The effect of knee joint angle on torque control.
Sosnoff, Jacob J; Voudrie, Stefani J; Ebersole, Kyle T
2010-01-01
The purpose of the author's investigation was to examine the effect of knee joint angle on torque control of the quadriceps muscle group. In all, 12 healthy adults produced maximal voluntary contractions and submaximal torque (15, 30, and 45% MVC [maximal voluntary contraction]) at leg flexion angles of 15 degrees , 30 degrees , 60 degrees , and 90 degrees below the horizontal plane. As expected, MVC values changed with respect to joint angle with maximum torque output being greatest at 60 degrees and least at 15 degrees . During the submaximal tasks, participants appropriately scaled their torque output to the required targets. Absolute variability (i.e., standard deviation) of torque output was greatest at 60 degrees and 90 degrees knee flexion. However, relative variability as indexed by coefficient of variation (CV) decreased as joint angle increased, with the greatest CV occurring at 15 degrees . These results are congruent with the hypothesis that joint angle influences the control of torque.
Globographic visualisation of three dimensional joint angles.
Baker, Richard
2011-07-07
Three different methods for describing three dimensional joint angles are commonly used in biomechanics. The joint coordinate system and Cardan/Euler angles are conceptually quite different but are known to represent the same underlying mathematics. More recently the globographic method has been suggested as an alternative and this has proved particularly attractive for the shoulder joint. All three methods can be implemented in a number of ways leading to a choice of angle definitions. Very recently Rab has demonstrated that the globographic method is equivalent to one implementation of the joint coordinate system. This paper presents a rigorous analysis of the three different methods and proves their mathematical equivalence. The well known sequence dependence of Cardan/Euler is presented as equivalent to configuration dependence of the joint coordinate system and orientation dependence of globographic angles. The precise definition of different angle sets can be easily visualised using the globographic method using analogues of longitude, latitude and surface bearings with which most users will already be familiar. The method implicitly requires one axis of the moving segment to be identified as its principal axis and this can be extremely useful in helping define the most appropriate angle set to describe the orientation of any particular joint. Using this technique different angle sets are considered to be most appropriate for different joints and examples of this for the hip, knee, ankle, pelvis and axial skeleton are outlined.
Maximum Atmospheric Entry Angle for Specified Retrofire Impulse
T. N. Srivastava
1969-07-01
Full Text Available Maximum atmospheric entry angles for vehicles initially moving in elliptic orbits are investigated and it is shown that tangential retrofire impulse at the apogee results in the maximum entry angle. Equivalence of maximizing the entry angle and minimizing the retrofire impulse is also established.
Knee and ankle joint torque-angle relationships of multi-joint leg extension.
Hahn, Daniel; Olvermann, Matthias; Richtberg, Jan; Seiberl, Wolfgang; Schwirtz, Ansgar
2011-07-28
The force-length-relation (F-l-r) is an important property of skeletal muscle to characterise its function, whereas for in vivo human muscles, torque-angle relationships (T-a-r) represent the maximum muscular capacity as a function of joint angle. However, since in vivo force/torque-length data is only available for rotational single-joint movements the purpose of the present study was to identify torque-angle-relationships for multi-joint leg extension. Therefore, inverse dynamics served for calculation of ankle and knee joint torques of 18 male subjects when performing maximum voluntary isometric contractions in a seated leg press. Measurements in increments of 10° knee angle from 30° to 100° knee flexion resulted in eight discrete angle configurations of hip, knee and ankle joints. For the knee joint we found an ascending-descending T-a-r with a maximum torque of 289.5° ± 43.3 Nm, which closely matches literature data from rotational knee extension. In comparison to literature we observed a shift of optimum knee angle towards knee extension. In contrast, the T-a-r of the ankle joint vastly differed from relationships obtained for isolated plantar flexion. For the ankle T-a-r derived from multi-joint leg extension subjects operated over different sections of the force-length curve, but the ankle T-a-r derived from isolated joint efforts was over the ascending limb for all subjects. Moreover, mean maximum torque of 234.7 ± 56.6 Nm exceeded maximal strength of isolated plantar flexion (185.7 ± 27.8 Nm). From these findings we conclude that muscle function between isolated and more physiological multi-joint tasks differs. This should be considered for ergonomic and sports optimisation as well as for modelling and simulation of human movement.
Transferability between Isolated Joint Torques and a Maximum Polyarticular Task: A Preliminary Study
Costes Antony
2016-04-01
Full Text Available The aims of this study were to determine if isolated maximum joint torques and joint torques during a maximum polyarticular task (i.e. cycling at maximum power are correlated despite joint angle and velocity discrepancies, and to assess if an isolated joint-specific torque production capability at slow angular velocity is related to cycling power. Nine cyclists completed two different evaluations of their lower limb maximum joint torques. Maximum Isolated Torques were assessed on isolated joint movements using an isokinetic ergometer and Maximum Pedalling Torques were calculated at the ankle, knee and hip for flexion and extension by inverse dynamics during cycling at maximum power. A correlation analysis was made between Maximum Isolated Torques and respective Maximum Pedalling Torques [3 joints x (flexion + extension], showing no significant relationship. Only one significant relationship was found between cycling maximum power and knee extension Maximum Isolated Torque (r=0.68, p<0.05. Lack of correlations between isolated joint torques measured at slow angular velocity and the same joint torques involved in a polyarticular task shows that transfers between both are not direct due to differences in joint angular velocities and in mono-articular versus poly articular joint torque production capabilities. However, this study confirms that maximum power in cycling is correlated with slow angular velocity mono-articular maximum knee extension torque.
Rubber hand illusion affects joint angle perception.
Martin V Butz
Full Text Available The Rubber Hand Illusion (RHI is a well-established experimental paradigm. It has been shown that the RHI can affect hand location estimates, arm and hand motion towards goals, the subjective visual appearance of the own hand, and the feeling of body ownership. Several studies also indicate that the peri-hand space is partially remapped around the rubber hand. Nonetheless, the question remains if and to what extent the RHI can affect the perception of other body parts. In this study we ask if the RHI can alter the perception of the elbow joint. Participants had to adjust an angular representation on a screen according to their proprioceptive perception of their own elbow joint angle. The results show that the RHI does indeed alter the elbow joint estimation, increasing the agreement with the position and orientation of the artificial hand. Thus, the results show that the brain does not only adjust the perception of the hand in body-relative space, but it also modifies the perception of other body parts. In conclusion, we propose that the brain continuously strives to maintain a consistent internal body image and that this image can be influenced by the available sensory information sources, which are mediated and mapped onto each other by means of a postural, kinematic body model.
Maximum speeds and alpha angles of flowing avalanches
McClung, David; Gauer, Peter
2016-04-01
um/√H0--; um/√S0- are greater than 2.0 and 1.3 respectively. In addition, to: um/√H0--; um/√S0--, we collected 105 companion values of the αangle for runout positions defined by tanα = H0/X0where X0is horizontal reach calculated from start position to stop position of the tip of the avalanches. The αangle is a very simple measure of runout introduced by Scheidegger (1973) for rock avalanches. McClung and Mears (1991) collected αangles from more than 500 paths with maximum runout estimated for return periods on the order of 100 years and the range of values was: 18o - 42owhich is close to that here: (20o - 45o). The results showed that runout increases(α decreases) with maximum speed but there is considerable scatter in the relationship. The Spearman rank correlation is -0.54 (p < 0.005).Rank correlations of α vs. um/√S0-;um/√H0- are - 0.44;.- 0.56 (both with p < 0.005
Physiological alterations of maximal voluntary quadriceps activation by changes of knee joint angle.
Becker, R; Awiszus, F
2001-05-01
The purpose of this study was to investigate the influence of different angles of the knee joint on voluntary activation of the quadriceps muscle, estimating the ability of a subject to activate a muscle maximally by means of voluntary contraction. Isometric torque measurement was performed on 6 healthy subjects in 5 degrees intervals between 30 degrees and 90 degrees of knee joint flexion. Superimposed twitches at maximal voluntary contraction (MVC) and at a level of 60% and 40% of the MVC were applied and the voluntary activation estimated. At between 30 degrees and 75 degrees of knee flexion, the maximal extension torque increased at an average rate of 2.67 +/- 0.6 Nm/degree, followed by a decline with further flexion. However, throughout the joint-angle range tested, voluntary activation increased on average by 0.37%/degree with a maximum at 90 degrees of flexion. Due to the influence of joint position it is not possible to generalize results obtained at the knee joint angle of 90 degrees of flexion, which is usually used for the quadriceps twitch-interpolation technique. Consequently, it is useful to investigate voluntary activation deficits in knee joint disorders at a range of knee joint angles that includes, in particular, the more extended joint angles used frequently during daily activity.
determination of determination of optimal tilt angle for maximum ...
eobe
Keywords: Energy output, photovoltaic module, best tilt angle, solar radiation, sunshine hours, ambient temperature. 1. .... at any given time is vital in the design of a PV system. ..... Panels at Different Temperatures and Tilt Angles,”. ISESCO ...
Narici, M V; Binzoni, T; Hiltbrand, E; Fasel, J; Terrier, F; Cerretelli, P
1996-10-01
1. Human gastrocnemius medialis architecture was analysed in vivo, by ultrasonography, as a function of joint angle at rest and during voluntary isometric contractions up to the maximum force (MCV). maximum force (MVC). 2. At rest, as ankle joint angle increased from 90 to 150 deg, pennation increased from 15.8 to 27.7 deg, fibre length decreased from 57.0 to 34.0 mm and the physiological cross-sectional area (PCSA) increased from 42.1 to 63.5 cm2. 3. From rest to MVC, at a fixed ankle joint angle of 110 deg, pennation angle increased from 15.5 to 33.6 deg and fibre length decreased from 50.8 to 32.9 mm, with no significant change in the distance between the aponeuroses. As a result of these changes the PCSA increased by 34.8%. 4. Measurements of pennation angle, fibre length and distance between the aponeuroses of the gastrocnemius medialis were also performed by ultrasound on a cadaver leg and found to be in good agreement with direct anatomical measurements. 5. It is concluded that human gastrocnemius medialis architecture is significantly affected both by changes of joint angle at rest and by isometric contraction intensity. The remarkable shortening observed during isometric contraction suggests that, at rest, the gastrocnemius muscle and tendon are considerably slack. The extrapolation of muscle architectural data obtained from cadavers to in vivo conditions should be made only for matching muscle lengths.
Estimation of Upper Limb Joint Angle Using Surface EMG Signal
Yee Mon Aung
2013-10-01
Full Text Available In the development of robot-assisted rehabilitation systems for upper limb rehabilitation therapy, human electromyogram (EMG is widely used due to its ability to detect the user intended motion. EMG is one kind of biological signal that can be recorded to evaluate the performance of skeletal muscles by means of a sensor electrode. Based on recorded EMG signals, user intended motion could be extracted via estimation of joint torque, force or angle. Therefore, this estimation becomes one of the most important factors to achieve accurate user intended motion. In this paper, an upper limb joint angle estimation methodology is proposed. A back propagation neural network (BPNN is developed to estimate the shoulder and elbow joint angles from the recorded EMG signals. A Virtual Human Model (VHM is also developed and integrated with BPNN to perform the simulation of the estimated angle. The relationships between sEMG signals and upper limb movements are observed in this paper. The effectiveness of our developments is evaluated with four healthy subjects and a VHM simulation. The results show that the methodology can be used in the estimation of joint angles based on EMG.
Joint modelling of annual maximum drought severity and corresponding duration
Tosunoglu, Fatih; Kisi, Ozgur
2016-12-01
In recent years, the joint distribution properties of drought characteristics (e.g. severity, duration and intensity) have been widely evaluated using copulas. However, history of copulas in modelling drought characteristics obtained from streamflow data is still short, especially in semi-arid regions, such as Turkey. In this study, unlike previous studies, drought events are characterized by annual maximum severity (AMS) and corresponding duration (CD) which are extracted from daily streamflow of the seven gauge stations located in Çoruh Basin, Turkey. On evaluation of the various univariate distributions, the Exponential, Weibull and Logistic distributions are identified as marginal distributions for the AMS and CD series. Archimedean copulas, namely Ali-Mikhail-Haq, Clayton, Frank and Gumbel-Hougaard, are then employed to model joint distribution of the AMS and CD series. With respect to the Anderson Darling and Cramér-von Mises statistical tests and the tail dependence assessment, Gumbel-Hougaard copula is identified as the most suitable model for joint modelling of the AMS and CD series at each station. Furthermore, the developed Gumbel-Hougaard copulas are used to derive the conditional and joint return periods of the AMS and CD series which can be useful for designing and management of reservoirs in the basin.
Maximum Likelihood Joint Tracking and Association in Strong Clutter
Leonid I. Perlovsky
2013-01-01
Full Text Available We have developed a maximum likelihood formulation for a joint detection, tracking and association problem. An efficient non-combinatorial algorithm for this problem is developed in case of strong clutter for radar data. By using an iterative procedure of the dynamic logic process “from vague-to-crisp” explained in the paper, the new tracker overcomes the combinatorial complexity of tracking in highly-cluttered scenarios and results in an orders-of-magnitude improvement in signal-to-clutter ratio.
Maximum Likelihood Joint Tracking and Association in Strong Clutter
Leonid I. Perlovsky
2013-01-01
Full Text Available We have developed a maximum likelihood formulation for a joint detection, tracking and association problem. An efficient non‐combinatorial algorithm for this problem is developed in case of strong clutter for radar data. By using an iterative procedure of the dynamic logic process “from vague‐to‐crisp” explained in the paper, the new tracker overcomes the combinatorial complexity of tracking in highly‐cluttered scenarios and results in an orders‐of‐magnitude improvement in signal‐ to‐clutter ratio.
Variability and Similarity of Gait as Evaluated by Joint Angles
Yang, Sylvia X M; Larsen, Peter Kastmand; Alkjær, Tine
2014-01-01
Closed-circuit television (CCTV) footage is used in criminal investigations to compare perpetrators with suspects. Usually, incomplete gait cycles are collected, making evidential gait analysis challenging. This study aimed to analyze the discriminatory power of joint angles throughout a gait cycle...
Maximum super angle optimization method for array antenna pattern synthesis
Wu, Ji; Roederer, A. G
1991-01-01
Different optimization criteria related to antenna pattern synthesis are discussed. Based on the maximum criteria and vector space representation, a simple and efficient optimization method is presented for array and array fed reflector power pattern synthesis. A sector pattern synthesized by a 20...
IMU-Based Joint Angle Measurement for Gait Analysis
Thomas Seel
2014-04-01
Full Text Available This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1 joint axis and position identification; and (2 flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°.
IMU-based joint angle measurement for gait analysis.
Seel, Thomas; Raisch, Jörg; Schauer, Thomas
2014-04-16
This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°.
Revisiting the Force-Joint Angle Relationship After Eccentric Exercise.
Welsh, Molly C; Allen, David L; Batliner, Matthew E; Byrnes, William C
2015-12-01
The purpose of this study was to evaluate force-angle curve fitting techniques pre-eccentric exercise, quantify changes in curve characteristics postexercise, and examine the relationship between curve changes and markers of muscle damage. Fourteen males unaccustomed to eccentric exercise performed 60 eccentric muscle actions of the elbow flexors. Maximal voluntary isometric force was measured throughout a range of angles pre- (Pre1 and Pre2), immediately post (IP), and 1, 2, 4, and 7 days postexercise. Force-angle curves for each visit were constructed using second-order polynomials. Changes in curve characteristics (optimal angle, peak force, curve height), range of motion, soreness, and creatine kinase activity were quantified. Optimal joint angle and force at optimal angle were significantly correlated from Pre1 to Pre2 (ICC = 0.821 and 0.979, respectively). Optimal angle was significantly right shifted (p = 0.035) by 10.4 ± 12.9° from Pre2 to IP and was restored by 1 day post exercise. Interestingly, the r value for curve fit was significantly decreased (p exercise (r = 0.750). Curve height was significantly decreased (39%) IP and restored to pre-exercise height by 4 days postexercise. There was no correlation between optimal angle or curve height and other damage markers. In conclusion, force-angle relationships can be accurately described using second-order polynomials. After eccentric exercise, the force-angle curve is flattened and shifted (downward and rightward), but these changes are not correlated to other markers of muscle damage. Changes in the force-angle relationship are multifaceted, but determining the physiological significance of these changes requires further investigation.
Shoulder and elbow joint angle tracking with inertial sensors.
El-Gohary, Mahmoud; McNames, James
2012-09-01
Wearable inertial systems have recently been used to track human movement in and outside of the laboratory. Continuous monitoring of human movement can provide valuable information relevant to individuals' level of physical activity and functional ability. Traditionally, orientation has been calculated by integrating the angular velocity from gyroscopes. However, a small drift in the measured velocity leads to increasing integration error over time. To compensate that drift, complementary data from accelerometers are normally fused into tracking systems using the Kalman or extended Kalman filter. In this study, we combine kinematic models designed for control of robotic arms with state-space methods to continuously estimate the angles of human shoulder and elbow using two wearable inertial measurement units. We use the unscented Kalman filter to implement the nonlinear state-space inertial tracker. Shoulder and elbow joint angles obtained from 8 subjects using our inertial tracker were compared to the angles obtained from an optical-tracking reference system. On average, there was an RMS angle error of less than 8° for all shoulder and elbow angles. The average correlation coefficient for all movement tasks among all subjects was r ≥ 0.95 . This agreement between our inertial tracker and the optical reference system was obtained for both regular and fast-speed movement of the arm. The same method can be used to track movement of other joints.
Viehöfer, Arnd F; Snedeker, Jess G; Baumgartner, Daniel; Gerber, Christian
2016-06-01
Osteoarthritis (OA) of the glenohumeral joint constitutes the most frequent indication for nontraumatic shoulder joint replacement. Recently, a small critical shoulder angle (CSA) was found to be associated with a high prevalence of OA. This study aims to verify the hypothesis that a small CSA leads to higher glenohumeral joint reaction forces during activities of daily living than a normal CSA. A shoulder simulator with simulated deltoid (DLT), supraspinatus (SSP), infraspinatus/teres minor (ISP/TM), and subscapularis (SSC) musculotendinous units was constructed. The DLT wrapping on the humerus was simulated using a pulley that could be horizontally adjusted to simulate the 28° CSA found in OA or the 33° CSA found in disease-free shoulders. Over a range of motion between 6° and 82° of thoracohumeral abduction joint forces were measured using a six-axis load cell. An OA-associated CSA yielded higher net joint reaction forces than a normal CSA over the entire range of motion. The maximum difference of 26.4 N (8.5%) was found at 55° of thoracohumeral abduction. Our model thus suggests that a CSA typical for OA predisposes the glenohumeral joint to higher joint reaction forces and could plausibly play a role in joint overloading and development of OA. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1047-1052, 2016.
Optimum Projection Angle for Attaining Maximum Distance in a Rugby Place Kick
Nicholas P. Linthorne
2014-03-01
Full Text Available This study investigated the effect of projection angle on the distance attained in a rugby place kick. A male rugby player performed 49 maximum-effort kicks using projection angles of between 20 and 50°. The kicks were recorded by a video camera at 50 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity and projection angle of the ball. The player’s optimum projection angle was calculated by substituting a mathematical expression for the relationship between projection velocity and projection angle into the equations for the aerodynamic flight of a rugby ball. We found that the player’s calculated optimum projection angle (30.6°, 95% confidence limits ± 1.9° was in close agreement with his preferred projection angle (mean value 30.8°, 95% confidence limits ± 2.1°. The player’s calculated optimum projection angle was also similar to projection angles previously reported for skilled rugby players. The optimum projection angle in a rugby place kick is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased. Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle.
Blache, Yoann; Bobbert, Maarten; Argaud, Sebastien; Pairot de Fontenay, Benoit; Monteil, Karine M
2013-08-01
In experiments investigating vertical squat jumping, the HAT segment is typically defined as a line drawn from the hip to some point proximally on the upper body (eg, the neck, the acromion), and the hip joint as the angle between this line and the upper legs (θUL-HAT). In reality, the hip joint is the angle between the pelvis and the upper legs (θUL-pelvis). This study aimed to estimate to what extent hip joint definition affects hip joint work in maximal squat jumping. Moreover, the initial pelvic tilt was manipulated to maximize the difference in hip joint work as a function of hip joint definition. Twenty-two male athletes performed maximum effort squat jumps in three different initial pelvic tilt conditions: backward (pelvisB), neutral (pelvisN), and forward (pelvisF). Hip joint work was calculated by integrating the hip net joint torque with respect to θUL-HAT (WUL-HAT) or with respect to θUL-pelvis (WUL-pelvis). θUL-HAT was greater than θUL-pelvis in all conditions. WUL-HAT overestimated WULpelvis by 33%, 39%, and 49% in conditions pelvisF, pelvisN, and pelvisB, respectively. It was concluded that θUL-pelvis should be measured when the mechanical output of hip extensor muscles is estimated.
Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.
Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L
2016-09-01
Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.
A Multifunctional Joint Angle Sensor with Measurement Adaptability
Wei Quan
2013-11-01
Full Text Available The paper presents a multifunctional joint sensor with measurement adaptability for biological engineering applications, such as gait analysis, gesture recognition, etc. The adaptability is embodied in both static and dynamic environment measurements, both of body pose and in motion capture. Its multifunctional capabilities lay in its ability of simultaneous measurement of multiple degrees of freedom (MDOF with a single sensor to reduce system complexity. The basic working mode enables 2DOF spatial angle measurement over big ranges and stands out for its applications on different joints of different individuals without recalibration. The optional advanced working mode enables an additional DOF measurement for various applications. By employing corrugated tube as the main body, the sensor is also characterized as flexible and wearable with less restraints. MDOF variations are converted to linear displacements of the sensing elements. The simple reconstruction algorithm and small outputs volume are capable of providing real-time angles and long-term monitoring. The performance assessment of the built prototype is promising enough to indicate the feasibility of the sensor.
Three-dimensional finger joint angles by hand posture and object properties.
Lee, Kyung-Sun; Jung, Myung-Chul
2016-07-01
The objective of this study was to identify three-dimensional finger joint angles for various hand postures and object properties. Finger joint angles were measured using a VICON system for 10 participants while they pinched objects with two, three, four and five fingers and grasped them with five fingers. The objects were cylinders and square pillars with diameters of 2, 4, 6 and 8 cm and weights of 400, 800, 1400 and 1800 g. Hand posture and object size more significantly affected the joint flexion angles than did object shape and weight. Object shape affected only the metacarpophalangeal (MCP) joint angle of the index finger and the flexion angle of the MCP joint of the little finger. Larger flexion angles resulted when the hand posture was grasping with five fingers. The joint angle increased linearly as the object size decreased. This report provides fundamental information about the specific joint angles of the thumb and fingers. Practitioner Summary: Three-dimensional finger joint angles are of special interest in ergonomics because of their importance in handheld devices and musculoskeletal hand disorders. In this study, the finger joint angles corresponding to various hand postures and objects with different properties were determined.
Joint mean angle of arrival, angular and Doppler spreads estimation in macrocell environments
Rejeb, Nessrine Ben; Bousnina, Inès; Ben Salah, Mohamed Bassem; Samet, Abdelaziz
2014-12-01
In this paper, we propose a new low-complexity joint estimator of the mean angle of arrival (AoA), the angular spread (AS), and the maximum Doppler spread (DS) for single-input multiple-output (SIMO) wireless channel configurations in a macrocell environment. The non-line-of-sight (NLOS) case is considered. The space-time correlation matrix is used to jointly estimate the three parameters. Closed-form expressions are developed for the desired parameters using the modules and the phases of the cross-correlation coefficients. Simulation results show that our approach offers a better tradeoff between computational complexity and accuracy than the most recent estimators in the literature.
Effect of Fiber Orientation Angle on the Failure Mode of Pin Jointed Laminated Composite Plates
Kadir TURAN
2010-02-01
Full Text Available In this study, the major aim is to investigate change effects of fiber orientation angles on the failure loads and failure modes for the pin jointed laminated composite plates. In the analysis, laminated composite plates with epoxy matrix resin reinforced unidirectional carbon fibers are used. The ply arrangements are chosen [?0]4 and ?; fiber reinforced angle changes from 00 to 900 with 150 increments. The failure load and failure mode are analyzed experimentally and numerically. In the numerical analysis Ansys program is used. In the program, material properties are degraded using APDL code which is written for progressive failure analysis and contains Hashin failure criteria for laminated composite plates. In the experimental study, the maximum failure load for [150]4 laminae cofiguration, 749.917 N and minimum failure load for [600]4, 467.483 N laminae configuration are obtained. A good agreement between experimental and numerical solution is obtained.
Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower
Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Bamashmos, Khaled H.
2016-03-01
Transmission towers are tall structures, usually a steel lattice tower, used to support an overhead power line. Usually, transmission towers are analyzed as frame-truss systems and the members are assumed to be pin-connected without explicitly considering the effects of joints on the tower behavior. In this research, an engineering example of joint will be analyzed with the consideration of the joint detailing to investigate how it will affect the tower analysis. A static analysis using STAAD Pro was conducted to indicate the joint with the maximum stress. This joint will then be explicitly analyzed in ANSYS using the Finite Element Method. Three approaches were used in the software which are the simple plate model, bonded contact with no bolts, and beam element bolts. Results from the joint analysis show that stress values increased with joint details consideration. This proves that joints and connections play an important role in the distribution of stress within the transmission tower.
Musa Atar
2010-02-01
Full Text Available The goal of this study was to determine the effects of different joint angles and adhesives on diagonal tension performances of the box-type furniture made from solid wood and medium density fiberboard (MDF. After drilling joints of 75º, 78º, 81º, 84º, and 87º degrees on Oriental beech, European oak, Scotch pine, and MDF samples, a diagonal tensile test was applied on corners glued with polyvinyl acetate (PVAc and polyurethane (D-VTKA = Desmodur-Vinyl Trieketonol Acetate according to ASTM D 1037 standard. With reference to the obtained results, the highest tensile strength was obtained in European oak with PVAc glue and joint angle of 84º, while the lowest value was obtained in MDF with D-VTKA glue and joint angle of 75º. Considering the interaction of wood, adhesive, and joint angle, the highest tensile strength was obtained in European oak with joint angle of 81º and D-VTKA glue (1.089 N.mm-2, whereas the lowest tensile strength was determined in MDF with joint angle of 75º and PVAc glue (0.163 N.mm-2. Therefore, PVAc as glue and 81º as joint angle could be suggested to obtain some advantageous on the dovetail joint process for box-type furniture made from both solid wood and MDF.
Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.
Saito, Akira; Akima, Hiroshi
2013-12-01
It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles.
The Effect of Foot Progression Angle on Knee Joint Compression Force during Walking
Baldvinsson, Henrik Koblauch; Heilskov-Hansen, Thomas; Alkjær, Tine
2013-01-01
compression force increased during EFR and the lateral knee joint compartment compression force increased during IFR. The increases in joint loads may be a result of increased knee flexion angles. Further these data suggest that the frontal plane knee joint moment is not a valid surrogate measure for knee...
The Effect of Foot Progression Angle on Knee Joint Compression Force during Walking
Baldvinsson, Henrik Koblauch; Heilskov-Hansen, Thomas; Alkjær, Tine
2013-01-01
compression force increased during EFR and the lateral knee joint compartment compression force increased during IFR. The increases in joint loads may be a result of increased knee flexion angles. Further these data suggest that the frontal plane knee joint moment is not a valid surrogate measure for knee...
Blind Joint Maximum Likelihood Channel Estimation and Data Detection for SIMO Systems
Sheng Chen; Xiao-Chen Yang; Lei Chen; Lajos Hanzo
2007-01-01
A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of singleinput multiple-output (SIMO) systems. The joint ML optimisation over channel and data is decomposed into an iterative optimisation loop. An efficient global optimisation algorithm called the repeated weighted boosting search is employed at the upper level to optimally identify the unknown SIMO channel model, and the Viterbi algorithm is used at the lower level to produce the maximum likelihood sequence estimation of the unknown data sequence. A simulation example is used to demonstrate the effectiveness of this joint ML optimisation scheme for blind adaptive SIMO systems.
Joint torque and angle estimation by using ultrasonic muscle activity sensor
Tsutsui, Yoichiro; Tanaka, Takayuki; Kaneko, Shun'ichi; Feng, Maria Q.
2005-12-01
We have proposed a brand-new noninvasive ultrasonic sensor for measuring muscle activities named as Ultrasonic Muscle Activity Sensor (UMS). In the previous paper, the authors achieved to accurately estimate joint torque by using UMS and electromyogram (EMG) which is one of the most popular sensors. This paper aims to realize to measure not only joint torque also joint angle by using UMS and EMG. In order to estimate torque and angle of a knee joint, muscle activities of quadriceps femoris and biceps femoris were measured by both UMS and EMG. These targeted muscles are related to contraction and extension of knee joint. Simultaneously, actual torque on the knee joint caused by these muscles was measured by using torque sensor. The knee joint angle was fixed by torque sensor in the experiment, therefore the measurement was in isometric state. In the result, we found that the estimated torque and angle have high correlation coefficient to actual torque and angle. This means that the sensor can be used for angle estimation as well torque estimation. Therefore, it is shown that the combined use of UMS and EMG is effective to torque and angle estimation.
Effects of submaximal eccentric exercise on muscle activity at different elbow joint angles.
Kisiel-Sajewicz, Katarzyna; Jaskólska, Anna; Janecki, Damian; Andrzejewska, Renata; Marusiak, Jarosław; Jaskólski, Artur
2014-01-01
Our study aimed to determine whether electrical and mechanical factors contributing to acute or long-term maximal torque reduction and muscle soreness due to submaximal eccentric exercise (ECC) are elbow-joint-angle specific and to what extent the joint angle affects the contribution of antagonist coactivation to this torque reduction. Maximal isometric torque (MIT), muscle soreness assessment, agonist electromechanical activities, and antagonist coactivation during the maximal voluntary contraction (MVC) were measured at elbow joint angles of 60°, 90°, and 150° before ECC, immediately after exercise, and 24, 48, 72, and 120 hr after exercise. ECC causes an immediate decrease in MIT as well as increased antagonist coactivation at three angles. Antagonist coactivation returned to its baseline level at 24 hr regardless of joint angle. The most rapid torque recovery and the highest force level at which pain occurred were found after ECC at a joint angle of 60°. During the recovery period, no mechanomyographical changes were observed when measuring surface mechanomyography changes at three angles, while the electrical activity differed between angles.
Development of a body joint angle measurement system using IMU sensors.
Bakhshi, Saba; Mahoor, Mohammad H; Davidson, Bradley S
2011-01-01
This paper presents an approach for measuring and monitoring human body joint angles using inertial measurement unit (IMU) sensors. This type of monitoring is beneficial for therapists and physicians because it facilitates remote assessment of patient activities. In our approach, two IMUs are mounted on the upper leg and the lower leg to measure the Euler angles of each segment. The Euler angles are sent via Bluetooth protocols to a pc for calculating the knee joint angle. In our experiments, we utilized a motion capture system to accurately measure the knee joint angle and used this as the ground truth to assess the accuracy of the IMU system. The range of average error of the system across a variety of motion trials was 0.08 to 3.06 degrees. In summary, the accuracy of the IMU measurement system currently outperforms existing wearable systems such as conductive fiber optic sensors and flex-sensors.
The effect of eccentric exercise on position sense and joint reaction angle of the lower limbs.
Paschalis, V; Nikolaidis, M G; Giakas, G; Jamurtas, A Z; Pappas, A; Koutedakis, Y
2007-04-01
Impaired position sense and impaired joint reaction angle of the lower limbs after muscle-damaging activities is a serious functional limitation that may lead to an increased risk of injury, particularly in older populations. The purpose of the present study was to examine whether position sense and joint reaction angle to release can be affected by eccentric exercise-induced muscle damage. Twelve women underwent an isokinetic exercise session of the lower limb. Isometric peak torque, delayed-onset muscle soreness, serum creatine kinase, position sense, and knee joint reaction angle to release were examined before, immediately after, and 24, 48, and 72 h post-exercise. Due to the effect of eccentric exercise, subjects persistently placed their lower limb at a more extended position, representing a shorter knee extensor muscle. Eccentric exercise increased the knee reaction angle of the lower limb after release from 0 degrees and 15 degrees but not from 30 degrees and 45 degrees . Position sense and joint reaction to release were similarly affected by eccentric exercise and independently of visual feedback. Position sense was impaired only immediately post-exercise (probably due to muscle fatigue), whereas impairment of the reaction angle to release persisted up to 3 days post-exercise (probably due to muscle damage). Attenuation of position sense and joint reaction angle of the lower limbs after damaging activities is a serious functional limitation that may lead to an increase risk of injury, particularly in older populations.
A literature review on optimum and preferred joint angles in automotive sitting posture.
Schmidt, Susanne; Amereller, Maximilian; Franz, Matthias; Kaiser, Ralf; Schwirtz, Ansgar
2014-03-01
In this study, a survey of the scientific literature in the field of optimum and preferred human joint angles in automotive sitting posture was conducted by referring to thirty different sources published between 1940 and today. The strategy was to use only sources with numerical angle data in combination with keywords. The aim of the research was to detect commonly used joint angles in interior car design. The main analysis was on data measurement, usability and comparability of the different studies. In addition, the focus was on the reasons for the differently described results. It was found that there is still a lack of information in methodology and description of background. Due to these reasons published data is not always usable to design a modern ergonomic car environment. As a main result of our literature analysis we suggest undertaking further research in the field of biomechanics and ergonomics to work out scientific based and objectively determined "optimum" joint angles in automotive sitting position.
Dependence of elbow joint stiffness measurements on speed, angle, and muscle contraction level.
Kuxhaus, Laurel; Zeng, Sisi; Robinson, Charles J
2014-03-21
Elbow joint stiffness is critical to positioning the hand. Abnormal elbow joint stiffness may affect a person's ability to participate in activities of daily living. In this work, elbow joint stiffness was measured in ten healthy young adults with a device adapted from one previously used to measure stiffness in other joints. Measurements of elbow stiffness involved applying a constant-velocity rotational movement to the elbow and measuring the resultant displacement, torque, and acceleration. Elbow stiffness was then computed using a previously-established model for joint stiffness. Measurements were made at two unique elbow joint angles, two speeds, and two forearm muscle contraction levels. The results indicate that the elbow joint stiffness is significantly affected by both rotational speed and forearm muscle contraction level.
The Effect of Foot Progression Angle on Knee Joint Compression Force during Walking
Baldvinsson, Henrik Koblauch; Heilskov-Hansen, Thomas; Alkjær, Tine
2013-01-01
compression force increased during EFR and the lateral knee joint compartment compression force increased during IFR. The increases in joint loads may be a result of increased knee flexion angles. Further these data suggest that the frontal plane knee joint moment is not a valid surrogate measure for knee......It is unclear how rotations of the lower limb affect the knee joint compression forces during walking. Increases in the frontal plane knee moment have been reported when walking with internally rotated feet and a decrease when walking with externally rotated feet. The aim of this study...... was to investigate the knee joint compressive forces during walking with internal, external and normal foot rotation and to determine if the frontal plane knee joint moment is an adequate surrogate for the compression forces in the medial and lateral knee joint compartments under such gait modifications. Ten healthy...
Neural network committees for finger joint angle estimation from surface EMG signals
Reddy Narender P
2009-01-01
Full Text Available Abstract Background In virtual reality (VR systems, the user's finger and hand positions are sensed and used to control the virtual environments. Direct biocontrol of VR environments using surface electromyography (SEMG signals may be more synergistic and unconstraining to the user. The purpose of the present investigation was to develop a technique to predict the finger joint angle from the surface EMG measurements of the extensor muscle using neural network models. Methodology SEMG together with the actual joint angle measurements were obtained while the subject was performing flexion-extension rotation of the index finger at three speeds. Several neural networks were trained to predict the joint angle from the parameters extracted from the SEMG signals. The best networks were selected to form six committees. The neural network committees were evaluated using data from new subjects. Results There was hysteresis in the measured SMEG signals during the flexion-extension cycle. However, neural network committees were able to predict the joint angle with reasonable accuracy. RMS errors ranged from 0.085 ± 0.036 for fast speed finger-extension to 0.147 ± 0.026 for slow speed finger extension, and from 0.098 ± 0.023 for the fast speed finger flexion to 0.163 ± 0.054 for slow speed finger flexion. Conclusion Although hysteresis was observed in the measured SEMG signals, the committees of neural networks were able to predict the finger joint angle from SEMG signals.
Functional calibration procedure for 3D knee joint angle description using inertial sensors.
Favre, J; Aissaoui, R; Jolles, B M; de Guise, J A; Aminian, K
2009-10-16
Measurement of three-dimensional (3D) knee joint angle outside a laboratory is of benefit in clinical examination and therapeutic treatment comparison. Although several motion capture devices exist, there is a need for an ambulatory system that could be used in routine practice. Up-to-date, inertial measurement units (IMUs) have proven to be suitable for unconstrained measurement of knee joint differential orientation. Nevertheless, this differential orientation should be converted into three reliable and clinically interpretable angles. Thus, the aim of this study was to propose a new calibration procedure adapted for the joint coordinate system (JCS), which required only IMUs data. The repeatability of the calibration procedure, as well as the errors in the measurement of 3D knee angle during gait in comparison to a reference system were assessed on eight healthy subjects. The new procedure relying on active and passive movements reported a high repeatability of the mean values (offset0.9). In comparison to the reference system, this functional procedure showed high precision (SD0.75) and moderate accuracy (between 4.0 degrees and 8.1 degrees) for the three knee angle. The combination of the inertial-based system with the functional calibration procedure proposed here resulted in a promising tool for the measurement of 3D knee joint angle. Moreover, this method could be adapted to measure other complex joint, such as ankle or elbow.
The effect of angle and moment of the hip and knee joint on iliotibial band hardness.
Tateuchi, Hiroshige; Shiratori, Sakiko; Ichihashi, Noriaki
2015-02-01
Although several studies have described kinematic deviations such as excessive hip adduction in patients with iliotibial band (ITB) syndrome, the factors contributing to increased ITB hardness remains undetermined, owing to lack of direct in vivo measurement. The purpose of this study was to clarify the factors contributing to an increase in ITB hardness by comparing the ITB hardness between the conditions in which the angle, moment, and muscle activity of the hip and knee joint are changed. Sixteen healthy individuals performed the one-leg standing under five conditions in which the pelvic and trunk inclination were changed in the frontal plane. The shear elastic modulus in the ITB was measured as an indicator of the ITB hardness using shear wave elastography. The three-dimensional joint angle and external joint moment in the hip and knee joints, and muscle activities of the gluteus maximus, gluteus medius, tensor fasciae latae, and vastus lateralis, which anatomically connect to the ITB, were also measured. ITB hardness was significantly increased in the posture with pelvic and trunk inclination toward the contralateral side of the standing leg compared with that in all other conditions (increase of approximately 32% compared with that during normal one-leg standing). This posture increased both the hip adduction angle and external adduction moment at the hip and knee joint, although muscle activities were not increased. Our findings suggest that coexistence of an increased adduction moment at the hip and knee joints with an excessive hip adduction angle lead to an increase in ITB hardness.
Ibraheem, I
2015-02-01
Melanoma is a leading fatal illness responsible for 80% of deaths from skin cancer. It originates in the pigment-producing melanocytes in the basal layer of the epidermis. Melanocytes produce the melanin (the dark pigment), which is responsible for the color of skin. As all cancers, melanoma is caused by damage to the DNA of the cells, which causes the cell to grow out of control, leading to a tumor, which is much more dangerous if it cannot be found or detected early. Only biopsy can determine exact malformation diagnosis, although it can rise metastasizing. When a melanoma is suspected, the usual standard procedure is to perform a biopsy and to subsequently analyze the suspicious tissue under the microscope. In this paper, we provide a new approach using methods known as 'imaging spectroscopy' or 'spectral imaging' for early detection of melanoma using two different supervised classifier algorithms, maximum likelihood (ML) and spectral angle mapper (SAM). SAM rests on the spectral 'angular distances' and the conventional classifier ML rests on the spectral distance concept. The results show that the ML classifier was more efficient for pixel classification than SAM. However, SAM was more suitable for object classification. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The effect of foot progression angle on knee joint compression force during walking.
Koblauch, Henrik; Heilskov-Hansen, Thomas; Alkjær, Tine; Simonsen, Erik B; Henriksen, Marius
2013-06-01
It is unclear how rotations of the lower limb affect the knee joint compression forces during walking. Increases in the frontal plane knee moment have been reported when walking with internally rotated feet and a decrease when walking with externally rotated feet. The aim of this study was to investigate the knee joint compressive forces during walking with internal, external and normal foot rotation and to determine if the frontal plane knee joint moment is an adequate surrogate for the compression forces in the medial and lateral knee joint compartments under such gait modifications. Ten healthy males walked at a fixed speed of 4.5 km/h under three conditions: Normal walking, internally rotated and externally rotated. All gait trials were recorded by six infrared cameras. Net joint moments were calculated by 3D inverse dynamics. The results revealed that the medial knee joint compartment compression force increased during external foot rotation and the lateral knee joint compartment compression force increased during internal foot rotation. The increases in joint loads may be a result of increased knee flexion angles. Further, these data suggest that the frontal plane knee joint moment is not a valid surrogate measure for knee joint compression forces but rather indicates the medial- to-lateral load distribution.
Hip rotation angle is associated with frontal plane knee joint mechanics during running.
Sakaguchi, Masanori; Shimizu, Norifumi; Yanai, Toshimasa; Stefanyshyn, Darren J; Kawakami, Yasuo
2015-02-01
Inability to control lower extremity segments in the frontal and transverse planes resulting in large knee abduction angle and increased internal knee abduction impulse has been associated with patellofemoral pain (PFP). However, the influence of hip rotation angles on frontal plane knee joint kinematics and kinetics remains unclear. The purpose of this study was to explore how hip rotation angles are related to frontal plane knee joint kinematics and kinetics during running. Seventy runners participated in this study. Three-dimensional marker positions and ground reaction forces were recorded with an 8-camera motion analysis system and a force plate while subjects ran along a 25-m runway at a speed of 4m/s. Knee abduction, hip rotation and toe-out angles, frontal plane lever arm at the knee, internal knee abduction moment and impulse, ground reaction forces and the medio-lateral distance from the ankle joint center to the center of pressure (AJC-CoP) were quantified. The findings of this study indicate that greater hip external rotation angles were associated with greater toe-out angles, longer AJC-CoP distances, smaller internal knee abduction impulses with shorter frontal plane lever arms and greater knee abduction angles. Thus, there appears to exist a conflict between kinematic and kinetic risk factors of PFP, and hip external rotation angle may be a key factor to control frontal plane knee joint kinematics and kinetics. These results may help provide an appropriate manipulation and/or intervention on running style to reduce the risk of PFP.
Wearable Conductive Fiber Sensors for Multi-Axis Human Joint Angle Measurements
Asada H Harry
2005-03-01
Full Text Available Abstract Background The practice of continuous, long-term monitoring of human joint motion is one that finds many applications, especially in the medical and rehabilitation fields. There is a lack of acceptable devices available to perform such measurements in the field in a reliable and non-intrusive way over a long period of time. The purpose of this study was therefore to develop such a wearable joint monitoring sensor capable of continuous, day-to-day monitoring. Methods A novel technique of incorporating conductive fibers into flexible, skin-tight fabrics surrounding a joint is developed. Resistance changes across these conductive fibers are measured, and directly related to specific single or multi-axis joint angles through the use of a non-linear predictor after an initial, one-time calibration. Because these sensors are intended for multiple uses, an automated registration algorithm has been devised using a sensitivity template matched to an array of sensors spanning the joints of interest. In this way, a sensor array can be taken off and put back on an individual for multiple uses, with the sensors automatically calibrating themselves each time. Results The wearable sensors designed are comfortable, and acceptable for long-term wear in everyday settings. Results have shown the feasibility of this type of sensor, with accurate measurements of joint motion for both a single-axis knee joint and a double axis hip joint when compared to a standard goniometer used to measure joint angles. Self-registration of the sensors was found to be possible with only a few simple motions by the patient. Conclusion After preliminary experiments involving a pants sensing garment for lower body monitoring, it has been seen that this methodology is effective for monitoring joint motion of the hip and knee. This design therefore produces a robust, comfortable, truly wearable joint monitoring device.
Iwanuma, Soichiro; Akagi, Ryota; Hashizume, Satoru; Kanehisa, Hiroaki; Yanai, Toshimasa; Kawakami, Yasuo
2011-09-23
The purpose of this study was to clarify how foot deformation affects the relationship between triceps surae muscle-tendon unit (MTU) length and ankle joint angle. For six women and six men a series of sagittal magnetic resonance (MR) images of the right foot were taken, and changes in MTU length (the displacement of the calcaneal tuberosity), foot arch angle, and ankle joint angle were measured. In the passive session, each subject's ankle joint was secured at 10° dorsiflexed position, neutral position (NP), and 10° and 20° plantar flexed positions while MR images were acquired. In the active session, each subject was requested to perform submaximal isometric plantar flexions (30%, 60%, and 80% of voluntary maximum) at NP. The changes in MTU length in each trial were estimated by two different formulae reported previously. The changes of the measured MTU length as a function of ankle joint angles observed in all trials of the active session were significantly (ptriceps surae MTU length-ankle joint angle relationship during plantar flexion.
Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.
Yeadon, Maurice R; King, Mark A; Wilson, Cassie
2006-01-01
The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.
Joint Angles and Mutual Coupling Estimation Algorithm for Bistatic MIMO Radar
Jianfeng Li
2012-01-01
Full Text Available We study the problem of angle estimation for a bistatic multiple-input multiple-output (MIMO radar with unknown mutual coupling and proposed a joint algorithm for angles and mutual coupling estimation with the characteristics of uniform linear arrays and subspaces exploitation. We primarily obtain an initial estimate of DOA and DOD, then employ the local one-dimensional searching to estimate exactly DOA and DOD, and finally evaluate the parameters of mutual coupling coefficients via the estimated angles. Exploiting twice of the one-dimensional local searching, our method has much lower computational cost than the algorithm in (Liu and Liao (2012, and automatically obtains the paired two-dimensional angle estimation. Slightly better performance for angle estimation has been achieved via our scheme in contrast to (Liu and Liao (2012, while the two methods indicate very close performance of mutual coupling estimation. The simulation results verify the algorithmic effectiveness of our scheme.
Lower Extremity Joint Angle Tracking with Wireless Ultrasonic Sensors during a Squat Exercise.
Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil
2015-04-23
This paper presents an unrestrained measurement system based on a wearable wireless ultrasonic sensor network to track the lower extremity joint and trunk kinematics during a squat exercise with only one ultrasonic sensor attached to the trunk. The system consists of an ultrasound transmitter (mobile) and multiple receivers (anchors) whose positions are known. The proposed system measures the horizontal and vertical displacement, together with known joint constraints, to estimate joint flexion/extension angles using an inverse kinematic model based on the damped least-squares technique. The performance of the proposed ultrasonic measurement system was validated against a camera-based tracking system on eight healthy subjects performing a planar squat exercise. Joint angles estimated from the ultrasonic system showed a root mean square error (RMSE) of 2.85° ± 0.57° with the reference system. Statistical analysis indicated great agreements between these two systems with a Pearson's correlation coefficient (PCC) value larger than 0.99 for all joint angles' estimation. These results show that the proposed ultrasonic measurement system is useful for applications, such as rehabilitation and sports.
Hahn, Daniel
2011-06-01
The purpose of this study was to evaluate whether and how isometric multijoint leg extension strength can be used to assess athletes' muscular capability within the scope of strength diagnosis. External reaction forces (Fext) and kinematics were measured (n = 18) during maximal isometric contractions in a seated leg press at 8 distinct joint angle configurations ranging from 30 to 100° knee flexion. In addition, muscle activation of rectus femoris, vastus medialis, biceps femoris c.l., gastrocnemius medialis, and tibialis anterior was obtained using surface electromyography (EMG). Joint torques for hip, knee, and ankle joints were computed by inverse dynamics. The results showed that unilateral Fext decreased significantly from 3,369 ± 575 N at 30° knee flexion to 1,015 ± 152 N at 100° knee flexion. Despite maximum voluntary effort, excitation of all muscles as measured by EMG root mean square changed with knee flexion angles. Moreover, correlations showed that above-average Fext at low knee flexion is not necessarily associated with above-average Fext at great knee flexion and vice versa. Similarly, it is not possible to deduce high joint torques from high Fext just as above-average joint torques in 1 joint do not signify above-average torques in another joint. From these findings, it is concluded that an evaluation of muscular capability by means of Fext as measured for multijoint leg extension is strongly limited. As practical recommendation, we suggest analyzing multijoint leg extension strength at 3 distinct knee flexion angles or at discipline-specific joint angles. In addition, a careful evaluation of muscular capacity based on measured Fext can be done for knee flexion angles ≥ 80°. For further and detailed analysis of single muscle groups, the use of inverse dynamic modeling is recommended.
Fatigue affects peak joint torque angle in hamstrings but not in quadriceps.
Coratella, Giuseppe; Bellin, Giuseppe; Beato, Marco; Schena, Federico
2015-01-01
Primary aim of this study was to investigate peak joint torque angle (i.e. the angle of peak torque) changes recorded during an isokinetic test before and after a fatiguing soccer match simulation. Secondarily we want to investigate functional Hecc:Qconc and conventional Hconc:Qconc ratio changes due to fatigue. Before and after a standardised soccer match simulation, twenty-two healthy male amateur soccer players performed maximal isokinetic strength tests both for hamstrings and for quadriceps muscles at 1.05 rad · s(‒1), 3.14 rad · s(‒1) and 5.24 rad · s(‒1). Peak joint torque angle, peak torque and both functional Hecc:Qconc and conventional Hconc:Qconc ratios were examined. Both dominant and non-dominant limbs were tested. Peak joint torque angle significantly increased only in knee flexors. Both eccentric and concentric contractions resulted in such increment, which occurred in both limbs. No changes were found in quadriceps peak joint torque angle. Participants experienced a significant decrease in torque both in hamstrings and in quadriceps. Functional Hecc:Qconc ratio was lower only in dominant limb at higher velocities, while Hconc:Qconc did not change. This study showed after specific fatiguing task changes in hamstrings only torque/angle relationship. Hamstrings injury risk could depend on altered torque when knee is close to extension, coupled with a greater peak torque decrement compared to quadriceps. These results suggest the use eccentric based training to prevent hamstrings shift towards shorter length.
