIT Facility. Alignment of the sample with the beam using the MRT Lift is a time consuming and challenging task. The BMIT Group has developed a Python-based MRT Lift positioning and control program that uses a combination of computational and iterative methods to independently adjust the sample’s X, Y, Z, pitch and roll positions. The program offers “1-Click” alignment of the sample to the beam. Use of a wireframe visualization technique enables even minute movements to be illustrated. Proposed movements and the resulting MRT Lift position can be manually verified before being applied. Optional integration with the SolidWorks modelling platform allows high quality renderings of the MRT Lift in its current or proposed position to be displayed in real time. Human factors principles are incorporated into the program with the objective of delivering easy to use controls for this complex device.

  9. Body lift, drag and power are relatively higher in large-eared than in small-eared bat species.

    Science.gov (United States)

    Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders; Johansson, L Christoffer

    2017-10-01

    Bats navigate the dark using echolocation. Echolocation is enhanced by external ears, but external ears increase the projected frontal area and reduce the streamlining of the animal. External ears are thus expected to compromise flight efficiency, but research suggests that very large ears may mitigate the cost by producing aerodynamic lift. Here we compare quantitative aerodynamic measures of flight efficiency of two bat species, one large-eared ( Plecotus auritus ) and one small-eared ( Glossophaga soricina ), flying freely in a wind tunnel. We find that the body drag of both species is higher than previously assumed and that the large-eared species has a higher body drag coefficient, but also produces relatively more ear/body lift than the small-eared species, in line with prior studies on model bats. The measured aerodynamic power of P. auritus was higher than predicted from the aerodynamic model, while the small-eared species aligned with predictions. The relatively higher power of the large-eared species results in lower optimal flight speeds and our findings support the notion of a trade-off between the acoustic benefits of large external ears and aerodynamic performance. The result of this trade-off would be the eco-morphological correlation in bat flight, with large-eared bats generally adopting slow-flight feeding strategies. © 2017 The Author(s).

  10. Lift : Special Needs Transportation in Portland, Oregon

    Science.gov (United States)

    1978-01-01

    The report covers Portland, Oregon's Special Needs Transportation (SNT) project - the Lift - during its first year of operation. The purposes of this UMTA Service and Methods Demonstration (SMD) is to: (1) test a transit operator's ability to provide...

  11. Asymmetric Gepner models III. B-L lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2011-06-21

    In the same spirit as heterotic weight lifting, B-L lifting is a way of replacing the superfluous and ubiquitous U(1){sub B-L} with something else with the same modular properties, but different conformal weights and ground state dimensions. This method works in principle for all variants of (2,2) constructions, such as orbifolds, Calabi-Yau manifolds, free bosons and fermions and Gepner models, since it only modifies the universal SO(10)xE{sub 8} part of the CFT. However, it can only yield chiral spectra if the 'internal' sector of the theory provides a simple current of order 5. Here we apply this new method to Gepner models. Including exceptional invariants, 86 of them have the required order 5 simple current, and 69 of these yield chiral spectra. Three family spectra occur abundantly.

  12. Analytical prediction of fuel assembly spacer grid loss coefficient

    International Nuclear Information System (INIS)

    Lim, J. S.; Nam, K. I.; Park, S. K.; Kwon, J. T.; Park, W. J.

    2002-01-01

    The analytical prediction model of the fuel assembly spacer grid pressure loss coefficient has been studied. The pressure loss of gap between the test section wall and spacer grid was separated from the current model and the different friction drag coefficient on spacer straps from high Reynolds number region were used to low Reynolds number region. The analytical model has been verified based on the hydraulic pressure drop test results for the spacer grids of three types for 5x5, 16x16(or 17x17) arrays. The analytical model predicts the pressure loss coefficients obtained from test results within the maximum errors of 12% and 7% for 5x5 test bundle and full size bundle, respectively, at Reynolds number 500,000 of the core operating condition. This result shows that the analytical model can be used for research and design change of the nuclear fuel assembly

  13. The effect of lift teams on kinematics and muscle activity of the upper extremity and trunk in bricklayers.

    Science.gov (United States)