Freund, Kristin A; Kieves, Nina R; Hart, Juliette L; Foster, Sasha A; Jeffery, Unity; Duerr, Felix M
2016-07-01
OBJECTIVE To evaluate accuracy and reliability of 3 novel goniometers for measurement of canine stifle joint angles and compare the results with those obtained with a universal goniometer (UG). SAMPLE 8 pelvic limbs from 4 canine cadavers. PROCEDURES Each limb was secured to a wooden platform at 3 arbitrarily selected fixed stifle joint angles. Goniometry was performed with 2 smartphone-based applications (novel goniometers A and B), a digital goniometer (novel goniometer C), and a UG; 3 evaluators performed measurements in triplicate for each angle with each device. Results were compared with stifle joint angle measurements on radiographs (used as a gold standard). Accuracy was determined by calculation of bias and total error, coefficients of variation were calculated to estimate reliability, and strength of linear association between radiographic and goniometer measurements was assessed by calculation of correlation coefficients. RESULTS Mean coefficient of variation was lowest for the UG (4.88%), followed by novel goniometers B (7.37%), A (7.57%), and C (12.71%). Correlation with radiographic measurements was highest for the UG (r = 0.97), followed by novel goniometers B (0.93), A (0.90), and C (0.78). Constant bias was present for all devices except novel goniometer B. The UG and novel goniometer A had positive constant bias; novel goniometer C had negative constant bias. Total error at 50° and 100° angles was > 5% for all devices. CONCLUSIONS AND CLINICAL RELEVANCE None of the devices accurately represented radiographically measured stifle joint angles. Additional veterinary studies are indicated prior to the use of novel goniometers in dogs.
Maximum jaw opening capacity in adolescents in relation to general joint mobility.
Westling, L; Helkimo, E
1992-09-01
Mandibular jaw opening was related with general joint mobility in a non-patient adolescent group. The angular rotation of the mandible at maximum jaw opening was slightly larger in females than in males and significantly larger in hypermobile individuals. No significant relationship between linear measuring of maximal mandibular opening capacity and peripheral joint mobility was found either at active (AROM) or at passive range of mandibular opening (PROM). PROM was strongly correlated to the mandibular length. Clinical signs in the great jaw closer muscles could not be associated to decreased AROM. The mean value of the difference between PROM-AROM (DPA) was 1.2 mm. Frequent clenching and/or grinding was correlated to increased DPA only in hypermobile adolescents (r = 0.49***). Those with DPA exceeding 5mm had all reciprocal clicking.
Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P
2015-06-01
This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P Upper trunk positioning had an effect on the knee submaximal torque (P cervical and thoracic spines were flexed (P angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension.
A proposal for a new definition of the axial rotation angle of the shoulder joint.
Masuda, Tadashi; Ishida, Akimasa; Cao, Lili; Morita, Sadao
2008-02-01
The Euler/Cardan angles are commonly used to define the motions of the upper arm with respect to the trunk. This definition, however, has a problem in that the angles of both the horizontal flexion/extension and the axial rotation of the shoulder joint become unstable at the gimbal-lock positions. In this paper, a new definition of the axial rotation angle was proposed. The proposed angle was stable over the entire range of the shoulder motion. With the new definition, the neutral position of the axial rotation agreed with that in the conventional anatomy. The advantage of the new definition was demonstrated by measuring actual complex motions of the shoulder with a three-dimensional motion capture system.
Quentin Mourcou
2015-01-01
Full Text Available Assessment of joint functional and proprioceptive abilities is essential for balance, posture, and motor control rehabilitation. Joint functional ability refers to the capacity of movement of the joint. It may be evaluated thereby measuring the joint range of motion (ROM. Proprioception can be defined as the perception of the position and of the movement of various body parts in space. Its role is essential in sensorimotor control for movement acuity, joint stability, coordination, and balance. Its clinical evaluation is commonly based on the assessment of the joint position sense (JPS. Both ROM and JPS measurements require estimating angles through goniometer, scoliometer, laser-pointer, and bubble or digital inclinometer. With the arrival of Smartphones, these costly clinical tools tend to be replaced. Beyond evaluation, maintaining and/or improving joint functional and proprioceptive abilities by training with physical therapy is important for long-term management. This review aims to report Smartphone applications used for measuring and improving functional and proprioceptive abilities. It identifies that Smartphone applications are reliable for clinical measurements and are mainly used to assess ROM and JPS. However, there is lack of studies on Smartphone applications which can be used in an autonomous way to provide physical therapy exercises at home.
Maganaris, C N; Baltzopoulos, V
1999-02-01
The aim of this study was to assess the predictability of in vivo, ultrasound-based changes in human tibialis anterior (TA) pennation angle from rest to maximum isometric dorsiflexion (MVC) using a planimetric model assuming constant thickness between aponeuroses and straight muscle fibres. Sagittal sonographs of TA were taken in six males at ankle angles of -15 degrees (dorsiflexion direction), 0 degrees (neutral position), + 15 (plantarflexion direction) and + 30 degrees both at rest and during dorsiflexor MVC trials performed on an isokinetic dynamometer. At all four ankle angles scans were taken from the TA proximal, central and distal regions. TA architecture did not differ (P > 0.05) neither between its two unipennate parts nor along the scanned regions over its length at a given ankle angle and state of contraction. Comparing MVC with rest at any given ankle angle, pennation angle was larger (62-71%, P 0.05). The model used estimated accurately (P > 0.05) changes in TA pennation angle occurring in the transition from rest to MVC and therefore its use is encouraged for estimating the isometric TA ankle moment and force generating capacity using musculoskeletal modelling.
Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine; Simonsen, Erik B; Lynnerup, Niels
2014-03-01
Closed-circuit television (CCTV) footage is used in criminal investigations to compare perpetrators with suspects. Usually, incomplete gait cycles are collected, making evidential gait analysis challenging. This study aimed to analyze the discriminatory power of joint angles throughout a gait cycle. Six sets from 12 men were collected. For each man, a variability range VR (mean ± 1SD) of a specific joint angle at a specific time point (a gait cycle was 100 time points) was calculated. In turn, each individual was compared with the 11 others, and whenever 1 of these 11 had a value within this individual’s VR, it counted as positive. By adding the positives throughout the gait cycle, we created simple bar graphs; tall bars indicated a small discriminatory power, short bars indicated a larger one. The highest discriminatory power was at time points 60–80 in the gait cycle. We show how our data can assess gait data from an actual case.
The Effects of Force and Joint Angle on Muscle Conduction Velocity Estimation
2007-11-02
Institute of Biomedical Engineering, University of New Brunswick Abstract - Conduction velocity estimated from the surface myoelectric signal has been...changes in joint angle and/or muscle force. Results from this study using myoelectric signals collected from the biceps brachii, indicate that conduction... myoelectric signal (MES) to track changes in muscle biochemistry which are caused by fatigue. By estimating the power spectrum of the surface MES during
Neural network committees for finger joint angle estimation from surface EMG signals
Reddy Narender P; Shrirao Nikhil A; Kosuri Durga R
2009-01-01
Abstract Background In virtual reality (VR) systems, the user's finger and hand positions are sensed and used to control the virtual environments. Direct biocontrol of VR environments using surface electromyography (SEMG) signals may be more synergistic and unconstraining to the user. The purpose of the present investigation was to develop a technique to predict the finger joint angle from the surface EMG measurements of the extensor muscle using neural network models. Methodology SEMG togeth...
Measurement of multi-segment foot joint angles during gait using a wearable system.
Rouhani, Hossein; Favre, Julien; Crevoisier, Xavier; Aminian, Kamiar
2012-06-01
Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.
Joint Tilt Angle Adaptation and Beamforming in Multicell Multiuser Cellular Networks
Moghaddam, Soheil Khavari; Razavizadeh, S. Mohammad
2017-01-01
3D beamforming is a promising approach for interference coordination in cellular networks which brings significant improvements in comparison with conventional 2D beamforming techniques. This paper investigates the problem of joint beamforming design and tilt angle adaptation of the BS antenna array for maximizing energy efficiency (EE) in downlink of multi-cell multi-user coordinated cellular networks. An iterative algorithm based on fractional programming approach is introduced to solve the...
Lee, Su-Kyoung; Park, Du-Jin
2013-07-01
[Purpose] The purpose of this study was to examine the effects of the flexion angle of the knee joint and the abduction angle of the hip joint on the activation of the cervical region and abdominal muscles. [Subjects] A total of 42 subjects were enrolled 9 males and 33 females. [Methods] The bridging exercise in this study was one form of exercise with a knee joint flexion angle of 90°. Based on this, a bridging exercise was conducted at the postures of abduction of the lower extremities at 0, 5, 10, and 15°. [Result] The changes in the knee joint angle and the hip abduction angle exhibited statistically significant effects on the cervical erector spinae, adductor magnus, and gluteus medius muscles. The abduction angles did not result in statistically significant effects on the upper trapezium, erector spinae, external oblique, and rectus abdominis muscles. However, in relation to the knee joint angles, during the bridging exercise, statistically significant results were exhibited. [Conclusion] When patients with both cervical and back pain do a bridging exercise, widening the knee joint angle would reduce cervical and shoulder muscle activity through minimal levels of abduction, permitting trunk muscle strengthening with reduced cervical muscle activity. This method would be helpful for strengthening trunk muscles in a selective manner.
Lee, Su-Kyoung; Park, Du-Jin
2013-01-01
[Purpose] The purpose of this study was to examine the effects of the flexion angle of the knee joint and the abduction angle of the hip joint on the activation of the cervical region and abdominal muscles. [Subjects] A total of 42 subjects were enrolled 9 males and 33 females. [Methods] The bridging exercise in this study was one form of exercise with a knee joint flexion angle of 90°. Based on this, a bridging exercise was conducted at the postures of abduction of the lower extremities at 0...
Joint maximum likelihood estimation of carrier and sampling frequency offsets for OFDM systems
Kim, Y H
2010-01-01
In orthogonal-frequency division multiplexing (OFDM) systems, carrier and sampling frequency offsets (CFO and SFO, respectively) can destroy the orthogonality of the subcarriers and degrade system performance. In the literature, Nguyen-Le, Le-Ngoc, and Ko proposed a simple maximum-likelihood (ML) scheme using two long training symbols for estimating the initial CFO and SFO of a recursive least-squares (RLS) estimation scheme. However, the results of Nguyen-Le's ML estimation show poor performance relative to the Cramer-Rao bound (CRB). In this paper, we extend Moose's CFO estimation algorithm to joint ML estimation of CFO and SFO using two long training symbols. In particular, we derive CRBs for the mean square errors (MSEs) of CFO and SFO estimation. Simulation results show that the proposed ML scheme provides better performance than Nguyen-Le's ML scheme.
Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions
Peacock, Sheila; Douglas, Alan; Bowers, David
2017-08-01
Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.
Maximum joint entropy and information-based collaboration of automated learning machines
Malakar, N. K.; Knuth, K. H.; Lary, D. J.
2012-05-01
We are working to develop automated intelligent agents, which can act and react as learning machines with minimal human intervention. To accomplish this, an intelligent agent is viewed as a question-asking machine, which is designed by coupling the processes of inference and inquiry to form a model-based learning unit. In order to select maximally-informative queries, the intelligent agent needs to be able to compute the relevance of a question. This is accomplished by employing the inquiry calculus, which is dual to the probability calculus, and extends information theory by explicitly requiring context. Here, we consider the interaction between two questionasking intelligent agents, and note that there is a potential information redundancy with respect to the two questions that the agents may choose to pose. We show that the information redundancy is minimized by maximizing the joint entropy of the questions, which simultaneously maximizes the relevance of each question while minimizing the mutual information between them. Maximum joint entropy is therefore an important principle of information-based collaboration, which enables intelligent agents to efficiently learn together.
Muscle and reflex changes with varying joint angle in hemiparetic stroke
Alibiglou Laila
2008-02-01
Full Text Available Abstract Background Despite intensive investigation, the origins of the neuromuscular abnormalities associated with spasticity are not well understood. In particular, the mechanical properties induced by stretch reflex activity have been especially difficult to study because of a lack of accurate tools separating reflex torque from torque generated by musculo-tendinous structures. The present study addresses this deficit by characterizing the contribution of neural and muscular components to the abnormally high stiffness of the spastic joint. Methods Using system identification techniques, we characterized the neuromuscular abnormalities associated with spasticity of ankle muscles in chronic hemiparetic stroke survivors. In particular, we systematically tracked changes in muscle mechanical properties and in stretch reflex activity during changes in ankle joint angle. Modulation of mechanical properties was assessed by applying perturbations at different initial angles, over the entire range of motion (ROM. Experiments were performed on both paretic and non-paretic sides of stroke survivors, and in healthy controls. Results Both reflex and intrinsic muscle stiffnesses were significantly greater in the spastic/paretic ankle than on the non-paretic side, and these changes were strongly position dependent. The major reflex contributions were observed over the central portion of the angular range, while the intrinsic contributions were most pronounced with the ankle in the dorsiflexed position. Conclusion In spastic ankle muscles, the abnormalities in intrinsic and reflex components of joint torque varied systematically with changing position over the full angular range of motion, indicating that clinical perceptions of increased tone may have quite different origins depending upon the angle where the tests are initiated. Furthermore, reflex stiffness was considerably larger in the non-paretic limb of stroke patients than in healthy control subjects
Effect of knee joint angle on side-to-side strength ratios.
Krishnan, Chandramouli; Williams, Glenn N
2014-10-01
Isometric knee extensor and flexor strength are typically tested at different joint angles due to the differences in length-tension relationships of the quadriceps and hamstring muscles. The efficiency of strength testing can be improved if the same angle can be used to test both the knee extensor and flexor muscle groups. The aim of this study was to determine an optimal angle for isometric knee strength testing by examining the effect of knee angle on side-to-side peak torque ratios. Eighteen active young people (9 males and 9 females) participated in this study. Knee extensor and knee flexor strength were tested on both sides at 30°, 60°, and 90° of knee flexion. The effect of knee flexion angle on side-to-side peak torque ratios, raw torque values, and side-to-side flexor-to-extensor torque ratios were assessed. Side-to-side knee extensor peak torque ratios and knee flexor-to-extensor torque ratios differed significantly by knee flexion angle (p = 0.024 and p = 0.011, respectively), but side-to-side knee flexor peak torque ratios did not differ significantly (p = 0.311). When considering both side-to-side peak torque ratios and flexor-to-extensor torque ratios, the values were more symmetrical (i.e., closer to 100%) only at 60° of knee flexion. Our results indicate that both the knee flexors and the knee extensors can be tested clinically at 60° of knee flexion. Our results also indicate that the hamstrings can be tested at any of the 3 angles if the examiner is interested in side-to-side ratios rather than raw torque values. These results may facilitate more efficient and flexible clinical knee strength testing.
Bampouras, Theodoros M; Reeves, Neil D; Baltzopoulos, Vasilios; Maganaris, Constantinos N
2017-08-12
The biarticular rectus femoris (RF), operating on the ascending limb of the force-length curve, produces more force at longer lengths. However, experimental studies consistently report higher knee extension torque when supine (longer RF length) compared to seated (shorter RF length). Incomplete activation in the supine position has been proposed as the reason for this discrepancy, but differences in antagonistic co-activation could also be responsible due to altered hamstrings length. We examined the role of agonist and antagonist muscles in explaining the isometric knee extension torque variation with changes in hip joint angle. Maximum voluntary isometric knee extension torque (joint MVC) was recorded in seated and supine positions from nine healthy males (30.2 ± 7.7 years). Antagonistic torque was estimated using EMG and added to the respective joint MVC (corrected MVC). Submaximal tetanic stimulation quadriceps torque was also recorded. Joint MVC was not different between supine (245 ± 71.8 Nm) and seated (241 ± 69.8 Nm) positions and neither was corrected MVC (257 ± 77.7 and 267 ± 87.0 Nm, respectively). Antagonistic torque was higher when seated (26 ± 20.4 Nm) than when supine (12 ± 7.4 Nm). Tetanic torque was higher when supine (111 ± 31.9 Nm) than when seated (99 ± 27.5 Nm). Antagonistic co-activation differences between hip positions do not account for the reduced MVC in the supine position. Rather, reduced voluntary knee extensor muscle activation in that position is the major reason for the lower MVC torque when RF is lengthened (hip extended). These findings can assist standardising muscle function assessment and improving musculoskeletal modelling applications.
Bounds for 2-D angle-of-arrival estimation with separate and joint processing
Mailaender Laurence
2011-01-01
Full Text Available Abstract Cramer-Rao bounds for one- and two-dimensional angle-of-arrival estimation are reviewed for generalized 3-D array geometries. Assuming an elevated sensor array is used to locate sources on a ground plane, we give a simple procedure for drawing x-y location confidence ellipses from the Cramer-Rao covariance matrix. We modify the ordinary bounds for the case of "separate" 1-D estimates and numerically compare this with the full, joint bound. We prove that "separate" processing is optimal for a Uniform Cross Array with a single source, and that it is not optimal for the L-shaped array. A trade-off emerges between location accuracy and array height: for distant sources, increased height generally reduces error. When more than one source is present, significant gains are obtained from joint processing. We also show useful gains for distant sources by adding out-of-plane sensors in an "L + z" configuration with joint processing. These comparisons can aid system designers in deciding between separate and joint processing approaches.
Effect of window length on performance of the elbow-joint angle prediction based on electromyography
Triwiyanto; Wahyunggoro, Oyas; Adi Nugroho, Hanung; Herianto
2017-05-01
The high performance of the elbow joint angle prediction is essential on the development of the devices based on electromyography (EMG) control. The performance of the prediction depends on the feature of extraction parameters such as window length. In this paper, we evaluated the effect of the window length on the performance of the elbow-joint angle prediction. The prediction algorithm consists of zero-crossing feature extraction and second order of Butterworth low pass filter. The feature was used to extract the EMG signal by varying window length. The EMG signal was collected from the biceps muscle while the elbow was moved in the flexion and extension motion. The subject performed the elbow motion by holding a 1-kg load and moved the elbow in different periods (12 seconds, 8 seconds and 6 seconds). The results indicated that the window length affected the performance of the prediction. The 250 window lengths yielded the best performance of the prediction algorithm of (mean±SD) root mean square error = 5.68%±1.53% and Person’s correlation = 0.99±0.0059.
JibiPaul
2014-04-01
Full Text Available Introduction: Strengthening exercises have been routinely used in persons with orthopaedic problems and athletes to increase force production or minimize muscle imbalance and joint injuries.Many studies have reported that isometric contractions can rapidly increases strength in quadriceps muscle. Objective: Objective of the study was to find out the effect of isometric strengthening exercise on strength of quadriceps at 45 and 90 degree of knee joint and also to compare the effect of strengthening exercise on strength of quadriceps at multiple angles of knee joint among control and experimental group. Methodology: This was a ccomparative experimental study with forty female healthy subjects from physiotherapy department of KPJ Healthcare University College, Malaysia. Convenient sampling method used to select the samples. The subjects were selected by inclusion criteria and randomly divided equally in to two with 20 subjects in each group. Isometric strengthening exercise and squatting exercise were given as intervention program for eight weeks respectively for experimental and control group. Pre and post data of quadriceps muscle strength measured were collected separately at 45 and 90 degree of knee joint using goniometry during resisted extension of knee in multi gym. Result: In experimental group Pre –Post statistical analysis found significant effect in increase of quadriceps strength at 45 and 90 degree with P<0.0001.****In control group quadriceps pre-post statistical analysis found no significant effect in increase of quadriceps strength at 45 and 90 degree with P<0.083NS and P<0.055 NS respectively. Comparative study between experimental and control groups for quadriceps strength at 90 degree of knee joint found significant effect in increase of quadriceps strength with P< 0.001.*** Comparative study between experimental and control groups for quadriceps strength at 45 degree of knee joint found significant effect in increase of
Intelligent algorithm tuning PID method of function electrical stimulation using knee joint angle.
Qiu, Shuang; He, Feng; Tang, Jiabei; Xu, Jiapeng; Zhang, Lixin; Zhao, Xin; Qi, Hongzhi; Zhou, Peng; Cheng, Xiaoman; Wan, Baikun; Ming, Dong
2014-01-01
Functional electrical stimulation (FES) could restore motor functions for individuals with spinal cord injury (SCI). By applying electric current pulses, FES system could produce muscle contractions, generate joint torques, and thus, achieve joint movements automatically. Since the muscle system is highly nonlinear and time-varying, feedback control is quite necessary for precision control of the preset action. In the present study, we applied two methods (Proportional Integral Derivative (PID) controller based on Back Propagation (BP) neural network and that based on Genetic Algorithm (GA)), to control the knee joint angle for the FES system, while the traditional Ziegler-Nichols method was used in the control group for comparison. They were tested using a muscle model of the quadriceps. The results showed that intelligent algorithm tuning PID controller displayed superior performance than classic Ziegler-Nichols method with constant parameters. More particularly, PID controller tuned by BP neural network was superior on controlling precision to make the feedback signal track the desired trajectory whose error was less than 1.2°±0.16°, while GA-PID controller, seeking the optimal parameters from multipoint simultaneity, resulted in shortened delay in the response. Both strategies showed promise in application of intelligent algorithm tuning PID methods in FES system.
Dumas, R; Cheze, L
2008-08-01
Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.
Haberman, Shelby J.
2004-01-01
The usefulness of joint and conditional maximum-likelihood is considered for the Rasch model under realistic testing conditions in which the number of examinees is very large and the number is items is relatively large. Conditions for consistency and asymptotic normality are explored, effects of model error are investigated, measures of prediction…
Takashi Watanabe
2011-01-01
Full Text Available The purpose of this study is to develop wearable sensor system for gait evaluation using gyroscopes and accelerometers for application to rehabilitation, healthcare and so on. In this paper, simultaneous measurement of joint angles of lower limbs and stride length was tested with a prototype of wearable sensor system. The system measured the joint angles using the Kalman filter. Signals from the sensor attached on the foot were used in the stride length estimation detecting foot movement automatically. Joint angles of the lower limbs were measured with stable and reasonable accuracy compared to those values measured with optical motion measurement system with healthy subjects. It was expected that the stride length measurement with the wearable sensor system would be practical by realizing more stable measurement accuracy. Sensor attachment position was suggested not to affect significantly measurement of slow and normal speed movements in a test with the rigid body model. Joint angle patterns measured in 10 m walking with a healthy subject were similar to common patterns. High correlation between joint angles at some characteristic points and stride velocity were also found adequately. These results suggested that the wireless wearable inertial sensor system could detect characteristics of gait.
Akai, Takanori; Taniguchi, Daigo; Oda, Ryo; Asada, Maki; Toyama, Shogo; Tokunaga, Daisaku; Seno, Takahiro; Kawahito, Yutaka; Fujii, Yosuke; Ito, Hirotoshi; Fujiwara, Hiroyoshi; Kubo, Toshikazu
2016-04-01
Contrast-enhanced magnetic resonance imaging with maximum intensity projection (MRI-MIP) is an easy, useful imaging method to evaluate synovitis in rheumatoid hands. However, the prognosis of synovitis-positive joints on MRI-MIP has not been clarified. The aim of this study was to evaluate the relationship between synovitis visualized by MRI-MIP and joint destruction on X-rays in rheumatoid hands. The wrists, metacarpophalangeal (MP) joints, and proximal interphalangeal (PIP) joints of both hands (500 joints in total) were evaluated in 25 rheumatoid arthritis (RA) patients. Synovitis was scored from grade 0 to 2 on the MRI-MIP images. The Sharp/van der Heijde score and Larsen grade were used for radiographic evaluation. The relationships between the MIP score and the progression of radiographic scores and between the MIP score and bone marrow edema on MRI were analyzed using the trend test. As the MIP score increased, the Sharp/van der Heijde score and Larsen grade progressed severely. The rate of bone marrow edema-positive joints also increased with higher MIP scores. MRI-MIP imaging of RA hands is a clinically useful method that allows semi-quantitative evaluation of synovitis with ease and can be used to predict joint destruction.
Joint Angle and Delay Estimation (JADE) in Antenna Array CDMA Systems
无
2002-01-01
The estimate of signals parameters is very important in wireless communications. In this paper, we combine subspace-based blind channel estimation algorithm with the extension of the JADE-WSF algorithm to jointly estimate the Angles-of-Arrival (AOAs) and delays of multipath signals arriving at an antenna array in Code Division Multiple Access (CDMA) systems. Our approach uses a collection of estimates of a consistent chip-sample of space-time vector channel. The channel estimates are assumed to have constant path AOA and delay over a finite number of symbols. Unlike the traditional MUltiple SIgnal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithms for the estimation of signals parameters, the proposed method can work when the number of paths exceeds the number of antennas. The Cramer-Rao Bound (CRB) and simulations are provided.
Silva, Ana S.; Catarino, André; Correia, Miguel V.; Frazão, Orlando
2013-12-01
The work presented here describes the development and characterization of intensity fiber optic sensor integrated in a specifically designed piece of garment to measure elbow flexion. The sensing head is based on macrobending incorporated in the garment, and the increase of curvature number was studied in order to investigate which scheme provided a good result in terms of sensitivity and repeatability. Results showed the configuration that assured a higher sensitivity (0.644 dBm/deg) and better repeatability was the one with four loops. Ultimately, this sensor can be used for rehabilitation purposes to monitor human joint angles, namely, elbow flexion on stroke survivors while performing the reach functional task, which is the most common upper-limb human gesture.
Bini Rodrigo Rico
2016-03-01
Full Text Available Purpose. Configuration of bicycle components to the cyclist (bicycle fitting commonly uses static poses of the cyclist on the bicycle at the 6 o’clock crank position to represent dynamic cycling positions. However, the validity of this approach and the potential use of the different crank position (e.g. 3 o’clock have not been fully explored. Therefore, this study compared lower limb joint angles of cyclists in static poses (3 and 6 o’clock compared to dynamic cycling. Methods. Using a digital camera, right sagittal plane images were taken of thirty cyclists seated on their own bicycles mounted on a stationary trainer with the crank at 3 o’clock and 6 o’clock positions. Video was then recorded during pedalling at a self-selected gear ratio and pedalling cadence. Sagittal plane hip, knee and ankle angles were digitised. Results. Differences between static and dynamic angles were large at the 6 o’clock crank position with greater mean hip angle (4.9 ± 3°, smaller knee angle (8.2 ± 5° and smaller ankle angle (8.2 ± 5.3° for static angles. Differences between static and dynamic angles (< 1.4° were trivial to small for the 3 o’clock crank position. Conclusions. To perform bicycle fitting, joint angles should be measured dynamically or with the cyclist in a static pose at the 3 o’clock crank position.
Mansour, F. A.; Nizam, M.; Anwar, M.
2017-02-01
This research aims to predict the optimum surface orientation angles in solar panel installation to achieve maximum solar radiation. Incident solar radiation is calculated using koronakis mathematical model. Particle Swarm Optimization (PSO) is used as computational method to find optimum angle orientation for solar panel installation in order to get maximum solar radiation. A series of simulation has been carried out to calculate solar radiation based on monthly, seasonally, semi-yearly and yearly period. South-facing was calculated also as comparison of proposed method. South-facing considers azimuth of 0°. Proposed method attains higher incident predictions than South-facing that recorded 2511.03 kWh/m2for monthly. It were about 2486.49 kWh/m2, 2482.13 kWh/m2and 2367.68 kWh/m2 for seasonally, semi-yearly and yearly. South-facing predicted approximately 2496.89 kWh/m2, 2472.40 kWh/m2, 2468.96 kWh/m2, 2356.09 kWh/m2for monthly, seasonally, semi-yearly and yearly periods respectively. Semi-yearly is the best choice because it needs twice adjustments of solar panel in a year. Yet it considers inefficient to adjust solar panel position in every season or monthly with no significant solar radiation increase than semi-yearly and solar tracking device still considers costly in solar energy system. PSO was able to predict accurately with simple concept, easy and computationally efficient. It has been proven by finding the best fitness faster.
Wu, Swei-Pi; Ho, Cheng-Pin; Yen, Chin-Li
2011-01-01
A wok with a straight handle is one of the most common cooking utensils in the Asian kitchen. This common cooking instrument has seldom been examined by ergonomists. This research used a two-factor randomized complete block design to investigate the effects of wok size (with three diameters - 36 cm, 39 cm and 42 cm) and handle angle (25°, 10°, -5°, -20°, and -35°) on the task of flipping. The measurement criteria included the maximum acceptable weight of wok flipping (MAWF), the subjective rating and the subjective ranking. Twelve experienced males volunteered to take part in this study. The results showed that both the wok size and handle angle had a significant effect on the MAWF, the subjective rating and the subjective ranking. Additionally, there is a size-weight illusion associated with flipping tasks. In general, a small wok (36 cm diameter) with an ergonomically bent handle (-20° ± 15°) is the optimal design, for male cooks, for the purposes of flipping.
The effect of knee joint angle on plantar flexor power in young and old men.
Dalton, Brian H; Allen, Matti D; Power, Geoffrey A; Vandervoort, Anthony A; Rice, Charles L
2014-04-01
Human adult aging is associated with a loss of strength, contractile velocity and hence, power. The principal plantar flexors, consisting of the bi-articular gastrocnemeii and the mono-articular soleus, appear to be affected differently by the aging process. However, the age-related effect of knee joint angle on the torque-angular velocity relationship and power production of this functionally important muscle group is unknown. The purpose was to determine whether flexing the knee, thereby reducing the gastrocnemius contribution to plantar flexion, would exacerbate the age-related decrements in plantar flexion power, or shift the torque-angular velocity relationship differently in older compared with young men. Neuromuscular properties were recorded from 10 young (~25 y) and 10 old (~78 y) men with the knee extended (170°) and flexed (90°), in a randomized order. Participants performed maximal voluntary isometric contractions (MVCs), followed by maximal velocity-dependent shortening contractions at pre-set loads, ranging from 15 to 75% MVC. The young men were ~20-25% stronger, ~12% faster and ~30% more powerful than the old for both knee angles (Ptorque was ~17% greater in the extended than flexed knee position, with no differences in voluntary activation (>95%). The young men produced 7-12% faster angular velocities in the extended knee position for loads ≤30% MVC, but no differences at higher loads; whereas there were no detectable differences in angular velocity between knee positions in the old across all relative loads. For both knee angles, young men produced peak power at 43.3±9.0% MVC, whereas the old men produced peak power at 54.8±7.9% MVC. These data indicate that the young, who have faster contracting muscles compared with the old, can rely more on velocity than torque for generating maximal power.
Limited-angle multi-energy CT using joint clustering prior and sparsity regularization
Zhang, Huayu; Xing, Yuxiang
2016-03-01
In this article, we present an easy-to-implement Multi-energy CT scanning strategy and a corresponding reconstruction method, which facilitate spectral CT imaging by improving the data efficiency the number-of-energy- channel fold without introducing visible limited-angle artifacts caused by reducing projection views. Leveraging the structure coherence at different energies, we first pre-reconstruct a prior structure information image using projection data from all energy channels. Then, we perform a k-means clustering on the prior image to generate a sparse dictionary representation for the image, which severs as a structure information constraint. We com- bine this constraint with conventional compressed sensing method and proposed a new model which we referred as Joint Clustering Prior and Sparsity Regularization (CPSR). CPSR is a convex problem and we solve it by Alternating Direction Method of Multipliers (ADMM). We verify our CPSR reconstruction method with a numerical simulation experiment. A dental phantom with complicate structures of teeth and soft tissues is used. X-ray beams from three spectra of different peak energies (120kVp, 90kVp, 60kVp) irradiate the phantom to form tri-energy projections. Projection data covering only 75◦ from each energy spectrum are collected for reconstruction. Independent reconstruction for each energy will cause severe limited-angle artifacts even with the help of compressed sensing approaches. Our CPSR provides us with images free of the limited-angle artifact. All edge details are well preserved in our experimental study.
Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo
2008-05-01
Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.
Wakahara, Taku; Kanehisa, Hiroaki; Kawakami, Yasuo; Fukunaga, Tetsuo
2009-10-01
The present study aimed to clarify the effects of knee joint angle on the behavior of the medial gastrocnemius muscle (MG) fascicles during eccentric plantar flexions. Eight male subjects performed maximal eccentric plantar flexions at two knee positions [fully extended (K0) and 90 degrees flexed (K90)]. The eccentric actions were preceded by static plantar flexion at a 30 degrees plantar flexed position and then the ankle joint was forcibly dorsiflexed to 15 degrees of dorsiflexion with an isokinetic dynamometer at 30 degrees /s and 150 degrees /s. Tendon force was calculated by dividing the plantar flexion torque by the estimated moment arm of the Achilles tendon. The MG fascicle length was determined with ultrasonography. The tendon forces during eccentric plantar flexions were influenced by the knee joint angle, but not by the angular velocity. The MG fascicle lengths were elongated as the ankle was dorsiflexed in K0, but in K90 they were almost constant despite the identical range of ankle joint motion. These results suggested that MG fascicle behavior during eccentric actions was markedly affected by the knee joint angle. The difference in the fascicle behavior between K0 and K90 could be attributed to the non-linear force-length relations and/or to the slackness of tendinous tissues.
Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle.
Begg, R K; Sparrow, W A
2006-01-01
The objective of this research was to determine whether joint angles at critical gait events and during major energy generation/absorption phases of the gait cycle would reliably discriminate age-related degeneration during unobstructed walking. The gaits of 24 healthy adults (12 young and 12 elderly) were analysed using the PEAK Motus motion analysis system. The elderly participants showed significantly greater single (60.3% versus 62.3%, p phase. The plantarflexing ankle joint motion during the stance to swing phase transition (A2) for the young group (31.3 degrees ) was about twice ( p gait to assist in weight acceptance. Reduced dorsiflexion by the elderly in the swing phase implies greater risk of toe contact with obstacles. Overall, the results suggest that joint angle measures at critical events/phases in the gait cycle provide a useful indication of age-related degeneration in the control of lower limb trajectories during unobstructed walking.
Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life
Alessandro Tognetti
2015-11-01
Full Text Available Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities. The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1:96 and 0:96, respectively. In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints.
Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles
Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew; Rechberger, Gerald N.; Katsaras, John
2017-01-01
Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effort but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ∼120 nm diameter palmitoyloleoyl phosphatidylcholine (POPC) vesicles, compared to the inner leaflet. Analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K, i.e. above the melting transition temperature of the two lipids. PMID:28381971
Rabelo, Katharina Alves; Sousa Melo, Saulo Leonardo; Torres, Marianna Guanaes Gomes; Campos, Paulo Sérgio F; Bento, Patrícia Meira; Melo, Daniela Pita de
2017-05-01
The aim of this study was to evaluate the relations of the condyle excursion angle (CEA) and the morphology and morphometry of the articular eminence to disc displacement (DD) using magnetic resonance imaging (MRI) of symptomatic patients. MRIs of 199 temporomandibular joints (TMJs) were evaluated. Qualitative and quantitative morphologic analyses were performed with tools available in PACS 11.0 (Carestream Health, Inc, Rochester, NY). The articular eminence inclination (AEI), eminence height (EH), CEA, and articular eminence morphologic shape were evaluated. Statistical analyses were used to evaluate any possible association of the variables with DD in the closed- and open-mouth positions, age, and gender. The significance level was set at .05. Elderly women (>60 yr) presented higher prevalence values (43.26%). There was no statistical correlation between DD and gender (P = .4290). Higher mean values of the AEI and EH were associated with box-shaped eminences. The EH, AEI, and CEA were not related to the presence or absence of DD and the different types of DD. The AEI (P = .002) and CEA (P < .001) values were higher for TMJs with disc reduction in the open-mouth position. Disc position in the closed- and open-mouth positions is not influenced by articular eminence morphology; however, the AEI and CEA have an influence on disc reduction. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life.
Tognetti, Alessandro; Lorussi, Federico; Carbonaro, Nicola; de Rossi, Danilo
2015-11-11
Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities). The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1:96 and 0:96, respectively). In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints.
Joint-Angle Specific Strength Adaptations Influence Improvements in Power in Highly Trained Athletes
Rhea Matthew R.
2016-03-01
Full Text Available Purpose. The purpose of this study was to examine the influence of training at different ranges of motion during the squat exercise on joint-angle specific strength adaptations. Methods. Twenty eight men were randomly assigned to one of three training groups, differing only in the depth of squats (quarter squat, half squat, and full squat performed in 16-week training intervention. Strength measures were conducted in the back squat pre-, mid-, and post-training at all three depths. Vertical jump and 40-yard sprint time were also measured. Results. Individuals in the quarter and full squat training groups improved significantly more at the specific depth at which they trained when compared to the other two groups (p < 0.05. Jump height and sprint speed improved in all groups (p < 0.05; however, the quarter squat had the greatest transfer to both outcomes. Conclusions. Consistently including quarter squats in workouts aimed at maximizing speed and jumping power can result in greater improvements.
de Oliveira, Liliam Fernandes; Menegaldo, Luciano Luporini
2010-10-19
EMG-driven models can be used to estimate muscle force in biomechanical systems. Collected and processed EMG readings are used as the input of a dynamic system, which is integrated numerically. This approach requires the definition of a reasonably large set of parameters. Some of these vary widely among subjects, and slight inaccuracies in such parameters can lead to large model output errors. One of these parameters is the maximum voluntary contraction force (F(om)). This paper proposes an approach to find F(om) by estimating muscle physiological cross-sectional area (PCSA) using ultrasound (US), which is multiplied by a realistic value of maximum muscle specific tension. Ultrasound is used to measure muscle thickness, which allows for the determination of muscle volume through regression equations. Soleus, gastrocnemius medialis and gastrocnemius lateralis PCSAs are estimated using published volume proportions among leg muscles, which also requires measurements of muscle fiber length and pennation angle by US. F(om) obtained by this approach and from data widely cited in the literature was used to comparatively test a Hill-type EMG-driven model of the ankle joint. The model uses 3 EMGs (Soleus, gastrocnemius medialis and gastrocnemius lateralis) as inputs with joint torque as the output. The EMG signals were obtained in a series of experiments carried out with 8 adult male subjects, who performed an isometric contraction protocol consisting of 10s step contractions at 20% and 60% of the maximum voluntary contraction level. Isometric torque was simultaneously collected using a dynamometer. A statistically significant reduction in the root mean square error was observed when US-obtained F(om) was used, as compared to F(om) from the literature.
Miles, James E; Nielsen, Dorte H; Jensen, Bente Rona
2012-01-01
To compare 5 patellar position indices at various stifle joint angles in cadavers of red foxes, determine measurement reliability, and assess the suitability of these indices for clinical use.......To compare 5 patellar position indices at various stifle joint angles in cadavers of red foxes, determine measurement reliability, and assess the suitability of these indices for clinical use....
Li, Qingguo; Zhang, Jun-Tian
2014-11-01
Magnetic and inertial measurement units (MIMUs) have been widely used as an alternative to traditional camera-based motion capture systems for 3D joint kinematics measurement. Since these sensors do not directly measure position, a pre-trial anatomical calibration, either with the assistance of a special protocol/apparatus or with another motion capture system is required to establish the transformation matrices between the local sensor frame and the anatomical frame (AF) of each body segment on which the sensors are attached. Because the axes of AFs are often used as the rotational axes in the joint angle calculation, any difference in the AF determination will cause discrepancies in the calculated joint angles. Therefore, a direct comparison of joint angles between MIMU systems and camera-based systems is less meaningful because the calculated joint angles contain a systemic error due to the differences in the AF determination. To solve this problem a new post-trial AF alignment procedure is proposed. By correcting the AF misalignments, the joint angle differences caused by the difference in AF determination are eliminated and the remaining discrepancies are mainly from the measurement accuracy of the systems themselves. Lower limb joint angles from 30 walking trials were used to validate the effectiveness of the proposed AF alignment procedure. This technique could serve as a new means for calibrating magnetic/inertial sensor-based motion capture systems and correcting for AF misalignment in scenarios where joint angles are compared directly.
Kim, K; Lee, S K; Kim, Y H
2010-10-01
The weakening of trunk muscles is known to be related to a reduction of the stabilization function provided by the muscles to the lumbar spine; therefore, strengthening deep muscles might reduce the possibility of injury and pain in the lumbar spine. In this study, the effect of variation in maximum forces of trunk muscles on the joint forces and moments in the lumbar spine was investigated. Accordingly, a three-dimensional finite element model of the lumbar spine that included the trunk muscles was used in this study. The variation in maximum forces of specific muscle groups was then modelled, and joint compressive and shear forces, as well as resultant joint moments, which were presumed to be related to spinal stabilization from a mechanical viewpoint, were analysed. The increase in resultant joint moments occurred owing to decrease in maximum forces of the multifidus, interspinales, intertransversarii, rotatores, iliocostalis, longissimus, psoas, and quadratus lumborum. In addition, joint shear forces and resultant joint moments were reduced as the maximum forces of deep muscles were increased. These results from finite element analysis indicate that the variation in maximum forces exerted by trunk muscles could affect the joint forces and joint moments in the lumbar spine.
Maximum Joint Entropy and Information-Based Collaboration of Automated Learning Machines
Malakar, N K; Lary, D J
2011-01-01
We are working to develop automated intelligent agents, which can act and react as learning machines with minimal human intervention. To accomplish this, an intelligent agent is viewed as a question-asking machine, which is designed by coupling the processes of inference and inquiry to form a model-based learning unit. In order to select maximally-informative queries, the intelligent agent needs to be able to compute the relevance of a question. This is accomplished by employing the inquiry calculus, which is dual to the probability calculus, and extends information theory by explicitly requiring context. Here, we consider the interaction between two question-asking intelligent agents, and note that there is a potential information redundancy with respect to the two questions that the agents may choose to pose. We show that the information redundancy is minimized by maximizing the joint entropy of the questions, which simultaneously maximizes the relevance of each question while minimizing the mutual informat...
Nisky, Ilana; Hsieh, Michael H; Okamura, Allison M
2014-12-01
Teleoperated robot-assisted surgery (RAS) is used to perform a wide variety of minimally invasive procedures. However, current understanding of the effect of robotic manipulation on the motor coordination of surgeons is limited. Recent studies in human motor control suggest that we optimize hand movement stability and task performance while minimizing control effort and improving robustness to unpredicted disturbances. To achieve this, the variability of joint angles and muscle activations is structured to reduce task-relevant variability and increase task-irrelevant variability. In this study, we determine whether teleoperation of a da Vinci Si surgical system in a nonclinical task of simple planar movements changes this structure of variability in experienced surgeons and novices. To answer this question, we employ the UnControlled manifold analysis that partitions users' joint angle variability into task-irrelevant and task-relevant manifolds. We show that experienced surgeons coordinate their joint angles to stabilize hand movements more than novices, and that the effect of teleoperation depends on experience--experts increase teleoperated stabilization relative to freehand whereas novices decrease it. We suggest that examining users' exploitation of the task-irrelevant manifold for stabilization of hand movements may be applied to: (1) evaluation and optimization of teleoperator design and control parameters, and (2) skill assessment and optimization of training in RAS.
Li, M.; Jiang, Y. S.
2014-11-01
Micro-Doppler effect is induced by the micro-motion dynamics of the radar target itself or any structure on the target. In this paper, a simplified cone-shaped model for ballistic missile warhead with micro-nutation is established, followed by the theoretical formula of micro-nutation is derived. It is confirmed that the theoretical results are identical to simulation results by using short-time Fourier transform. Then we propose a new method for nutation period extraction via signature maximum energy fitting based on empirical mode decomposition and short-time Fourier transform. The maximum wobble angle is also extracted by distance approximate approach in a small range of wobble angle, which is combined with the maximum likelihood estimation. By the simulation studies, it is shown that these two feature extraction methods are both valid even with low signal-to-noise ratio.
Gritsenko, V; Krouchev, N I; Kalaska, J F
2007-09-01
Psychophysical studies have reported an overestimation of limb position in the direction of movement during the early part of active movements. The main hypothesis tested in this study is that the overestimation results from a process of forward prediction of limb state driven by an efference copy of the outgoing motor command. This hypothesis predicts that position overestimation should decrease or disappear during passive movements, for which there should be no efference copy. Seven subjects were asked to remember and to report the perceived angle of their elbow joint at different times during active and passive movements. They showed a highly velocity-dependent overestimation of the elbow joint angle near the beginning of the movement in both active and passive trials. Toward the end of the movement, subjects showed a relatively velocity-independent underestimation of their elbow angle in all trials. Contrary to the prediction of the efference copy hypothesis, the amplitude and the velocity-dependent slope of the elbow angle overestimation were both greater during the early part of passive movements than active movements. This indicates that psychophysical evidence of early overestimation of arm position on its own is not a sufficient proof of forward prediction based on an efference copy, at least under the conditions of this study. Decreased errors during active movements suggest that an efference copy can improve the accuracy of state estimation during active movements. Error patterns seem to parallel the likely level of sensorimotor noise, suggesting a probabilistic mechanism for position estimation.
Ayala, F; De Ste Croix, M; Sainz de Baranda, P; Santonja, F
2012-11-01
The main purpose of this study was to determine the absolute reliability of conventional (H/Q(CONV)) and functional (H/Q(FUNC)) hamstring to quadriceps strength imbalance ratios calculated using peak torque values, 3 different joint angle-specific torque values (10°, 20° and 30° of knee flexion) and 4 different joint ROM-specific average torque values (0-10°, 11-20°, 21-30° and 0-30° of knee flexion) adopting a prone position in recreational athletes. A total of 50 recreational athletes completed the study. H/Q(CONV) and H/Q(FUNC) ratios were recorded at 3 different angular velocities (60, 180 and 240°/s) on 3 different occasions with a 72-96 h rest interval between consecutive testing sessions. Absolute reliability was examined through typical percentage error (CVTE), percentage change in the mean (CM) and intraclass correlations (ICC) as well as their respective confidence limits. H/Q(CONV) and H/Q(FUNC) ratios calculated using peak torque values showed moderate reliability values, with CM scores lower than 2.5%, CV(TE) values ranging from 16 to 20% and ICC values ranging from 0.3 to 0.7. However, poor absolute reliability scores were shown for H/Q(CONV) and H/Q(FUNC) ratios calculated using joint angle-specific torque values and joint ROM-specific average torque values, especially for H/Q(FUNC) ratios (CM: 1-23%; CV(TE): 22-94%; ICC: 0.1-0.7). Therefore, the present study suggests that the CV(TE) values reported for H/Q(CONV) and H/Q(FUNC) (≈18%) calculated using peak torque values may be sensitive enough to detect large changes usually observed after rehabilitation programmes but not acceptable to examine the effect of preventitive training programmes in healthy individuals. The clinical reliability of hamstring to quadriceps strength ratios calculated using joint angle-specific torque values and joint ROM-specific average torque values are questioned and should be re-evaluated in future research studies.
Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E
2016-07-01
Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically
The effect of foot progression angle on knee joint compression force during walking
Koblauch, Henrik; Heilskov-Hansen, Thomas; Alkjær, Tine;
2013-01-01
males walked at a fixed speed of 4.5 km/h under three conditions: Normal walking, internally rotated and externally rotated. All gait trials were recorded by six infrared cameras. Net joint moments were calculated by 3D inverse dynamics. The results revealed that the medial knee joint compartment...
Fujiwara, Shin-Ichi
2009-09-01
Reconstruction of limb posture is a challenging task in assessing functional morphology and biomechanics of extinct tetrapods, mainly because of the wide range of motions possible at each limb joint and because of our poor knowledge of the relationship between posture and musculoskeletal structure, even in the extant taxa. This is especially true for extinct mammals such as the desmostylian taxa Desmostylus and Paleoparadoxia. This study presents a procedure that how the elbow joint angles of extinct quadruped mammals can be inferred from osteological characteristics. A survey of 67 dried skeletons and 113 step cycles of 32 extant genera, representing 25 families and 13 orders, showed that the olecranon of the ulna and the shaft of the humerus were oriented approximately perpendicular to each other during the stance phase. At this angle, the major extensor muscles maximize their torque at the elbow joint. Based on this survey, I suggest that olecranon orientation can be used for inferring the elbow joint angles of quadruped mammals with prominent olecranons, regardless of taxon, body size, and locomotor guild. By estimating the elbow joint angle, it is inferred that Desmostylus would have had more upright forelimbs than Paleoparadoxia, because their elbow joint angles during the stance phase were approximately 165 degrees and 130 degrees , respectively. Difference in elbow joint angles between these two genera suggests possible differences in stance and gait of these two mammals.
Begović, Slaven; Ranero, César; Sallarès, Valentí; Meléndez, Adrià; Grevemeyer, Ingo
2016-04-01
Commonly multichannel seismic reflection (MCS) and wide-angle seismic (WAS) data are modeled and interpreted with different approaches. Conventional travel-time tomography models using solely WAS data lack the resolution to define the model properties and, particularly, the geometry of geologic boundaries (reflectors) with the required accuracy, specially in the shallow complex upper geological layers. We plan to mitigate this issue by combining these two different data sets, specifically taking advantage of the high redundancy of multichannel seismic (MCS) data, integrated with wide-angle seismic (WAS) data into a common inversion scheme to obtain higher-resolution velocity models (Vp), decrease Vp uncertainty and improve the geometry of reflectors. To do so, we have adapted the tomo2d and tomo3d joint refraction and reflection travel time tomography codes (Korenaga et al, 2000; Meléndez et al, 2015) to deal with streamer data and MCS acquisition geometries. The scheme results in a joint travel-time tomographic inversion based on integrated travel-time information from refracted and reflected phases from WAS data and reflected identified in the MCS common depth point (CDP) or shot gathers. To illustrate the advantages of a common inversion approach we have compared the modeling results for synthetic data sets using two different travel-time inversion strategies: We have produced seismic velocity models and reflector geometries following typical refraction and reflection travel-time tomographic strategy modeling just WAS data with a typical acquisition geometry (one OBS each 10 km). Second, we performed joint inversion of two types of seismic data sets, integrating two coincident data sets consisting of MCS data collected with a 8 km-long streamer and the WAS data into a common inversion scheme. Our synthetic results of the joint inversion indicate a 5-10 times smaller ray travel-time misfit in the deeper parts of the model, compared to models obtained using just
Paulo Henrique Marchetti
2016-01-01
Full Text Available The purpose of this study was to compare muscle activation of the lower limb muscles when performing a maximal isometric back squat exercise over three different positions. Fifteen young, healthy, resistance-trained men performed an isometric back squat at three knee joint angles (20°, 90°, and 140° in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis (VL, vastus medialis (VM, rectus femoris (RF, biceps femoris (BF, semitendinosus (ST, and gluteus maximus (GM. In general, muscle activity was the highest at 90° for the three quadriceps muscles, yet differences in muscle activation between knee angles were muscle specific. Activity of the GM was significantly greater at 20° and 90° compared to 140°. The BF and ST displayed similar activation at all joint angles. In conclusion, knee position alters muscles activation of the quadriceps and gluteus maximus muscles. An isometric back squat at 90° generates the highest overall muscle activation, yet an isometric back squat at 140° generates the lowest overall muscle activation of the VL and GM only.
Marangoz, Salih; Buyukdogan, Kadir; Karahan, Sevilay
2017-01-01
It is known that the screws of the eight-plate hemiepiphysiodesis construct diverge as growth occurs through the physis. Our objective was to investigate whether there is a correlation between the amount of change of the joint orientation angle (JOA) and that of the interscrew angle (ISA) of the eight-plate hemiepiphysiodesis construct before and after correction. After the institutional review board approval, medical charts and X-rays of all patients operated for either genu valgum or genu varum with eight-plate hemiepiphysiodesis were analyzed retrospectively. All consecutive patients at various ages with miscellaneous diagnoses were included. JOA and ISA were measured before and after correction. After review of the X-rays, statistical analyses were performed which included Pearson correlation coefficient and regression analyses. There were 53 segments of 30 patients included in the study. Eighteen were males, and 12 were females. Mean age at surgery was 9.1 (range 3-17). Mean follow-up time was 21.5 (range, 7-46) months. The diagnoses were diverse. A strong correlation was found between the delta JOA (d-JOA) and delta ISA (d-ISA) of the eight-plate hemiepiphysiodesis construct (r = 0.759 (0.615-0.854, 95%CI), p correlation was independent of the age and gender of the patient. There is a strong correlation between the d-ISA and the d-JOA. The d-ISA follows the d-JOA at a predictable amount through formulas which regression analysis yielded. This study confirms the clinical observation of the diverging angle between the screws is in correlation with the correction of the JOA. Level IV, Therapeutic study. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Local joint-limits using distance field cones in euler angle space
Engell-Nørregård, Morten Pol; Abel, Sarah Maria Niebe; Erleben, Kenny
Joint–limits are often modeled too simple, causing redundancy and allowing unnatural poses. We model the boundary of the feasible region, using a geometric approach. We show how to generate fast, general joint–limit cones for kinematic figures using signed distance fields. The distance–cone joint...
Kim, Juseung; Park, Minchul
2016-01-01
[Purpose] This study compared abdominal and hip extensor muscle activity during a bridge exercise with various knee joint angles. [Subjects and Methods] Twenty-two healthy male subjects performed a bridge exercise in which the knee joint angle was altered. While subjects performed the bridge exercise, external oblique, internal oblique, gluteus maximus, and semitendinosus muscle activity was measured using electromyography. [Results] The bilateral external and internal oblique muscle activity was significantly higher at 0° knee flexion compared to 120°, 90°, and 60°. The bilateral gluteus maximus muscle activity was significantly different at 0° of knee flexion compared to 120°, 90°, and 60°. The ipsilateral semitendinosus muscle activity was significantly increased at 90° and 60° of knee flexion compared to 120°, and significantly decreased at 0° knee flexion compared with 120°, 90°, and 60°. The contralateral semitendinosus muscle activity was significantly higher at 60° of knee flexion than at 120°, and significantly higher at 0° of knee flexion than at 120°, 90°, and 60°. [Conclusion] Bridge exercises performed with knee flexion less than 90° may be used to train the ipsilateral semitendinosus. Furthermore, bridge exercise performed with one leg may be used to train abdominal and hip extensor muscles. PMID:27799688
The relationship between unilateral mandibular angle fracture and temporomandibular joint function.
Baltrusaityte, Ausra; Surna, Algimantas; Pileicikiene, Gaivile; Kubilius, Ricardas; Gleiznys, Alvydas; Zilinskas, Juozas
2014-01-01
PURPOSE. Aim of this study was to analyze relation of occlusal correction and alterations of temporomandibular joint function during treatment of unilateral mandibular fractures. MATERIALS AND METHODS. We compared 49 patients treated for unilateral mandibular fracture without occlusal correction with 21 patient treated for unilateral mandibular fracture along with early and consequent occlusal analysis and correction and with 49 control subjects. Patients' complaints, mandibular movements and occlusal parameters were evaluated during the period of healing. ZEBRIS ultrasound system (Jaw Motion Analyzer, Zebris Medical GmbH, Isny, Germany) was used for analysis of mandibular movements and T-Scan analyzer (Tekscan, Inc., Boston, MA, USA) was used for occlusal analysis. RESULTS. Findings of our study showed statistically significant (p<0.05) diminution of patients complaints, mandibular movement alterations and occlusal disturbances in patients who received occlusal correction during MF treatment if compared to patients treated without occlusal correction, except noises from the joint in the injured side and mandibular lateral track to the injured side in the final stage of investigation. Despite applied treatment recovery of the TMJ function was not complete and the investigated parameters remained worse if compared to the control group. CONCLUSIONS. Results of this study confirmed positive influence of early and subsequent occlusal analysis and correction during stages of MF treatment on diminution of functional alterations of the temporomandibular joint function. Timely occlusal correction improves and hastens process of rehabilitation therefore it is indispensable part of MF treatment.
J Sadowski
2009-07-01
Full Text Available The aim of the study was to compare the values of velocity an joint angles obtained during performance of double salto backward stretched with a stable landing and its combination with salto tempo. Seven top level acrobats (track jumpers participated in study. Mean values of body height, mass and age had a value of: 170 cm ± 4.0 cm, 72.4 kg ± 3.6 kg, 20.4±1.7 years, respectively. The studies were conducted on a standard acrobatic path (type PTS 2000. Two digital video cameras (240 Hz and APAS 2000 (Ariel Dynamics Inc. were used during studies. Markers were placed in ankle, knee, hip, arm, elbow and wrist joints. All marker positions were tracked and reconstructed using the APAS system. Two sequences with the following elements were analysed: round-off - double salto backward stretched (A and round-off - double salto backward stretched - tempo salto (B. The highest differences between the key components describing performance of presented exercises exist for joint angles during launching and landing position, and resultant velocities during touchdown. In version A the athlete created prerequisites for “gliding” double salto backward stretched by means of the body segments motions, whereas in version B he executes faster motions of the body segments accentuating his actions upon backward rotation of the body. During the final phase of double salto backward stretched in combination with tempo salto the athlete performed courbette “under himself” (almost straight feet are placed in front of vertical line, pushes directly back and in 0,1 s executes stable arm swing upward-backward to tempo salto.
Changes in EMG Activities of Upper Arm Muscles and in Shoulder Joint Angles in Post-stroke Patients
Rositsa Raikova
2016-09-01
Full Text Available The aim of the paper is to compare the electromyographic signals (EMGs and the joint angles of the affected upper limb muscles of stroke survivors to those of their non-affected limb as well as to those of the dominant and the non-dominant limbs of healthy volunteers. Twenty five volunteers, ten post-stroke survivors and fifteen healthy subjects as control group, participated in the experiments. EMGs of muscles of the upper limbs and two angles in the shoulder joint were registered and processed during three static and two dynamic tasks. The results showed a big variability of all investigated parameters (mean and median frequencies, ranges of motions, maximal normalized EMGs both for the patients and for the healthy subjects, for right and for left hand. This makes difficult a deduction of definitive conclusions about the changes in motor control of the upper limbs due to stroke. Moreover, natural differences in motor control exist for dominant and non-dominant limb. On the whole, the power-frequency analysis and the relevant statistical analysis indicated that the muscles of the affected limb had lower median frequencies than those of the healthy limb. Examination of full elbow flexions in the sagittal plane showed that the range of the motion in the shoulder joint of both limbs of the patients increased when compared to the healthy subjects and that this increase was larger for the affected limb. The post-stroke survivors used more of their muscle power although no increased co-contraction was observed.
Stevens, Daniel E; Smith, Cameron B; Harwood, Brad; Rice, Charles L
2014-11-01
Ultrasound imaging has facilitated the reliable measure of the architectural variables fascicle length (LF ) and pennation angle (PA), at rest and during static and dynamic contractions in many human skeletal muscles in vivo. Despite its small size and very modest contribution to elbow extension torque, the anconeus muscle has proven a useful model for the study of neuromuscular function in health and disease. Recent single motor unit (MU) studies in the anconeus have reported discrete and identifiable individual trains of MU potentials from intramuscular electromyography (EMG) recordings during dynamic elbow extensions. It is unknown whether the anconeus has unique architectural features related to alterations in LF and PA throughout the elbow joint range of motion that may help explain these high-quality recordings. Previous anatomical studies have investigated this muscle in cadavers and at mainly one elbow joint angle. The purpose of this study was to measure in vivo PA and LF of the anconeus muscle in a relaxed state at different degrees of elbow flexion using ultrasonography. Ultrasound images were collected from 10 healthy males (25 ± 3 years) at 135°, 120°, 90°, 45°, and 0° of elbow flexion. Average values of LF decreased by 6 mm (10%), 6 mm (12%), and 4 mm (9%) from 135-120°, 120-90°, and 90-45° of elbow flexion, respectively, whereas average PA values increased by 1° (9%), 1° (8%), and 2° (14%) from 135-120°, 120-90°, and 45-0°, respectively. The results indicate that anconeus muscle architecture is dynamic, undergoing moderate changes with elbow joint excursion that are similar to other limb muscles reported elsewhere. The data obtained here are more comprehensive and representative of architectural changes at various elbow joint positions than those data reported in cadaveric studies. Furthermore, the results of this study indicate that despite experiencing similar relative changes in muscle architecture to other skeletal muscles
Stevens, Daniel E; Smith, Cameron B; Harwood, Brad; Rice, Charles L
2014-01-01
Ultrasound imaging has facilitated the reliable measure of the architectural variables fascicle length (LF) and pennation angle (PA), at rest and during static and dynamic contractions in many human skeletal muscles in vivo. Despite its small size and very modest contribution to elbow extension torque, the anconeus muscle has proven a useful model for the study of neuromuscular function in health and disease. Recent single motor unit (MU) studies in the anconeus have reported discrete and identifiable individual trains of MU potentials from intramuscular electromyography (EMG) recordings during dynamic elbow extensions. It is unknown whether the anconeus has unique architectural features related to alterations in LF and PA throughout the elbow joint range of motion that may help explain these high-quality recordings. Previous anatomical studies have investigated this muscle in cadavers and at mainly one elbow joint angle. The purpose of this study was to measure in vivo PA and LF of the anconeus muscle in a relaxed state at different degrees of elbow flexion using ultrasonography. Ultrasound images were collected from 10 healthy males (25 ± 3 years) at 135°, 120°, 90°, 45°, and 0° of elbow flexion. Average values of LF decreased by 6 mm (10%), 6 mm (12%), and 4 mm (9%) from 135–120°, 120–90°, and 90–45° of elbow flexion, respectively, whereas average PA values increased by 1° (9%), 1° (8%), and 2° (14%) from 135–120°, 120–90°, and 45–0°, respectively. The results indicate that anconeus muscle architecture is dynamic, undergoing moderate changes with elbow joint excursion that are similar to other limb muscles reported elsewhere. The data obtained here are more comprehensive and representative of architectural changes at various elbow joint positions than those data reported in cadaveric studies. Furthermore, the results of this study indicate that despite experiencing similar relative changes in muscle architecture to other skeletal
DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K
2012-04-05
We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.
Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong
2016-06-16
Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain's response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°.
Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong
2016-01-01
Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267
Kyungsoo Kim
2016-06-01
Full Text Available Electroencephalograms (EEGs measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE schemes based on a joint maximum likelihood (ML criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°.
Coutinho, A. B. B.; Jotta, B.; Pino, A. V.; Souza, M. N.
2012-12-01
Electrical impedance myography (EIM) can be understood as an experimental technique applied to evaluate bioelectrical impedance associated to the muscular activity. With the development of technique, some studies are trying to associate the EIM parameters with the morphological and physiological changes that occur in the muscle during contraction. In this context this work sought to associate EIM parameters observed during isometric contractions of the biceps brachii muscle at different elbow joint angles with the correspondent muscular force. Differently from previous works that did not observe significant correlation between those data, our findings point to high correlations between the some EIM resistive parameters and the muscle force. Despite the need of further investigation, our results indicated that EIM technique can be used to estimate muscle force in a noninvasive way.
LEDVINOVÁ, Eva
2014-01-01
This bachelor thesis is focused on physiotherapeutic methods used in patients with rheumatoid arthritis whose difficulties are mainly in the joints of their hand. Rheumatoid arthritis is a chronic inflammatory joint disease in most cases with a protracted course and it may cause joint deformations. These lead to handling issues which complicate normal daily activities of the patients. Thus this disease causes both physical disability of the patient and as well significantly disrupts their soc...
An Architecture for Measuring Joint Angles Using a Long Period Fiber Grating-Based Sensor
Carlos A. Perez-Ramirez
2014-12-01
Full Text Available The implementation of signal filters in a real-time form requires a tradeoff between computation resources and the system performance. Therefore, taking advantage of low lag response and the reduced consumption of resources, in this article, the Recursive Least Square (RLS algorithm is used to filter a signal acquired from a fiber-optics-based sensor. In particular, a Long-Period Fiber Grating (LPFG sensor is used to measure the bending movement of a finger. After that, the Gaussian Mixture Model (GMM technique allows us to classify the corresponding finger position along the motion range. For these measures to help in the development of an autonomous robotic hand, the proposed technique can be straightforwardly implemented on real time platforms such as Field Programmable Gate Array (FPGA or Digital Signal Processors (DSP. Different angle measurements of the finger’s motion are carried out by the prototype and a detailed analysis of the system performance is presented.
A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.
Wen, Chao; Shi, Guangming
2014-08-07
The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.
用于人体关节角度捕捉的光纤角度传感器的研究%Research on Fiber-optic Angle Sensor with Capturing Human Joint Angles
张振海; 张小栋; 侯育军
2012-01-01
在分析现有的外骨骼机器人控制信号的拾取方法优缺点的基础上,设计了一种用于捕捉人体关节角度的光纤角度传感器.通过结构设计和理论分析,建立光纤输出端光功率与关节弯曲角度的数学模型.仿真结果表明,所设计的传感器输出信号对关节角度具有很好的线性度,可用于外骨骼机器人的角度控制的信号捕捉.%After analyzing the adavantages and disadvantages of the approaches for exoskeleton robot to collect control signal, a fiber-optic angle sensor was designed to capture human joint angles. Through structural design and theoretical analysis , the mathematical model of the output optical power and joint angles are established. Simulation results show that the fiber-optic angle sensor has good linearity, and can be used to the exoskeleton robot for capturing the human joint angles.
Gustavo Adolfo Watanabe-Kanno
2012-02-01
Full Text Available OBJECTIVE: Define and compare numbers and types of occlusal contacts in maximum intercuspation. METHODS: The study consisted of clinical and photographic analysis of occlusal contacts in maximum intercuspation. Twenty-six Caucasian Brazilian subjects were selected before orthodontic treatment, 20 males and 6 females, with ages ranging between 12 and 18 years. The subjects were diagnosed and grouped as follows: 13 with Angle Class I malocclusion and 13 with Angle Class II Division 1 malocclusion. After analysis, the occlusal contacts were classified according to the established criteria as: tripodism, bipodism, monopodism (respectively, three, two or one contact point with the slope of the fossa; cuspid to a marginal ridge; cuspid to two marginal ridges; cuspid tip to opposite inclined plane; surface to surface; and edge to edge. RESULTS: The mean number of occlusal contacts per subject in Class I malocclusion was 43.38 and for Class II Division 1 malocclusion it was 44.38, this difference was not statistically significant (p>0.05. CONCLUSIONS: There is a variety of factors that influence the number of occlusal contacts between a Class I and a Class II, Division 1 malocclusion. There is no standardization of occlusal contact type according to the studied malocclusions. A proper selection of occlusal contact types such as cuspid to fossa or cuspid to marginal ridge and its location in the teeth should be individually defined according to the demands of each case. The existence of an adequate occlusal contact leads to a correct distribution of forces, promoting periodontal health.
Mantsyzov, Alexey B; Maltsev, Alexander S; Ying, Jinfa; Shen, Yang; Hummer, Gerhard; Bax, Ad
2014-09-01
α-Synuclein is an intrinsically disordered protein of 140 residues that switches to an α-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential H(N) − H(α) and H(N) − H(N) NOEs, values for (3) JHNHα, (1) JHαCα, (2) JCαN, and (1) JCαN, as well as chemical shifts of (15)N, (13)C(α), and (13)C' nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (20-30%) of the PPII region and a somewhat higher population of the potentially aggregation-prone β region (20-40%) than seen in the database. A generally lower population of the αR region (10-20%) is found. Analysis of (1)H − (1)H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein.
Mantsyzov, Alexey B; Maltsev, Alexander S; Ying, Jinfa; Shen, Yang; Hummer, Gerhard; Bax, Ad
2014-01-01
α-Synuclein is an intrinsically disordered protein of 140 residues that switches to an α-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential HN–Hα and HN–HN NOEs, values for 3JHNHα, 1JHαCα, 2JCαN, and 1JCαN, as well as chemical shifts of 15N, 13Cα, and 13C′ nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (20–30%) of the PPII region and a somewhat higher population of the potentially aggregation-prone β region (20–40%) than seen in the database. A generally lower population of the αR region (10–20%) is found. Analysis of 1H–1H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein. PMID:24976112
膝反射灵敏度与膝关节角度关系的探讨%Relationship between knee joint angle and knee reflex sensitivity
毛新春; 席庆祥; 保宏翔; 常红升; 田卫卫; 廖琦; 陈贤
2011-01-01
Objective To explore the relationship between knee joint angle and knee reflex sensitivity, and to provide the most accurate position and a theoretical basis for knee reflex inspection. Methods 149 patients( 298 knee joints )hospitalized in general medicine department who met the criteria were included in this study. They received knee reflex inspections at different angles ranging from 80° to 180° , and the reflex intensity was evaluated and statistically analyzed using curve fitting. Results When knee joint angle was between 125° and 130° ,the total scores of knee reflex were at the highest level according to curve fitting analysis. Conclusion Knee reflex sensitivity is correlated with knee joint angle. When knee joint angle is between 125° and 130°,the knee reflex sensitivity is the highest.%目的 探讨仰卧位膝反射灵敏度与膝关节角度的关系,为临床检查膝反射提供准确的检查体位及理论依据.方法 对普通内科住院患者符合入选条件的149例298个膝关节在80～180°范围内不同角度的反射强度进行积分和统计分析.结果 膝关节角度在125～130°时,膝反射积分值处在最高水平.结论 膝反射灵敏度与膝关节角度相关,仰卧位膝关节角度在125～130°范围时,反射灵敏度最高.
Dimas Valditya Dewangga
2012-09-01
Full Text Available Tujuan penelitian ini adalah untuk mengetahui deformasi dan tegangan sisa akibat distribusi panas yang tidak merata selama proses pengelasan sampai pendinginan pada sambungan tumpul pada pelat datar dengan variasi flank angle, toe radius, dan preparation angle. Penelitian ini dilakukan dengan metode elemen hinigga dan validasi hasil dilakukan dengan experiment yang telah dilakukan oleh Higashida Y, Burk JD, dan Lawrence FV. Material untuk pengujian adalah ASTM A36 dengan kampuh V ganda. Semua analisa ditinjau saat suhu material sama dengan suhu ruang. Pemodelan dilakukan dengan memvariasi besaran flank angle (sudut mahkota, toe radius (radius kaki mahkota dan preparation angle (sudut alur. Dari variasi yang dilakukan diperoleh pengelasan terbaik yang menghasilkan deformasi dan tegangan sisa terkecil yaitu pengelasan yang menggunakan sudut 20o pada variasi sudut mahkota, 2.5 milimeter untuk variasi radius kaki mahkota, dan sudut 40o untuk variasi sudut alur.
Xu, F.; Dubovik, O.; Zhai, P.; Kalashnikova, O. V.; Diner, D. J.
2015-12-01
The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI typically acquires observations of a target area at 9 view angles between ±67° off the nadir. Its spectral channels are centered at 355, 380, 445, 470*, 555, 660*, and 865* nm, where the asterisk denotes the polarimetric bands. In order to retrieve information from the AirMSPI observations, we developed a efficient and flexible retrieval code that can jointly retrieve aerosol and water leaving radiance simultaneously. The forward model employs a coupled Markov Chain (MC) [2] and adding/doubling [3] radiative transfer method which is fully linearized and integrated with a multi-patch retrieval algorithm to obtain aerosol and water leaving radiance/Chl-a information. Various constraints are imposed to improve convergence and retrieval stability. We tested the aerosol and water leaving radiance retrievals using the AirMSPI radiance and polarization measurements by comparing to the retrieved aerosol concentration, size distribution, water-leaving radiance, and chlorophyll concentration to the values reported by the USC SeaPRISM AERONET-OC site off the coast of Southern California. In addition, the MC-based retrievals of aerosol properties were compared with GRASP ([4-5]) retrievals for selected cases. The MC-based retrieval approach was then used to systematically explore the benefits of AirMSPI's ultraviolet and polarimetric channels, the use of multiple view angles, and constraints provided by inclusion of bio-optical models of the water-leaving radiance. References [1]. D. J. Diner, et al. Atmos. Meas. Tech. 6, 1717 (2013). [2]. F. Xu et al. Opt. Lett. 36, 2083 (2011). [3]. J. E. Hansen and L.D. Travis. Space Sci. Rev. 16, 527 (1974). [4]. O. Dubovik et al. Atmos. Meas. Tech., 4, 975 (2011). [5]. O. Dubovik et al. SPIE: Newsroom, DOI:10.1117/2.1201408.005558 (2014).
Wang W
2016-12-01
Full Text Available Wei Wang, Mengshuang Xie, Shuang Dou, Liwei Cui, Wei Xiao Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People’s Republic of China Background: In a previous study, we demonstrated that asthma patients with signs of emphysema on quantitative computed tomography (CT fulfill the diagnosis of asthma-COPD overlap syndrome (ACOS. However, quantitative CT measurements of emphysema are not routinely available for patients with chronic airway disease, which limits their application. Spirometry was a widely used examination tool in clinical settings and shows emphysema as a sharp angle in the maximum expiratory flow volume (MEFV curve, called the “angle of collapse (AC”. The aim of this study was to investigate the value of the AC in the diagnosis of emphysema and ACOS. Methods: This study included 716 participants: 151 asthma patients, 173 COPD patients, and 392 normal control subjects. All the participants underwent pulmonary function tests. COPD and asthma patients also underwent quantitative CT measurements of emphysema. The AC was measured using computer models based on Matlab software. The value of the AC in the diagnosis of emphysema and ACOS was evaluated using receiver-operating characteristic (ROC curve analysis. Results: The AC of COPD patients was significantly lower than that of asthma patients and control subjects. The AC was significantly negatively correlated with emphysema index (EI; r=-0.666, P<0.001, and patients with high EI had a lower AC than those with low EI. The ROC curve analysis showed that the AC had higher diagnostic efficiency for high EI (area under the curve =0.876 than did other spirometry parameters. In asthma patients, using the AC ≤137° as a surrogate criterion for the diagnosis of ACOS, the sensitivity and specificity were 62.5% and 89.1%, respectively. Conclusion: The AC on the MEFV curve quantified by computer models correlates with the extent of emphysema. The AC may become a
Adouni, M; Shirazi-Adl, A
2014-05-01
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics-kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17Nm is varied by ±50% to 25.5Nm and 8.5Nm. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.
Schmitz, Anne; Ye, Mao; Boggess, Grant; Shapiro, Robert; Yang, Ruigang; Noehren, Brian
2015-02-01
Markerless motion capture may have the potential to make motion capture technology widely clinically practical. However, the ability of a single markerless camera system to quantify clinically relevant, lower extremity joint angles has not been studied in vivo. Therefore, the goal of this study was to compare in vivo joint angles calculated using a marker-based motion capture system and a Microsoft Kinect during a squat. Fifteen individuals participated in the study: 8 male, 7 female, height 1.702±0.089m, mass 67.9±10.4kg, age 24±4 years, BMI 23.4±2.2kg/m(2). Marker trajectories and Kinect depth map data of the leg were collected while each subject performed a slow squat motion. Custom code was used to export virtual marker trajectories for the Kinect data. Each set of marker trajectories was utilized to calculate Cardan knee and hip angles. The patterns of motion were similar between systems with average absolute differences of 0.9 for both systems. The peak angles calculated by the marker-based and Kinect systems were largely correlated (r>0.55). These results suggest the data from the Kinect can be post processed in way that it may be a feasible markerless motion capture system that can be used in the clinic.
Guess, Trent M; Razu, Swithin; Jahandar, Amirhossein; Skubic, Marjorie; Huo, Zhiyu
2017-04-01
The Microsoft Kinect is becoming a widely used tool for inexpensive, portable measurement of human motion, with the potential to support clinical assessments of performance and function. In this study, the relative osteokinematic Cardan joint angles of the hip and knee were calculated using the Kinect 2.0 skeletal tracker. The pelvis segments of the default skeletal model were reoriented and 3-dimensional joint angles were compared with a marker-based system during a drop vertical jump and a hip abduction motion. Good agreement between the Kinect and marker-based system were found for knee (correlation coefficient = 0.96, cycle RMS error = 11°, peak flexion difference = 3°) and hip (correlation coefficient = 0.97, cycle RMS = 12°, peak flexion difference = 12°) flexion during the landing phase of the drop vertical jump and for hip abduction/adduction (correlation coefficient = 0.99, cycle RMS error = 7°, peak flexion difference = 8°) during isolated hip motion. Nonsagittal hip and knee angles did not correlate well for the drop vertical jump. When limited to activities in the optimal capture volume and with simple modifications to the skeletal model, the Kinect 2.0 skeletal tracker can provide limited 3-dimensional kinematic information of the lower limbs that may be useful for functional movement assessment.
Johnston, Jamie A; Bobich, Lisa R; Santello, Marco
2010-04-26
Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant fingertip forces, the Central Nervous System (CNS) may respond to changes in wrist angle by modulating the neural drive to extrinsic or intrinsic muscles only or by co-activating both sets of muscles. To distinguish between these scenarios, we recorded electromyographic (EMG) activity of intrinsic and extrinsic muscles of the thumb and index finger as a function of wrist angle during a two-digit object hold task. We hypothesized that changes in wrist angle would elicit EMG amplitude modulation of the extrinsic and intrinsic hand muscles. In one experimental condition we asked subjects to exert the same digit forces at each wrist angle, whereas in a second condition subjects could choose digit forces for holding the object. EMG activity was significantly modulated in both extrinsic and intrinsic muscles as a function of wrist angle (both pmuscles. We conclude that the CNS controlled both extrinsic and intrinsic muscles as a muscle synergy. These findings are discussed within the theoretical frameworks of synergies and common neural input across motor nuclei of hand muscles. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
The Input-Output Angle Variation Analysis of Tripod Universal Joint%三叉杆式万向联轴器的转角差值分析
李利; 常德功
2001-01-01
建立三叉杆式等角速万向联轴器中各个构件坐标及坐标方程，导出不同坐标原点的坐标系之间坐标变换矩阵，从而推导出三叉杆式等角速万向联轴器的运动方程，计算了输入和输出转角间的关系。%The systems of coordinate and equations of the every components of the tripod universal joint are established and the coordinate transformation matrixes of the varied systems of coordinate whose grid origins were misaligned are derived. Hence the kinematics equations and the input-output angle variation of this type joint are reduced.
Joint maximum likelihood and Bayesian channel estimation%联合最大似然贝叶斯信道估计
沈壁川; 郑建宏; 申敏
2008-01-01
在高信噪比情况下统计贝叶斯估计是一种有效的信道估计方法,但是在低信噪比时由于噪声估计不准确,其性能逐渐下降.研究了基于鲁棒的非线性降噪方法,提出了一个简化的联合最大似然贝叶斯信道估计.计算机仿真结果和分析表明这种方法在较高和较低的信噪比情况下,提高了信道估计和联合检测的性能.%Statistical Bayesian channel estimation is effective in suppressing noise floor for high SNR, but its performance degrades due to less reliable noise estimation in low SNR region. Based on a robust nonlinear de-noising technique for small signal, a simplified joint maximum likelihood and Bayesian channel estimation is proposed and investigated. Simulation results are presented and analysis shows it is promising to improve channel estimation and joint detection performance for both low and high SNR situations.
黄荣瑛; 郭云飞; 徐强; 张高龙
2012-01-01
Aimed at the change of the contact characteristic of a tibiofemoral joint after meniscectomy, MR/ images of the normal human knee at four flexion angles （0°/25°/60°/80°） were used to construct the normal, medial/lateral/bilateral meniscectomy finite element models of the tibiofemoral joint. In the experiment, the single compressive load and the compressive load with torque were applied to these models for the finite element simulation. The results show that： 1） For the tibiofemoral joint at different flexion angles, unilateral meniscectomy makes the axial load supported by the persistence meniscus and the maximum equivalent stress on the persistence meniscus increase, and the increment after lateral meniscectomy is higher than that after medial meniscectomy. 2） For each flexion angle, after the menisceetomy, the axial load transmitted directly between tibial/femoral cartilage increases. The increment after bilateral meniscectomy is most, and unilateral meniscectomy influences the meniscus-removed side more than the meniscus-left side. Besides, the maximum equivalent stress on the tibial cartilage also increases in sequence： bilateral meniscectomy/lateral meniscectomy/medial meniscectomy. 3） In the tibiofemoral joint, after lateral and bilateral meniscectomy, an obvious stress concentration occurs on the lateral tibial cartilage at 25° and 80°flexion angles. In a word, for the tibiofemoral joint at different flexion angles, when the meniscus injures is removed, the tibial/femoral cartilage bears more loading directly, and then the stress distribution changes and the maximum equivalent stress on the cartilage increases, which leads the degradation of the joint cartilage and other complex joints to disease. Furthermore, lateral meniscectomy changes the contact behavior of the tibiofemoral joint more serious than medial meniscectomy, which needs to be valued in meniscectomy.%针对半月板损伤切除后胫股关节接触特性的变化，该文
王怀云; 何海龙; 李华; 张桦; 朱云荣; 叶晓健
2011-01-01
Objective To measure the angle of declination on the lower cervical facet joints ( C3_7) in normal adults, and to investigate the range of normal values and the clinical significance. Methods A total of 500 X-ray films in cervical lateral position were randomly selected from normal outpatients. The angles of declination on the lower cervical facet joints ( C3-7 ) were measured by Unisight system. Results The angles of declination from C3 to C7 were 61. 9° ± 5. 4°, 54. 8° ± 4. 7°, 50.7° ±4.9°, 55.8° ±5.1°, and 63.4° ±5.3°, respectively. The distribution of angle values from C3 to C7 appeared in a " U" shape with the minimum value at C5 and the maximum values at C7. The mean angles of declination were above 45°. Statistical analysis indicated that the values of declination angle were as follows: C7 > C3 > C4 = C6 > C5. Conclusion The distribution characteristics of declination angles on the lower cervical facet joints can help to comprehend the biomechanics of cervical vertebra and the pathogenesis of diseases and trauma related to cervical vertebrae.%目的 观察正常成年人下颈椎关节突关节面倾斜角度测量特点,探讨其正常值范围及临床意义.方法 随机抽取门诊正常成年人颈椎侧位X线片500张,利用Unisight放射影像处理软件逐个测量其C3～7小关节突关节面倾角.结果 C3-7倾角大小依次分别为:61.9°±5.4°、54.8°±4.7°、50.7°±4.9°、55.8°±5.1°、63.4°±5.3°.C3～7倾角值大小呈“U”形分布,以C5最小,C7最大,各倾角均值＞45°.经统计分析,各个下颈椎小关节突关节面倾角大小比较可以概括为C7＞C3 ＞C4 =C6 ＞C5.结论 下颈椎小关节突关节面倾角不同,了解其分布特点有利于理解颈椎生物力学特性及相关颈椎疾病、颈椎外伤的发病机制.
Pluk, A; Bahr, C; Poursaberi, A; Maertens, W; van Nuffel, A; Berckmans, D
2012-04-01
This paper describes a synchronized measurement system combining image and pressure data to automatically record the angle of the metacarpus and metatarsus bones of the cow with respect to a vertical line, which is useful for lameness detection in dairy cattle. A camera system was developed to record the posture and movement of the cow and the timing and position of hoof placement and release were recorded using a pressure sensitive mat. Experiments with the automatic system were performed continuously on a farm in Ghent (Belgium) for 5 wk in September and October 2009. In total, 2,219 measurements were performed on 75 individual lactating Holstein cows. As a reference for the analysis of the calculated variables, the locomotion of the cows was visually scored from recorded videos by a trained observer into 3 classes of lameness [53.5% were scored with gait score (GS)1, 33.3% were scored with GS2, and 9.3% were scored with GS3]. The contact data of the pressure mat and the camera images recorded by the system were synchronized and combined to measure different angles of the legs of the cows, together with the range of motion of the leg. Significant differences were found between the different gait scores in the release angles of the front hooves, in the range of motion of the front hooves, and in the touch angles of the hind hooves. The contact data of the pressure mat and the camera images recorded by the system were synchronized and combined to measure different angles of the legs of the cows, together with the range of motion of the leg. With respect to the classification of lameness, the range of motion of the front hooves (42.1 and 42.8%) and the release angle of the front hooves (41.7 and 42.0%) were important variables. In 83.3% of the cows, a change in GS led to an increase in within-cow variance for the range of motion or the release angle of the front hooves. In 76.2% of the cows, an increase in GS led to a decrease in range of motion or an increase in
Senteler, Marco; Weisse, Bernhard; Rothenfluh, Dominique A; Farshad, Mazda T; Snedeker, Jess G
2017-01-01
This study addresses the hypothesis that adjacent segment intervertebral joint loads are sensitive to the degree of lordosis that is surgically imposed during vertebral fusion. Adjacent segment degeneration is often observed after lumbar fusion, but a causative mechanism is not yet clearly evident. Altered kinematics of the adjacent segments and potentially nonphysiological mechanical joint loads have been implicated in this process. However, little is known of how altered alignment and kinematics influence loading of the adjacent intervertebral joints under consideration of active muscle forces. This study investigated these effects by simulating L4/5 fusions using kinematics-driven musculoskeletal models of one generic and eight sagittal alignment-specific models. Models featured different spinopelvic configurations but were normalized by body height, masses, and muscle properties. Fusion of the L4/5 segment was implemented in an in situ (22°), hyperlordotic (32°), and hypolordotic (8°) fashion and kinematic input parameters were changed accordingly based on findings of an in vitro investigation. Bending motion from upright standing to 45° forward flexion and back was simulated for all models in intact and fused conditions. Joint loads at adjacent levels and moment arms of spinal muscles experienced changes after all types of fusion. Hypolordotic configuration led to an increase of adjacent segment (L3/4) shear forces of 29% on average, whereas hyperlordotic fusion reduced shear by 39%. Overall, L4/5 in situ fusion resulted in intervertebral joint forces closest to intact loading conditions. An artificial decrease in lumbar lordosis (minus 14° on average) caused by an L4/5 fusion lead to adverse loading conditions, particularly at the cranial adjacent levels, and altered muscle moment arms, in particular for muscles in the vicinity of the fusion. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:131-139, 2017.
Massad, Tariq; Jarvet, Jueri [Stockholm University, Department of Biochemistry and Biophysics (Sweden); Tanner, Risto [National Institute of Chemical Physics and Biophysics (Estonia); Tomson, Katrin; Smirnova, Julia; Palumaa, Peep [Tallinn Technical University, Inst. of Gene Technology (Estonia); Sugai, Mariko; Kohno, Toshiyuki [Mitsubishi Kagaku Institute of Life Sciences (MITILS) (Japan); Vanatalu, Kalju [Tallinn Technical University, Inst. of Gene Technology (Estonia); Damberg, Peter [Stockholm University, Department of Biochemistry and Biophysics (Sweden)], E-mail: peter.damberg@dbb.su.se
2007-06-15
In this paper, we present a new method for structure determination of flexible 'random-coil' peptides. A numerical method is described, where the experimentally measured {sup 3}J{sup H{sup N}}{sup H{sup {alpha}}} and {sup 3}J{sup H{sup {alpha}}}{sup N{sup I}+1} couplings, which depend on the {phi} and {psi} dihedral angles, are analyzed jointly with the information from a coil-library through a maximum entropy approach. The coil-library is the distribution of dihedral angles found outside the elements of the secondary structure in the high-resolution protein structures. The method results in residue specific joint {phi},{psi}-distribution functions, which are in agreement with the experimental J-couplings and minimally committal to the information in the coil-library. The 22-residue human peptide hormone motilin, uniformly {sup 15}N-labeled was studied. The {sup 3}J{sup H{sup {alpha}}}{sup N{sup I}+1} were measured from the E.COSY pattern in the sequential NOESY cross-peaks. By employing homodecoupling and an in-phase/anti-phase filter, sharp H{sup {alpha}}-resonances (about 5 Hz) were obtained enabling accurate determination of the coupling with minimal spectral overlap. Clear trends in the resulting {phi},{psi}-distribution functions along the sequence are observed, with a nascent helical structure in the central part of the peptide and more extended conformations of the receptor binding N-terminus as the most prominent characteristics. From the {phi},{psi}-distribution functions, the contribution from each residue to the thermodynamic entropy, i.e., the segmental entropies, are calculated and compared to segmental entropies estimated from {sup 15}N-relaxation data. Remarkable agreement between the relaxation and J-couplings based methods is found. Residues belonging to the nascent helix and the C-terminus show segmental entropies, of approximately -20 J K{sup -1} mol{sup -1} and -12 J K{sup -1} mol{sup -1}, respectively, in both series. The agreement
Massad, Tariq; Jarvet, Jüri; Tanner, Risto; Tomson, Katrin; Smirnova, Julia; Palumaa, Peep; Sugai, Mariko; Kohno, Toshiyuki; Vanatalu, Kalju; Damberg, Peter
2007-06-01
In this paper, we present a new method for structure determination of flexible "random-coil" peptides. A numerical method is described, where the experimentally measured 3J(H(alpha)Nalpha) and [3J(H(alpha)Nalpha+1 couplings, which depend on the phi and psi dihedral angles, are analyzed jointly with the information from a coil-library through a maximum entropy approach. The coil-library is the distribution of dihedral angles found outside the elements of the secondary structure in the high-resolution protein structures. The method results in residue specific joint phi,psi-distribution functions, which are in agreement with the experimental J-couplings and minimally committal to the information in the coil-library. The 22-residue human peptide hormone motilin, uniformly 15N-labeled was studied. The 3J(H(alpha)-N(i+1)) were measured from the E.COSY pattern in the sequential NOESY cross-peaks. By employing homodecoupling and an in-phase/anti-phase filter, sharp H(alpha)-resonances (about 5 Hz) were obtained enabling accurate determination of the coupling with minimal spectral overlap. Clear trends in the resulting phi,psi-distribution functions along the sequence are observed, with a nascent helical structure in the central part of the peptide and more extended conformations of the receptor binding N-terminus as the most prominent characteristics. From the phi,psi-distribution functions, the contribution from each residue to the thermodynamic entropy, i.e., the segmental entropies, are calculated and compared to segmental entropies estimated from 15N-relaxation data. Remarkable agreement between the relaxation and J-couplings based methods is found. Residues belonging to the nascent helix and the C-terminus show segmental entropies, of approximately -20 J K(-1) mol(-1) and -12 J K(-1) mol(-1), respectively, in both series. The agreement between the two estimates of the segmental entropy, the agreement with the observed J-couplings, the agreement with the CD experiments
Park, Mi Hwa; Yu, Jae Ho; Hong, Ji Heon; Kim, Jin Seop; Jung, Sang Woo; Lee, Dong Yeop
2016-03-01
[Purpose] To date, core muscle activity detected using ultrasonography during prone bridge exercises has not been reported. Here we investigated the effects of core muscle thickness and balance on sling exercise efficacy by shoulder joint angle in healthy individuals. [Subjects and Methods] Forty-three healthy university students were enrolled in this study. Ultrasonography thickness of external oblique, internal oblique, and transversus abdominis during sling workouts was investigated. Muscle thickness was measured on ultrasonography imaging before and after the experiment. Dynamic balance was tested using a functional reaching test. Static balance was tested using a Tetrax Interactive Balance System. [Results] Different muscle thicknesses were observed during the prone bridge exercise with the shoulder flexed at 60°, 90° or 120°. Shoulder flexion at 60° and 90° in the prone bridge exercise with a sling generated the greatest thickness of most transversus abdominis muscles. Shoulder flexion at 120° in the prone bridge exercise with a sling generated the greatest thickness of most external oblique muscles. [Conclusion] The results suggest that the prone bridge exercise with shoulder joint angle is an effective method of increasing global and local muscle strength.
Demura, Tomohiro; Demura, Shin-ichi
2012-09-01
This study examines the effect of these shoes on the leg joint angle and muscle activity during walking. Ten healthy young male adults (mean age: 24.1±4.3 years) walked on a walkway while wearing one of three kinds of shoes with a rounded soft sole in the anterior-posterior direction (Stretch Walker: SW, mass: 440 g), MBT (Masai Barefoot Technology; similar to the SW in form and material, mass: 600 g), and flat-bottomed shoes (FS, mass: 420 g)). After familiarizing themselves with the shoes, subjects walked twenty laps on the walkway, which was about 40 m long (mean speed: 4.1 km/h). After a sufficient rest, they repeated this with the other shoes. During walking, the volume of muscle discharge was measured once every 2 laps. The mean value of the 10 measurements was used as the evaluation variable for integral values and joint angle, while the right foot touched the ground twice. In conclusion, the range of leg movement during walking was smaller when wearing shoes with a rounded soft sole in the anterior-posterior direction (SW and MBT) than when wearing normal shoes (FS). However, the effects of the SW and MBT on leg muscle activity during walking differ little from wearing the normal shoes during a leisurely 10-min walk. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yeow, C H; Lee, Peter V S; Goh, James C H
2009-10-01
Ground reaction forces (GRF), knee flexion angles, angular velocities and joint powers are unknown at large landing heights, which are infeasible for laboratory testing. However, this information is important for understanding lower extremity injury mechanisms. We sought to determine regression relationships of landing height with these parameters during landing so as to facilitate estimation of these parameters at large landing heights. Five healthy male subjects performed landing tasks from heights of 0.15-1.05 m onto a force-plate. Motion capture system was used to obtain knee flexion angles during landing via passive markers placed on the lower body. An iterative regression model, involving simple linear/exponential/natural logarithmic functions, was used to fit regression equations to experimental data. Peak GRF followed an exponential regression relationship (R(2)=0.90-0.99, p<0.001; power=0.987-0.998). Peak GRF slope and impulse also had an exponential relationship (R(2)=0.90-0.96, p<0.001; power=0.980-0.997 and R(2)=0.90-0.99, p<0.001; power=0.990-1.000 respectively) with landing height. Knee flexion angle at initial contact and at peak GRF had an inverse-exponential regression relationship (R(2)=0.81-0.99, p<0.001-p=0.006; power=0.834-0.978 and R(2)=0.84-0.97, p<0.001-p=0.004; power=0.873-0.999 respectively). There was also an inverse-exponential relationship between peak knee flexion angular velocity and landing height (R(2)=0.86-0.96, p<0.001; power=0.935-0.994). Peak knee joint power demonstrated a substantial linear relationship (R(2)=0.98-1.00, p<0.001; power=0.990-1.000). The parameters analyzed in this study are highly dependent on landing height. The exponential increase in peak GRF parameters and the relatively slower increase in knee flexion angles, angular velocities and joint power may synergistically lead to an exacerbated lower extremity injury risk at large landing heights.
Howarth, Samuel J; Callaghan, Jack P
2012-02-02
Despite the findings that peak anterior shear load is highly correlated with low-back pain reporting, very little research has been conducted to determine how vertebral shear injury potential is influenced. The current study quantified the combined effects of vertebral joint compression and flexion/extension postural deviation from neutral on ultimate shear failure. Ninety-six porcine cervical specimens (48C3-C4, 48C5-C6) were tested. Each specimen was randomly assigned to one of twelve combinations of compressive force (15%, 30%, 45%, or 60% of predicted compressive failure force) and flexion/extension postural deviation (extended, neutral, or flexed). Vertebral joint shear failure was induced by applying posterior shear displacement of the caudal vertebra at a constant rate of 0.15 mm/s. Throughout shear failure tests, vertebral joint kinematics were measured using an optoelectronic camera and a series of infrared light emitting diodes while shear force was measured from load cells rigidly interfaced in series with linear actuators that applied the shear displacement. Measurements of shear stiffness, ultimate force, displacement, and energy stored were made from the force-displacement data. Compressive force and postural deviation demonstrated main effects without a statistically significant interaction for any of the measurements. Shear failure force increased by 11.1% for each 15% increment in compressive force (pflexion (pflexion/extension postural deviation should be equally considered while assessing shear injury potential.
Cianfrini, C.; Corcione, M.; Habib, E.; Quintino, A.
2017-06-01
Natural convection in air-filled rectangular cavities inclined with respect to gravity, so that the heated wall is facing upwards, is studied numerically under the assumption of two-dimensional laminar flow. A computational code based on the SIMPLE-C algorithm is used for the solution of the system of the mass, momentum and energy transfer governing equations. Simulations are performed for height-to-width aspect ratios of the enclosure from 0.25 to 8, Rayleigh numbers based on the length of the heated and cooled walls from 102 to 107, and tilting angles of the enclosure from 0° to 75°. The existence of an optimal tilting angle is confirmed for any investigated configuration, at a location that increases as the Rayleigh number is decreased, and the height-to-width aspect ratio of the cavity are increased, unless the value of the Rayleigh number is that corresponding to the onset of convection or just higher. Dimensionless correlating equations are developed to predict the optimal tilting angle and the heat transfer performance of the enclosure.
Lam, Gilbert Wing Kai; Park, Eun Jung; Lee, Ki-Kwang; Cheung, Jason Tak-Man
2015-01-01
Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.
李家启; 王代新; 江孟蜀
2012-01-01
针对闪电对地物发生闪击的瞬间状态，采用库仑定律重点分析研究IEC62305推荐的避雷针最大保护角法的雷电防护效果．结果表明：IEC62305推荐的避雷针最大保护角，其保护域内不仅可免遭雷电正击，还可免遭雷电侧击；而GBJ57推荐的最大保护角保护域内仅可免遭雷电正击．基于此，为GB50057采用IEC62305推荐最大保护角而不继续采用GBJ57推荐最大保护角提供了理论支撑和科学依据．%Aiming at the instantaneous state of the cloud-ground lightning and using the Coulomb's law, we analyze the lightning protection effect in this study based on the lightning rod maximum protection an gle in IEC 62305. The result shows that the lightning rod maximum protection angle recommended by IEC 62305 can not only protect direct-strike lightning but also flank striking lightning, while the maximum protection angle recommended by GBJ57 can only protect direct-strike lightning, thus providing a theoreti- cal support and a scientific basis for the adoption of the maximum protection angle recommended by IEC 62305 instead of that by GBJ57 in GB50057.
Akala, A. O.; Awoyele, A.; Doherty, P. H.
2016-03-01
This study characterizes Global Navigation Satellite System amplitude scintillation over Dakar (14.75°N, 17.45°W, magnitude latitude: 5.88°N), Senegal. The data, which we arranged on daily and monthly scales, cover 14 months: September-November 2012; February-December 2013; and January-February 2014. The data were further binned into three levels of scintillation using the S4 index: weak (0.3 ≤ S4 < 0.4), moderate (0.4 ≤ S4 < 0.7), and intense (S4 ≥ 0.7), over varying elevation angles (10°, 20°, and 30°). Daily occurrences of scintillation were most frequent around 22-02 LT. On a month-by-month basis, October recorded the highest occurrences of scintillations, while June recorded the least. Furthermore, contrary to Akala et al. (2014, 2015) who earlier reported January as off season for scintillation occurrences at some sites in Africa, namely, Lagos (Central West Africa), Nairobi, and Kampala (East Africa), the current study recorded some scintillation occurrences at Dakar (far west of West Africa) in January. It therefore implies that longitudinal variations do exist in the climatology of ionospheric scintillations over Africa. Consequently, detailed understanding of the climatology and daily distributions of ionospheric scintillations over equatorial Africa, which is our key objective in this study (from the perspective of Dakar), is the basic requirement for developing robust physics-based scintillation models for the African equatorial region. Finally, we noted that the conventional adoption of high-elevation masking angles during scintillation data processing, with a view to suppressing multipath effects usually hid important ionospheric-induced scintillation data.
The GPSR Algorithm for Geographical Location Based on Maximum Angle Points%基于极大转发角的地理位置路由GPSR算法改进
孙焘; 韩宁; 冯林
2011-01-01
针对无线传感器网络GPSR算法在同一区域发送数据,遇到空洞时会出现三角路由的问题,本文提出一种基于极大转发角的针对GPSR算法的改进策略(GPSR-MTA).当有数据需要发送的时候,首先按照GPSR算法发送,在达到一定条件的时候计算偏离角度,当这个角度达到最大的时候向源节点发送带有极大偏离角点的反馈信息.源节点接到反馈信息后把自己和其邻节点的中转节点信息设置为接收到的极大转发角点信息,以后向此目标节点转发信息时,先向极大转发角点发送,然后再通过它来发送到目标节点.仿真结果表明,该算法有效地绕开了空洞,在平均跳数方面得到了优化.%The algorithm of GPSR for WSNCwirelss sensor networks) transporting data to the same area, when it falls across a hole, the triangle routing problem occurs. So an improved strategy for GPSR based on the maximum transpond angle point(GPSR-MTA) is proposed. When the data need to be sent, firstly, it will be sent according to GPSR. Under certain conditions, the point will calculate an angle. When the angle is the maximum, that point needs to send the message with the information about the maximum angle point to the source point. When the source point receives the message, it will set itself and its neighbor's transpond information. Then the source point needs to send the message, it will send it to the transpond point, the maximum transpond angle point, after that, the message will be sent to the target point. The simulation shows that, this algorithm can go around the hole efficiently, and is improved on the average hops.
Ross, Sandy A; Rice, Clinton; Von Behren, Kristyn; Meyer, April; Alexander, Rachel; Murfin, Scott
2015-01-01
The purpose of this study was to establish intra-rater, intra-session, and inter-rater, reliability of sagittal plane hip, knee, and ankle angles with and without reflective markers using the GAITRite walkway and single video camera between student physical therapists and an experienced physical therapist. This study included thirty-two healthy participants age 20-59, stratified by age and gender. Participants performed three successful walks with and without markers applied to anatomical landmarks. GAITRite software was used to digitize sagittal hip, knee, and ankle angles at two phases of gait: (1) initial contact; and (2) mid-stance. Intra-rater reliability was more consistent for the experienced physical therapist, regardless of joint or phase of gait. Intra-session reliability was variable, the experienced physical therapist showed moderate to high reliability (intra-class correlation coefficient (ICC) = 0.50-0.89) and the student physical therapist showed very poor to high reliability (ICC = 0.07-0.85). Inter-rater reliability was highest during mid-stance at the knee with markers (ICC = 0.86) and lowest during mid-stance at the hip without markers (ICC = 0.25). Reliability of a single camera system, especially at the knee joint shows promise. Depending on the specific type of reliability, error can be attributed to the testers (e.g. lack of digitization practice and marker placement), participants (e.g. loose fitting clothing) and camera systems (e.g. frame rate and resolution). However, until the camera technology can be upgraded to a higher frame rate and resolution, and the software can be linked to the GAITRite walkway, the clinical utility for pre/post measures is limited.