    Anton, Dan; Mizner, Ryan L; Hess, Jennifer A

    2013-04-01

    Workplace-simulation study using a crossover design. To evaluate the effect of lift teams on trunk and upper extremity kinematics and muscle activity among bricklayers. Healthcare practitioners often instruct individuals with work-related musculoskeletal disorders in proper lifting techniques. Bricklayers are especially affected by lifting-related musculoskeletal disorders. Lift teams are a possible intervention for reducing exposure to heavy lifting. Eighteen apprentice bricklayers constructed walls with concrete blocks alone (1 person) and in 2-person lift teams. Peak shoulder and trunk kinematics and normalized mean surface electromyography of the upper trapezius, lumbar paraspinals, and flexor forearm muscles were collected bilaterally. Differences between construction methods and rows 1, 3, and 6 of the wall were calculated with repeated-measures analyses of variance. Working in lift teams required less trunk flexion (P = .008) at row 1 but more sidebending at row 6 (Pteam workers. Lift-team peak shoulder flexion was lower at row 3 (P = .002), whereas abduction was higher at rows 1 (P = .007) and 6 (Pteams at row 6 (Pteams at all rows (P≤.002). Working in lift teams may be a beneficial intervention for reducing trunk flexion and lumbar paraspinal activity when bricklayers work at heights between the knees and waist, but lift teams are not recommended at higher working heights.

  14. Drag and Lift Estimation from 3-D Velocity Field Data Measured by Multi-Plane Stereo PIV

    OpenAIRE

    加藤, 裕之; 松島, 紀佐; 上野, 真; 小池, 俊輔; 渡辺, 重哉; Kato, Hiroyuki; Matsushima, Kisa; Ueno, Makoto; Koike, Shunsuke; Watanabe, Shigeya

    2013-01-01

    For airplane design, it is crucial to have tools that can accurately predict airplane drag and lift. Usually drag and lift prediction methods are force measurement using wind tunnel balance. Unfortunately, balance data do not provide information contribution of airplane to components to drag and lift for more precise and competitive airplane design. To obtain such information, a wake integration method for use drag and lift estimation was developed for use in wake survey data analysis. Wake s...

  15. Flow Control Research at NASA Langley in Support of High-Lift Augmentation

    Science.gov (United States)

    Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.

    2002-01-01

    The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.

  16. STRUCTURAL AND GEOMETRICAL ANALYSIS OF THE LIFTING MANIPULATORS FOR A GREEN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ioana POPESCU

    2015-12-01

    Full Text Available The lifting and getting off the bins, to and from the body of special waste trucks, by some planar linkage – manipulators are studied. These lifting manipulators are equipped with gripper systems in order to load and unload the bins. Several kinematical schemas of type mono– and bi-mobile manipulators are analyzed, these being driven by one or two linear actuators. The kinematical geometry of these planar manipulators by means of scale drawing of the kinematical schema is displayed. Two solutions for a better efficiency and a green environment have been proposed. Finally, a modeling and simulation case of the lifting manipulator is presented.

  17. Lifts of projective congruence groups, II

    DEFF Research Database (Denmark)

    Kiming, Ian

    2014-01-01

    We continue and complete our previous paper ``Lifts of projective congruence groups'' concerning the question of whether there exist noncongruence subgroups of  that are projectively equivalent to one of the groups  or . A complete answer to this question is obtained: In case of  such noncongruence...

  18. Effect of Kettlebell Lifting on Physical Condition of Future Mechanical Engineers

    Directory of Open Access Journals (Sweden)

    А. П. Конох

    2016-08-01

    Full Text Available The objective of the paper is to study the effect of exercises with kettlebell lifting elements on the physical condition of future mechanical engineers. Materials and methods. To address the tasks set, the study used the following research methods: theoretical analysis and collation of literary sources; implementation of a pilot program of physical education through kettlebell lifting in higher agricultural educational institutions; methods of mathematical statistics. Research results. The paper focuses on the relevant issue of theoretical and methodological support of the process of improving students' physical condition. The study has determined the effect of kettlebell lifting on the physical condition of the future mechanical engineers involved in maintenance and repair of agricultural equipment and machinery. Kettlebell lifting proves to provide good physical training, has a positive effect on the human body, and strengthens health in general. The research conducted gave grounds to determine that the level of the physical condition of the test group students is satisfactory on all indicators. This meets the requirements set before the future specialists. Conclusions. The study of the effectiveness of kettlebell lifting influence on the physical condition of the test group students yielded positive results. As a result, the training improves the performance of the students’ respiratory and cardiovascular systems, decreases their heart rate and blood pressure, enhances economization of the body systems performance at rest and at load, boosts the reserve capacity of these systems, reduces the recovery period after load, and improves the metabolic processes, which contributes to enhancing the organism tolerance to the unfavorable factors of the profession-related activity.