F.G. Miranda
2016-08-01
Full Text Available ABSTRACT We evaluated 160 hip joint radiographs of 40 dogs of different large breeds (25 females and 15 males from the metropolitan area of Belo Horizonte, Minas Gerais, Brazil. The radiographs of each dog were obtained at two different stages: stage 1 (mean 7.23 months and stage 2 (mean 14.25. The conventional radiographic method (CRM and the radiographic distraction method (RDM were used, carried out in both stages. CRM measured the Norberg angle (NA, the angle of inclination (AI and evaluated the presence of degenerative joint disease (DJD. The MRD was performed to establish the distraction index (DI. The aims were to evaluate the presence of the Morgan line and other signs of DJD and correlate them with the degree of canine hip dysplasia (CHD and also check if the DI greater than 0.3 (first stage was associated with the presence of ML (second stage. It was found that DI, AI and changes of femoral neck and the formation of osteophytes were associated with the presence of ML. It was observed that if the DI is greater than 0.3 at the first stage, the chance of a positive outcome of ML in the second stage increases by 7.2 times. Thus, 49 joints showed DI > 0.3 at the first stage, in which 31 (63.3 % presented ML at the second stage. Of the 31 animals that showed DI ≤ 0.3 at first, six (19.4% had LM at the second stage. There has been a significant association between the presence of ML and the degree of CHD. The more severe the CHD, the higher the percentage of positive ML results. Thus, among the 24 (60 % animals that showed ML, 11 (45.83 % were classified as severe dysplastics, 5 (20.83% as moderate and 8 (33.33 % as mild. None of the animals classified as normal or borderline presented ML. Among the 8 animals classified as mild dysplastics, 5 showed only ML as DJD.
许红生; 赵志江; 孟位明; 张磊; 张小伟
2014-01-01
BACKGROUND:The good rotational alignment of femoral prosthesis was very important in total knee arthroplasty. The research has shown that the posterior condylar angle was important to determine the alignment. The posterior condylar angle is the angle between the posterior condylar axis and the femoral epicondylar axis. MRI can clearly show the condylar cartilage, the projections of lateral epicondyle and the medial epicondyle depression, thus ensuring accuracy of measurement data. OBJECTIVE:To measure the posterior condylar angle of knee joint in the northern part of Baoding City in China, and to provide image evidence for identifying the rotational alignment of femoral prosthesis during total knee arthroplasty. METHODS:The knee was extended on a neutral position when MRI machine was applied to scan knee joint. The scanning plane was perpendicular to the mechanical axis of the knee. The best T1 axial plane of the knee was chosen, and two observers analyzed images independently. Existence rate of femoral medial epicondyle was observed using Bravo viewer 6.0 imaging software. The posterior condylar angle between posterior condylar axis and the femoral condyle axis was measured. RESULTS AND CONCLUSION:The posterior condylar angle was (2.73±1.28)° in males and (2.35±1.37)° in females on average, which did not show significant difference. The results showed that the MRI had great superiority in measuring the posterior condylar angle. The variability of the epicondylar axis was smal in total knee arthroplasty. Posterior condylar angle can be referenced to position femoral prosthesis and to avoid the complications after knee replacement.%背景：全膝关节置换过程中股骨假体旋转力线良好非常重要，研究显示后髁角度是确定力线的重要依据，后髁角度为股骨后髁轴与股骨手术髁上轴之间角度，MRI测量可清晰显示后髁软骨、外上髁突起及内上髁凹陷，从而保证测量数据的准确。目的：测量
Hill, Rachel J; Mason, Holly M; Yeip, Gavin; Merchant, Samer S; Olsen, Aaron L; Stott, Rusty D; Van Wettere, Arnaud J; Bressel, Eadric; Mason, Jeffrey B
2017-01-01
Large animal models of osteoarthritis are a necessary testing ground for FDA approval of human medicine applications. Sheep models have advantages over other available large animals, but development and progression of osteoarthritis in sheep is exceedingly slow, which handicaps progress in development of potential treatments. We combined oblique angle forced exercise to increase stress on the stifle, with surgical destabilization to hasten the development of osteoarthritis in ewes. Methods for early detection of clinical signs included radiography, urine, and serum biomarker assays and gait analysis and ex vivo we used microcomputed tomography and macroscopic joint analysis. Our model was able to produce clinically detectable signs of osteoarthritis in a relatively short period (14 weeks). Changes in bone were highly correlated between microcomputed tomography and radiographic analysis and changes in cartilage correlated well between urinary glycosaminoglycan levels and serum aggrecanase analyses. Exercise improved the negative effects of destabilization in bone but exacerbated the negative effects of destabilization in cartilage. These observations suggest that we may need to consider treatments for bone and cartilage separately. These results represent an improved large animal model of osteoarthritis with rapid onset of disease and superior detection of bone and soft tissue changes.
Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf)—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only. PMID:28133549
Usa, Hideyuki; Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf )-the static muscular moment to support a limb segment against gravity-from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm ) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.
Hideyuki Usa
2017-01-01
Full Text Available This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm was calculated. Body weight and limb segment length (thigh and lower leg length were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.
Design and Mechanics Simulation of Bionic Lubrication System of Artificial Joints
S. H. Su; Z. K. Hua; J. H. Zhang
2006-01-01
We propose a new structure for artificial joints with a joint capsule which is designed to overcome the drawback of current prostheses that omit many functions of the lubricant and the joint capsule. The new structure is composed of three components:lubricant, artificial joint and artificial joint capsule. The lubricant sealed in the capsule can not only reduce the wear of the artificial joint but also prevents the wear particles leaking into the body. So unexpected reactions between the wear particles and body can be avoided completely. A three-dimensional (3-D) finite element analysis (FEA) model was created for a bionic knee joint with capsule. The stresses and their distribution in the artificial capsule were simulated with different thickness, loadings,and flexion angles. The results show that the maximum stress occurs in the area between the artificial joint and the capsule. The effects of capsule thickness and the angles of flexion on stress are discussed in detail.
Kinematic control of extreme jump angles in the red leg running frog (Kassina maculata).
Richards, Christopher Thomas; Porro, Laura Beatriz; Collings, Amber Jade
2017-03-08
The kinematic flexibility of frog hindlimbs enables multiple locomotor modes within a single species. Prior work has extensively explored maximum performance capacity in frogs; however, the mechanisms by which anurans modulate performance within locomotor modes remain unclear. We explored how Kassina maculata, a species known for both running and jumping abilities, modulates takeoff angle from horizontal to nearly vertical. Specifically, how do 3D motions of leg segments coordinate to move the center of mass (COM) upwards and forwards? How do joint rotations modulate jump angle? High-speed video was used to quantify 3D joint angles and their respective rotation axis vectors. Inverse kinematics was used to determine how hip, knee and ankle rotations contribute to components of COM motion. Independent of takeoff angle, leg segment retraction (rearward rotation) was twofold greater than adduction (downward rotation). Additionally, the joint rotation axis vectors reoriented through time suggesting dynamic shifts in relative roles of joints. We found two hypothetical mechanisms for increasing takeoff angle: Firstly, greater knee and ankle excursion increased shank adduction, elevating the COM. Secondly, during the steepest jumps the body rotated rapidly backwards to redirect the COM velocity. This rotation was not caused by pelvic angle extension, but rather by kinematic transmission from leg segments via reorientation of the joint rotation axes. We propose that K. maculata uses proximal leg retraction as the principal kinematic drive while dynamically tuning jump trajectory by knee and ankle joint modulation.
Chen, Larry; Gordon, Karen; Hurtig, Mark
2014-10-01
Design and validation of a magnetic resonance and computed tomography compatible device capable of applying physiologically relevant muscle forces to cadaveric knee joints with high levels of repeatability and reproducibility. Repeatability and reproducibility were assessed with two porcine stifle joints. Load was applied to joints at full extension, five and 15 degrees of flexion through two cables simulating the lines of action of the quadriceps and hamstrings muscles. Five repeatability and five reproducibility trials were performed at each flexion angle. Standard deviations (SDs) of joint angle and load were recorded. For repeatability, the maximum SDs for joint angle were 1.26° (flexion), 1.54° (ab/adduction) and 0.90° (in/external rotation). The maximum SDs for joint load were 4.60 N (anterior/posterior), 7.36 N (medial/lateral), and 42.6N (axial). For reproducibility, the maximum SDs for joint angle were 0.84° (flexion), 0.66° (ab/adduction) and 0.92° (in/external rotation). The maximum SDs for joint load were 6.40 N (anterior/posterior), 11.7 N (medial/lateral), and 39.7 N (axial). This level of repeatability and reproducibility is within intra-subject variability of measured gait kinematics. Therefore, this device is considered to be an effective tool for in vitro testing of knee soft tissue repair. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Fujiwara, K; Miyaguchi, A; Toyama, H; Kunita, K; Asai, H
1999-08-01
The present study attempted to investigate the effect of position on the perception of angle of trunk flexion while standing. For this purpose, the range effect was factored out by setting the constant target angle at 10 degrees, with varied starting positions of trunk flexion. We found that subjects underestimated angle of trunk flexion when the starting position was close to a quiet standing posture, overestimated when close to maximum trunk flexion, and correctly perceived it when at the middle position. Less perceptual distortion was observed at the positions close to maximum trunk flexion in the present study than in our previous one, in which various target angles of trunk flexion were reproduced from a quiet standing posture. The reduced distortion in the present study was believed to have resulted from factoring out the range effect. The flexion angle of the hip joint changed in tandem with that of the trunk, while very little movement was observed in the ankle, knee, and neck joints. Judging from the changing pattern of hip-joint angle, the muscle activity of the erector spinae and biceps femoris increased gradually to 90 degrees trunk flexion. In contrast, the actual increment of muscle activity reached zero or a minimum value at the middle angles as the angle of trunk flexion increased. It was assumed that the abrupt change in kinesthetic information associated with muscle activity exerted a great influence on the perception of trunk flexion.
Amir Esrafilian
2012-01-01
Full Text Available Background. Osteoarthritis (OA is a disease which influences the performance of the knee joint. Moreover, the force and moments applied on the joint increase in contrast to normal subjects. Various types of knee orthoses have been designed to solve the mentioned problems. However, there are other problems in terms of distal migration during walking and the alignment of the orthosis which cannot be changed following the use of brace. Therefore, the main aim of the research was to design an orthosis to solve the aforementioned problems. Method. A new type of knee orthosis was designed with a modular structure. Two patients with knee OA participated in this research project. The force applied on the foot, moment transmitted through the knee joint, and spatiotemporal gait parameters were measured by use of a motion analysis system. Results. The results of the research showed that the adduction moment applied on the knee joint decreased while subjects walked with the new knee orthosis (P-value < 0.05. Conclusion. The new design of the knee brace can be used as an effective treatment to decrease the loads applied on the knee joint and to improve the alignment whilst walking.
Esrafilian, Amir; Karimi, Mohammad Taghi; Eshraghi, Arezoo
2012-01-01
Background. Osteoarthritis (OA) is a disease which influences the performance of the knee joint. Moreover, the force and moments applied on the joint increase in contrast to normal subjects. Various types of knee orthoses have been designed to solve the mentioned problems. However, there are other problems in terms of distal migration during walking and the alignment of the orthosis which cannot be changed following the use of brace. Therefore, the main aim of the research was to design an orthosis to solve the aforementioned problems. Method. A new type of knee orthosis was designed with a modular structure. Two patients with knee OA participated in this research project. The force applied on the foot, moment transmitted through the knee joint, and spatiotemporal gait parameters were measured by use of a motion analysis system. Results. The results of the research showed that the adduction moment applied on the knee joint decreased while subjects walked with the new knee orthosis (P-value knee brace can be used as an effective treatment to decrease the loads applied on the knee joint and to improve the alignment whilst walking.
Are joint torque models limited by an assumption of monoarticularity?
Lewis, Martin G C; King, Mark A; Yeadon, Maurice R; Conceição, Filipe
2012-11-01
This study determines whether maximal voluntary ankle plantar flexor torque could be more accurately represented using a torque generator that is a function of both knee and ankle kinematics. Isovelocity and isometric ankle plantar flexor torques were measured on a single participant for knee joint angles of 111° to 169° (approximately full extension) using a Contrex MJ dynamometer. Maximal voluntary torque was represented by a 19-parameter two-joint function of ankle and knee joint angles and angular velocities with the parameters determined by minimizing a weighted root mean square difference between measured torques and the two-joint function. The weighted root mean square difference between the two-joint function and the measured torques was 10 N-m or 3% of maximum torque. The two-joint function was a more accurate representation of maximal voluntary ankle plantar flexor torques than an existing single-joint function where differences of 19% of maximum torque were found. It is concluded that when the knee is flexed by more than 40°, a two-joint representation is necessary.
Kinkhabwala, Ali
2013-01-01
The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...
Maximum ceasing angle of inclination and flux formula for granular orifice flow%颗粒孔洞流的最大休止倾角和流量公式
彭政; 蒋亦民
2011-01-01
This work measured mass flux of a granular sample (glass beads) discharged from an inclined orifice for various inclination angles and orifice diameters. It is found that irrespective the orifice sizes, the fluxes all vary linearly with cosine of the inclination angle, and the linearly extrapolated angle of zero-flux, namely the critical angle of flow ceasing,increases linearly with ratio between grain and orifice diameter, tends to the angle of repose in the limit of infinite orifice diameter within an approximation of the Bagnold angle. The results show that the flux formula varying linearly with cosine of inclination angle is capable to reveal behaviors of the critical ceasing angle, a property that the Beverloo formula of which parameters vary with cosine of inclination angle can not describe.%实验测量了重力驱动下的玻璃珠颗粒样品通过不同倾角和孔径的圆形孔洞的卸载流量.发现无论孔径大小,流量均与倾角的余弦呈良好的线性关系;线性外推得到的零流量角,即流量休止临界角随颗粒粒径与孔洞直径之比的减小而线性增加;在无穷大孔径极限下,此临界角在Bagnold角的误差范围内与样品的安息角一致.这些结果表明流量随倾角余弦线性变化的经验公式能揭示临界角的行为和特性,这是参数随倾角变化的Beverloo公式所不能描述的.
Joint Form and Process Analysis for Pressure Angle of Special Equipments%特种设备受压角焊缝的接头形式及工艺分析
单新华; 陆建伟
2011-01-01
为了提高承压设备的角焊缝的焊接质量和产品强度要求,针对特种设备上的主要受压角焊缝的接头型式的合理选择进行了概述,并对这些角接接头的制造及焊接过程进行了详细的工艺分柝.承压设备的角焊缝对于产品焊接质量方面至关重要,不容忽视,必须保证全焊透.%In order to improve the welding quality and products strength requirements of angle welding line of pressure equipments, the reasonable choirs for joint form of main pressure angle welding line of special equipmets were summarized. And joint manufaeturing and welding process were analyzed. Welding fillet of pressure equipments is critical for weld quality of the products, so it can not be ignored.
Petit, Daniel J; Willson, John D; Barrios, Joaquin A
2014-02-01
Efforts to compare different surface marker configurations in 3-dimensional motion analysis are warranted as more complex and custom marker sets become more common. At the knee, different markers can been used to represent the proximal shank. Often, two anatomical markers are placed over the femoral condyles, with their midpoint defining both the distal thigh and proximal shank segment ends. However, two additional markers placed over the tibial plateaus have been used to define the proximal shank end. For this experiment, simultaneous data for both proximal shank configurations were independently collected at two separate laboratories by different investigators, with one laboratory capturing a walking population and the other a running population. Common discrete knee joint variables were then compared between marker sets in each population. Using the augmented marker set, peak knee flexion after weight acceptance was less (1.2-1.7°, P knee adduction was greater (0.7-1.4°, P knee flexion moment was less by 15-20% and internal rotation moment was greater by 11-18% (P knee joint mechanics are influenced by the proximal shank's segment endpoint definition, independent of dynamic task, investigator, laboratory environment, and population in this study.
Maximum information photoelectron metrology
Hockett, P; Wollenhaupt, M; Baumert, T
2015-01-01
Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...
A study of sandwich T-joints and composite lap joints
Turaga, Umamaheswar V. R. S.
In this study, new efficient designs for adhesive sandwich T-joint and single-lap joint were proposed and investigated. In the proposed new sandwich T-joint, called U-channel joint, the load transfer path at the web-flange interface was modified to include a U-shaped aluminum channel which provides strong path for load transfer. Experimental results show that the new design has 62% more strength than the conventional circular fillet joint. The new U-channel joint was tested in tension, compression and bending to investigate its characteristics. It is found to have good performance in bending also, even though in compression it performs same as the circular fillet joint. An extensive parametric study was carried out to investigate the effect of parameters like flange skin stiffener, foam density, foam thickness in the web, and aluminum attachments. A fracture mechanics criterion based on the strain energy release rate was used to explain the failure modes, apart from the stress analysis explanation. The failure loads of the joints in compression were predicted using a maximum principal stress failure criterion based on the sandwich beam theory. A new single lap joint with attachments was proposed in the second phase of the research. The design was verified using both aluminum and composite materials. The new design was found to have 59% more strength than the single-lap joint. A parametric study was performed to find out the influence of the angle of attachment, thickness of attachment and the length of attachment. By careful consideration of design parameters, the joint can be optimized. Finally, the failure loads of the single lap joints with and without attachments were predicted using different failure criteria.
Cochrane, Darryl J; Loram, Ian D; Stannard, Stephen R; Rittweger, Jörn
2009-09-01
It has been suggested that vibration causes small changes in muscle length, but to the best of our knowledge, these have yet to be demonstrated during whole-body vibration (WBV). This was an observational study to determine whether acute WBV would result in muscle lengthening. We hypothesized that acute WBV would increase electromyography (EMG) activity concurrently with measurable changes in muscle contractile length. Nine healthy males performed two conditions on a Galileo vibration machine for 15 s at 0 HZ (resting) and 6 HZ at a set knee angle of 18 degrees. Muscle tendon complex length, contractile tissue displacement of the medial gastrocnemius muscle, and EMG of soleus, tibialis anterior, and vastus lateralis muscles were measured. At 6 HZ the medial gastrocnemius (MG) muscle tendon complex (MTC) amplitude (375 microm) was significantly greater (P EMG modulation were found for all muscles during the 6 HZ compared to the 0 HZ condition. The major finding was that approximately 50% of the elongation occurred within the muscle itself and was associated with preceding changes in EMG. This indicates muscle lengthening may be a prerequisite for eliciting stretch reflexes. In conclusion, there is a temporal association between EMG activity and muscle contractile tissue displacement where low-frequency WBV results in small muscle length changes and increases muscle activation.
徐强; 黄荣瑛; 许勇刚; 郭云飞; 郑红光
2012-01-01
flexion angle of 0° for the models A and B, the accuracy and validity of the pairs of models for healthy adult A were proved. After that, MRI images of the normal human knee at different flexion angles of 0°/25°/60°/80° were obtained through SONATA MAESTRO 1.5 T Scanning. Then, the corresponding 3D tibio-femoral joint models of normal/ACL single bundle/double bundle reconstruction were established. In the experiment, axial force and combined loads （axial force and torque） were applied to these models to analyze and compare the changes of the stress distribution of cartilages/meniscus/ligaments and the tension characteristic of ligaments before and after the ACL reconstruction. The results show that： （1） The stresses on cartilages and meniscus after ACL single bundle/double bundle reconstruction change with the flexion angles, and especially the stress distributions on the cartilages change significantly at some angle. （2） Single-bundle reconstruction can lead to the obvious increment of the equivalent stresses on cartilages and meniscus, and the maximum increment is to 40%. However, the corresponding values after double bundle reconstruction at different flexion angles are closer than that after single-bundle reconstruction. （3） Although ACL single-bundle reconstruction will reduce the equivalent stress on PCL, stress on medial/lateral collateral ligament will significantly increase at high-flexion angle. The maximum stress on MCL changes obviously with the flexion angles after double-bundle reconstruction, but the maximum stress on LCL and PCL show the corresponding trend to normal joint. （4） The average tension of MCL is higher than that of the other two after single or double bundle reconstruction. Besides, the tension characteristic of ligaments after the double-bundle reconstruction is closer to the normal joint than that after single-bundle. In short, considering the stress and tension of cartilages, meniscus and ligaments after ACL
Cao, Jinghe; Sun, Jinlong; Xia, Shaohong; Wan, Kuiyuan; Xu, Huilong
2017-04-01
Known as a significant region for studying tectonic relationship between South China block and South China Sea (SCS) block and evolution of rifted basin in continental margin, the continental shelf of northern SCS not only preserved the information about intensive tectonic deformation and magmatism generated by the west Pacific subducted to Eurasian Plate in late Mesozoic, but also recorded the process from continental margin rifting to seafloor spreading of SCS in Cenozoic for the same mechanical property. To investigate crustal structure of continental shelf in northern SCS, a wide-angle onshore-offshore seismic experiment and a coincident multi-channel seismic (MCS) profile were carried out across the onshore-offshore transitional zone in northern SCS, 2010. A total of 14 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure model of central continental shelf in northern SCS was constructed from onshore to offshore. The model reveals that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The Littoral Fault Zone (LFZ) lies 12 km south of Dangan Island with a width of 18-20 km low-velocity fracture zone from surface to Moho discontinuity. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. All these results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.
Forrester, S E; Yeadon, M R; King, M A; Pain, M T G
2011-03-15
Strength, or maximum joint torque, is a fundamental factor governing human movement, and is regularly assessed for clinical and rehabilitative purposes as well as for research into human performance. This study aimed to identify the most appropriate protocol for fitting a maximum voluntary torque function to experimental joint torque data. Three participants performed maximum isometric and concentric-eccentric knee extension trials on an isovelocity dynamometer and a separate experimental protocol was used to estimate maximum knee extension angular velocity. A nine parameter maximum voluntary torque function, which included angle, angular velocity and neural inhibition effects, was fitted to the experimental torque data and three aspects of this fitting protocol were investigated. Using an independent experimental estimate of maximum knee extension angular velocity gave lower variability in the high concentric velocity region of the maximum torque function compared to using dynamometer measurements alone. A weighted root mean square difference (RMSD) score function, that forced the majority (73-92%) of experimental data beneath the maximum torque function, was found to best account for the one-sided noise in experimental torques resulting from sub-maximal effort by the participants. The suggested protocol (an appropriately weighted RMSD score function and an independent estimate of maximum knee extension angular velocity) gave a weighted RMSD of between 11 and 13 Nm (4-5% of maximum isometric torque). It is recommended that this protocol be used in generating maximum voluntary joint torque functions in all torque-based modelling of dynamic human movement.
Moor, B K; Bouaicha, S; Rothenfluh, D A; Sukthankar, A; Gerber, C
2013-07-01
We hypothesised that a large acromial cover with an upwardly tilted glenoid fossa would be associated with degenerative rotator cuff tears (RCTs), and conversely, that a short acromion with an inferiorly inclined glenoid would be associated with glenohumeral osteoarthritis (OA). This hypothesis was tested using a new radiological parameter, the critical shoulder angle (CSA), which combines the measurements of inclination of the glenoid and the lateral extension of the acromion (the acromion index). The CSA was measured on standardised radiographs of three groups: 1) a control group of 94 asymptomatic shoulders with normal rotator cuffs and no OA; 2) a group of 102 shoulders with MRI-documented full-thickness RCTs without OA; and 3) a group of 102 shoulders with primary OA and no RCTs noted during total shoulder replacement. The mean CSA was 33.1° (26.8° to 38.6°) in the control group, 38.0° (29.5° to 43.5°) in the RCT group and 28.1° (18.6° to 35.8°) in the OA group. Of patients with a CSA > 35°, 84% were in the RCT group and of those with a CSA shoulders without these pathologies. These findings suggest that individual quantitative anatomy may imply biomechanics that are likely to induce specific types of degenerative joint disorders.
RJ Quitério
2007-06-01
Full Text Available OBJECTIVE: To evaluate the influence of joint angle on heart rate (HR responses induced by isometric exercise. METHODS: Ten healthy men (23.8 ± 2.5 years old underwent isometric maximum voluntary contraction (MVC tests lasting 10 sec using an electronic dynamometer under the following experimental conditions: knee extension at angles of 60º and 90º and knee flexion at angles of 30º and 90º angles. Their HR was recorded at rest (65 sec, during MVC (10 sec and during the recovery period (120 sec. The data on mean maximum torque (MMT and HR variation (deltaHR were analyzed using the Friedman test with the Dunn post-hoc test, and their correlation was analyzed using the Spearman test (alpha= 0.05. RESULTS: 1 MMT was significantly higher at 60º and 90º knee extension than at 30º and 90º knee flexion (pOBJETIVO: Avaliar a influência do ângulo articular nas respostas da freqüência cardíaca (FC induzida pelo exercício isométrico. MÉTODOS: Dez homens saudáveis (23,8 ± 2,5 anos foram submetidos a testes de contração voluntária máxima (CVM isométrica, durante 10s, em um dinamômetro eletrônico, nas seguintes condições experimentais: extensão do joelho nos ângulos de 60º e 90º e flexão do joelho nos ângulos de 30º e 90º. A freqüência cardíaca foi registrada durante o repouso (65s, durante a CVM (10s e durante o período de recuperação (120s. Os dados de torque médio máximo (TMM e de variação da FC (deltaFC foram analisados usando teste de Friedman, com pós-teste de Dunn, e sua correlação foi analisada usando o teste de Spearman (alfa= 0,05. RESULTADOS: 1 TMM foi significativamente maior nos ângulos de 60º e 90º de extensão em relação aos ângulos de 30º e 90º de flexão (p< 0,05, enquanto entre os dois ângulos de flexão e entre os dois de extensão não foram encontradas diferenças significativas; 2 deltaFC foi similar em todas as condições experimentais; 3 Não foi encontrada correlação entre
Murray, Amanda M; Thomas, Abbey C; Armstrong, Charles W; Pietrosimone, Brian G; Tevald, Michael A
2015-12-01
Abnormal knee joint mechanics have been implicated in the pathogenesis and progression of knee osteoarthritis. Deficits in muscle function (i.e., strength and power) may contribute to abnormal knee joint loading. The associations between quadriceps strength, power and knee joint mechanics remain unclear in knee osteoarthritis. Three-dimensional motion analysis was used to collect peak knee joint angles and moments during the first 50% of stance phase of gait in 33 participants with knee osteoarthritis. Quadriceps strength and power were assessed using a knee extension machine. Strength was quantified as the one repetition maximum. Power was quantified as the peak power produced at 40-90% of the one repetition maximum. Quadriceps strength accounted for 15% of the variance in peak knee flexion angle (P=0.016). Quadriceps power accounted for 20-29% of the variance in peak knee flexion angle (Pknee adduction moment (P=0.05). These data suggest that quadriceps power explains more variance in knee flexion angle and knee adduction moment during gait in knee osteoarthritis than quadriceps strength. Additionally, quadriceps power at multiple loads is associated with knee joint mechanics and therefore should be assessed at a variety of loads. Taken together, these results indicate that quadriceps power may be a potential target for interventions aimed at changing knee joint mechanics in knee osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu
2017-06-01
Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.
Calculation of wear (f.i. wear modulus) in the plastic cup of a hip joint prosthesis
Ligterink, D.J.
1975-01-01
The wear equation is applied to the wear process in a hip joint prosthesis and a wear modulus is defined. The sliding distance, wear modulus, wear volume, wear area, contact angle and the maximum normal stress were calculated and the theoretical calculations applied to test results. During the wear
陈新; 廖志红; 李德建
2011-01-01
Influences of the two important geometrical parameters of joint inclination angle and joint connectivity rate of a joint set.on uniaxial compression strength, elastic modulus and stress-strain curves of rock mass with non-persistent open joints, are investigated systematically by conducting uniaxial compression tests on gypsum specimens with a set of preexisting open flaws.It is found that: (1) With the increasing of joint connectivity rate, the ductility of axial stress-axial strain curves increases, and they change from single-peak curves to multi-peak curves.(2) At the same joint inclination angle, the peak strength and elastic modulus of specimens decrease with the increasing of joint connectivity rate, which can be estimated by two kinds of power functions respectively, where their parameters are varied with joint inclination angle.(3) When joint connectivity rate is not very large, the peak strength and elastic modulus of specimens are varied with the joint inclination angles in the similar way, i.e.they are the highest at the joint inclination angle of 90° while they are the lowest at the joint inclination angles of 30° and 60°.When joint connectivity is very large, the peak strength and elastic modulus of specimens are the highest at the joint inclination angle of 90°, while peak strength is the lowest at the joint inclination angle of 45° and the elastic modulus is relatively lower below 60°, respectively.Through further analyses for failure process of the specimens, it is revealed that the jointed rock mass macroscopic mechanical properties affected by joint inclination angle and joint connectivity rate are governed by microscopic damage mechanism, such as closure and friction of the preexisting joints, stress concentrate in the rock bridge and induce crack initiation, propagation and their coalescence with the preexisting flaws to form the final failure planes or shear bands.%利用含一组张开预置裂隙石膏试件的单轴压缩试验,系
EFFECTS OF NOVEL ANGLED CERVICAL DISC REPLACEMENT ON FACET JOINT STRESS%角度人工颈椎间盘置换对关节突应力的影响
柏传毅; 张维杰; 凌伟; 田振兴; 党晓谦; 王坤正
2012-01-01
Objective To analyze the biomechanical changes of the adjacent cervical facet joints when the angled 'cervical prosthesis is replaced. Methods A total of 400 northwestern people were involved, with an age of 40 years or older. The cervical vertebra lateral X-ray films were taken, and the cervical angles were measured by professional computer aided design software, then the cervical intervertebral disc prosthesis with 10° angle was designed. The finite element models of G, 5 and C4-6 segments with intact cervical discs were developed; the C*, 5 disc was replaced by the cervical prosthesis with 0° and 10° angle respectively; and then all models were subjected to axial loading, flexion/extension, lateral bending, and torsion loading conditions; the stress effects on adjacent facet joints after replacement were observed by comparing with that of the intact model. Results The cervical angles were (9.97 ± 3.64)° in C3,4, (9.95 + 4.34)° in G, 5) (8.59 ± 3.75)° in C5,6, and (8.49 ± 3.39)° in C6,7, showing no significant difference between C3,4 and C4,5, Cs, 6 and C6,7 (P > 0.05) and showing significant differences between the other cervical angles (P < 0.05). When C4,5 model was axially loaded, no significant difference in equivalent shearing stress were observed in intact, 0°, and 10° groups; at flexion/extension loading, the stress was biggest in intact group, and was smallest in 10° group; at lateral bending, the stress got the high rank in intact group, and was minimum in 10° group; at torsion loading, the stress state of 10° group approached to the intact one condition. When C4-6 model was loaded, the facet joint stress of the replaced segment (C4,5) decreased significantly at axial loading, flexion/extension, and lateral bending; while no obvious decrease was observed at torsion loading; the stress of the adjacent inferior disc (Cs. 6) decreased significantly at axial loading and lateral bending condition, while less decrease was observed at torsion
陈新; 冯刚; 谢康森
2011-01-01
Objective To summarize the clinical effect of straight wire appliance with pivot splint for adolescents with Anglell malocclusion with temporomandibular joint disorder (TMD). Methods Fifteen cases of Anglell2 malocclusion with TMD aged form 12 to 21 (4 male cases and 11 female cases) were selected and treated by maxillary extraction orthodontics with rectangular archwire brackets. At the time of orthodontic treatment of maxillaryteeth, pivot splint were worn to adjust synarthry and were taken down after 1 ~3 months'treatment. We evaluated the curative effect when pivot splint was taken down and orthodontic treatment finished. Scholler position of some patients was appraised before and after treatment Results The cure rate of clicking of joint, pain, open-mouth limited movement and lock was 66. 7% , 90% , 60. 0% and 75% respectively when . The cure rate when orthodontic treatment finished is 86. 6% , 100% , 80. 0% and 87. 5% respectively. Among them, 5 cases were checked by X-ray and 3 cases recovered to normal, 2 case improved significantly. Conclusion The straight wire appliance with pivot splint is a feasible therapy method for adolescents with Anglell2 malocclusion with TMD.%目的 探讨枢轴合板配合直丝弓矫治器治疗青少年AngleII2错颌畸形伴颞下颌关节紊乱病(TMD)的临床疗效.方法 选择临床检查AngleII2错颌崎形伴TMD患者15例,年龄12～21岁,均采用直丝弓托槽,上颌牙固定矫治开始的同时,佩戴枢轴合板进行关节调整,治疗1～3月后脱离枢轴合板,评价合板脱离时及正畸治疗完成时的疗效,对部分患者治疗前后的许勒位片进行评价.结果 15例患者疗程治疗结束时总治愈率80%(12/15),各症状如弹响、疼痛、张口受限、绞锁的治愈率分别:86.67%,100%,80.0%和87.5%.对其中5例患者进行了X射线片复查,3例患者恢复了正常的盘突关系,2例患者关节盘较治疗前位置回复明显.结论 枢轴合板配合直丝弓矫治器是治疗青少年Angle
Schwieters, Charles D; Clore, G Marius
2007-02-06
The structure and dynamics of the Dickerson DNA dodecamer [5'd(CGCGAATTCGCG)2] in solution have been investigated by joint simulated annealing refinement against NMR and large-angle X-ray scattering data (extending from 0.25 to 3 A-1). The NMR data comprise an extensive set of hetero- and homonuclear residual dipolar coupling and 31P chemical shift anisotropy restraints in two alignment media, supplemented by NOE and 3J coupling data. The NMR and X-ray scattering data cannot be fully ascribed to a single structure representation, indicating the presence of anisotropic motions that impact the experimental observables in different ways. Refinement with ensemble sizes (Ne) of >or=2 to represent the atomic motions reconciles all the experimental data within measurement error. Cross validation against both the dipolar coupling and X-ray scattering data suggests that the optimal ensemble size required to account for the current data is 4. The resulting ensembles permit one to obtain a detailed view of the conformational space sampled by the dodecamer in solution and permit one to analyze fluctuations in helicoidal parameters, sugar puckers, and BI-BII backbone transitions and to obtain quantitative metrics of atomic motion such as generalized order parameters and thermal B factors. The calculated order parameters are in good agreement with experimental order parameters obtained from 13C relaxation measurements. Although DNA behaves as a relatively rigid rod with a persistence length of approximately 150 bp, dynamic conformational heterogeneity at the base pair level is functionally important since it readily permits optimization of intermolecular protein-DNA interactions.
Jointed Holder For Welding Electrodes
Gilbert, Jeffrey L.
1991-01-01
Adjustable-angle holder enables use of standard straight electrode with custom-fabricated bent gas cup for welding in difficult-to-reach places. Electrode replaced easily, without removing cup, with aid of tool loosening miniature collet nut on holder. Consumes fewer electrodes for given amount of welding. Angle of holder continuously adjustable to fit angle of gas cup or geometry of part welded. Holder made double-jointed to accommodate gas cup having compound angles.
Equivalent dynamic model of DEMES rotary joint
Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong
2016-07-01
The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.
Hip joint contact loads in older adults during recovery from forward loss of balance by stepping.
Graham, David F; Modenese, Luca; Trewartha, Grant; Carty, Christopher P; Constantinou, Maria; Lloyd, David G; Barrett, Rod S
2016-09-06
Hip joint contact loads during activities of daily living are not generally considered high enough to cause acute bone or joint injury. However there is some evidence that hip joint loads may be higher in stumble recovery from loss of balance. A common laboratory method used to evaluate balance recovery performance involves suddenly releasing participants from various static forward lean magnitudes (perturbation intensities). Prior studies have shown that when released from the same perturbation intensity, some older adults are able to recover with a single step, whereas others require multiple steps. The main purpose of this study was to use a musculoskeletal model to determine the effect of three balance perturbation intensities and the use of single versus multiple recovery steps on hip joint contact loads during recovery from forward loss of balance in community dwelling older adults (n=76). We also evaluated the association of peak hip contact loads with perturbation intensity, step length and trunk flexion angle at foot contact at each participant׳s maximum recoverable lean angle (MRLA). Peak hip joint contact loads were computed using muscle force estimates obtained using Static Optimisation and increased as lean magnitude was increased and were on average 32% higher for Single Steppers compared to Multiple Steppers. At the MRLA, peak hip contact loads ranged from 4.3 to 12.7 body weights and multiple linear stepwise regression further revealed that initial lean angle, step length and trunk angle at foot contact together explained 27% of the total variance in hip joint contact load. Overall findings indicated that older adults experience peak hip joint contact loads during maximal balance recovery by stepping that in some cases exceeded loads reported to cause mechanical failure of cadaver femurs. While step length and trunk flexion angle are strong predictors of step recovery performance they are at best moderate predictors of peak hip joint loading.
Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam
Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish
2017-09-01
In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.
Maximum likelihood sequence estimation for optical complex direct modulation.
Che, Di; Yuan, Feng; Shieh, William
2017-04-17
Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.
Laboratory Investigation on Shear Behavior of Rock Joints and a New Peak Shear Strength Criterion
Zhang, Xiaobo; Jiang, Qinghui; Chen, Na; Wei, Wei; Feng, Xixia
2016-09-01
In this study, shear tests on artificial rock joints with different roughness were conducted under five normal stress levels. Test results showed that the shear strength of rock joints had a positive correlation with roughness and the applied normal stress. Observation of joint specimens after shear tests indicated that asperity damage was mainly located in the steep areas facing the shear direction. The damaged joint surfaces tend to be rough, which implies that tensile failure plays an important role in shear behavior. As a result of the anisotropic characteristic of joint roughness, two quantitative 2D roughness parameters, i.e., the revised root-mean-square of asperity angle tan-1( Z 2r) and the maximum contact coefficient C m, were proposed considering the shear direction. The proposed roughness parameters can capture the difference of roughness in forward and reverse directions along a single joint profile. The normalized tensile strength and the proposed roughness parameters were used to perform a rational derivation of peak dilatancy angle. A negative exponential-type function was found to be appropriate to model the peak dilatancy angle. Using the new model of peak dilatancy angle, we obtained a new criterion for peak shear strength of rock joints. The good agreement between test results and predicted results by the new criterion indicated that the proposed criterion is capable of estimating the peak shear strength of rock joints. Comparisons between the new criterion and published models from available literature revealed that the proposed criterion has a good accuracy for predicting the peak shear strength of joints investigated in this study.
Luciane M. Steffen
2004-08-01
clinical classification of the VFP as median, paramedian, intermedian, abduction or cadaveric is controversial. AIM: To check association and correlation between Maximum Phonation Time (MPT with position and with the displacement angle of the paralyzed vocal fold (PVF, to measure the distal angle of the PVF in different positions from median line, correlating it with the clinical classification. STUDY DESIGN: Chart review. MATERIAL AND METHOD: Records of 86 PVF individuals were reviewed, videoendoscopic exams were analyzed and a computer program measured the distal angle of the PVF. RESULTS: The MPTs for each position of paralyzed vocal fold have statistical significance only for /z/ in the median position. There is a relationship between the MPT of /i/, /u/ with PVF distal angle. Correlation and association of the displacement angle with clinical position demonstrate statistical significance when the PVF is in abduction. CONCLUSION: By the present study it was impossible to classify positions of the paralyzed vocal fold using either MPT or the displacement angle measurement.
Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Liming; Kong, Liang; Li, Shaojun; Zhang, Chuanqing
2017-08-01
Filled joints, which are characterized by high deformability and low shear strength, are among the most critical discontinuities in rock mass and may be sheared repeatedly when subject to cyclic loading. Shear tests were carried out on tension splitting joints, with soil and granular cement mortar particles used as infillings, and the effects of the shear history on the mechanical behavior and acoustic emission (AE) of clean and filled joints were studied. The maximum strength in the subsequent shears was approximately 60% of the peak strength of the first shear for a clean joint, and the friction angle degraded from 63° to 45° after the first shear. The maximum shear strength of the filled joints was lower than 35% of the peak strength of the clean joint under the same normal stress. The change in the shear strength of filled joints with the number of shearing cycles was closely related to the transformation of the shear medium. Rolling friction occurred and the shear strength was low for the granular particle-filled joint, but the strength was elevated when the particles were crushed and sliding friction occurred. The AEs were significantly reduced during the second shear for the clean joint, and the peak AEs were mainly obtained at or near the turning point of the shear stress curve for the filled joint. The AEs were the highest for the cement particle-filled joint and lowest for the dry soil-filled joint; when subjected to repeated shears, the AEs were more complex because of the continuous changes to the shear medium. The evolution of the AEs with the shear displacement can accurately reflect the shear failure mechanism during a single shear process.
Addressing some misperceptions of the joint coordinate system.
MacWilliams, Bruce A; Davis, Roy B
2013-05-01
The joint coordinate system convention proposed by Grood and Suntay has been widely adopted, but often misrepresented. Previous work has argued by logical explanation of the approach that the joint coordinate system is a set of Euler or Cardan angles. The current work offers both an explanation and mathematical proof that the joint coordinate system convention is equivalent to a Cardan angle sequence, thereby demonstrating the joint coordinate system angles are both sequence dependent and orthogonal.
Upper limb joint motion of two different user groups during manual wheelchair propulsion
Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Lee, Jinbok; Kim, Youngho
2013-02-01
Manual wheelchair users have a high risk of injury to the upper extremities. Recent studies have focused on kinematic and kinetic analyses of manual wheelchair propulsion in order to understand the physical demands on wheelchair users. The purpose of this study was to investigate upper limb joint motion by using a motion capture system and a dynamometer with two different groups of wheelchair users propelling their wheelchairs at different speeds under different load conditions. The variations in the contact time, release time, and linear velocity of the experienced group were all larger than they were in the novice group. The propulsion angles of the experienced users were larger than those of the novices under all conditions. The variances in the propulsion force (both radial and tangential) of the experienced users were larger than those of the novices. The shoulder joint moment had the largest variance with the conditions, followed by the wrist joint moment and the elbow joint moment. The variance of the maximum shoulder joint moment was over four times the variance of the maximum wrist joint moment and eight times the maximum elbow joint moment. The maximum joint moments increased significantly as the speed and load increased in both groups. Quick and significant manipulation ability based on environmental changes is considered an important factor in efficient propulsion. This efficiency was confirmed from the propulsion power results. Sophisticated strategies for efficient manual wheelchair propulsion could be understood by observation of the physical responses of each upper limb joint to changes in load and speed. We expect that the findings of this study will be utilized for designing a rehabilitation program to reduce injuries.
Maximum Autocorrelation Factorial Kriging
Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.
2000-01-01
This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...
邵建树; 厉晓龙; 刘伟峰; 朱州; 蒋小军; 季旭彪
2015-01-01
BACKGROUND:Major complication after total hip replacement was instability in the form of dislocation. The probability of above complications has a great relationship with the mistakes of the angle of acetabular cup prosthesis. OBJECTIVE:To explore the influence of angle of acetabular cup in total hip replacement on the safety of joint flexion and extension. METHODS: A total of 60 patients, who underwent total hip replacement in the Wujin Hospital Affiliated to Jiangsu University from January 2012 to December 2014, were enroled in this study. Three dimensional directional monitoring device, CT scanning and image processing tools were used to preset the angle of the acetabular cup and to set abduction angle and anteversion angle. Test data were recorded and subjected to statistical analysis. RESULTS AND CONCLUSION:Acetabular cup was implanted under five different conditions: abduction angle 45°, anteversion angle 15°; abduction angle 60°, anteversion angle 15°; abduction angle 30°, anteversion angle 15°; abduction angle 45°, anteversion angle 5°; abduction angle 45°, anteversion angle 25°. According to statistics, in the patients with anteversion angle of 15°, when the acetabular cup was placed, the bigger the abduction angle, the bigger the range of abduction angle of the acetabular cup induced by pelvic tilt was. If the anteversion angle increased, the anteversion angle of the acetabular cup was reduced. With the increased pelvic tilt angle, the anteversion angle of the acetabular cup was big. Moreover, in patients with anteversion angle of 15°, the anteversion angle of the acetabular cup should keep consistent. When the abduction angle of the acetabular cup increased, the range of anteversion angle of the acetabular cup induced by pelvic tilt was diminished. These data showed that the abduction angle and anteversion angle of the acetabular cup have mutual restriction. When the acetabular cup was placed, big anteversion angle (15±10)° can wrap the
Active and passive contributions to joint kinetics during walking in older adults.
Silder, Amy; Heiderscheit, Bryan; Thelen, Darryl G
2008-01-01
The objectives of this study were to characterize the active and passive contributions to joint kinetics during walking in healthy young and older adults, and assess whether isokinetic ankle strength is associated with ankle power output during walking. Twenty healthy young (18-35 years) and 20 healthy older (65-85 years) adults participated in this study. We measured subject-specific passive-elastic joint moment-angle relationships in the lower extremity and tested maximum isokinetic ankle strength at 30 deg/s. Passive moment-angle relationships were used to estimate active and passive joint moment, power, and work quantities during walking at 80%, 100% and 120% of preferred walking speed. There were no significant differences in walking speed, step length, or cadence between the older and young adults. However, the older adults produced significantly more net positive work at the hip but less net positive work at the ankle at all walking speeds. Passive contributions to hip and ankle work did not significantly differ between groups, inferring that the older adults generated the additional hip work actively. Maximum isokinetic ankle strength was significantly less in the older adults, and correlated with peak positive plantar-flexor power at both the preferred and fast walking speeds. The results of this study suggest that age-related shifts in joint kinetics do not arise as a result of increased passive hip joint stiffness, but seem to be reflected in plantar-flexor weakness.
Variable Joint Elasticities in Running
Peter, Stephan; Grimmer, Sten; Lipfert, Susanne W.; Seyfarth, Andre
In this paper we investigate how spring-like leg behavior in human running is represented at joint level. We assume linear torsion springs in the joints and between the knee and the ankle joint. Using experimental data of the leg dynamics we compute how the spring parameters (stiffness and rest angles) change during gait cycle. We found that during contact the joints reveal elasticity with strongly changing parameters and compare the changes of different parameters for different spring arrangements. The results may help to design and improve biologically inspired spring mechanisms with adjustable parameters.
Torque/velocity properties of human knee muscles: peak and angle-specific estimates.
Caldwell, G E; Adams, W B; Whetstone, M R
1993-09-01
Angle-specific (AS) torque/velocity data have been used to avoid angle related variation in peak torque capacity. However, series elastic structures cause the contractile velocity of active force-producing tissue to differ from external joint velocity except at peak torque. Alternatively, angle related variation may be removed by normalizing peak torque to the isometric maximum at that angular position. The AS, peak (P), and normalized peak (NP) methods were compared in isovelocity knee flexion and extension at velocities between 50 and 250 degrees s-1 for 8 male subjects. The P and NP methods gave more similar torque/velocity relations than the AS method. Further, very little variation in peak torque was attributed to differences in joint angle. Both the P and AS methods illustrate that relative quadriceps/hamstrings torque capability (flexor/extensor ratio) increases slightly with velocity. It is proposed that antagonist muscle torque capabilities should be compared at different angular positions to assess muscular imbalance.
A regressed phase analysis for coupled joint systems.
Wininger, Michael
2011-01-01
This study aims to address shortcomings of the relative phase analysis, a widely used method for assessment of coupling among joints of the lower limb. Goniometric data from 15 individuals with spastic diplegic cerebral palsy were recorded from the hip and knee joints during ambulation on a flat surface, and from a single healthy individual with no known motor impairment, over at least 10 gait cycles. The minimum relative phase (MRP) revealed substantial disparity in the timing and severity of the instance of maximum coupling, depending on which reference frame was selected: MRP(knee-hip) differed from MRP(hip-knee) by 16.1±14% of gait cycle and 50.6±77% difference in scale. Additionally, several relative phase portraits contained discontinuities which may contribute to error in phase feature extraction. These vagaries can be attributed to the predication of relative phase analysis on a transformation into the velocity-position phase plane, and the extraction of phase angle by the discontinuous arc-tangent operator. Here, an alternative phase analysis is proposed, wherein kinematic data is transformed into a profile of joint coupling across the entire gait cycle. By comparing joint velocities directly via a standard linear regression in the velocity-velocity phase plane, this regressed phase analysis provides several key advantages over relative phase analysis including continuity, commutativity between reference frames, and generalizability to many-joint systems.
Objects of maximum electromagnetic chirality
Fernandez-Corbaton, Ivan
2015-01-01
We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.
Reliability Analysis of Adhesive Bonded Scarf Joints
Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik;
2012-01-01
A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... the FEA model, and a sensitivity analysis on the influence of various geometrical parameters and material properties on the maximum stress is conducted. Because the yield behavior of many polymeric structural adhesives is dependent on both deviatoric and hydrostatic stress components, different ratios...... of the compressive to tensile adhesive yield stresses in the failure criterion are considered. It is shown that the chosen failure criterion, the scarf angle and the load are significant for the assessment of the probability of failure....
Sørensen, Karsten Engsig
Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret......Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret...
... chap 275. Raftery AT, Lim E, Ostor AJK. Joint disorders. In: Raftery AT, Lim E, Ostor AJK, eds. ... A.M. Editorial team. Related MedlinePlus Health Topics Joint Disorders Browse the Encyclopedia A.D.A.M., Inc. ...
Realignment Subtalar Joint Arthrodesis.
Hentges, Matthew J; Gesheff, Martin G; Lamm, Bradley M
2016-01-01
Subtalar joint arthrodesis is a commonly performed procedure for the correction of hindfoot deformity and/or the relief of pain related to osteoarthritis. The purpose of the present study was to provide preoperative and intraoperative objective radiographic parameters to improve the accuracy and long-term success of realignment arthrodesis of the subtalar joint. We retrospectively reviewed the data from 16 patients, 11 male (57.9%) and 8 female (42.1%) feet, who had undergone realignment subtalar joint arthrodesis. A total of 19 fusions were performed in 9 (47.4%) right and 10 (52.6%) left feet, with a mean follow-up period of 2 (range 1 to 4.8) years. The mean age at surgery was 54.5 (range 14 to 77) years. Statistically significant improvement in radiographic alignment was found in the anteroposterior talo-first metatarsal angle (p = .002), lateral talo-first metatarsal angle (p < .001), tibial-calcaneal angle (p < .001), and tibial-calcaneal distance (p < .001). A positive correlation was observed between the tibial-calcaneal angle and tibial-calcaneal distance (r = 0.825, p < .001). The statistically significant improvement in tibial-calcaneal alignment, in both angulation and distance, support our conclusions that proper realignment of the calcaneus to vertical and central under the tibia will lead to short-term success and, likely, long-term success of subtalar joint arthrodesis. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Visual estimation of pro-supination angle is superior to wrist or elbow angles.
Luria, Shai; Apt, Elad; Kandel, Leonid; Bdolah-Abram, Tali; Zinger, Gershon
2015-05-01
To examine our hypothesis that the accuracy of visual estimation, while measuring the angles of forearm, wrist and elbow, may vary between the different angles, and that this may depend on the experience of the observer. A slide show comprising of clinical photos and radiographs of different elbow, forearm and wrist angles was presented to 164 attending orthopedic surgeons, orthopedic residents and medical students who made a visual estimation of the different joints' angles. Forearm pronation was found to be estimated most accurately (mean 6.1°) while radiographs of wrist flexion (mean 12°) and photos of wrist extension (mean 16°) were estimated the least accurately. Specialists estimated angles more accurately than residents and both were more accurate than students, regardless of the estimated joint. The accuracy of visual estimation of a joint's angle depends on the specific joint viewed. Experience in the practice of orthopedic surgery (and not only upper extremity surgery) will improve the accuracy of estimation in general. Regarding the elbow, forearm and wrist, the results of our study suggest that a goniometer should be used whenever an accuracy of up to 10° is important, and for measuring wrist flexion and extension.
Maximum Autocorrelation Factorial Kriging
Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete
2000-01-01
This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...
M.N. Hoogendoorn (Martin)
2009-01-01
textabstractEen veel voorkomende wijze van samenwerking tussen ondernemingen is het uitvoeren van activiteiten in de vorm van een joint venture. Een joint venture is bijna altijd een afzonderlijke juridische entiteit. De partners in de joint venture voeren gezamenlijk de zeggenschap uit. In internat
M.N. Hoogendoorn (Martin)
2009-01-01
textabstractEen veel voorkomende wijze van samenwerking tussen ondernemingen is het uitvoeren van activiteiten in de vorm van een joint venture. Een joint venture is bijna altijd een afzonderlijke juridische entiteit. De partners in de joint venture voeren gezamenlijk de zeggenschap uit. In internat
A new angle on the Euler angles
Markley, F. Landis; Shuster, Malcolm D.
1995-01-01
We present a generalization of the Euler angles to axes beyond the twelve conventional sets. The generalized Euler axes must satisfy the constraint that the first and the third are orthogonal to the second; but the angle between the first and third is arbitrary, rather than being restricted to the values 0 and pi/2, as in the conventional sets. This is the broadest generalization of the Euler angles that provides a representation of an arbitrary rotation matrix. The kinematics of the generalized Euler angles and their relation to the attitude matrix are presented. As a side benefit, the equations for the generalized Euler angles are universal in that they incorporate the equations for the twelve conventional sets of Euler angles in a natural way.
Wren, Tishya A L; Mitiguy, Paul C
2007-08-01
Clinical gait analysis usually describes joint kinematics using Euler angles, which depend on the sequence of rotation. Studies have shown that pelvic obliquity angles from the traditional tilt-obliquity-rotation (TOR) Euler angle sequence can deviate considerably from clinical expectations and have suggested that a rotation-obliquity-tilt (ROT) Euler angle sequence be used instead. We propose a simple alternate approach in which clinical joint angles are defined and exactly calculated in terms of Euler angles from any rotation sequence. Equations were derived to calculate clinical pelvic elevation, progression, and lean angles from TOR and ROT Euler angles. For the ROT Euler angles, obliquity was exactly the same as the clinical elevation angle, rotation was similar to the clinical progression angle, and tilt was similar to the clinical lean angle. Greater differences were observed for TOR. These results support previous findings that ROT is preferable to TOR for calculating pelvic Euler angles for clinical interpretation. However, we suggest that exact clinical angles can and should be obtained through a few extra calculations as demonstrated in this technical note.
CHARACTERISTICS OF MAXIMUM PERFORMANCE OF PEDALING EXERCISE IN RECUMBENT AND SUPINE POSITIONS
Morimasa Kato
2011-09-01
Full Text Available To determine the characteristics of maximum pedaling performance in the recumbent and supine positions, maximum isokinetic leg muscle strength was measured in eight healthy male subjects during pedaling at three velocities (300°/s, 480°/s, and 660°/s, and maximum incremental tests were performed for each position. The maximum isokinetic muscle strength in the recumbent position was 210.0 ± 29.2 Nm at 300°/s, 158.4 ± 19.8 Nm at 480°/s, and 110.6 ± 13.2 at 660°/s. In contrast, the muscle strength in the supine position was 229.3 ± 36.7 Nm at 300°/s, 180. 7 ± 20.3 Nm at 480°/s, and 129.6 ± 14.0 Nm at 660°/s. Thus, the maximum isokinetic muscle strength showed significantly higher values in the supine position than in the recumbent position at all angular velocities. The knee and hip joint angles were measured at peak torque using a goniometer; the knee joint angle was not significantly different between both positions, whereas the hip joint angle was greater in the supine position than in the recumbent position (Supine position: 137.3 ± 9. 33 degree at 300°/s, 140.0 ± 11.13 degrees at 480°/s, and 141.0 ± 9.61 degrees at 660°/s. Recumbent position: 99.5 ± 12.21 degrees at 300°/s, 101.6 ± 12.29 degrees at 480°/s, and 105.8 ± 14.28 degrees at 660°/s. Peak oxygen uptake was higher in the recumbent position (50.3 ± 4.43 ml·kg-1·min-1 than in the supine position (48.7 ± 5.10 ml·kg-1·min-1. At maximum exertion, the heart rate and whole-body rate of perceived exertion (RPE were unaffected by position, but leg muscle RPE was higher in the supine position (19.5 ± 0.53 than in the recumbent position (18.8 ± 0.71. These results suggest that the supine position is more suitable for muscle strength exertion than the recumbent position, and this may be due to different hip joint angles between the positions. On the contrary, the endurance capacity was higher in the recumbent position than in the supine position. Since leg muscle
... Programs Home > Statistics and Data > Glaucoma, Open-angle Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...
A new method to measure post-traumatic joint contractures in the rabbit knee.
Hildebrand, Kevin A; Holmberg, Michael; Shrive, Nigel
2003-12-01
A new device and method to measure rabbit knee joint angles are described. The method was used to measure rabbit knee joint angles in normal specimens and in knee joints with obvious contractures. The custom-designed and manufactured gripping device has two clamps. The femoral clamp sits on a pinion gear that is driven by a rack attached to a materials testing system. A 100 N load cell in series with the rack gives force feedback. The tibial clamp is attached to a rotatory potentiometer. The system allows the knee joint multiple degrees-of-freedom (DOF). There are two independent DOF (compression-distraction and internal-external rotation) and two coupled motions (medial-lateral translation coupled with varus-valgus rotation; anterior-posterior translation coupled with flexion-extension rotation). Knee joint extension-flexion motion is measured, which is a combination of the materials testing system displacement (converted to degrees of motion) and the potentiometer values (calibrated to degrees). Internal frictional forces were determined to be at maximum 2% of measured loading. Two separate experiments were performed to evaluate rabbit knees. First, normal right and left pairs of knees from four New Zealand White (NZW) rabbits were subjected to cyclic loading. An extension torque of 0.2 Nm was applied to each knee. The average change in knee joint extension from the first to the fifth cycle was 1.9 deg +/- 1.5 deg (mean +/- sd) with a total of 49 tests of these eight knees. The maximum extension of the four left knees (tested 23 times) was 14.6 deg +/- 7.1 deg, and of the four right knees (tested 26 times) was 12.0 deg +/- 10.9 deg. There was no significant difference in the maximum extension between normal left and right knees. In the second experiment, nine skeletally mature NZW rabbits had stable fractures of the femoral condyles of the right knee that were immobilized for five, six or 10 weeks. The left knee served as an unoperated control. Loss of knee joint
32 CFR 842.35 - Depreciation and maximum allowances.
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Depreciation and maximum allowances. 842.35... LITIGATION ADMINISTRATIVE CLAIMS Personnel Claims (31 U.S.C. 3701, 3721) § 842.35 Depreciation and maximum allowances. The military services have jointly established the “Allowance List-Depreciation Guide”...
Maximum likely scale estimation
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...
Hackney, James; Brummel, Sara; Newman, Mary; Scott, Shannon; Reinagel, Matthew; Smith, Jennifer
2015-09-01
We carried out a study to investigate how low stiffness flooring may help prevent overuse injuries of the lower extremity in dancers. It was hypothesized that performing a ballet jump (sauté) on a reduced stiffness dance floor would decrease maximum joint flexion angles and negative angular velocities at the hips, knees, or ankles compared to performing the same jump on a harder floor. The participants were 15 young adult female dancers (age range 18 to 28, mean = 20.89 ± 2.93 years) with at least 5 years of continuous ballet experience and without history of serious lower body injury, surgery, or recent pain. They performed sautés on a (low stiffness) Harlequin ® WoodSpring Floor and on a vinyl-covered hardwood on concrete floor. Maximum joint flexion angles and negative velocities at bilateral hips, knees, and ankles were measured with the "Ariel Performance Analysis System" (APAS). Paired one-tailed t-tests yielded significant decreases in maximum knee angle (average decrease = 3.4° ± 4.2°, p = 0.026) and angular negative velocity of the ankles (average decrease = 18.7°/sec ± 27.9°/sec, p = 0.009) with low stiffness flooring. If the knee angle is less acute, then the length of the external knee flexion moment arm will also be shorter and result in a smaller external knee flexion moment, given an equal landing force. Also, high velocities of eccentric muscle contraction, which are necessary to control negative angular velocity of the ankle joint, are associated with higher risk of musculotendinous injury. Hence, our findings indicate that reduced floor stiffness may indeed help decrease the likelihood of lower extremity injuries.
Leonardo Alexandre Peyré Tartaruga
2005-01-01
Full Text Available O objetivo foi descrever o comportamento da pronação máxima (PM, da velocidade máxima de pronação (VP e do cruzamento linear (CL dos pés direito e esquerdo, de 23 corredores de rendimento, durante corrida em esteira rolante, em velocidades de 11 e 13 km.h-1 para mulheres e, 14 e 16 km.h-1 para homens, relacionadas a uma média de 70% e 75% do consumo máximo de Oxigênio (VO2máx. A análise estatística (Teste T de Students para amostras dependentes e independentes, com pThe objective was to describe the behavior of the maximum pronation (MP, of the maximum pronation speed (PS and of the linear crossover (LC of the right and left feet of 23 distance runners during treadmill running, at speeds ranging from 11 to 13 km.h-1 for female athletes and from 14 to 16 km.h-1 for male athletes, related to a average of 70% - 75% of the maximum aerobic power (VO2max. The statistical analysis (Student's T-Test for dependent and independent samples, p<0.05 showed that, by increasing submaximal running power, there was a significant increase on MP, and by increasing running linear speed, the PS was significantly higher. Regarding LC, we believe that this is biased by the running technique used by each runner.
EVALUATION OF NECK SHAFT ANGLE OF FEMUR ON DRY BONES
Radha; Ravi Shankar; Naveen; Roopa
2015-01-01
BACKGROUND: Evaluation of the neck shaft angle of femur helps to understand clinical relevance in bio mechanics of the hip joint. It helps for the better treatment of different pathological conditions of hip and femur and also to design prosthesis. Femoral neck shaft angle is important to convey the information regarding the race to ...
Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...
Bilateral differences in the net joint torques during the squat exercise.
Flanagan, Sean P; Salem, George J
2007-11-01
Bilateral movements are common in human movement, both as exercises and as daily activities. Because the movement patterns are similar, it is often assumed that there are no bilateral differences (BDs; differences between the left and right sides) in the joint torques that are producing these movements. The aim of this investigation was to test the assumption that the joint torques are equal between the left and right lower extremities by quantifying BDs during the barbell squat. Eighteen recreationally trained men (n = 9) and women (n = 9) completed 3 sets of 3 repetitions of the squat exercise, under 4 loading conditions: 25, 50, 75, and 100% of their 3 repetition maximum, while instrumented for biomechanical analysis. The average net joint moment (ANJM) and maximum flexion angle (MFA) for the hip, knee, and ankle as well as the average vertical ground reaction force (AVGRF) and the average distance from the ankle joint center to the center of pressure (ADCOP) were calculated. Group mean and individual data were analyzed (alpha = 0.05). At each joint, there was a significant main effect for side and load, no main effect for gender, with few significant interactions. The hip ANJM was 12.4% larger on the left side, the knee ANJM was 13.2% larger on the right side, and the ankle ANJM was 16.8% larger on the left side. Differences in MFAs between sides were less than 2 degrees for all 3 joints (all p > 0.20 except for the knee at 75% [p = 0.024] and 100% [p = 0.025]), but the AVGRF and the ADCOP were 6% and 11% larger on the left side. Few subjects exhibited the pattern identified with the group mean data, and no subject exhibited nonsignificant BDs for all 3 joints. These findings suggest that joint torques should not be assumed to be equal during the squat and that few individual subjects follow the pattern exhibited by group mean data.
Miller, Bradley J.; Patten, Jr., Donald O.
1991-01-01
Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.
Maximum orbit plane change with heat-transfer-rate considerations
Lee, J. Y.; Hull, D. G.
1990-01-01
Two aerodynamic maneuvers are considered for maximizing the plane change of a circular orbit: gliding flight with a maximum thrust segment to regain lost energy (aeroglide) and constant altitude cruise with the thrust being used to cancel the drag and maintain a high energy level (aerocruise). In both cases, the stagnation heating rate is limited. For aeroglide, the controls are the angle of attack, the bank angle, the time at which the burn begins, and the length of the burn. For aerocruise, the maneuver is divided into three segments: descent, cruise, and ascent. During descent the thrust is zero, and the controls are the angle of attack and the bank angle. During cruise, the only control is the assumed-constant angle of attack. During ascent, a maximum thrust segment is used to restore lost energy, and the controls are the angle of attack and bank angle. The optimization problems are solved with a nonlinear programming code known as GRG2. Numerical results for the Maneuverable Re-entry Research Vehicle with a heating-rate limit of 100 Btu/ft(2)-s show that aerocruise gives a maximum plane change of 2 deg, which is only 1 deg larger than that of aeroglide. On the other hand, even though aerocruise requires two thrust levels, the cruise characteristics of constant altitude, velocity, thrust, and angle of attack are easy to control.
Maximum Likelihood Associative Memories
Gripon, Vincent; Rabbat, Michael
2013-01-01
Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...
Maximum likely scale estimation
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....
Temporomandibular Joint, Closed
... Gallery > Oral Health > The Temporomandibular Joint, Closed The Temporomandibular Joint, Closed Main Content Title: The Temporomandibular Joint, Closed Description: The temporomandibular joint connects the lower ...
V.C. Sinha
2016-09-01
Full Text Available In the present study, the microstructure and mechanical properties of similar and dissimilar friction stir welded joints of aluminium alloy (AlA and pure copper (Cu were evaluated at variable tool rotational speeds from 150 to 900 rpm in steps of 150 rpm at 60 mm/min travel speed and constant tilt angle 2°. The interfacial microstructures of the joints were characterised by optical and scanning electron microscopy. The Al4Cu9, AlCu, Al2Cu and Al2Cu3 intermetallic compounds have been observed at the interface and stir zone region of dissimilar Al/Cu FSWed joints. Variation in the grain size was observed in the stir zone depending upon the heat input value. Axial force, traverse force and torque value were analysed with variation in tool rotational speed. Residual stresses were measured at the stir zone by X-ray diffraction technique. Maximum ultimate tensile strength of ∼75% of AlA strength for AlA–AlA joints has been obtained at 750 rpm and for Cu–Cu joint tensile strength of ∼100% of tensile strength of Cu was obtained at 300 rpm. However, for Cu–AlA joint when processed at 600 rpm tool rotational speed achieved maximum ultimate tensile strength of ∼77% of AlA.
Development of Tibiofemoral Angle in Korean Children
Yoo, Jae Ho; Cho, Tae-Joon; Chung, Chin Youb; Yoo, Won Joon
2008-01-01
This study was performed to identify the chronological changes of the knee angle or the tibiofemoral angles in normal healthy Korean children. Full-length anteroposterior view standing radiographs of 818 limbs of 452 Korean children were analyzed. The overall patterns of the chronological changes in the knee angle were similar to those described previously in western or Asian children, but the knee angle development was delayed, i.e., genu varum before 1 yr, neutral at 1.5 yr, increasing genu valgum with maximum a value of 7.8° at 4 yr, followed by a gradual decrease to approximately 5-6° of genu valgum of the adult level at 7 to 8 yr of age. These normative data on chronological changes of knee angles should be taken into consideration when evaluating lower limb alignment in children. PMID:18756063
Agudelo, W.; Ribodetti, A.; Collot, J.-Y.; Operto, S.
2009-02-01
Improving seismic imaging of the crust is essential for understanding the structural factors controlling subduction zones processes. We developed a processing work flow based on the combined analysis of multichannel seismic reflection (MCS) and wide angle (WA) reflection/refraction data to derive both shallow and deep velocities suitable for prestack depth migration and to construct a blocky velocity model integrating all identifiable seismic phases contained in MCS and WA data. We apply this strategy to the study of the north Ecuador-SW Colombia subduction margin to improve the imaging and geostructural interpretation of a splay fault and surrounding outer and inner margin wedges. Results show improvements over tomographic inversion of WA data only, such as (1) sediment velocity variation across the trench and margin slope that correlates with lateral lithologic changes, tectonic compaction and effect of mass wasting processes; (2) a two-layer velocity structure of the inner wedge basement that is consistent with the crust of an oceanic plateau; (3) a complex velocity structure of the outer wedge basement that consists of a deep, high-velocity (5.0-5.5 km s-1) core and a low-velocity zone (3.8-5.0 km s-1) associated with the major splay fault; (4) a ˜1.3-km-thick, low-velocity (3.5-4.0 km s-1) subduction channel that extends beneath the margin outer wedge. Both the splay fault and subduction channel are expected to direct fluid flows; and (5) downdip velocity increase (5-6 km s-1) in the subducting oceanic crust associated with a low (7.8 km s-1) upper mantle velocity, possibly reflecting changes in rock nature or properties.
F. TopsÃƒÂ¸e
2001-09-01
Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: Gout (especially ...
Is Lumbo-Sacral Angle Related to Plantar Loading Patterns in Patients with Ankylosing Spondylitis?
Elif Aydın
2016-08-01
Full Text Available Objective: Loss of lumbar lordosis is a clinical feature of ankylosing spondylitis (AS. Pedobarographic analysis assesses the interaction between the foot and the supporting surface. Postural abnormalities can reflect as pressure distribution deviations on pedobarography. The objective of the present study was to assess whether loss of lumbar lordosis detected with lumbo-sacral angle measurement is related to postural control assessed by plantar loading distribution in patients with AS. Materials and Methods: Thirty-two patients (two female, 30 male, mean age: 43.06±7.8 years with the diagnosis of AS, who already had a lateral lumbo-sacral X-ray performed within the past one year, were included in the study. Static and dynamic pedobarographic analyses of the patients were performed. The radiographic measurement of lumbo-sacral angle was done from lateral lumbo-sacral X-rays of the patients. Results: The static pedobarographic measurement revealed that lumbo-sacral angle was significantly correlated with forefoot plantar pressure (p=0.042; r=0.361. In the dynamic assessment, the maximum pressures were lower under the first metatarsal area in patients with lower lumbo-sacral angle (p=0.352; r=0.048. Conclusion: These findings suggest that foot joints may contribute to the compensation mechanism against the postural changes in patients with AS, statically and dynamically.
Stief, Felix; Böhm, Harald; Schwirtz, Ansgar; Dussa, Chakravarthy Ugandhar; Döderlein, Leonhard
2011-03-01
Three-dimensional gait analysis is a diagnostic tool that can be used to gain a better understanding of the relationship between joint loading and the onset or progression of articular cartilage degeneration in subjects with varus malalignment. The purpose of the present study was to investigate knee and hip joint angles and moments in children and adolescents with pathological varus alignment of the knee without signs of knee osteoarthritis (OA). Moreover, we wanted to know if compensatory mechanisms are present in this young patient group. Fourteen, otherwise healthy patients with varus malalignment of the knee and 15 healthy control subjects were analysed. Patients showed a reduced knee extension and a significantly lower maximum knee extension moment in terminal stance compared to controls. The maximum knee adduction moment in mid and terminal stance and the maximum hip abduction moment in loading response were significantly higher in the patient group. In the transverse plane, abnormally increased knee internal rotation and hip external rotation moments were present in patients with varus malalignment. These findings imply that varus malalignment is not an isolated problem in the frontal plane. In contrast to adult patients with established medial knee OA, the young patients assessed in the present study did not show typical compensatory mechanisms such as increased foot progression angle or reduced walking speed. This suggests that children and adolescents with varus malalignment of the knee probably do not need to alter their spatio-temporal gait parameters in order to decrease knee joint loading.
Equalized near maximum likelihood detector
2012-01-01
This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.
Maximum life spiral bevel reduction design
Savage, M.; Prasanna, M. G.; Coe, H. H.
1992-07-01
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.
Cheeseman, Peter; Stutz, John
2005-01-01
A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].
Wang, Yong Tai; Vrongistinos, Konstantinos Dino; Xu, Dali
2008-08-01
The purposes of this study were to examine the consistency of wheelchair athletes' upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.
LHC Report: playing with angles
Mike Lamont for the LHC team
2016-01-01
Ready (after a machine development period), steady (running), go (for a special run)! The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...
Maximum-entropy distributions of correlated variables with prespecified marginals.
Larralde, Hernán
2012-12-01
The problem of determining the joint probability distributions for correlated random variables with prespecified marginals is considered. When the joint distribution satisfying all the required conditions is not unique, the "most unbiased" choice corresponds to the distribution of maximum entropy. The calculation of the maximum-entropy distribution requires the solution of rather complicated nonlinear coupled integral equations, exact solutions to which are obtained for the case of Gaussian marginals; otherwise, the solution can be expressed as a perturbation around the product of the marginals if the marginal moments exist.
AP Castro
2009-02-01
Full Text Available OBJETIVOS: Verificar a relação entre o ângulo da articulação metatarsofalangeana I (Ang-I e a idade, as medidas antropométricas e a postura dos pés de mulheres e homens idosos. MÉTODOS: A amostra foi composta por 227 mulheres idosas, com média de idade de 69,6 anos (±6,8 e 172 homens idosos, com média de idade de 69,4 anos (±6,7. As variáveis estudadas foram: a largura e o perímetro da cabeça dos metatarsos, a altura da cabeça do metatarso I e do dorso do pé, o comprimento do pé, os ângulos articulares Ang-I e metatarsofalangeana V, o índice do arco e o índice postural do pé. As medidas foram tomadas com instrumentos analógicos. Os dados foram analisados por meio de Correlação de Pearson. RESULTADOS: O Ang-I não apresentou relação com a idade e com o índice do arco, porém apresentou associação positiva com a largura e o perímetro da cabeça dos metatarsos, com o índice postural do pé e com o ângulo da articulação metatarsofalangeana V e associação negativa com a altura do dorso do pé. CONCLUSÕES: Foram encontradas relações entre maior Ang-I e maiores largura e perímetro de antepé, maior ângulo da articulação metatarsofalangeana V, pés mais pronados e com menor altura do dorso do pé.OBJECTIVES: To investigate the relationship between the first metatarsophalangeal joint angle (Ang-I, the age, anthropometric measures and foot posture of older adults. METHODS: The sample was composed of 227 older women with a mean age of 69.6 (±6.8 years and 172 older men with a mean age of 69.4 (±6.7 years. The studied variables were: the width and circumference of the metatarsal heads, the height of the first metatarsal head and the dorsum of the foot, the length of the foot, the Ang-I and fifth metatarsophalangeal joint angles, the arch index and the foot posture index. The measurements were taken with analog instruments. The data were analyzed using Pearson's correlation. RESULTS: There was no association
李旗; 田福玲; 刘国荣; 郑德松; 陈金铭; 马树祥; 崔建美; 王洪彬; 李雪青
2014-01-01
目的：观察阴-阳对刺呼吸补泻法治疗缺血性脑中风偏瘫运动与静止膝关节的屈伸角度变化。方法：将60例缺血性脑中风患者，按随机数字表法随机分为对照组与试验组，各30例。对照组仅采用基础治疗，试验组在基础治疗上，阴-阳对刺呼吸补泻法治疗。于治疗前、治疗后28天，使用 Lokomat全自动机器人步态评定系统对患者进行运动与静止膝关节的屈伸角度变化参数测定比较。结果：治疗后实验组中，足跟着地时膝关节的屈曲角度值，膝关节的屈伸角度最大值、膝关节支撑相和摆动相关节的屈曲角度最大值和膝关节活动度，与对照组比较，有差异具有统计意义（P ＜0．05）。结论：阴-阳对刺呼吸补泻法可有效改善缺血性脑中风偏瘫膝关节运动，提高步行功能。%Objective:To investigate the effect of Yin -yang meridian acupuncture by reinforcing -reducing with patient’ s respiration on lower limb joint flexion angle change in hemiplegic patients after stroke .Methods:60 patients were en-rolled and divided into two groups randomly .The control group was treated with madopar ,and the treatment group was with traditional techniques of needling Yin -yang meridian by reinforcing -reducing with patient ’ s respiration and madopar treatment.All patients were assessed with lower limb joint flexion angle change at the beginning of the training and 28 days after treatment.Results:Compared with the control group,there was a significant difference in the treatment group(P <0.05).Conclusion:Yin -yang meridian acupuncture by reinforcing -reducing with patient ’ s respiration treatment can improve lower limb function in hemiplegic patients after stroke .
Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.
2014-01-01
Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…
Podzharenko, Volodymyr A.; Kulakov, Pavlo I.
2001-06-01
The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.
Pristed Nielsen, Helene
2013-01-01
Starting from Crenshaw´s point that antiracism often fails to interrogate patriarchy and that feminism often reproduces racist practices (1991: 1252), this paper asks: What are the theoretical reasons for believing that feminism and anti-racism can be regarded as fighting for the joint purpose of...
3D joint dynamics analysis of healthy children's gait
SAMSON, William; DESROCHES, Guillaume; Cheze, Laurence; Dumas, Raphaël
2009-01-01
The 3D joint moments and 2D joint powers have been largely explored in the literature of healthy children's gait, in particular to compare them with pathologic subjects' gait. However, no study reported on 3D joint power in children which could be due to the difficulties in interpreting the results. Recently, the analysis of the 3D angle between the joint moment and the joint angular velocity vectors has been proposed in order to help 3D joint power interpretation. Our hypothesis is that this...
Whole-body vibration does not influence knee joint neuromuscular function or proprioception.
Hannah, R; Minshull, C; Folland, J P
2013-02-01
This study examined the acute effects of whole-body vibration (WBV) on knee joint position sense and indices of neuromuscular function, specifically strength, electromechanical delay and the rate of force development. Electromyography and electrically evoked contractions were used to investigate neural and contractile responses to WBV. Fourteen healthy males completed two treatment conditions on separate occasions: (1) 5 × 1 min of unilateral isometric squat exercise on a synchronous vibrating platform [30 Hz, 4 mm peak-to-peak amplitude] (WBV) and (2) a control condition (CON) of the same exercise without WBV. Knee joint position sense (joint angle replication task) and quadriceps neuromuscular function were assessed pre-, immediately-post and 1 h post-exercise. During maximum voluntary knee extensions, the peak force (PF(V)), electromechanical delay (EMD(V)), rate of force development (RFD(V)) and EMG of the quadriceps were measured. Twitch contractions of the knee extensors were electrically evoked to assess EMD(E) and RFD(E). The results showed no influence of WBV on knee joint position, EMD(V), PF(V) and RFD(V) during the initial 50, 100 or 150 ms of contraction. Similarly, electrically evoked neuromuscular function and neural activation remained unchanged following the vibration exercise. A single session of unilateral WBV did not influence any indices of thigh muscle neuromuscular performance or knee joint proprioception.
Farley, Gary L.
1990-01-01
Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.
Hybrid TOA/AOA Approximate Maximum Likelihood Mobile Localization
Mohamed Zhaounia; Mohamed Adnan Landolsi; Ridha Bouallegue
2010-01-01
This letter deals with a hybrid time-of-arrival/angle-of-arrival (TOA/AOA) approximate maximum likelihood (AML) wireless location algorithm. Thanks to the use of both TOA/AOA measurements, the proposed technique can rely on two base stations (BS) only and achieves better performance compared to the original approximate maximum likelihood (AML) method. The use of two BSs is an important advantage in wireless cellular communication systems because it avoids hearability problems and reduces netw...
Cupiennius salei: biomechanical properties of the tibia-metatarsus joint and its flexing muscles.
Siebert, Tobias; Weihmann, Tom; Rode, Christian; Blickhan, Reinhard
2010-02-01
Hunting spiders are well adapted to fast locomotion. Space saving hydraulic leg extension enables leg segments, which consist almost soley of flexor muscles. As a result, the muscle cross sectional area is high despite slender legs. Considering these morphological features in context with the spider's segmented C-shaped legs, these specifics might influence the spider's muscle properties. Moreover, these properties have to be known for modeling of spider locomotion. Cupiennius salei (n = 5) were fixed in a metal frame allowing exclusive flexion of the tibia-metatarsus joint of the second leg (counted from anterior). Its flexing muscles were stimulated supramaximally using needle electrodes. Accounting for the joint geometry, the force-length and the force-velocity relationships were determined. The spider muscles produce 0.07 N cm maximum isometric moment (corresponding to 25 N/cm(2) maximum stress) at 160 degrees tibia-metatarsus joint angle. When overextended to the dorsal limit at approximately 200 degrees , the maximum isometric moments decrease to 72%, and, when flexed to the ventral hinge stop at 85 degrees , they drop to 11%. The force-velocity relation shows the typical hyperbolic shape. The mean maximum shortening velocity is 5.7 optimum muscle lengths per second and the mean curvature (a/F (iso)) of the Hill-function is 0.34. The spider muscle's properties which were determined are similar to those of other species acting as motors during locomotion (working range, curvature of Hill hyperbola, peak power at the preferred speeds), but they are relatively slow. In conjunction with the low mechanical advantage (muscle lever/load arm), the arrangement of three considerably actuated joints in series may nonetheless enable high locomotion velocities.
Temporomandibular joint reconstruction with total alloplastic joint replacement.
Jones, R H B
2011-03-01
This paper is a preliminary paper which presents the early findings of an ongoing prospective trial on the use of the TMJ Concepts and Biomet Lorenz total joint replacement systems for the reconstruction of the temporomandibular joint (TMJ). Total alloplastic replacement of the TMJ has become a viable option for many people who suffer from TMJ disease where surgical reconstruction is indicated. Degenerative joint diseases such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, TMJ ankylosis, malunited condylar fractures and tumours can be successfully treated using this technique. There are a number of TMJ prostheses available. Two of the joint replacement products, which have been found to be most reliable and have FDA approval in the United States, are the TMJ Concepts system and the Biomet Lorenz system, and for this reason they are being investigated in this study. This study presents the findings of seven patients with a total of 12 joint replacements using either the TMJ Concepts system or the Biomet Lorenz joint system. Two patients (3 joints) had the TMJ Concepts system and five patients (9 joints) had the Biomet Lorenz system. Although still early, the results were generally pleasing, with the longest replacement having been in position for three years and the most recent six months. The average postoperative mouth opening was 29.7 mm (range 25-35 mm) with an average pain score of 1.7 (range 0-3, minimum score of 0 and maximum 10). Complications were minimal and related to sensory disturbance to the lip in one patient and joint dislocation in two patients.
EVALUATION OF NECK SHAFT ANGLE OF FEMUR ON DRY BONES
Radha
2015-04-01
Full Text Available BACKGROUND: Evaluation of the neck shaft angle of femur helps to understand clinical relevance in bio mechanics of the hip joint. It helps for the better treatment of different pathological conditions of hip and femur and also to design prosthesis. Femoral neck shaft angle is important to convey the information regarding the race to which they belong. Hence the present study was under taken to determine the neck shaft angle of femur in humans. OBJECTIVE: 1. To correct the different types of deformity and to have a normal good walking Mechanism. 2. To know the recent methodology and attempt to evaluate the range of normal Angles of femora and their sex differences. METHODS: ANTHROPOMETRIC: 100 Adult dry bones were studied and analyzed . The neck shaft angle of femur was measured by tracing outlines of contours of all femora. RESULTS: The neck shaft angle of the femur have revealed that there is no much difference in between males and females. There was slightly higher 0.2° in females. INTERPRETATION & CONCLUSION: There was no significant gender difference in neck shaft angle. The Knowledge of knowing the neck shaft angle helps to understand the Biomechanics of the hip joint and also for better treatment of pathological condition of hip and femur.
Elbow joint kinematics after excision of the radial head
Jensen, Steen Lund; Olsen, Bo Sanderhoff; Søjbjerg, Jens Ole
1999-01-01
The contribution of the radial head to elbow joint kinematics was studied in 7 osteoligamentous elbow preparations. During unloaded flexion and extension, radial head excision induced a maximum varus displacement of 1.6 degrees with 20 degrees of joint flexion and a maximum external rotation of 3...
Islam, Kamrul; Duke, Kajsa; Mustafy, Tanvir; Adeeb, Samer M; Ronsky, Janet L; El-Rich, Marwan
2015-01-01
The biomechanics of the patellofemoral (PF) joint is complex in nature, and the aetiology of such manifestations of PF instability as patellofemoral pain syndrome (PFPS) is still unclear. At this point, the particular factors affecting PFPS have not yet been determined. This study has two objectives: (1) The first is to develop an alternative geometric method using a three-dimensional (3D) registration technique and linear mapping to investigate the PF joint contact stress using an indirect measure: the depth of virtual penetration (PD) of the patellar cartilage surface into the femoral cartilage surface. (2) The second is to develop 3D PF joint models using the finite element analysis (FEA) to quantify in vivo cartilage contact stress and to compare the peak contact stress location obtained from the FE models with the location of the maximum PD. Magnetic resonance images of healthy and PFPS subjects at knee flexion angles of 15°, 30° and 45° during isometric loading have been used to develop the geometric models. The results obtained from both approaches demonstrated that the subjects with PFPS show higher PD and contact stresses than the normal subjects. Maximum stress and PD increase with flexion angle, and occur on the lateral side in healthy and on the medial side in PFPS subjects. It has been concluded that the alternative geometric method is reliable in addition to being computationally efficient compared with FEA, and has the potential to assess the mechanics of PFPS with an accuracy similar to the FEA.
Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.
Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon
2016-11-01
The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups (p knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint parameters were not significantly associated with abnormal KJLO after OWHTO.
Joint mobilization acutely improves landing kinematics in chronic ankle instability.
Delahunt, Eamonn; Cusack, Kim; Wilson, Laura; Doherty, Cailbhe
2013-03-01
The objective of this study is to examine the acute effect of ankle joint mobilizations akin to those performed in everyday clinical practice on sagittal plane ankle joint kinematics during a single-leg drop landing in participants with chronic ankle instability (CAI). Fifteen participants with self-reported CAI (defined as mobilizations performed included Mulligan talocrural joint dorsiflexion mobilization with movement, Mulligan inferior tibiofibular joint mobilization, and Maitland anteroposterior talocrural joint mobilization. Three CODA cx1 units (Charnwood Dynamics Ltd., Leicestershire, UK) were used to provide information on ankle joint sagittal plane angular displacement. The dependent variable under investigation was the angle of ankle joint plantarflexion at the point of initial contact during the drop landing. There was a statistically significant acute decrease in the angle of ankle joint plantarflexion from premobilization (34.89° ± 4.18°) to postmobilization (31.90° ± 5.89°), t(14) = 2.62, P mobilization was 2.98° with a 95% confidence interval ranging from 0.54 to 5.43. The eta squared statistic (0.32) indicated a large effect size. These results indicate that mobilization acted to acutely reduce the angle of ankle joint plantarflexion at initial contact during a single-leg drop landing. Mobilization applied to participants with CAI has a mechanical effect on the ankle joint, thus facilitating a more favorable positioning of the ankle joint when landing from a jump.
Winding angles of long lattice walks
Hammer, Yosi; Kantor, Yacov
2016-07-01
We study the winding angles of random and self-avoiding walks (SAWs) on square and cubic lattices with number of steps N ranging up to 107. We show that the mean square winding angle of random walks converges to the theoretical form when N → ∞. For self-avoiding walks on the square lattice, we show that the ratio /2 converges slowly to the Gaussian value 3. For self-avoiding walks on the cubic lattice, we find that the ratio /2 exhibits non-monotonic dependence on N and reaches a maximum of 3.73(1) for N ≈ 104. We show that to a good approximation, the square winding angle of a self-avoiding walk on the cubic lattice can be obtained from the summation of the square change in the winding angles of lnN independent segments of the walk, where the ith segment contains 2i steps. We find that the square winding angle of the ith segment increases approximately as i0.5, which leads to an increase of the total square winding angle proportional to (lnN)1.5.
Automatic control of a drop-foot stimulator based on angle measurement using bioimpedance.
Nahrstaedt, Holger; Schauer, Thomas; Shalaby, Raafat; Hesse, Stefan; Raisch, Jörg
2008-08-01
The topic of this contribution is iterative learning control of a drop-foot stimulator in which a predefined angle profile during the swing phase is realized. Ineffective dorsiflexion is compensated by feedback-controlled stimulation of the muscle tibialis anterior. The ankle joint measurement is based on changes in the bioimpedance (BI) caused by leg movements. A customized four-channel BI measurement system was developed. The suggested control approach and the new measurement method for the joint angle were successfully tested in preliminary experiments with a neurologically intact subject. Reference angle measurements were taken with a marker-based optical system. An almost linear relation between joint angle and BI was found for the angle range applicable during gait. The desired angle trajectory was closely tracked by the iterative learning controller after three gait cycles. The final root mean square tracking error was below 5 degrees.
Angle at the Medial Border: The Spinovertebra Angle and Its Significance
G. S. Oladipo
2015-01-01
Full Text Available Background. The evolution from quadrupedalism to bipedalism has adjusted the balance of the upper limb to extensive movement at the shoulder. The scapular angles provide the point of attachment and control to various muscles and have been associated with the different movements of the shoulder girdle and joint. This has made the morphometric and anthropometric study of scapula a subject of extensive investigation. Aim. In the present study, the angle at the medial border was measured in the South-Southern Nigerian population and an anatomical name was ascribed to the angle. Method. The study was conducted on 173 scapulae (75 right and 98 left obtained from various Anatomy Department of South-Sothern Nigerian Universities. The angle at medial border was obtained by pinning the edge of the superior and inferior angles, the lined traced out, and the angle measured using a protractor. SPSS version 20 was used to analyse the data. t-test was used to determine mean angular difference in the sides. Result. The mean ± SD of the medial angle was observed to be 136.88 ± 7.70° (R = 138.13 ± 7.06° : L = 135.92 ± 8.05°. Statistical analysis using the Z-test for mean difference showed the medial angle was found to be higher in the right side of the scapula (mean difference of 2.214 ± 1.152°, but the observed difference was not statistically significant (P > 0.05. The above findings have adjusted the scapula from three to four angles (lateral, superior, inferior, and medial formed from four borders (lateral, superior, inferior, and superomedial and inferomedial. The medial angle because of its anatomical location was named “spinovertebral” angle, owing to its position at the scapulae spine, and located in medial proximity to the vertebra column. Conclusion. The medial angle (now referred to as the spinovertebral angle of the right side of the scapula is wider than the left. The representation of the spinovertebral angle is very important, as
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint.
Li, Xiaoniu; Yao, Zhiyuan; Yang, Mojian
2017-06-01
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint is proposed in this paper. The motor is comprised of a V-shaped transducer, a slider, a clamp, and a base. The V-shaped transducer consists of two piezoelectric beams connected through a flexible joint to form an appropriate coupling angle. The V-shaped motor is operated in the coupled longitudinal-bending mode. Longitudinal and bending movements are transferred by the flexible joint between the two beams. Compared with the coupled longitudinal-bending mode of the single piezoelectric beam or the symmetrical and asymmetrical modes of the previous V-shaped transducer, the coupled longitudinal-bending mode of the V-shaped transducer with a flexible joint provides higher vibration efficiency and more convenient mode conformance adjustment. A finite element model of the V-shaped transducer is created to numerically study the influence of geometrical parameters and to determine the final geometrical parameters. In this paper, three prototypes were then fabricated and experimentally investigated. The modal test results match well with the finite element analysis. The motor mechanical output characteristics of three different coupling angles θ indicate that V-90 (θ = 90°) is the optimal angle. The mechanical output experiments conducted using the V-90 prototype (Size: 59.4 mm × 30.7 mm × 4 mm) demonstrate that the maximum unloaded speed is 1.2 m/s under a voltage of 350 Vpp, and the maximum output force is 15 N under a voltage of 300 Vpp. The proposed novel V-shaped linear ultrasonic motor has a compact size and a simple structure with a large thrust-weight ratio (0.75 N/g) and high speed.
On the maximum backscattering cross section of passive linear arrays
Solymar, L.; Appel-Hansen, Jørgen
1974-01-01
The maximum backscattering cross section of an equispaced linear array connected to a reactive network and consisting of isotropic radiators is calculated forn = 2, 3, and 4 elements as a function of the incident angle and of the distance between the elements. On the basis of the results obtained...
Mechanical Sun-Tracking Technique Implemented for Maximum ...
The solar panel is allowed to move from east to west and back forth with a maximum allowable angle of 180o. Its movement is in only one axis. The prototype built carries the panel from eastward to westward tracking the sun movement from ...
Kim, Ho Kyung; Cho, Min Kook; Kim, Seong Sik [Pusan National University, Busan (Korea, Republic of)
2007-07-01
In computed tomography (CT), many situations are restricted to obtain enough number of projections or views to avoid artifacts such as streaking and geometrical distortion in the reconstructed images. Speed of motion of an object to be imaged can limit the number of views. Cardiovascular imaging is a representative example. Size of an object can also limit the complete traverse motion or geometrical complexity can obscure to be imaged at certain range of angles. These situations are frequently met in industrial nondestructive testing and evaluation. Dental CT also suffers from similar situation because cervical spine causes less x-ray penetration from some directions such that the available information is not sufficient for standard reconstruction algorithms. The limited angle tomography is now greatly paid attention as a new genre in medical and industrial imaging, popularly known as digital tomosynthesis. In this study, we introduce a modified filtered backprojection method in limited angle tomography and demonstrate its application for the dental imaging.
Ling, B.C.; Lee, J.W.; Man, H.S.J.; Grace, M.G.A.; Lambert, R.G.W. [Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, Edmonton (Canada); Jhangri, G.S. [Department of Public Health Sciences, University of Alberta Hospital, Edmonton (Canada)
2006-11-15
Effects of angulation of computed tomography (CT) reconstruction plane on sacroiliac (SI) joint morphology were studied, and factors influencing the approach to fluoroscopically guided SI joint injection were assessed. CT scans of pelvises were reformatted on 41 subjects, aged 51.7 ({+-}15.1) years. Transverse images were reconstructed at the caudal 3 cm of the SI joint tilting plane of reconstruction from -30 to +30 at 15 increments. Anteroposterior diameter of joint (depth), angle from sagittal plane (orientation angle), and distance from skin were measured. Joint contour was classified, and presence of bone blocking access to the joint was recorded. Comparison between angles were analysed by t-test. Relationships between variables were assessed by a Pearson correlation test. Depth was shorter with angulation in the inferior direction (P<0.01). Orientation angle increased with superior angulation (P<0.01). Distance from skin increased (P<0.01) with angulation in either direction. Joint contour was significantly different from baseline at each angle (P<0.001) but highly variable. Inferior angulation resulted in interposition of ilium between skin and SI joint, and superior angulation caused bone block due to the lower sacrum. None of these features was identified without tilting of the reconstruction plane, and effects were more pronounced with steeper angulation.
Riggi, S; Rodriguez, G; Valino, I; Vazquez, R; Zas, E
2012-01-01
In the present work we carry out a study of the high energy cosmic rays mass identification capabilities of a hybrid detector employing both fluorescence telescopes and particle detectors at ground using simulated data. It involves the analysis of extensive showers with zenith angles above 60 degrees making use of the joint distribution of the depth of maximum and muon size at ground level as mass discriminating parameters. The correlation and sensitivity to the primary mass are investigated. Two different techniques - clustering algorithms and neural networks - are adopted to classify the mass identity on an event-by-event basis. Typical results for the achieved performance of identification are reported and discussed. The analysis can be extended in a very straightforward way to vertical showers or can be complemented with additional discriminating observables coming from different types of detectors.
Maeda, Kei-ichi; Uzawa, Kunihito
2016-12-01
We discuss the dynamical D p -brane solutions describing any number of D p branes whose relative orientations are given by certain SU(2) rotations. These are the generalization of the static angled D p -brane solutions. We study the collision of the dynamical D3 brane with angles in type-II string theory, and show that the particular orientation of the smeared D3-brane configuration can provide an example of colliding branes if they have the same charges. Otherwise a singularity appears before D3 branes collide.
Magic-angle thermal desorption mass spectroscopy
Pauls, Steven W.; Campbell, Charles T.
1990-02-01
Accurate quantitative measurements of desorption rates or adsorbate coverages in thermal desorption mass spectroscopy (TDS) using line-of-sight mass spectrometers are hindered by the fact that the angular distributions of desorption flux can vary widely from desorbate to desorbate, ranging from cos 1ø to cos 9 ø for most species studied to date (ø = polar angle from surface normal). These differences can easily lead to errors exceeding 400% in measuring the relative desorption rates of different species. We show here that, by placing the mass spectrometer's ion source or entrance aperture at a "magic-angle" ø mthese errors can be reduced to less than 26% maximum deviation (or ± 7% standard deviation). Depending upon the sample-to-detector distance, ø m varies from ~ 42° to 34°. It is recommended that TDS experiments be performed at this "magic-angle" for improvement in the quantitative accuracy of coverage or rate measurements.
Target Localization Based on Angle of Arrivals
Yi-Chao Cao
2007-01-01
Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measurements. By introducing an intermediate variable, the nonlinear equations relating AOA estimates can be transformed into a set of equations which are linear in the unknown parameters. It is an approximate realization of the MLE. Simulations show that the proposed algorithm outperforms the previous contribution.
Pristed Nielsen, Helene
2013-01-01
of anti-discrimination in Europe today? And what empirical evidence may be found for such a joint approach? The paper discusses how the contemporary EU context differs from the American context which prompted Crenshaw to raise the point about intersectionality, and it analyses documents and interviews...... from each of the two European umbrella organisations the European Women´s Lobby and the European Network against Racism, as well as a number of their national member organisations from across Europe, both within EU and non-EU member states....
Davidson, Andrew W; Rice, Charles L
2010-10-01
The aim of this study was to examine the effect of shoulder angle on the electromyographic (EMG) activation pattern of the elbow extensors during a fatiguing contraction. Ten young men (23.5 ± 1.7) were tested on two occasions with the elbow angle at 90° and the shoulder at either 0° or 90° of flexion. EMG was recorded by fine wire electrodes inserted into the lateral, medial, and long heads of the triceps brachii and the anconeus. An EMG-torque relationship was determined prior to a sustained isometric contraction at 20% of maximum voluntary contraction (MVC) until target failure. Endurance time was shorter, and postfatigue MVC torque was lower at 90° (40.4 ± 12.7 Nm) versus 0° (47.9 ± 14.7 Nm) of flexion. EMG activity of the long head during the final 10% of the fatiguing contraction was significantly greater at 90° versus 0° with no effect of shoulder angle on any other muscle portions. The findings suggest that measures from one muscle portion of the elbow extensors are not representative of the whole group, and the relative activation of the two-joint long head was changed depending on shoulder angle during a fatigue task.
Maximum kinetic energy considerations in proton stereotactic radiosurgery.
Sengbusch, Evan R; Mackie, Thomas R
2011-04-12
The purpose of this study was to determine the maximum proton kinetic energy required to treat a given percentage of patients eligible for stereotactic radiosurgery (SRS) with coplanar arc-based proton therapy, contingent upon the number and location of gantry angles used. Treatment plans from 100 consecutive patients treated with SRS at the University of Wisconsin Carbone Cancer Center between June of 2007 and March of 2010 were analyzed. For each target volume within each patient, in-house software was used to place proton pencil beam spots over the distal surface of the target volume from 51 equally-spaced gantry angles of up to 360°. For each beam spot, the radiological path length from the surface of the patient to the distal boundary of the target was then calculated along a ray from the gantry location to the location of the beam spot. This data was used to generate a maximum proton energy requirement for each patient as a function of the arc length that would be spanned by the gantry angles used in a given treatment. If only a single treatment angle is required, 100% of the patients included in the study could be treated by a proton beam with a maximum kinetic energy of 118 MeV. As the length of the treatment arc is increased to 90°, 180°, 270°, and 360°, the maximum energy requirement increases to 127, 145, 156, and 179 MeV, respectively. A very high percentage of SRS patients could be treated at relatively low proton energies if the gantry angles used in the treatment plan do not span a large treatment arc. Maximum proton kinetic energy requirements increase linearly with size of the treatment arc.
Clevis joint for deployable space structures
Rhodes, Marvin D. (Inventor)
1990-01-01
This invention relates generally to pin clevis joints, and more particularly, to zero play pin clevis joints for connecting structural members of a deployable space structure. A joint includes a pin, a tang, and a shackle. The pin is tapered at the same angle as the bores extending through the projections of the shackle and the tang. A spring washer biases the tang onto the tapered sidewall of the pin. The invention solves the free play problem associated with deployable space structures by using a tapered pin which is held in tapered holes by the spring washers.
Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona
2012-01-01
: Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...
Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles.
Cortés, Camilo; Unzueta, Luis; de Los Reyes-Guzmán, Ana; Ruiz, Oscar E; Flórez, Julián
2016-01-01
In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR.
Affecting aspects on the behaviour of frame joints
Mohamed Nabil
2016-08-01
The presented paper introduces an experimental and analytical study in order to investigate the effect of reinforcement details, confinement, joints size, joints angle on the frame joints efficiency and comparison between closing joints and opening joints. Experimentally, a total of eleven specimens were tested under vertical load. All specimens were tested up to failure and the behaviour was fully monitored. Moreover, a nonlinear 3D-finite element analysis was established using ABAQUS program and verified with the experimental results in order to give design recommendations for those structural elements.
Impacts of tropical cyclone inflow angle on ocean surface waves
ZHAO Wei; HONG Xin
2011-01-01
The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, the effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.
Arampatzis, Adamantios; Morey-Klapsing, Gaspar; Karamanidis, Kiros; DeMonte, Gianpiero; Stafilidis, Savvas; Brüggemann, Gert-Peter
2005-04-01
The purpose of this study was to examine two hypotheses: (a) during voluntary and electrically induced isometric contractions the moments measured at the dynamometer are different from the resultant moments in the same plane around the ankle joint and (b) at a given resultant moment during electrically induced isometric contractions the ankle angle while loading is different from the ankle angle while unloading. Twenty-seven long distance runners participated in the study. All subjects performed isometric maximal voluntary contractions (MVC) and contractions induced by electrostimulation at four different ankle-knee angle combinations on a Biodex-dynamometer. The kinematics of the leg were recorded using the vicon 624 system with eight cameras operating at 120 Hz. The main findings were: (a) the resultant moment at the ankle joint and the moment measured by the Biodex-dynamometer during isometric contractions are different, (b) during a plantar flexion effort the ankle angle changes significantly, whereas the knee angle shows only small and in most cases not significant changes, and (c) at identical resultant ankle joint moments the ankle angles are different between the loading and the unloading phases. The observed differences may lead to erroneous conclusions concerning the following: (a) diagnostic of muscle architecture, (b) estimation of the moment-ankle angle relationship and (c) estimation of the strain and hysteresis of tendons and aponeuroses.
Design of a surface replacement prosthesis for the proximal interphalangeal joint.