  19. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    Science.gov (United States)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  20. FDG-PET/CT and diffusion-weighted imaging for resected lung cancer: correlation of maximum standardized uptake value and apparent diffusion coefficient value with prognostic factors.

    Science.gov (United States)

    Usuda, Katsuo; Funasaki, Aika; Sekimura, Atsushi; Motono, Nozomu; Matoba, Munetaka; Doai, Mariko; Yamada, Sohsuke; Ueda, Yoshimichi; Uramoto, Hidetaka

    2018-04-09

    Diffusion-weighted magnetic resonance imaging (DWI) is useful for detecting malignant tumors and the assessment of lymph nodes, as FDG-PET/CT is. But it is not clear how DWI influences the prognosis of lung cancer patients. The focus of this study is to evaluate the correlations between maximum standardized uptake value (SUVmax) of FDG-PET/CT and apparent diffusion coefficient (ADC) value of DWI with known prognostic factors in resected lung cancer. A total of 227 patients with resected lung cancers were enrolled in this study. FEG-PET/CT and DWI were performed in each patient before surgery. There were 168 patients with adenocarcinoma, 44 patients with squamous cell carcinoma, and 15 patients with other cell types. SUVmax was a factor that was correlated to T factor, N factor, or cell differentiation. ADC of lung cancer was a factor that was not correlated to T factor, or N factor. There was a significantly weak inverse relationship between SUVmax and ADC (Correlation coefficient r = - 0.227). In analysis of survival, there were significant differences between the categories of sex, age, pT factor, pN factor, cell differentiation, cell type, and SUVmax. Univariate analysis revealed that SUVmax, pN factor, age, cell differentiation, cell type, sex, and pT factor were significant factors. Multivariate analysis revealed that SUVmax and pN factor were independent significant prognostic factors. SUVmax was a significant prognostic factor that is correlated to T factor, N factor, or cell differentiation, but ADC was not. SUVmax may be more useful for predicting the prognosis of lung cancer than ADC values.

  1. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris during Flapping Flight.

    Directory of Open Access Journals (Sweden)

    Oksana Stalnov

    Full Text Available We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion.

  2. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight.

    Science.gov (United States)

    Stalnov, Oksana; Ben-Gida, Hadar; Kirchhefer, Adam J; Guglielmo, Christopher G; Kopp, Gregory A; Liberzon, Alexander; Gurka, Roi

    2015-01-01

    We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion.

  3. 78 FR 3356 - Airworthiness Directives; Various Aircraft Equipped With Wing Lift Struts

    Science.gov (United States)

    2013-01-16

    ...) of this AD, inspect the wing lift strut forks for cracks using magnetic particle procedures, such as... for Non-destructive Testing, or MIL-STD-410. (i) If no external corrosion is found on any wing lift..., the surface should be sanded or polished smooth before testing to assure a consistent and smooth...

  4. A nonlinear dynamics of trunk kinematics during manual lifting tasks.

    Science.gov (United States)

    Khalaf, Tamer; Karwowski, Waldemar; Sapkota, Nabin

    2015-01-01

    Human responses at work may exhibit nonlinear properties where small changes in the initial task conditions can lead to large changes in system behavior. Therefore, it is important to study such nonlinearity to gain a better understanding of human performance under a variety of physical, perceptual, and cognitive tasks conditions. The main objective of this study was to investigate whether the human trunk kinematics data during a manual lifting task exhibits nonlinear behavior in terms of determinist chaos. Data related to kinematics of the trunk with respect to the pelvis were collected using Industrial Lumbar Motion Monitor (ILMM), and analyzed applying the nonlinear dynamical systems methodology. Nonlinear dynamics quantifiers of Lyapunov exponents and Kaplan-Yorke dimensions were calculated and analyzed under different task conditions. The study showed that human trunk kinematics during manual lifting exhibits chaotic behavior in terms of trunk sagittal angular displacement, velocity and acceleration. The findings support the importance of accounting for nonlinear dynamical properties of biomechanical responses to lifting tasks.