Ash, H E; Unsworth, A
2000-01-01
A surface replacement finger joint prosthesis was designed specifically for the proximal interphalangeal joint (PIPJ). The two-piece design consisted of a bi-condylar proximal phalangeal head and a conforming bi-concave middle phalangeal base. The bearing surfaces were designed as close to the original anatomy of the PIPJs as possible, using detailed information obtained from a previous anatomical study of 83 PIPJs by the present authors. Four sizes of prosthesis were designed with maximum head diameters of 7, 8, 9 and 10 mm. Fixation of the joint prosthesis was achieved by an interference fit between the stems of semicircular cross-section and the phalangeal bone shafts. The main considerations for the stem designs were the offset from the centre of rotation, angle of inclination, length, and cross-sectional shape and size. It is proposed that the two components will be made from cross-linked polyethylene (XLPE) because it can be injection moulded to produce the complex shapes of the joint prosthesis. In addition, XLPE against itself has shown comparable wear rates with stainless steel against ultra-high molecular weight polyethylene from previous work by Joyce et al.
Mills, Chris; Knight, James; Milligan, Gemma
2015-01-01
Ergogenic aids have been used to alter joint kinematics in an attempt to minimise injury risk, yet the effectiveness of these aids may be compromised following a bout of exercise. This preliminary study aimed to measure the effect of compression garments and Kinesio Tape® on lower extremity joint alignment prior to and following an exercise bout. Eight male athletes (age = 24.1 ± 3.0 years, body height = 177.4 ± 5.2 cm, body mass = 72.3 ± 7.2 kg) volunteered to participant in this study. Joint kinematics were recorded whilst all participants performed three rotational lunges, in three conditions (control, compression garment, Kinesio Tape®), prior to and following a 10 minute exercise bout. Frontal plane kinematics (lateral pelvic tilt, knee valgus, ankle inversion/eversion) were used to assess ergogenic aid effectiveness during the lunge. Participants exhibited no significant differences in joint kinematics between ergogenic aid conditions prior to the exercise bout. Following exercise the only significant difference occurred within the Kinesio Tape® condition where maximum knee valgus angle significantly increased from 6.5° prior to exercise, to 7.7° following the exercise bout. The results of this study suggest joint kinematics are not affected by the ergogenic aids in this study prior to an exercise bout. However, there is evidence to suggest that the application of Kinesio Tape® may allow an increase in knee valgus angle following a bout of exercise, yet, compression garments are effective at maintaining joint alignment following a bout of exercise. PMID:25964805
Mills Chris
2015-03-01
Full Text Available Ergogenic aids have been used to alter joint kinematics in an attempt to minimise injury risk, yet the effectiveness of these aids may be compromised following a bout of exercise. This preliminary study aimed to measure the effect of compression garments and Kinesio Tape® on lower extremity joint alignment prior to and following an exercise bout. Eight male athletes (age = 24.1 ± 3.0 years, body height = 177.4 ± 5.2 cm, body mass = 72.3 ± 7.2 kg volunteered to participant in this study. Joint kinematics were recorded whilst all participants performed three rotational lunges, in three conditions (control, compression garment, Kinesio Tape®, prior to and following a 10 minute exercise bout. Frontal plane kinematics (lateral pelvic tilt, knee valgus, ankle inversion/eversion were used to assess ergogenic aid effectiveness during the lunge. Participants exhibited no significant differences in joint kinematics between ergogenic aid conditions prior to the exercise bout. Following exercise the only significant difference occurred within the Kinesio Tape® condition where maximum knee valgus angle significantly increased from 6.5° prior to exercise, to 7.7° following the exercise bout. The results of this study suggest joint kinematics are not affected by the ergogenic aids in this study prior to an exercise bout. However, there is evidence to suggest that the application of Kinesio Tape® may allow an increase in knee valgus angle following a bout of exercise, yet, compression garments are effective at maintaining joint alignment following a bout of exercise.
OECD Maximum Residue Limit Calculator
With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.
Micro-structure and frictional characteristics of beetle's joint
DAI; Zhendong; Stanislav; N.; Gorb
2004-01-01
Geometric and micro-structure design, tribology properties of beetle joints were experimentally studied, which aimed to enlighten ideas for the joint design of MEMS.The observation by using SEM and microscopy suggested that beetle's joints consist of a concave surface matched with a convex surface. The heads of the beetles, rubbing with flat glass, were tested in fresh and dried statuses and compared with sapphire ball with flat glass. Frictional coefficient of the joint material on glass was significantly lower than that of the sapphire sphere on glass. The material of the joint cuticle for convex surface is rather stiff (the elastic modulus 4.5 Gpa) and smooth. The surface is hydrophobic (the contact angle of distilled water was 88.3° ). It is suggested here that the high stiffness of the joint material and hydrophobicity of the joint surface are parts of the mechanism minimizing friction in insect joints.
Wearable human body joint and posture measuring system
Dunias, P.; Gransier, R.; Jin, A.; Statham, A.; Willems, P.
2011-01-01
In many medical applications, especially the orthopaedic setting, ambulatory, monitoring of human joint angles could be of substantial value to improving rehabilitation strategies and unravelling the pathomechanics of many degenerative joint diseases (e.g. knee osteoarthritis). With the ageing of th
Contact angle hysteresis explained.
Gao, Lichao; McCarthy, Thomas J
2006-07-04
A view of contact angle hysteresis from the perspectives of the three-phase contact line and of the kinetics of contact line motion is given. Arguments are made that advancing and receding are discrete events that have different activation energies. That hysteresis can be quantified as an activation energy by the changes in interfacial area is argued. That this is an appropriate way of viewing hysteresis is demonstrated with examples.
Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.
2013-01-01
measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology. © 2013 American Academy of Forensic Sciences....
2006-01-01
A new magnet at CERN is going to allow COMPASS (Common Muon Proton Apparatus for Structure and Spectroscopy) maximum acceptance. Thanks to the 5 tonne, 2.5 m long magnet, which arrived last December, many more events are expected compared to the previous data-taking.
李广伟
2012-01-01
BACKGROUND: Application of total knee arthroplasty (TKA) for knee valgus deformity can be difficult technically in many aspects and exist a lot of controversy.OBJECTIVE: To investigate the clinical efficiency and surgical methods of TKA for knee valgus deformity in the adults.METHODS: Totally 15 knees from 12 patients underwent patellar lateral approach for proper osteotomy and selective lysis of the soft tissue to regain normal biomechanics and soft tissue balance of knee were selected. Posterior stabilized prosthesis was used for TKA to obtain the stability of the knee. After the surgery, rehabilitation therapy pertinently was adopted. Before and after the surgery, tibiofemoral angle was measured. Range of motion (ROM) was examined and HSS score was evaluated.RESULTS AND CONCLUSION: All patients were followed up over 6 months. Tibiofemoral angle decreased from 21.47° preoperatively to 5.47° postoperatively (P < 0.01). The ROM increased from 81.33° preoperatively to 121.07° postoperatively (P < 0.01). HSS score improved from 25.47 preoperatively to 89.87 postoperatively (P < 0.01). After replacement, 1 case affected more joint effusion, 2 cases affected knee instability. There was no dislocation or subluxation of the patella. Force line of lower limb returned to normal. TKA can effectively correct the knee valgus deformity, and can significantly improve the function of the knee.%背景:膝外翻畸形施行人工全膝关节置换难度很大,涉及面多,争议亦颇多.目的:观察全膝关节置换治疗成人膝外翻畸形的手术方法和临床效果.方法:对12例15膝采用髌骨内侧入路,正确截骨,选择性的软组织松解,恢复膝关节正常的力线和软组织平衡,采用后稳定型假体进行全膝关节置换,获得膝关节的稳定,置换后采取针对性的康复训练,置换前后测量胫股角,并置换后定期随访检查膝关节活动度并进行HSS评分.结果与结论:所有患者获得随访均＞6
Joint Replacement (Finger and Wrist Joints)
... artificial joint Damage to vessels, nerves or other structures in the region of the surgery Alternatives Some alternate procedures for treating arthritis include: Joint injections Oral medications such as aspirin or anti-inflammatory medicines Hand therapy exercises and ...
Relationship between the Angle of Repose and Angle of Internal ...
Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression ... such a granular material is sharp, making a steep .... study. Therefore, grains had to be condi- tioned to the respective moisture contents by adding ...
Maximum margin Bayesian network classifiers.
Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian
2012-03-01
We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.
Maximum Entropy in Drug Discovery
Chih-Yuan Tseng
2014-07-01
Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.
Spacesuit mobility knee joints
Vykukal, H. C. (Inventor)
1979-01-01
Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.
Kinematics of Gait: New Method for Angle Estimation Based on Accelerometers
Dejan B. Popović
2011-11-01
Full Text Available A new method for estimation of angles of leg segments and joints, which uses accelerometer arrays attached to body segments, is described. An array consists of two accelerometers mounted on a rigid rod. The absolute angle of each body segment was determined by band pass filtering of the differences between signals from parallel axes from two accelerometers mounted on the same rod. Joint angles were evaluated by subtracting absolute angles of the neighboring segments. This method eliminates the need for double integration as well as the drift typical for double integration. The efficiency of the algorithm is illustrated by experimental results involving healthy subjects who walked on a treadmill at various speeds, ranging between 0.15 m/s and 2.0 m/s. The validation was performed by comparing the estimated joint angles with the joint angles measured with flexible goniometers. The discrepancies were assessed by the differences between the two sets of data (obtained to be below 6 degrees and by the Pearson correlation coefficient (greater than 0.97 for the knee angle and greater than 0.85 for the ankle angle.
Kinematics of gait: new method for angle estimation based on accelerometers.
Djurić-Jovičić, Milica D; Jovičić, Nenad S; Popović, Dejan B
2011-01-01
A new method for estimation of angles of leg segments and joints, which uses accelerometer arrays attached to body segments, is described. An array consists of two accelerometers mounted on a rigid rod. The absolute angle of each body segment was determined by band pass filtering of the differences between signals from parallel axes from two accelerometers mounted on the same rod. Joint angles were evaluated by subtracting absolute angles of the neighboring segments. This method eliminates the need for double integration as well as the drift typical for double integration. The efficiency of the algorithm is illustrated by experimental results involving healthy subjects who walked on a treadmill at various speeds, ranging between 0.15 m/s and 2.0 m/s. The validation was performed by comparing the estimated joint angles with the joint angles measured with flexible goniometers. The discrepancies were assessed by the differences between the two sets of data (obtained to be below 6 degrees) and by the Pearson correlation coefficient (greater than 0.97 for the knee angle and greater than 0.85 for the ankle angle).
Effects of Series Elasticity on the Human Knee Extension Torque-Angle Relationship in Vivo
Kubo, Keitaro; Ohgo, Kazuya; Takeishi, Ryuichi; Yoshinaga, Kazunari; Tsunoda, Naoya; Kanehisa, Hiroaki; Fukunaga, Tetsuo
2006-01-01
The purpose of this study was to investigate the effects of series elasticity on the torque-angle relationship of the knee extensors in vivo. Forty-two men volunteered to take part in the present study. The participants performed maximal voluntary isometric contractions at eight knee-joint angles (40, 50, 60, 70, 80, 90, 100, 110[degree]). The…
Variable angle correlation spectroscopy
Lee, Y K [Univ. of California, Berkeley, CA (United States)
1994-05-01
In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.
The Maximum Principle of Pontryagin in Control of Twolegged Robot Based on Human Walking System
Żur K.K.
2014-05-01
Full Text Available In the paper a hypothesis about state equations of human gait is presented. Instantaneous normalized power developed by human muscles at particular joints of a leg is a control vector in state equations of the human walking system. The maximum principle of Pontryagin in analysis of dynamic human knee joint was presented. The discrete Hamilton function of a knee joint is similar to a discrete square function of normalized power developed by muscles at the knee joint. The results satisfy optimal conditions and could be applied in control of exoskeleton and DAR type robot.
Greenslade, Thomas B., Jr.
1985-01-01
Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)
Abolishing the maximum tension principle
Dabrowski, Mariusz P
2015-01-01
We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^2/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.
Abolishing the maximum tension principle
Mariusz P. Da̧browski
2015-09-01
Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.
Alexander, Nathalie; Strutzenberger, Gerda; Ameshofer, Lisa Maria; Schwameder, Hermann
2017-08-16
Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0±4.7yrs, 1.80±0.05m, 74.5±8.2kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint's contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Angle-deviation optical profilometer
Chen-Tai Tan; Yuan-Sheng Chan; Zhen-Chin Lin; Ming-Hung Chiu
2011-01-01
@@ We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the reflectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The reflectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the reflectivity profile and obtain the 3D surface profile directly.%We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the refiectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The refiectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the refiectivity profile and obtain the 3D surface profile directly.
Influence of Reflectivity and Cloud Cover on the Optimal TiltAngle of Solar Panels
Torres, David J.; Jorge Crichigno
2015-01-01
Determining the optimum angle for a solar panel is important if tracking systems are not used and a tilt angle remains constant. This article determines the sensitivity of the optimum angle to surface reflectivity at different latitudes using a mathematical model that accounts for direct, diffuse and reflected radiation. A quadratic correlation is also developed to compute the optimal angle and maximum energy as a function of latitude and reflectivity. We also seek to determine how sensitive ...
The Maximum Patch Method for Directional Dark Matter Detection
Henderson, Shawn; Fisher, Peter
2008-01-01
Present and planned dark matter detection experiments search for WIMP-induced nuclear recoils in poorly known background conditions. In this environment, the maximum gap statistical method provides a way of setting more sensitive cross section upper limits by incorporating known signal information. We give a recipe for the numerical calculation of upper limits for planned directional dark matter detection experiments, that will measure both recoil energy and angle, based on the gaps between events in two-dimensional phase space.
Fuzzy Modelling of Knee Joint with Genetic Optimization
B. S. K. K. Ibrahim
2011-01-01
Full Text Available Modelling of joint properties of lower limbs in people with spinal cord injury is significantly challenging for researchers due to the complexity of the system. The objective of this study is to develop a knee joint model capable of relating electrical parameters to dynamic joint torque as well as knee angle for functional electrical stimulation application. The joint model consists of a segmental dynamic, time-invariant passive properties and uncertain time-variant active properties. The knee joint model structure comprising optimised equations of motion and fuzzy models to represent the passive viscoelasticity and active muscle properties is formulated. The model thus formulated is optimised using genetic optimization, and validated against experimental data. The developed model can be used for simulation of joint movements as well as for control development. The results show that the model developed gives an accurate dynamic characterisation of the knee joint.
Heterodyne Interferometer Angle Metrology
Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud
2010-01-01
A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.
Sørensen, Karsten Engsig
2001-01-01
The article analysis problems connected with corporate joint ventures. Among others the possible conflicts between the joint venture agreement and the statutes of the companies is examined, as well as certain problems connected to the fact that the joint venture partners have created commen control...... over their joint company....
Control of Angular Intervals for Angle-Multiplexed Holographic Memory
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki
2009-03-01
In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
Li, Q; Kang, Q J; Chen, Q
2014-01-01
In this paper, we aim to investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model, the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions: the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper, are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles, however, is unable to reproduce static contact angles close to 180 degrees. Meanwhile, it is found that the proposed modif...
Equilibrium contact angle or the most-stable contact angle?
Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A
2014-04-01
It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.
Kim, Eugene; Kim, Yeo Ju; Kim, Mi Young; Cho, Soon Gu [Inha University Hospital, Department of Radiology, Choong-gu, Incheon (Korea, Republic of); Cha, Jang Gyu [Soonchunhyang University Hospital, Department of Radiology, Bucheon (Korea, Republic of); Lee, Dae Hyung [Inha University Hospital, Clinical Trail Center, Incheon (Korea, Republic of); Kim, Ryuh Sup [Inha University Hospital, Department of Orthopedic Surgery, Incheon (Korea, Republic of)
2015-10-15
To evaluate kinematic changes in menisci and tibiofemoral joint spaces in extension and flexion using asymptomatic volunteers using a wide-bore 3-T closed MRI system. Twenty-two knees from asymptomatic volunteers were examined in knee extension and flexion using a 3-T MRI (sagittal 2D FSE T2-weighted sequence and sagittal 3D isotropic FSE proton density-weighted cube sequence). The meniscal positions, meniscal floating and flounce were evaluated. The widths of the medial and lateral tibiofemoral joint spaces and coronal tibiofemoral angles were measured. In the anteroposterior direction, meniscal extrusion was most frequently seen in the anterior horn of the medial menisci (100 %) in extensions (maximum 6.04 mm). Most of the menisci moved significantly to the posterior side from extension to flexion. The anteroposterior meniscal movement was the greatest for the anterior horn of the medial meniscus and least for the posterior horn of the medial meniscus. In the mediolateral direction, meniscal extrusion was seen in 52 % of the medial menisci in extensions (maximum 1.91 mm) and 29 % of lateral menisci in flexions (maximum 2.36 mm). From the extension to flexion, all medial and lateral menisci moved significantly to the lateral side. Meniscal floating was frequently observed in the posterior horn of medial menisci in extension. Meniscal flounce was frequently seen in lateral menisci in flexion with a widened lateral tibiofemoral joint space gap. The coronal tibiofemoral angle showed medial wedging in flexion, but not in extension. Wide-bore 3-T closed MRI revealed significant kinematic changes in the menisci and tibiofemoral joint spaces in asymptomatic volunteers. (orig.)
Maximum Genus of Strong Embeddings
Er-ling Wei; Yan-pei Liu; Han Ren
2003-01-01
The strong embedding conjecture states that any 2-connected graph has a strong embedding on some surface. It implies the circuit double cover conjecture: Any 2-connected graph has a circuit double cover.Conversely, it is not true. But for a 3-regular graph, the two conjectures are equivalent. In this paper, a characterization of graphs having a strong embedding with exactly 3 faces, which is the strong embedding of maximum genus, is given. In addition, some graphs with the property are provided. More generally, an upper bound of the maximum genus of strong embeddings of a graph is presented too. Lastly, it is shown that the interpolation theorem is true to planar Halin graph.
Remizov, Ivan D
2009-01-01
In this note, we represent a subdifferential of a maximum functional defined on the space of all real-valued continuous functions on a given metric compact set. For a given argument, $f$ it coincides with the set of all probability measures on the set of points maximizing $f$ on the initial compact set. This complete characterization lies in the heart of several important identities in microeconomics, such as Roy's identity, Sheppard's lemma, as well as duality theory in production and linear programming.
The Testability of Maximum Magnitude
Clements, R.; Schorlemmer, D.; Gonzalez, A.; Zoeller, G.; Schneider, M.
2012-12-01
Recent disasters caused by earthquakes of unexpectedly large magnitude (such as Tohoku) illustrate the need for reliable assessments of the seismic hazard. Estimates of the maximum possible magnitude M at a given fault or in a particular zone are essential parameters in probabilistic seismic hazard assessment (PSHA), but their accuracy remains untested. In this study, we discuss the testability of long-term and short-term M estimates and the limitations that arise from testing such rare events. Of considerable importance is whether or not those limitations imply a lack of testability of a useful maximum magnitude estimate, and whether this should have any influence on current PSHA methodology. We use a simple extreme value theory approach to derive a probability distribution for the expected maximum magnitude in a future time interval, and we perform a sensitivity analysis on this distribution to determine if there is a reasonable avenue available for testing M estimates as they are commonly reported today: devoid of an appropriate probability distribution of their own and estimated only for infinite time (or relatively large untestable periods). Our results imply that any attempt at testing such estimates is futile, and that the distribution is highly sensitive to M estimates only under certain optimal conditions that are rarely observed in practice. In the future we suggest that PSHA modelers be brutally honest about the uncertainty of M estimates, or must find a way to decrease its influence on the estimated hazard.
Alternative Multiview Maximum Entropy Discrimination.
Chao, Guoqing; Sun, Shiliang
2016-07-01
Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on maximum entropy and maximum margin principles, and can produce hard-margin support vector machines under some assumptions. Recently, the multiview version of MED multiview MED (MVMED) was proposed. In this paper, we try to explore a more natural MVMED framework by assuming two separate distributions p1( Θ1) over the first-view classifier parameter Θ1 and p2( Θ2) over the second-view classifier parameter Θ2 . We name the new MVMED framework as alternative MVMED (AMVMED), which enforces the posteriors of two view margins to be equal. The proposed AMVMED is more flexible than the existing MVMED, because compared with MVMED, which optimizes one relative entropy, AMVMED assigns one relative entropy term to each of the two views, thus incorporating a tradeoff between the two views. We give the detailed solving procedure, which can be divided into two steps. The first step is solving our optimization problem without considering the equal margin posteriors from two views, and then, in the second step, we consider the equal posteriors. Experimental results on multiple real-world data sets verify the effectiveness of the AMVMED, and comparisons with MVMED are also reported.
A Practical Joint-Space Trajectory Generation Method Based on Convolution in Real-Time Control
Gil Jin Yang
2016-03-01
Full Text Available This paper proposes a joint-space trajectory generation method for practical navigation with a high curvature path of mobile robots. A technique to generate central velocity commands using a convolution operator that considers only the physical limits of a mobile robot was discussed. In practical application, controlling the heading angles along a curved path is required and the existence of obstacles is inevitable. First, we suggested an algorithm that generates a trajectory to consider the heading angles along a smooth Bezier curve by redefinition of the curve parameter. However, the presence of an obstacle along the planned path requires redirection to a new path where geometrical limitations such as high curvature turning points exist, resulting in tracking error. We propose a method that manages a variation of linear interpolation to generate a feasible trajectory while conserving the high curvature path and the merits of convolution. Joint-space trajectories are produced by scaling down the generated central velocity through reduction of the given maximum velocity limit. We show through a simulation example that the proposed method is able to generate a trajectory that can accurately track a planned path on a designed platform based on actual parameters. Finally, an experiment is successfully conducted on a two-wheeled mobile robot, Tetra DS-III, in a real-time control system. The experiment results display distinct advantages in the criteria of time optimality and periodicity of control tasks, while conserving all possible limitations that could occur during navigation compared with previous studies.
A Practical Joint-space Trajectory Generation Method Based on Convolution in Real-time Control
Gil Jin Yang
2016-03-01
Full Text Available This paper proposes a joint-space trajectory generation method for practical navigation with a high curvature path of mobile robots. A technique to generate central velocity commands using a convolution operator that considers only the physical limits of a mobile robot was discussed. In practical application, controlling the heading angles along a curved path is required and the existence of obstacles is inevitable. First, we suggested an algorithm that generates a trajectory to consider the heading angles along a smooth Bezier curve by redefinition of the curve parameter. However, the presence of an obstacle along the planned path requires redirection to a new path where geometrical limitations such as high curvature turning points exist, resulting in tracking error. We propose a method that manages a variation of linear interpolation to generate a feasible trajectory while conserving the high curvature path and the merits of convolution. Joint-space trajectories are produced by scaling down the generated central velocity through reduction of the given maximum velocity limit. We show through a simulation example that the proposed method is able to generate a trajectory that can accurately track a planned path on a designed platform based on actual parameters. Finally, an experiment is successfully conducted on a two-wheeled mobile robot, Tetra DS-III, in a real-time control system. The experiment results display distinct advantages in the criteria of time optimality and periodicity of control tasks, while conserving all possible limitations that could occur during navigation compared with previous studies.
A comparison between joint coordinate system and attitude vector for multi-segment foot kinematics.
Rouhani, H; Favre, J; Crevoisier, X; Jolles, B M; Aminian, K
2012-07-26
The joint angles of multi-segment foot models have been primarily described using two mathematical methods: the joint coordinate system and the attitude vector. This study aimed to determine whether the angles obtained through these two descriptors are comparable, and whether these descriptors have similar sensitivity to experimental errors. Six subjects walked eight times on an instrumented walkway while the joint angles among shank, hindfoot, medial forefoot, and lateral forefoot were measured. The angles obtained using both descriptors and their sensitivity to experimental errors were compared. There was no overall significant difference between the ranges of motion obtained using both descriptors. However, median differences of more than 6° were noticed for the medial-lateral forefoot joint. For all joints and rotation planes, both descriptors provided highly similar angle patterns (median correlation coefficient: R>0.90), except for the medial-lateral forefoot angle in the transverse plane (median R=0.77). The joint coordinate system was significantly more sensitive to anatomical landmarks misplacement errors. However, the absolute differences of sensitivity were small relative to the joints ranges of motion. In conclusion, the angles obtained using these two descriptors were not identical, but were similar for at least the shank-hindfoot and hindfoot-medial forefoot joints. Therefore, the angle comparison across descriptors is possible for these two joints. Comparison should be done more carefully for the medial-lateral forefoot joint. Moreover, despite different sensitivities to experimental errors, the effects of the experimental errors on the angles were small for both descriptors suggesting that both descriptors can be considered for multi-segment foot models.
Automated measurement of diagnostic angles for hip dysplasia
de Raedt, Sepp; Mechlenburg, Inger; Stilling, Maiken; Rømer, Lone; Søballe, Kjeld; de Bruijne, Marleen
2013-03-01
A fully automatic method for measuring diagnostic angles of hip dysplasia is presented. The method consists of the automatic segmentation of CT images and detection of anatomical landmarks on the femur and acetabulum. The standard angles used in the diagnosis of hip dysplasia are subsequently automatically calculated. Previous work in automating the measuring of angles required the manual segmentation or delineation of the articular joint surface. In the current work automatic segmentation is established using graph-cuts with a cost function based on a sheetness score to detect the sheet-like structure of the bone. Anatomical landmarks are subsequently detected using heuristics based on ray-tracing and the distance to the approximated acetabulur joint surface. Standard diagnositic angles are finally calculated and presented for interpretation. Experiments using 26 patients, showed a good agreement with gold standard manual measurements by an expert radiologist as performed in daily practice. The mean difference for the five angles was between -1:1 and 2:0 degrees with a concordance correlation coefficient between 0:87 and 0:93. The standard deviation varied between 2:3 and 4:1 degrees. These values correspond to values found in evaluating interobserver and intraobserver variation for manual measurements. The method can be used in clinical practice to replace the current manual measurements performed by radiologists. In the future, the method will be integrated into an intraoperative surgical guidance system.
Analyzing the installation angle error of a SAW torque sensor
Fan, Yanping; Ji, Xiaojun; Cai, Ping
2014-09-01
When a torque is applied to a shaft, normal strain oriented at ±45° direction to the shaft axis is at its maximum, which requires two one-port SAW resonators to be bonded to the shaft at ±45° to the shaft axis. In order to make the SAW torque sensitivity high enough, the installation angle error of two SAW resonators must be confined within ±5° according to our design requirement. However, there are few studies devoted to the installation angle analysis of a SAW torque sensor presently and the angle error was usually obtained by a manual method. Hence, we propose an approximation method to analyze the angle error. First, according to the sensitive mechanism of the SAW device to torque, the SAW torque sensitivity is deduced based on the linear piezoelectric constitutive equation and the perturbation theory. Then, when a torque is applied to the tested shaft, the stress condition of two SAW resonators mounted with an angle deviating from ±45° to the shaft axis, is analyzed. The angle error is obtained by means of the torque sensitivities of two orthogonal SAW resonators. Finally, the torque measurement system is constructed and the loading and unloading experiments are performed twice. The torque sensitivities of two SAW resonators are obtained by applying average and least square method to the experimental results. Based on the derived angle error estimation function, the angle error is estimated about 3.447°, which is close to the actual angle error 2.915°. The difference between the estimated angle and the actual angle is discussed. The validity of the proposed angle error analysis method is testified to by the experimental results.
Blasques, José Pedro Albergaria Amaral; Stolpe, Mathias
2011-01-01
and cross section geometry. The resulting finite element matrices are significantly smaller than those obtained using equivalent finite element models. This modeling approach is therefore an attractive alternative in computationally intensive applications at the conceptual design stage where the focus...
Multilevel joint competing risk models
Karunarathna, G. H. S.; Sooriyarachchi, M. R.
2017-09-01
Joint modeling approaches are often encountered for different outcomes of competing risk time to event and count in many biomedical and epidemiology studies in the presence of cluster effect. Hospital length of stay (LOS) has been the widely used outcome measure in hospital utilization due to the benchmark measurement for measuring multiple terminations such as discharge, transferred, dead and patients who have not completed the event of interest at the follow up period (censored) during hospitalizations. Competing risk models provide a method of addressing such multiple destinations since classical time to event models yield biased results when there are multiple events. In this study, the concept of joint modeling has been applied to the dengue epidemiology in Sri Lanka, 2006-2008 to assess the relationship between different outcomes of LOS and platelet count of dengue patients with the district cluster effect. Two key approaches have been applied to build up the joint scenario. In the first approach, modeling each competing risk separately using the binary logistic model, treating all other events as censored under the multilevel discrete time to event model, while the platelet counts are assumed to follow a lognormal regression model. The second approach is based on the endogeneity effect in the multilevel competing risks and count model. Model parameters were estimated using maximum likelihood based on the Laplace approximation. Moreover, the study reveals that joint modeling approach yield more precise results compared to fitting two separate univariate models, in terms of AIC (Akaike Information Criterion).
Débora Scheibe
2012-06-01
Full Text Available A hanseníase é uma patologia crônica e granulomatosa, que atinge a pele e o sistema nervoso periférico pela invasão no sistema imune do Mycobacterium leprae. O objetivo deste estudo foi mensurar o ângulo articular do cotovelo com a aplicação do teste de tensão neural do nervo ulnar em pacientes com hanseníase. Na aplicação do teste de tensão neural, foram utilizadas a goniometria e a fotometria para a mensuração do ângulo articular do cotovelo, sendo que para a realização da fotometria foi utilizada uma câmera Samsung de 12.1 Mega pixels, e os dados foram analisados pelo software Corel Draw X5 (Microsoft®. Foram selecionados 44 indivíduos da Fundação Pró-Hansen, com média de idade de 48,13±12,55 anos, divididos em três grupos: G1, G2 e G3. O G1 compreende voluntários com hanseníase e sensibilidade preservada; o G2, aqueles com hanseníase e com perda de sensibilidade; e o G3, o controle. Na goniometria, foi encontrada diferença significativa (pLeprosy is a chronic and granulomatous disease, which affects skin and peripheral nervous system by invasion of Mycobacterium leprae in the immune system. The objective of this study was to evaluate the ulnar neural tension test in leprosy patients. In applying the test of neural tension, it was done goniometry and photometry to measure the angle of the elbow joint, and to perform the photometry we used a Samsung camera, 12.1 Mega pixels, and the data were analyzed using Corel Draw Software X5 (Microsoft®. We selected 44 individuals of Pro-Hansen Foundation, with an average age of 48.13±12.55 years, divided in three groups: G1, G2 and G3. G1 consisted of leprosy volunteers with preserved sensibility; the G2, the ones with leprosy and with no sensibility; and G3 was control group. In goniometry, it was found significant difference (p<0.05 when comparing the G1 and G2 with control of both the right and left limb, but no difference was found when comparing the two leprosy
Rajendrana C.
2017-01-01
Full Text Available AA2014 aluminum alloy (Al-Cu alloy has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE, analysis of variance (ANOVA, response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.
Effusion in magnetic resonance imaging of the temporomandibular joint
Nah, Kyung Soo [Pusan National University College of Medicine, Busan (Korea, Republic of)
2003-03-15
The purpose of this study was to investigate the distribution and frequency of temporomandibular joint (TMJ) effusion in magnetic resonance (MR) images of patients with disc displacements. On T2 weighted MR images of 148 TMJs taken from 74 patients presenting with TMJ pain and dysfunction, we assessed the cases showing TMJ effusion, defined as an amount of fluid that exceeded the maximum amount seen in a control group of asymptomatic volunteers. The amount of TMJ fluid was graded as: I (none or minimal), II (moderate), III (marked), and IV (extensive), according to a standard set by a reference. Disc displacement categories were also recorded. Of the 148 TMJs examined in this study, 52 joints (35.1%) presented with joint effusion, 24 (16.2%) showing bilateral joint effusion. 38 joints showed upper joint space effusion, and 3 showed lower joint space effusion, and 11 showed both upper and lower joint space effusion. 96 joints (64.9%) had grade I joint fluid, 27 (18.2%) grade II, 15 (10.1%) grade III, and 10 (6.8%) grade IV. 80.0% of the joints presenting with grade IV effusion showed disc displacement without reduction. Joint effusion was found not only in upper, but also in lower joint spaces. The higher the effusion grade, the greater the frequency of disc displacement without reduction.
Bony ankylosis of temporomandibular joint
Lee, Byeong Do; Yoon, Young Nam; Um, Ki Doo; Ra, Jong Ill; Lee, Wan [School of Dentistry, Wonkwang University, Iksan (Korea, Republic of)
2002-06-15
Ankylosis of joint is defined as limited movement due to infection, trauma, or surgical procedure. A 59-year-old female with a chief complaint of limited movements during mouth opening had a positive history of trauma to her right TMJ area about 5 years ago. From that time, progressive mouth opening limitation and intermittent pain have occurred. At the time of admission the patient showed mandibular deviation to the right side during mouth opening, with a maximum opening limited to 5 mm. On plain radiographs, right condylar enlargement and joint space reduction by newly formed bony tissues were observed. CT scans showed right condylar enlargement, cortical sclerosis, and thickening of the condyle, articular fossa and articular eminence.
Miyashita, Koji; Urabe, Yukio; Kobayashi, Hirokazu; Yokoe, Kiyoshi; Koshida, Sentaro; Kawamura, Morio; Ida, Kunio
2008-01-01
The objective of the present study was to examine whether the passive range of shoulder external rotation (ER), the maximum shoulder external rotation angle (MER) during throwing, and the ratio of MER to ER are related to the incidence of the elbow injury. A mixed design with one between-factor (a history of the elbow injury) and two within-factors (ER and MER) was used to analyze the difference between baseball players with and without a history of medial elbow pain. Twenty high school baseball players who had experienced the medial elbow pain within the previous month but who were not experiencing the pain on the day of the experiment were recruited (elbow-injured group). Another twenty baseball players who had never experienced the medial elbow pain were also used for testing (control group). MER during throwing, ER, and the ratio of MER to ER were obtained in both of the group. A Mann-Whitney test was used for the group comparison (p baseball players. Key pointsIt is accepted that the greatest elbow valgus stress appears at the position of shoulder maximum external rotation (MER) in the acceleration phase of the throwing movement. As a consequence, shoulders with restricted range of motion of external rotation (ER) compensate with a valgus stress on their elbow joints.In this study, we evaluated the relation between MER and ER of shoulder in players with/without elbow injuries.The result of this study demonstrated that the elbow injured group showed significantly greater MER/ER relation than the control group.The current finding suggests that great MER combined with the ROM restriction may be one of the risk factors to cause medial elbow pain in baseball players.
Omid Arjmandi-Tash
2012-12-01
Full Text Available Introduction: Atherosclerosis is a focal disease that susceptibly forms near bifurcations, anastomotic joints, side branches, and curved vessels along the arterial tree. In this study, pulsatile blood flow in a bifurcation model with a non-planar branch is investigated. Methods: Wall shear stress (WSS distributions along generating lines on vessels for different bifurcation angles are calculated during the pulse cycle. Results: The WSS at the outer side of the bifurcation plane vanishes especially for higher bifurcation angles but by increasing the bifurcation angle low WSS region squeezes. At the systolic phase there is a high possibility of formation of a separation region at the outer side of bifurcation plane for all the cases. WSS peaks exist on the inner side of bifurcation plane near the entry section of daughter vessels and these peaks drop as bifurcation angle is increased. Conclusion: It was found that non-planarity of the daughter vessel lowers the minimum WSS at the outer side of the bifurcation and increases the maximum WSS at the inner side. So it seems that the formation of atherosclerotic plaques at bifurcation region in direction of non-planar daughter vessel is more risky.
Cacti with maximum Kirchhoff index
Wang, Wen-Rui; Pan, Xiang-Feng
2015-01-01
The concept of resistance distance was first proposed by Klein and Randi\\'c. The Kirchhoff index $Kf(G)$ of a graph $G$ is the sum of resistance distance between all pairs of vertices in $G$. A connected graph $G$ is called a cactus if each block of $G$ is either an edge or a cycle. Let $Cat(n;t)$ be the set of connected cacti possessing $n$ vertices and $t$ cycles, where $0\\leq t \\leq \\lfloor\\frac{n-1}{2}\\rfloor$. In this paper, the maximum kirchhoff index of cacti are characterized, as well...
Generic maximum likely scale selection
Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo
2007-01-01
The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...... on second order moments of multiple measurements outputs at a fixed location. These measurements, which reflect local image structure, consist in the cases considered here of Gaussian derivatives taken at several scales and/or having different derivative orders....
Joint Iterative Carrier Synchronization and Signal Detection Employing Expectation Maximization
Zibar, Darko; de Carvalho, Luis Henrique Hecker; Estaran Tolosa, Jose Manuel
2014-01-01
In this paper, joint estimation of carrier frequency, phase, signal means and noise variance, in a maximum likelihood sense, is performed iteratively by employing expectation maximization. The parameter estimation is soft decision driven and allows joint carrier synchronization and data detection...
Joint Venture Structuring in Restricted Industries
CHRIS; DEVONSHIRE-ELLIS
2008-01-01
When investing in China’s restricted in- dustries, it is essential to have a joint venture (JV) partner. Often the maximum percent- age of equity allowed in foreign ownership can only be 50 percent. So what options are available to the foreign investor to mitigate the risk of not owning, on paper, a majority
Maximum Velocities in Flexion and Extension Actions for Sport
Jessop David M.
2016-04-01
Full Text Available Speed of movement is fundamental to the outcome of many human actions. A variety of techniques can be implemented in order to maximise movement speed depending on the goal of the movement, constraints, and the time available. Knowing maximum movement velocities is therefore useful for developing movement strategies but also as input into muscle models. The aim of this study was to determine maximum flexion and extension velocities about the major joints in upper and lower limbs. Seven university to international level male competitors performed flexion/extension at each of the major joints in the upper and lower limbs under three conditions: isolated; isolated with a countermovement; involvement of proximal segments. 500 Hz planar high speed video was used to calculate velocities. The highest angular velocities in the upper and lower limb were 50.0 rad·s-1 and 28.4 rad·s-1, at the wrist and knee, respectively. As was true for most joints, these were achieved with the involvement of proximal segments, however, ANOVA analysis showed few significant differences (p<0.05 between conditions. Different segment masses, structures and locations produced differing results, in the upper and lower limbs, highlighting the requirement of segment specific strategies for maximal movements.
Generalization of the Euler Angles
Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis
2002-01-01
It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.
Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
Lee, Jae Bong; Derome, Dominique; Guyer, Robert; Carmeliet, Jan
2016-02-09
Droplet impact has been imaged on different rigid, smooth, and rough substrates for three liquids with different viscosity and surface tension, with special attention to the lower impact velocity range. Of all studied parameters, only surface tension and viscosity, thus the liquid properties, clearly play a role in terms of the attained maximum spreading ratio of the impacting droplet. Surface roughness and type of surface (steel, aluminum, and parafilm) slightly affect the dynamic wettability and maximum spreading at low impact velocity. The dynamic contact angle at maximum spreading has been identified to properly characterize this dynamic spreading process, especially at low impact velocity where dynamic wetting plays an important role. The dynamic contact angle is found to be generally higher than the equilibrium contact angle, showing that statically wetting surfaces can become less wetting or even nonwetting under dynamic droplet impact. An improved energy balance model for maximum spreading ratio is proposed based on a correct analytical modeling of the time at maximum spreading, which determines the viscous dissipation. Experiments show that the time at maximum spreading decreases with impact velocity depending on the surface tension of the liquid, and a scaling with maximum spreading diameter and surface tension is proposed. A second improvement is based on the use of the dynamic contact angle at maximum spreading, instead of quasi-static contact angles, to describe the dynamic wetting process at low impact velocity. This improved model showed good agreement compared to experiments for the maximum spreading ratio versus impact velocity for different liquids, and a better prediction compared to other models in literature. In particular, scaling according to We(1/2) is found invalid for low velocities, since the curves bend over to higher maximum spreading ratios due to the dynamic wetting process.
Lateral collateral ligament deficiency of the elbow joint: A modeling approach.
Rahman, Munsur; Cil, Akin; Bogener, James W; Stylianou, Antonis P
2016-09-01
A computational model capable of predicting the effects of lateral collateral ligament deficiency of the elbow joint would be a valuable tool for surgical planning and prediction of the long-term consequences of ligament deficiency. The purpose of this study was to simulate lateral collateral ligament deficiency during passive flexion using a computational multibody elbow joint model and investigate the effects of ligament insufficiency on the kinematics, ligament loads, and articular contact characteristics (area, pressure). The elbow was placed initially at approximately 20° of flexion and a 345 mm vertical downward motion profile was applied over 40 s to the humerus head. The vertical displacement induced flexion from the initial position to a maximum flexion angle of 135°. The study included simulations for intact, radial collateral ligament deficient, lateral ulnar collateral ligament deficient, and combined radial and lateral ulnar collateral ligament deficient elbow. For each condition, relative bone kinematics, contact pressure, contact area, and intact ligament forces were predicted. Intact and isolated radial collateral ligament deficient elbow simulations were almost identical for all observed outcomes. Minor differences in kinematics, contact area and pressure were observed for the isolated lateral ulnar collateral ligament deficient elbow compared to the intact elbow, but no elbow dislocation was detected. However, sectioning both ligaments together induced substantial differences in kinematics, contact area, and contact pressure, and caused complete dislocation of the elbow joint. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1645-1655, 2016.
A torsional MRE joint for a C-shaped robotic leg
Christie, M. D.; Sun, S. S.; Ning, D. H.; Du, H.; Zhang, S. W.; Li, W. H.
2017-01-01
Serving to improve stability and energy efficiency during locomotion, in nature, animals modulate their leg stiffness to adapt to their terrain. Now incorporated into many locomotive robot designs, such compliance control can enable disturbance rejection and improved transition between changing ground conditions. This paper presents a novel design of a variable stiffness leg utilizing a magnetorheological elastomer joint in a literal rolling spring loaded inverted pendulum (R-SLIP) morphology. Through the semi-active control of this hybrid permanent-magnet and coil design, variable stiffness is realized, offering a design which is capable of both softening and stiffening in an adaptive sort of way, with a maximum stiffness change of 48.0%. Experimental characterization first serves to assess the stiffness variation capacity of the torsional joint, and through later comparison with force testing of the leg, the linear stiffness is characterized with the R-SLIP-like behavior of the leg being demonstrated. Through the force relationships applied, a generalized relationship for determining linear stiffness based on joint rotation angle is also proposed, further aiding experimental validation.
Low-level finite state control of knee joint in paraplegic standing.
Mulder, A J; Veltink, P H; Boom, H B; Zilvold, G
1992-01-01
Low-level finite state (locked-unlocked) control is compared with open-loop stimulation of the knee extensor muscles in functional electrical stimulation (FES) induced paraplegic standing. The parameters were: duration of standing, relative torque loss in knee extensor muscles, knee angle stability, average stimulus output and average arm effort during standing. To investigate the impact of external mechanical conditions on controller performance, experiments were performed both under the condition of a freely moving ankle joint and of a mechanically stabilized ankle joint. Finite state control resulted in a 2.5 to 12 times increase of standing duration or in a 1.5 to 5 times decrease of relative torque loss in comparison with open-loop stimulation. Finite state control induced a limit cycle oscillation in the knee joint. Average maximum knee flexion was 6.2 degrees without ankle bracing, and half that value with ankle bracing. Average arm support was 13.9 and 7.5% of the body weight without and with ankle bracing respectively.
Sound side joint contact forces in below knee amputee gait with an ESAR prosthetic foot.
Karimi, Mohammad Taghi; Salami, Firooz; Esrafilian, Amir; Heitzmann, Daniel W W; Alimusaj, Merkur; Putz, Cornelia; Wolf, Sebastian I
2017-08-08
The incidence of knee and hip joint osteoarthritis in subjects with below knee amputation (BK) appears significantly higher compared to unimpaired subjects, especially in the intact side. However, it is controversial if constant higher loads on the sound side are one of the major factors for an increased osteoarthritis (OA) incidence in subjects with BK, beside other risk factors, e.g. with respect to metabolism. The aim wasto investigate joint contact forces (JCF) calculated by a musculoskeletal model in the intact side and to compare it with those of unimpaired subjects and to further elucidate in how far increased knee JCF are associated with increased frontal plane knee moments. A group of seven subjects with BK amputation and a group of ten unimpaired subjects were recruited for this study. Gait data were measured by 3D motion capture and force plates. OpenSim software was applied to calculate JCF. Maximum joint angles, ground reaction forces, and moments as well as time distance parameters were determined and compared between groups showing no significant differences, with some JCF components of knee and hip even being slightly smaller in subjects with BK compared to the reference group. This positive finding may be due to the selected ESAR foot. However, other beneficial factors may also have influenced this positive result such as the general good health status of the subjects or the thorough and proper fitting and alignment of the prosthesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Economics and Maximum Entropy Production
Lorenz, R. D.
2003-04-01
Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.
Small angle neutron scattering
Cousin Fabrice
2015-01-01
Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of
Position sense and reaction angle after eccentric exercise: the repeated bout effect.
Paschalis, V; Nikolaidis, M G; Giakas, G; Jamurtas, A Z; Owolabi, E O; Koutedakis, Y
2008-05-01
The purpose of the present investigation was to examine the effects of a repeated eccentric exercise on position sense and muscle reaction angle. Fourteen healthy women underwent an isokinetic exercise session on their knee flexors, which was repeated after 4 weeks. Muscle damage indices, position sense and joint reaction angle of the knee were examined before, immediately after, as well as at 1, 2, 3, 4 and 7 days after exercise. The second exercise bout induced significantly lesser effects in all muscle damage indices as well as lesser disturbances in position sense and reaction angle when compared to the first one. The main finding of this study is that position sense and joint reaction angle to release of the lower limbs may adapt in response to a repeated bout of eccentric exercise, leading to less disturbances in position sense and reaction angle after the second bout of exercise.
QUEST: wide angle Cherenkov light measurements at EAS-TOP
EAS-Top Collaboration; Korosteleva, E. E.; Kuzmichev, L. A.; Prosin, V. V.; Lubsandorzhiev, B. K.
Wide angle Cherenkov light detectors based upon the QUASAR-370 photo-multipliers have been installed on five Cherenkov telescopes of the EAS-TOP array to study the energy spectrum and composition of primary cosmic rays around the knee . The energy threshold of quasars array was close to that of EAS-TOP electromagnetic detectors array. The first results of joint analysis of Cherenkov and electromagnetic data together with the adequate CORSIKA simulation results are discussed.
On the problems of describing joint axis alignment.
Ball, Kevin A; Greiner, Thomas M
2008-01-01
Each three-dimensional joint possesses at least one potentially oblique axis of rotation. Several systems are used to express joint axis alignment. One system, designated the plane projection (PP) method, describes angles based on orthogonal projections onto two, of the three, anatomical planes. Alternatively, a joint axis may be described in two different ways using two sequential Cardan angle rotations. These expression systems all lay claim to similar descriptive labels, such as deviation and elevation. Difficulties arise as researchers use these various methods to compare their own data to the results of others. A joint axis alignment, described as 27 degrees deviation and 41 degrees elevation in PP, differs by as much as 6 degrees when expressed as Cardan angles. Differences among expression systems increase as the joint axis alignment becomes more oblique -- eventually differing by as much as 75 degrees . This paper explores implications for this lack of congruence among the joint axis expression systems. Effective steps in dealing with these issues begin with recognizing the existence and extent of the problem. The paper provides a common set of algorithms to illustrate and alleviate the possible problems associated with the exchange of joint axis alignment data.
Modeling of Human Joint Structures.
1982-09-01
Radial Lateral " epicondyle Olecranon Radius Ulna Figure 3. Lateral aspect of the right elbow joint. -17- Annular Ligament This strong band encircles... elbow joint, knee joint, human joints, shoulder joint, ankle joint, joint models, hip joint, ligaments. 20. ABSTRACT (Continue on reverse side If...ligaments. -A rather extended discussion of the articulations and anatomical descriptions of the elbow , shoulder, hip, knee and ankle joints are
Teruyama, Yuta; Watanabe, Takashi
2013-01-01
In this study, development of wearable motion measurement system using inertial sensors has been focused with the aim of rehabilitation support. For measurement of lower limb joint angles with inertial sensors, Kalman-filtering-based angle measurement method was developed. However, it was required to reduce variation of measurement errors that depended on movement speeds or subjects. In this report, variable-gain Kalman filter based on the difference between the estimated angle by the Kalman filter and the angle calculated from acceleration signals was tested. From angle measurement during treadmill walking with healthy subjects, it was shown that measurement accuracy of the foot inclination angle was significantly improved with the proposed method compared to the method of fixed parameter value.
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
Li, Qing; Luo, K. H.; Kang, Q. J.; Chen, Q.
2014-11-01
In this paper we investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio ρL/ρV=500 . The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994), 10.1103/PhysRevE.49.2941] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions, the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles θ static contact angles close to 180∘. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles θ >90∘ as compared with the two other types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.
Effect of adhesive thickness on adhesively bonded T-joint
Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul
2013-12-01
The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.
Maximum mutual information regularized classification
Wang, Jim Jing-Yan
2014-09-07
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
The strong maximum principle revisited
Pucci, Patrizia; Serrin, James
In this paper we first present the classical maximum principle due to E. Hopf, together with an extended commentary and discussion of Hopf's paper. We emphasize the comparison technique invented by Hopf to prove this principle, which has since become a main mathematical tool for the study of second order elliptic partial differential equations and has generated an enormous number of important applications. While Hopf's principle is generally understood to apply to linear equations, it is in fact also crucial in nonlinear theories, such as those under consideration here. In particular, we shall treat and discuss recent generalizations of the strong maximum principle, and also the compact support principle, for the case of singular quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear operators and the nonlinearities involved. Our principal interest is in necessary and sufficient conditions for the validity of both principles; in exposing and simplifying earlier proofs of corresponding results; and in extending the conclusions to wider classes of singular operators than previously considered. The results have unexpected ramifications for other problems, as will develop from the exposition, e.g. two point boundary value problems for singular quasilinear ordinary differential equations (Sections 3 and 4); the exterior Dirichlet boundary value problem (Section 5); the existence of dead cores and compact support solutions, i.e. dead cores at infinity (Section 7); Euler-Lagrange inequalities on a Riemannian manifold (Section 9); comparison and uniqueness theorems for solutions of singular quasilinear differential inequalities (Section 10). The case of p-regular elliptic inequalities is briefly considered in Section 11.
Determination of basic friction angle using various laboratory tests.