  5. NGA-West 2 GMPE average site coefficients for use in earthquake-resistant design

    Science.gov (United States)

    Borcherdt, Roger D.

    2015-01-01

    Site coefficients corresponding to those in tables 11.4–1 and 11.4–2 of Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers (Standard ASCE/SEI 7-10) are derived from four of the Next Generation Attenuation West2 (NGA-W2) Ground-Motion Prediction Equations (GMPEs). The resulting coefficients are compared with those derived by other researchers and those derived from the NGA-West1 database. The derivation of the NGA-W2 average site coefficients provides a simple procedure to update site coefficients with each update in the Maximum Considered Earthquake Response MCER maps. The simple procedure yields average site coefficients consistent with those derived for site-specific design purposes. The NGA-W2 GMPEs provide simple scale factors to reduce conservatism in current simplified design procedures.

  6. Lift, Drag, Static Stability, and Buffet Boundaries of a Model of the McDonnell F3H-1N Airplane at Mach Numbers from 0.40 to 1.27, TED No. NACA DE 351

    Science.gov (United States)

    Crabill, Norman L.

    1956-01-01

    The National Advisory Committee for Aeronautics has conducted a flight test of a model approximating the McDonnell F3H-lN airplane configuration to determine its pitch-up and buffet boundaries, as well as the usual longitudinal stability derivatives obtainable from the pulsed- tail technique. The test was conducted by the freely flying rocket- boosted model technique developed at the Langley Laboratory; results were obtained at Mach numbers from 0.40 to 1.27 at corresponding Reynolds numbers of 2.6 x 10(exp 6) and 9.0 x 10(exp 6). The phenomena of pitch-up, buffet, and maximum lift were encountered at Mach numbers between 0.42 and 0.85. The lift-curve slope and wing-root bending-moment slope increased with increasing angle of attack, whereas the static stability decreased with angle of attack at subsonic speeds and increased at transonic speeds. There was little change in trim at low lift at transonic speeds.

  7. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 1: Technology flight vehicle definition

    Science.gov (United States)

    Obrien, W. J.

    1976-01-01

    Concept design is presented for two types of lift/cruise fan technology V/STOL aircraft, turbotip fans and the other using mechanically driven fans. The turbotip research technology aircraft reflects maximum usage of existing airframe components. The propulsion system consists of three turbotip fans pneumatically interconnected to three gas generators. Thrust modulation is accomplished by use of energy transfer and control system and thrust reduction modulation. This system can also be operated in the two engine/three fan mode. The mechanical RTA is virtually identical to the turbotip RTA with the exceptions that a different propulsion system and aft fuselage/tail are used. Both aircraft meet or exceed all of the mission performance guidelines and reflect a low cost, low risk approach.

  8. Carbon dioxide degassing in fresh and saline water. II: Degassing performance of an air-lift

    DEFF Research Database (Denmark)

    Moran, Damian

    2010-01-01

    A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate, and c...... for any water type (i.e. temperature, alkalinity, salinity and influent CO2 concentration).......A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate......, and could be adjusted to three lifting heights: 11, 16 and 25 cm. The gas to liquid ratio (G:L) was high (1.9–2.0) at low water discharge rates (Qw) and represented the initial input energy required to raise the water up the vertical riser section to the discharge pipe. The air-lift increased in pumping...

  9. Tire-to-Surface Friction-Coefficient Measurements with a C-123B Airplane on Various Runway Surfaces

    Science.gov (United States)

    Sawyer, Richard H.; Kolnick, Joseph J.

    1959-01-01

    An investigation was conducted to obtain information on the tire-to-surface friction coefficients available in aircraft braking during the landing run. The tests were made with a C-123B airplane on both wet and dry concrete and bituminous pavements and on snow-covered and ice surfaces at speeds from 12 to 115 knots. Measurements were made of the maximum (incipient skidding) friction coefficient, the full-skidding (locked wheel) friction coefficient, and the wheel slip ratio during braking.

  10. Lifting devices in nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The regulation applies to lifts, cranes, winches, rail trolleys, load pick-up equipment and fuel charging machines for LWR reactors, as far as these are employed in plants for the production or fission of nuclear fuels or for the reprocessing of spent nuclear fuels or for the storage or other uses of nuclear fuels. (orig.) 891 HP [de

  11. Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight

    Science.gov (United States)

    Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.

    2017-12-01

    Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.

  12. Reasons for the appearance of pulsations in gas-lift wells and methods of eliminating them

    Energy Technology Data Exchange (ETDEWEB)

    Sibirev, A P; Grekhov, V V; Leonov, V A; Shigapov, R R

    1985-01-01

    It is shown that the main reason for pulsation in the gas-lift well output is lack of coordinated operation between the bed and the gas-lift lifter. A plan is suggested for making decisions to conduct work to detect and eliminate pulsations in the gas-lift well output which permit elimination of the pulsation in the shortest time and with the least outlays.

  13. Gas lift for annular flow in San Andres well No. 24

    Energy Technology Data Exchange (ETDEWEB)

    Zenteno, E B

    1968-10-01

    Gas lift is a method of artificial lift which utilizes the expansive energy of compressed gas to lift fluid from the formation up to the surface separation installation. A wide range of operations exists for gas lifting. For making a decision regarding the use of such a method, the following steps are recommended: (1) establish the well fluid characteristics, the productivity index, the oil/water relationship, the fluid properties, the diameter of the tubing and similar data; (2) for the range of production desired, calculate a pressure gradient curve for the fluid below the point of gas injection; (3) supposing there is a difference in the relationship of injected gas to oil, calculate a pressure gradient curve of the fluid above the point of gas injection (this assumes a constant surface discharge pressure); and (4) simultaneously solve (2) and (3), which will permit determination of the variation according to depth of the point of gas injection, together with the pressure of the injected gas, and also the relation between the injected gas and the oil. Finally, calculate the theoretical potential necessary for the desired compression of the gas to such surface pressure that it will discharge at an injection pressure that will produce optimized conditions for development of the desired production.

  14. Two years' outcome of thread lifting with absorbable barbed PDO threads: Innovative score for objective and subjective assessment.

    Science.gov (United States)

    Ali, Yasser Helmy

    2018-02-01

    Thread-lifting rejuvenation procedures have evolved again, with the development of absorbable threads. Although they have gained popularity among plastic surgeons and dermatologists, very few articles have been written in literature about absorbable threads. This study aims to evaluate two years' outcome of thread lifting using absorbable barbed threads for facial rejuvenation. Prospective comparative stud both objectively and subjectively and follow-up assessment for 24 months. Thread lifting for face rejuvenation has significant long-lasting effects that include skin lifting from 3-10 mm and high degree of patients' satisfaction with less incidence rate of complications, about 4.8%. Augmented results are obtained when thread lifting is combined with other lifting and rejuvenation modalities. Significant facial rejuvenation is achieved by thread lifting and highly augmented results are observed when they are combined with Botox, fillers, and/or platelet rich plasma (PRP) rejuvenations.

  15. DCCA cross-correlation coefficients reveals the change of both synchronization and oscillation in EEG of Alzheimer disease patients

    Science.gov (United States)

    Chen, Yingyuan; Cai, Lihui; Wang, Ruofan; Song, Zhenxi; Deng, Bin; Wang, Jiang; Yu, Haitao