Jang, Bo-An
2016-04-01
The basic friction angle of rock is an important factor of joint shear strength and is included within most shear strength criteria. It can be measured by direct shear test, triaxial compression test and tilt test. Tilt test is mostly used because it is the simplest method. However, basic friction angles measured using tilt test for same rock type or for one sample are widely distributed and often do not show normal distribution. In this research, the basic friction angles for the Hangdeung granite form Korea and Berea sandstone from USA are measured accurately using direct shear test and triaxial compression test. Then basic friction angles are again measured using tilt tests with various conditions and are compared with those measured using direct shear test and triaxial compression test to determine the optimum condition of tilt test. Three types of sliding planes, such as planes cut by saw and planes polished by #100 and #600 grinding powders, are prepared. When planes are polished by #100 grinding powder, the basic friction angles measured using direct shear test and triaxial compression test are very consistent and show narrow ranges. However, basic friction angles show wide ranges when planes are cut by saw and are polished by #600 grinding powder. The basic friction angle measured using tilt test are very close to those measured using direct shear test and triaxial compression test when plane is polished by #100 grinding powder. When planes are cut by saw and are polished by #600 grinding powder, basic friction angles measured using tilt test are slightly different. This indicates that tilt test with plane polished by #100 grinding powder can yield an accurate basic friction angle. In addition, the accurate values are obtained not only when planes are polished again after 10 times of tilt test, but values are averaged by more 30 times of tests.
Landes, Constantin A; Sader, Robert
2007-12-01
To assess the normal ranges of condylar translation and width of the lateral temporomandibular joint (TMJ) of a healthy population by sonography and permit comparison of findings made in individual patients using this norm. Fifty non-orthodontically treated, asymptomatic volunteers (100 joints) were subdivided by Angle classes (I = 20, II = 15, III = 15) and evaluated. Reliability was assessed in 15 of those volunteers. The validity was checked in 8 more patients with temporomandibular dysfunction (TMD), all class II with disc dislocation diagnosed by means of MRI. Sonographic assessment of condylar translation from centric occlusion to maximum opening and during protrusion and mediotrusion was performed with a probe positioned parallel to the zygomatic arch. Translation during opening was 12.7+/-3.2 mm in class I, 12.9+/-3.3 mm in class II and 10.9+/-3.6 mm in class III. Protrusive translation was 7.4+/-2.5 mm/10.3+/-4.4 mm/6.8+/-2.1mm, respectively; and mediotrusive translation was 7.9+/-2.6 mm/10.8+/-3.4 mm/6.7+/-2.4 mm, respectively. Class II had longer and class III shorter condylar translations. The lateral joint space in occlusion and protrusion was wider in class II than in classes I and III. Symptomatic patients had shorter condylar translations than asymptomatic volunteers. Patients with class II had a more anteroposterior mobility, class III shorter translation. Significant sonographic differences of condylar translation from the norm did not correspond with clinical findings. This demonstrates the higher sensitivity of sonography for the evaluation of individual condylar translation. It is a sensitive tool for assessing joint function.
... Find a Hand Surgeon Home Anatomy MP Joint Arthritis Email to a friend * required fields From * To * ... important for both pinching and gripping. MP joint arthritis is most common in the thumb and index ...
Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...
Sacroiliac joint pain - aftercare
... this page: //medlineplus.gov/ency/patientinstructions/000610.htm Sacroiliac joint pain - aftercare To use the sharing features on this page, please enable JavaScript. The sacroiliac joint (SIJ) is a term used to describe the ...
Knee joint replacement - slideshow
... this page: //medlineplus.gov/ency/presentations/100088.htm Knee joint replacement - series—Normal anatomy To use the ... to slide 4 out of 4 Overview The knee is a complex joint. It contains the distal ...
KYUNG-MIN LEE
2016-08-01
Full Text Available Fatigue strength of cross-shaped specimens of SPR joints made of SPCC was evaluated at load angles of 0°, 45°, and 90°. For the static strength at load angles of 0°, 45°, and 90°, the maximum loads were determined to be 4890N, 1969N, and 1611N, respectively. Regarding for the relationship between the load amplitude and the number of cycles (Nf, the results were Pamp = 2209.3N−f 0.014 , = 8610.8 −0.199 Pamp N f , and = 3459.3 −0.149 Pamp N f for the load angle of 0°, 45°, and 90°, respectively. On the basis of the lifetime of 106 cycles, the load amplitudes which correspond to the fatigue limit for load angles of 0°, 45°, and 90° were 38%, 28%, and 29% of the static strength, respectively. The effective stress intensity factor was not found to be appropriate in the evaluation of the fatigue lifetime due to the different fatigue fracture behavior of these specimens.
Study of non-consecutive jointed rock mass under uniaxial compression%非贯通节理岩体单轴压缩试验研究
王乐华; 柏俊磊; 李建林; 汤开宇; 邓华锋; 孙旭曙
2014-01-01
A series of uniaxial compression test were conducted for the prefabricated joints cylindrical rock specimens with different joint angles and joint connectivity rates. The results show that the strength of the specimen, the deformation characteristics and failure modes are closely related to the forms of the joint structure. With different joint connectivity rate, the mechanical properties of the non-interpenetrated speci⁃mens at different angles are all shown the anisotropic features, which become more obvious along with the increase of jointed connectivity rate, and meanwhile, the peak strength of the rock mass decreases gradual⁃ly and so as the maximum elastic modulus of it in the elastic stage. Accordingly, the failure modes of the specimens has become more complex, with increasing of jointed connectivity rate, the slope of stress-strain curves decreases, appearing multiple peaks and obvious yield platform. The non-linear variation of peak strength of non-interpenetrated jointed rock mass and elastic modulus with the joint connectivity rate can be expressed by quadratic and cubic polynomial functions respectively, determining coefficients associated with the joint angles. The crack change features of the non-interpenetrated jointed specimens have a close relationship with joint connectivity rate and joint angles.%对不同节理倾角、不同节理连通率的预制节理圆柱形岩体试样进行单轴压缩试验。结果表明：试样的强度、变形特性及破坏模式与节理构造形态密切相关；在不同节理连通率下，不同角度的非贯通节理试样的力学特性均表现出各向异性特征，随着节理连通率的增大，各向异性特征越来越明显，岩体峰值强度逐渐下降，岩体在弹性阶段的最大弹性模量也逐渐降低；相应地，试件的破坏模式也变得更加复杂，随着节理连通率的增大，应力-应变曲线的斜率逐渐减小，曲线出现多个峰值，且有较明显
C Sharada Prabhakar
2017-03-01
Full Text Available Longitudinal tensile load exerted due to internal hydraulic pressure, on bolted radial joints between large size PAN carbon epoxy filament wound composite cylindrical section and small size 15CDV6 steel cylindrical sections, were simulated and tested on flat laminate level, mainly to check the strength of PAN carbon epoxy helical wound laminate made by wet winding method. Small segmental portion of circumference of cylindrical sections was considered as width of composite laminate and of metallic plates, necessary to accommodate 5 rows of fasteners in transverse direction with specified pitch distance. Bolted radial joints between carbon epoxy helical wound flat laminate and 15CDV6 steel plates were realized with 8 numbers of steel fasteners distributed in 3 longitudinal and 5 transverse rows at each joint. Helical angle of winding, length and thickness of carbon epoxy laminate was ±22.5°, 458mm and 11mm respectively. Length and structural thickness of radial joints, total length and width of assembly test specimen were 98mm, 18mm, 870mm and 169.43mm respectively. Joints were tested under uni-axial tensile load up to failure. Joints failed at 18 tonnes (1.7 times of design load. Failure mode was observed as initiation of bearing failure at all 8, countersink fastener holes in laminate and shear out failure at edge hole. Strains in fibre direction, at 45°and at transverse to fibre direction were found very less. Maximum compressive strain and residual strain, near fastener holes were found as -1423 and -136 micro strain respectively. Test was successful
Managing Joint Production Motivation
Lindenberg, Siegwart; Foss, Nicolai Juul
2011-01-01
We contribute to the microfoundations of organizational performance by proffering the construct of joint production motivation. Under such motivational conditions individuals see themselves as part of a joint endeavor, each with his or her own roles and responsibilities; generate shared represent...... representations of actions and tasks; cognitively coordinate cooperation; and choose their own behaviors in terms of joint goals. Using goal-framing theory, we explain how motivation for joint production can be managed by cognitive/symbolic management and organizational design....
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
of the test is partly to obtain empirical data for the ultimate load-carrying capacity of tubular T-joints and partly to obtain some experience in performing tests with tubular joints. It is well known that tubular joints are usually designed in offshore engineering on the basis of empirical formulas obtained...
Determining surface wave arrival angle anomalies
Larson, Erik W. F.; Ekström, Göran
2002-06-01
A new method for measuring arrival angles of teleseismic Love and Rayleigh waves is developed. The new method utilizes estimates of surface wave dispersion to create a phase-matched filter to isolate the Love or Rayleigh wave in three-component recordings. The polarization of the filtered wave group is determined in the time domain by application of a variation of the complex polarization method of Vidale [1986]. Orientation, linearity, and ellipticity of particle motion are estimated in several frequency bands to determine the frequency-dependent polarization. The method employs an iterative scheme, by which a predicted Love wave, based on the estimated dispersion and polarization, is subtracted from the three-component data prior to the estimation of Rayleigh wave polarization, and vice versa. The method is applied to an extensive set of Global Seismographic Network data covering the years 1989-1998. Between 4244 and 15,075 measurements are collected for fundamental mode Love and Rayleigh waves at nine different periods (37 to 150 s). Measurement uncertainties are estimated using the statistics of observations for pairwise similar paths and are generally of the order of 15-50% of the total signal, depending on the period and the wave type. Large and azimuthally invariant angle anomalies are documented for several stations and are consistent with misorientation of the horizontal seismometers. Two schemes are employed to determine the misorientations: (1) an azimuthally weighted average at each station, and (2) a joint inversion for seismometer misorientation and globally heterogeneous phase velocities. The determined corrections are robust and correlate well with those reported in earlier studies. Azimuthally varying arrival angle anomalies are shown to agree qualitatively with predictions of wave refraction calculated for recent phase velocity maps, which explain up to 30% of the variance in the new measurements.
Sun Wook Park
2017-01-01
Full Text Available This study aimed to investigate the effects of exercise-induced muscle fatigue in the unaffected knee joint on postural control and kinematic changes in stroke patients. Forty participants (20 stroke patients, 20 age-matched healthy participants were recruited. To induce fatigue, maximum voluntary isometric contractions were performed in the unaffected knee joint in a Leg Extension Rehab exercise machine using the pneumatic resistance. We measured static and dynamic balance and lower-limb kinematics during gait. Changes in postural control parameters anteroposterior sway speed and total center of pressure distance differed significantly between the stroke and control groups. In addition, changes in gait kinematic parameters knee and ankle angles of initial contact differed significantly between stroke (paretic and non-paretic and control groups. Muscle fatigue in the unaffected knee and ankle impaired postural control and debilitates kinematic movement of ipsilateral and contralateral lower limbs, and may place the fatigued stroke patients at greater risk for falls.
Characteristics of Rotary Electromagnet with Large Tooth-pitch Angle
Ruan Jian
2012-10-01
Full Text Available Since the conventional electro-mechanical converter of 2D valve had problems of step lose due to its small tooth-pitch angle, a novel rotary electromagnet with large tooth-pitch angle and coreless rotor structure was proposed. Combined with the approaches of magnetic circuit analysis, finite element simulation and experimental study, the static and dynamic characteristics of electromagnet including torque-angle characteristics, frequency response and step response were studied. The experimental results are in a close agreement with the simulated results. The electromagnet has sinusoidal torque-angle characteristics and good dynamic response. The maximum static torque is approximately 0.083N.M, and its frequency width is about 125Hz/-3dB, 130Hz/-90°, respectively, and the rise time is about 5.5 ms. It is appropriate to be used as the electro-mechanical converter of 2D proportional valve.
Laser transillumination imaging for determining wood defects and grain angle
Nieminen, Sari; Heikkinen, Jorma; Räty, Jukka
2013-12-01
Wood defects and grain angle correlate strongly with timber strength and grading. In this study a laser transillumination imaging method was developed to determine wood defects and grain angle. The method uses a near infrared laser light source which illuminates a wood sample with a round beam and the image generated by the light transmitted through the sample is captured for further analysis. In basic and flawless wood, the transmitted light pattern is an ellipse and wood defects and grain angle deviation will change the shape, size and location of the ellipse. The method could be used for determining the strength of wood, grading sawn timber, studying finger and glue joints, estimating moisture and differentiating between heartwood and sapwood.
Automated measurement of diagnostic angles for hip dysplasia
de Raedt, Sepp; Mechlenburg, I.; Stilling, M.
2013-01-01
A fully automatic method for measuring diagnostic angles of hip dysplasia is presented. The method consists of the automatic segmentation of CT images and detection of anatomical landmarks on the femur and acetabulum. The standard angles used in the diagnosis of hip dysplasia are subsequently....... These values correspond to values found in evaluating interobserver and intraobserver variation for manual measurements. The method can be used in clinical practice to replace the current manual measurements performed by radiologists. In the future, the method will be integrated into an intraoperative surgical...... automatically calculated. Previous work in automating the measuring of angles required the manual segmentation or delineation of the articular joint surface. In the current work automatic segmentation is established using graph-cuts with a cost function based on a sheetness score to detect the sheet...
Influence of Reflectivity and Cloud Cover on the Optimal TiltAngle of Solar Panels
David J. Torres
2015-09-01
Full Text Available Determining the optimum angle for a solar panel is important if tracking systems are not used and a tilt angle remains constant. This article determines the sensitivity of the optimum angle to surface reflectivity at different latitudes using a mathematical model that accounts for direct, diffuse and reflected radiation. A quadratic correlation is also developed to compute the optimal angle and maximum energy as a function of latitude and reflectivity. We also seek to determine how sensitive the optimal tilt angle is to cloud cover using the 35° latitude of the Prosperity solar facility in Albuquerque, NM.
Experimental strain measurements on large diameter mitered pipe joints
Feier, Ioan I.; Leis, Brian N.; Zhu, Xian-Kui [Battelle Memorial Institute, Columbus, OH (United States); Stonesifer, Randall B. [Computational Mechanics Inc., Julian, PA (United States); Stavrakas, John S. [National Grid, Waltham, MA (United States); Eletto, Daniel D. [National Grid, Hicksville, NY (United States)
2010-07-01
Nowadays, small directional changes in a piping system are achieved by using cold field bent sections however, in the past, miter joints were used and so some pipelines still have such joints. The aim of this study was to determine the stress amplification due to miters in gas transmission pipelines. Experiments were carried out on X42 pipeline steel miter joints, 3 were taken from the Clove Lakes segment of the National grid system and 3 were manufactured for the test, all miter angles were between 0 and 8 degrees of total pipeline direction change; strain gauges were used to measure hoop and axial strains. Results showed that the stress increase due to miter joints increases linearly with the miter angle; in addition it was found that miters on the studied pipeline did not compromise its integrity. This study provided a good understanding of miter induced stress but results are limited to pipe with r/t values of 30.
In Vivo Measurement of Glenohumeral Joint Contact Patterns
Bey, Michael J.; Kline, Stephanie K.; Zauel, Roger; Kolowich, Patricia A.; Lock, Terrence R.
2009-12-01
The objectives of this study were to describe a technique for measuring in-vivo glenohumeral joint contact patterns during dynamic activities and to demonstrate application of this technique. The experimental technique calculated joint contact patterns by combining CT-based 3D bone models with joint motion data that were accurately measured from biplane x-ray images. Joint contact patterns were calculated for the repaired and contralateral shoulders of 20 patients who had undergone rotator cuff repair. Significant differences in joint contact patterns were detected due to abduction angle and shoulder condition (i.e., repaired versus contralateral). Abduction angle had a significant effect on the superior/inferior contact center position, with the average joint contact center of the repaired shoulder 12.1% higher on the glenoid than the contralateral shoulder. This technique provides clinically relevant information by calculating in-vivo joint contact patterns during dynamic conditions and overcomes many limitations associated with conventional techniques for quantifying joint mechanics.
In Vivo Measurement of Glenohumeral Joint Contact Patterns
Bey MichaelJ
2010-01-01
Full Text Available The objectives of this study were to describe a technique for measuring in-vivo glenohumeral joint contact patterns during dynamic activities and to demonstrate application of this technique. The experimental technique calculated joint contact patterns by combining CT-based 3D bone models with joint motion data that were accurately measured from biplane x-ray images. Joint contact patterns were calculated for the repaired and contralateral shoulders of 20 patients who had undergone rotator cuff repair. Significant differences in joint contact patterns were detected due to abduction angle and shoulder condition (i.e., repaired versus contralateral. Abduction angle had a significant effect on the superior/inferior contact center position, with the average joint contact center of the repaired shoulder 12.1% higher on the glenoid than the contralateral shoulder. This technique provides clinically relevant information by calculating in-vivo joint contact patterns during dynamic conditions and overcomes many limitations associated with conventional techniques for quantifying joint mechanics.
Maximum entropy production in daisyworld
Maunu, Haley A.; Knuth, Kevin H.
2012-05-01
Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.
Maximum stellar iron core mass
F W Giacobbe
2003-03-01
An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is signiﬁcantly different from a more typical Chandrasekhar mass limit approach. This technique produced a maximum stellar iron core mass value of 2.69 × 1030 kg (1.35 solar masses). This mass value is very near to the typical mass values found for neutron stars in a recent survey of actual neutron star masses. Although slightly lower and higher neutron star masses may also be found, lower mass neutron stars are believed to be formed as a result of enhanced iron core compression due to the weight of non-ferrous matter overlying the iron cores within large stars. And, higher mass neutron stars are likely to be formed as a result of fallback or accretion of additional matter after an initial collapse event involving an iron core having a mass no greater than 2.69 × 1030 kg.
Maximum Matchings via Glauber Dynamics
Jindal, Anant; Pal, Manjish
2011-01-01
In this paper we study the classic problem of computing a maximum cardinality matching in general graphs $G = (V, E)$. The best known algorithm for this problem till date runs in $O(m \\sqrt{n})$ time due to Micali and Vazirani \\cite{MV80}. Even for general bipartite graphs this is the best known running time (the algorithm of Karp and Hopcroft \\cite{HK73} also achieves this bound). For regular bipartite graphs one can achieve an $O(m)$ time algorithm which, following a series of papers, has been recently improved to $O(n \\log n)$ by Goel, Kapralov and Khanna (STOC 2010) \\cite{GKK10}. In this paper we present a randomized algorithm based on the Markov Chain Monte Carlo paradigm which runs in $O(m \\log^2 n)$ time, thereby obtaining a significant improvement over \\cite{MV80}. We use a Markov chain similar to the \\emph{hard-core model} for Glauber Dynamics with \\emph{fugacity} parameter $\\lambda$, which is used to sample independent sets in a graph from the Gibbs Distribution \\cite{V99}, to design a faster algori...
Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
Zhang, Guoan; Liu, Gangfeng; Ma, Sun; Wang, Tianshuo; Zhao, Jie; Zhu, Yanhe
2017-07-20
In this paper, an obstacle-surmounting-enabled lower limb exoskeleton with novel linkage joints that perfectly mimicked human motions was proposed. Currently, most lower exoskeletons that use linear actuators have a direct connection between the wearer and the controlled part. Compared to the existing joints, the novel linkage joint not only fitted better into compact chasis, but also provided greater torque when the joint was at a large bend angle. As a result, it extended the angle range of joint peak torque output. With any given power, torque was prioritized over rotational speed, because instead of rotational speed, sufficiency of torque is the premise for most joint actions. With insufficient torque, the exoskeleton will be a burden instead of enhancement to its wearer. With optimized distribution of torque among the joints, the novel linkage method may contribute to easier exoskeleton movements.
Effects of flexibility on aerodynamic performance of delta wings with different sweep angles
无
2010-01-01
Force measurement and surface oil flow visualization experiments were conducted in a wind tunnel to investigate the effects of flexibility on aerodynamic performance of delta wings with different sweep angles.The experimental results indicate that the maximum lift coefficient is increased and the stall angle is delayed as the sweep angle increases for both rigid and flexible wings.It is also found that the maximum lift coefficients of the flexible wings with a sweep angle from 35° to 50° are higher than those of the rigid ones.The increment of the maximum lift coefficient in particular achieves 32.9% compared with the case without lift enhancement for the 40° flexible delta wing.Moreover,the surface oil flow visualization experiments show that the stall of the flexible wing of the moderate low sweep angle is accompanied by helical flow structure,while the vortex bursting appears on the corresponding rigid wing.
2011-01-10
...: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure Using Record Evidence, and... facilities of their responsibilities, under Federal integrity management (IM) regulations, to perform... system, especially when calculating Maximum Allowable Operating Pressure (MAOP) or Maximum Operating...
Hysteresis during contact angles measurement.
Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D
2010-03-15
A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.
Richard Green
2006-12-01
Full Text Available Studies to optimise take off angles for height or distance have usually involved either a time-consuming invasive approach of placing markers on the body in a laboratory setting or using even less efficient manual frame-by-frame joint angle calculations with one of the many sport science video analysis software tools available. This research introduces a computer-vision based, marker-free, real-time biomechanical analysis approach to optimise take-off angles based on speed, base of support and dynamically calculated joint angles and mass of body segments. The goal of a jump is usually for height, distance or rotation with consequent dependencies on speed and phase of joint angles, centre of mass COM and base of support. First and second derivatives of joint angles and body part COMs are derived from a Continuous Human Movement Recognition (CHMR system for kinematical and what-if calculations. Motion is automatically segmented using hierarchical Hidden Markov Models and 3D tracking is further stabilized by estimating the joint angles for the next frame using a forward smoothing Particle filter. The results from a study of jumps, leaps and summersaults supporting regular knowledge of results feedback during training sessions indicate that this approach is useful for optimising the height, distance or rotation of skills
The Sherpa Maximum Likelihood Estimator
Nguyen, D.; Doe, S.; Evans, I.; Hain, R.; Primini, F.
2011-07-01
A primary goal for the second release of the Chandra Source Catalog (CSC) is to include X-ray sources with as few as 5 photon counts detected in stacked observations of the same field, while maintaining acceptable detection efficiency and false source rates. Aggressive source detection methods will result in detection of many false positive source candidates. Candidate detections will then be sent to a new tool, the Maximum Likelihood Estimator (MLE), to evaluate the likelihood that a detection is a real source. MLE uses the Sherpa modeling and fitting engine to fit a model of a background and source to multiple overlapping candidate source regions. A background model is calculated by simultaneously fitting the observed photon flux in multiple background regions. This model is used to determine the quality of the fit statistic for a background-only hypothesis in the potential source region. The statistic for a background-plus-source hypothesis is calculated by adding a Gaussian source model convolved with the appropriate Chandra point spread function (PSF) and simultaneously fitting the observed photon flux in each observation in the stack. Since a candidate source may be located anywhere in the field of view of each stacked observation, a different PSF must be used for each observation because of the strong spatial dependence of the Chandra PSF. The likelihood of a valid source being detected is a function of the two statistics (for background alone, and for background-plus-source). The MLE tool is an extensible Python module with potential for use by the general Chandra user.
Vestige: Maximum likelihood phylogenetic footprinting
Maxwell Peter
2005-05-01
Full Text Available Abstract Background Phylogenetic footprinting is the identification of functional regions of DNA by their evolutionary conservation. This is achieved by comparing orthologous regions from multiple species and identifying the DNA regions that have diverged less than neutral DNA. Vestige is a phylogenetic footprinting package built on the PyEvolve toolkit that uses probabilistic molecular evolutionary modelling to represent aspects of sequence evolution, including the conventional divergence measure employed by other footprinting approaches. In addition to measuring the divergence, Vestige allows the expansion of the definition of a phylogenetic footprint to include variation in the distribution of any molecular evolutionary processes. This is achieved by displaying the distribution of model parameters that represent partitions of molecular evolutionary substitutions. Examination of the spatial incidence of these effects across regions of the genome can identify DNA segments that differ in the nature of the evolutionary process. Results Vestige was applied to a reference dataset of the SCL locus from four species and provided clear identification of the known conserved regions in this dataset. To demonstrate the flexibility to use diverse models of molecular evolution and dissect the nature of the evolutionary process Vestige was used to footprint the Ka/Ks ratio in primate BRCA1 with a codon model of evolution. Two regions of putative adaptive evolution were identified illustrating the ability of Vestige to represent the spatial distribution of distinct molecular evolutionary processes. Conclusion Vestige provides a flexible, open platform for phylogenetic footprinting. Underpinned by the PyEvolve toolkit, Vestige provides a framework for visualising the signatures of evolutionary processes across the genome of numerous organisms simultaneously. By exploiting the maximum-likelihood statistical framework, the complex interplay between mutational
N. Nasseri; M.R. Hadian; H. Bagheri; S. Talebian G. Olyaei
2007-01-01
Measurement of the joint angles is used to assess the joint position sense (JPS). The aim of this study was to introduce a simple, fast, less expensive and objective method of measurement for JPS. In the current research, the accuracy and reliability of a system, consist of digital photography, nonreflective markers and manual analysis were evaluated. For this purpose, digital photos were taken from 72 angles of the knee positions of twenty four healthy subjects. The angles were measured by u...
Comparison of different passive knee extension torque-angle assessments.
Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro
2013-11-01
Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m(-2); tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome.
Sadjadi, Firooz A; Mahalanobis, Abhijit
2006-05-01
We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.
Glaister, P.
1997-09-01
Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).
Sayem, Ayed Al; Mahdy, Mahdy Rahman Chowdhury; Rahman, Md. Saifur
2015-01-01
In this article, it has been theoretically shown that broad angle negative refraction is possible with asymmetric anisotropic metamaterials constructed by only dielectrics or loss less semiconductors at the telecommunication and relative wavelength range. Though natural uniaxial materials can exhibit negative refraction, the maximum angle of negative refraction and critical incident angle lie in a very narrow range. This notable problem can be overcome by our proposed structure. In our struct...
Oriented angles in affine space
Włodzimierz Waliszewski
2004-05-01
Full Text Available The concept of a smooth oriented angle in an arbitrary affine space is introduced. This concept is based on a kinematics concept of a run. Also, a concept of an oriented angle in such a space is considered. Next, it is shown that the adequacy of these concepts holds if and only if the affine space, in question, is of dimension 2 or 1.
MaxOcc: a web portal for maximum occurrence analysis.
Bertini, Ivano; Ferella, Lucio; Luchinat, Claudio; Parigi, Giacomo; Petoukhov, Maxim V; Ravera, Enrico; Rosato, Antonio; Svergun, Dmitri I
2012-08-01
The MaxOcc web portal is presented for the characterization of the conformational heterogeneity of two-domain proteins, through the calculation of the Maximum Occurrence that each protein conformation can have in agreement with experimental data. Whatever the real ensemble of conformations sampled by a protein, the weight of any conformation cannot exceed the calculated corresponding Maximum Occurrence value. The present portal allows users to compute these values using any combination of restraints like pseudocontact shifts, paramagnetism-based residual dipolar couplings, paramagnetic relaxation enhancements and small angle X-ray scattering profiles, given the 3D structure of the two domains as input. MaxOcc is embedded within the NMR grid services of the WeNMR project and is available via the WeNMR gateway at http://py-enmr.cerm.unifi.it/access/index/maxocc . It can be used freely upon registration to the grid with a digital certificate.
[Computer-assisted surgery-(CAS-)guided correction arthrodesis of the subtalar joint].
Richter, Martinus
2010-10-01
Restoration of a stable and plantigrade foot in deformities at the hindfoot and concomitant degenerative changes at the subtalar joint. Deformities at the hindfoot and concomitant degenerative changes at the subtalar joint. Active local infection or relevant vascular insufficiency. Prone position and posterolateral approach to the subtalar joint. Placement of dynamic reference bases in talus and calcaneus through stab incisions. Two-dimensional image acquisition for navigation. Definition of the axes of talus and calcaneus, and of the extent of correction. Exposure of the subtalar joint and removal of remaining cartilage. Computer- assisted surgery-(CAS-)guided correction and transfixation of the corrected position with two 2.5-mm Kirschner wires. Transplantation of autologous cancellous and cortical bone, if necessary. Three-dimensional (3-D) image acquisition for analysis of the accuracy of the correction and planning of the drillings for the screws. CAS-guided drilling and insertion of the screws. 3-D image acquisition for analysis of the accuracy of the correction implant position. Wound closure in layers. 15 kg partial weight bearing in an orthosis (e.g. Vacuped TM, OPED Inc., Valley, Germany) for 6 weeks, followed by full weight bearing in a stable standard shoe. From September 1, 2006 to August 31, 2008, 26 correction arthrodeses were performed. The accuracy was assessed by intraoperative 3-D imaging. All achieved angles/translations were within a maximum deviation of 2°/2 mm when compared to the planned correction. Complications that were associated with CAS were not observed. In all 25 cases that completed 2-year follow-up, timely fusion was registered.
Strength properties of the jointed rock mass medium under dynamic cyclic loading *
无
2001-01-01
The dynamic strength properties of the intermittently jointed mediums are studied using model test to investigate the jointed rock mass behavior under dynamic cyclic load. The model test results demonstrate that (i) the dynamic strength of the jointed samples increases with the loading frequency and decreases with the loading loops; (ii) the dynamic residual strength will not be zero like the static residual strength under one-axle loading condition; (iii) the dynamic strength changes greatly with the joint density and joint angle, and it differs from that of the static strength which reaches the lowest at an angle of 45° + ψ/2, while in the dynamic case, the lowest strength is at the angle of 45°.
A Reduced Order, One Dimensional Model of Joint Response
DOHNER,JEFFREY L.
2000-11-06
As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.
Intrinsic polarization angle ambiguity in Faraday tomography
Kumazaki, Kohei; Ideguchi, Shinsuke; Kurayama, Tomoharu; Takahashi, Keitaro
2014-01-01
Faraday tomography is a powerful method to diagnose polarizations and Faraday rotations along the line of sight. Quality of Faraday tomography is, however, limited by several conditions. Recently, it is reported that Faraday tomography indicates false signals in some specific situations. In this paper, we systematically investigate the condition of the appearance of false signals in Faraday tomography. We study the situations that we observe two sources within a beam, and change the intrinsic polarization angles, rotation measures, intensities, and frequency coverage. We find that false signals arise when rotation measure between the sources is less than 1.5 times the full width at half maximum of the rotation measure spread function. False signals also depend on the intensity ratio between the sources and are reduced for large ratio. On the other hand, the appearance of false signals does not depend on frequency coverage, meaning that the uncertainty should be correctly understood and taken into consideratio...
Flow angle from intermediate mass fragment measurements
Rami, F.; Crochet, P.; Dona, R.; De Schauenburg, B.; Wagner, P.; Alard, J.P.; Andronic, A.; Basrak, Z.; Bastid, N.; Belyaev, I.; Bendarag, A.; Berek, G.; Best, D.; Caplar, R.; Devismes, A.; Dupieux, P.; Dzelalija, M.; Eskef, M.; Fodor, Z.; Gobbi, A.; Grishkin, Y.; Herrmann, N.; Hildenbrand, K.D.; Hong, B.; Kecskemeti, J.; Kirejczyk, M.; Korolija, M.; Kotte, R.; Lebedev, A.; Leifels, Y.; Merlitz, H.; Mohren, S.; Moisa, D.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Plettner, C.; Reisdorf, W.; Schuell, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczynska, K.; Stoicea, G.; Stockmeir, M.; Vasiliev, M.; Wisniewski, K.; Wohlfarth, D.; Yushmanov, I.; Zhilin, A
1999-02-15
Directed sideward flow of light charged particles and intermediate mass fragments was measured in different symmetric reactions at bombarding energies from 90 to 800 A MeV. The flow parameter is found to increase with the charge of the detected fragment up to Z = 3-4 and then turns into saturation for heavier fragments. Guided by simple simulations of an anisotropic expanding thermal source, we show that the value at saturation can provide a good estimate of the flow angle, {theta}{sub flow}, in the participant region. It is found that {theta}{sub flow} depends strongly on the impact parameter. The excitation function of {theta}{sub flow} reveals striking deviations from the ideal hydrodynamical scaling. The data exhibit a steep rise of {theta}{sub flow} to a maximum at around 250 - 400 A MeV, followed by a moderate decrease as the bombarding energy increases further.
Estimation of crank angle for cycling with a powered prosthesis.
Lawson, B E; Shultz, A; Ledoux, E; Goldfarb, M
2014-01-01
In order for a prosthesis to restore power generation during cycling, it must supply torque in a manner that is coordinated with the motion of the bicycle crank. This paper outlines an algorithm for the real time estimation of the angular position of a bicycle crankshaft using only measurements internal to an intelligent knee and ankle prosthesis. The algorithm assumes that the rider/prosthesis/bicycle system can be modeled as a four-bar mechanism. Assuming that a prosthesis can generate two independent angular measurements of the mechanism (in this case the knee angle and the absolute orientation of the shank), Freudenstein's equation can be used to synthesize the mechanism continuously. A recursive least-squares algorithm is implemented to estimate the Freudenstein coefficients, and the resulting link lengths are used to reformulate the equation in terms of input-output relationships mapping both measured angles to the crank angle. Using two independent measurements allows the algorithm to uniquely determine the crank angle from multi-valued functions. In order to validate the algorithm, a bicycle was mounted on a trainer and configured with the prosthesis using an artificial hip joint attached to the seat post. Motion capture was used to monitor the mechanism for forward and backward pedaling and the results are compared to the output of the presented algorithm. Once the parameters have converged, the algorithm is shown to predict the crank angle within 15° of the externally measured value throughout the entire crank cycle during forward rotation.
The Semiotic and Conceptual Genesis of Angle
Tanguay, Denis; Venant, Fabienne
2016-01-01
In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way "angle" is…
Maximum range of a projectile thrown from constant-speed circular motion
Poljak, Nikola
2016-01-01
The problem of determining the angle at which a point mass launched from ground level with a given speed is a standard exercise in mechanics. Similar, yet conceptually and calculationally more difficult problems have been suggested to improve student proficiency in projectile motion. The problem of determining the maximum distance of a rock thrown from a rotating arm motion is presented and analyzed in detail in this text. The calculational results confirm several conceptually derived conclusions regarding the initial throw position and provide some details on the angles and the way of throwing (underhand or overhand) which produce the maximum throw distance.
[Correlation analysis on the disorders of patella-femoral joint and torsional deformity of tibia].
Sun, Zhen-Jie; Yuan, Yi; Liu, Rui-Bo
2015-03-01
To reveal the possible mechanism involved in patella-femoral degenerative arthritis (PFDA) in- duced by torsion-deformity of tibia via analyzing the relationship between torsion-deformity of the tibia in patients with PFDA and the disorder of patella-femoral joint under the static and dynamic conditions. From October 2009 to October 2010, 50 patients (86 knees, 24 knees of male patients and 62 knees of female patients) with PFDA were classified as disease group and 16 people (23 knees, 7 knees of males and 16 knees of females) in the control group. The follow indexes were measured: the torsion-angle of tibia on CT scanning imagings, the patella-femoral congruence angle and lateral patella-femoral angle under static and dynamic conditions when the knee bent at 30 degrees of flexion. Based on the measurement results, the relationship between the torsion-deformity of tibias and the disorders of patella-femoral joints in patients with PFDA were analyzed. Finally,the patients were divided into three groups including large torsion-angle group, small torsion-angle group and normal group according to the size of torsion-angle, in order to analyze the relationship between torsion-deformity and disorders of patella-femoral joint, especially under the dynamic conditions. Compared with patients without PFDA, the ones with PFDA had bigger torsion-angle (30.30 ± 7.11)° of tibia, larger patella-femoral congruence angle (13.20 ± 3.94)° and smaller lateral patella-femoral angle (12.30 ± 3.04)°. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had statistical differences respectively in both too-big torsion-angle group and too-small torsion-angle group. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had no statistical differences in normal torsion-angle group. Torsion-deformity of tibia is the main reason for disorder of patella-femoral joint in the patients with PFDA. Torsion-deformity of
Joint Program Management Handbook
1994-12-01
the Engieermg and Manufacuring Devopment Phase. Nfilestoae HI- Develommen Annros Devopment approval marks a significant step for any program, but it is...to review concept formulaton. Systems Engilneertn As with service programs, systems engineering in joint program management is an essential tool . I...MANAGEMENT HANDBOOK On=e wd Umawtaiutt As discussed in Chapter 7, systems analysis of relationships is a usef tool for joint program managers. The joint
Johnson, D H
2009-01-01
What constitutes jointly Poisson processes remains an unresolved issue. This report reviews the current state of the theory and indicates how the accepted but unproven model equals that resulting from the small time-interval limit of jointly Bernoulli processes. One intriguing consequence of these models is that jointly Poisson processes can only be positively correlated as measured by the correlation coefficient defined by cumulants of the probability generating functional.
On the geometrical place formed by the maximum heights of projectile motion with air resistance
Hernández-Saldaña, H
2010-01-01
We present an analysis on the geometrical place formed by the set of maxima of the orbits of a projectile launched in a media with linear drag. Such a place is written in term of the Lambert W function in polar coordinates, confirming the special role played by this function in the problem. In order to characterize it, a study of the curvature is presented in two parameterizations, in terms of the launching angle and in the polar one. The angles of maximum curvature are compared with other important angles in the projectile problem.
Takano, Y; Ueno, M; Kiguchi, K; Ito, J; Mawatari, M; Hotokebuchi, T
2008-01-01
A purpose of this study is to examine the effect that quadriceps femoris force gives to rotation angle and joint reaction force of total knee prosthesis during deep knee flexion such as a unique sitting style called 'seiza' in Japanese. For the evaluation, we developed the knee motion simulator which could bend to 180 degrees continually simulating the passive flexion performed by clinicians. A total knee prosthesis, which is a specially-devised posterior stabilized type and capable of flexion up to 180 degrees, was inserted into bone model. And this prosthesis pulled by three kinds of quadriceps femoris forces to perform parameter study. The results obtained in this study were showed the same tendency with those in the past cadaveric experiment. It is suggested that the rotation angle and joint reaction force of total knee prosthesis are affected by shape of prosthesis, a vector of quadriceps femoris force, and bony aliments during deep knee flexion.
[Total temporomandibular joint prostheses].
Zwetyenga, N; Amroun, S; Wajszczak, B-L; Moris, V
2016-09-01
The temporomandibular joint (TMJ) is probably the most complex human joint. As in all joints, its prosthetic replacement may be indicated in selected cases. Significant advances have been made in the design of TMJ prostheses during the last three decades and the indications have been clarified. The aim of our work was to make an update on the current total TMJ total joint replacement. Indications, contraindications, prosthetic components, advantages, disadvantages, reasons for failure or reoperation, virtual planning and surgical protocol have been exposed. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Lopez, Ramon; Singh, Tarika; Banga, Samantha; Hasan, Nafisa
2012-01-01
Isolated subtalar joint arthrodesis has gained popularity more recently. Research has shown that it preserves rearfoot motion, does not increase the risk of arthritis in adjacent joints, and is not an especially complex operative procedure. It decreases the chance of midtarsal joint nonunion and malunion postoperatively. This article takes an in-depth approach to isolated talocalcaneal fusions. Anatomy and biomechanics of the subtalar joint are reviewed. Clinical presentation and radiologic evaluation are discussed. Conservative treatment, operative technique, and postoperative management are included. Copyright © 2012 Elsevier Inc. All rights reserved.
Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion
Poljak, Nikola
2016-11-01
The problem of determining the angle θ at which a point mass launched from ground level with a given speed v0 will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of θ = π/4, producing a maximum range of D max = v0 2 / g , with g being the free-fall acceleration. Conceptually and calculationally more difficult problems have been suggested to improve student proficiency in projectile motion, with the most famous example being the Tarzan swing problem. The problem of determining the maximum distance of a point mass thrown from constant-speed circular motion is presented and analyzed in detail in this text. The calculational results confirm several conceptually derived conclusions regarding the initial throw position and provide some details on the angles and the way of throwing (underhand or overhand) that produce the maximum throw distance.
Wake angle for surface gravity waves on a finite depth fluid
Pethiyagoda, Ravindra; Moroney, Timothy J
2015-01-01
Linear water wave theory suggests that wave patterns caused by a steadily moving disturbance are contained within a wedge whose half-angle depends on the depth-based Froude number $F_H$. For the problem of flow past an axisymmetric pressure distribution in a finite-depth channel, we report on the apparent angle of the wake, which is the angle of maximum peaks. For moderately deep channels, the dependence of the apparent wake angle on the Froude number is very different to the wedge angle, and varies smoothly as $F_H$ passes through the critical value $F_H=1$. For shallow water, the two angles tend to follow each other more closely, which leads to very large apparent wake angles for certain regimes.
Kinematic analysis of sprinting pickup acceleration versus maximum sprinting speed
S. MANZER
2016-10-01
Full Text Available Pickup acceleration and maximum sprinting speed are two essential phases of the 100-m sprint with variant sprinting speed, step length, frequency and technique. The aim of the study was to describe and compare the kinematic parameters of both sprint variants. Hypothetically it was assumed to find differences in sprinting speed, step length, flight and contact times as well as between the body angles of different key positions. From 8 female and 8 male (N=16 track and field junior athletes a double stride of both sprint variants was filmed (200 Hz from a sagittal position and the 10-m-sprint time was measured using triple light barriers. Kinematic data for sprinting speed and angles of knee, hip and ankle were compared with an analysis of variance with repeated measures. The sprinting speed was 7.7 m/s and 8.0 m/s (female and 8.4 m/s and 9.2 m/s (male with significantly higher values of step length, flight time and shorter ground contact time during maximum sprinting speed. Because of the longer flight time, it is possible to place the foot closer to the body but with a more extended knee on the ground. These characteristics can be used as orientation for technique training.
Receiver function estimated by maximum entropy deconvolution
吴庆举; 田小波; 张乃铃; 李卫平; 曾融生
2003-01-01
Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.
Martel, S. J.
2015-12-01
Physical breakdown of rock across a broad scale spectrum involves fracturing. In many areas large fractures develop near the topographic surface, with sheeting joints being among the most impressive. Sheeting joints share many geometric, textural, and kinematic features with other joints (opening-mode fractures) but differ in that they are (a) discernibly curved, (b) open near the topographic surface, and (c) form subparallel to the topographic surface. Where sheeting joints are geologically young, the surface-parallel compressive stresses are typically several MPa or greater. Sheeting joints are best developed beneath domes, ridges, and saddles; they also are reported, albeit rarely, beneath valleys or bowls. A mechanism that accounts for all these associations has been sought for more than a century: neither erosion of overburden nor high lateral compressive stresses alone suffices. Sheeting joints are not accounted for by Mohr-Coulomb shear failure criteria. Principles of linear elastic fracture mechanics, together with the mechanical effect of a curved topographic surface, do provide a basis for understanding sheeting joint growth and the pattern sheeting joints form. Compressive stresses parallel to a singly or doubly convex topographic surface induce a tensile stress perpendicular to the surface at shallow depths; in some cases this alone could overcome the weight of overburden to open sheeting joints. If regional horizontal compressive stresses, augmented by thermal stresses, are an order of magnitude or so greater than a characteristic vertical stress that scales with topographic amplitude, then topographic stress perturbations can cause sheeting joints to open near the top of a ridge. This topographic effect can be augmented by pressure within sheeting joints arising from water, ice, or salt. Water pressure could be particularly important in helping drive sheeting joints downslope beneath valleys. Once sheeting joints have formed, the rock sheets between
Biogeochemistry of the MAximum TURbidity Zone of Estuaries (MATURE): some conclusions
Herman, P.M.J.; Heip, C.H.R.
1999-01-01
In this paper, we give a short overview of the activities and main results of the MAximum TURbidity Zone of Estuaries (MATURE) project. Three estuaries (Elbe, Schelde and Gironde) have been sampled intensively during a joint 1-week campaign in both 1993 and 1994. We introduce the publicly available
Frequency scaling for angle gathers
Zuberi, M. A H
2014-01-01
Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.
Human hip joint center analysis for biomechanical design of a hip joint exoskeleton
Wei YANG; Can-jun YANG‡; Ting XU
2016-01-01
We propose a new method for the customized design of hip exoskeletons based on the optimization of the human- machine physical interface to improve user comfort. The approach is based on mechanisms designed to follow the natural tra-jectories of the human hip as the flexion angle varies during motion. The motions of the hip joint center with variation of the flexion angle were measured and the resulting trajectory was modeled. An exoskeleton mechanism capable to follow the hip center’s movement was designed to cover the full motion ranges of flexion and abduction angles, and was adopted in a lower extremity assistive exoskeleton. The resulting design can reduce human-machine interaction forces by 24.1% and 76.0% during hip flexion and abduction, respectively, leading to a more ergonomic and comfortable-to-wear exoskeleton system. The human- exoskeleton model was analyzed to further validate the decrease of the hip joint internal force during hip joint flexion or abduction by applying the resulting design.
Maximum Power from a Solar Panel
Michael Miller
2010-01-01
Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.
Effect of joint design on mechanical properties of AL7075 weldment
Li, Leijun; Orme, Kevin; Yu, Wenbin
2005-06-01
The effects of joint design on the mechanical properties of AL7075-T6 aluminum sheet were studied on the latest automated gas-tungsten arc-welding system. Using ER5356 filler metal, full-penetration welds were made on workpieces with various included joint angles. Testing of the mechanical properties of the joints was done in the as-welded, naturally aged, and postweld heat-treated conditions. The results show that by using crack-resistant filler, and by selecting the proper joint design and postweld heat treatment, strong, dependable welds can be produced on thin AL7075 sheet material. An elasticity model of the weld joint was established to help understand the mechanical behavior of the joints. An undermatched joint design is shown to be capable of achieving a joint strength that matches the strength of the base alloy.
Angle independent velocity spectrum determination
2014-01-01
An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....
Scaling of misorientation angle distributions
Hughes, D.A.; Chrzan, D.C.; Liu, Q.
1998-01-01
The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributions...... for the small to large strain regimes for aluminum, 304L stainless steel, nickel, and copper (taken from the literature )appear to be identical. Hence the distributions may be "universal." These results have significant implications for the development of dislocation based deformation models. [S0031...
Systematic variations in divergence angle
Okabe, Takuya
2012-01-01
Practical methods for quantitative analysis of radial and angular coordinates of leafy organs of vascular plants are presented and applied to published phyllotactic patterns of various real systems from young leaves on a shoot tip to florets on a flower head. The constancy of divergence angle is borne out with accuracy of less than a degree. It is shown that apparent fluctuations in divergence angle are in large part systematic variations caused by the invalid assumption of a fixed center and/or by secondary deformations, while random fluctuations are of minor importance.
Prevention of the Posttraumatic Fibrotic Response in Joints
2015-10-01
weak procollagen I-specific signal indicates steric hindrance imposed by PEG on the anti-collagen I antibody. C, Control Western blot done with the...an extension torque was applied to 0.2Nm, and the joint extension was recorded.6,27 Values near 90˚ indicated maxi - mum extension, while angles larger
Symptomatic sacroiliac joint disease and radiographic evidence of femoroacetabular impingement.
Morgan, Patrick M; Anderson, Anthony W; Swiontkowski, Marc F
2013-01-01
Symptomatic sacroiliac (SI) joint disease is poorly understood. The literature provides no clear aetiology for SI joint pathology, making evaluation and diagnosis challenging. We hypothesised that patients with documented sacroiliac pain might provide insight into the aetiology of these symptoms. Specifically, we questioned whether SI joint symptoms might be associated with abnormal hip radiographs. We reviewed the pelvic and hip radiographs of a prospectively collected cohort of 30 consecutive patients with SI joint pathology. This database included 33 hips from 30 patients. Radiographic analysis included measurements of the lateral centre edge angle, Tönnis angle, and the triangular index, of the ipsilateral hip. Evidence for retrotorsion of the hemipelvis was recorded. Hips were graded on the Tönnis grading system for hip arthrosis. In this cohort 14/33 (42%) of hips had evidence of significant osteoarthrosis indicated by Tönnis grade 2 or greater and 15/33 (45%) displayed subchondral cyst formation around the hip or head neck junction. In assessing acetabular anatomy, 21% (7/33) had retroversion, 12% (4/33) had a lateral centre edge angle >40° with 3% (1/33) >45°. Tönnis angle was arthrosis. The clinician should maintain FAI in the differential diagnosis when investigating patients with buttock pain.
MR diagnosis of temporomandibular joint. A study of joint effusion
Kaneda, Takashi; Yamashiro, Mitsuaki; Ozawa, Kaoru; Suzuki, Hiromi; Okada, Hiroyuki; Yamamoto, Hirotsugu [Nihon Univ., Matsudo, Chiba (Japan). School of Dentistry
1998-03-01
The purposes of this study were to evaluate the relationship between correlation of MR joint effusion of the temporomandibular joint and disk position, to evaluate the relationship between joint effusion and aging, and to assess the frequency of MR joint effusion of bilateral temporomandibular joints. The temporomandibular joints of 192 patients with clinical symptoms of temporomandibular joint disorders were imaged bilaterally using high field, surface-coil MR imaging. Oblique sagittal and coronal proton density-weighted and T2-weighted images were obtained. Imaging findings of joint effusion were correlated with disk position, aging, and bilateral temporomandibular joints. MR showed effusion in 4% of the joints with normal superior disk position, 36% of the joints with disk displacement with reduction, and 45% of the joints with disk displacement without reduction. There were significant differences in the incidence of joint effusion between normal disk position and anterior disk displacement with or without reduction. Younger patients less than 40 years were significant higher the incidence of joint effusion than those of older patients. A significant association was seen between joint effusion and aging. MR showed effusion in 17% of the unilateral temporomandibular joint, 24% of the bilateral temporomandibular joints. There was no significant difference between unilateral and bilateral case. These results indicated that joint effusion using MR imaging was associated with varied temporomandibular joint pathologic states. (author)
The effect of insertion angle on orthodontic mini-screw torque
Seyed Hamid Raji
2014-01-01
Full Text Available Background: Primary stability is an important factor for the clinical success of orthodontic mini-screws. The present study made an attempt to evaluate the effect of insertion angle changes on the maximum insertion and removal torque of orthodontic mini-screws. Materials and Methods: In this experimental study, 72 mini-screws (Dual Top Anchor System, Jeil, 1.6 mm diameter, 8 mm length were used. They were randomly divided into four equal groups and inserted in poly-carbonate plates with 3 mm thickness. Then, their maximum insertion torque (MIT and maximum removal torque (MRT were recorded using a digital torque tester/screwdriver. Each group had a different insertion angle (90°, 75°, 60° and 45°. The data were analyzed by SPSS software (version 18 using one-way ANOVA and post-hoc Tukey′s tests. The level of significance was set at 0.05. Results: The maximum MIT was observed in 45° insertion angle (14.84 Ncm and the minimum MIT was reported in 75° insertion angle (12.66 Ncm. The maximum MRT was observed in 45° insertion angle (23.21 Ncm and the minimum MRT was reported in the 90° insertion angle (17.43 Ncm. Conclusion: Oblique insertion of the mini-screws results in higher insertion and removal torques and probably more primary stability compared to the vertical insertion.
Van de Kuilen, J.W.G.
2008-01-01
A creep analysis has been performed on nailed, toothed-plates and split-ring joints in a varying uncontrolled climate. The load levels varied between 30% and 50% of the average ultimate short term strength of these joints, tested in accordance with ISO 6891. The climate in which the tests were
Acromioclavicular Joint Separations
2013-01-01
Published online: 16 December 2012 # Springer Science+Business Media New York 2012 Abstract Acromioclavicular (AC) joint separations are common...injuries. The sports most likely to cause AC joint dislocations are football, soccer , hockey, rugby, and skiing, among others [9, 28, 29]. The major cause
Contact line and contact angle dynamics in superhydrophobic channels.
Zhang, Junfeng; Kwok, Daniel Y
2006-05-23
The dynamics of the wetting and movement of a three-phase contact line confined between two superhydrophobic surfaces were studied using a mean-field free-energy lattice Boltzmann model. Principle features of superhydrophobic surfaces, such as trapped vapor/air between rough microstructures, high contact angles, reduced contact angle hysteresis, and low resistance to fluid flow, were all observed. Movement of the three-phase contact line over a well-patterned superhydrophobic surface displays a periodic stick-jump-slip behavior, while the dynamic contact angle changes accordingly from maximum to minimum. Two regimes were found for the flow velocity as a function of surface roughness and can be related directly to the balance between driving force and flow resistance. This work provides a better understanding of dynamic wetting and fluid flow behaviors over superhydrophobic surfaces and hence could be useful in related applications.
Strategies for joint appointments.
Royle, J; Crooks, D L
1985-01-01
The structure and policies governing joint appointments discussed above, are developed primarily through cooperation and collaboration between nursing service and education institutions. The joint appointee participates in the process of negotiation of salary, benefits and role responsibilities and exploration of the implications of the appointment for personal career development. Implementation and maintenance of the appointment requires the collaborative efforts of the joint appointee with both contracting agencies. Factors influencing the functioning of joint appointees have been identified and strategies to facilitate functioning presented. The joint appointee must be independent in thought and action yet adaptable to work within the boundaries of two social systems with differing values and expectations. Nursing management, peers and students can provide the support needed to overcome the frustrations and to achieve the rewards inherent in successful implementation of an exciting and innovative role.
Konrad, Andreas; Budini, Francesco; Tilp, Markus
2017-08-01
Static stretching induces acute structural changes of the muscle-tendon unit (MTU) that are related to the intensity or duration of stretching. It has been reported that stretching with a constant torque (CT) leads to greater joint range of motion changes than stretching with a constant angle (CA). Whether or not this difference is due to different structural changes of the MTUs of the lower leg and ankle plantar flexors is not known. Therefore, the purpose of this study was to compare the acute effects of single CA and CT stretching on various muscle and tendon mechanical properties. Seventeen young, healthy volunteers were tested on two separate days using either CT or CA stretching (4 × 30 s each). Before and after stretching, dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the medial gastrocnemius (GM) muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness. Maximum dorsiflexion increased while PRT, muscle-tendon stiffness, and muscle stiffness decreased following both CA and CT stretching. There was a greater increase in RoM following CT stretching compared to CA stretching. Moreover, the decline in PRT was greater during CT stretching compared to CA stretching. As expected, several functional adaptations (RoM, PRT) were different between CT and CA stretching due to the higher intensity of CT stretching. However, no structural differences in the adaptations to the stretching modalities could be detected. We suggest that the different functional adaptations between CA and CT stretching are the consequence of different adaptations in the perception of stretch and pain.
Angle of repose and segregation in cohesive granular matter*
Kudrolli, Arshad
2002-03-01
We study the effect of fluids on the angle of repose and the segregation of granular matter in two experimental systems. In the regime where the volume fraction of the introduced fluid (liquid) is small, liquid bridges between particles are formed thus giving rise to cohesive forces between particles. In the first series of experiments, we pour the mixture of granular matter and liquid from a reservoir into a silo and imaging the resulting pile through the transparent glass side walls [1]. The angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturate at a value that depends on the size of the particles. The viscosity of the fluid is observed to have a significant effect on the angle of repose and the extent of segregation. Similar phenomena is observed in both the angle of repose and the maximum angle of stability, when the granular-fluid mixture is placed inside a horizontal cylindrical container and rotated. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. Preferential clumping of small particles causes layering to occur when the size of the clumps of small particles exceeds the size of large particles. We also report experiments in which the particles are poured into a silo filled with a fluid to understand the limit of maximum volume fraction of the fluid. In this case the angle of repose is observed to be unchanged from the dry case. However, the segregation is observed to decrease with an increase in the viscosity of the fluid. * Work in collaboration with Azadeh Samadani, and funded by NSF under Grant No. DMR-9983659. [1]: A. Samadani and A. Kudrolli, Phys. Rev. Lett. 85, 5102 (2000); Phys. Rev. E 64, 051301 (2001).
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting.
Li, Qing; Luo, K H; Kang, Q J; Chen, Q
2014-11-01
In this paper we investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio ρ_{L}/ρ_{V}=500. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)10.1103/PhysRevE.49.2941] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions, the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles θstatic contact angles close to 180^{∘}. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles θ>90^{∘} as compared with the two other types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.
The traction angle and cervical intervertebral separation.
Wong, A M; Leong, C P; Chen, C M
1992-02-01
Seventeen normal young adults were evaluated for cervical intervertebral separation under different traction angles through motorized intermittent traction in the supine position. In all cases, the anterior and posterior intervertebral spaces were increased by traction at neutral position and in 30 degrees flexion, but not in 15 degrees extension. The effects of separation were 1) neutral position: anterior intervertebral separation C4-5 (12%) greater than C3-4 (8%), posterior intervertebral separation C6-7 (37%) greater than C3-4 (22%) greater than C4-5 (19%); and 2) 30 degrees flexion: anterior intervertebral separation C2-3 (21%) greater than C4-5 (16%) greater than C5-6 (15%) greater than C3-4 (10%), posterior intervertebral separation C6-7 (20%) greater than C5-6 (19%) greater than C4-5 (17%). There was a significant decrease in intervertebral separation posteriorly in extension traction, especially at C6-7 (-50%), C5-6 (-37%), C4-5 (-26%), and C3-4 (-14%). The separation of facet joint surfaces was found after traction at 15 degrees extension, but not in the neutral or flexion positions.
Contactless angle detection using permalloy
Eijkel, Kees J.; Rijk, Rolf
1988-01-01
An overview is given of measurements on angle detectors. The detectors consist of a pair of planar-Hall elements opposite to a rotatable magnet. The measurements are performed on a number of planar-Hall elements of different shape and size, and show good agreement with a previously described theoret
A Pansharpening Method Based on HCT and Joint Sparse Model
XU Ning
2016-04-01
Full Text Available A novel fusion method based on the hyperspherical color transformation (HCT and joint sparsity model is proposed for decreasing the spectral distortion of fused image further. In the method, an intensity component and angles of each band of the multispectral image is obtained by HCT firstly, and then the intensity component is fused with the panchromatic image through wavelet transform and joint sparsity model. In the joint sparsity model, the redundant and complement information of the different images can be efficiently extracted and employed to yield the high quality results. Finally, the fused multi spectral image is obtained by inverse transforms of wavelet and HCT on the new lower frequency image and the angle components, respectively. Experimental results on Pleiades-1 and WorldView-2 satellites indicate that the proposed method achieves remarkable results.
Influences of fine pitch solder joint shape parameters on fatigue life under thermal cycle
HUANG Chun-yue; WU Zhao-hua; HUANG Hong-yan; ZHOU De-jian
2005-01-01
The solder joint reliability of a 0. 5 mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plastic strain range of the solder joints were determined. Based on the calculated maximum plastic strain range the thermal fatigue life of the solder joints was calculated using Coffin-Manson equation. The influences of shape parameters including volume of solder joint, pad size and stand-off on the thermal fatigue life of the solder joints were also studied. The results show that the stress and strain distribution in the solder joint are not uniform; the interface between the lead and the solder joint is the high stress and strain region; the maximum stress and stain occur at the topmost point where the solder joint intersects with the inner side of the lead. The solder joint cracks should occur firstly at this point and propagate along the interface between the solder and the lead. The solder joint with the pad size of 1.25 mm× 0.35 mm, the stand-off of 0.02 mm and the solder volume of 0. 026 mm3 has longer fatigue life than that of any others. These optimal parameters have been applied in practice to assemble the 240-pin, 0.5 mm pitch QFP.
Apparatus for metering the angle of inclination of construction projects
Zaripov, M.F.; Kovshov, G.N.; Lavrov, B.V.
1980-08-30
A design is submitted for an apparatus to be used in metering the inclination angle of construction projects such as wells. This apparatus consists of a hinged universal joint, both internal and external frames, a pendulum with a ferromagnetic probe mounted on the internal frame, two sources for the formation of a controlled magnetic field, magnetic posts which are in-line with the frame axis, and a conversion-metering circuit. A two-phase current generator is mounted on the external frame and a ferromagnetic probe is placed at a 45-degree angle to the rotation axis for the internal frame, perpendicular to the vertical posts. Such a configuration serves to improve the metering accuracy by removing error and instability in the magnetic field source current.
OPTIMIZING THE SHAPE OF ROTOR BLADES FOR MAXIMUM POWER EXTRACTION IN MARINE CURRENT TURBINES
J.A. Esfahani
2012-12-01
Full Text Available In this paper the shape of rotor blades in Marine Current Turbines (MCTs are investigated. The evaluation of hydrodynamic loads on blades is performed based on the Blade Element Momentum (BEM theory. The shape of blades is optimized according to the main parameters in the configuration and operation of these devices. The optimization is conducted based on the ability of the blades to harness the maximum energy during operating. The main parameters investigated are the tip speed ratio and angle of attack. Furthermore, the influence of these parameters on the maximum energy extraction from fluid flow over a hydrofoil is evaluated. It is shown that the effect of the angle of attack on power extraction is greater than that of the tip speed ratio, while both are found to be significant. Additionally, the proper angle of attack is the angle at which the lift to drag ratio is at its maximum value. However, if a proper angle of attack is chosen, the variations in power coefficient would not be effectively changed with small variations in the tip speed ratio.
John F. Kennedy Space Center's Wireless Hang Angle Instrumentation System
Kohler, Jeff
2009-01-01
The technology is a high-precision, wireless inclinometer. The system was designed for monitoring the suspension angle of the Orbiter vehicle during loading onto the Solid Rocket Boosters of the Space Shuttle. Originally, operators manually measured the alignment of the Orbiter with a hand-held inclinometer on a nonrigid surface. The measurement was open to interpretation by the loader. If the Orbiter is misaligned, it can crush ball joints and delay the loading while repairs are made. With this system, the Orbiter can be loaded without damage and without manual measurement.
Evidence for intermuscle difference in slack angle in human triceps surae.
Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto-Mikami, Eri; Miyamoto, Naokazu
2015-04-13
This study examined whether the slack angle (i.e., the joint angle corresponding to the slack length) varies among the synergists of the human triceps surae in vivo. By using ultrasound shear wave elastography, shear modulus of each muscle of the triceps surae was measured during passive stretching from 50° of plantar flexion in the knee extended position at an angular velocity of 1°/s in 9 healthy adult subjects. The slack angle of each muscle was determined from the ankle joint angle-shear modulus relationship as the first increase in shear modulus. The slack angle was significantly greater in the medial gastrocnemius (20.7±6.7° plantarflexed position) than in the lateral gastrocnemius (14.9±6.7° plantarflexed position) and soleus (2.0±4.8° dorsiflexed position) and greater in the lateral gastrocnemius than in the soleus. This study provided evidence that the slack angle differs among the triceps surae; the medial gastrocnemius produced passive force at the most plantarflexed position while the slack angle of the soleus was the most dorsiflexed position.
The inverse maximum dynamic flow problem
BAGHERIAN; Mehri
2010-01-01
We consider the inverse maximum dynamic flow (IMDF) problem.IMDF problem can be described as: how to change the capacity vector of a dynamic network as little as possible so that a given feasible dynamic flow becomes a maximum dynamic flow.After discussing some characteristics of this problem,it is converted to a constrained minimum dynamic cut problem.Then an efficient algorithm which uses two maximum dynamic flow algorithms is proposed to solve the problem.
Effects of slant angle and illumination angle on MTF estimations
Vhengani, LM
2012-07-01
Full Text Available .085 0.09 0.095 K:\\Working Folder\\Project_On_orbit MTF\\edgetargets\\MTF_Lab_Measurements _20120302_Edge Slant Angle (degrees) Ny qu ist MT F (c yc le/p ixe l) Data Regression -18 -16 -14 -12 -10 -8 -6 -4 -2 0.05 0.055 0.06 0....065 0.07 0.075 0.08 0.085 0.09 K:\\Working Folder\\Project_On_orbit MTF\\edgetargets\\MTF_Lab_Measurements_20120303_Edge Slant Angle (degrees) Ny qu ist MT F (c yc le/p ixe l) Data Regression Figure 6. Regression of positive slant...
Maximum Deformation Ratio of Droplets of Water-Based Paint Impact on a Flat Surface
Weiwei Xu
2017-06-01
Full Text Available In this research, the maximum deformation ratio of water-based paint droplets impacting and spreading onto a flat solid surface was investigated numerically based on the Navier–Stokes equation coupled with the level set method. The effects of droplet size, impact velocity, and equilibrium contact angle are taken into account. The maximum deformation ratio increases as droplet size and impact velocity increase, and can scale as We1/4, where We is the Weber number, for the case of the effect of the droplet size. Finally, the effect of equilibrium contact angle is investigated, and the result shows that spreading radius decreases with the increase in equilibrium contact angle, whereas the height increases. When the dimensionless time t* < 0.3, there is a linear relationship between the dimensionless spreading radius and the dimensionless time to the 1/2 power. For the case of 80° ≤ θe ≤ 120°, where θe is the equilibrium contact angle, the simulation result of the maximum deformation ratio follows the fitting result. The research on the maximum deformation ratio of water-based paint is useful for water-based paint applications in the automobile industry, as well as in the biomedical industry and the real estate industry. Please check all the part in the whole passage that highlighted in blue whether retains meaning before.
Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.
Promraksa, Arwut; Chen, Li-Jen
2012-10-15
A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed.
Maximum permissible voltage of YBCO coated conductors
Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)
2014-06-15
Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.
An Angle Criterion for Riesz Bases
Lindner, Alexander M; Bittner, B.
1999-01-01
We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived.......We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived....
2008-04-23
Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= JOINT ROBOTICS PROGRAM Published: 23 April 2008 by Joel Brown and Paul Varian 5th Annual Acquisition Research...3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Joint Robotics Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 464 - = = Joint Robotics Program Presenter: Joel Brown, Defense Acquisition University Author: Paul Varian
Total ankle joint replacement.
2016-02-01
Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications.
Gabriel F. Valencia Clement
2010-04-01
Full Text Available Masonry and steel components used in constructing buildings are in a constant state of motion. Volumetric changes are produced by temperature variation and deformation resulting from static or dynamic loading and in some materials, such as masonry, due to moisture content. This article addresses means of determining when expansion and seismic joints are required and how to proportion and design appropriate joints, specifically in steel buildings. It does not cover the study of expansion joints in concrete structures, in masonry construction or in non-structural (architectural elements.
Arif GÜRAY
2002-01-01
Full Text Available In this work, the diagonal tensile strength of furniture edge joints such as wooden dowel, minifix, and alyan screw was investigated in panel-constructed boards for Suntalam and MDF Lam. For this purpose, a diagonal tensile strength test was applied to the 72 samples. According to the results, the maximum diagonal tensile strength was found to be in MDF Lam boards that jointed with alyan screw.
Modeling liquid bridge between surfaces with contact angle hysteresis.
Chen, H; Amirfazli, A; Tang, T
2013-03-12
This paper presents the behaviors of a liquid bridge when being compressed and stretched in a quasi-static fashion between two solid surfaces that have contact angle hysteresis (CAH). A theoretical model is developed to obtain the profiles of the liquid bridge given a specific separation between the surfaces. Different from previous models, both contact lines in the upper and lower surfaces were allowed to move when the contact angles reach their advancing or receding values. When the contact angles are between their advancing and receding values, the contact lines are pinned while the contact angles adjust to accommodate the changes in separation. Effects of CAH on both asymmetric and symmetric liquid bridges were analyzed. The model was shown to be able to correctly predict the behavior of the liquid bridge during a quasi-static compression/stretching loading cycle in experiments. Because of CAH, the liquid bridge can have two different profiles at the same separation during one loading and unloading cycle, and more profiles can be obtained during multiple cycles. The maximum adhesion force generated by the liquid bridge is found to be influenced by the CAH of surfaces. CAH also leads to energy cost during a loading cycle of the liquid bridge. In addition, the minimum separation between the two solid surfaces is shown to affect how the contact radii and angles change on the two surfaces as the liquid bridge is stretched.
Large optical field enhancement for nanotips with large opening angles
Thomas, Sebastian; Wachter, Georg; Lemell, Christoph; Burgdörfer, Joachim; Hommelhoff, Peter
2015-06-01
We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric tips on the shape, size, and material of the tip. We confirm the strong dependence of the field enhancement factor on the radius of curvature. In addition, we find a surprisingly strong increase of field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in the experimentally relevant parameter range (radius of curvature ≥slant 5 nm at 800 nm laser wavelength), we obtain field enhancement factors of up to ∼ 35 for Au and ∼ 12 for W for large opening angles. We confirm this strong dependence on the opening angle for many other materials featuring a wide variety in their dielectric response. For dielectrics, the opening angle dependence is traced back to the electrostatic force of the induced surface charge at the tip shank. For metals, the plasmonic response strongly increases the field enhancement and shifts the maximum field enhancement to smaller opening angles.
Kim,Eugene
2009-12-01
Full Text Available Conventionally, the carrying angle of the elbow is measured using simple two-dimensional radiography or goniometry, which has questionable reliability. This study proposes a novel method for estimating carrying angles using computed tomography that can enhance the reliability of the angle measurement. Data of CT scans from 25 elbow joints were processed to build segmented three-dimensional models. The cross-sectional centerlines of the ulna and the humerus were traced from the 3D models, and the angle between 2 vectors formed from the centerlines of the humerus and the ulna was defined as the "three-dimensional carrying angle." These angles were compared with those measured by simple radiograph. Two cases of angular deformity were underwent surgery based on this preoperative surgical planning, and the postoperative 3D carrying angles were evaluated using the proposed method. The mean value of the calculated three-dimensional carrying angle was 20.7 degrees +/-3.61, while it was 16.3 degrees +/-3.21 based on simple radiography without statistical difference. Based on the 3D carrying angle estimations, 2 surgical cases of cubitus deformities were planned by comparison with the normal contra-lateral elbow. Postoperative angle estimations confirmed that the corrected angles were nearly identical to the planned angles for both cases. The results of this study showed that the carrying angle can be accurately estimated using three-dimensional CT and that the proposed method is useful in evaluating deformities of the elbow with high reliability.
The contribution of quasi-joint stiffness of the ankle joint to gait in patients with hemiparesis.
Sekiguchi, Yusuke; Muraki, Takayuki; Kuramatsu, Yuko; Furusawa, Yoshihito; Izumi, Shin-Ichi
2012-06-01
The role of ankle joint stiffness during gait in patients with hemiparesis has not been clarified. The purpose of this study was to determine the contribution of quasi-joint stiffness of the ankle joint to spatiotemporal and kinetic parameters regarding gait in patients with hemiparesis due to brain tumor or stroke and healthy individuals. Spatiotemporal and kinetic parameters regarding gait in twelve patients with hemiparesis due to brain tumor or stroke and nine healthy individuals were measured with a 3-dimensional motion analysis system. Quasi-joint stiffness was calculated from the slope of the linear regression of the moment-angle curve of the ankle joint during the second rocker. There was no significant difference in quasi-joint stiffness among both sides of patients and the right side of controls. Quasi-joint stiffness on the paretic side of patients with hemiparesis positively correlated with maximal ankle power (r=0.73, Phemiparesis. In contrast, healthy individuals might decrease quasi-joint stiffness to avoid deceleration of forward tilt of the tibia. Our findings might be useful for selecting treatment for increased ankle stiffness due to contracture and spasticity in patients with hemiparesis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sinclair Jonathan
2014-12-01
Full Text Available Identification of the hip joint centre (HJC is important in the biomechanical examination of human movement. However, there is yet to be any published information regarding the influence of different HJC locations on hip and knee joint kinetics during functional tasks. This study aimed to examine the influence of four different HJC techniques on 3- D hip and knee joint kinetics/kinematics during the squat. Hip and knee joint kinetics/kinematics of the squat were obtained from fifteen male participants using an eight camera motion capture system. The 3-D kinetics/kinematics of the squat were quantified using four hip joint centre estimation techniques. Repeated measures ANOVAs were used to compare the discrete parameters as a function of each HJC location. The results show that significant differences in joint angles and moment parameters were evident at both the hip and knee joint in the coronal and transverse planes. These observations indicate that when calculating non-sagittal joint kinetics/kinematics during the squat, researchers should carefully consider their HJC method as it may significantly affect the interpretation of their data.
The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel
F. Rooniyan
2014-02-01
Full Text Available Flow connection in channels is a phenomenon which frequently happens in rivers, water and drainage channels and urban sewage systems. The phenomenon appears to be more complex in rivers than in channels, especially at the y-junction bed joint that causes erosion and sedimentation at some areas resulting to morphological changes. Flow behavior at the channel junction area depends on variables such as channel geometry, discharge ratio, tributary width and y-junction connection angle of the channel, bed level changes at the bed joint, flow characteristic at the bed joint upstream and flow Froude number in different sections. In this research, fluent numerical model and junction angles of 30o, 45o & 60o are used to analyze and evaluate the effect of channel junction geometry on the flow pattern and the flow separation zone dimensions in different ratios of flow discharge (upstream channel discharge to total discharge of the flow. Results for two ratios of flow discharge are represented. Results are in agreement with earlier studies and it is shown that the change of the channel crossing angle affects the flow pattern in the main channel and also that the dimensions of the created separation zone in the main channel become larger when the crossing angle increases. This phenomenon can also be observed when the flow discharge ratio is lower. Analysis showed that the least dimension of the separation zone will be at the crossing angle of 45o .
Joint carrier phase and symbol timing recovery for PAM systems
Meyers, M. H.; Franks, L. E.
1980-08-01
The theory of maximum likelihood (ML) estimation as applied to PAM timing and phase recovery is considered. Data-aided (DA) and nondata-aided (NDA) strategies used for the joint estimation of both phase and timing parameters are evaluated on the basis of their error variances. The comparisons of the effects of excess bandwidth, different modulation schemes, DA versus NDA recovery, and joint estimation versus estimation of only one parameter are presented. A practical implementation of a proposed ML estimator, named a pseudo-maximum likelihood (PML) estimator, exhibits a noise-independent, data dependent jitter that dominates in many cases of practical interest.
Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik
1998-01-01
to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...
Optimisation of Fan Blade Angle
Swaroop M P
2017-01-01
Full Text Available This report represents the optimization of fan blade angle in accordance with the various room temperatures that can be in the tropical area like India. We took this work mainly because cooling is an important factor now a days in every area where construction and rooms are there and ceiling fans are the most common device that is commonly used. So it is of utmost importance to tweak the performance of this ceiling fan so that it can function in its most optimal condition. We have modeled the fan in a modeling software (SOLIDWORKS and imported that into an analyzing software (ANSYS and a result is generated on the various blade angles (0, 4, 8 and 12.5 degrees in accordance to room conditions. A trend line curve with the obtained data is expected as the result which can be crucial for designing of future fans
Functional data analysis of joint coordination in the development of vertical jump performance.
Harrison, A J; Ryan, W; Hayes, K
2007-05-01
Mastery of complex motor skills requires effective development of inter-segment coordination patterns. These coordination patterns can be described and quantified using various methods, including descriptive angle-angle diagrams, conjugate cross-correlations, vector coding, normalized root mean squared error techniques and, as in this study, functional data analysis procedures. Lower limb kinematic data were obtained for 49 children performing the vertical jump. Participants were assigned to developmental stages using the criteria of Gallahue and Ozmun . Inter-segment joint coordination data consisting of pairs of joint angle-time data were smoothed using B-splines and the resulting bivariate functions were analysed using functional principal component analysis and stepwise discriminant analysis. The results of the analysis showed that the knee-hip joint coordination pattern was most effective at discriminating between developmental stages. The results provide support for the application of functional data analysis techniques in the analysis of joint coordination or time series type data.
Generalised maximum entropy and heterogeneous technologies
Oude Lansink, A.G.J.M.
1999-01-01
Generalised maximum entropy methods are used to estimate a dual model of production on panel data of Dutch cash crop farms over the period 1970-1992. The generalised maximum entropy approach allows a coherent system of input demand and output supply equations to be estimated for each farm in the sam
20 CFR 229.48 - Family maximum.
2010-04-01
... month on one person's earnings record is limited. This limited amount is called the family maximum. The family maximum used to adjust the social security overall minimum rate is based on the employee's Overall..., when any of the persons entitled to benefits on the insured individual's compensation would, except...
The maximum rotation of a galactic disc
Bottema, R
1997-01-01
The observed stellar velocity dispersions of galactic discs show that the maximum rotation of a disc is on average 63% of the observed maximum rotation. This criterion can, however, not be applied to small or low surface brightness (LSB) galaxies because such systems show, in general, a continuously
Biscarini, Andrea
2012-01-01
A model has been developed to definitively characterize the resistance properties and the joint loading (i.e., shear and compressive components of the joint reaction force) in single-joint exercises with ideal elastic bands. The model accounts for the relevant geometric and elastic properties of the band, the band pre-stretching, and the relative positioning among the joint center of rotation and the fixation points of the band. All the possible elastic torque profiles of ascending-descending, descending, or ascending type were disclosed in relation to the different ranges of joint angles. From these results the elastic resistance setting that best reproduces the average-user's knee extensor torque in maximal isometric/isokinetic efforts was determined. In this optimized setting, the shear tibiofemoral reaction force corresponding to an anterior (posterior) tibial displacement was 65% smaller than (nearly the same as) that obtained in a cam-equipped leg-extension equipment for equal values of resistance torque peak, whereas the compressive tibiofemoral reaction force was 22% higher. Compared to a weight-stack leg-extension equipment, an elastic resistance optimized setting has the potential to give a more effective quadriceps activation across the range of motion, and greatly reduces the anterior cruciate ligament strain force, which represents the main drawback of existing open kinetic-chain knee-extension exercises.
Impingement-free hip motion: the 'normal' angle alpha after osteochondroplasty.
Neumann, Mirjam; Cui, Quanjun; Siebenrock, Klaus A; Beck, Martin
2009-03-01
Femoroacetabular impingement is considered a cause of hip osteoarthrosis. In cam impingement, an aspherical head-neck junction is squeezed into the joint and causes acetabular cartilage damage. The anterior offset angle alpha, observed on a lateral crosstable radiograph, reflects the location where the femoral head becomes aspheric. Previous studies reported a mean angle alpha of 42 degrees in asymptomatic patients. Currently, it is believed an angle alpha of 50 degrees to 55 degrees is normal. The aim of this study was to identify that angle alpha which allows impingement-free motion. In 45 patients who underwent surgical treatment for femoroacetabular impingement, we measured the angle alpha preoperatively, immediately postoperatively, and 1 year postoperatively. All hips underwent femoral correction and, if necessary, acetabular correction. The correction was considered sufficient when, in 90 degrees hip flexion, an internal rotation of 20 degrees to 25 degrees was possible. The angle alpha was corrected from a preoperative mean of 66 degrees (range, 45 degrees - 79 degrees) to 43 degrees (range, 34 degrees - 60 degrees) postoperatively. Because the acetabulum is corrected to normal first, the femoral correction is tested against a normal acetabulum. We therefore concluded an angle alpha of 43 degrees achieved surgically and with impingement-free motion, represents the normal angle alpha, an angle lower than that currently considered sufficient.
Al-Bashir, Areen K; Al-Abed, Mohammad; Abu Sharkh, Fayez M; Kordeya, Mohamed N; Rousan, Fadi M
2015-01-01
Developmental Dysplasia of the Hip (DDH) is a medical term represent the hip joint instability that appear mainly in infants. The examination for this condition can be done by ultrasound for children under 6 months old and by X-ray for children over 6 months old. Physician's assessment is based on certain angles derived from those images, namely the Acetabular Angle, and the Center Edge Angle. In this paper, we are presenting a novel, fully automatic algorithm for measuring the diagnostic angles of DDH from the X-ray images. Our algorithm consists of Automatic segmentation and extraction of anatomical landmarks from X-ray images. Both of Acetabular angle and Center edge angle are automatically calculated. The analysis included X-ray images for 16 children recruited for the purposed of this study. The automatically acquired angles accuracy for Acetabular Angle was around 85%, and an absolute deviation of 3.4°±3.3° compared to the physician's manually calculated angle. The results of this method are very promising for the future development of an automatic method for screening X-ray images DDH that complement and aid the physicians' manual methods.
Disequilibrium dihedral angles in dolerite sills
Holness, Marian B.; Richardson, Chris; Helz, Rosalind T.
2012-01-01
The geometry of clinopyroxene-plagioclase-plagioclase junctions in mafic rocks, measured by the median dihedral angle Θcpp, is created during solidification. In the solidifying Kilauea Iki (Hawaii) lava lake, the wider junctions between plagioclase grains are the first to be filled by pyroxene, followed by the narrower junctions. The final Θcpp, attained when all clinopyroxene-plagioclase-plagioclase junctions are formed, is 78° in the upper crust of the lake, and 85° in the lower solidification front. Θcpp in the 3.5-m-thick Traigh Bhàn na Sgùrra sill (Inner Hebrides) is everywhere 78°. In the Whin Sill (northern England, 38 m thick) and the Portal Peak sill (Antarctica, 129 m thick), Θcpp varies symmetrically, with the lowest values at the margins. The 266-m-thick Basement Sill (Antarctica) has asymmetric variation of Θcpp, attributed to a complex filling history. The chilled margins of the Basement Sill are partially texturally equilibrated, with high Θcpp. The plagioclase grain size in the two widest sills varies asymmetrically, with the coarsest rocks found in the upper third. Both Θcpp and average grain size are functions of model crystallization times. Θcpp increases from 78° to a maximum of ∼100° as the crystallization time increases from 1 to 500 yr. Because the use of grain size as a measure of crystallization time is dependent on an estimate of crystal growth rates, dihedral angles provide a more direct proxy for cooling rates in dolerites.
Nucleation of small angle boundaries
Nabarro, FRN
1996-12-01
Full Text Available -ANGLE BOUNDARIES F.R.N. Nabarro Condensed Matter Physics Research Unit, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, and Division of Materials Science and Technology, CSIR, P.O. Box 395, Pretoria, South... with eq. 11. Acknowledgment F.R.N. Nabarro is grateful to the University of Virginia for hospitality during the course of this work. D. Kuhlmann-Wilsdorf thanks the National Science Foundation, (Surface Engineering...
Finite size effects on textured surfaces: recovering contact angles from vagarious drop edges.
Gauthier, Anaïs; Rivetti, Marco; Teisseire, Jérémie; Barthel, Etienne
2014-02-18
A clue to understand wetting hysteresis on superhydrophobic surfaces is the relation between receding contact angle and surface textures. When the surface textures are large, there is a significant distribution of local contact angles around the drop. As seen from the cross section, the apparent contact angle oscillates as the triple line recedes. Our experiments demonstrate that the origin of these oscillations is a finite size effect. Combining side and bottom views of the drop, we take into account the 3D conformation of the surface near the edge to evaluate an intrinsic contact angle from the oscillations of the apparent contact angle. We find that for drops receding on axisymmetric textures the intrinsic receding contact angle is the minimum value of the oscillation while for a square lattice it is the maximum.
Dane, D. H.
1971-01-01
Joint permits smooth and easy movement of disabled arm and is smaller, lighter and less expensive than previous models. Device is interchangeable and may be used on either arm at the shoulder or at the elbow.
... my joints more healthy? Definitions What can go wrong? Although you might think arthritis affects only older ... Discovery Into Health ® Home | Health Information | Research | Funding | News & Events | About Us | Portal en español | Asian-Language ...
Federal Laboratory Consortium — The Joint Quantum Institute (JQI) is pursuing that goal through the work of leading quantum scientists from the Department of Physics of the University of Maryland...
Optimal Limb Length Ratio of Quadruped Robot Minimising Joint Torque on Slopes
Tadayoshi Aoyama
2009-01-01
Full Text Available This paper aims to determine an optimal structure for a quadruped robot, which will allow the robot’s joint torque sum to be minimised. An animal’s characteristic limb length ratio is a vital part of its overall morphology and the one that enables it to travel easily through its environment. For the same reason, a robot’s structure needs to be suitably designed for locomotion in its working environment. Joint torques are necessary to maintain the posture of the robot and to accelerate joint angles during walking motion, hence, minimisation of joint torques reduces energy consumption. We performed a numerical simulation in which we analysed the joint torques for various limb lengths and slope angles in order to determine the optimal structure of a robot walking on a slope. Our investigation determines that the optimal Ratio of Rear Leg Length (RRL can be derived by the use of a simulation designed to determine the physical structure of quadruped robot. Our analysis suggests that joint torque will increase as the slope angle becomes steeper if the rear legs of the robot are shorter than its forelegs, and that joint torque will decrease as the slope angle declines if the robot’s forelegs are shorter than its rear legs. Finally, experimental results validated our simulation analysis.
Kun, Liu; Inoue, Yoshio; Shibata, Kyoko; Enguo, Cao
2011-02-01
Knee-joint kinematics analysis using an optimal sensor set and a reliable algorithm would be useful in the gait analysis. An original approach for ambulatory estimation of knee-joint angles in anatomical coordinate system is presented, which is composed of a physical-sensor-difference-based algorithm and virtual-sensor-difference-based algorithm. To test the approach, a wearable monitoring system composed of accelerometers and magnetometers was developed and evaluated on lower limb. The flexion/extension (f/e), abduction/adduction (a/a), and inversion/extension (i/e) rotation angles of the knee joint in the anatomical joint coordinate system were estimated. In this method, since there is no integration of angular acceleration or angular velocity, the result is not distorted by offset and drift. The three knee-joint angles within the anatomical coordinate system are independent of the orders, which must be considered when Euler angles are used. Besides, since there are no physical sensors implanted in the knee joint based on the virtual-sensor-difference-based algorithm, it is feasible to analyze knee-joint kinematics with less numbers and types of sensors than those mentioned in some others methods. Compared with results from the reference system, the developed wearable sensor system is available to do gait analysis with fewer sensors and high degree of accuracy.
Duality of Maximum Entropy and Minimum Divergence
Shinto Eguchi
2014-06-01
Full Text Available We discuss a special class of generalized divergence measures by the use of generator functions. Any divergence measure in the class is separated into the difference between cross and diagonal entropy. The diagonal entropy measure in the class associates with a model of maximum entropy distributions; the divergence measure leads to statistical estimation via minimization, for arbitrarily giving a statistical model. The dualistic relationship between the maximum entropy model and the minimum divergence estimation is explored in the framework of information geometry. The model of maximum entropy distributions is characterized to be totally geodesic with respect to the linear connection associated with the divergence. A natural extension for the classical theory for the maximum likelihood method under the maximum entropy model in terms of the Boltzmann-Gibbs-Shannon entropy is given. We discuss the duality in detail for Tsallis entropy as a typical example.
Novel angle estimation for bistatic MIMO radar using an improved MUSIC
Li, Jianfeng; Zhang, Xiaofei; Chen, Han
2014-09-01
In this article, we study the problem of angle estimation for bistatic multiple-input multiple-output (MIMO) radar and propose an improved multiple signal classification (MUSIC) algorithm for joint direction of departure (DOD) and direction of arrival (DOA) estimation. The proposed algorithm obtains initial estimations of angles obtained from the signal subspace and uses the local one-dimensional peak searches to achieve the joint estimations of DOD and DOA. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, and is almost the same as that of two-dimensional MUSIC. Furthermore, the proposed algorithm can be suitable for irregular array geometry, obtain automatically paired DOD and DOA estimations, and avoid two-dimensional peak searching. The simulation results verify the effectiveness and improvement of the algorithm.
Concrete Pavement Joint Deterioration
2016-01-01
Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in INDOT specification, pavement materials, designs and construction practices, and current de-icing materials were examined and related to the durability of concrete at the joints of existing pavements. A survey of concrete pavements across the state ...
Joint involvement in Ochronosis
Biehl, Christoph; Thormann, U.; Madera, N.; Heiß, C
2016-01-01
Introduction: Ochronosis is a metabolic disorder that is usually associated with the typical brown-black colored urine and retention of phenol complexes in sclera and skin. Kidney and heart are also checked, the disease can also cause damage in these organs. The disease is less associated with degenerative changes in the joints of the limbs and the spine. Methods: We report on the progress of a patient with documented family history on alcaptonuria and joint involvement. In the age of 69 ...
A fuzzy PID-controlled SMA actuator for a two-DOF joint
Shi Zhenyun
2014-04-01
Full Text Available Shape memory alloy (SMA actuator is a potential advanced component for servo-systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.
Ward, Michael E.; Harkins, Bruce D.
1993-01-01
Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.
Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness
Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon
2015-09-01
In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.
Dosimetric dependence on the collimator angle in prostate volumetric modulated arc therapy
Muhammad Isa
2014-12-01
Full Text Available Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV and organs-at-risk (OARs in prostate volumetric modulated arc therapy (VMAT when varying collimator angle. The collimator angle has the largest impact and is worth considering, so, its awareness is essential for a planner to produce an optimal prostate VMAT plan in a reasonable time frame. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o were created systematically using a Harold heterogeneous pelvis phantom. The conformity index (CI, homogeneity index (HI, gradient index (GI, machine monitor units (MUs, dose-volume histogram and mean and maximum dose of the PTV were calculated and analyzed. On the other hand, the dose-volume histogram and mean and maximum doses of the OARs such as the bladder, rectum and femoral heads for different collimator angles were determined from the plans.Results: There was no significant difference, based on the planned dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. A higher CI (0.53 and lower HI (0.064 were found in the 45o collimator angle. In addition, the 15o collimator angle provided a lower value of HI similar to the 45o collimator angle. Collimator angles of 75o and 90o were found to be good for rectum sparing, and collimator angles of 75o and 30o were found to be good for sparing of right and left femur, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: Our study indicates that the dosimetric results provide support and guidance to allow the clinical radiation physicists to make careful decisions in implementing suitable collimator angles to improve the PTV coverage and OARs sparing in prostate VMAT.
Measurement of Capillary Radius and Contact Angle within Porous Media.
Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed
2015-12-01
The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.
Correlation of resting elbow angle with spasticity in chronic stroke survivors
Minal Y Bhadane
2015-08-01
Full Text Available Objective: To evaluate whether resting joint angle is indicative of severity of spasticity of the elbow flexors in chronic stroke survivors. Methods: Seventeen hemiparetic stroke subjects (male: n=13; female: n=4; age: 37-89 years; 11 right and 6 left hemiplegia; averaged 54.8 months after stroke, ranging 12-107 months participated in the study. The number of subjects with modified Ashworth scale score (MAS = 0, 1, 1+, 2, 3 was 3, 3, 5, 3, 3, respectively. In a single experimental session, resting elbow joint angle, MAS, and Tardieu scale score (Tardieu R1 were measured. A customized motorized stretching device was used to stretch elbow flexors at 5°/s, 50°/s, and 100°/s, respectively. Biomechanical responses (peak reflex torque and reflex stiffness of elbow flexors were quantified. Correlation analyses between clinical and biomechanical assessments were performed. Results: Resting elbow joint angle showed a strong positive correlation with Tardieu R1 (r = 0.77, p<0.01 and a very strong negative correlation with MAS (r = −0.89, p<0.01. The resting angle also had strong correlations with biomechanical measures (r= −0.63 to −0.76, p<0.01. Conclusion: Our study provides experimental evidence for anecdotal observation that the resting elbow joint angle correlates with severity of spasticity in chronic stroke. Resting angle observation for spasticity assessment can and will be an easy, yet a valid way of spasticity estimation in clinical settings, particularly for small muscles or muscles which are not easily measurable by common clinical methods.
An investigation of rugby scrimmaging posture and individual maximum pushing force.
Wu, Wen-Lan; Chang, Jyh-Jong; Wu, Jia-Hroung; Guo, Lan-Yuen
2007-02-01
Although rugby is a popular contact sport and the isokinetic muscle torque assessment has recently found widespread application in the field of sports medicine, little research has examined the factors associated with the performance of game-specific skills directly by using the isokinetic-type rugby scrimmaging machine. This study is designed to (a) measure and observe the differences in the maximum individual pushing forward force produced by scrimmaging in different body postures (3 body heights x 2 foot positions) with a self-developed rugby scrimmaging machine and (b) observe the variations in hip, knee, and ankle angles at different body postures and explore the relationship between these angle values and the individual maximum pushing force. Ten national rugby players were invited to participate in the examination. The experimental equipment included a self-developed rugby scrimmaging machine and a 3-dimensional motion analysis system. Our results showed that the foot positions (parallel and nonparallel foot positions) do not affect the maximum pushing force; however, the maximum pushing force was significantly lower in posture I (36% body height) than in posture II (38%) and posture III (40%). The maximum forward force in posture III (40% body height) was also slightly greater than for the scrum in posture II (38% body height). In addition, it was determined that hip, knee, and ankle angles under parallel feet positioning are factors that are closely negatively related in terms of affecting maximum pushing force in scrimmaging. In cross-feet postures, there was a positive correlation between individual forward force and hip angle of the rear leg. From our results, we can conclude that if the player stands in an appropriate starting position at the early stage of scrimmaging, it will benefit the forward force production.
Maximum likelihood estimation of fractionally cointegrated systems
Lasak, Katarzyna
to the equilibrium parameters and the variance-covariance matrix of the error term. We show that using ML principles to estimate jointly all parameters of the fractionally cointegrated system we obtain consistent estimates and provide their asymptotic distributions. The cointegration matrix is asymptotically mixed...
Proximal Tibiofibular Joint: An overview
Tze Wang Chan
2016-06-01
Full Text Available Proximal tibiofibular joint is a frequently neglected joint which can be a source of lateral knee pain. Open surgery is the current mainstay of surgical management of proximal tibiofibular joint disorders. The proximal tibiofibular arthroscopy allows access to the joint and adjacent important ligamentous structures. This forms the basis of further development of arthroscopic procedures for a variety of pathologies.
Experimentally reduced hip abductor function during walking: Implications for knee joint loads
Henriksen, Marius; Aaboe, Jens; Simonsen, Erik B;
2009-01-01
muscle was significantly reduced by pain (-39.6%). All other muscles were unaffected. Peaks in the frontal plane hip and knee joint moments were significantly reduced during pain (-6.4% and -4.2%, respectively). Lateral trunk lean angles and midstance hip joint adduction and knee joint extension angles......-dimensional trunk and lower extremity joint kinematics and kinetics. Surface electromyography (EMG) of the glutei, quadriceps, and hamstring muscles were also measured. The peak GM EMG activity had temporal concurrence with peaks in frontal plane moments at both hip and knee joints. The EMG activity in the GM...... were reduced by 1 degrees . Thus, the gait changes were primarily caused by reduced GM function. Walking with impaired GM muscle function due to pain significantly reduced the external knee adduction moment. This study challenge the notion that reduced GM function due to pain would lead to increased...
A Study of Radiation Incidence Angle in Anteroposterior Cervical Vertebra Examination
Jeung, Seung Woon; Lim, Cheong Hwan; Jung, Hong Ryang; Joo, Yeong Cheol; Park, Mi Ja [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of); Han, Beon Hee [Dept. of Radiological Science, Seonam University, Namwon (Korea, Republic of)
2012-06-15
In anteroposterior projection for cervical vertebra, it is general that the incidence angle of X-ray is 15 degrees to 20 degrees to head in order to prevent overlap of mandible and occipital bone and to observe array of cervical interbody and shapes of joints. However, the angle is appropriate for foreigners that was determined by foreign literature review long ago, and there have been few researches of incidence angle for Koreans' body type. The purpose of in this study are to identify the incidence angle appropriate for Koreans and to present methodology. In order to measure the incidence angle, 1,044 patients who visited S Hospital located in Seosan were selected and measured of average length of cervical vertebra, OID, axis angle, and FID. The incidence angle was calculated from the applied formula by measuring average values per age groups and sex (see Formula 1 and 2). The average length of cervical vertebra was 6cm: the length was increased from teenagers to twenties but was decreased since thirties. The difference between males and females was around 1cm (p<.01). The OID was almost the same regardless of age groups and sex. As for axis angle, the slope was increased in teenagers and twenties, but was decreased since thirties. The difference between males and females was around 2 degrees (p<.01). The FID measurements were almost the same regardless of age groups and sex, and when the incidence angle was measured from these values, the teenagers were 15.9 degrees, the twenties were 16.9 degrees, the thirties were 16.6 degrees, the forties were 16.2 degrees, the fifties were 15.9 degrees, and the sixties were 14.5 degrees, indicating that the angle was increased from teenagers to the twenties but decreased since the thirties. While the angles of males and females were measured to be the same in the teenagers, the angle was different between males and females by 2 degrees. When the incidence angle statistically analyzed with measurement of average length
Chang, Sarah R; Kobetic, Rudi; Triolo, Ronald J
2017-01-01
An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm) and knee (6 Nm) joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7°) were within normal range, while average peak knee joint angles (40 ± 8°) were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia.
Richter, M
2011-04-01
Restoration of a stable and plantigrade foot in deformities of the ankle and/or hindfoot and concomitant degenerative changes at the ankle and subtalar joint. Deformities of the ankle and/or hindfoot and concomitant degenerative changes at the ankle and subtalar joint. Active local infection or relevant arterial insufficiency. Prone position and posterolateral approach to ankle and subtalar joint. Placement of dynamic reference bases (DRB) in the tibia and through a stab incision in the talus or calcaneus. Two-dimensional (2D) image acquisition for navigation. Definition of axes of the tibia, calcaneus, and hindfoot, and of extent of correction. Exposition of ankle and subtalar joint and removal of remaining cartilage. Computer-assisted surgery (CAS)-guided correction and transfixation of the corrected position with 2.5 mm K-wires. Three-dimensional (3D) image acquisition for analysis of the accuracy of the correction and planning of the drilling for the retrograde nail. CAS-guided drilling insertion of the nail. Insertion of locking screws in the calcaneus, talus and tibia. 3D image acquisition for analysis of the accuracy of the correction implant position. Partial weight bearing (15 kg) in an orthosis (Vacuped) for 6 weeks, followed by full weight bearing in a stable standard shoe. From 1 September 2006 to 31 August 2008, 14 correction arthrodeses were performed. The accuracy was assessed by intraoperative 3D imaging. All achieved angles/translations were within a maximum deviation of 2°/mm when compared to the planned correction. Complications that were associated with CAS were not observed. In all 14 cases completing follow-up, timely fusion was registered.
Device for measuring hole elongation in a bolted joint
Wichorek, Gregory R. (Inventor)
1987-01-01
A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.
Szulc, P; Lewandowski, J; Marecki, B
2001-01-01
The study was concerned with verification of the selection of reference points used for knee joint mobility range goniometry. The verification was based on photometric and electrogoniometric methods of femorotibial angle measurements. The material for measurements were three knee joint preparations. The obtained data were subjected to descriptive analysis; photographic documentation of geometric relations between the reference points was also prepared. Considerable divergence of measurement results was observed with respect to the actual knee joint flexion angle, amounting even to 16 degrees. The differences are due to the selection of anatomic landmarks, and depend in particular on the distance of the point to which the goniometer axis is applied from the approximate location of the mechanical joint axis. The corrections of knee joint flexion angle measurements were also estimated on the basis of data obtained from the photographs and the derived mathematical formula.
Joint ventures in medical services.
Rublee, D A
1987-01-01
This paper is an overview of joint-venture activity in healthcare, describing trends in joint ventures and raising issues for physicians. The purposes are to discuss the major current facets of joint-venture alliances in healthcare and to identify policy issues that arise from the trend to use joint ventures as an organizational tool. Speculation is made about the future role of joint ventures in the organization of healthcare.
Small angle scattering and polymers
Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1996-12-31
The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.
Theta angle in holographic QCD
Jarvinen, Matti
2016-01-01
V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the theta-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, N_f/N_c, and theta, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.
Stimulus-dependent maximum entropy models of neural population codes.
Granot-Atedgi, Einat; Tkačik, Gašper; Segev, Ronen; Schneidman, Elad
2013-01-01
Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.
Stimulus-dependent maximum entropy models of neural population codes.
Einat Granot-Atedgi
Full Text Available Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.
Kulatilake, P.H.S.W.; Shou, G. [Univ. of Arizona, Tucson, AZ (United States); Huang, T.H. [National Taiwan Univ., Taipei (Taiwan, Province of China)
1996-04-01
Most of the natural rock joint surface profiles do not belong to the self similar fractal category. In general, roughness profiles of rock joints consist of non-stationary and stationary components. At the simplest level, only one parameter is sufficient to quantify non-stationary joint roughness. The average inclination angle I, along with the direction considered for the joint surface, is suggested to capture the non-stationary roughness. It is shown that even though the fractal dimension D is a useful parameter, it alone is insufficient to quantify the stationary roughness of non-self similar profiles.
A dual method for maximum entropy restoration
Smith, C. B.
1979-01-01
A simple iterative dual algorithm for maximum entropy image restoration is presented. The dual algorithm involves fewer parameters than conventional minimization in the image space. Minicomputer test results for Fourier synthesis with inadequate phantom data are given.
Maximum Throughput in Multiple-Antenna Systems
Zamani, Mahdi
2012-01-01
The point-to-point multiple-antenna channel is investigated in uncorrelated block fading environment with Rayleigh distribution. The maximum throughput and maximum expected-rate of this channel are derived under the assumption that the transmitter is oblivious to the channel state information (CSI), however, the receiver has perfect CSI. First, we prove that in multiple-input single-output (MISO) channels, the optimum transmission strategy maximizing the throughput is to use all available antennas and perform equal power allocation with uncorrelated signals. Furthermore, to increase the expected-rate, multi-layer coding is applied. Analogously, we establish that sending uncorrelated signals and performing equal power allocation across all available antennas at each layer is optimum. A closed form expression for the maximum continuous-layer expected-rate of MISO channels is also obtained. Moreover, we investigate multiple-input multiple-output (MIMO) channels, and formulate the maximum throughput in the asympt...
Photoemission spectromicroscopy with MAXIMUM at Wisconsin
Ng, W.; Ray-Chaudhuri, A.K.; Cole, R.K.; Wallace, J.; Crossley, S.; Crossley, D.; Chen, G.; Green, M.; Guo, J.; Hansen, R.W.C.; Cerrina, F.; Margaritondo, G. (Dept. of Electrical Engineering, Dept. of Physics and Synchrotron Radiation Center, Univ. of Wisconsin, Madison (USA)); Underwood, J.H.; Korthright, J.; Perera, R.C.C. (Center for X-ray Optics, Accelerator and Fusion Research Div., Lawrence Berkeley Lab., CA (USA))
1990-06-01
We describe the development of the scanning photoemission spectromicroscope MAXIMUM at the Wisoncsin Synchrotron Radiation Center, which uses radiation from a 30-period undulator. The article includes a discussion of the first tests after the initial commissioning. (orig.).