    2018-01-01

    Alzheimer's disease (AD) is a degenerative disorder of neural system that affects mainly the older population. Recently, many researches show that the EEG of AD patients can be characterized by EEG slowing, enhanced complexity of the EEG signals, and EEG synchrony. In order to examine the neural synchrony at multi scales, and to find a biomarker that help detecting AD in diagnosis, detrended cross-correlation analysis (DCCA) of EEG signals is applied in this paper. Several parameters, namely DCCA coefficients in the whole brain, DCCA coefficients at a specific scale, maximum DCCA coefficient over the span of all time scales and the corresponding scale of such coefficients, were extracted to examine the synchronization, respectively. The results show that DCCA coefficients have a trend of increase as scale increases, and decreases as electrode distance increases. Comparing DCCA coefficients in AD patients with healthy controls, a decrease of synchronization in the whole brain, and a bigger scale corresponding to maximum correlation is discovered in AD patients. The change of max-correlation scale may relate to the slowing of oscillatory activities. Linear combination of max DCCA coefficient and max-correlation scale reaches a classification accuracy of 90%. From the above results, it is reasonable to conclude that DCCA coefficient reveals the change of both oscillation and synchrony in AD, and thus is a powerful tool to differentiate AD patients from healthy elderly individuals.

  16. Evaluation of complex lifting index in Ahvaz Soft Drink Industries using equation of NIOSH

    Directory of Open Access Journals (Sweden)

    M Amozadeh

    2005-10-01

    Full Text Available Background and Aim: Most of normal activities and jobs requires handling of load with the helpof hands and body which is called as "Manual Materials Handling". Manual handling whether forlong of short time causes problems as tear, break, tension in cardiovascular system as increase ofheart pulse and blood hypertension, muscles tire and muscles-bones disorders specially for spinalcords and finally to the back. For instance a report from Britain proved that 61% accidents causingpremature retirement (12.5% of total accidents was about back injury for which 74% was due tolifting and handling.Method: In this research complex lifting index is evaluated in Ahwaz soft drink industries throughequation of National Institute for Occupational Safety and Health (NIOSH 1994 of Units State ofAmerica. Section for handling empty soft drink boxes toward washing area was selected asworking station for this research. Boxes are piled up for 5 pieces and the worker must put them onthe conveyance belt one by one. Since there is complex manual handling system in this stationthus lifting index after determination of NIOSH equation parameters is calculated in the form ofcomplex and then interpreted on the basis of advice of NIOSH.Results:First stage is for determination of (FIRWL and Frequency Independent Lifting Index.The results proved that FIRWL for every box of soft drinks is higher than weight of the land(FIRWL>1 and the rate of Frequency Independent Lifting Index for every floor is less than 1(FILI 1. Lifting index for every floor of soft drink boxes except fifth floor is less than 1.(STLI1to3 1. This proves physical stressof worker in fifth floor. Third stage is for determination of Complex Lifting Index (CLI. Indeedthis index shows cumulative effects of lifting resulted from 5 floors of soft drink boxes. Based onobtained results this index is 2.68. (CLI 2.68 which proves physical stress among the workersduring handling soft drink boxes.Conclusion: In this

  17. Experimental verification of the new RISOe-A1 airfoil family for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, K S; Fuglsang, P; Antoniou, I [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper concerns the experimental verification of a new airfoil family for wind turbines. The family consist of airfoils in the relative thickness range from 15% to 30%. Three airfoils, Risoe-A1-18, Risoe-A1-21, and Risoe-A1-24 were tested in a wind tunnel. The verification consisted of both static and dynamic measurements. Here, the static results are presented for a Reynolds number of 1.6x10{sup 6} for the following airfoil configurations: smooth surface (all three airfoils) and Risoe-A1-24 mounted with leading edge roughness, vortex generators, and Gurney-flaps, respectively. All three airfoils have constant lift curve slope and almost constant drag coefficient until the maximum lift coefficient of about 1.4 is reached. The experimental results are compared with corresponding computational from the general purpose flow solver, EllipSys2D, showing good agreement. (au)

  18. Vertical Lift by Series Hybrid Power, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A major market for vertical lift aircraft is in urban operations, primarily for police and electronic news gathering (typically a Bell 206 or a Eurocopter AS350)....

  19. The design of steel string crane with lifting capacity 10 tons

    International Nuclear Information System (INIS)

    Syamsurrijal Ramdja

    2007-01-01

    The steel string (sling) used for lift Crane of type of Overhead Travelling Crane, with capacities lifting 10 ton are designed. If compared to other string type, string of steel have some excellence. At this design, election of type of string become primary and the factor of safety become prima facie matter with pursuant to up to date standard. From made of design, is hence got by specification and age of steel string. (author)

  20. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

    OpenAIRE

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-01

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatabilit...