maximum neutron flux at thermal nuclear reactors
International Nuclear Information System (INIS)
Strugar, P.
1968-10-01
Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself [sr
Maximum neutron flux in thermal reactors
International Nuclear Information System (INIS)
Strugar, P.V.
1968-12-01
Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples
Maximum power flux of auroral kilometric radiation
International Nuclear Information System (INIS)
Benson, R.F.; Fainberg, J.
1991-01-01
The maximum auroral kilometric radiation (AKR) power flux observed by distant satellites has been increased by more than a factor of 10 from previously reported values. This increase has been achieved by a new data selection criterion and a new analysis of antenna spin modulated signals received by the radio astronomy instrument on ISEE 3. The method relies on selecting AKR events containing signals in the highest-frequency channel (1980, kHz), followed by a careful analysis that effectively increased the instrumental dynamic range by more than 20 dB by making use of the spacecraft antenna gain diagram during a spacecraft rotation. This analysis has allowed the separation of real signals from those created in the receiver by overloading. Many signals having the appearance of AKR harmonic signals were shown to be of spurious origin. During one event, however, real second harmonic AKR signals were detected even though the spacecraft was at a great distance (17 R E ) from Earth. During another event, when the spacecraft was at the orbital distance of the Moon and on the morning side of Earth, the power flux of fundamental AKR was greater than 3 x 10 -13 W m -2 Hz -1 at 360 kHz normalized to a radial distance r of 25 R E assuming the power falls off as r -2 . A comparison of these intense signal levels with the most intense source region values (obtained by ISIS 1 and Viking) suggests that multiple sources were observed by ISEE 3
Minkowski vacuum transitions in (nongeometric) flux compactifications
International Nuclear Information System (INIS)
Herrera-Suarez, Wilberth; Loaiza-Brito, Oscar
2010-01-01
In this work we study the generalization of twisted homology to geometric and nongeometric backgrounds. In the process, we describe the necessary conditions to wrap a network of D-branes on twisted cycles. If the cycle is localized in time, we show how by an instantonic brane mediation, some D-branes transform into fluxes on different backgrounds, including nongeometric fluxes. As a consequence, we show that in the case of a IIB six-dimensional torus compactification on a simple orientifold, the flux superpotential is not invariant by this brane-flux transition, allowing the connection among different Minkowski vacuum solutions. For the case in which nongeometric fluxes are turned on, we also discuss some topological restrictions for the transition to occur. In this context, we show that there are some vacuum solutions protected to change by a brane-flux transition.
Maximum heat flux in boiling in a large volume
International Nuclear Information System (INIS)
Bergmans, Dzh.
1976-01-01
Relationships are derived for the maximum heat flux qsub(max) without basing on the assumptions of both the critical vapor velocity corresponding to the zero growth rate, and planar interface. The Helmholz nonstability analysis of vapor column has been made to this end. The results of this examination have been used to find maximum heat flux for spherical, cylindric and flat plate heaters. The conventional hydrodynamic theory was found to be incapable of producing a satisfactory explanation of qsub(max) for small heaters. The occurrence of qsub(max) in the present case can be explained by inadequate removal of vapor output from the heater (the force of gravity for cylindrical heaters and surface tension for the spherical ones). In case of flat plate heater the qsub(max) value can be explained with the help of the hydrodynamic theory
Maximum allowable heat flux for a submerged horizontal tube bundle
International Nuclear Information System (INIS)
McEligot, D.M.
1995-01-01
For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or open-quotes criticalclose quotes) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration
The Maximum Flux of Star-Forming Galaxies
Crocker, Roland M.; Krumholz, Mark R.; Thompson, Todd A.; Clutterbuck, Julie
2018-04-01
The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here we derive the conditions under which a self-gravitating, mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area \\dot{Σ }_*,crit ˜ 10^3 M_{⊙} pc-2 Myr-1, corresponding to a critical flux of F*, crit ˜ 1013L⊙ kpc-2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our one-dimensional models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.
Discontinuity of maximum entropy inference and quantum phase transitions
International Nuclear Information System (INIS)
Chen, Jianxin; Ji, Zhengfeng; Yu, Nengkun; Zeng, Bei; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Zhou, Duanlu
2015-01-01
In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. (paper)
Deconfinement transition and flux-string models
International Nuclear Information System (INIS)
Momen, A.; Rosenzweig, C.
1997-01-01
Flux-string models can be used to study the deconfining phase transition. In this paper, we study the models proposed by Patel. We also study the large N c limits of Patel model. To discuss the validity of the mean field theory results, the one-loop Coleman-Weinberg effective potential is calculated for N c =3. We argue that the quantum corrections vanish at large N c when the energy of the so-called baryonic vertices scale with N c . copyright 1997 The American Physical Society
Maximum Entropy Estimation of Transition Probabilities of Reversible Markov Chains
Directory of Open Access Journals (Sweden)
Erik Van der Straeten
2009-11-01
Full Text Available In this paper, we develop a general theory for the estimation of the transition probabilities of reversible Markov chains using the maximum entropy principle. A broad range of physical models can be studied within this approach. We use one-dimensional classical spin systems to illustrate the theoretical ideas. The examples studied in this paper are: the Ising model, the Potts model and the Blume-Emery-Griffiths model.
Response of mantle transition zone thickness to plume buoyancy flux
Das Sharma, S.; Ramesh, D. S.; Li, X.; Yuan, X.; Sreenivas, B.; Kind, R.
2010-01-01
The debate concerning thermal plumes in the Earth's mantle, their geophysical detection and depth characterization remains contentious. Available geophysical, petrological and geochemical evidence is at variance regarding the very existence of mantle plumes. Utilizing P-to-S converted seismic waves (P receiver functions) from the 410 and 660 km discontinuities, we investigate disposition of these boundaries beneath a number of prominent hotspot regions. The thickness of the mantle transition zone (MTZ), measured as P660s-P410s differential times (tMTZ), is determined. Our analyses suggest that the MTZ thickness beneath some hotspots correlates with the plume strength. The relationship between tMTZ, in response to the thermal perturbation, and the strength of plumes, as buoyancy flux B, follows a power law. This B-tMTZ behavior provides unprecedented insights into the relation of buoyancy flux and excess temperature at 410-660 km depth below hotspots. We find that the strongest hotspots, which are located in the Pacific, are indeed plumes originating at the MTZ or deeper. According to the detected power law, even the strongest plumes may not shrink the transition zone by significantly more than ~40 km (corresponding to a maximum of 300-400° excess temperature).
Marshall, Nicole; de Vernal, Anne; Mucci, Alfonso; Filippova, Alexandra; Kienast, Markus
2017-04-01
Low concentrations of biogenic carbonate characterize the sediments deposited in the Labrador Sea during the last glaciation. This may reflect poor calcite preservation and/or low biogenic carbonate productivity and fluxes. Regional bottom water ventilation was reduced during the Last Glacial Maximum (LGM), so the calcite lysocline might have been shallower than at present in the deep Labrador Sea making dissolution of calcite shells in the deep Labrador Sea possible. To address the issue, a multi-proxy approach based on micropaleontological counts (coccoliths, foraminifers, palynomorphs) and biogeochemical analyses (alkenones) was applied in the investigation of core HU2008-029-004-PC recovered in the northwestern Labrador Sea. Calcite dissolution indices based on the relative abundance benthic foraminifera shells to their organic linings as well as on fragmentation of planktonic foraminifera shells were used to evaluate changes in calcite dissolution/ preservation since the LGM. In addition, the ratio of the concentrations of coccoliths, specifically of the alkenone-producer Emiliania huxleyi, and alkenones (Emiliania huxleyi: alkenones) was explored as a potential new proxy of calcite dissolution. A sharp increase in coccoliths, foraminifers and organic linings from nearly none to substantial concentrations at 12 ka, reflect a jump to significantly greater biogenic fluxes at the glacial-interglacial transition. Furthermore, conventional dissolution indices (shells/linings of benthic foraminifera and fragmentation of planktic foraminifers) reveal that dissolution is not likely responsible for the lower glacial abundances of coccoliths and foraminifers. Only the low Emiliania huxleyi: alkenones ratios in glacial sediments could be interpreted as evidence of increased dissolution during the LGM. Given the evidence of allochthonous alkenone input into the glacial Labrador Sea, the latter observations must be treated with caution. Overall, the records indicate that
Prediction of transient maximum heat flux based on a simple liquid layer evaporation model
International Nuclear Information System (INIS)
Serizawa, A.; Kataoka, I.
1981-01-01
A model of liquid layer evaporation with considerable supply of liquid has been formulated to predict burnout characteristics (maximum heat flux, life, etc.) during an increase of the power. The analytical description of the model is built upon the visual and photographic observations of the boiling configuration at near peak heat flux reported by other investigators. The prediction compares very favourably with water data presently available. It is suggested from the work reported here that the maximum heat flux occurs because of a balance between the consumption of the liquid film on the heated surface and the supply of liquid. Thickness of the liquid film is also very important. (author)
Fast flux test facility, transition project plan
International Nuclear Information System (INIS)
Guttenberg, S.
1994-01-01
The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition
Fast flux test facility, transition project plan
Energy Technology Data Exchange (ETDEWEB)
Guttenberg, S.
1994-11-15
The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.
Maximum neutron flux in thermal reactors; Maksimum neutronskog fluksa kod termalnih reaktora
Energy Technology Data Exchange (ETDEWEB)
Strugar, P V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)
1968-07-01
Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples.
Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates
Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo
2015-07-01
Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.
THE RISE AND FALL OF OPEN SOLAR FLUX DURING THE CURRENT GRAND SOLAR MAXIMUM
International Nuclear Information System (INIS)
Lockwood, M.; Rouillard, A. P.; Finch, I. D.
2009-01-01
We use geomagnetic activity data to study the rise and fall over the past century of the solar wind flow speed V SW , the interplanetary magnetic field strength B, and the open solar flux F S . Our estimates include allowance for the kinematic effect of longitudinal structure in the solar wind flow speed. As well as solar cycle variations, all three parameters show a long-term rise during the first half of the 20th century followed by peaks around 1955 and 1986 and then a recent decline. Cosmogenic isotope data reveal that this constitutes a grand maximum of solar activity which began in 1920, using the definition that such grand maxima are when 25-year averages of the heliospheric modulation potential exceeds 600 MV. Extrapolating the linear declines seen in all three parameters since 1985, yields predictions that the grand maximum will end in the years 2013, 2014, or 2027 using V SW , F S , or B, respectively. These estimates are consistent with predictions based on the probability distribution of the durations of past grand solar maxima seen in cosmogenic isotope data. The data contradict any suggestions of a floor to the open solar flux: we show that the solar minimum open solar flux, kinematically corrected to allow for the excess flux effect, has halved over the past two solar cycles.
Verification of maximum impact force for interim storage cask for the Fast Flux Testing Facility
International Nuclear Information System (INIS)
Chen, W.W.; Chang, S.J.
1996-01-01
The objective of this paper is to perform an impact analysis of the Interim Storage Cask (ISC) of the Fast Flux Test Facility (FFTF) for a 4-ft end drop. The ISC is a concrete cask used to store spent nuclear fuels. The analysis is to justify the impact force calculated by General Atomics (General Atomics, 1994) using the ILMOD computer code. ILMOD determines the maximum force developed by the concrete crushing which occurs when the drop energy has been absorbed. The maximum force, multiplied by the dynamic load factor (DLF), was used to determine the maximum g-level on the cask during a 4-ft end drop accident onto the heavily reinforced FFTF Reactor Service Building's concrete surface. For the analysis, this surface was assumed to be unyielding and the cask absorbed all the drop energy. This conservative assumption simplified the modeling used to qualify the cask's structural integrity for this accident condition
Investigation on maximum transition temperature of phonon mediated superconductivity
Energy Technology Data Exchange (ETDEWEB)
Fusui, L; Yi, S; Yinlong, S [Physics Department, Beijing University (CN)
1989-05-01
Three model effective phonon spectra are proposed to get plots of {ital T}{sub {ital c}}-{omega} adn {lambda}-{omega}. It can be concluded that there is no maximum limit of {ital T}{sub {ital c}} in phonon mediated superconductivity for reasonable values of {lambda}. The importance of high frequency LO phonon is also emphasized. Some discussions on high {ital T}{sub {ital c}} are given.
Flux lattice commensurability and the resistive transition of wire networks
International Nuclear Information System (INIS)
Wilks, C.W.
1992-01-01
The commensurability of one structure with one length scale with that of another with a different length scale is a familiar problem. For a superconducting wire network in a magnetic field the two competing length scales are that of the network and that of the magnetic flux lattice. The superconducting to normal state phase boundary, Tc(H), of a periodic network shows periodic oscillations with a period of H 0 = Φ 0 /A where Φ 0 = hc/2e and A is the area of the elementary tile. These oscillations are due to flux quantization around the individual tiles of the network. In addition, within each period, there is structure at H = (p/q)H 0 (p,q integers) which is due to the vortices forming energetically favorable commensurate arrangements on top of the underlying lattice. The authors have studied the broadening of the zero field resistive transition with the application of a magnetic field for networks of various geometries. This was done by either directly measuring the resistive transitions at the commensurate fields or by using a technique that utilizes phase boundary measurements and yields the field induced width of the resistive transition as a continued function of the field. There is a striking dependence of the field induced width on whether or not the field is commensurate with the network. The broadening at the commensurate flux filling is well described by thermally activated vortex motion using the formalism of Ambegoakar and Halperin which allows us to extract numbers for the pinning potentials at the various commensurate states. The authors have found that the size of the discontinuity in the slope of the phase boundary at a commensurate filling is related to the strength of the lattice and therefore to the broadening of the transition at that filling so that by just looking at the phase boundary of a network one can gauge the relative broadening of the resistive transitions at the commensurate flux fillings
Communication: Electronic flux induced by crossing the transition state
Jia, Dongming; Manz, Jörn; Yang, Yonggang
2018-01-01
We present a new effect of chemical reactions, e.g., isomerizations, that occurs when the reactants pass along the transition state, on the way to products. It is based on the well-known fact that at the transition state, the electronic structure of one isomer changes to the other. We discover that this switch of electronic structure causes a strong electronic flux that is well distinguishable from the usual flux of electrons that travel with the nuclei. As a simple but clear example, the effect is demonstrated here for bond length isomerization of Na2 (21Σu+), with adiabatic crossing the barrier between the inner and outer wells of the double minimum potential that support different "Rydberg" and "ionic" type electronic structures, respectively.
Maximum neutron flux at thermal nuclear reactors; Maksimum neutronskog fluksa kod termalnih reaktora
Energy Technology Data Exchange (ETDEWEB)
Strugar, P [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)
1968-10-15
Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself. [Serbo-Croat] Savremeni reaktori za fizicka i tehnoloska istrazivanja predstavljaju tehnicki komplikovanu i skupu masinu. Iz tog razloga su opravdana nastojanja da se podesnim rasporedom goriva u jezgru reaktora dodje do sto ekonomicnijeg rjesenja. U literaturi postoji vise radova, cak i konkretnih realizacija u vidu reaktora sa reflektorom u centru, koji se bave odredjivanjem takve prostorne zavisnosti koncentracije goriva koja pod odredjenim uslovima daje najveci neutronski fluks. Zajednicki nedostatak svih pomenutih rjesenja je u tome sto se polazi od pretpostavljenih prostornih distribucija
Lifetime of electric flux tubes near the QCD phase transition
International Nuclear Information System (INIS)
Faroughy, Cyrus; Shuryak, Edward
2010-01-01
Electric flux tubes are a well-known attribute of the quantum chromodynamic (QCD) vacuum in which they manifest confinement of electric color charges. Recently, experimental results appeared which suggest that not only do those objects persist at temperatures T≅T c near the QCD phase transitions, but their decay is suppressed and the resulting clusters in Au-Au collisions are larger than in pp collisions (i.e., in vacuum). This correlates well with recent theoretical scenarios that view the QCD matter in the T≅T c region as a dual-magnetic plasma dominated by color-magnetic monopoles. In this view, the flux tubes are stabilized by dual-magnetic currents and are described by dual magnetohydrodynamics (DMHD). In this article, we calculate classically the dissipative effects in the flux tube. Such effects are associated with rescattering and finite conductivity of the matter. We derive the DMHD solution in the presence of dissipation and then estimate the lifetime of the electric flux tubes. The conclusion of this study is that a classical treatment leads to too short of a lifetime for the flux tubes.
Flux-Level Transit Injection Experiments with NASA Pleiades Supercomputer
Li, Jie; Burke, Christopher J.; Catanzarite, Joseph; Seader, Shawn; Haas, Michael R.; Batalha, Natalie; Henze, Christopher; Christiansen, Jessie; Kepler Project, NASA Advanced Supercomputing Division
2016-06-01
Flux-Level Transit Injection (FLTI) experiments are executed with NASA's Pleiades supercomputer for the Kepler Mission. The latest release (9.3, January 2016) of the Kepler Science Operations Center Pipeline is used in the FLTI experiments. Their purpose is to validate the Analytic Completeness Model (ACM), which can be computed for all Kepler target stars, thereby enabling exoplanet occurrence rate studies. Pleiades, a facility of NASA's Advanced Supercomputing Division, is one of the world's most powerful supercomputers and represents NASA's state-of-the-art technology. We discuss the details of implementing the FLTI experiments on the Pleiades supercomputer. For example, taking into account that ~16 injections are generated by one core of the Pleiades processors in an hour, the “shallow” FLTI experiment, in which ~2000 injections are required per target star, can be done for 16% of all Kepler target stars in about 200 hours. Stripping down the transit search to bare bones, i.e. only searching adjacent high/low periods at high/low pulse durations, makes the computationally intensive FLTI experiments affordable. The design of the FLTI experiments and the analysis of the resulting data are presented in “Validating an Analytic Completeness Model for Kepler Target Stars Based on Flux-level Transit Injection Experiments” by Catanzarite et al. (#2494058).Kepler was selected as the 10th mission of the Discovery Program. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.
Ungar, Eugene K.
2014-01-01
The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.
International Nuclear Information System (INIS)
Yin, Chukai; Su, Bingjing
2001-01-01
The Minerbo's maximum entropy Eddington factor (MEEF) method was proposed as a low-order approximation to transport theory, in which the first two moment equations are closed for the scalar flux f and the current F through a statistically derived nonlinear Eddington factor f. This closure has the ability to handle various degrees of anisotropy of angular flux and is well justified both numerically and theoretically. Thus, a lot of efforts have been made to use this approximation in transport computations, especially in the radiative transfer and astrophysics communities. However, the method suffers numerical instability and may lead to anomalous solutions if the equations are solved by certain commonly used (implicit) mesh schemes. Studies on numerical stability in one-dimensional cases show that the MEEF equations can be solved satisfactorily by an implicit scheme (of treating δΦ/δx) if the angular flux is not too anisotropic so that f 32 , the classic diffusion solution P 1 , the MEEF solution f M obtained by Riemann solvers, and the NFLD solution D M for the two problems, respectively. In Fig. 1, NFLD and MEEF quantitatively predict very close results. However, the NFLD solution is qualitatively better because it is continuous while MEEF predicts unphysical jumps near the middle of the slab. In Fig. 2, the NFLD and MEEF solutions are almost identical, except near the material interface. In summary, the flux-limited diffusion theory derived from the MEEF description is quantitatively as accurate as the MEEF method. However, it is more qualitatively correct and user-friendly than the MEEF method and can be applied efficiently to various steady-state problems. Numerical tests show that this method is widely valid and overall predicts better results than other low-order approximations for various kinds of problems, including eigenvalue problems. Thus, it is an appealing approximate solution technique that is fast computationally and yet is accurate enough for a
Quantum processes: probability fluxes, transition probabilities in unit time and vacuum vibrations
International Nuclear Information System (INIS)
Oleinik, V.P.; Arepjev, Ju D.
1989-01-01
Transition probabilities in unit time and probability fluxes are compared in studying the elementary quantum processes -the decay of a bound state under the action of time-varying and constant electric fields. It is shown that the difference between these quantities may be considerable, and so the use of transition probabilities W instead of probability fluxes Π, in calculating the particle fluxes, may lead to serious errors. The quantity W represents the rate of change with time of the population of the energy levels relating partly to the real states and partly to the virtual ones, and it cannot be directly measured in experiment. The vacuum background is shown to be continuously distorted when a perturbation acts on a system. Because of this the viewpoint of an observer on the physical properties of real particles continuously varies with time. This fact is not taken into consideration in the conventional theory of quantum transitions based on using the notion of probability amplitude. As a result, the probability amplitudes lose their physical meaning. All the physical information on quantum dynamics of a system is contained in the mean values of physical quantities. The existence of considerable differences between the quantities W and Π permits one in principle to make a choice of the correct theory of quantum transitions on the basis of experimental data. (author)
International Nuclear Information System (INIS)
Ha, Sang Jun
1998-02-01
boiling from given boiling conditions with the pool CHF data measured by Dhir and Liaw and Paul and Abdel-Khalik and the subcooled flow CHF data measured by Del Valle M. and Kenning and with the heat flux data in transition boiling measured by Dhir and Liaw. The predictions show good agreement with the existing data. To use the present phenomenological model as a prediction tool, a study has been performed to predict CHF in pool and subcooled forced convection boiling using existing correlations for active site density, maximum bubble diameter, and heat transfer coefficients in nucleate boiling. Comparison of the model predictions with experimental data for pool boiling of water and upward flow boiling of water in vertical, uniformly-heated round tubes is performed. The data set (2438 data points) for CHF in subcooled forced convection boiling covers wide ranges of operating conditions (0.1≤P≤14.0 MPa, 0.00033≤D≤0.0375 m: 0.002≤L≤2 m: 660 ≤G≤90000 kg/m 2 s: 70≤Δh,≤1456 kJ/kg). Without any tuning factor, 1492 data points out of 2438 (61.2%) are calculated with a r.m.s. error of 41.3% and about 80% of the calculated data points are predicted within ±50%. It is also shown that by a modification of suppression factor in subcooled boiling, the predictive capability of the present model can be improved, i.e., 2421 data points (99.3%) are calculated with a r.m.s. error of 20.5% and 82.3% of the calculated data points are predicted within ±25%. In addition, the parametric trends of CHF in subcooled forced convection boiling have been investigated under local conditions hypothesis
Observations of solar flare transition zone plasmas from the Solar Maximum Mission
Cheng, C.-C.; Bruner, E. C.; Tandberg-Hanssen, E.; Woodgate, B. E.; Shine, R. A.; Kenny, P. J.; Henze, W.; Poletto, G.
1982-01-01
The spatial and temporal evolution of the Si IV and O IV intensity, density and mass motions in preflare and flare transition zone plasmas are studied for the case of the April 8, 1980 flare. It is found that: (1) the UV flare observed in the Si IV and O IV lines is unambiguously identified as occurring in a low-lying, preexisting transition zone loop which spanned the magnetic neutral line separating a larger leader spot and a newly emerged, isolated spot of opposite polarity; (2) at the onset of the flare, the easternmost footpoint, which was anchored in an isolated spot region of high longitudinal magnetic field gradient, showed sudden, impulsive brightening with large intensity increases; and (3) the release flare energy was transported by way of large-scale connecting field lines to other parts of the active region, producing the hot plasma and H-alpha kernels observed near the trailing spot.
Phase transitions and flux distributions of SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Peng, Yingcai.
1993-01-01
The strong interactions between quarks are believed to be described by Quantum Chromodynamics (QCD), which is a non-abelian SU(3) gauge theory. It is known that QCD undergoes a deconfining phase transition at very high temperatures, that is, at low temperatures QCD is in confined phase, at sufficient high temperatures it is in an unconfined phase. Also, quark confinement is believed to be due to string formation. In this dissertation the authors studied SU(2) gauge theory using numerical methods of LGT, which will provide some insights about the properties of QCD because SU(2) is similar to SU(3). They measured the flux distributions of a q bar q pair at various temperatures in different volumes. They find that in the limit of infinite volumes the flux distribution is different in the two phases. In the confined phase strong evidence is found for the string formation, however, in the unconfined phase there is no string formation. On the other hand, in the limit of zero temperature and finite volumes they find a clear signal for string formation in the large volume region, however, the string tension measured in intermediate volumes is due to finite volume effects, there is no intrinsic string formation. The color flux energies (action) of the q bar q pair are described by Michael sum rules. The original Michael sum rules deal with a static q bar q pair at zero temperature in infinite volumes. To check these sum rules with flux data at finite temperatures, they present a complete derivation for the sum rules, thus generalizing them to account for finite temperature effects. They find that the flux data are consistent with the prediction of generalized sum rules. The study elucidates the rich structures of QCD, and provides evidence for quark confinement and string formation. This supports the belief that QCD is a correct theory for strong interactions, and quark confinement can be explained by QCD
DEFF Research Database (Denmark)
Ravn, Ib
. FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...
Martucci, M.; Munini, R.; Boezio, M.; Di Felice, V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Marcelli, N.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.; Raath, J. L.
2018-02-01
Precise measurements of the time-dependent intensity of the low-energy (solar activity periods, i.e., from minimum to maximum, are needed to achieve comprehensive understanding of such physical phenomena. The minimum phase between solar cycles 23 and 24 was peculiarly long, extending up to the beginning of 2010 and followed by the maximum phase, reached during early 2014. In this Letter, we present proton differential spectra measured from 2010 January to 2014 February by the PAMELA experiment. For the first time the GCR proton intensity was studied over a wide energy range (0.08–50 GeV) by a single apparatus from a minimum to a maximum period of solar activity. The large statistics allowed the time variation to be investigated on a nearly monthly basis. Data were compared and interpreted in the context of a state-of-the-art three-dimensional model describing the GCRs propagation through the heliosphere.
International Nuclear Information System (INIS)
Ellsworth, R.W.; Ito, A.S.; MacFall, J.R.; Siohan, F.; Streitmatter, R.E.; Tonwar, S.C.; Yodh, G.B.
1975-01-01
A transition radiation dedector and an ionization calorimeter have been used to measure the unaccompanied pion to proton flux ratio for energies greater than 400 and 600 GeV at an altitude of 2,900 meters. (orig./BJ) [de
International Nuclear Information System (INIS)
Fukuyama, Y.; Kuriyama, T.; Hirata, M.
1986-01-01
Boiling transition and inverted annular heat transfer for R-113 have been investigated experimentally in a horizontal tube of 1.2 X 10/sup -3/ meter inner diameter with heating length over inner diameter ratio of 50. Experiments cover a high mass flux density range, a high local subcooling range and a wide local pressure range. Heat transfer characteristics were obtained by using heat flux control steady-state apparatus. Film boiling treated here is limited to the case of inverted annular heat transfer with very thin vapor film, on the order of 10/sup -6/ meter. Moreover, film boiling region is always limited to a certain downstream part, since the system has a pressure gradient along the flow direction. Discussions are presented on the parametric trends of boiling heat transfer characteristic curves and characteristic points. The possible existence is suggested of a spontaneous nucleation control surface boiling phenomena. And boiling transition heat flux and inverted annular heat transfer were correlated
Granato, Enzo
2018-05-01
We study the effects of disorder on the zero-temperature quantum phase transition of a honeycomb array of Josephson junctions in a magnetic field with an average of fo flux quantum per plaquette. Bond disorder due to spatial variations in the Josephson couplings and magnetic flux disorder due to variations in the plaquette areas are considered. The model can describe the superconductor-insulator transition in ultra-thin films with a triangular pattern of nanoholes. Path integral Monte Carlo simulations of the equivalent (2 + 1)-dimensional classical model are used to study the critical behavior and estimate the universal resistivity at the transition. The results show that bond disorder leads to a rounding of the first-order phase transition for fo = 1 / 3 to a continuous transition. For integer fo, the decrease of the critical coupling parameter with flux disorder is significantly different from that of the same model defined on a square lattice. The results are compared with recent experimental observations on nanohole thin films with geometrical disorder and external magnetic field.
International Nuclear Information System (INIS)
Veklerov, E.; Llacer, J.; Hoffman, E.J.
1987-10-01
In order to study properties of the Maximum Likelihood Estimator (MLE) algorithm for image reconstruction in Positron Emission Tomographyy (PET), the algorithm is applied to data obtained by the ECAT-III tomograph from a brain phantom. The procedure for subtracting accidental coincidences from the data stream generated by this physical phantom is such that he resultant data are not Poisson distributed. This makes the present investigation different from other investigations based on computer-simulated phantoms. It is shown that the MLE algorithm is robust enough to yield comparatively good images, especially when the phantom is in the periphery of the field of view, even though the underlying assumption of the algorithm is violated. Two transition matrices are utilized. The first uses geometric considerations only. The second is derived by a Monte Carlo simulation which takes into account Compton scattering in the detectors, positron range, etc. in the detectors. It is demonstrated that the images obtained from the Monte Carlo matrix are superior in some specific ways. A stopping rule derived earlier and allowing the user to stop the iterative process before the images begin to deteriorate is tested. Since the rule is based on the Poisson assumption, it does not work well with the presently available data, although it is successful wit computer-simulated Poisson data
Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid
International Nuclear Information System (INIS)
Alford, Mark G.; Good, Gerald
2008-01-01
We analyze magnetic-flux tubes at zero temperature in a superconductor that is coupled to a superfluid via both density and gradient ('entrainment') interactions. The example we have in mind is high-density nuclear matter, which is a proton superconductor and a neutron superfluid, but our treatment is general and simple, modeling the interactions as a Ginzburg-Landau effective theory with four-fermion couplings, including only s-wave pairing. We numerically solve the field equations for flux tubes with an arbitrary number of flux quanta and compare their energies. This allows us to map the type-I/type-II transition in the superconductor, which occurs at the conventional κ≡λ/ξ=1/√(2) if the condensates are uncoupled. We find that a density coupling between the condensates raises the critical κ and, for a sufficiently high neutron density, resolves the type-I/type-II transition line into an infinite number of bands corresponding to 'type-II(n)' phases, in which n, the number of quanta in the favored flux tube, steps from 1 to infinity. For lower neutron density, the coupling creates spinodal regions around the type-I/type-II boundary, in which metastable flux configurations are possible. We find that a gradient coupling between the condensates lowers the critical κ and creates spinodal regions. These exotic phenomena may not occur in nuclear matter, which is thought to be deep in the type-II region but might be observed in condensed-matter systems
DEFF Research Database (Denmark)
Eskildsen, M.R.; Fisher, I.R.; Gammel, P.L.
2000-01-01
Using small angle neutron scattering we have studied the square to hexagonal flux line lattice symmetry transition in different members of the borocarbide superconductors. The studies were performed using samples of ErNi2B2C, Lu(Ni1-xCox)(2)B2C with cobalt doping levels x = 1.5-9% and Y0.64Lu0.36Ni...
Puttock, Alan; Dungait, Jennifer A J; Bol, Roland; Dixon, Elizabeth R; Macleod, Christopher J A; Brazier, Richard E
2012-10-30
Globally, many drylands are experiencing the encroachment of woody vegetation into grasslands. These changes in ecosystem structure and processes can result in increased sediment and nutrient fluxes due to fluvial erosion. As these changes are often accompanied by a shift from C(4) to C(3) vegetation with characteristic δ(13) C values, stable isotope analysis provides a promising mechanism for tracing these fluxes. Input vegetation, surface sediment and fluvially eroded sediment samples were collected across two contrasting C(4) -C(3) dryland vegetation transitions in New Mexico, USA. Isotope ratio mass spectrometric analyses were performed using a Carlo Erba NA2000 analyser interfaced to a SerCon 20-22 isotope ratio mass spectrometer to determine bulk δ(13) C values. Stable isotope analyses of contemporary input vegetation and surface sediments over the monitored transitions showed significant differences (p fluvially eroded sediment from each of the sites, with no significant variation between surface sediment and eroded sediment values. The significant differences in bulk δ(13) C values between sites were dependent on vegetation input. Importantly, these values were robustly expressed in fluvially eroded sediments, suggesting that stable isotope analysis is suitable for tracing sediment fluxes. Due to the prevalent nature of these dryland vegetation transitions in the USA and globally, further development of stable isotope ratio mass spectrometry has provided a valuable tool for enhanced understanding of functional changes in these ecosystems. Copyright © 2012 John Wiley & Sons, Ltd.
Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian
2011-01-01
In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of
Flow regime transition and heat transfer model at low mass flux condition in a post-dryout region
International Nuclear Information System (INIS)
Jeong, Hae Yong
1996-02-01
The post-dryout flow regime transition criterion from inverted annular flow (IAF) to agitated inverted annular flow (AIAF) is suggested based on the hyperbolicity breaking concept. The hyperbolicity breaking represents a bifurcation point where a sudden flow transition occurs. The hyperbolicity breaking concept is applied to describe the flow regime transition from IAF to AIAF by the growth of disturbance on liquid core surface. The resultant correlation has the similar form to Takenaka's empirical one. To validate the proposed model, it is applied to predict Takenake's experimental results using R-113 refrigerant with four different tube diameters of 3, 5, 7 and 10 mm. The proposed model gives accurate predictions for the tube diameters of 7 and 10 mm. As the tube diameter decreases, the differences between the predictions and the experimental results slightly increase. The flow regime transition from AIAF to dispersed flow (DF) is described by the drift flux model. It is shown that the transition criterion can be well predicted if the droplet sizes in dispersed flow are evaluated appropriately. Existing mechanistic post-dryout models result in fairly good predictions when the mass flux is high or when the film dryout occurs. However, the predictions by these models become poor at low mass flux at which the flow regime before dryout is believed to be churn-turbulent. This is because the constitutive relations and/or the imposed assumptions used in the models become erroneous at low mass flux. The droplet size predicted by the correlation used in the model becomes unrealistically large. In addition, the single phase vapor heat transfer correlation becomes invalid at low mass flux condition. To develop a mechanistic post-dryout model which is available at low mass flux condition, the entrainment mechanisms and the entrained droplet sizes with relation to the flow regimes are investigated. Through the analysis of many experimental post-dryout data, it is shown that
Burgess, A. B. H.; Erler, A. R.; Shepherd, T. G.
2012-04-01
We present spectra, nonlinear interaction terms, and fluxes computed for horizontal wind fields from high-resolution meteorological analyses made available by ECMWF for the International Polar Year. Total kinetic energy spectra clearly show two spectral regimes: a steep spectrum at large scales and a shallow spectrum in the mesoscale. The spectral shallowing appears at ~200 hPa, and is due to decreasing rotational power with height, which results in the shallower divergent spectrum dominating in the mesoscale. The spectra we find are steeper than those observed in aircraft data and GCM simulations. Though the analyses resolve total spherical harmonic wavenumbers up to n = 721, effects of dissipation on the fluxes and spectra are visible starting at about n = 200. We find a weak forward energy cascade and a downscale enstrophy cascade in the mesoscale. Eddy-eddy nonlinear kinetic energy transfers reach maximum amplitudes at the tropopause, and decrease with height thereafter; zonal mean-eddy transfers dominate in the stratosphere. In addition, zonal anisotropy reaches a minimum at the tropopause. Combined with strong eddy-eddy interactions, this suggests flow in the tropopause region is very active and bears the greatest resemblance to isotropic turbulence. We find constant enstrophy flux over a broad range of wavenumbers around the tropopause and in the upper stratosphere. A relatively constant spectral enstrophy flux at the tropopause suggests a turbulent inertial range, and that the enstrophy flux is resolved. A main result of our work is its implications for explaining the shallow mesoscale spectrum observed in aircraft wind measurements, GCM studies, and now meteorological analyses. The strong divergent component in the shallow mesoscale spectrum indicates unbalanced flow, and nonlinear transfers decreasing quickly with height are characteristic of waves, not turbulence. Together with the downscale flux of energ y through the shallow spectral range, these
Digital Repository Service at National Institute of Oceanography (India)
Banakar, V.K.
turnover. Mar. Geol., 95:71-76. Transition metal fluxes to the top and bottom of two oriented manganese nodules (SS-657 and SK-176) were deter- mined by combining radiochemical and geochemical analyses. Distinct differences in transition metal fluxes, 2a... of rotation of the nodule several times over time intervals which are smaller than the time resolution involved in U-Th isotope dating techniques. Introduction orientation of a nodule, the turnover exposing the accreting surfaces to different environ...
Piazzi, Marco; Bennati, Cecilia; Basso, Vittorio
2017-10-01
We investigate the kinetics of first-order magnetic phase transitions by measuring and modeling the heat-flux avalanches corresponding to the irreversible motion of the phase-boundary interface separating the coexisting low- and high-temperature stable magnetic phases. By means of out-of-equilibrium thermodynamics, we encompass the damping mechanisms of the boundary motion in a phenomenological parameter αs. By analyzing the time behavior of the heat-flux signals measured on La (Fe -Mn -Si )13-H magnetocaloric compounds through Peltier calorimetry temperature scans performed at low rates, we relate the linear rise of the individual avalanches to the intrinsic-damping parameter αs.
Burke, Christopher J.; Catanzarite, Joseph
2017-01-01
Quantifying the ability of a transiting planet survey to recover transit signals has commonly been accomplished through Monte-Carlo injection of transit signals into the observed data and subsequent running of the signal search algorithm (Gilliland et al., 2000; Weldrake et al., 2005; Burke et al., 2006). In order to characterize the performance of the Kepler pipeline (Twicken et al., 2016; Jenkins et al., 2017) on a sample of over 200,000 stars, two complementary injection and recovery tests are utilized:1. Injection of a single transit signal per target into the image or pixel-level data, hereafter referred to as pixel-level transit injection (PLTI), with subsequent processing through the Photometric Analysis (PA), Presearch Data Conditioning (PDC), Transiting Planet Search (TPS), and Data Validation (DV) modules of the Kepler pipeline. The PLTI quantification of the Kepler pipeline's completeness has been described previously by Christiansen et al. (2015, 2016); the completeness of the final SOC 9.3 Kepler pipeline acting on the Data Release 25 (DR25) light curves is described by Christiansen (2017).2. Injection of multiple transit signals per target into the normalized flux time series data with a subsequent transit search using a stream-lined version of the Transiting Planet Search (TPS) module. This test, hereafter referred to as flux-level transit injection (FLTI), is the subject of this document. By running a heavily modified version of TPS, FLTI is able to perform many injections on selected targets and determine in some detail which injected signals are recoverable. Significant numerical efficiency gains are enabled by precomputing the data conditioning steps at the onset of TPS and limiting the search parameter space (i.e., orbital period, transit duration, and ephemeris zero-point) to a small region around each injected transit signal.The PLTI test has the advantage that it follows transit signals through all processing steps of the Kepler pipeline, and
International Nuclear Information System (INIS)
Rahmani, R.
1983-01-01
The nucleate boiling heat-transfer coefficient and the maximum heat flux were studied experimentally as functions of velocity, quality and heater diameter for single-phase flow, and two-phase flow of Freon-113 (trichlorotrifluorethane). Results show: (1) peak heat flux: over 300 measured peak heat flux data from two 0.875-in. and four 0.625-in.-diameter heaters indicated that: (a) for pool boiling, single-phase and two-phase forced convection boiling the only parameter (among hysteresis, rate of power increase, aging, presence and proximity of unheated rods) that has a statistically significant effect on the peak heat flux is the velocity. (b) In the velocity range (0 0 position or the point of impact of the incident fluid) and the top (180 0 position) of the test element, respectively
Yang, Liping; Peter, Hardi; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Zhang, Lei; Yan, Limei
2018-01-01
In the solar atmosphere, jets are ubiquitous at various spatial-temporal scales. They are important for understanding the energy and mass transports in the solar atmosphere. According to recent observational studies, the high-speed network jets are likely to be intermittent but continual sources of mass and energy for the solar wind. Here, we conduct a 2D magnetohydrodynamics simulation to investigate the mechanism of these network jets. A combination of magnetic flux emergence and horizontal advection is used to drive the magnetic reconnection in the transition region between a strong magnetic loop and a background open flux. The simulation results show that not only a fast warm jet, much similar to the network jets, is found, but also an adjacent slow cool jet, mostly like classical spicules, is launched. Differing from the fast warm jet driven by magnetic reconnection, the slow cool jet is mainly accelerated by gradients of both thermal pressure and magnetic pressure near the outer border of the mass-concentrated region compressed by the emerging loop. These results provide a different perspective on our understanding of the formation of both the slow cool jets from the solar chromosphere and the fast warm jets from the solar transition region.
Schmidtmayr, M.; Hughes, J. W.; Ryter, F.; Wolfrum, E.; Cao, N.; Creely, A. J.; Howard, N.; Hubbard, A. E.; Lin, Y.; Reinke, M. L.; Rice, J. E.; Tolman, E. A.; Wukitch, S.; Ma, Y.; ASDEX Upgrade Team; Alcator C-Mod Team
2018-05-01
This paper presents investigations on the role of the edge ion heat flux for transitions from L-mode to H-mode in Alcator C-Mod. Previous results from the ASDEX Upgrade tokamak indicated that a critical value of edge ion heat flux per particle is needed for the transition. Analysis of C-Mod data confirms this result. The edge ion heat flux is indeed found to increase linearly with density at given magnetic field and plasma current. Furthermore, the Alcator C-Mod data indicate that the edge ion heat flux at the L-H transition also increases with magnetic field. Combining the data from Alcator C-Mod and ASDEX Upgrade yields a general expression for the edge ion heat flux at the L-H transition. These results are discussed from the point of view of the possible physics mechanism of the L-H transition. They are also compared to the L-H power threshold scaling and an extrapolation for ITER is given.
International Nuclear Information System (INIS)
Tournier, Robert F.
2014-01-01
An undercooled liquid is unstable. The driving force of the glass transition at T g is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change −V m ×Δp at T g where V m is the molar volume. A stable glass–liquid transition model predicts the specific heat jump of fragile liquids at T≤T g , the Kauzmann temperature T K where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between T K and T g , the maximum nucleation rate at T K of superclusters containing magic atom numbers, and the equilibrium latent heats at T g and T K . Strong-to-fragile and strong-to-strong liquid transitions at T g are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid–liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at T K of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at T g without stable-glass formation while a strong glass is stable after transition
International Nuclear Information System (INIS)
Binder, Claudia R.; Hofer, Christoph; Wiek, Arnim; Scholz, Roland W.
2004-01-01
This paper discusses the integration of material flux analysis and agent analysis as the basis for a transition towards improved regional wood management in Appenzell Ausserrhoden (AR), a small Swiss canton located in the Pre-Alps of Switzerland. We present a wood flow analysis for forests, wood processing industries and consumption in AR, accounting for different wood products. We find that the forest is currently significantly underutilized although there are sizeable imports of wood and fuel to this small region. The underutilization of the forest contributes to a skewed age distribution, jeopardizing long-term sustainable development of the forest, as the fulfillment of its protective and production function are likely to be at risk. The wood resources, however, are capable of satisfying current wood demand among the population of AR and wood could even be exported. Underutilization has two main causes: first, wood prices are so low that harvesting trees is a money-losing proposition; second, consumer wood demand and the current supply from forest owners are not aligned. Furthermore, cultural values, lifestyle trends and traditions make an alignment of supply and demand difficult. Consensus and strategy building with the relevant stakeholders on the basis of the results obtained from the wood flow analysis and agent analysis is a reasonable next step to take. We conclude that wood flow analysis combined with agent analysis provide a useful and straightforward tool to be used as the basis of a transition process towards improved regional wood flows, which in turn should contribute to sustainable forest management
Rasiah, Velu; Armour, John David
2013-02-15
Reliable information in transit time (TT) derived from transit velocity (TV) for rain or irrigation water to mix with groundwater (GW) and the subsequent discharge to surface water bodies (SWB) is essential to address the issues associated with the transport of nutrients, particularly nitrate, from GW to SWB. The objectives of this study are to (i) compare the TV estimates obtained using flux theory-based (FT) approach with the water table rise/recession (WT) rate approach and (ii) explore the impact of the differences on solute transport from GW to SWB. The results from a study conducted during two rainy seasons in the northeast humid tropics of Queensland, Australia, showed the TV varied in space and over time and the variations depended on the estimation procedures. The lateral TV computed using the WT approach ranged from 1.00 × 10(-3) to 2.82 × 10(-1) m/d with a mean of 6.18 × 10(-2) m/d compared with 2.90 × 10(-4) to 5.15 × 10(-2) m/d for FT with a mean of 2.63 × 10(-2) m/d. The vertical TV ranged from 2.00 × 10(-3) to 6.02 × 10(-1) m/d with a mean of 1.28 × 10(-1) m/d for the WT compared with 6.76 × 10(-3)-1.78 m/d for the FT with a mean of 2.73 × 10(-1) m/d. These differences are attributed to the role played by different flow pathways. The bypass flow pathway played a role only in WT but not in FT. Approximately 86-95% of the variability in lateral solute transport was accounted for by the lateral TV and the total recession between two consecutive major rainfall events. A comparison of TT from FT and WT approaches indicated the laterally transported nitrate from the GW to the nearby creek was relatively 'new', implying the opportunity for accumulation and to undergo biochemical reactions in GW was low. The results indicated the WT approach produced more reliable TT estimates than FT in the presence of bypass flow pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yiin, Chung Loong; Yusup, Suzana; Quitain, Armando T; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya
2018-05-01
The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Wolf, S.; Holmes, D.H.
1977-04-01
An experimental program was conducted to characterize critical heat flux (CHF) in a sodium-heated steam generator tube model at a proposed PLBR steam generator design pressure of 7.2 MPa. Water was circulated vertically upward in the tube and the heating sodium was flowing counter-current downward. The experimental ranges were: mass flux, 110 to 1490 kg/s.m/sup 2/ (0.08 to 1.10 10/sup 6/ lbm/h.ft/sup 2/); critical heat flux, 0.16 to 1.86 MW/m/sup 2/ (0.05 to 0.59 10/sup 6/ Btu/h.ft/sup 2/); and critical quality, 0.48 to 1.0. The CHF phenomenon for the experimental conditions is determined to be dryout as opposed to departure from nucleate boiling (DNB). The data are divided into high- and low-mass flux regions.
Research on transition undulator radiation
International Nuclear Information System (INIS)
Lu Shuzhuang; Dai Zhimin; Zhao Xiaofeng
2000-01-01
The theory of transition undulator radiation was described first, then the properties of infrared and far-infrared transition undulator radiation of SSRF U9.0 were explored by the methods of analytical treatment and numerical simulation, and the influence of beam energy spread, emittance, and magnetic field errors on transition undulator radiation was given also. It was shown that the flux density of the infrared and far-infrared transition undulator radiation of the SSRF U9.0 was high (e.g., the maximum flux density might reach 35 x 10 13 photons/(s·mrad 2 ·BW), collecting angle φ = 0.23 mrad, and the effects of beam energy spread, emittance and magnetic field errors on the radiation flux density were small
DEFF Research Database (Denmark)
Steenstrup, Stig; Hove, Jens D; Kofoed, Klaus
2002-01-01
The distribution function of pulmonary transit times (fPTTs) contains information on the transit time of blood through the lungs and the dispersion in transit times. Most of the previous studies have used specific functional forms with adjustable parameters to characterize the fPTT. It is the pur......, we were able to accurately identify a two-peaked transfer function, which may theoretically be seen in patients with pulmonary disease confined to one lung. Transit time values for [13N]-ammonia were produced by applying the algorithm to PET studies from normal volunteers....
International Nuclear Information System (INIS)
Lashkul, S.I.; Altukhov, A.B.; Gurchenko, A.D.; Gusakov, E.Z.; Dyachenko, V.V.; Esipov, L.A.; Kantor, M.Y.; Kouprienko, D.V.; Stepanov, A.Y.; Sharpeonok, A.P.; Shatalin, S.V.; Vekshina, E.O.
2004-01-01
This paper present our observations and conclusions about development of the transport process at the plasma periphery of the small tokamak FT-2 during additional Lower Hybrid Heating (LHH), when external (ETB) transport barrier followed by Internal (ITB) transport barrier is observed. The peculiarities of the variations of the fluctuation fluxes near periphery are measured by three moveable multi-electrode Langmuir probes (L-probe) located in the same poloidal cross-section of the chamber. So the observed L-H transition and ETB formation after LHH and the associated negative E r rise result mainly from the decrease of the electron temperature (T e ) near inner region of the LCFS (last close flux surface) by greater extent than in SOL (scrape-off layer). This effect is stimulated by decrease of the input power and decrease of the radial correlation coefficient (for r equals 74-77 mm) (and radial particle fluctuation-induced Γ(t)) resulted from ITB formation mechanism during LHH. T e variation in the SOL after LH heating pulse takes place to a lesser extent. Observed non-monotonic radial profile of T e near LCFS with positive δT e /δr rise is kept constant obviously by large longitudinal conductivity and poloidal fluxes from the hotter limiter shadow regions because of the poloidal inhomogeneity of the T e (SOL) and n e (SOL). Such induced negative E r after RF pulse gives fast rise to a quasi-steady-state Γ 0 (t) drift fluxes with reversed direction structure, like 'zonal flows', which may inhibit transport across the flow. Large rise of grad(n e ) after LHH near LCFS with L-H transition is observed after the end of LH pulse for a long time - about 10-15 ms
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...
Regularized maximum correntropy machine
Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin
2015-01-01
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Kuang, Zhiming; Bretherton, Christopher S.
2006-07-01
In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes. The statistical analysis methodologies that are used do not require tracing the history of individual clouds or air parcels; instead they rely on probing the ensemble characteristics of cumulus convection in the large model dataset. They appear to be an attractive way for analyzing outputs from cloud-resolving numerical experiments. Throughout the simulation, it is found that 1) the initial thermodynamic properties of the updrafts at the cloud base have rather tight distributions; 2) contrary to the assumption made in many cumulus schemes, nearly undiluted air parcels are too infrequent to be relevant to any stage of the simulated convection; and 3) a simple model with a spectrum of entraining plumes appears to reproduce most features of the cloudy updrafts, but significantly overpredicts the mass flux as the updrafts approach their levels of zero buoyancy. A buoyancy-sorting model was suggested as a potential remedy. The organized circulations of cold pools seem to create clouds with larger-sized bases and may correspondingly contribute to their smaller lateral entrainment rates. Our results do not support a mass-flux closure based solely on convective available potential energy (CAPE), and are in general agreement with a convective inhibition (CIN)-based closure. The general similarity in the ensemble characteristics of shallow and deep convection and the continuous evolution of the thermodynamic structure during the transition provide justification for developing a single unified cumulus parameterization that encompasses both shallow and deep convection.
International Nuclear Information System (INIS)
Yudin, M.F.; Skotnikov, V.V.; Bruj, V.N.; Tsvetkov, I.I.; Fominykh, V.I.
1976-01-01
The state special standard is described, which improves the accuracy and ensures unification and correctness of measurements of a bremsstrahlung energy flux. The size of the unit is conveyed, by means of working standards and model measuring means, to working devices measuring the energy flux over a wide range
Rhee, P L; Choi, M S; Kim, Y H; Son, H J; Kim, J J; Koh, K C; Paik, S W; Rhee, J C; Choi, K W
2000-10-01
Biofeedback is an effective therapy for a majority of patients with anismus. However, a significant proportion of patients still failed to respond to biofeedback, and little has been known about the factors that predict response to biofeedback. We evaluated the factors associated with poor response to biofeedback. Biofeedback therapy was offered to 45 patients with anismus with decreased bowel frequency (less than three times per week) and normal colonic transit time. Any differences in demographics, symptoms, and parameters of anorectal physiologic tests were sought between responders (in whom bowel frequency increased up to three times or more per week after biofeedback) and nonresponders (in whom bowel frequency remained less than three times per week). Thirty-one patients (68.9 percent) responded to biofeedback and 14 patients (31.1 percent) did not. Anal canal length was longer in nonresponders than in responders (4.53 +/- 0.5 vs. 4.08 +/- 0.56 cm; P = 0.02), and rectal maximum tolerable volume was larger in nonresponders than in responders. (361 +/- 87 vs. 302 +/- 69 ml; P = 0.02). Anal canal length and rectal maximum tolerable volume showed significant differences between responders and nonresponders on multivariate analysis (P = 0.027 and P = 0.034, respectively). This study showed that a long anal canal and increased rectal maximum tolerable volume are associated with poor short-term response to biofeedback for patients with anismus with decreased bowel frequency and normal colonic transit time.
Directory of Open Access Journals (Sweden)
Fei Lin
2016-03-01
Full Text Available With its large capacity, the total urban rail transit energy consumption is very high; thus, energy saving operations are quite meaningful. The effective use of regenerative braking energy is the mainstream method for improving the efficiency of energy saving. This paper examines the optimization of train dwell time and builds a multiple train operation model for energy conservation of a power supply system. By changing the dwell time, the braking energy can be absorbed and utilized by other traction trains as efficiently as possible. The application of genetic algorithms is proposed for the optimization, based on the current schedule. Next, to validate the correctness and effectiveness of the optimization, a real case is studied. Actual data from the Beijing subway Yizhuang Line are employed to perform the simulation, and the results indicate that the optimization method of the dwell time is effective.
Energy Technology Data Exchange (ETDEWEB)
Liu, Michael C.; Bowler, Brendan P.; Best, William M. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Dupuy, Trent J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Leggett, S. K. [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States)
2012-10-10
Using Keck laser guide star adaptive optics imaging, we have found that the T9 dwarf WISE J1217+1626 and T8 dwarf WISE J1711+3500 are exceptional binaries, with unusually wide separations ( Almost-Equal-To 0.''8, 8-15 AU), large near-IR flux ratios ( Almost-Equal-To 2-3 mag), and small mass ratios ( Almost-Equal-To 0.5) compared to previously known field ultracool binaries. Keck/NIRSPEC H-band spectra give a spectral type of Y0 for WISE J1217+1626B, and photometric estimates suggest T9.5 for WISE J1711+3500B. The WISE J1217+1626AB system is very similar to the T9+Y0 binary CFBDSIR J1458+1013AB; these two systems are the coldest known substellar multiples, having secondary components of Almost-Equal-To 400 K and being planetary-mass binaries if their ages are {approx}<1 Gyr. Both WISE J1217+1626B and CFBDSIR J1458+1013B have strikingly blue Y - J colors compared to previously known T dwarfs, including their T9 primaries. Combining all available data, we find that Y - J color drops precipitously between the very latest T dwarfs and the Y dwarfs. The fact that this is seen in (coeval, mono-metallicity) binaries demonstrates that the color drop arises from a change in temperature, not surface gravity or metallicity variations among the field population. Thus, the T/Y transition established by near-IR spectra coincides with a significant change in the Almost-Equal-To 1 {mu}m fluxes of ultracool photospheres. One explanation is the depletion of potassium, whose broad absorption wings dominate the far-red optical spectra of T dwarfs. This large color change suggests that far-red data may be valuable for classifying objects of {approx}<500 K.
International Nuclear Information System (INIS)
Rust, D.M.
1984-01-01
The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references
Energy Technology Data Exchange (ETDEWEB)
McKenna-Lawlor, S.M.P. (Saint Patrick' s Coll., Maynooth (Ireland)); Afonin, V.V.; Gringauz, K.I. (AN SSSR, Moscow (USSR). Space Research Inst.) (and others)
Twin telescope particle detector systems SLED-1 and SLED-2, with the capability of monitoring electron and ion fluxes within an energy range spanning approximately 30 keV to a few megaelectron volts, were individually launched on the two spacecraft (Phobos-2 and Phobos-1, respectively) of the Soviet Phobos Mission to Mars and its moons in July 1988. A short description of the SLED instrument and a preliminary account of representative solar-related particle enhancements recorded by SLED-1 and SLED-2 during the Cruise Phase, and by SLED-1 in the near Martian environment (within the interval 25 July 1988-26 March 1989) are presented. These observations were made while the interplanetary medium was in the course of changing over from solar minimum- to solar maximum-dominated conditions and examples are presented of events associated with each of these phenomenological states. (author).
Fares, S.; Schnitzhofer, R.; Hansel, A.; Petersson, F.; Matteucci, G.; Scarascia Mugnozza, G.; Jiang, X.; Guenther, A. B.; Loreto, F.
2012-12-01
Mediterranean plant ecosystems are exposed to abiotic stressors that may be exacerbated by climate change dynamics. Moreover, plants need now to cope with increasing anthropogenic pressures, often associated with expanding impacts of urbanization. Anthropogenic stressors include harmful gases (e.g. ozone,) that are transported from anthropogenic pollution sources to the vegetation. They may alter ecophysiology and compromise metabolism of Mediterranean plants. A disproportionate number of Mediterranean ecosystems, many dominated by forest trees, are being transformed into "urban or pre-urban forests". This is in particular the case for Castelporziano Estate, a 6,000 ha Mediterranean forest located just 25 km from Rome downtown at the coast of the Mediterranean Sea. In September 2011 an intensive field campaign was performed in Castelporziano to investigate ozone deposition and biogenic emissions of volatile organic compounds (BVOC) from a mixed Mediterranean forest, mainly composed by Quercus suber, Quercus ilex, Pinus pinea. Measurements were performed at canopy level with fast real-time instruments (a fast ozone analyzer and a Proton Transfer Reaction-Time of Flight Mass Spectrometer) that allowed eddy covariant flux measurements of ozone and BVOC. In the transitional period from a warm and dry summer to a wet and moderately cool fall we typically observed tropospheric ozone volume mixing ratios (VMR) of 60 ppb at around noon, with high deposition fluxes (up to -10 nmol m-2 s-1) into the forest canopy. Canopy models were used to to calculate that up to 90% of ozone uptake can be attributed to non-stomatal sinks, suggesting that chemical reactions between ozone and reactive BVOC may have played an important role. The concentrations of reactive isoprenoids (e.g. sesquiterpenes) were indeed observed to decrease during the central hours of the day, in coincidence with increased ozone concentrations. Concentrations and fluxes of isoprenoid
The mechanics of granitoid systems and maximum entropy production rates.
Hobbs, Bruce E; Ord, Alison
2010-01-13
A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate. This journal is © 2010 The Royal Society
Chen, D.; Luo, M.; Algeo, T. J.; Chen, L.
2017-12-01
The strontium (Sr) and neodymium (Nd) isotope compositions and clay-mineral assemblages of the detrital fraction of sediments in the southern Mariana Trench together with major- and trace-elements concentrations of bulk sediments have been determined to trace the sediment provenance and investigate the relationship between Asian dust input and blooms of the giant diatom Ethmodiscus rex. Enrichment of barium (Ba) in relative to upper continental crust (UCC) and low average Rb/K ratios in all study cores point to both hydrothermal and volcaniclastic inputs to the sediments. Both the Sr-Nd isotope compositions and the clay-mineral assemblages of the detrital fraction reflect a two-component mixing system consisting of Mariana arc volcaniclastics and eolian Asian dust. A decrease in smectite content and an increase in illite content just before formation of laminated diatom mats (LDMs) suggest a change in the source of the eolian dust from eastern Asian deserts (EADs) to central Asian deserts (CADs) at the onset of the Last Glacial Maximum (LGM). This observation suggests a causal linkage between atmospheric circulation patterns, the sources of eolian Asian dust, and marine productivity in the western Pacific region. We postulate that the shift to CAD-sourced dust may have played a greater role in promoting biological productivity in the oligotrophic western Pacific Ocean during the LGM than previously realized.
Su, Zhan
2017-01-01
This study uses an observationally constrained and dynamically consistent ocean and sea ice state estimate. The author presents a remarkable agreement between the location of the edge of Antarctic maximum sea ice extent, reached in September, and the narrow transition band for the upper ocean (0–100 m depths) stratification, as early as April to June. To the south of this edge, the upper ocean has high stratification, which forbids convective fluxes to cross through; consequently, the ocean h...
Approximate maximum parsimony and ancestral maximum likelihood.
Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat
2010-01-01
We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.
International Nuclear Information System (INIS)
Anon.
1979-01-01
This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed
DEFF Research Database (Denmark)
Yaron, U.; Gammel, P.L.; Boebinger, G.S.
1997-01-01
Small angle neutron scattering studies of the flux line lattice (FLL) in UPt3 for fields H perpendicular to c provide direct microscopic evidence for the 5 kOe B --> C transition. We find a pronounced maximum in the longitudinal correlation length of the FLL at the transition and an abrupt change...
Energy Technology Data Exchange (ETDEWEB)
Kwang-Won, Lee; Sang-Yong, Lee
1995-09-01
A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by the frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.
Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian
2017-07-01
We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.
Maximum Acceleration Recording Circuit
Bozeman, Richard J., Jr.
1995-01-01
Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.
Maximum Quantum Entropy Method
Sim, Jae-Hoon; Han, Myung Joon
2018-01-01
Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...
International Nuclear Information System (INIS)
Biondi, L.
1998-01-01
The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it
Extreme Maximum Land Surface Temperatures.
Garratt, J. R.
1992-09-01
There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).
Laminar turbulent transition in heated free jet
International Nuclear Information System (INIS)
Krejci, L.; Marsik, F.; Nenicka, V.
1998-01-01
The evolution of heat and mass transfer in the initial region of a transitional plasma plume is investigated and discussed. The results show that these transport processes are controlled and limited by the plume shear layer instability. The process of laminar-turbulent transition is consecutively controlled by the plume core shear layer instability where interrelation of the effective thickness of the shear temperature and density layers play decisive role. When the absolute instability occurs the resonances in the jet and arc chamber must be taken into account. These processes are manifested in three events. Between the first and second phase, there is a maximum of arc heater exit average enthalpy. The other two thresholds occur at maximum and minimum stagnation heat flux from the plume core. It seems that these processes also influence the thermal energy production in the arc chamber cavity. (author)
Flux tubes at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Cea, Paolo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cuteri, Francesca; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria & INFN-Cosenza,Ponte Bucci, cubo 31C, I-87036 Rende (Cosenza) (Italy)
2016-06-07
The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm ≃1.6/√σ and the temperature is increased towards and above the deconfinement temperature T{sub c}, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube “evaporation” above T{sub c} has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.
Maximum likely scale estimation
DEFF Research Database (Denmark)
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...
Robust Maximum Association Estimators
A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)
2017-01-01
textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation
Burnout in a channel with non-uniform circumferential heat flux
International Nuclear Information System (INIS)
Lee, D.H.
1966-03-01
Burnout experiments are reported for uniform flux and circumferential flux tilt (maximum/average flux about 1.25) with tubes and annuli, all the experiments having uniform axial heating. These show similar results, the burnout power with flux tilt being within 10% of that with uniform flux. For the same mean exit steam quality, the local maximum flux is higher than the predicted burnout value and generally a better prediction is obtained using the average flux. (author)
Maximum speed of dewetting on a fiber
Chan, Tak Shing; Gueudre, Thomas; Snoeijer, Jacobus Hendrikus
2011-01-01
A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched asymptotic expansion and derive the maximum speed
International Nuclear Information System (INIS)
Enslin, J.H.R.
1990-01-01
A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control
Experimental investigation of heat transfer in the transition region
International Nuclear Information System (INIS)
Johannsen, K.; Weber, P.; Feng, Q.
1990-10-01
An experimental study of forced convective boiling heat transfer for upflow of water in a circular tube has been performed using a heat transfer system with temperature-controlled indirect Joule heating. By this way, complete boiling curves from incipience of boiling to fully established film boiling could be measured including the transition boiling regime. The boiling curves were traversed in a quasi-steady mode, usually by increasing the set-point wall temperature average at a constant time rate of 3.5 K/min. The vast majority of results covers the pressure range from 0.1 to 1.0 MPa, mass flux range from 25 to 200 kg/(m 2 s) and inlet subcooling from 5 to 30 K. The experimental results of transition boiling heat transfer obtained in the centre of the test section were correlated in terms of a heat flux/surface superheat relationship that was normalized by the maximum heat flux (local CHF) and its associated wall superheat, respectively, to anchor the transition boiling curve to its low temperature limit. The upper surface temperature limit of the transition boiling regime was determined by inspection of measured axial distributions of surface heat flux and corresponding wall temperature. The critical heat flux (CHF) and its corresponding wall superheat has been measured, too. These temperature-controlled results were compared also with power-controlled experiments. The data are presented in terms of a table and accurate empirical correlations following Katto's generalized correlation scheme. Taking into account previous CHF data at L/D ≤ 100 and same range of flow conditions the length effect was found to further depend on pressure and mass flux. The data for the critical wall superheat show a distinct dependence upon pressure, mass flux and inlet quality that has not been observed before with comparable clarity
International Nuclear Information System (INIS)
Ponman, T.J.
1984-01-01
For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)
Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.
2009-01-01
We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.
Directory of Open Access Journals (Sweden)
F. TopsÃƒÂ¸e
2001-09-01
Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over
Probable maximum flood control
International Nuclear Information System (INIS)
DeGabriele, C.E.; Wu, C.L.
1991-11-01
This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility
Introduction to maximum entropy
International Nuclear Information System (INIS)
Sivia, D.S.
1988-01-01
The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab
Introduction to maximum entropy
International Nuclear Information System (INIS)
Sivia, D.S.
1989-01-01
The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. The author reviews the need for such methods in data analysis and shows, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. He concludes with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab
Functional Maximum Autocorrelation Factors
DEFF Research Database (Denmark)
Larsen, Rasmus; Nielsen, Allan Aasbjerg
2005-01-01
MAF outperforms the functional PCA in concentrating the interesting' spectra/shape variation in one end of the eigenvalue spectrum and allows for easier interpretation of effects. Conclusions. Functional MAF analysis is a useful methods for extracting low dimensional models of temporally or spatially......Purpose. We aim at data where samples of an underlying function are observed in a spatial or temporal layout. Examples of underlying functions are reflectance spectra and biological shapes. We apply functional models based on smoothing splines and generalize the functional PCA in......\\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...
Fast Flux Test Facility project plan. Revision 2
International Nuclear Information System (INIS)
Hulvey, R.K.
1995-11-01
The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition
Fast Flux Test Facility project plan. Revision 2
Energy Technology Data Exchange (ETDEWEB)
Hulvey, R.K.
1995-11-01
The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.
International Nuclear Information System (INIS)
Ryan, J.
1981-01-01
By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments
Critical flux determination by flux-stepping
DEFF Research Database (Denmark)
Beier, Søren; Jonsson, Gunnar Eigil
2010-01-01
In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...
rf SQUID system as tunable flux qubit
Energy Technology Data Exchange (ETDEWEB)
Ruggiero, B. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)]. E-mail: b.ruggiero@cib.na.cnr.it; Granata, C. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Vettoliere, A. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Rombetto, S. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, R. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, M. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Corato, V. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Silvestrini, P. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)
2006-08-21
We present a fully integrated rf SQUID-based system as flux qubit with a high control of the flux transfer function of the superconducting transformer modulating the coupling between the flux qubit and the readout system. The control of the system is possible by including into the superconducting flux transformer a vertical two-Josephson-junctions interferometer (VJI) in which the Josephson current is precisely modulated from a maximum to zero by a transversal magnetic field parallel to the flux transformer plane. The proposed system can be also used in a more general configuration to control the off-diagonal terms in the Hamiltonian of the flux qubit and to turn on and off the coupling between two or more qubits.
Credal Networks under Maximum Entropy
Lukasiewicz, Thomas
2013-01-01
We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...
Computation of the Transmitted and Polarized Scattered Fluxes by the Exoplanet HD 189733b in X-Rays
Energy Technology Data Exchange (ETDEWEB)
Marin, Frédéric [Astronomical Institute of the Academy of Sciences, Boční II 1401, CZ-14100 Prague (Czech Republic); Grosso, Nicolas, E-mail: frederic.marin@astro.unistra.fr [Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg (France)
2017-02-01
Thousands of exoplanets have been detected, but only one exoplanetary transit was potentially observed in X-rays from HD 189733A. What makes the detection of exoplanets so difficult in this band? To answer this question, we run Monte-Carlo radiative transfer simulations to estimate the amount of X-ray flux reprocessed by HD 189733b. Despite its extended evaporating atmosphere, we find that the X-ray absorption radius of HD 189733b at 0.7 keV, which is the mean energy of the photons detected in the 0.25–2 keV energy band by XMM-Newton , is ∼1.01 times the planetary radius for an atmosphere of atomic hydrogen and helium (including ions), and produces a maximum depth of ∼2.1% at ∼±46 minutes from the center of the planetary transit on the geometrically thick and optically thin corona. We compute numerically in the 0.25–2 keV energy band that this maximum depth is only of ∼1.6% at ∼±47 minutes from the transit center, and not very sensitive to the metal abundance, assuming that adding metals in the atmosphere would not dramatically change the density–temperature profile. Regarding a direct detection of HD 189733b in X-rays, we find that the amount of flux reprocessed by the exoplanetary atmosphere varies with the orbital phase, spanning between three and five orders of magnitude fainter than the flux of the primary star. Additionally, the degree of linear polarization emerging from HD 189733b is <0.003%, with maximums detected near planetary greatest elongations. This implies that both the modulation of the X-ray flux with the orbital phase and the scatter-induced continuum polarization cannot be observed with current X-ray facilities.
Stationary neutrino radiation transport by maximum entropy closure
International Nuclear Information System (INIS)
Bludman, S.A.
1994-11-01
The authors obtain the angular distributions that maximize the entropy functional for Maxwell-Boltzmann (classical), Bose-Einstein, and Fermi-Dirac radiation. In the low and high occupancy limits, the maximum entropy closure is bounded by previously known variable Eddington factors that depend only on the flux. For intermediate occupancy, the maximum entropy closure depends on both the occupation density and the flux. The Fermi-Dirac maximum entropy variable Eddington factor shows a scale invariance, which leads to a simple, exact analytic closure for fermions. This two-dimensional variable Eddington factor gives results that agree well with exact (Monte Carlo) neutrino transport calculations out of a collapse residue during early phases of hydrostatic neutron star formation
Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)
1966-01-01
A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.
Radon flux measurement methodologies
International Nuclear Information System (INIS)
Nielson, K.K.; Rogers, V.C.
1984-01-01
Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements
Vertical Josephson Interferometer for Tunable Flux Qubit
Energy Technology Data Exchange (ETDEWEB)
Granata, C [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Vettoliere, A [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Lisitskiy, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Rombetto, S [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Ruggiero, B [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Corato, V [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Russo, R [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy)
2006-06-01
We present a niobium-based Josephson device as prototype for quantum computation with flux qubits. The most interesting feature of this device is the use of a Josephson vertical interferometer to tune the flux qubit allowing the control of the off-diagonal Hamiltonian terms of the system. In the vertical interferometer, the Josephson current is precisely modulated from a maximum to zero with fine control by a small transversal magnetic field parallel to the rf superconducting loop plane.
Investigation of the hydrogen fluxes in the plasma edge of W7-AS during H-mode discharges
International Nuclear Information System (INIS)
Langer, U.; Taglauer, E.; Fischer, R.
2001-01-01
In the stellarator W7-AS the H-mode is characterized by an edge transport barrier which is localized within a few centimeters inside the separatrix. The corresponding L-H transition shows well-known features such as the steepening of the temperature and density profiles in the region of the separatrix. With a so-called sniffer probe the temporal development of the hydrogen and deuterium fluxes has been studied in the plasma edge during different H-mode discharges with deuterium gas puffing. Prior to the transition a significant reduction of the deuterium and also the hydrogen fluxes can be observed. This fact confirms the assumption that the steepening of the density profiles starts at the outermost edge of the plasma. Moreover, sniffer probe measurements in the plasma edge could therefore identify a precursor for the L-H transition. The analysis of the hydrogen neutral gases shows a distinct change of the hydrogen isotope ratio during the transition. This observation is in agreement with the change in the particle fluxes onto the targets and can also be seen in the reduced H α signals from the limiters. It is further demonstrated that significant improvement in the time resolution of the measured data can be obtained by deconvolution of the data with the apparatus function using Bayesian probability theory and the Maximum Entropy method with adaptive kernels
Theory and application of maximum magnetic energy in toroidal plasmas
International Nuclear Information System (INIS)
Chu, T.K.
1992-02-01
The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q'/q (as in reverse field pinches and spheromaks) to have the same α in all its force-free regions and with a positive q'/q (as in tokamaks) to have centrally peaked α's
International Nuclear Information System (INIS)
Floriani, Elena; Lima, Ricardo; Ourrad, Ouerdia; Spinelli, Lionel
2016-01-01
Highlights: • The flux through a Markov chain of a conserved quantity (mass) is studied. • Mass is supplied by an external source and ends in the absorbing states of the chain. • Meaningful for modeling open systems whose dynamics has a Markov property. • The analytical expression of mass distribution is given for a constant source. • The expression of mass distribution is given for periodic or random sources. - Abstract: In this paper we study the flux through a finite Markov chain of a quantity, that we will call mass, which moves through the states of the chain according to the Markov transition probabilities. Mass is supplied by an external source and accumulates in the absorbing states of the chain. We believe that studying how this conserved quantity evolves through the transient (non-absorbing) states of the chain could be useful for the modelization of open systems whose dynamics has a Markov property.
Maximum Entropy in Drug Discovery
Directory of Open Access Journals (Sweden)
Chih-Yuan Tseng
2014-07-01
Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.
About Merging Threshold and Critical Flux Concepts into a Single One: The Boundary Flux
Directory of Open Access Journals (Sweden)
Marco Stoller
2014-01-01
Full Text Available In the last decades much effort was put in understanding fouling phenomena on membranes. One successful approach to describe fouling issues on membranes is the critical flux theory. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. However, in many cases critical fluxes were found to be very low, lower than the economic feasibility of the process. The knowledge of the critical flux value must be therefore considered as a good starting point for process design. In the last years, a new concept was introduced, the threshold flux, which defines the maximum permeate flow rate characterized by a low constant fouling rate regime. This concept, more than the critical flux, is a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. And since the concepts share many common aspects, merged into a new concept, called the boundary flux, the validation will occur by the analysis of previously collected data by the authors, during the treatment of olive vegetation wastewater by ultrafiltration and nanofiltration membranes.
Ruzmaikin, A.
1997-01-01
Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.
Asymmetric flux generation and its relaxation in reversed field pinch
International Nuclear Information System (INIS)
Arimoto, H.; Masamune, S.; Nagata, A.
1985-02-01
The toroidally asymmetric flux enhancement [''dynamo effect''] and the axisymmetrization of the enhanced fluxes that follows in the setting up phase of Reversed Field Pinch are investigated on the STP-3[M] device. A rapid increase in the toroidal flux generated by the dynamo effect is first observed near the poloidal and toroidal current feeders. Then, this inhomogeneity of the flux propagates toroidally towards the plasma current. The axisymmetrization of the flux is attained just after the maximum of plasma current. The MHD activities decrease significantly after this axisymmetrization and the quiescent period is obtained. (author)
Maximum stellar iron core mass
Indian Academy of Sciences (India)
60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.
Maximum entropy beam diagnostic tomography
International Nuclear Information System (INIS)
Mottershead, C.T.
1985-01-01
This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs
Maximum entropy beam diagnostic tomography
International Nuclear Information System (INIS)
Mottershead, C.T.
1985-01-01
This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore
A portable storage maximum thermometer
International Nuclear Information System (INIS)
Fayart, Gerard.
1976-01-01
A clinical thermometer storing the voltage corresponding to the maximum temperature in an analog memory is described. End of the measurement is shown by a lamp switch out. The measurement time is shortened by means of a low thermal inertia platinum probe. This portable thermometer is fitted with cell test and calibration system [fr
Neutron spectra unfolding with maximum entropy and maximum likelihood
International Nuclear Information System (INIS)
Itoh, Shikoh; Tsunoda, Toshiharu
1989-01-01
A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)
Factors controlling vertical fluxes of prrticles in the Arabian Sea
Digital Repository Service at National Institute of Oceanography (India)
Nair, T.M.B.; Ramaswamy, V.; Parthiban, G.; Shankar, R.
)) in the western Arabian Sea. Carbonate contributed mainly by foraminifers and coccolithophorids, are the dominant component in all the traps. Opal fluxes were maximum in the western Arabian Sea. At all the locations, lithogenic percentages increased with depth...
Feasibility of laser pumping with neutron fluxes from present-day large tokamaks
Energy Technology Data Exchange (ETDEWEB)
Jassby, D.L.
1986-08-01
The minimum fusion-neutron flux needed to observe nuclear-pumped lasing with tokamaks can be reduced substantially by optimizing neutron scattering into the laser cell, located between adjacent toroidal-field coils. The laser lines most readily pumped are probably the /sup 3/He-Ne lines at 0.633 ..mu.. and in the infrared, where the /sup 3/He-Ne gas is excited by energetic ions produced in the /sup 3/He(n,p)T reaction. These lines are expected to lase at the levels of D-T neutron flux foreseen for the TFTR in 1989 (>>10/sup 12/ n/cm/sup 2//s), while amplification should be observable at the existing levels of D-D neutron flux (greater than or equal to 5 x 10/sup 9/ n/cm/sup 2//s). Lasing on the 1.73 ..mu.. and 2.63 ..mu.. transitions of Xe may be observable at the maximum expected levels of D-T neutron flux in TFTR enhanced by scattering.
Feasibility of laser pumping with neutron fluxes from present-day large tokamaks
International Nuclear Information System (INIS)
Jassby, D.L.
1986-08-01
The minimum fusion-neutron flux needed to observe nuclear-pumped lasing with tokamaks can be reduced substantially by optimizing neutron scattering into the laser cell, located between adjacent toroidal-field coils. The laser lines most readily pumped are probably the 3 He-Ne lines at 0.633 μ and in the infrared, where the 3 He-Ne gas is excited by energetic ions produced in the 3 He(n,p)T reaction. These lines are expected to lase at the levels of D-T neutron flux foreseen for the TFTR in 1989 (>>10 12 n/cm 2 /s), while amplification should be observable at the existing levels of D-D neutron flux (≥ 5 x 10 9 n/cm 2 /s). Lasing on the 1.73 μ and 2.63 μ transitions of Xe may be observable at the maximum expected levels of D-T neutron flux in TFTR enhanced by scattering
Rotating flux compressor for energy conversion
International Nuclear Information System (INIS)
Chowdhuri, P.; Linton, T.W.; Phillips, J.A.
1983-01-01
The rotating flux compressor (RFC) converts rotational kinetic energy into an electrical output pulse which would have higher energy than the electrical energy initially stored in the compressor. An RFC has been designed in which wedge-shaped rotor blades pass through the air gaps between successive turns of a solenoid, the stator. Magnetic flux is generated by pulsing the stator solenoids when the inductance is a maximum, i.e., when the flux fills the stator-solenoid volume. Connecting the solenoid across a load conserves the flux which is compressed within the small volume surrounding the stator periphery when the rotor blades cut into the free space between the stator plates, creating a minimum-inductance condition. The unique features of this design are: (1) no electrical connections (brushes) to the rotor; (2) no conventional windings; and (3) no maintenance. The device has been tested up to 5000 rpm of rotor speed
Flux measurement in ZBR at the TRIGA Mark II reactor
International Nuclear Information System (INIS)
Dauke, M.
2005-01-01
The determination of the neutron flux in the TRIGA-2-Vienna reactor was the objective of this research. The theory of the method (4π-β detectors) is presented as well as the determination of the maximum flux, gold-cadmium differential measurement, cobalt-wire measurement, finally a comparison of all results was made and interpreted. (nevyjel)
On Maximum Entropy and Inference
Directory of Open Access Journals (Sweden)
Luigi Gresele
2017-11-01
Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.
Maximum Water Hammer Sensitivity Analysis
Jalil Emadi; Abbas Solemani
2011-01-01
Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of ...
Directory of Open Access Journals (Sweden)
Yunfeng Shan
2008-01-01
Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the ﬁnding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reﬂects the phylogenetic relationship among species in comparison.
LCLS Maximum Credible Beam Power
International Nuclear Information System (INIS)
Clendenin, J.
2005-01-01
The maximum credible beam power is defined as the highest credible average beam power that the accelerator can deliver to the point in question, given the laws of physics, the beam line design, and assuming all protection devices have failed. For a new accelerator project, the official maximum credible beam power is determined by project staff in consultation with the Radiation Physics Department, after examining the arguments and evidence presented by the appropriate accelerator physicist(s) and beam line engineers. The definitive parameter becomes part of the project's safety envelope. This technical note will first review the studies that were done for the Gun Test Facility (GTF) at SSRL, where a photoinjector similar to the one proposed for the LCLS is being tested. In Section 3 the maximum charge out of the gun for a single rf pulse is calculated. In Section 4, PARMELA simulations are used to track the beam from the gun to the end of the photoinjector. Finally in Section 5 the beam through the matching section and injected into Linac-1 is discussed
Ungar, Eugene K.; Richards, W. Lance
2015-01-01
The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact
Generic maximum likely scale selection
DEFF Research Database (Denmark)
Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo
2007-01-01
in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based......The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...
Hydraulic Limits on Maximum Plant Transpiration
Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.
2011-12-01
Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water
International Nuclear Information System (INIS)
Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.
2003-01-01
Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor
Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion
Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.; Smith, Jacqueline A.; Abbott, Mark B.
2008-08-01
We developed records of clastic sediment flux to 13 alpine lakes in Peru, Ecuador, and Bolivia, and compared these with independently dated records of regional glaciation. Our objectives are to determine whether a strong relationship exists between the extent of ice cover in the region and the rate of clastic sediment delivery to alpine lakes, and thus whether clastic sediment records serve as reliable proxies for glaciation during the late Pleistocene. We isolated the clastic component in lake sediment cores by removing the majority of the biogenic and authigenic components from the bulk sediment record, and we dated cores by a combination of radiocarbon and tephrochronology. In order to partially account for intra-basin differences in sediment focusing, bedrock erosivity, and sediment availability, we normalized each record to the weighted mean value of clastic sediment flux for each respective core. This enabled the stacking of all 13 lake records to produce a composite record that is generally representative of the tropical Andes. There is a striking similarity between the composite record of clastic sediment flux and the distribution of ˜100 cosmogenic radionuclide (CRN) exposure ages for erratics on moraine crests in the central Peruvian and northern Bolivian Andes. The extent of ice cover thus appears to be the primary variable controlling the delivery of clastic sediment to alpine lakes in the region, which bolsters the increasing use of clastic sediment flux as a proxy for the extent of ice cover in the region. The CRN moraine record and the stacked lake core composite record together indicate that the expansion of ice cover and concomitant increase in clastic sediment flux began at least 40 ka, and the local last glacial maximum (LLGM) culminated between 30 and 20 ka. A decline in clastic sediment flux that began ˜20 ka appears to mark the onset of deglaciation from the LLGM, at least one millennium prior to significant warming in high latitude regions
Energy Technology Data Exchange (ETDEWEB)
Stanev, Todor
2001-05-01
We discuss the primary cosmic ray flux from the point of view of particle interactions and production of atmospheric neutrinos. The overall normalization of the cosmic ray flux and its time variations and site dependence are major ingredients of the atmospheric neutrino predictions and the basis for the derivation of the neutrino oscillation parameters.
Flux cutting in superconductors
International Nuclear Information System (INIS)
Campbell, A M
2011-01-01
This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)
Actinide and Xenon reactivity effects in ATW high flux systems
International Nuclear Information System (INIS)
Woosley, M.; Olson, K.; Henderson, D.L.
1995-01-01
In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides
Actinide and xenon reactivity effects in ATW high flux systems
International Nuclear Information System (INIS)
Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.
1995-01-01
In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides
Actinide and Xenon reactivity effects in ATW high flux systems
Energy Technology Data Exchange (ETDEWEB)
Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others
1995-10-01
In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.
System for memorizing maximum values
Bozeman, Richard J., Jr.
1992-08-01
The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.
Remarks on the maximum luminosity
Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon
2018-04-01
The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.
Maximum mutual information regularized classification
Wang, Jim Jing-Yan
2014-09-07
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Scintillation counter, maximum gamma aspect
International Nuclear Information System (INIS)
Thumim, A.D.
1975-01-01
A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)
Maximum mutual information regularized classification
Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin
2014-01-01
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Heat flux microsensor measurements
Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.
1992-01-01
A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.
Relative measurement of the fluxes of thermal, resonant and rapid neutrons in reactor G1
International Nuclear Information System (INIS)
Carle, R.; Mazancourt, T. de
1957-01-01
We sought to determine the behavior of the thermal, resonant and rapid neutron fluxes in the multiplier-reflector transition region, in the two principal directions of the system. We have also measured the variation of these different fluxes in the body of the multiplier medium in a canal filled with graphite and in an empty canal. The results are given in the form of curves representing: - the variation of the ratio of the thermal flux to the rapid flux in axial and radial transitions - the behavior of the thermal and resonant fluxes and the variation of their ratio in the same regions. (author) [fr
Are transition economy workers underpaid?
Adamchik, Vera A.; Brada, Josef C.; King, Arthur E.
2009-01-01
We examine the extent to which workers in transition and developed market economies are able to obtain wages that fully reflect their skills and labor force characteristics. We find that workers in two transition economies, the Czech Republic and Poland, are able to better attain the maximum wage available than are workers in a sample of developed market economies. This greater wage-setting efficiency in the transition economies ap-pears to be more the result of social and demographic charact...
International Nuclear Information System (INIS)
Joiner, W.C.H.
1979-12-01
Flux flow noise power spectra were investigated, and information obtained through such spectra is applied to describe flux flow and pinning in situations where volume pinning force data is also available. In one case, the application of noise data to PB 80 In 20 samples after recovery and after high temperature annealing is discussed. This work is consistent with a recent model for flux flow noise generation. In the second case we discuss experiments designed to change the fluxoid transit path length, which according to the model should affect both the noise amplitude and the parameter α specifying the longest subpulse times in terms of the average transit time, tau/sub c/. Transient flux flow voltages when a current is switched on after field cycling a Pb 60 In 40 sample have been discovered. Noise spectra have been measured during the transient. These observations are discussed along with a simple model which fits the data. A surprising result is that the transient decay times increase with the applied current. Other characteristics of Pb 60 In 40 after cold working are also discussed
International Nuclear Information System (INIS)
Iversen, N.; Jorgensen, B.B.
1985-01-01
Concomitant radiotracer measurements were made of in situ rates of sulfate reduction and anaerobic methane oxidation in 2-3-m-long sediment cores. Methane accumulated to high concentrations (> 1 mM CH 4 ) only below the sulfate zone, at 1 m or deeper in the sediment. Sulfate reduction showed a broad maximum below the sediment surface and a smaller, narrow maximum at the sulfate-methane transition. Methane oxidation was low (0.002-0.1 nmol CH 4 cm -3 d -1 ) throughout the sulfate zone and showed a sharp maximum at the sulfate-methane transition, coinciding with the sulfate reduction maximum. Total anaerobic methane oxidation at two stations was 0.83 and 1.16 mmol CH 4 m -2 d -1 , of which 96% was confined to the sulfate-methane transition. All the methane that was calculated to diffuse up into the sulfate-methane transition was oxidized in this zone. The methane oxidation was equivalent to 10% of the electron donor requirement for the total measured sulfate reduction. A third station showed high sulfate concentrations at all depths sampled and the total methane oxidation was only 0.013 mmol m -2 d -1 . From direct measurements of rates, concentration gradients, and diffusion coefficients, simple calculations were made of sulfate and methane fluxes and of methane production rates
U(1) mediation of flux supersymmetry breaking
Grimm, Thomas W.; Klemm, Albrecht
2008-10-01
We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with Script N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kähler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.
U(1) mediation of flux supersymmetry breaking
International Nuclear Information System (INIS)
Grimm, Thomas W.; Klemm, Albrecht
2008-01-01
We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kaehler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.
Maximum entropy and Bayesian methods
International Nuclear Information System (INIS)
Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.
1992-01-01
Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come
Configuration of LWR fuel enrichment or burnup yielding maximum power
International Nuclear Information System (INIS)
Bartosek, V.; Zalesky, K.
1976-01-01
An analysis is given of the spatial distribution of fuel burnup and enrichment in a light-water lattice of given dimensions with slightly enriched uranium, at which the maximum output is achieved. It is based on the spatial solution of neutron flux using a one-group diffusion model in which linear dependence may be expected of the fission cross section and the material buckling parameter on the fuel burnup and enrichment. Two problem constraints are considered, i.e., the neutron flux value and the specific output value. For the former the optimum core configuration remains qualitatively unchanged for any reflector thickness, for the latter the cases of a reactor with and without reflector must be distinguished. (Z.M.)
Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes
Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.
2011-12-01
NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.
The maximum entropy production and maximum Shannon information entropy in enzyme kinetics
Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš
2018-04-01
We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.
Dupuis, HéLèNe; Taylor, Peter K.; Weill, Alain; Katsaros, K.
1997-09-01
The transfer coefficients for momentum and heat have been determined for 10 m neutral wind speeds (U10n) between 0 and 12 m/s using data from the Surface of the Ocean, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments. The inertial dissipation method was applied to wind and pseudo virtual temperature spectra from a sonic anemometer, mounted on a platform (ship) which was moving through the turbulence field. Under unstable conditions the assumptions concerning the turbulent kinetic energy (TKE) budget appeared incorrect. Using a bulk estimate for the stability parameter, Z/L (where Z is the height and L is the Obukhov length), this resulted in anomalously low drag coefficients compared to neutral conditions. Determining Z/L iteratively, a low rate of convergence was achieved. It was concluded that the divergence of the turbulent transport of TKE was not negligible under unstable conditions. By minimizing the dependence of the calculated neutral drag coefficient on stability, this term was estimated at about -0.65Z/L. The resulting turbulent fluxes were then in close agreement with other studies at moderate wind speed. The drag and exchange coefficients for low wind speeds were found to be Cen × 103 = 2.79U10n-1 + 0.66 (U10n < 5.2 m/s), Cen × 103 = Chn × 103 = 1.2 (U10n ≥ 5.2 m/s), and Cdn × 103 = 11.710n-2 + 0.668 (U10n < 5.5 m/s), which imply a rapid increase of the coefficient values as the wind decreased within the smooth flow regime. The frozen turbulence hypothesis and the assumptions of isotropy and an inertial subrange were found to remain valid at these low wind speeds for these shipboard measurements. Incorporation of a free convection parameterization had little effect.
Energy Technology Data Exchange (ETDEWEB)
Carle, R.; Mazancourt, T. de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1957-07-01
We sought to determine the behavior of the thermal, resonant and rapid neutron fluxes in the multiplier-reflector transition region, in the two principal directions of the system. We have also measured the variation of these different fluxes in the body of the multiplier medium in a canal filled with graphite and in an empty canal. The results are given in the form of curves representing: - the variation of the ratio of the thermal flux to the rapid flux in axial and radial transitions - the behavior of the thermal and resonant fluxes and the variation of their ratio in the same regions. (author) [French] Nous avons cherche a determiner le comportement des differents flux, thermique, resonnant et rapide a la transition milieu multiplicateur-reflecteur dans les deux directions principales du reseau. Nous avons egalement mesure la variation de ces differents flux au sein du milieu multiplicateur dans un canal rempli de graphite et dans un canal vide. Les resultats sont donnes sous forme de courbe representant: - La variation du rapport du flux thermique au flux rapide aux transitions axiale et radiale - L'allure des flux thermique et resonnant et la variation de leur rapport dans les memes regions. (auteur)
Energy Technology Data Exchange (ETDEWEB)
Carle, R; Mazancourt, T de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1957-07-01
We sought to determine the behavior of the thermal, resonant and rapid neutron fluxes in the multiplier-reflector transition region, in the two principal directions of the system. We have also measured the variation of these different fluxes in the body of the multiplier medium in a canal filled with graphite and in an empty canal. The results are given in the form of curves representing: - the variation of the ratio of the thermal flux to the rapid flux in axial and radial transitions - the behavior of the thermal and resonant fluxes and the variation of their ratio in the same regions. (author) [French] Nous avons cherche a determiner le comportement des differents flux, thermique, resonnant et rapide a la transition milieu multiplicateur-reflecteur dans les deux directions principales du reseau. Nous avons egalement mesure la variation de ces differents flux au sein du milieu multiplicateur dans un canal rempli de graphite et dans un canal vide. Les resultats sont donnes sous forme de courbe representant: - La variation du rapport du flux thermique au flux rapide aux transitions axiale et radiale - L'allure des flux thermique et resonnant et la variation de leur rapport dans les memes regions. (auteur)
Comparison of nonflare solar soft x ray flux with 10.7-cm radio flux
International Nuclear Information System (INIS)
Donnelly, R.F.
1982-01-01
The similarities and differences of the nonflare solar 1- to 8-A X ray flux and the daily 10.7-cm Ottawa solar radio flux are examined. The radio flux is shown to be much less sensitive than the soft X ray flux on the average to the coronal emission of active regions located near or beyond the solar chromospheric limb relative to regions near the center of the solar disk. This is caused by the solar soft X ray emission's being optically thin while much of the 10.7-cm active region emission is from optical depths of tauapprox.1. The radio flux includes a large quiet sun flux which is emitted mostly from the tenuous chromosphere-corona transition region (Tapprox.10 4 --10 6 0 K) and partly from the cooler portions of the quiet corona Tapprox.1.5 x 10 6 0 K. Conversely, the solar soft X ray flux has a very small quiet sun component
CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES
International Nuclear Information System (INIS)
Pariat, E.; Masson, S.; Aulanier, G.
2009-01-01
The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma β changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.
DEFF Research Database (Denmark)
Gissel, Line Engbo
This presentation builds on an earlier published article, 'Contemporary Transitional Justice: Normalising a Politics of Exception'. It argues that the field of transitional justice has undergone a shift in conceptualisation and hence practice. Transitional justice is presently understood to be th...... to be the provision of ordinary criminal justice in contexts of exceptional political transition.......This presentation builds on an earlier published article, 'Contemporary Transitional Justice: Normalising a Politics of Exception'. It argues that the field of transitional justice has undergone a shift in conceptualisation and hence practice. Transitional justice is presently understood...
Maximum entropy principal for transportation
International Nuclear Information System (INIS)
Bilich, F.; Da Silva, R.
2008-01-01
In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.
Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)
1966-01-01
A method and means for altering the intensity of a magnetic field by transposing flux from one location to the location desired fro the magnetic field are examined. The device described includes a pair of communicating cavities formed in a block of superconducting material, is dimensioned to be insertable into one of the cavities and to substantially fill the cavity. Magnetic flux is first trapped in the cavities by establishing a magnetic field while the superconducting material is above the critical temperature at which it goes superconducting. Thereafter, the temperature of the material is reduced below the critical value, and then the exciting magnetic field may be removed. By varying the ratios of the areas of the two cavities, it is possible to produce a field having much greater flux density in the second, smaller cavity, into which the flux transposed.
2004-01-01
Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo
International Nuclear Information System (INIS)
Hoyer, E.; Chin, J.; Hassenzahl, W.V.
1993-05-01
Undulators for high-performance applications in synchrotron-radiation sources and periodic magnetic structures for free-electron lasers have stringent requirements on the curvature of the electron's average trajectory. Undulators using the permanent magnet hybrid configuration often have fields in their central region that produce a curved trajectory caused by local, ambient magnetic fields such as those of the earth. The 4.6 m long Advanced Light Source (ALS) undulators use flux shunts to reduce this effect. These flux shunts are magnetic linkages of very high permeability material connecting the two steel beams that support the magnetic structures. The shunts reduce the scalar potential difference between the supporting beams and carry substantial flux that would normally appear in the undulator gap. Magnetic design, mechanical configuration of the flux shunts and magnetic measurements of their effect on the ALS undulators are described
Maximum Mass of Hybrid Stars in the Quark Bag Model
Alaverdyan, G. B.; Vartanyan, Yu. L.
2017-12-01
The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.
Elemental composition of cosmic rays using a maximum likelihood method
International Nuclear Information System (INIS)
Ruddick, K.
1996-01-01
We present a progress report on our attempts to determine the composition of cosmic rays in the knee region of the energy spectrum. We have used three different devices to measure properties of the extensive air showers produced by primary cosmic rays: the Soudan 2 underground detector measures the muon flux deep underground, a proportional tube array samples shower density at the surface of the earth, and a Cherenkov array observes light produced high in the atmosphere. We have begun maximum likelihood fits to these measurements with the hope of determining the nuclear mass number A on an event by event basis. (orig.)
International Nuclear Information System (INIS)
Oda, Naotaka.
1993-01-01
The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)
Neutron flux monitoring device
International Nuclear Information System (INIS)
Shimazu, Yoichiro.
1995-01-01
In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)
Last Glacial Maximum Salinity Reconstruction
Homola, K.; Spivack, A. J.
2016-12-01
It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were
Maximum Parsimony on Phylogenetic networks
2012-01-01
Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are
Variability of the Lyman alpha flux with solar activity
International Nuclear Information System (INIS)
Lean, J.L.; Skumanich, A.
1983-01-01
A three-component model of the solar chromosphere, developed from ground based observations of the Ca II K chromospheric emission, is used to calculate the variability of the Lyman alpha flux between 1969 and 1980. The Lyman alpha flux at solar minimum is required in the model and is taken as 2.32 x 10 11 photons/cm 2 /s. This value occurred during 1975 as well as in 1976 near the commencement of solar cycle 21. The model predicts that the Lyman alpha flux increases to as much as 5 x 10 11 photons/cm 2 /s at the maximum of the solar cycle. The ratio of the average fluxes for December 1979 (cycle maximum) and July 1976 (cycle minimum) is 1.9. During solar maximum the 27-day solar rotation is shown to cause the Lyman alpha flux to vary by as much as 40% or as little as 5%. The model also shows that the Lyman alpha flux varies over intermediate time periods of 2 to 3 years, as well as over the 11-year sunspot cycle. We conclude that, unlike the sunspot number and the 10.7-cm radio flux, the Lyman alpha flux had a variability that was approximately the same during each of the past three cycles. Lyman alpha fluxes calculated by the model are consistent with measurements of the Lyman alpha flux made by 11 of a total of 14 rocket experiments conducted during the period 1969--1980. The model explains satisfactorily the absolute magnitude, long-term trends, and the cycle variability seen in the Lyman alpha irradiances by the OSO 5 satellite experiment. The 27-day variability observed by the AE-E satellite experiment is well reproduced. However, the magntidue of the AE-E 1 Lyman alpha irradiances are higher than the model calculations by between 40% and 80%. We suggest that the assumed calibration of the AE-E irradiances is in error
International Nuclear Information System (INIS)
Sakurai, Akira; Shiotsu, Masahiro; Hata, Koichi; Fukuda, Katsuya
1999-01-01
The mechanisms of transient boiling process including the transitions to nucleate boiling or film boiling from initial heat fluxes, q in , in natural convection and nucleate boiling regimes caused by exponentially decreasing system pressure with various decreasing periods, τ p on a horizontal cylinder in a pool of highly subcooled water were clarified. The transient boiling processes with different characteristics were divided into three groups for low and intermediate q in in natural convection regime, and for high q in in nucleate boiling regime. The transitions at maximum heat fluxes from low q in in natural convection regime to stable nucleate boiling regime occurred independently of the τ p values. The transitions from intermediate and high q in values in natural convection and nucleate boiling to stable film boiling occurred for short τ p values, although those to stable nucleate boiling occurred for tong τ p values. The CHF and corresponding surface superheat values at which the transition to film boiling occurred were considerably lower and higher than the steady-state values at the corresponding pressure during the depressurization respectively. It was suggested that the transitions to stable film boiling at transient critical heat fluxes from intermediate q in in natural convection and from high q in in nucleate boiling for short τ p occur due to explosive-like heterogeneous spontaneous nucleation (HSN). The photographs of typical vapor behavior due to the HSN during depressurization from natural convection regime for short τ p were shown. (author)
Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.
2017-10-01
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.
Energy Technology Data Exchange (ETDEWEB)
Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Henney, C. J. [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States); Arge, C. N. [Science and Exploration Directorate, NASA/GSFC, Greenbelt, MD 20771 (United States); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Derosa, M. L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States); Yeates, A. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom); Owens, M. J., E-mail: linkerj@predsci.com [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)
2017-10-10
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.
Energy Technology Data Exchange (ETDEWEB)
Zavaljevski, N; Pesic, M; Strugar, P [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)
1980-07-01
Spatial flux shaping, particularly obtaining maximum thermal neutron flux in experimental channels of a research reactor or flux flattening in a power reactor, is often desired in nuclear reactor utilization. Some experimental results of flux shaping at the RB reactor by use of the fuel of various enrichment are resented. Considerable increases in thermal neutron flux in central experimental channels is obtained and can serve as a starting point for further investigations as well as for comparison with theoretical models. (author)
Meromorphic flux compactification
Energy Technology Data Exchange (ETDEWEB)
Damian, Cesar [Departamento de Ingeniería Mecánica, Universidad de Guanajuato,Carretera Salamanca-Valle de Santiago Km 3.5+1.8 Comunidad de Palo Blanco,Salamanca (Mexico); Loaiza-Brito, Oscar [Departamento de Física, Universidad de Guanajuato,Loma del Bosque No. 103 Col. Lomas del Campestre C.P 37150 León, Guanajuato (Mexico)
2017-04-26
We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.
Meromorphic flux compactification
International Nuclear Information System (INIS)
Damian, Cesar; Loaiza-Brito, Oscar
2017-01-01
We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.
Flux Pinning in Superconductors
Matsushita, Teruo
2007-01-01
The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...
A finite element calculation of flux pumping
Campbell, A. M.
2017-12-01
A flux pump is not only a fascinating example of the power of Faraday’s concept of flux lines, but also an attractive way of powering superconducting magnets without large electronic power supplies. However it is not possible to do this in HTS by driving a part of the superconductor normal, it must be done by exceeding the local critical density. The picture of a magnet pulling flux lines through the material is attractive, but as there is no direct contact between flux lines in the magnet and vortices, unless the gap between them is comparable to the coherence length, the process must be explicable in terms of classical electromagnetism and a nonlinear V-I characteristic. In this paper a simple 2D model of a flux pump is used to determine the pumping behaviour from first principles and the geometry. It is analysed with finite element software using the A formulation and FlexPDE. A thin magnet is passed across one or more superconductors connected to a load, which is a large rectangular loop. This means that the self and mutual inductances can be calculated explicitly. A wide strip, a narrow strip and two conductors are considered. Also an analytic circuit model is analysed. In all cases the critical state model is used, so the flux flow resistivity and dynamic resistivity are not directly involved, although an effective resistivity appears when J c is exceeded. In most of the cases considered here is a large gap between the theory and the experiments. In particular the maximum flux transferred to the load area is always less than the flux of the magnet. Also once the threshold needed for pumping is exceeded the flux in the load saturates within a few cycles. However the analytic circuit model allows a simple modification to allow for the large reduction in I c when the magnet is over a conductor. This not only changes the direction of the pumped flux but leads to much more effective pumping.
Neutron flux measurements in C-9 capsule pressure tube
International Nuclear Information System (INIS)
Barbos, D.; Roth, C. S.; Gugiu, D.; Preda, M.
2001-01-01
C-9 capsule is a fuel testing facility in which the testing consists of a daily cycle ranging between the limits 100% power to 50% power. C-9 in-pile section with sample holder an instrumentation are introduced in G-9 and G-10 experimental channels. The experimental fuel channel has a maximum value when the in-pile section (pressure tube) is in G-9 channel and minimum value in G-10 channel. In this paper the main goals are determination or measurements of: - axial thermal neutron flux distribution in C-9 pressure tube both in G-9 and G-10 channel; - ratio of maximum neutron flux value in G-9 and the same value in G-9 channel and the same value in G-10 channel; - neutron flux-spectrum. On the basis of axial neutron flux distribution measurements, the experimental fuel element in sample holder position in set. Both axial neutron flux distribution of thermal neutrons and neutron flux-spectrum were performed using multi- foil activation technique. Activation rates were obtained by absolute measurements of the induced activity using gamma spectroscopy methods. To determine the axial thermal neutron flux distribution in G-9 and G-10, Cu 100% wire was irradiated at the reactor power of 2 MW. Ratio between the two maximum values, in G-9 and G-10 channels, is 2.55. Multi-foil activation method was used for neutron flux spectrum measurements. The neutron spectra and flux were obtained from reaction rate measurements by means of SAND 2 code. To obtain gamma-ray spectra, a HPGe detector connected to a multichannel analyzer was used. The spectrometer is absolute efficiency calibrated. The foils were irradiated at 2 MW reactor power in previously determined maximum flux position resulted from wire measurements. This reaction rates were normalized for 10 MW reactor power. Neutron self shielding corrections for the activation foils were applied. The self-shielding corrections are computed using Monte Carlo simulation methods. The measured integral flux is 1.1·10 14 n/cm 2 s
Two-dimensional maximum entropy image restoration
International Nuclear Information System (INIS)
Brolley, J.E.; Lazarus, R.B.; Suydam, B.R.; Trussell, H.J.
1977-07-01
An optical check problem was constructed to test P LOG P maximum entropy restoration of an extremely distorted image. Useful recovery of the original image was obtained. Comparison with maximum a posteriori restoration is made. 7 figures
Neutron flux monitoring device
International Nuclear Information System (INIS)
Goto, Yasushi; Mitsubori, Minehisa; Ohashi, Kazunori.
1997-01-01
The present invention provides a neutron flux monitoring device for preventing occurrence of erroneous reactor scram caused by the elevation of the indication of a start region monitor (SRM) due to a factor different from actual increase of neutron fluxes. Namely, judgement based on measured values obtained by a pulse counting method and a judgment based on measured values obtained by a Cambel method are combined. A logic of switching neutron flux measuring method to be used for monitoring, namely, switching to an intermediate region when both of the judgements are valid is adopted. Then, even if the indication value is elevated based on the Cambel method with no increase of the counter rate in a neutron source region, the switching to the intermediate region is not conducted. As a result, erroneous reactor scram such as 'shorter reactor period' can be avoided. (I.S.)
Qureshi, Asima; Petrucco, James
2018-01-01
Meadowbrook Primary School has explored the use of The Teacher Assessment in Primary Science (TAPS) to support transition, initially for transfer to secondary school and now for transition from Early Years Foundation Stage (EYFS) into Key Stage 1 (ages 5-7). This article will consider an example of a secondary transition project and discuss the…
High energy leptons from muons in transit
International Nuclear Information System (INIS)
Bulmahn, Alexander; Reno, Mary Hall
2010-01-01
The differential energy distribution for electrons and taus produced from lepton pair production from muons in transit through materials is numerically evaluated. We use the differential cross section to calculate underground lepton fluxes from an incident atmospheric muon flux, considering contributions from both conventional and prompt fluxes. An approximate form for the charged current differential neutrino cross section is provided and used to calculate single lepton production from atmospheric neutrinos. We compare the fluxes of underground leptons produced from incident muons with those produced from incident neutrinos and photons from muon bremsstrahlung. We discuss their relevance for underground detectors.
Turbulent fluxes by "Conditional Eddy Sampling"
Siebicke, Lukas
2015-04-01
for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.
The topside ionosphere above Arecibo at equinox during sunspot maximum
International Nuclear Information System (INIS)
Bailey, G.J.
1980-01-01
The coupled time-dependent 0 + and H + continuity and momentum equations and 0 + , H + and electron heat balance equations are solved simultaneously within the L = 1.4 (Arecibo) magnetic flux tube between an altitude of 120 km and the equatorial plane. The results of the calculations are used in a study of the topside ionosphere above Arecibo at equinox during sunspot maximum. Magnetically quiet conditions are assumed. The results of the calculations show that the L = 1.4 magnetic flux tube becomes saturated from an arbitrary state within 2-3 days. During the day the ion content of the magnetic flux tube consists mainly of 0 + whereas 0 + and H + are both important during the night. There is an altitude region in the topside ionosphere during the day where ion-counterstreaming occurs with H + flowing downward and 0 + flowing upward. The conditions causing this ion-counterstreaming are discussed. There is a net chemical gain of H + at the higher altitudes. This H + diffuses both upwards and downwards whilst 0 + diffuses upwards from its solar e.u.v. production source which is most important at the lower altitudes. During the night the calculated 0 + and H + temperatures are very nearly equal whereas during the day there are occasions when the H + temperature exceeds the 0 - temperature by about 300 K. (author)
International Nuclear Information System (INIS)
Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.
1990-02-01
A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)
Thermal Properties for the Thermal-Hydraulics Analyses of the BR2 Maximum Nominal Heat Flux
Energy Technology Data Exchange (ETDEWEB)
Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Kim, Y. S. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, G. L. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division
2015-02-01
This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in ^{235}U) to LEU (19.75% enriched in ^{235}U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. Section 2 provides a summary of the thermal properties in the form of tables while the following sections and appendices present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: i) aluminum, ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), iii) beryllium, and iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase’s volume fraction. Appendix B provides a revised methodology for determining the thermal conductivity as a function of burnup for HEU and LEU.
Variational transition-state theory
International Nuclear Information System (INIS)
Truhlar, D.G.; Garrett, B.C.
1980-01-01
A general introduction to and some results from studies of a procedure called variational transition-state theory are presented. A fundamental assumption of this theory is that the net rate of forward reaction at equilibrium equals the equilibrium flux in the product direction through the transition state where the transition state is a surface in phase space dividing reactants from products. Classical generalized-transition-state-theory calculations for nine collinear systems are compared to classical trajectory calculations. This new technique should provide useful insight into the successes and failures of the conventional theory and useful quantitative estimates of possible errors on the predictions of conventional transition-state theory. This should also contribute to a more accurate theory now available for the practical calculations of chemical reaction rates and thermochemical and structural interpretations of rate processes
Receiver function estimated by maximum entropy deconvolution
Institute of Scientific and Technical Information of China (English)
吴庆举; 田小波; 张乃铃; 李卫平; 曾融生
2003-01-01
Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.
Maximum Power from a Solar Panel
Directory of Open Access Journals (Sweden)
Michael Miller
2010-01-01
Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.
Carbon and energy fluxes from China's largest freshwater lake
Gan, G.; LIU, Y.
2017-12-01
Carbon and energy fluxes between lakes and the atmosphere are important aspects of hydrology, limnology, and ecology studies. China's largest freshwater lake, the Poyang lake experiences tremendous water-land transitions periodically throughout the year, which provides natural experimental settings for the study of carbon and energy fluxes. In this study, we use the eddy covariance technique to explore the seasonal and diurnal variation patterns of sensible and latent heat fluxes of Poyang lake during its high-water and low-water periods, when the lake is covered by water and mudflat, respectively. We also determine the annual NEE of Poyang lake and the variations of NEE's components: Gross Primary Productivity (GPP) and Ecosystem Respiration (Re). Controlling factors of seasonal and diurnal variations of carbon and energy fluxes are analyzed, and land cover impacts on the variation patterns are also studied. Finally, the coupling between the carbon and energy fluxes are analyzed under different atmospheric, boundary stability and land cover conditions.
Self-organized critical behavior in pinned flux lattices
International Nuclear Information System (INIS)
Pla, O.; Nori, F.
1991-01-01
We study the response of pinned fluxed lattices, under small perturbations in the driving force, below and close to the pinning-depinning transition. For driving Lorentz forces below F c (the depinning force at which the whole flux lattice slides), the system has instabilities against small force increases, with a power-law distribution characteristic of self-organized criticality. Specifically, D(d)∼d -1,3 , where d is the displacement of a flux line after a very small force increase. We also study the initial stages of the motion of the lattice once the driving force overcomes the pinning forces
Modelling of Power Fluxes during Thermal Quenches
International Nuclear Information System (INIS)
Konz, C.; Coster, D. P.; Lackner, K.; Pautasso, G.
2005-01-01
Plasma disruptions, i. e. the sudden loss of magnetic confinement, are unavoidable, at least occasionally, in present day and future tokamaks. The expected energy fluxes to the plasma facing components (PFCs) during disruptions in ITER lie in the range of tens of GW/m''2 for timescales of about a millisecond. Since high energy fluxes can cause severe damage to the PFCs, their design heavily depends on the spatial and temporal distribution of the energy fluxes during disruptions. We investigate the nature of power fluxes during the thermal quench phase of disruptions by means of numerical simulations with the B2 SOLPS fluid code. Based on an ASDEX Upgrade shot, steady-state pre-disruption equilibria are generated which are then subjected to a simulated thermal quench by artificially enhancing the perpendicular transport in the ion and electron channels. The enhanced transport coefficients flows the Rechester and Rosenbluth model (1978) for ergodic transport in a tokamak with destroyed flux surfaces, i. e. χ, D∼const. xT''5/2 where the constants differ by the square root of the mass ratio for ions and electrons. By varying the steady-state neutral puffing rate we can modify the divertor conditions in terms of plasma temperature and density. Our numerical findings indicate that the disruption characteristics depend on the pre disruptive divertor conditions. We study the timescales and the spatial distribution of the divertor power fluxes. The simulated disruptions show rise and decay timescales in the range observed at ASDEX Upgrade. The decay timescale for the central electron temperature of ∼800 μs is typical for non-ITB disruptions. Varying the divertor conditions we find a distinct transition from a regime with symmetric power fluxes to inboard and outboard divertors to a regime where the bulk of the power flux goes to the outboard divertor. This asymmetry in the divertor peak fluxes for the higher puffing case is accompanied by a time delay between the
OSO-8 observations of the impulsive phase of solar flares in the transition-zone and corona
Lites, B. W.; Bruner, E. C., Jr.; Wolfson, C. J.
1981-01-01
Several solar flares were observed from their onset in C IV 1548.2 A and 1-8 A X-rays using instruments on OSO-8. It is found that impulsive brightening in C IV is often accompanied by redshifts, interpreted as downflows, of the order of 80 km/s. The maximum soft X-ray intensity usually arrives several minutes after the maximum C IV intensity. The most energetic C IV event observed shows a small blueshift just before reaching maximum intensity; estimates of the mass flux associated with this upflow through the transition zone are consistent with the increase of mass in the coronal loops as observed in soft X-rays. Finally, it is suggested that the frequent occurrence of violent dynamical processes at the onset of the flare is associated with the initial energy release mechanism.
Radiation flux measuring device
International Nuclear Information System (INIS)
Corte, E.; Maitra, P.
1977-01-01
A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures
Soluble organic nutrient fluxes
Robert G. Qualls; Bruce L. Haines; Wayne Swank
2014-01-01
Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...
Energy Technology Data Exchange (ETDEWEB)
Grassi, Pietro Antonio [CERN, Theory Unit, CH-1211 Geneva, 23 (Switzerland); Marescotti, Matteo [Dipartimento di Fisica Teorica, Universita di Torino, Via Giuria 1, I-10125, Turin (Italy)
2007-01-15
As been recently pointed out, physically relevant models derived from string theory require the presence of non-vanishing form fluxes besides the usual geometrical constraints. In the case of NS-NS fluxes, the Generalized Complex Geometry encodes these informations in a beautiful geometrical structure. On the other hand, the R-R fluxes call for supergeometry as the underlying mathematical framework. In this context, we analyze the possibility of constructing interesting supermanifolds recasting the geometrical data and RR fluxes. To characterize these supermanifolds we have been guided by the fact topological strings on supermanifolds require the super-Ricci flatness of the target space. This can be achieved by adding to a given bosonic manifold enough anticommuting coordinates and new constraints on the bosonic sub-manifold. We study these constraints at the linear and non-linear level for a pure geometrical setting and in the presence of p-form field strengths. We find that certain spaces admit several super-extensions and we give a parameterization in a simple case of d bosonic coordinates and two fermionic coordinates. In addition, we comment on the role of the RR field in the construction of the super-metric. We give several examples based on supergroup manifolds and coset supermanifolds.
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Marescotti, Matteo
2007-01-01
As been recently pointed out, physically relevant models derived from string theory require the presence of non-vanishing form fluxes besides the usual geometrical constraints. In the case of NS-NS fluxes, the Generalized Complex Geometry encodes these informations in a beautiful geometrical structure. On the other hand, the R-R fluxes call for supergeometry as the underlying mathematical framework. In this context, we analyze the possibility of constructing interesting supermanifolds recasting the geometrical data and RR fluxes. To characterize these supermanifolds we have been guided by the fact topological strings on supermanifolds require the super-Ricci flatness of the target space. This can be achieved by adding to a given bosonic manifold enough anticommuting coordinates and new constraints on the bosonic sub-manifold. We study these constraints at the linear and non-linear level for a pure geometrical setting and in the presence of p-form field strengths. We find that certain spaces admit several super-extensions and we give a parameterization in a simple case of d bosonic coordinates and two fermionic coordinates. In addition, we comment on the role of the RR field in the construction of the super-metric. We give several examples based on supergroup manifolds and coset supermanifolds
International Nuclear Information System (INIS)
Perkins, D.H.
1984-01-01
The atmospheric neutrino fluxes, which are responsible for the main background in proton decay experiments, have been calculated by two independent methods. There are discrepancies between the two sets of results regarding latitude effects and up-down asymmetries, especially for neutrino energies Esub(ν) < 1 GeV. (author)
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...
Method and Apparatus of Implementing a Magnetic Shield Flux Sweeper
Sadleir, John E. (Inventor)
2018-01-01
The present invention relates to a method and apparatus of protecting magnetically sensitive devices with a shield, including: a non-superconducting metal or lower transition temperature (T.sub.c) material compared to a higher transition temperature material, disposed in a magnetic field; means for creating a spatially varying order parameter's |.PSI.(r,T)|.sup.2 in a non-superconducting metal or a lower transition temperature material; wherein a spatially varying order parameter is created by a proximity effect, such that the non-superconducting metal or the lower transition temperature material becomes superconductive as a temperature is lowered, creating a flux-free Meissner state at a center thereof, in order to sweep magnetic flux lines to the periphery.
Subsequence Automata with Default Transitions
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye
2016-01-01
of states and transitions) of the subsequence automaton is O(nσ) and that this bound is asymptotically optimal. In this paper, we consider subsequence automata with default transitions, that is, special transitions to be taken only if none of the regular transitions match the current character, and which do...... not consume the current character. We show that with default transitions, much smaller subsequence automata are possible, and provide a full trade-off between the size of the automaton and the delay, i.e., the maximum number of consecutive default transitions followed before consuming a character......(nσ) and delay O(1), thus matching the bound for the standard subsequence automaton construction. The key component of our result is a novel hierarchical automata construction of independent interest....
Subsequence automata with default transitions
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye
2017-01-01
of states and transitions) of the subsequence automaton is O(nσ) and that this bound is asymptotically optimal. In this paper, we consider subsequence automata with default transitions, that is, special transitions to be taken only if none of the regular transitions match the current character, and which do...... not consume the current character. We show that with default transitions, much smaller subsequence automata are possible, and provide a full trade-off between the size of the automaton and the delay, i.e., the maximum number of consecutive default transitions followed before consuming a character......(1), thus matching the bound for the standard subsequence automaton construction. Finally, we generalize the result to multiple strings. The key component of our result is a novel hierarchical automata construction of independent interest....
Transition radiation and transition scattering
International Nuclear Information System (INIS)
Ginzburg, V.L.
1982-01-01
Transition radiation is a process of a rather general character. It occurs when some source, which does not have a proper frequency (for example, a charge) moves at a constant velocity in an inhomogeneous and (or) nonstationary medium or near such a medium. The simplest type of transition radiation takes place when a charge crosses a boundary between two media (the role of one of the media may be played by vacuum). In the case of periodic variation of the medium, transition radiation possesses some specific features (resonance transition radiation or transition scattering). Transition scattering occurs, in particular, when a permittivity wave falls onto an nonmoving (fixed) charge. Transition scattering is closely connected with transition bremsstrahlung radiation. All these transition processes are essential for plasma physics. Transition radiation and transition scattering have analogues outside the framework of electrodynamics (like in the case of Vavilov-Cherenkov radiation). In the present report the corresponding range of phenomena is elucidated, as far as possible, in a generally physical aspect. (Auth.)
Chow, V. Y.; Gerbig, C.; Longo, M.; Koch, F.; Nehrkorn, T.; Eluszkiewicz, J.; Ceballos, J. C.; Longo, K.; Wofsy, S. C.
2012-12-01
aircraft mixing ratios are applied as a top down constraint in Maximum Likelihood Estimation (MLE) and Bayesian inversion frameworks that solves for parameters controlling the flux. Posterior parameter estimates are used to estimate the carbon budget of the BAB. Preliminary results show that the STILT-VPRM model simulates the net emission of CO2 during both transition periods reasonably well. There is significant enhancement from biomass burning during the November 2008 profiles and some from fossil fuel combustion during the May 2009 flights. ΔCO/ΔCO2 emission ratios are used in combination with continuous observations of CO to remove the CO2 contributions from biomass burning and fossil fuel combustion from the observed CO2 measurements resulting in better agreement of observed and modeled aircraft data. Comparing column calculations for each of the vertical profiles shows our model represents the variability in the diurnal cycle. The high altitude CO2 values from above 3500m are similar to the lateral boundary conditions from CarbonTracker 2010 and GEOS-Chem indicating little influence from surface fluxes at these levels. The MLE inversion provides scaling factors for GEE and R for each of the 8 vegetation types and a Bayesian inversion is being conducted. Our initial inversion results suggest the BAB represents a small net source of CO2 during both of the BARCA intensives.
The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission
Woodgate, B. E.; Brandt, J. C.; Kalet, M. W.; Kenny, P. J.; Tandberg-Hanssen, E. A.; Bruner, E. C.; Beckers, J. M.; Henze, W.; Knox, E. D.; Hyder, C. L.
1980-01-01
The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design, performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 A with better than 2 arcsec spatial resolution, raster range 256 x 256 sq arcsec, and 20 mA spectral resolution in second order. Observations can be made with specific sets of four lines simultaneously, or with both sides of two lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere.
The ultraviolet spectrometer and polarimeter on the solar maximum mission
International Nuclear Information System (INIS)
Woodgate, B.E.; Brandt, J.C.; Kalet, M.W.; Kenny, P.J.; Beckers, J.M.; Henze, W.; Hyder, C.L.; Knox, E.D.
1980-01-01
The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design. performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 Angstreom with better than 2 arc sec spatial resolution, raster range 256 x 256 arc sec 2 , and 20 m Angstroem spectral resolution in second order. Observations can be made with specific sets of 4 lines simultaneously, or with both sides of 2 lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere. (orig.)
Maximum permissible voltage of YBCO coated conductors
Energy Technology Data Exchange (ETDEWEB)
Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)
2014-06-15
Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.
International Nuclear Information System (INIS)
Schofield, S.L.
1988-01-01
Ackroyd's generalized least-squares method for solving the first-order Boltzmann equation is adapted to incorporate a potential treatment of voids. The adaptation comprises a direct least-squares minimization allied with a suitably-defined bilinear functional. The resulting formulation gives rise to a maximum principle whose functional does not contain terms of the type that have previously led to difficulties in treating void regions. The maximum principle is derived without requiring continuity of the flux at interfaces. The functional of the maximum principle is concluded to have an Euler-Lagrange equation given directly by the first-order Boltzmann equation. (author)
Design of a flux buffer based on the flux shuttle
International Nuclear Information System (INIS)
Gershenson, M.
1991-01-01
This paper discusses the design considerations for a flux buffer based on the flux-shuttle concept. Particular attention is given to the issues of flux popping, stability of operation and saturation levels for a large input. Modulation techniques used in order to minimize 1/f noise, in addition to offsets are also analyzed. Advantages over conventional approaches using a SQUID for a flux buffer are discussed. Results of computer simulations are presented
Lobotomy of flux compactifications
Energy Technology Data Exchange (ETDEWEB)
Dibitetto, Giuseppe [Institutionen för fysik och astronomi, University of Uppsala,Box 803, SE-751 08 Uppsala (Sweden); Guarino, Adolfo [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Roest, Diederik [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4 9747 AG Groningen (Netherlands)
2014-05-15
We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on T{sup 6} with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to N=4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the N=8 theory.
Parasitic momentum flux in the tokamak core
Stoltzfus-Dueck, T.
2017-10-01
Tokamak plasmas rotate spontaneously without applied torque. This intrinsic rotation is important for future low-torque devices such as ITER, since rotation stabilizes certain instabilities. In the mid-radius `gradient region,' which reaches from the sawtooth inversion radius out to the pedestal top, intrinsic rotation profiles may be either flat or hollow, and can transition suddenly between these two states, an unexplained phenomenon referred to as rotation reversal. Theoretical efforts to explain the mid-radius rotation shear have largely focused on quasilinear models, in which the phase relationships of some selected instability result in a nondiffusive momentum flux (``residual stress''). In contrast, the present work demonstrates the existence of a robust, fully nonlinear symmetry-breaking momentum flux that follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The physical origin is an often-neglected portion of the radial ExB drift, which is shown to drive a symmetry-breaking outward flux of co-current momentum whenever free energy is transferred from the electrostatic potential to ion parallel flows. The fully nonlinear derivation relies only on conservation properties and symmetry, thus retaining the important contribution of damped modes. The resulting rotation peaking is counter-current and scales as temperature over plasma current. As first demonstrated by Landau, this free-energy transfer (thus also the corresponding residual stress) becomes inactive when frequencies are much higher than the ion transit frequency, which allows sudden transitions between hollow and flat profiles. Simple estimates suggest that this mechanism may be consistent with experimental observations. This work was funded in part by the Max-Planck/Princeton Center for Plasma Physics and in part by the U.S. Dept. of Energy, Office of Science, Contract No. DE-AC02-09CH11466.
Physics of magnetic flux ropes
Russell, C. T.; Priest, E. R.; Lee, L. C.
The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.
LANSCE steady state unperturbed thermal neutron fluxes at 100 μA
International Nuclear Information System (INIS)
Russell, G.J.
1989-01-01
The ''maximum'' unperturbed, steady state thermal neutron flux for LANSCE is calculated to be 2 /times/ 10 13 n/cm 2 -s for 100 μA of 800-MeV protons. This LANSCE neutron flux is a comparable entity to a steady state reactor thermal neutron flux. LANSCE perturbed steady state thermal neutron fluxes have also been calculated. Because LANSCE is a pulsed neutron source, much higher ''peak'' (in time) neutron fluxes can be generated than at a steady state reactor source. 5 refs., 5 figs
Gradient heat flux measurement as monitoring method for the diesel engine
Sapozhnikov, S. Z.; Mityakov, V. Yu; Mityakov, A. V.; Vintsarevich, A. V.; Pavlov, A. V.; Nalyotov, I. D.
2017-11-01
The usage of gradient heat flux measurement for monitoring of heat flux on combustion chamber surface and optimization of diesel work process is proposed. Heterogeneous gradient heat flux sensors can be used at various regimes for an appreciable length of time. Fuel injection timing is set by the position of the maximum point on the angular heat flux diagram however, the value itself of the heat flux may not be considered. The development of such an approach can be productive for remote monitoring of work process in the cylinders of high-power marine engines.
Global diffusive fluxes of methane in marine sediments
Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker
2018-06-01
Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.
Revealing the Maximum Strength in Nanotwinned Copper
DEFF Research Database (Denmark)
Lu, L.; Chen, X.; Huang, Xiaoxu
2009-01-01
boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...
Modelling maximum canopy conductance and transpiration in ...
African Journals Online (AJOL)
There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...
Magnetic relaxation, flux pinning and critical currents in superconductors
International Nuclear Information System (INIS)
Lichtenberger, K.S.
1991-01-01
A systematic study of the magnetic flux pinning properties in superconductors has been undertaken in an attempt to understand the differences between the flux creep behavior of classical superconductors and high-temperature superconductors (HTSC's). In HTSC's, the ratio of the effective flux pinning energy to the thermal energy, U 0 /kT, is much smaller than that of conventional superconductors, often approaching unity. This results in much larger creep rates in HTSC's than in conventional superconductors. It is necessary to find suitable models that describe flux creep in both classical superconductors and HTSC's. Results show that while these two classes of materials are quantitatively very different, a single pinning barrier mode adequately describes both, within the proper region of the H-T plane. The model is applied to a variety of superconductors and the results are contrasted. Although the H-T plane appears to be very different HTSC's than for conventional superconductors, qualitatively the same physics describes both. In HTSC's, near the upper critical field there exists a relatively wide region of superconducting fluctuations, followed successively by regions of thermodynamic reversibility, thermally assisted flux, flux creep, and finally rigid flux lattice where little, if any, motion of the flux lattice occurs. All of these regions are also present in conventional superconductors, but often much more difficult, especially the irreversibility transition and the fluctuation region. The central finding of the flux creep analysis is that the region of flux creep is defined as a band in the H-T plane in which 2 ≤ U 0 /kT ≤ 100, and that the flux creep model applies best within this band
Entropy fluxes, endoreversibility, and solar energy conversion
de Vos, A.; Landsberg, P. T.; Baruch, P.; Parrott, J. E.
1993-09-01
A formalism illustrating the conversion of radiation energy into work can be obtained in terms of energy and entropy fluxes. Whereas the Landsberg equality was derived for photothermal conversion with zero bandgap, a generalized inequality for photothermal/photovoltaic conversion with a single, but arbitrary, bandgap was deduced. This result was derived for a direct energy and entropy balance. The formalism of endoreversible dynamics was adopted in order to show the correlation with the latter approach. It was a surprising fact that the generalized Landsberg inequality was derived by optimizing some quantity W(sup *), which obtains it maximum value under short-circuit condition.
Van Haren, J. L. M.; Cadillo-Quiroz, H.
2015-12-01
Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.
1993-01-01
maximum jet velocity (6.36 m/s), and maximum number of jets (nine). Wadsworth and Mudawar [49] describe the use of a single slotted nozzle to provide...H00503 (ASME), pp. 121-128, 1989. 40 49. D. C. Wadsworth and I. Mudawar , "Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional...Jets of Dielectric Liquid," HTD-Vol. 111, Heat Transfer in Electrglif, Book No. H00503 (ASME), pp. 79-87, 1989. 50. D.C. Wadsworth and I. Mudawar
The atomic hydrogen flux during microcrystalline silicon solar cell deposition
Sanden, van de M.C.M.; Dingemans, G.; van den Donker, M.N.; Hrunski, D.; Gordijn, A.; Kessels, W.M.M.
2009-01-01
Etch product detection by in situ optical emission spectroscopy is used to detect the phase transition from amorphous to microcrystalline silicon. In this contribution it is demonstrated that a calibrated version of this technique can be used to determine the absolute hydrogen flux under
Sole, Ricard V; Solé, Ricard V; SolÃ©, Ricard V; Sol, Ricard V; Solé, Ricard V
2011-01-01
Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of ...
Mesoscopic fluctuations in biharmonically driven flux qubits
Ferrón, Alejandro; Domínguez, Daniel; Sánchez, María José
2017-01-01
We investigate flux qubits driven by a biharmonic magnetic signal, with a phase lag that acts as an effective time reversal broken parameter. The driving induced transition rate between the ground and the excited state of the flux qubit can be thought of as an effective transmittance, profiting from a direct analogy between interference effects at avoided level crossings and scattering events in disordered electronic systems. For time scales prior to full relaxation, but large compared to the decoherence time, this characteristic rate has been accessed experimentally by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], 10.1103/PhysRevLett.110.016603 and its sensitivity with both the phase lag and the dc flux detuning explored. In this way, signatures of universal conductance fluctuationslike effects have been analyzed and compared with predictions from a phenomenological model that only accounts for decoherence, as a classical noise. Here we go beyond the classical noise model and solve the full dynamics of the driven flux qubit in contact with a quantum bath employing the Floquet-Born-Markov master equation. Within this formalism, the computed relaxation and decoherence rates turn out to be strongly dependent on both the phase lag and the dc flux detuning. Consequently, the associated pattern of fluctuations in the characteristic rates display important differences with those obtained within the mentioned phenomenological model. In particular, we demonstrate the weak localizationlike effect in the average values of the relaxation rate. Our predictions can be tested for accessible but longer time scales than the current experimental times.
First flux measurement in a SINQ supermirror neutron guide
Energy Technology Data Exchange (ETDEWEB)
Janssen, S.; Schlumpf, N.; Bauer, G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-09-01
On Dec. 3, 1996, the Swiss spallation neutron source SINQ was taken into operation and produced its first neutrons successfully. The neutron spectrum within one of the supermirror guides was estimated by a chopper Time-of-Flight method. The result shows a 30% higher neutron intensity at the flux maximum than expected from previous Monte-Carlo simulations. (author) 1 fig., 4 refs.
Predicting radio fluxes of extrasolar planets (Griessmeier+, 2007)
Griessmeier, J.M.; Zarka, P.; Spreeuw, H.
2007-01-01
Expected radio emission from presently known exoplanets. For each of the currently known exoplanets, we list its estimated magnetic moment, maximum radio emission frequency, plasma frequency in the ambient stellar wind, and radio fluxes according to three different models. (1 data file).
Statistic method of research reactors maximum permissible power calculation
International Nuclear Information System (INIS)
Grosheva, N.A.; Kirsanov, G.A.; Konoplev, K.A.; Chmshkyan, D.V.
1998-01-01
The technique for calculating maximum permissible power of a research reactor at which the probability of the thermal-process accident does not exceed the specified value, is presented. The statistical method is used for the calculations. It is regarded that the determining function related to the reactor safety is the known function of the reactor power and many statistically independent values which list includes the reactor process parameters, geometrical characteristics of the reactor core and fuel elements, as well as random factors connected with the reactor specific features. Heat flux density or temperature is taken as a limiting factor. The program realization of the method discussed is briefly described. The results of calculating the PIK reactor margin coefficients for different probabilities of the thermal-process accident are considered as an example. It is shown that the probability of an accident with fuel element melting in hot zone is lower than 10 -8 1 per year for the reactor rated power [ru
Gamma ray detector for solar maximum mission (SMM) of NASA
International Nuclear Information System (INIS)
Brunner, W.; Brichzin, K.; Sach, E.
1981-06-01
For NASA's Project Solar Maximum Mission-SMM (launch 14.2.80) a Gamma Ray Detector was developed, manufactured and tested to measure solar high energetic Gamma rays and Neutron fluxes within the energy range 10-160 MeV, 4,43 MeV amd 2,23 MeV. The main components of the sensor are 7 NaI crystals 3 x 3 and a CsI crystal 30 cm diameter x 7,5 cm. The rejection of charged particles is done by two plasitc scintillators and 4 CsI-shields. From the beginning of the mission the experiment is working fully successfull. (orig.) [de
Energy sector in transition - technologies and regulatory policies in flux
DEFF Research Database (Denmark)
Jørgensen, Ulrik
2005-01-01
Liberalising the energy sector has been followed by a number of new regulatory measures that are argued to maintain a process towards a sustainable energy sector. The article argues based on empirical material from Denmark and other European countries that the EU regulations and especially...... the simple market oriented models do not lead to or secure sustainability....
MXLKID: a maximum likelihood parameter identifier
International Nuclear Information System (INIS)
Gavel, D.T.
1980-07-01
MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables
International Nuclear Information System (INIS)
Williams, D.J.
1990-01-01
Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig
Installation of the MAXIMUM microscope at the ALS
International Nuclear Information System (INIS)
Ng, W.; Perera, R.C.C.; Underwood, J.H.; Singh, S.; Solak, H.; Cerrina, F.
1995-10-01
The MAXIMUM scanning x-ray microscope, developed at the Synchrotron Radiation Center (SRC) at the University of Wisconsin, Madison was implemented on the Advanced Light Source in August of 1995. The microscope's initial operation at SRC successfully demonstrated the use of multilayer coated Schwarzschild objective for focusing 130 eV x-rays to a spot size of better than 0.1 micron with an electron energy resolution of 250meV. The performance of the microscope was severely limited, because of the relatively low brightness of SRC, which limits the available flux at the focus of the microscope. The high brightness of the ALS is expected to increase the usable flux at the sample by a factor of 1,000. The authors will report on the installation of the microscope on bending magnet beamline 6.3.2 at the ALS and the initial measurement of optical performance on the new source, and preliminary experiments with surface chemistry of HF etched Si will be described
Flux creep in Bi2Sr2CaCu2O8 epitaxial films
International Nuclear Information System (INIS)
Zeldov, E.; Amer, N.M.; Koren, G.; Gupta, A.
1990-01-01
We incorporate the experimentally deduced flux line potential well structure into the flux creep model. Application of this approach to the resistive transition in Bi 2 Sr 2 CaCu 2 O 8 epitaxial films explains the power law voltage-current characteristics and the nonlinear current dependence of the activation energy. The results cannot be accounted for by a transition into a superconducting vortex-glass phase
Phase Transitions in Geomorphology
Ortiz, C. P.; Jerolmack, D. J.
2015-12-01
Landscapes are patterns in a dynamic steady-state, due to competing processes that smooth or sharpen features over large distances and times. Geomorphic transport laws have been developed to model the mass-flux due to different processes, but are unreasonably effective at recovering the scaling relations of landscape features. Using a continuum approximation to compare experimental landscapes and the observed landscapes of the earth, one finds they share similar morphodynamics despite a breakdown of classical dynamical similarity between the two. We propose the origin of this effectiveness is a different kind of dynamic similarity in the statistics of initiation and cessation of motion of groups of grains, which is common to disordered systems of grains under external driving. We will show how the existing data of sediment transport points to common signatures with dynamical phase transitions between "mobile" and "immobile" phases in other disordered systems, particularly granular materials, colloids, and foams. Viewing landscape evolution from the lens of non-equilibrium statistical physics of disordered systems leads to predictions that the transition of bulk measurements such as particle flux is continuous from one phase to another, that the collective nature of the particle dynamics leads to very slow aging of bulk properties, and that the dynamics are history-dependent. Recent results from sediment transport experiments support these predictions, suggesting that existing geomorphic transport laws may need to be replaced by a new generation of stochastic models with ingredients based on the physics of disordered phase transitions. We discuss possible strategies for extracting the necessary information to develop these models from measurements of geomorphic transport noise by connecting particle-scale collective dynamics and space-time fluctuations over landscape features.
Geneva University - Superconducting flux quantum bits: fabricated quantum objects
2007-01-01
Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Lundi 29 janvier 2007 COLLOQUE DE LA SECTION DE PHYSIQUE 17 heures - Auditoire Stueckelberg Superconducting flux quantum bits: fabricated quantum objects Prof. Hans Mooij / Kavli Institute of Nanoscience, Delft University of Technology The quantum conjugate variables of a superconductor are the charge or number of Cooper pairs, and the phase of the order parameter. In circuits that contain small Josephson junctions, these quantum properties can be brought forward. In Delft we study so-called flux qubits, superconducting rings that contain three small Josephson junctions. When a magnetic flux of half a flux quantum is applied to the loop, there are two states with opposite circulating current. For suitable junction parameters, a quantum superposition of those macroscopic states is possible. Transitions can be driven with resonant microwaves. These quantum ...
Pattern formation, logistics, and maximum path probability
Kirkaldy, J. S.
1985-05-01
The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classification capabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropy function, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are
Variable Eddington factors and flux-limiting diffusion coefficients
International Nuclear Information System (INIS)
Whalen, P.P.
1982-01-01
Variable Eddington factors and flux limiting diffusion coefficients arise in two common techniques of closing the moment equations of transport. The first two moment equations of the full transport equation are still frequently used to solve many problems of radiative or particle transport. An approximate analysis, developed by Levermore, exhibits the relation between the coefficients of the two different techniques. This analysis is described and then used to test the validity of several commonly used flux limiters and Eddington factors. All of the ad-hoc flux limiters have limited validity. All of the variable Eddington factors derived from some underlying description of the angular distribution function are generally valid. The use of coefficients from Minerbo's elegant maximum entropy Eddington factor analysis is suggested for use in either flux limited diffusion or variable Eddington factor equations
Maximum allowable load on wheeled mobile manipulators
International Nuclear Information System (INIS)
Habibnejad Korayem, M.; Ghariblu, H.
2003-01-01
This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy
Maximum phytoplankton concentrations in the sea
DEFF Research Database (Denmark)
Jackson, G.A.; Kiørboe, Thomas
2008-01-01
A simplification of plankton dynamics using coagulation theory provides predictions of the maximum algal concentration sustainable in aquatic systems. These predictions have previously been tested successfully against results from iron fertilization experiments. We extend the test to data collect...
International Nuclear Information System (INIS)
Banner, D.
1995-01-01
Critical heat flux (CHF) is of importance for nuclear safety and represents the major limiting factors for reactor cores. Critical heat flux is caused by a sharp reduction in the heat transfer coefficient located at the outer surface of fuel rods. Safety requires that this phenomenon also called the boiling crisis should be precluded under nominal or incidental conditions (Class I and II events). CHF evaluation in reactor cores is basically a two-step approach. Fuel assemblies are first tested in experimental loops in order to determine CHF limits under various flow conditions. Then, core thermal-hydraulic calculations are performed for safety evaluation. The paper will go into more details about the boiling crisis in order to pinpoint complexity and lack of fundamental understanding in many areas. Experimental test sections needed to collect data over wide thermal-hydraulic and geometric ranges are described CHF safety margin evaluation in reactors cores is discussed by presenting how uncertainties are mentioned. From basic considerations to current concerns, the following topics are discussed; knowledge of the boiling crisis, CHF predictors, and advances thermal-hydraulic codes. (authors). 15 refs., 4 figs
International Nuclear Information System (INIS)
Seki, Eiji; Tai, Ichiro.
1984-01-01
Purpose: To maintain the measuring accuracy and the reponse time within an allowable range in accordance with the change of neutron fluxes in a nuclear reactor pressure vessel. Constitution: Neutron fluxes within a nuclear reactor pressure vessel are detected by detectors, converted into pulse signals and amplified in a range switching amplifier. The amplified signals are further converted through an A/D converter and digital signals from the converter are subjected to a square operation in an square operation circuit. The output from the circuit is inputted into an integration circuit to selectively accumulate the constant of 1/2n, 1 - 1/2n (n is a positive integer) respectively for two continuing signals to perform weighing. Then, the addition is carried out to calculate the integrated value and the addition number is changed by the chane in the number n to vary the integrating time. The integrated value is inputted into a control circuit to control the value of n so that the fluctuation and the calculation time for the integrated value are within a predetermined range and, at the same time, the gain of the range switching amplifier is controlled. (Seki, T.)
Maximum-Likelihood Detection Of Noncoherent CPM
Divsalar, Dariush; Simon, Marvin K.
1993-01-01
Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.
2012-07-01
Public transit agencies have employed intelligent systems for determining : schedules and routes and for monitoring the real-time location and status of their : vehicle fleets for nearly two decades. But until recently, the data generated by : daily ...
Thermoelectric flux effect in superconducting indium
International Nuclear Information System (INIS)
Van Harlingen, D.J.
1977-01-01
In this paper we discuss a thermoelectric effect in superconductors which provides a mechanism for studying quasiparticle relaxation and scattering processes in non-equilibrium superconductors by transport measurements. We report measurements of the thermoelecric flux effect in samples consisting of indium and lead near the In transition temperature; in this temperature range, the contribution to DELTA/sub TAU/ from the Pb is insignificant and so values of OMEGA(T) are obtained for indium. The results of our experiments may be summarized as follows: (1) we have a thermally-generated flux effect in 5 superconducting In-Pb toroidal samples, (2) experimental tests suggest that the observed effect does indeed arise from the proposed thermoelectric flux effect, (3) OMEGA(T) for indium is found to diverge as (T/sub c/ - T)/sup -3/2/ more rapidly than predicted by simple theory, (4) OMEGA(T) at T/T sub c/ = .999 is nearly 10/sup 5/ larger than initially expected, (5) OMEGA (T) roughly correlates with the magnitude of the normal state thermoelectric coefficient for our samples
From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.
Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.
2016-12-01
The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0
Cawley, M.F.; McGlynn, D.; Mooney, P.A.
2006-01-01
A technique is described which yields an accurate measurement of the temperature of density maximum of fluids which exhibit such anomalous behaviour. The method relies on the detection of changes in convective flow in a rectangular cavity containing the test fluid.The normal single-cell convection which occurs in the presence of a horizontal temperature gradient changes to a double cell configuration in the vicinity of the density maximum, and this transition manifests itself in changes in th...
Controlling the flux dynamics in superconductors by nanostructured magnetic arrays
Kapra, Andrey
In this thesis we investigate theoretically how the critical current jc of nano-engineered mesoscopic superconducting film can be improved and how one can control the dynamics of the magnetic flux, e.g., the transition from flux-pinned to flux-flow regime, using arrays of magnetic nanostructures. In particularly we investigate: (1) Vortex transport phenomena in superconductors with deposited ferromagnetic structures on top, and the influence of the sample geometry on the critical parameters and on the vortex configurations. Changing geometry of the magnetic bars and magnetization of the bars will affect the critical current jc of the superconducting film. Such nanostructured ferromagnets strongly alter the vortex structure in its neighborhood. The influence of geometry, position and magnetization of the ferromagnet (single bar or regular lattice of the bars) on the critical parameters of the superconductor is investigated. (2) Effect of flux confinement in narrow superconducting channels with zigzag-shaped banks: the flux motion is confined in the transverse (perpendicular) direction of a diamond-cell-shape channel. The matching effect for the magnetic flux is found in the system relevantless of boundary condition. We discuss the dynamics of vortices in the samples and vortex pattern formation in the channel. We show how the inclusion of higher-Tc superconductor into the sample can lead to enhanced properties of the system. By adding an external driving force, we study the vortex dynamics. The different dynamic regimes are discussed. They allowed an effective control of magnetic flux in superconductors.
Real-time diamagnetic flux measurements on ASDEX Upgrade.
Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H
2016-05-01
Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.
Guermond, Jean-Luc; Nazarov, Murtazo; Popov, Bojan; Yang, Yong
2014-01-01
© 2014 Society for Industrial and Applied Mathematics. This paper proposes an explicit, (at least) second-order, maximum principle satisfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198-213], a high-order entropy viscosity method, and the Boris-Book-Zalesak flux correction technique. The algorithm works for arbitrary meshes in any space dimension and for all Lipschitz fluxes. The formal second-order accuracy of the method and its convergence properties are tested on a series of linear and nonlinear benchmark problems.
International Nuclear Information System (INIS)
Munn, W.I.
1981-01-01
The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs
Flux compactifications and generalized geometries
International Nuclear Information System (INIS)
Grana, Mariana
2006-01-01
Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry
Flux compactifications and generalized geometries
Energy Technology Data Exchange (ETDEWEB)
Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)
2006-11-07
Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.
Critical heat flux of R134A and R245FA in a 2.2 mm circular tube
Energy Technology Data Exchange (ETDEWEB)
Tibirica, Cristiano Bigonha; Ribatski, Gherhardt [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica], E-mails: bigonha@sc.usp.br, ribatski@sc.usp.br; Szczukiewicz, Sylwia; Thome, John Richard [Ecole Polytechnique Federale de Lausanne (LTCM/EPFL) (Switzerland). Lab. of Heat and Mass Transfer], Emails: sylwia.szczukiewicz@epfl.ch, john.thome@epfl.ch
2010-07-01
Critical heat flux (CHF) during flow boiling is generally related to a drastic decrease in the heat transfer coefficient and it is the maximum operational heat flux that can be achieved under safe operation. Due to such a fact, this topic has attracted great attention of the academic society dealing with boiling heat transfer and also in the industrial sector involved with the dissipation of high heat flux densities. In the specific case of high heat flux densities, micro-channel flow boiling is a promising technique for pursuing this objective. The boundary where microscale effects start in flow boiling is still an open issue in the literature and a 3 mm internal diameter (ID) threshold value, as suggested by Kandlikar and Grande (2003) is frequently adopted to characterize this point. Considering the needs for a better understanding of the micro/macro transition, this paper presents new experimental critical heat flux results in saturated flow boiling conditions for a macro/micro-scale tube. The data were obtained in a horizontal 2.20 mm ID stainless steel tube with heating lengths of 361 and 154 mm, R134a and R245fa as working fluids, mass velocities ranging from 100 to 1500 kg/m{sup 2s}, critical heat fluxes from 25 to 300 kW/m2, exit saturation temperatures of 25, 31 and 35 degree C, and critical vapor qualities ranging from 0.55 to 1. The experimental results show that critical heat flux increases with increasing mass velocity and inlet subcooling but decreases with increasing saturation temperature and heated length. The data also indicated a higher CHF for R245fa when compared with R134a at similar conditions. The experimental data were compared against the following CHF predictive methods: Katto and Ohno (1984), Shah (1987), Zhang et al. (2006) and Ong and Thome(2010). Katto and Ohno (1984) and Ong and Thome (2010) best predicted the database with a mean average error smaller than 15%. Both correlations include low and high pressure fluids in their
Gauge fluxes in F-theory compactifications
Energy Technology Data Exchange (ETDEWEB)
Lin, Ling
2016-07-13
In this thesis, we study the geometry and physics of gauge fluxes in F-theory compactifications to four dimensions. Motivated by the phenomenological requirement of chiral matter in realistic model building scenarios, we develop methods for a systematic analysis of primary vertical G{sub 4}-fluxes on torus-fibred Calabi-Yau fourfolds. In particular, we extend the well-known description of fluxes on elliptic fibrations with sections to the more general set-up of genus-one fibrations with multi-sections. The latter are known to give rise to discrete abelian symmetries in F-theory. We test our proposal for constructing fluxes in such geometries on an explicit model with SU(5) x Z{sub 2} symmetry, which is connected to an ordinary elliptic fibration with SU(5) x U(1) symmetry by a conifold transition. With our methods we systematically verify anomaly cancellation and tadpole matching in both models. Along the way, we find a novel way of understanding anomaly cancellation in 4D F-theory in purely geometric terms. This observation is further strengthened by a similar analysis of an SU(3) x SU(2) x U(1){sup 2} model. The obvious connection of this particular model with the Standard Model is then investigated in a more phenomenologically motivated survey. There, we will first provide possible matchings of the geometric spectrum with the Standard Model states, which highlights the role of the additional U(1) factor as a selection rule. In a second step, we then utilise our novel methods on flux computations to set up a search algorithm for semi-realistic chiral spectra in our Standard- Model-like fibrations over specific base manifolds B. As a demonstration, we scan over three choices P{sup 3}, Bl{sub 1}P{sup 3} and Bl{sub 2}P{sup 3} for the base. As a result we find a consistent flux that gives the chiral Standard Model spectrum with a vector-like triplet exotic, which may be lifted by a Higgs mechanism.
Quantitative calculations of helium ion escape fluxes from the polar ionospheres
International Nuclear Information System (INIS)
Raitt, W.J.; Schunk, R.W.; Banks, P.M.
1978-01-01
Recent experimental measurements of He + outward fluxes have been obtained for winter and summer hemispheres. The observed fluxes indicate an average He + escape flux of 2 x 10 7 cm -2 s -1 in the winter hemisphere and a factor of 10-20 lower in the summer hemisphere. Earlier theoretical calculations had yielded winter fluxes a factor of 4 lower than the measured values and summer fluxes a further factor of 20 below the winter fluxes. We have attempted to reduce this discrepancy between our earlier theoretical model and the experimental observations by improving our theoretical model in the following ways. The helium photoionization cross sections used are accurate to 10%, the latest solar EUV fluxes measured by the Atmosphere Explorer satellites have been incorporated, and the most recent MSIS model of the neutral atmosphere is contained in the model. A range of conditions covering solar cycle, seasonal, and geomagnetic conditions were studied. The results show a maximum He + escape flux of 1.4 x 10 7 cm -2 s -1 for solar maximum, winter, low magnetic activity conditions, which is within the scatter of the measured fluxes. The computed summer He + escape flux is a factor of 20 lower than the winter value, a result which is in reasonable agreement with the summer experimental observations. Possible reasons for the slight discrepancy between theory and experiment in summer are discussed
Sodium Flux Growth of Bulk Gallium Nitride
Von Dollen, Paul Martin
This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to
Maximum gravitational redshift of white dwarfs
International Nuclear Information System (INIS)
Shapiro, S.L.; Teukolsky, S.A.
1976-01-01
The stability of uniformly rotating, cold white dwarfs is examined in the framework of the Parametrized Post-Newtonian (PPN) formalism of Will and Nordtvedt. The maximum central density and gravitational redshift of a white dwarf are determined as functions of five of the nine PPN parameters (γ, β, zeta 2 , zeta 3 , and zeta 4 ), the total angular momentum J, and the composition of the star. General relativity predicts that the maximum redshifts is 571 km s -1 for nonrotating carbon and helium dwarfs, but is lower for stars composed of heavier nuclei. Uniform rotation can increase the maximum redshift to 647 km s -1 for carbon stars (the neutronization limit) and to 893 km s -1 for helium stars (the uniform rotation limit). The redshift distribution of a larger sample of white dwarfs may help determine the composition of their cores
Heat Flux Instrumentation Laboratory (HFIL)
Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....
Maximum entropy analysis of EGRET data
DEFF Research Database (Denmark)
Pohl, M.; Strong, A.W.
1997-01-01
EGRET data are usually analysed on the basis of the Maximum-Likelihood method \\cite{ma96} in a search for point sources in excess to a model for the background radiation (e.g. \\cite{hu97}). This method depends strongly on the quality of the background model, and thus may have high systematic unce...... uncertainties in region of strong and uncertain background like the Galactic Center region. Here we show images of such regions obtained by the quantified Maximum-Entropy method. We also discuss a possible further use of MEM in the analysis of problematic regions of the sky....
The Maximum Resource Bin Packing Problem
DEFF Research Database (Denmark)
Boyar, J.; Epstein, L.; Favrholdt, L.M.
2006-01-01
Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...
Shower maximum detector for SDC calorimetry
International Nuclear Information System (INIS)
Ernwein, J.
1994-01-01
A prototype for the SDC end-cap (EM) calorimeter complete with a pre-shower and a shower maximum detector was tested in beams of electrons and Π's at CERN by an SDC subsystem group. The prototype was manufactured from scintillator tiles and strips read out with 1 mm diameter wave-length shifting fibers. The design and construction of the shower maximum detector is described, and results of laboratory tests on light yield and performance of the scintillator-fiber system are given. Preliminary results on energy and position measurements with the shower max detector in the test beam are shown. (authors). 4 refs., 5 figs
Topics in Bayesian statistics and maximum entropy
International Nuclear Information System (INIS)
Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.
1998-12-01
Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)
Density estimation by maximum quantum entropy
International Nuclear Information System (INIS)
Silver, R.N.; Wallstrom, T.; Martz, H.F.
1993-01-01
A new Bayesian method for non-parametric density estimation is proposed, based on a mathematical analogy to quantum statistical physics. The mathematical procedure is related to maximum entropy methods for inverse problems and image reconstruction. The information divergence enforces global smoothing toward default models, convexity, positivity, extensivity and normalization. The novel feature is the replacement of classical entropy by quantum entropy, so that local smoothing is enforced by constraints on differential operators. The linear response of the estimate is proportional to the covariance. The hyperparameters are estimated by type-II maximum likelihood (evidence). The method is demonstrated on textbook data sets
KoFlux: Korean Regional Flux Network in AsiaFlux
Kim, J.
2002-12-01
AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and
Use of sup(233)U for high flux reactors
International Nuclear Information System (INIS)
Sekimoto, Hiroshi; Liem, P.H.
1991-01-01
The feasibility design study on the graphite moderated gas cooled reactor as a high flux reactor has been performed. The core of the reactor is equipped with two graphite reflectors, i.e., the inner reflector and the outer reflector. The highest value of the thermal neutron flux and moderately high thermal neutron flux are expected to be achieved in the inner reflector region and in the outer reflector region respectively. This reactor has many merits comparing to the conventional high flux reactors. It has the inherent safety features associated with the modular high temperature reactors. Since the core is composed with pebble bed, the on-power refueling can be performed and the experiment time can be chosen as long as necessary. Since the thermal-to-fast flux ratio is large, the background neutron level is low and material damage induced by fast neutrons are small. The calculation was performed using a four groups diffusion approximation in a one-dimensional spherical geometry and a two-dimensional cylindrical geometry. By choosing the optimal values of the core-reflector geometrical parameters and moderator-to-fuel atomic density, high thermal neutron flux can be obtained. Because of the thermal neutron flux can be obtained. Because of the thermal design constraint, however, this design will produce a relatively large core volume (about 10 7 cc) and consequently a higher reactor power (100 MWth). Preliminary calculational results show that with an average power density of only 10 W/cc, maximum thermal neutron flux of 10 15 cm -2 s -1 can be achieved in the inner reflector. The eta value of 233 U is larger than 235 U. By introducing 233 U as the fissile material for this reactor, the thermal neutron flux level can be increased by about 15%. (author). 3 refs., 2 figs., 4 tabs
Flux creep characteristics in high-temperature superconductors
International Nuclear Information System (INIS)
Zeldov, E.; Amer, N.M.; Koren, G.; Gupta, A.; McElfresh, M.W.; Gambino, R.J.
1990-01-01
We describe the voltage-current characteristics of YBa 2 Cu 3 O 7-δ epitaxial films within the flux creep model in a manner consistent with the resistive transition behavior. The magnitude of the activation energy, and its temperature and magnetic field dependences, are readily derived from the experimentally observed power law characteristics and show a (1-T/T c ) 3/2 type of behavior near T c . The activation energy is a nonlinear function of the current density and it enables the determination of the shape of the flux line potential well
Nonadiabatic transition path sampling
International Nuclear Information System (INIS)
Sherman, M. C.; Corcelli, S. A.
2016-01-01
Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase.
Flux line lattice in type II super conductors
International Nuclear Information System (INIS)
Manindra Kumar; Singh, Arun Kumar; Surendra Kumar
2003-01-01
The shear modules C 66 of the flux line lattice in type II super conductors can be obtained from a two body interaction between the flux lines even at large inductions B ∼ HC 2 . The potential is composed of a repulsive and an attractive part and has a range diverging at HC 2 . An explicit expression for the Ginzberg-Landau C 66 is given for arbitrary B and k' (G-L parameter). The graph for C 66 exhibits the expected maximum at a certain value of b. (author)
Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan
2017-01-01
Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903
33 CFR 401.29 - Maximum draft.
2010-07-01
... and speed of a vessel in transit shall be controlled by the master, who shall take into account the vessel's individual characteristics and its tendency to list or squat, so as to avoid striking bottom. 1... designated in a Seaway Notice by the Corporation and the Manager for the part of the Seaway in which a vessel...
Supersymmetric quantum mechanics of the flux tube
Belitsky, A. V.
2016-12-01
The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow one to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl (2 | 1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their factorized form. The discussion corresponds to leading order of perturbation theory.
Energy Technology Data Exchange (ETDEWEB)
Lee, C. S.; Seo, C. K.; Lee, B. C.; Kim, H. N.; Kang, B. W. [KAERI, Taejon (Korea, Republic of)
2000-10-01
The HANARO fuel, U{sub 3}Si-Al, has been developed by AECL and tested in NRU reactor. Due to the lack of the data performed under the high power, the repetitive conduct of the irradiation test was required under the power greater than 108kW/m, which is the estimated maximum linear power in the design stage. Accordingly, the instrumented test bundle with SPND(Self Powered Neutron Detector) was fabricated and its irradiation test was performed in IR2 of HANARO. The measured thermal neutron flux with SPND is compared with calculation results by HANAFMS(HANARO Fuel Management System). The difference in the measured and calculated thermal flux values are below {+-}11% and the accuracy of the linear power predicted by HANAFMS is consequently accompanied. Therefore, it is believed that the maximum linear power above 120kW/m is achieved during the irradiation test of the test bundle.
Nonsymmetric entropy and maximum nonsymmetric entropy principle
International Nuclear Information System (INIS)
Liu Chengshi
2009-01-01
Under the frame of a statistical model, the concept of nonsymmetric entropy which generalizes the concepts of Boltzmann's entropy and Shannon's entropy, is defined. Maximum nonsymmetric entropy principle is proved. Some important distribution laws such as power law, can be derived from this principle naturally. Especially, nonsymmetric entropy is more convenient than other entropy such as Tsallis's entropy in deriving power laws.
Maximum potential preventive effect of hip protectors
van Schoor, N.M.; Smit, J.H.; Bouter, L.M.; Veenings, B.; Asma, G.B.; Lips, P.T.A.M.
2007-01-01
OBJECTIVES: To estimate the maximum potential preventive effect of hip protectors in older persons living in the community or homes for the elderly. DESIGN: Observational cohort study. SETTING: Emergency departments in the Netherlands. PARTICIPANTS: Hip fracture patients aged 70 and older who
Maximum gain of Yagi-Uda arrays
DEFF Research Database (Denmark)
Bojsen, J.H.; Schjær-Jacobsen, Hans; Nilsson, E.
1971-01-01
Numerical optimisation techniques have been used to find the maximum gain of some specific parasitic arrays. The gain of an array of infinitely thin, equispaced dipoles loaded with arbitrary reactances has been optimised. The results show that standard travelling-wave design methods are not optimum....... Yagi–Uda arrays with equal and unequal spacing have also been optimised with experimental verification....
correlation between maximum dry density and cohesion
African Journals Online (AJOL)
HOD
represents maximum dry density, signifies plastic limit and is liquid limit. Researchers [6, 7] estimate compaction parameters. Aside from the correlation existing between compaction parameters and other physical quantities there are some other correlations that have been investigated by other researchers. The well-known.
Weak scale from the maximum entropy principle
Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu
2015-03-01
The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.
The maximum-entropy method in superspace
Czech Academy of Sciences Publication Activity Database
van Smaalen, S.; Palatinus, Lukáš; Schneider, M.
2003-01-01
Roč. 59, - (2003), s. 459-469 ISSN 0108-7673 Grant - others:DFG(DE) XX Institutional research plan: CEZ:AV0Z1010914 Keywords : maximum-entropy method, * aperiodic crystals * electron density Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.558, year: 2003
Achieving maximum sustainable yield in mixed fisheries
Ulrich, Clara; Vermard, Youen; Dolder, Paul J.; Brunel, Thomas; Jardim, Ernesto; Holmes, Steven J.; Kempf, Alexander; Mortensen, Lars O.; Poos, Jan Jaap; Rindorf, Anna
2017-01-01
Achieving single species maximum sustainable yield (MSY) in complex and dynamic fisheries targeting multiple species (mixed fisheries) is challenging because achieving the objective for one species may mean missing the objective for another. The North Sea mixed fisheries are a representative example
5 CFR 534.203 - Maximum stipends.
2010-01-01
... maximum stipend established under this section. (e) A trainee at a non-Federal hospital, clinic, or medical or dental laboratory who is assigned to a Federal hospital, clinic, or medical or dental... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY UNDER OTHER SYSTEMS Student...
Minimal length, Friedmann equations and maximum density
Energy Technology Data Exchange (ETDEWEB)
Awad, Adel [Center for Theoretical Physics, British University of Egypt,Sherouk City 11837, P.O. Box 43 (Egypt); Department of Physics, Faculty of Science, Ain Shams University,Cairo, 11566 (Egypt); Ali, Ahmed Farag [Centre for Fundamental Physics, Zewail City of Science and Technology,Sheikh Zayed, 12588, Giza (Egypt); Department of Physics, Faculty of Science, Benha University,Benha, 13518 (Egypt)
2014-06-16
Inspired by Jacobson’s thermodynamic approach, Cai et al. have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation http://dx.doi.org/10.1103/PhysRevD.75.084003 of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p(ρ,a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p=ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.
Venus atmosphere profile from a maximum entropy principle
Directory of Open Access Journals (Sweden)
L. N. Epele
2007-10-01
Full Text Available The variational method with constraints recently developed by Verkley and Gerkema to describe maximum-entropy atmospheric profiles is generalized to ideal gases but with temperature-dependent specific heats. In so doing, an extended and non standard potential temperature is introduced that is well suited for tackling the problem under consideration. This new formalism is successfully applied to the atmosphere of Venus. Three well defined regions emerge in this atmosphere up to a height of 100 km from the surface: the lowest one up to about 35 km is adiabatic, a transition layer located at the height of the cloud deck and finally a third region which is practically isothermal.
Tandberg-Hassen, E.; Cheng, C. C.; Athay, R. G.; Beckers, J. M.; Brandt, J. C.; Chapman, R. D.; Bruner, E. C.; Henze, W.; Hyder, C. L.; Gurman, J. B.
1981-01-01
New observation with the Ultraviolet Spectrometer and Polarimeter (UVSP) of a number of manifestations of solar activity obtained during the first three months of Solar Maximum Mission operations are presented. Attention is given to polarimetry in sunspots, oscillations above sunspots, density diagnostics of transition-zone plasmas in active regions, and the eruptive prominence - coronal transient link.
Quantitative comparisons of type III radio burst intensity and fast electron flux at 1 AU
Fitzenreiter, R. J.; Evans, L. G.; Lin, R. P.
1976-01-01
We compare the flux of fast solar electrons and the intensity of the type III radio emission generated by these particles at 1 AU. We find that there are two regimes in the generation of type III radiation: one where the radio intensity is linearly proportional to the electron flux, and the second regime, which occurs above a threshold electron flux, where the radio intensity is proportional to the approximately 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism.
Quantitative comparisons of type 3 radio burst intensity and fast electron flux at 1 AU
Fitzenreiter, R. J.; Evans, L. G.; Lin, R. P.
1975-01-01
The flux of fast solar electrons and the intensity of the type 111 radio emission generated by these particles were compared at one AU. Two regimes were found in the generation of type 111 radiation: one where the radio intensity is linearly proportional to the electron flux, and another, which occurs above a threshold electron flux, where the radio intensity is approximately proportional to the 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism.
Quantitative comparisons of type 3 radio burst intensity and fast electron flux at 1 AU
International Nuclear Information System (INIS)
Fitzenreiter, R.J.; Evans, L.G.; Lin, R.P.
1975-09-01
The flux of fast solar electrons and the intensity of the type-III radio emission generated by these particles were compared at one AU. Two regimes were found in the generation of type-III radiation: one, where the radio intensity is linearly proportional to the electron flux, and another, which occurs above a threshold electron flux, where the radio intensity is approximately proportional to the 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism
Boosted Fast Flux Loop Alternative Cooling Assessment
Energy Technology Data Exchange (ETDEWEB)
Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace
2007-08-01
The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and
Flux trapping in superconducting cavities
International Nuclear Information System (INIS)
Vallet, C.; Bolore, M.; Bonin, B.; Charrier, J.P.; Daillant, B.; Gratadour, J.; Koechlin, F.; Safa, H.
1992-01-01
The flux trapped in various field cooled Nb and Pb samples has been measured. For ambient fields smaller than 3 Gauss, 100% of the flux is trapped. The consequences of this result on the behavior of superconducting RF cavities are discussed. (author) 12 refs.; 2 figs
DEFF Research Database (Denmark)
Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth
2018-01-01
Merging transcriptomics or metabolomics data remains insufficient for metabolic flux estimation. Ramirez et al. integrate a genome-scale metabolic model with extracellular flux data to predict and validate metabolic differences between white and brown adipose tissue. This method allows both metab...
Data Acquisition and Flux Calculations
DEFF Research Database (Denmark)
Rebmann, C.; Kolle, O; Heinesch, B
2012-01-01
In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....
The X-ray transition radiation; Le rayonnement de transition X
Energy Technology Data Exchange (ETDEWEB)
Couillaud, Ch
2000-07-01
The interest of producing high-energy radiation using a small-size electron accelerator is growing since many years. It appeared that such accelerators should drive x-ray sources to produce a high flux of radiation. The range of photon-energy available when using electron linacs, for example, is between a few tens of eV and the maximum electron kinetic energy. The transition radiation, which is produced when a charged particle crosses the interface between two media of different permittivities, is a very promising way due to its high production rate. We present here a study of this physical process involving moderate-energy relativistic electrons (20 MeV). We recall the main characteristics of the radiation when the interface is crossed at normal incidence and derive the analytical production yields when the interaction takes place at grazing incidence. The results for both geometries are compared. Finally, the scale laws allowing the optimization of the spectral source brilliance are presented. (author)
On a predominant ionization source in the main maximum of the Venus nightside ionosphere
International Nuclear Information System (INIS)
Gringauz, K.I.; Verigin, M.I.; Breus, T.K.; Shvachunova, L.A.
1983-01-01
New considerations in favour of the previously made hypothesis, made on the basis of data using ''Venera-9 and 10'' satellites, that electron fluxes are the main ionization sources, creating the upper maximum of electron concentration in the night Venus atmosphere, are presented. Analysis of arguments, made by certain american authors, suggesting that O + ion transfer from the day Venus ionosphere to the night one should be considered as the main source of night ionization is made, and inconsistency of the argument shown
Solar proton fluxes since 1956
International Nuclear Information System (INIS)
Reedy, R.C.
1977-01-01
The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity
Oxygen, nitrogen and sulphide fluxes in the Black Sea
Directory of Open Access Journals (Sweden)
S.K. KONOVALOV
2000-12-01
Full Text Available The fluxes and production/consumption rates of oxygen, nitrate, ammonium and sulphide are estimated in the paper utilising results of the 1.5-dimensional stationary model of vertical exchange in the Black Sea (Samodurov & Ivanov, 1998. The profiles of the vertical flux and rate of production/consumption of these substances have revealed a number of intriguing features in the biogeochemical nature of the Black Sea. An approximate redox balance of the counter-fluxes of nitrate and ammonium into the sub-oxic zone has been revealed confirming that intensive denitrification may be the primary loss of nitrogen in the Black Sea. A low ratio of the nitrate stock to the flux of nitrate from the oxycline confirms the possibility of prominent changes in the distribution of nitrate on the time scale of a year. The ratio of the nitrate to oxygen vertical flux has revealed a lack of nitrate in the oxycline above the nitrate maximum. The lateral (related to the "Bosporus plume" flux of oxygen in the layer of the main pycnocline appears to be very important for the existing biogeochemical structure of the Black sea water column being the reason of sulphide consumption inside the anoxic zone and changes in the ammonium-sulphide stoichiometry of the anoxic zone, the primary reason of the existence of the sub-oxic layer and the basic reason of relative stability of the sulphide onset.
Characterization of local heat fluxes around ICRF antennas on JET
Energy Technology Data Exchange (ETDEWEB)
Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors
2014-02-12
When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.
Transition radiation of ultrarelativistic neutral particles
International Nuclear Information System (INIS)
Grimus, W.; Neufeld, H.
1994-10-01
We perform a quantum theoretical calculation of transition radiation by neutral particles with spin 1/2 equipped with magnetic moments and/or electric dipole moments. The limit of vanishing masses is treated exactly for arbitrary refraction index. Finally we apply our result to the solar neutrino flux. (author)
Maximum likelihood sequence estimation for optical complex direct modulation.
Che, Di; Yuan, Feng; Shieh, William
2017-04-17
Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.
Noncircular Chainrings Do Not Influence Maximum Cycling Power.
Leong, Chee-Hoi; Elmer, Steven J; Martin, James C
2017-12-01
Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOW ecc = 1.13; HIGH ecc = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGH ecc was less than CON (p pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.
Feedback Limits to Maximum Seed Masses of Black Holes
International Nuclear Information System (INIS)
Pacucci, Fabio; Natarajan, Priyamvada; Ferrara, Andrea
2017-01-01
The most massive black holes observed in the universe weigh up to ∼10 10 M ⊙ , nearly independent of redshift. Reaching these final masses likely required copious accretion and several major mergers. Employing a dynamical approach that rests on the role played by a new, relevant physical scale—the transition radius—we provide a theoretical calculation of the maximum mass achievable by a black hole seed that forms in an isolated halo, one that scarcely merged. Incorporating effects at the transition radius and their impact on the evolution of accretion in isolated halos, we are able to obtain new limits for permitted growth. We find that large black hole seeds ( M • ≳ 10 4 M ⊙ ) hosted in small isolated halos ( M h ≲ 10 9 M ⊙ ) accreting with relatively small radiative efficiencies ( ϵ ≲ 0.1) grow optimally in these circumstances. Moreover, we show that the standard M • – σ relation observed at z ∼ 0 cannot be established in isolated halos at high- z , but requires the occurrence of mergers. Since the average limiting mass of black holes formed at z ≳ 10 is in the range 10 4–6 M ⊙ , we expect to observe them in local galaxies as intermediate-mass black holes, when hosted in the rare halos that experienced only minor or no merging events. Such ancient black holes, formed in isolation with subsequent scant growth, could survive, almost unchanged, until present.
Fractional flux excitations and flux creep in a superconducting film
International Nuclear Information System (INIS)
Lyuksyutov, I.F.
1995-01-01
We consider the transport properties of a modulated superconducting film in a magnetic field parallel to the film. Modulation can be either intrinsic, due to the layered structure of the high-T c superconductors, or artificial, e.g. due to thickness modulation. This system has an infinite set ( >) of pinned phases. In the pinned phase the excitation of flux loops with a fractional number of flux quanta by the applied current j results in flux creep with a generated voltage V ∝ exp[-jo/j[. (orig.)
Quantitative method for measuring heat flux emitted from a cryogenic object
Duncan, R.V.
1993-03-16
The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.
Quantitative method for measuring heat flux emitted from a cryogenic object
International Nuclear Information System (INIS)
Duncan, R.V.
1993-01-01
The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices
Local Times of Galactic Cosmic Ray Intensity Maximum and Minimum in the Diurnal Variation
Directory of Open Access Journals (Sweden)
Su Yeon Oh
2006-06-01
Full Text Available The Diurnal variation of galactic cosmic ray (GCR flux intensity observed by the ground Neutron Monitor (NM shows a sinusoidal pattern with the amplitude of 1sim 2 % of daily mean. We carried out a statistical study on tendencies of the local times of GCR intensity daily maximum and minimum. To test the influences of the solar activity and the location (cut-off rigidity on the distribution in the local times of maximum and minimum GCR intensity, we have examined the data of 1996 (solar minimum and 2000 (solar maximum at the low-latitude Haleakala (latitude: 20.72 N, cut-off rigidity: 12.91 GeV and the high-latitude Oulu (latitude: 65.05 N, cut-off rigidity: 0.81 GeV NM stations. The most frequent local times of the GCR intensity daily maximum and minimum come later about 2sim3 hours in the solar activity maximum year 2000 than in the solar activity minimum year 1996. Oulu NM station whose cut-off rigidity is smaller has the most frequent local times of the GCR intensity maximum and minimum later by 2sim3 hours from those of Haleakala station. This feature is more evident at the solar maximum. The phase of the daily variation in GCR is dependent upon the interplanetary magnetic field varying with the solar activity and the cut-off rigidity varying with the geographic latitude.
International Nuclear Information System (INIS)
1991-01-01
The meaning of the term 'maximum concentration at work' in regard of various pollutants is discussed. Specifically, a number of dusts and smokes are dealt with. The valuation criteria for maximum biologically tolerable concentrations for working materials are indicated. The working materials in question are corcinogeneous substances or substances liable to cause allergies or mutate the genome. (VT) [de
2010-07-27
...-17530; Notice No. 2] RIN 2130-ZA03 Inflation Adjustment of the Ordinary Maximum and Aggravated Maximum... remains at $250. These adjustments are required by the Federal Civil Penalties Inflation Adjustment Act [email protected] . SUPPLEMENTARY INFORMATION: The Federal Civil Penalties Inflation Adjustment Act of 1990...
Studies of vertical fluxes of horizontal momentum in the lower atmosphere using the MU-radar
Directory of Open Access Journals (Sweden)
F. S. Kuo
2008-11-01
Full Text Available We study the momentum flux of the atmospheric motions in the height ranges between 6 and 22 km observed using the MU radar at Shigaraki in Japan during a 3 day period in January 1988. The data were divided by double Fourier transformation into data set of waves with downward- phase- velocity and data set of waves with upward-phase-velocity for independent momentum flux calculation. The result showed that both the 72 h averaged upward flux and downward flux of zonal momentum were negative at nearly each height, meaning that the upward flux was dominated by westward propagating waves while the downward flux was dominated by eastward propagating waves. The magnitude of the downward flux was approximately a factor of 1.5 larger than the upward flux for waves in the 2~7 h and 7~24 h period bands, and about equal to the upward flux in the 10–30 min and 30 min–2 h period bands. It is also observed that the vertical flux of zonal momentum tended to be small in each frequency band at the altitudes below the jet maximum (10~12 km, and the flux increased toward more negative values to reach a negative maximum at some altitude well above the jet maximum. Daily averaged flux showed tremendous variation: The 1st 24 h (quiet day was relatively quiet, and the fluxes of the 2nd and 3rd 24 h (active days increased sharply. Moreover, the upward fluxes of zonal momentum below 17 km in the quiet day for each period band (10~30 min, 30 min~2 h, 2~7 h, and 7~24 h were dominantly positive, while the corresponding downward fluxes were dominantly negative, meaning that the zonal momentum below 17 km in each period band under study were dominantly eastward (propagating along the mean wind. In the active days, both the upward fluxes and downward fluxes in each frequency band were dominantly negative throughout the whole altitude range 6.1–18.95 km.
Zipf's law, power laws and maximum entropy
International Nuclear Information System (INIS)
Visser, Matt
2013-01-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified. (paper)
Maximum-entropy description of animal movement.
Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M
2015-03-01
We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.
Pareto versus lognormal: a maximum entropy test.
Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano
2011-08-01
It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.
Maximum likelihood estimation for integrated diffusion processes
DEFF Research Database (Denmark)
Baltazar-Larios, Fernando; Sørensen, Michael
We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated...... EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...... by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated...
A Maximum Radius for Habitable Planets.
Alibert, Yann
2015-09-01
We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.
Maximum parsimony on subsets of taxa.
Fischer, Mareike; Thatte, Bhalchandra D
2009-09-21
In this paper we investigate mathematical questions concerning the reliability (reconstruction accuracy) of Fitch's maximum parsimony algorithm for reconstructing the ancestral state given a phylogenetic tree and a character. In particular, we consider the question whether the maximum parsimony method applied to a subset of taxa can reconstruct the ancestral state of the root more accurately than when applied to all taxa, and we give an example showing that this indeed is possible. A surprising feature of our example is that ignoring a taxon closer to the root improves the reliability of the method. On the other hand, in the case of the two-state symmetric substitution model, we answer affirmatively a conjecture of Li, Steel and Zhang which states that under a molecular clock the probability that the state at a single taxon is a correct guess of the ancestral state is a lower bound on the reconstruction accuracy of Fitch's method applied to all taxa.
Maximum entropy analysis of liquid diffraction data
International Nuclear Information System (INIS)
Root, J.H.; Egelstaff, P.A.; Nickel, B.G.
1986-01-01
A maximum entropy method for reducing truncation effects in the inverse Fourier transform of structure factor, S(q), to pair correlation function, g(r), is described. The advantages and limitations of the method are explored with the PY hard sphere structure factor as model input data. An example using real data on liquid chlorine, is then presented. It is seen that spurious structure is greatly reduced in comparison to traditional Fourier transform methods. (author)
A Maximum Resonant Set of Polyomino Graphs
Directory of Open Access Journals (Sweden)
Zhang Heping
2016-05-01
Full Text Available A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper, we show that if K is a maximum resonant set of P, then P − K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to the cardinality of a maximum resonant set. This confirms a conjecture of Xu et al. [26]. We also show that if K is a maximal alternating set of P, then P − K has a unique perfect matching.
Automatic maximum entropy spectral reconstruction in NMR
International Nuclear Information System (INIS)
Mobli, Mehdi; Maciejewski, Mark W.; Gryk, Michael R.; Hoch, Jeffrey C.
2007-01-01
Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system
Monte Carlo surface flux tallies
International Nuclear Information System (INIS)
Favorite, Jeffrey A.
2010-01-01
Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.
Compressed magnetic flux amplifier with capacitive load
International Nuclear Information System (INIS)
Stuetzer, O.M.
1980-03-01
A first-order analysis is presented for a compressed magnetic flux (CMF) current amplifier working into a load with a capacitive component. Since the purpose of the investigation was to gain a general understanding of the arrangement, a number of approximations and limitations were accepted. The inductance of the transducer varies with time; the inductance/resistance/capacitance (LRC) circuit therefore is parametric and solutions are different for the stable regime (high C), the oscillation regime (low C), and the transition case. Solutions and performance depend strongly on circuit boundary conditions, i.e., energization of the circuit by either an injected current or by an applied capacitor charge. The behavior of current and energy amplification for the various cases are discussed in detail. A number of experiments with small CMF devices showed that the first-order theory presented predicts transducer performance well in the linear regime
Solar neutrino flux at keV energies
Vitagliano, Edoardo; Redondo, Javier; Raffelt, Georg
2017-12-01
We calculate the solar neutrino and antineutrino flux in the keV energy range. The dominant thermal source processes are photo production (γ e→ e νbar nu), bremsstrahlung (e+Ze→ Ze+e+νbar nu), plasmon decay (γ→νbar nu), and νbar nu emission in free-bound and bound-bound transitions of partially ionized elements heavier than hydrogen and helium. These latter processes dominate in the energy range of a few keV and thus carry information about the solar metallicity. To calculate their rate we use libraries of monochromatic photon radiative opacities in analogy to a previous calculation of solar axion emission. Our overall flux spectrum and many details differ significantly from previous works. While this low-energy flux is not measurable with present-day technology, it could become a significant background for future direct searches for keV-mass sterile neutrino dark matter.
Bifurcations of transition states: Morse bifurcations
International Nuclear Information System (INIS)
MacKay, R S; Strub, D C
2014-01-01
A transition state for a Hamiltonian system is a closed, invariant, oriented, codimension-2 submanifold of an energy level that can be spanned by two compact codimension-1 surfaces of unidirectional flux whose union, called a dividing surface, locally separates the energy level into two components and has no local recrossings. For this to happen robustly to all smooth perturbations, the transition state must be normally hyperbolic. The dividing surface then has locally minimal geometric flux through it, giving an upper bound on the rate of transport in either direction. Transition states diffeomorphic to S 2m−3 are known to exist for energies just above any index-1 critical point of a Hamiltonian of m degrees of freedom, with dividing surfaces S 2m−2 . The question addressed here is what qualitative changes in the transition state, and consequently the dividing surface, may occur as the energy or other parameters are varied? We find that there is a class of systems for which the transition state becomes singular and then regains normal hyperbolicity with a change in diffeomorphism class. These are Morse bifurcations. Various examples are considered. Firstly, some simple examples in which transition states connect or disconnect, and the dividing surface may become a torus or other. Then, we show how sequences of Morse bifurcations producing various interesting forms of transition state and dividing surface are present in reacting systems, by considering a hypothetical class of bimolecular reactions in gas phase. (paper)
SEED BANKS FOR MAGNETIC FLUX COMPRESSION GENERATORS
Energy Technology Data Exchange (ETDEWEB)
Fulkerson, E S
2008-05-14
In recent years the Lawrence Livermore National Laboratory (LLNL) has been conducting experiments that require pulsed high currents to be delivered into inductive loads. The loads fall into two categories (1) pulsed high field magnets and (2) the input stage of Magnetic Flux Compression Generators (MFCG). Three capacitor banks of increasing energy storage and controls sophistication have been designed and constructed to drive these loads. One bank was developed for the magnet driving application (20kV {approx} 30kJ maximum stored energy.) Two banks where constructed as MFCG seed banks (12kV {approx} 43kJ and 26kV {approx} 450kJ). This paper will describe the design of each bank including switching, controls, circuit protection and safety.
Device for investigation of magnetic flux jumps in ribbon superconductors
International Nuclear Information System (INIS)
Andrianov, A.V.; Bashkirov, Yu.A.; Kremlev, M.G.
1986-01-01
A device for simulation of magnetic flux jumps in superconductors of conducting magnet sandwich-type windings super-applyed of a ribbon conductor is described. A superconducting magnet with a measuring cassetter are the main elements of the device. An external magnetic field is generated by a two-sectional superconducting magnet permitting to simulate the shape of the magnetic field characteristic for sandwich-type windings. Maximum radial component of the magnetic field is 2 T. Jumps of the magnetic flux are recorded by induction transducers and the magnetic field-by Hall trasducer. The effect of coating of standard metal on magnetic flux jumps in Nb 3 Sn base superconducting ribbon is considered
Flux surface shape and current profile optimization in tokamaks
International Nuclear Information System (INIS)
Dobrott, D.R.; Miller, R.L.
1977-01-01
Axisymmetric tokamak equilibria of noncircular cross section are analyzed numerically to study the effects of flux surface shape and current profile on ideal and resistive interchange stability. Various current profiles are examined for circles, ellipses, dees, and doublets. A numerical code separately analyzes stability in the neighborhood of the magnetic axis and in the remainder of the plasma using the criteria of Mercier and Glasser, Greene, and Johnson. Results are interpreted in terms of flux surface averaged quantities such as magnetic well, shear, and the spatial variation in the magnetic field energy density over the cross section. The maximum stable β is found to vary significantly with shape and current profile. For current profiles varying linearly with poloidal flux, the highest β's found were for doublets. Finally, an algorithm is presented which optimizes the current profile for circles and dees by making the plasma everywhere marginally stable
Magnetohydrodynamic stability of spheromak plasma in spheroidal flux conserver
International Nuclear Information System (INIS)
Kaneko, Shobu; Kamitani, Atsushi.
1985-11-01
The MHD equilibrium configurations of spheromak plasmas in a spheroidal flux conserver are determined by use of a pressure distribution whose derivative dp/dψ vanishes on the magnetic axis, and by use of an optimized distribution. Here p is the pressure and ψ is the flux function. These equilibria are shown to be stable for symmetric modes. The stability for localized modes is investigated by the Mercier criterion. The values of the maximum beta ratio β max are evaluated for both pressure distributions and are shown to become about two times larger by optimization. If the condition, q axis max are found to be less than 30 %. The oblate spheroidal flux conserver is shown to be better than the toroidal conserver with a rectangular cross section from the standpoint of stability. (author)
COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS
Energy Technology Data Exchange (ETDEWEB)
Barnes, Rory; Meadows, Victoria S.; Evans, Nicole, E-mail: rory@astro.washington.edu [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States)
2015-12-01
Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.
COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS
International Nuclear Information System (INIS)
Barnes, Rory; Meadows, Victoria S.; Evans, Nicole
2015-01-01
Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions
Energy Technology Data Exchange (ETDEWEB)
Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Ballester, José Luis, E-mail: roberto.soler@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2017-05-01
It has been proposed that Alfvén waves play an important role in the energy propagation through the solar atmospheric plasma and its heating. Here we theoretically investigate the propagation of torsional Alfvén waves in magnetic flux tubes expanding from the photosphere up to the low corona and explore the reflection, transmission, and dissipation of wave energy. We use a realistic variation of the plasma properties and the magnetic field strength with height. Dissipation by ion–neutral collisions in the chromosphere is included using a multifluid partially ionized plasma model. Considering the stationary state, we assume that the waves are driven below the photosphere and propagate to the corona, while they are partially reflected and damped in the chromosphere and transition region. The results reveal the existence of three different propagation regimes depending on the wave frequency: low frequencies are reflected back to the photosphere, intermediate frequencies are transmitted to the corona, and high frequencies are completely damped in the chromosphere. The frequency of maximum transmissivity depends on the magnetic field expansion rate and the atmospheric model, but is typically in the range of 0.04–0.3 Hz. Magnetic field expansion favors the transmission of waves to the corona and lowers the reflectivity of the chromosphere and transition region compared to the case with a straight field. As a consequence, the chromospheric heating due to ion–neutral dissipation systematically decreases when the expansion rate of the magnetic flux tube increases.
Change of transport at L- and H-mode transition
International Nuclear Information System (INIS)
Itoh, Sanae-I; Itoh, Kimitaka.
1990-01-01
A new refined model of the L-mode and H-mode transition in tokamaks is presented based on the bifurcation of the radial electric field, E r , near edge. The radial gradient of E r is newly introduced to explain the sudden change of fluctuations as well as plasma fluxes at the onset of transition. This model predicts that the L-to H-mode transition is associated with the decrease of dE r /dr causing reduction of particle and energy fluxes at critical gradient. (author)
YOHKOH Observations at the Y2K Solar Maximum
Aschwanden, M. J.
1999-05-01
Yohkoh will provide simultaneous co-aligned soft X-ray and hard X-ray observations of solar flares at the coming solar maximum. The Yohkoh Soft X-ray Telescope (SXT) covers the approximate temperature range of 2-20 MK with a pixel size of 2.46\\arcsec, and thus complements ideally the EUV imagers sensitive in the 1-2 MK plasma, such as SoHO/EIT and TRACE. The Yohkoh Hard X-ray Telescope (HXT) offers hard X-ray imaging at 20-100 keV at a time resolution of down to 0.5 sec for major events. In this paper we review the major SXT and HXT results from Yohkoh solar flare observations, and anticipate some of the key questions that can be addressed through joint observations with other ground and space-based observatories. This encompasses the dynamics of flare triggers (e.g. emerging flux, photospheric shear, interaction of flare loops in quadrupolar geometries, large-scale magnetic reconfigurations, eruption of twisted sigmoid structures, coronal mass ejections), the physics of particle dynamics during flares (acceleration processes, particle propagation, trapping, and precipitation), and flare plasma heating processes (chromospheric evaporation, coronal energy loss by nonthermal particles). In particular we will emphasize on how Yohkoh data analysis is progressing from a qualitative to a more quantitative science, employing 3-dimensional modeling and numerical simulations.
Conical electromagnetic radiation flux concentrator
Miller, E. R.
1972-01-01
Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.
Physics of Magnetic Flux Ropes
Priest, E R; Lee, L C
1990-01-01
The American Geophysical Union Chapman Conference on the Physics of Magnetic Flux Ropes was held at the Hamilton Princess Hotel, Hamilton, Bermuda on March 27–31, 1989. Topics discussed ranged from solar flux ropes, such as photospheric flux tubes, coronal loops and prominences, to flux ropes in the solar wind, in planetary ionospheres, at the Earth's magnetopause, in the geomagnetic tail and deep in the Earth's magnetosphere. Papers presented at that conference form the nucleus of this book, but the book is more than just a proceedings of the conference. We have solicited articles from all interested in this topic. Thus, there is some material in the book not discussed at the conference. Even in the case of papers presented at the conference, there is generally a much more detailed and rigorous presentation than was possible in the time allowed by the oral and poster presentations.
Notes on neutron flux measurement
International Nuclear Information System (INIS)
Alcala Ruiz, F.
1984-01-01
The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs
Specification of ROP flux shape
International Nuclear Information System (INIS)
Min, Byung Joo; Gray, A.
1997-06-01
The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs
Specification of ROP flux shape
Energy Technology Data Exchange (ETDEWEB)
Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)
1997-06-01
The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.
High Flux Isotope Reactor (HFIR)
Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...
Flux networks in metabolic graphs
International Nuclear Information System (INIS)
Warren, P B; Queiros, S M Duarte; Jones, J L
2009-01-01
A metabolic model can be represented as a bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualization of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for other organisms
Maximum T/sub c/: optimistic evidence
International Nuclear Information System (INIS)
Dynes, R.C.; Allen, P.B.
1976-01-01
A reanalysis of Eliashberg theory in the strong coupling limit and the relationship between the superconducting transition temperature T/sub c/ of a material and its normal state properties is presented. At weak and intermediate coupling (lambda approx. 2 >)/sup 1 / 2 /. The lambda = 2 limit predicted by McMillan disappears in the correct theory because it is a result of the functional dependence of T/sub c/ on lambda and used by McMillan which is valid only if lamba 2 (ω)F(ω) for values of lambda < or = 1.5
Maximum entropy decomposition of quadrupole mass spectra
International Nuclear Information System (INIS)
Toussaint, U. von; Dose, V.; Golan, A.
2004-01-01
We present an information-theoretic method called generalized maximum entropy (GME) for decomposing mass spectra of gas mixtures from noisy measurements. In this GME approach to the noisy, underdetermined inverse problem, the joint entropies of concentration, cracking, and noise probabilities are maximized subject to the measured data. This provides a robust estimation for the unknown cracking patterns and the concentrations of the contributing molecules. The method is applied to mass spectroscopic data of hydrocarbons, and the estimates are compared with those received from a Bayesian approach. We show that the GME method is efficient and is computationally fast
Maximum power operation of interacting molecular motors
DEFF Research Database (Denmark)
Golubeva, Natalia; Imparato, Alberto
2013-01-01
, as compared to the non-interacting system, in a wide range of biologically compatible scenarios. We furthermore consider the case where the motor-motor interaction directly affects the internal chemical cycle and investigate the effect on the system dynamics and thermodynamics.......We study the mechanical and thermodynamic properties of different traffic models for kinesin which are relevant in biological and experimental contexts. We find that motor-motor interactions play a fundamental role by enhancing the thermodynamic efficiency at maximum power of the motors...
Maximum entropy method in momentum density reconstruction
International Nuclear Information System (INIS)
Dobrzynski, L.; Holas, A.
1997-01-01
The Maximum Entropy Method (MEM) is applied to the reconstruction of the 3-dimensional electron momentum density distributions observed through the set of Compton profiles measured along various crystallographic directions. It is shown that the reconstruction of electron momentum density may be reliably carried out with the aid of simple iterative algorithm suggested originally by Collins. A number of distributions has been simulated in order to check the performance of MEM. It is shown that MEM can be recommended as a model-free approach. (author). 13 refs, 1 fig
On the maximum drawdown during speculative bubbles
Rotundo, Giulia; Navarra, Mauro
2007-08-01
A taxonomy of large financial crashes proposed in the literature locates the burst of speculative bubbles due to endogenous causes in the framework of extreme stock market crashes, defined as falls of market prices that are outlier with respect to the bulk of drawdown price movement distribution. This paper goes on deeper in the analysis providing a further characterization of the rising part of such selected bubbles through the examination of drawdown and maximum drawdown movement of indices prices. The analysis of drawdown duration is also performed and it is the core of the risk measure estimated here.
Multi-Channel Maximum Likelihood Pitch Estimation
DEFF Research Database (Denmark)
Christensen, Mads Græsbøll
2012-01-01
In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...
Conductivity maximum in a charged colloidal suspension
Energy Technology Data Exchange (ETDEWEB)
Bastea, S
2009-01-27
Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.
Dynamical maximum entropy approach to flocking.
Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco; Mora, Thierry; Piovani, Duccio; Tavarone, Raffaele; Walczak, Aleksandra M
2014-04-01
We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.
Maximum Temperature Detection System for Integrated Circuits
Frankiewicz, Maciej; Kos, Andrzej
2015-03-01
The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.
Maximum entropy PDF projection: A review
Baggenstoss, Paul M.
2017-06-01
We review maximum entropy (MaxEnt) PDF projection, a method with wide potential applications in statistical inference. The method constructs a sampling distribution for a high-dimensional vector x based on knowing the sampling distribution p(z) of a lower-dimensional feature z = T (x). Under mild conditions, the distribution p(x) having highest possible entropy among all distributions consistent with p(z) may be readily found. Furthermore, the MaxEnt p(x) may be sampled, making the approach useful in Monte Carlo methods. We review the theorem and present a case study in model order selection and classification for handwritten character recognition.
Multiperiod Maximum Loss is time unit invariant.
Kovacevic, Raimund M; Breuer, Thomas
2016-01-01
Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant.
Maximum a posteriori decoder for digital communications
Altes, Richard A. (Inventor)
1997-01-01
A system and method for decoding by identification of the most likely phase coded signal corresponding to received data. The present invention has particular application to communication with signals that experience spurious random phase perturbations. The generalized estimator-correlator uses a maximum a posteriori (MAP) estimator to generate phase estimates for correlation with incoming data samples and for correlation with mean phases indicative of unique hypothesized signals. The result is a MAP likelihood statistic for each hypothesized transmission, wherein the highest value statistic identifies the transmitted signal.
Improved Maximum Parsimony Models for Phylogenetic Networks.
Van Iersel, Leo; Jones, Mark; Scornavacca, Celine
2018-05-01
Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.
Ancestral sequence reconstruction with Maximum Parsimony
Herbst, Lina; Fischer, Mareike
2017-01-01
One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference as well as for ancestral sequence inference is Maximum Parsimony (...
Boundary fluxes for nonlocal diffusion
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
International Nuclear Information System (INIS)
Wotzak, G.P.; Kostin, M.D.
1976-01-01
The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop
OSO-8 observations of the impulsive phase of solar flares in the transition-zone and corona
International Nuclear Information System (INIS)
Lites, B.W.
1981-01-01
Several solar flares have been observed from their onset in C IV lambda 1548.2 and 1-8 Angstroem X-rays using instruments aboard OSO-8. In addition, microwave and Hα flare patrol data have been obtained for this study. The impulsive brightening in C IV is frequently accompanied by redshifts, interpreted as downflows, of the order of 80 km s -1 . The maximum soft X-ray intensity usually arrives several minutes after the maximum C IV intensity. The most energetic C IV event studied shows a small blueshift just before reaching maximum intensity, and estimates of the mass flux associated with this upflow through the transition-zone are consistent with the increase of mass in the coronal loops as observed in soft X-rays. This event had no observable microwave burst, suggesting that electron beams did not play a major role in the chromospheric and transition-zone excitation. Lastly, our observations suggest that the frequent occurrence of violent dynamical processes at the onset of the flare are associated with the initial energy release mechanism. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lombardo, Davide M. [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Risoli, Stefano [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)
2016-12-21
We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T{sup 6}/[ℤ{sub 2}×ℤ{sub 2}] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.
International Nuclear Information System (INIS)
Lombardo, Davide M.; Riccioni, Fabio; Risoli, Stefano
2016-01-01
We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T 6 /[ℤ 2 ×ℤ 2 ] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.
DEFF Research Database (Denmark)
Raahauge, Kirsten Marie
2008-01-01
This article deals with representations of one specific city, Århus, Denmark, especially its central district. The analysis is based on anthropological fieldwork conducted in Skåde Bakker and Fedet, two well-off neighborhoods. The overall purpose of the project is to study perceptions of space...... and the interaction of cultural, social, and spatial organizations, as seen from the point of view of people living in Skåde Bakker and Fedet. The focus is on the city dwellers’ representations of the central district of Århus with specific reference to the concept of transit space. When applied to various Århusian...
International Nuclear Information System (INIS)
Jordan, C.
1977-01-01
The Glossary is designed to be a technical dictionary that will provide solar workers of various specialties, students, other astronomers and theoreticians with concise information on the nature and the properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description, including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: transition region; di-electronic recombination; intersystem or intercombination lines; satellite lines; grazing-incidence optics; and crystal spectrometers. (B.R.H.)
Heat capacity characterization at phase transition temperature of Agl superionic
International Nuclear Information System (INIS)
Widowati, Arie
2000-01-01
The phase transition of Agl superionic conductor was investigated by calorometric. A single phase transition was found at (153±5) o C which corresponds to the α - β transition. Calorimetric measurement showed an anomalously high heat capacity with a large discontinues change in the Arrhenius plot, was found above the transition temperature of β - α phase. The maximum heat capacity was found to be ±19.7 cal/gmol. Key words : superionic conductor, thermal capacity
Objective Bayesianism and the Maximum Entropy Principle
Directory of Open Access Journals (Sweden)
Jon Williamson
2013-09-01
Full Text Available Objective Bayesian epistemology invokes three norms: the strengths of our beliefs should be probabilities; they should be calibrated to our evidence of physical probabilities; and they should otherwise equivocate sufficiently between the basic propositions that we can express. The three norms are sometimes explicated by appealing to the maximum entropy principle, which says that a belief function should be a probability function, from all those that are calibrated to evidence, that has maximum entropy. However, the three norms of objective Bayesianism are usually justified in different ways. In this paper, we show that the three norms can all be subsumed under a single justification in terms of minimising worst-case expected loss. This, in turn, is equivalent to maximising a generalised notion of entropy. We suggest that requiring language invariance, in addition to minimising worst-case expected loss, motivates maximisation of standard entropy as opposed to maximisation of other instances of generalised entropy. Our argument also provides a qualified justification for updating degrees of belief by Bayesian conditionalisation. However, conditional probabilities play a less central part in the objective Bayesian account than they do under the subjective view of Bayesianism, leading to a reduced role for Bayes’ Theorem.
Efficient heuristics for maximum common substructure search.
Englert, Péter; Kovács, Péter
2015-05-26
Maximum common substructure search is a computationally hard optimization problem with diverse applications in the field of cheminformatics, including similarity search, lead optimization, molecule alignment, and clustering. Most of these applications have strict constraints on running time, so heuristic methods are often preferred. However, the development of an algorithm that is both fast enough and accurate enough for most practical purposes is still a challenge. Moreover, in some applications, the quality of a common substructure depends not only on its size but also on various topological features of the one-to-one atom correspondence it defines. Two state-of-the-art heuristic algorithms for finding maximum common substructures have been implemented at ChemAxon Ltd., and effective heuristics have been developed to improve both their efficiency and the relevance of the atom mappings they provide. The implementations have been thoroughly evaluated and compared with existing solutions (KCOMBU and Indigo). The heuristics have been found to greatly improve the performance and applicability of the algorithms. The purpose of this paper is to introduce the applied methods and present the experimental results.
International Nuclear Information System (INIS)
1998-01-01
This discussion paper, the fifth in the series developed at the IPPSO Market Design Conference, addressed the issue of the need to prevent Ontario Hydro from taking unfair advantage of independent producers and other stakeholders through activities and investments in new power generating capacity in the transitional period leading up to deregulation. The need for controls is predicated on the assumption that the short-term actions and investments of Ontario Hydro could seriously compromise the position of independent generators, and that without such controls the level playing field essential to the operation of a competitive market, does not exist. Various actual and potential actions of Ontario Hydro were discussed, all of which point to the need for strict controls over Ontario Hydro exercising its dominant market power in an unfair way. It was recommended that as a minimum, the provincial government should no longer provide guarantees for Ontario Hydro capital projects, and that Ontario Hydro be instructed to defer any investment on new or returning generating capacity until the new market is in place. Limits could also be placed on Ontario Hydro's marketing efforts to enter into contracts during the transition period, and Ontario Hydro and municipal utilities should be required to keep separate accounts of their commercial preparation, and to settle such accounts separate from ratepayer revenue
CHROMOSPHERIC AND CORONAL WAVE GENERATION IN A MAGNETIC FLUX SHEATH
International Nuclear Information System (INIS)
Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats; Steiner, Oskar
2016-01-01
Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.
CHROMOSPHERIC AND CORONAL WAVE GENERATION IN A MAGNETIC FLUX SHEATH
Energy Technology Data Exchange (ETDEWEB)
Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Steiner, Oskar, E-mail: yoshiaki.kato@astro.uio.no [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany)
2016-08-10
Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.
A Flux-Pinning Mechanism for Segment Assembly and Alignment
Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip
2011-01-01
Currently, the most compelling astrophysics questions include how planets and the first stars formed and whether there are protostellar disks that contain large organic molecules. Although answering these questions requires space telescopes with apertures of at least 10 meters, such large primaries are challenging to construct by scaling up previous designs; the limited capacity of a launch vehicle bounds the maximum diameter of a monolithic primary, and beyond a certain size, deployable telescopes cannot fit in current launch vehicle fairings. One potential solution is connecting the primary mirror segments edgewise using flux-pinning mechanisms, which are analogous to non-contacting damped springs. In the baseline design, a flux-pinning mechanism consists of a magnet and a superconductor separated by a predetermined gap, with the damping adjusted by placing aluminum near the interface. Since flux pinning is possible only when the superconductor is cooled below a critical temperature, flux-pinning mechanisms are uniquely suited for cryogenic space telescopes. By placing these mechanisms along the edges of the mirror segments, a primary can be built up over time. Since flux pinning requires no mechanical deployments, the assembly process could be robotic or use some other non-contacting scheme. Advantages of this approach include scalability and passive stability.
Measurements of flux and isotopic composition of soil carbon dioxide
International Nuclear Information System (INIS)
Gorczyca, Z.; Rozanski, K.; Kuc, T.
2002-01-01
The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)
Analogue of Pontryagin's maximum principle for multiple integrals minimization problems
Mikhail, Zelikin
2016-01-01
The theorem like Pontryagin's maximum principle for multiple integrals is proved. Unlike the usual maximum principle, the maximum should be taken not over all matrices, but only on matrices of rank one. Examples are given.
Lake Basin Fetch and Maximum Length/Width
Minnesota Department of Natural Resources — Linear features representing the Fetch, Maximum Length and Maximum Width of a lake basin. Fetch, maximum length and average width are calcuated from the lake polygon...
Hysteresis Bearingless Slice Motors with Homopolar Flux-biasing.
Noh, Minkyun; Gruber, Wolfgang; Trumper, David L
2017-10-01
We present a new concept of bearingless slice motor that levitates and rotates a ring-shaped solid rotor. The rotor is made of a semi-hard magnetic material exhibiting magnetic hysteresis, such as D2 steel. The rotor is radially biased with a homopolar permanent-magnetic flux, on which the stator can superimpose 2-pole flux to generate suspension forces. By regulating the suspension forces based on position feedback, the two radial rotor degrees of freedom are actively stabilized. The two tilting degrees of freedom and the axial translation are passively stable due to the reluctance forces from the bias flux. In addition, the stator can generate a torque by superimposing 6- pole rotating flux, which drags the rotor via hysteresis coupling. This 6-pole flux does not generate radial forces in conjunction with the homopolar flux or 2-pole flux, and therefore the suspension force generation is in principle decoupled from the driving torque generation. We have developed a prototype system as a proof of concept. The stator has twelve teeth, each of which has a single phase winding that is individually driven by a linear transconductance power amplifier. The system has four reflective-type optical sensors to differentially measure the two radial degrees of freedom of the rotor. The suspension control loop is implemented such that the phase margin is 25 degrees at the cross-over frequency of 110 Hz. The prototype system can levitate the rotor and drive it up to about 1730 rpm. The maximum driving torque is about 2.7 mNm.
Study of dryout heat fluxes in beds of inductively heated particles
International Nuclear Information System (INIS)
Dhir, V.K.; Catton, I.
1977-02-01
Experimental observations of the dryout heat fluxes for inductively heated particulate beds have been made. The data were obtained when steel and lead particles in the size distribution 295-787 microns were placed in a 4.7 cm diameter pyrex glass jar and inductively heated by passing radio frequency current through a 13.3 cm diameter multi-turn work coil encircling the jar. Distilled water, methanol and acetone were used as coolants in the experiments, while the bed height was varied from 1.0 to 8.9 cm. Different mechanisms for the dryout in deep and shallow beds have been identified. Dryout in shallow beds is believed to occur when the vapor velocity in the gas jets exceeds a certain critical velocity at which choking of the vapor occurs, leading to obstruction in the flow of the liquid toward the bed. However, deep beds dry out when gravitational force can no longer maintain a downward coolant flow rate necessary to dissipate the heat generated in the bed. The heat flux data of the investigation and that from two previous investigations made at Argonne Laboratory and at UCLA have been correlated with semi-theoretical correlations based on the proposed hydrodynamic models. The deep and shallow bed correlations are used to predict the bed height at which transition from deep to shallow bed would occur. An application of the study has been made to determine the maximum coolable depths of the core debris as a function of the particle size, bed porosity and decay heat
Aguilar, M; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P
2016-01-01
A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×105 antiproton events and 2.42×109 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton p¯, proton p, and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e− flux exhibits a different rigidity dependence. Below 60 GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios each reaches a maximum. From ∼60 to ∼500 GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.
Transition piece for joining together tubular pieces
International Nuclear Information System (INIS)
Holko, K.H.
1981-01-01
A transition piece for joining together tubular pieces formed respectively from a low alloy or carbon steel and a high temperature alloy containing at least 16% chromium includes a plurality of tubular parts welded together and formed from materials of selected composition with a maximum chromium content difference of 5% between adjacent parts when the chromium content of each part is below 10% and a maximum chromium difference of 7% between adjacent parts when the chromium content of either part is above 10%. The transition parts are also graded as to such characteristics as thermal expansion coefficient. The transition parts at opposite ends of the transition joint have chromium percentages similar to the tubular pieces to which they are to be joined. The parts may be joined by fusion and/or friction welding and parts may be formed by fusion weld deposition. (author)
Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting.
Zhao, Bo; Setsompop, Kawin; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L
2016-08-01
This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple MR tissue parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization.
Maximum Profit Configurations of Commercial Engines
Directory of Open Access Journals (Sweden)
Yiran Chen
2011-06-01
Full Text Available An investigation of commercial engines with finite capacity low- and high-price economic subsystems and a generalized commodity transfer law [n ∝ Δ (P m] in commodity flow processes, in which effects of the price elasticities of supply and demand are introduced, is presented in this paper. Optimal cycle configurations of commercial engines for maximum profit are obtained by applying optimal control theory. In some special cases, the eventual state—market equilibrium—is solely determined by the initial conditions and the inherent characteristics of two subsystems; while the different ways of transfer affect the model in respects of the specific forms of the paths of prices and the instantaneous commodity flow, i.e., the optimal configuration.
The worst case complexity of maximum parsimony.
Carmel, Amir; Musa-Lempel, Noa; Tsur, Dekel; Ziv-Ukelson, Michal
2014-11-01
One of the core classical problems in computational biology is that of constructing the most parsimonious phylogenetic tree interpreting an input set of sequences from the genomes of evolutionarily related organisms. We reexamine the classical maximum parsimony (MP) optimization problem for the general (asymmetric) scoring matrix case, where rooted phylogenies are implied, and analyze the worst case bounds of three approaches to MP: The approach of Cavalli-Sforza and Edwards, the approach of Hendy and Penny, and a new agglomerative, "bottom-up" approach we present in this article. We show that the second and third approaches are faster than the first one by a factor of Θ(√n) and Θ(n), respectively, where n is the number of species.
Modelling maximum likelihood estimation of availability
International Nuclear Information System (INIS)
Waller, R.A.; Tietjen, G.L.; Rock, G.W.
1975-01-01
Suppose the performance of a nuclear powered electrical generating power plant is continuously monitored to record the sequence of failure and repairs during sustained operation. The purpose of this study is to assess one method of estimating the performance of the power plant when the measure of performance is availability. That is, we determine the probability that the plant is operational at time t. To study the availability of a power plant, we first assume statistical models for the variables, X and Y, which denote the time-to-failure and the time-to-repair variables, respectively. Once those statistical models are specified, the availability, A(t), can be expressed as a function of some or all of their parameters. Usually those parameters are unknown in practice and so A(t) is unknown. This paper discusses the maximum likelihood estimator of A(t) when the time-to-failure model for X is an exponential density with parameter, lambda, and the time-to-repair model for Y is an exponential density with parameter, theta. Under the assumption of exponential models for X and Y, it follows that the instantaneous availability at time t is A(t)=lambda/(lambda+theta)+theta/(lambda+theta)exp[-[(1/lambda)+(1/theta)]t] with t>0. Also, the steady-state availability is A(infinity)=lambda/(lambda+theta). We use the observations from n failure-repair cycles of the power plant, say X 1 , X 2 , ..., Xsub(n), Y 1 , Y 2 , ..., Ysub(n) to present the maximum likelihood estimators of A(t) and A(infinity). The exact sampling distributions for those estimators and some statistical properties are discussed before a simulation model is used to determine 95% simulation intervals for A(t). The methodology is applied to two examples which approximate the operating history of two nuclear power plants. (author)
Flux flow and flux dynamics in high-Tc superconductors
International Nuclear Information System (INIS)
Bennett, L.H.; Turchinskaya, M.; Swartzendruber, L.J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D.L.
1991-01-01
Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed
Feedback Limits to Maximum Seed Masses of Black Holes
Energy Technology Data Exchange (ETDEWEB)
Pacucci, Fabio; Natarajan, Priyamvada [Department of Physics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Ferrara, Andrea [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)
2017-02-01
The most massive black holes observed in the universe weigh up to ∼10{sup 10} M {sub ⊙}, nearly independent of redshift. Reaching these final masses likely required copious accretion and several major mergers. Employing a dynamical approach that rests on the role played by a new, relevant physical scale—the transition radius—we provide a theoretical calculation of the maximum mass achievable by a black hole seed that forms in an isolated halo, one that scarcely merged. Incorporating effects at the transition radius and their impact on the evolution of accretion in isolated halos, we are able to obtain new limits for permitted growth. We find that large black hole seeds ( M {sub •} ≳ 10{sup 4} M {sub ⊙}) hosted in small isolated halos ( M {sub h} ≲ 10{sup 9} M {sub ⊙}) accreting with relatively small radiative efficiencies ( ϵ ≲ 0.1) grow optimally in these circumstances. Moreover, we show that the standard M {sub •}– σ relation observed at z ∼ 0 cannot be established in isolated halos at high- z , but requires the occurrence of mergers. Since the average limiting mass of black holes formed at z ≳ 10 is in the range 10{sup 4–6} M {sub ⊙}, we expect to observe them in local galaxies as intermediate-mass black holes, when hosted in the rare halos that experienced only minor or no merging events. Such ancient black holes, formed in isolation with subsequent scant growth, could survive, almost unchanged, until present.
Govatski, J. A.; da Luz, M. G. E.; Koehler, M.
2015-01-01
We study the geminated pair dissociation probability φ as function of applied electric field and temperature in energetically disordered nD media. Regardless nD, for certain parameters regions φ versus the disorder degree (σ) displays anomalous minimum (maximum) at low (moderate) fields. This behavior is compatible with a transport energy which reaches a maximum and then decreases to negative values as σ increases. Our results explain the temperature dependence of the persistent photoconductivity in C60 single crystals going through order-disorder transitions. They also indicate how an energetic disorder spatial variation may contribute to higher exciton dissociation in multicomponent donor/acceptor systems.
International Nuclear Information System (INIS)
Anon.
2013-01-01
The yearly environmental conference will hold on September 2013 to evaluate the negotiations led at the national and local levels for december 2012. The government will have then to decide of an energy programming bill which will be submitted to the Parliament at the beginning of the year 2014. 30 main propositions have emerged of the decentralised debates. One of them is the ecological taxation which raise the question of the gas oil and petrol taxation. The current environmental taxes are for almost three quarters of them taxes on energy consumptions and mainly on fossil energies. The Economic, Social and Environmental Council, gives his opinion on the way to find resources to ensure the ecological and energy transition while reducing the public deficit of the State. (O.M.)
Thermality of the Hawking flux
Energy Technology Data Exchange (ETDEWEB)
Visser, Matt [School of Mathematics, Statistics, and Operations Research,Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand)
2015-07-03
Is the Hawking flux “thermal”? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word “thermal”. The original 1850’s notions of thermality — based on classical thermodynamic reasoning applied to idealized “black bodies” or “lamp black surfaces” — when supplemented by specific basic quantum ideas from the early 1900’s, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but without any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only approximately Planck-shaped over an explicitly bounded range of frequencies. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is approximately Planck-shaped from both above and below — the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.
Thermality of the Hawking flux
International Nuclear Information System (INIS)
Visser, Matt
2015-01-01
Is the Hawking flux “thermal”? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word “thermal”. The original 1850’s notions of thermality — based on classical thermodynamic reasoning applied to idealized “black bodies” or “lamp black surfaces” — when supplemented by specific basic quantum ideas from the early 1900’s, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but without any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only approximately Planck-shaped over an explicitly bounded range of frequencies. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is approximately Planck-shaped from both above and below — the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.
Physics of magnetic flux tubes
Ryutova, Margarita
2015-01-01
This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...
State diagrams of tokamaks and state transitions
International Nuclear Information System (INIS)
Minardi, E.
1992-01-01
In a simple one-fluid cylindrical model of transport and of dissipative effects, the family of the magnetic states of the Tokamak which correspond to a vanishing entropy production in the confinement region is characterized by a define relation or ''state equation'' involving the relevant parameters of the discharge. An investigation is made as to how the entropy production changes when the current density profile is rearranged by a perturbation which conserves the poloidal magnetic flux. It is shown that for a sufficiently short time interval, that is to say t 2 E τ s where τ E is the energy confinement time and τ s is the resistive time, neighbouring bifurcating equilibria exist which can be reached with a flux-conserving transition and with increase of the magnetic entropy. The family of these new states can also be characterized by a state equation involving the relevant discharge parameters. When the state equations of the two families are simultaneously satisfied by the same set of parameter values, a flux-conserving, entropy-increasing transition may take place between states of the two families. The modifications of the current density and of the temperature profiles involved in the transition and the conditions that the discharge parameters should satisfy in order that the transition could occur are investigated. (author)
A maximum power point tracking for photovoltaic-SPE system using a maximum current controller
Energy Technology Data Exchange (ETDEWEB)
Muhida, Riza [Osaka Univ., Dept. of Physical Science, Toyonaka, Osaka (Japan); Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Park, Minwon; Dakkak, Mohammed; Matsuura, Kenji [Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Tsuyoshi, Akira; Michira, Masakazu [Kobe City College of Technology, Nishi-ku, Kobe (Japan)
2003-02-01
Processes to produce hydrogen from solar photovoltaic (PV)-powered water electrolysis using solid polymer electrolysis (SPE) are reported. An alternative control of maximum power point tracking (MPPT) in the PV-SPE system based on the maximum current searching methods has been designed and implemented. Based on the characteristics of voltage-current and theoretical analysis of SPE, it can be shown that the tracking of the maximum current output of DC-DC converter in SPE side will track the MPPT of photovoltaic panel simultaneously. This method uses a proportional integrator controller to control the duty factor of DC-DC converter with pulse-width modulator (PWM). The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment. (Author)
Flux driven turbulence in tokamaks
International Nuclear Information System (INIS)
Garbet, X.; Ghendrih, P.; Ottaviani, M.; Sarazin, Y.; Beyer, P.; Benkadda, S.; Waltz, R.E.
1999-01-01
This work deals with tokamak plasma turbulence in the case where fluxes are fixed and profiles are allowed to fluctuate. These systems are intermittent. In particular, radially propagating fronts, are usually observed over a broad range of time and spatial scales. The existence of these fronts provide a way to understand the fast transport events sometimes observed in tokamaks. It is also shown that the confinement scaling law can still be of the gyroBohm type in spite of these large scale transport events. Some departure from the gyroBohm prediction is observed at low flux, i.e. when the gradients are close to the instability threshold. Finally, it is found that the diffusivity is not the same for a turbulence calculated at fixed flux than at fixed temperature gradient, with the same time averaged profile. (author)
Methane flux from boreal peatlands
International Nuclear Information System (INIS)
Crill, P.; Bartlett, K.; Roulet, N.
1992-01-01
The peatlands in the boreal zone (roughly 45 deg - 60 degN) store a significant reservoir of carbon, much of which is potentially available for exchange with the atmosphere. The anaerobic conditions that cause these soils to accumulate carbon also makes wet, boreal peatlands significant sources of methane to the global troposphere. It is estimated that boreal wetlands contribute approximately 19.5 Tg methane per year. The data available on the magnitude of boreal methane emissions have rapidly accumulated in the past twenty years. This paper offers a short review of the flux measured (with range roughly 1 - 2000 mg methane/m2d), considers environmental controls of the flux and briefly discusses how climate change might affect future fluxes
Wide range neutron flux monitor
International Nuclear Information System (INIS)
Endo, Yorimasa; Fukushima, Toshiki.
1983-01-01
Purpose: To provide a wide range neutron-flux monitor adapted such that the flux monitoring function and alarming function can automatically by shifted from pulse counting system to cambel method system. Constitution: A wide range neutron-flux monitor comprises (la) pulse counting system and (lb) cambel-method system for inputting detection signals from neutron detectors and separating them into signals for the pulse measuring system and the cambel measuring system, (2) overlap detection and calculation circuit for detecting the existence of the overlap of two output signals from the (la) and (lb) systems, and (3) trip circuit for judging the abnormal state of neutron detectors upon input of the detection signals. (Seki, T.)
High heat flux facility GLADIS
International Nuclear Information System (INIS)
Greuner, H.; Boeswirth, B.; Boscary, J.; McNeely, P.
2007-01-01
The new ion beam facility GLADIS started the operation at IPP Garching. The facility is equipped with two individual 1.1 MW power ion sources for testing actively cooled plasma facing components under high heat fluxes. Each ion source generates heat loads between 3 and 55 MW/m 2 with a beam diameter of 70 mm at the target position. These parameters allow effective testing from probes to large components up to 2 m length. The high heat flux allows the target to be installed inclined to the beam and thus increases the heated surface length up to 200 mm for a heat flux of 15 MW/m 2 in the standard operating regime. Thus the facility has the potential capability for testing of full scale ITER divertor targets. Heat load tests on the WENDELSTEIN 7-X pre-series divertor targets have been successfully started. These tests will validate the design and manufacturing for the production of 950 elements
Heat flux driven ion turbulence
International Nuclear Information System (INIS)
Garbet, X.
1998-01-01
This work is an analysis of an ion turbulence in a tokamak in the case where the thermal flux is fixed and the temperature profile is allowed to fluctuate. The system exhibits some features of Self-Organized Critical systems. In particular, avalanches are observed. Also the frequency spectrum of the thermal flux exhibits a structure similar to the one of a sand pile automaton, including a 1/f behavior. However, the time average temperature profile is found to be supercritical, i.e. the temperature gradient stays above the critical value. Moreover, the heat diffusivity is lower for a turbulence calculated at fixed flux than a fixed temperature gradient, with the same time average temperature. This behavior is attributed to a stabilizing effect of avalanches. (author)
Ideal flux field dielectric concentrators.
García-Botella, Angel
2011-10-01
The concept of the vector flux field was first introduced as a photometrical theory and later developed in the field of nonimaging optics; it has provided new perspectives in the design of concentrators, overcoming standard ray tracing techniques. The flux field method has shown that reflective concentrators with the geometry of the field lines achieve the theoretical limit of concentration. In this paper we study the role of surfaces orthogonal to the field vector J. For rotationally symmetric systems J is orthogonal to its curl, and then a family of surfaces orthogonal to the lines of J exists, which can be called the family of surfaces of constant pseudopotential. Using the concept of the flux tube, it is possible to demonstrate that refractive concentrators with the shape of these pseudopotential surfaces achieve the theoretical limit of concentration.
The Global Character of the Flux of Downward Longwave Radiation
Stephens, Graeme L.; Wild, Martin; Stackhouse, Paul W., Jr.; L'Ecuyer, Tristan; Kato, Seiji; Henderson, David S.
2012-01-01
Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W/sq m with an error of approximately +/-10 W/sq m that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W/sq m and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W/sq m for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.
Flux flow and flux creep in thick films of YBCO. [Y-Ba-Cu-O
Energy Technology Data Exchange (ETDEWEB)
Rickets, J.; Vinen, W.F.; Abell, J.S.; Shields, T.C. (Superconductivity Research Group, Univ. of Birmingham (United Kingdom))
1991-12-01
The results are described of new experiments designed to study flux creep and flux flow along a single flux percolation path in thick films of YBCO. The flux flow regime is studied by a four-point resistive technique using pulsed currents, and the flux creep regime by observing the rate at which flux enters a superconducting loop in parallel with the resistance that is associated with the flux percolation path. (orig.).
Fabrication of Anodic Aluminum Oxide Membrane for High Heat Flux Evaporation
McGrath, Kristine
2016-01-01
As electronics become more powerful and have higher energy densities, it is becoming more and more necessary to find solutions to dissipate these high heat fluxes. One solution to this problem is nanopore evaporative cooling. Based on current literature, the experimental data is far below what is expected from the theoretical calculations.In this thesis, the experimental results produced heat fluxes much closer to the theoretical values. Experimentally, a maximum heat dissipation of 103 W was...
Energy Technology Data Exchange (ETDEWEB)
Boscary, J [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee
1997-03-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author) 197 refs.
Energy Technology Data Exchange (ETDEWEB)
Boscary, J
1995-10-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs.
International Nuclear Information System (INIS)
Markadeh, Gholamreza Arab; Hajian, Masood; Soltani, Jafar; Hosseinia, Saeed
2010-01-01
Field orientation control of induction machine (IM) drives is a well-known strategy which has a fast dynamic response. In this paper, the direct rotor flux field orientation control of speed sensorless IM drive is presented. A two level space vector modulation inverter is employed to generate the command stator voltage. In proposed control scheme, a maximum torque per ampere strategy is achieved using a so-called fast flux search method. Based on this method, for a given load torque and rotor speed, the magnitude of rotor reference flux is adjusted step by step until the effective value of stator current becomes minimized finally. In addition, using the IM fifth order model in the stationary reference frame, a nonlinear rotor flux observer is developed which is also capable of motor resistances and rotor speed simultaneously estimation. Moreover, a useful method is introduced for dc offset compensation which is a major problem of ac drives especially at low speeds. The proposed control idea is experimentally implemented in real time using a CPLD board synchronized with a personal computer. Simulation and experimental results are finally presented to confirm the validity and effectiveness of the proposed method.
The flux database concerted action
International Nuclear Information System (INIS)
Mitchell, N.G.; Donnelly, C.E.
1999-01-01
This paper summarizes the background to the UIR action on the development of a flux database for radionuclide transfer in soil-plant systems. The action is discussed in terms of the objectives, the deliverables and the progress achieved so far by the flux database working group. The paper describes the background to the current initiative and outlines specific features of the database and supporting documentation. Particular emphasis is placed on the proforma used for data entry, on the database help file and on the approach adopted to indicate data quality. Refs. 3 (author)
High-heat-flux testing of helium-cooled heat exchangers for fusion applications
International Nuclear Information System (INIS)
Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.
1996-01-01
High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m 2 . The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m 2 while maintaining a surface temperature below 400 degree C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m 2 and surface temperatures near 533 degree C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m 2 and reached a surface temperature of 740 degree C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m 2 and reached a maximum surface temperature of 690 degree C. 11refs., 20 figs., 3 tabs
High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management
Energy Technology Data Exchange (ETDEWEB)
Pudelek, R. E.; Gilbert, W. C.
2002-02-26
This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste
Maximum mass of magnetic white dwarfs
International Nuclear Information System (INIS)
Paret, Daryel Manreza; Horvath, Jorge Ernesto; Martínez, Aurora Perez
2015-01-01
We revisit the problem of the maximum masses of magnetized white dwarfs (WDs). The impact of a strong magnetic field on the structure equations is addressed. The pressures become anisotropic due to the presence of the magnetic field and split into parallel and perpendicular components. We first construct stable solutions of the Tolman-Oppenheimer-Volkoff equations for parallel pressures and find that physical solutions vanish for the perpendicular pressure when B ≳ 10 13 G. This fact establishes an upper bound for a magnetic field and the stability of the configurations in the (quasi) spherical approximation. Our findings also indicate that it is not possible to obtain stable magnetized WDs with super-Chandrasekhar masses because the values of the magnetic field needed for them are higher than this bound. To proceed into the anisotropic regime, we can apply results for structure equations appropriate for a cylindrical metric with anisotropic pressures that were derived in our previous work. From the solutions of the structure equations in cylindrical symmetry we have confirmed the same bound for B ∼ 10 13 G, since beyond this value no physical solutions are possible. Our tentative conclusion is that massive WDs with masses well beyond the Chandrasekhar limit do not constitute stable solutions and should not exist. (paper)
TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS
Energy Technology Data Exchange (ETDEWEB)
Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M
2007-11-12
Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.
Mammographic image restoration using maximum entropy deconvolution
International Nuclear Information System (INIS)
Jannetta, A; Jackson, J C; Kotre, C J; Birch, I P; Robson, K J; Padgett, R
2004-01-01
An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate an improvement in image spatial resolution in realistic noisy radiological images with no associated penalty in terms of reduction in the signal-to-noise ratio perceived by the observer. Images of the TORMAM mammographic image quality phantom were recorded using the standard magnification settings of 1.8 magnification/fine focus and also at 1.8 magnification/broad focus and 3.0 magnification/fine focus; the latter two arrangements would normally give rise to unacceptable geometric blurring. Measured point-spread functions were used in conjunction with the MEM image processing to de-blur these images. The results are presented as comparative images of phantom test features and as observer scores for the raw and processed images. Visualization of high resolution features and the total image scores for the test phantom were improved by the application of the MEM processing. It is argued that this successful demonstration of image de-blurring in noisy radiological images offers the possibility of weakening the link between focal spot size and geometric blurring in radiology, thus opening up new approaches to system optimization
Maximum Margin Clustering of Hyperspectral Data
Niazmardi, S.; Safari, A.; Homayouni, S.
2013-09-01
In recent decades, large margin methods such as Support Vector Machines (SVMs) are supposed to be the state-of-the-art of supervised learning methods for classification of hyperspectral data. However, the results of these algorithms mainly depend on the quality and quantity of available training data. To tackle down the problems associated with the training data, the researcher put effort into extending the capability of large margin algorithms for unsupervised learning. One of the recent proposed algorithms is Maximum Margin Clustering (MMC). The MMC is an unsupervised SVMs algorithm that simultaneously estimates both the labels and the hyperplane parameters. Nevertheless, the optimization of the MMC algorithm is a non-convex problem. Most of the existing MMC methods rely on the reformulating and the relaxing of the non-convex optimization problem as semi-definite programs (SDP), which are computationally very expensive and only can handle small data sets. Moreover, most of these algorithms are two-class classification, which cannot be used for classification of remotely sensed data. In this paper, a new MMC algorithm is used that solve the original non-convex problem using Alternative Optimization method. This algorithm is also extended for multi-class classification and its performance is evaluated. The results of the proposed algorithm show that the algorithm has acceptable results for hyperspectral data clustering.
Paving the road to maximum productivity.
Holland, C
1998-01-01
"Job security" is an oxymoron in today's environment of downsizing, mergers, and acquisitions. Workers find themselves living by new rules in the workplace that they may not understand. How do we cope? It is the leader's charge to take advantage of this chaos and create conditions under which his or her people can understand the need for change and come together with a shared purpose to effect that change. The clinical laboratory at Arkansas Children's Hospital has taken advantage of this chaos to down-size and to redesign how the work gets done to pave the road to maximum productivity. After initial hourly cutbacks, the workers accepted the cold, hard fact that they would never get their old world back. They set goals to proactively shape their new world through reorganizing, flexing staff with workload, creating a rapid response laboratory, exploiting information technology, and outsourcing. Today the laboratory is a lean, productive machine that accepts change as a way of life. We have learned to adapt, trust, and support each other as we have journeyed together over the rough roads. We are looking forward to paving a new fork in the road to the future.
Maximum likelihood window for time delay estimation
International Nuclear Information System (INIS)
Lee, Young Sup; Yoon, Dong Jin; Kim, Chi Yup
2004-01-01
Time delay estimation for the detection of leak location in underground pipelines is critically important. Because the exact leak location depends upon the precision of the time delay between sensor signals due to leak noise and the speed of elastic waves, the research on the estimation of time delay has been one of the key issues in leak lovating with the time arrival difference method. In this study, an optimal Maximum Likelihood window is considered to obtain a better estimation of the time delay. This method has been proved in experiments, which can provide much clearer and more precise peaks in cross-correlation functions of leak signals. The leak location error has been less than 1 % of the distance between sensors, for example the error was not greater than 3 m for 300 m long underground pipelines. Apart from the experiment, an intensive theoretical analysis in terms of signal processing has been described. The improved leak locating with the suggested method is due to the windowing effect in frequency domain, which offers a weighting in significant frequencies.
Ancestral Sequence Reconstruction with Maximum Parsimony.
Herbst, Lina; Fischer, Mareike
2017-12-01
One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference and for ancestral sequence inference is Maximum Parsimony (MP). In this manuscript, we focus on this method and on ancestral state inference for fully bifurcating trees. In particular, we investigate a conjecture published by Charleston and Steel in 1995 concerning the number of species which need to have a particular state, say a, at a particular site in order for MP to unambiguously return a as an estimate for the state of the last common ancestor. We prove the conjecture for all even numbers of character states, which is the most relevant case in biology. We also show that the conjecture does not hold in general for odd numbers of character states, but also present some positive results for this case.
Elimination of the induced current error in magnetometers using superconducting flux transformers
International Nuclear Information System (INIS)
Dummer, D.; Weyhmann, W.
1987-01-01
The changing magnetization of a sample in a superconducting flux transformer coupled magnetometer induces a current in the transformer which in turn changes the field at the sample. This ''image'' field and the error caused by it can be eliminated by sensing the current in the loop and nulling it by feedback through a mutual inductance. We have tested the technique on the superconducting transition of indium in an applied magnetic field and shown that the observed width of the transition is greatly reduced by maintaining zero current in the flux transformer
Flux and energy dependence of methane production from graphite due to H+ impact
International Nuclear Information System (INIS)
Davis, J.W.; Haasz, A.A.; Stangeby, P.C.
1986-06-01
Carbon is in widespread use for limiter surfaces, as well as first wall coatings in current tokamaks. Chemical erosion via methane formation, due to energetic H + impact, is expected to contribute to the total erosion rate of carbon from these surfaces. Experimental results are presented for the methane yield from pyrolytic graphite due to H + exposure, using a mass analyzed ion beam. H + energies of 0.1-3 keV and flux densities of ∼ 5x10 13 to l0 16 H + /cm 2 s were used. The measured methane yield (CH 4 /H + ) initially increases with flux density, then reaches a maximum, which is followed by a gradual decrease. The magnitude of the maximum yield and the flux density at which it occurs depends on the graphite temperature. The yields obtained at temperatures corresponding to yield maxima at specific flux densities also show an initial increase, followed by a shallow maximum and a gradual decrease as a function of flux density; the maximum occurs at ∼10 15 H + /cm 2 s. Also presented are results on the methane production dependence on ion energy over the range 0.1 to 3 keV, and graphite temperature dependence measurements
Maximum likelihood reconstruction in fully 3D PET via the SAGE algorithm
International Nuclear Information System (INIS)
Ollinger, J.M.; Goggin, A.S.
1996-01-01
The SAGE and ordered subsets algorithms have been proposed as fast methods to compute penalized maximum likelihood estimates in PET. We have implemented both for use in fully 3D PET and completed a preliminary evaluation. The technique used to compute the transition matrix is fully described. The evaluation suggests that the ordered subsets algorithm converges much faster than SAGE, but that it stops short of the optimal solution
49 CFR 230.24 - Maximum allowable stress.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...
20 CFR 226.52 - Total annuity subject to maximum.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Total annuity subject to maximum. 226.52... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Railroad Retirement Family Maximum § 226.52 Total annuity subject to maximum. The total annuity amount which is compared to the maximum monthly amount to...
Critical heat flux and exit film flow rate in a flow boiling system
International Nuclear Information System (INIS)
Ueda, Tatsuhiro; Isayama, Yasushi
1981-01-01
The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)
Half-width at half-maximum, full-width at half-maximum analysis
Indian Academy of Sciences (India)
addition to the well-defined parameter full-width at half-maximum (FWHM). The distribution of ... optical side-lobes in the diffraction pattern resulting in steep central maxima [6], reduc- tion of effects of ... and broad central peak. The idea of.
Flux pinning property in a single crystal NdBa2Cu3Oy superconductor
International Nuclear Information System (INIS)
Hasan, M.N.; Kurokawa, T.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Chikumoto, N.; Machi, T.; Muralidhar, M.; Murakami, M.
2005-01-01
The critical current density J c and the apparent pinning potential U 0 * in a single crystal NdBa 2 Cu 3 O y superconductor which shows a broad peak effect are investigated by measuring a DC magnetization and its relaxation. The field-induced pinning mechanism does not explain the temperature dependence of peak field B p and dip field B d . The experimental results of J c and U 0 * are compared with the theoretical analysis based on the flux creep-flow model, taking the distribution of the flux pinning strength into account. The number of flux lines in the flux bundle (g 2 ), the most probable value of pinning strength (A m ) and distribution width (σ 2 ) are determined so that a good fit is obtained between the experimental and theoretical results. The behavior of these parameters is discussed in correspondence to the disorder transition of flux lines
Measurement and simulation of thermal neutron flux distribution in the RTP core
Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.
2018-01-01
The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.
Cosmic shear measurement with maximum likelihood and maximum a posteriori inference
Hall, Alex; Taylor, Andy
2017-06-01
We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.
Third law of thermodynamics in the presence of a heat flux
International Nuclear Information System (INIS)
Camacho, J.
1995-01-01
Following a maximum entropy formalism, we study a one-dimensional crystal under a heat flux. We obtain the phonon distribution function and evaluate the nonequilibrium temperature, the specific heat, and the entropy as functions of the internal energy and the heat flux, in both the quantum and the classical limits. Some analogies between the behavior of equilibrium systems at low absolute temperature and nonequilibrium steady states under high values of the heat flux are shown, which point to a possible generalization of the third law in nonequilibrium situations
Flux pinning by voids in surface-oxidized superconducting niobium and vanadium
International Nuclear Information System (INIS)
Meij, G.P. van der.
1984-03-01
The volume pinning force in several niobium and vanadium samples with voids is determined at various temperatures. Reasonable agreement is found with the collective pinning theory of Larkin and Ovchinnikov above the field of maximum pinning, if the flux line lattice is assumed to be amorphous in this region and if the elementary pinning force is calculated from the quasi-classical theory of Thuneberg, Kurkijaervi, and Rainer. Also some history and relaxation effects are studied in an alternating field. A qualitative explanation is given in terms of flux line dislocations, which reduce the shear strength of the flux line lattice. (Auth.)
Weakest solar wind of the space age and the current 'MINI' solar maximum
International Nuclear Information System (INIS)
McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.
2013-01-01
The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.
Nelissen, Hilde; Rymen, Bart; Jikumaru, Yusuke; Demuynck, Kirin; Van Lijsebettens, Mieke; Kamiya, Yuji; Inzé, Dirk; Beemster, Gerrit T S
2012-07-10
Plant growth rate is largely determined by the transition between the successive phases of cell division and expansion. A key role for hormone signaling in determining this transition was inferred from genetic approaches and transcriptome analysis in the Arabidopsis root tip. We used the developmental gradient at the maize leaf base as a model to study this transition, because it allows a direct comparison between endogenous hormone concentrations and the transitions between dividing, expanding, and mature tissue. Concentrations of auxin and cytokinins are highest in dividing tissues, whereas bioactive gibberellins (GAs) show a peak at the transition zone between the division and expansion zone. Combined metabolic and transcriptomic profiling revealed that this GA maximum is established by GA biosynthesis in the division zone (DZ) and active GA catabolism at the onset of the expansion zone. Mutants defective in GA synthesis and signaling, and transgenic plants overproducing GAs, demonstrate that altering GA levels specifically affects the size of the DZ, resulting in proportional changes in organ growth rates. This work thereby provides a novel molecular mechanism for the regulation of the transition from cell division to expansion that controls organ growth and size. Copyright © 2012 Elsevier Ltd. All rights reserved.
Simple models with ALICE fluxes
Striet, J
2000-01-01
We introduce two simple models which feature an Alice electrodynamics phase. In a well defined sense the Alice flux solutions we obtain in these models obey first order equations similar to those of the Nielsen-Olesen fluxtube in the abelian higgs model in the Bogomol'nyi limit. Some numerical solutions are presented as well.
A maximum likelihood framework for protein design
Directory of Open Access Journals (Sweden)
Philippe Hervé
2006-06-01
Full Text Available Abstract Background The aim of protein design is to predict amino-acid sequences compatible with a given target structure. Traditionally envisioned as a purely thermodynamic question, this problem can also be understood in a wider context, where additional constraints are captured by learning the sequence patterns displayed by natural proteins of known conformation. In this latter perspective, however, we still need a theoretical formalization of the question, leading to general and efficient learning methods, and allowing for the selection of fast and accurate objective functions quantifying sequence/structure compatibility. Results We propose a formulation of the protein design problem in terms of model-based statistical inference. Our framework uses the maximum likelihood principle to optimize the unknown parameters of a statistical potential, which we call an inverse potential to contrast with classical potentials used for structure prediction. We propose an implementation based on Markov chain Monte Carlo, in which the likelihood is maximized by gradient descent and is numerically estimated by thermodynamic integration. The fit of the models is evaluated by cross-validation. We apply this to a simple pairwise contact potential, supplemented with a solvent-accessibility term, and show that the resulting models have a better predictive power than currently available pairwise potentials. Furthermore, the model comparison method presented here allows one to measure the relative contribution of each component of the potential, and to choose the optimal number of accessibility classes, which turns out to be much higher than classically considered. Conclusion Altogether, this reformulation makes it possible to test a wide diversity of models, using different forms of potentials, or accounting for other factors than just the constraint of thermodynamic stability. Ultimately, such model-based statistical analyses may help to understand the forces
Variability of fractal dimension of solar radio flux
Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om
2018-04-01
In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).
Calculation of the thermal neutron flux depression in the loop VISA-1
International Nuclear Information System (INIS)
Martinc, R.
1961-01-01
Among other applications, the VISA-1 loop is to be used for thermal load testing of materials. For this type of testing one should know the maximum power generated in the loop. This power is determined from the maximum thermal neutron flux in the VK-5 channel and mean flux depression in the fissile component of the loop. Thermal neutron flux depression is caused by neutron absorption in the components of the loop, shape of the components and neutron leaking through gaps as well as properties of the surrounding medium of the core. All these parameters were taken into account for calculating the depression of thermal neutron flux in the VISA-1 loop. Two group diffusion theory was used. Fast neutron from the fission in the loop and slowed down were taken into account. Depression of the thermal neutron flux is expressed by depression factor which represents the ratio of the mean thermal neutron flux in the fissile loop component and the thermal neutron flux in the VK-5 without the loop. Calculation error was estimated and it was recommended to determine the depression factor experimentally as well [sr
International Nuclear Information System (INIS)
Schubert, J.F.
1977-01-01
Acoustic sounder measurements of a vertical profile of the abrupt transition from a laminar to a turbulent atmospheric boundary layer were compared with meteorological measurements made at 10 and 137 m on an instrumented tower. Sounder data show that conditions necessary for the onset of the momentum burst phenomenon exist sometime during a clear afternoon when heat flux changes sign and the planetary surface cools. Under these conditions, the lowest part of the atmospheric boundary layer becomes stable. Prior to this situation, the entire boundary layer is in turbulent motion from surface heating. The boundary layer is then an effective barrier for all fluxes, and as the maximum flux Richardson number is reached at some height close to but above the surface, turbulence is dampened and a laminar layer forms. The profile of this layer is recorded by the sounder. Surface temperature drops, a strong wind shear develops, and the Richardson number decreases below its critical value (Ri/sub cr/<0.25). Subsequently, the laminar layer is eroded by turbulence from above, and with a burst of momentum and heat, it eventually reaches the ground
Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux
Directory of Open Access Journals (Sweden)
Xia Chen
2018-01-01
Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.
Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.
Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei
2018-01-01
An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.
Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux
Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei
2018-01-01
An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547
Bifurcation scenarios for bubbling transition.
Zimin, Aleksey V; Hunt, Brian R; Ott, Edward
2003-01-01
Dynamical systems with chaos on an invariant submanifold can exhibit a type of behavior called bubbling, whereby a small random or fixed perturbation to the system induces intermittent bursting. The bifurcation to bubbling occurs when a periodic orbit embedded in the chaotic attractor in the invariant manifold becomes unstable to perturbations transverse to the invariant manifold. Generically the periodic orbit can become transversely unstable through a pitchfork, transcritical, period-doubling, or Hopf bifurcation. In this paper a unified treatment of the four types of bubbling bifurcation is presented. Conditions are obtained determining whether the transition to bubbling is soft or hard; that is, whether the maximum burst amplitude varies continuously or discontinuously with variation of the parameter through its critical value. For soft bubbling transitions, the scaling of the maximum burst amplitude with the parameter is derived. For both hard and soft transitions the scaling of the average interburst time with the bifurcation parameter is deduced. Both random (noise) and fixed (mismatch) perturbations are considered. Results of numerical experiments testing our theoretical predictions are presented.
Evidence of nontermination of collective rotation near the maximum angular momentum in Rb75
Davies, P. J.; Afanasjev, A. V.; Wadsworth, R.; Andreoiu, C.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Görgen, A.; Greene, J.; Grinyer, G. F.; Hyland, B.; Jenkins, D. G.; Johnston-Theasby, F. L.; Joshi, P.; Macchiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Svensson, C. E.; Valiente-Dobon, J. J.; Ward, D.
2010-12-01
Two of the four known rotational bands in Rb75 were studied via the Ca40(Ca40,αp)Rb75 reaction at a beam energy of 165 MeV. Transitions were observed up to the maximum spin Imax of the assigned configuration in one case and one-transition short of Imax in the other. Lifetimes were determined using the residual Doppler shift attenuation method. The deduced transition quadrupole moments show a small decrease with increasing spin, but remain large at the highest spins. The results obtained are in good agreement with cranked Nilsson-Strutinsky calculations, which indicate that these rotational bands do not terminate, but remain collective at Imax.
Flux Creep Investigation in Bi2Sr2CaCu2O8+d High-Temperature Superconductor
Directory of Open Access Journals (Sweden)
G. R. Blanca
2004-12-01
Full Text Available The flux creep process in a c-axis Bi2Sr2CaCu2O8+d thin film was investigated at different temperatures and applied fields using the Kim-Anderson (KA approach. The peaked behavior shown in the magnetoresistance profile was attributed to the competing mechanisms of flux motion and sample-intrinsic transition near Tc.Within the temperature range where the competition occurs, U increases with temperature and consequently a decrease in the superconducting volume corresponds to a decrease in the flux creep. Moreover, the flux creep potential barrier varies with applied current I at all temperatures consistent with the KA model.
B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy
Directory of Open Access Journals (Sweden)
Shilpa Dilipkumar
2015-03-01
Full Text Available An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy. A comparative study of the proposed technique with the state-of-art maximum likelihood (ML and maximum-a-posteriori (MAP with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED.
A maximum-principle preserving finite element method for scalar conservation equations
Guermond, Jean-Luc
2014-04-01
This paper introduces a first-order viscosity method for the explicit approximation of scalar conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary grids in any space dimension. Provided the lumped mass matrix is positive definite, the method is shown to satisfy the local maximum principle under a usual CFL condition. The method is independent of the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions. © 2014 Elsevier B.V.
Double-tailored nonimaging reflector optics for maximum-performance solar concentration.
Goldstein, Alex; Gordon, Jeffrey M
2010-09-01
A nonimaging strategy that tailors two mirror contours for concentration near the étendue limit is explored, prompted by solar applications where a sizable gap between the optic and absorber is required. Subtle limitations of this simultaneous multiple surface method approach are derived, rooted in the manner in which phase space boundaries can be tailored according to the edge-ray principle. The fundamental categories of double-tailored reflective optics are identified, only a minority of which can pragmatically offer maximum concentration at high collection efficiency. Illustrative examples confirm that acceptance half-angles as large as 30 mrad can be realized at a flux concentration of approximately 1000.
A maximum-principle preserving finite element method for scalar conservation equations
Guermond, Jean-Luc; Nazarov, Murtazo
2014-01-01
This paper introduces a first-order viscosity method for the explicit approximation of scalar conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary grids in any space dimension. Provided the lumped mass matrix is positive definite, the method is shown to satisfy the local maximum principle under a usual CFL condition. The method is independent of the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions. © 2014 Elsevier B.V.
The comparison of heat flux pattern on lower divertor in KSTAR
International Nuclear Information System (INIS)
Bang, Eunnam; Hong, Suk-Ho; Bak, JunGyo; Kim, Kyungmin; Kim, Hongtack; Kim, Hakkun; Yang, H.L.
2015-01-01
Highlights: • The heat flux on the lower divertor is higher than upper divertor. • The heat flux on OD is decreased with IVCP. • The heat flux on CD is decreased with RMP, but that on OD is increased. • Because the strike point was shifted from CD toward OD due to the RMP. - Abstract: The heat flux in KSTAR is estimated for various discharge conditions by using thermocouple arrays. The heat flux on the divertor is higher than that on inboard limiter or passive stabilizer by a factor of 2. Although the plasma configuration in KSTAR has been set to a double-null configuration, the heat flux on lower divertor is higher than that on upper divertor by 3–8 times, indicating a lower-single-null-like configuration. It is observed that the operation of the in-vessel cryo-pump (IVCP) changes the heat flux pattern significantly: When the IVCP was not operated, the heat fluxes on inboard divertor (ID), central divertor (CD) and outboard divertor (OD) were similar, but when the IVCP was operated, the heat fluxes on ID and CD were increased slightly and that on OD was decreased by 2–3 times. The heat flux on divertor was decreased from 35 to 26 kW/m"2 with the use of the resonant magnetic perturbation (RMP), especially that on CD was decreased by 2–4 times, while that on OD is increased by 2–3 times than without RMP. For the longest H-mode pulse of 22 s shot, the heat flux on lower OD was 73 kW/m"2, which is the maximum heat flux among the shots obtained in 2013 campaign.
Maximum entropy production rate in quantum thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Beretta, Gian Paolo, E-mail: beretta@ing.unibs.i [Universita di Brescia, via Branze 38, 25123 Brescia (Italy)
2010-06-01
In the framework of the recent quest for well-behaved nonlinear extensions of the traditional Schroedinger-von Neumann unitary dynamics that could provide fundamental explanations of recent experimental evidence of loss of quantum coherence at the microscopic level, a recent paper [Gheorghiu-Svirschevski 2001 Phys. Rev. A 63 054102] reproposes the nonlinear equation of motion proposed by the present author [see Beretta G P 1987 Found. Phys. 17 365 and references therein] for quantum (thermo)dynamics of a single isolated indivisible constituent system, such as a single particle, qubit, qudit, spin or atomic system, or a Bose-Einstein or Fermi-Dirac field. As already proved, such nonlinear dynamics entails a fundamental unifying microscopic proof and extension of Onsager's reciprocity and Callen's fluctuation-dissipation relations to all nonequilibrium states, close and far from thermodynamic equilibrium. In this paper we propose a brief but self-contained review of the main results already proved, including the explicit geometrical construction of the equation of motion from the steepest-entropy-ascent ansatz and its exact mathematical and conceptual equivalence with the maximal-entropy-generation variational-principle formulation presented in Gheorghiu-Svirschevski S 2001 Phys. Rev. A 63 022105. Moreover, we show how it can be extended to the case of a composite system to obtain the general form of the equation of motion, consistent with the demanding requirements of strong separability and of compatibility with general thermodynamics principles. The irreversible term in the equation of motion describes the spontaneous attraction of the state operator in the direction of steepest entropy ascent, thus implementing the maximum entropy production principle in quantum theory. The time rate at which the path of steepest entropy ascent is followed has so far been left unspecified. As a step towards the identification of such rate, here we propose a possible
Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET
Energy Technology Data Exchange (ETDEWEB)
Gopich, Irina V. [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 (United States)
2015-01-21
Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.
Flux flow, pinning, and resistive behavior in superconducting networks
International Nuclear Information System (INIS)
Teitel, S.
1991-10-01
We have studied the behavior of fluctuation effects in superconducting systems using numerical simulations of XY and Coulomb gas models. Flux flow resistance in two dimensional Josephson junction arrays has been calculated, and related to correlations in vortex structure. Randomness has been introduced, and its effects on the superconducting transition, and vortex mobility, have been studied. We find that randomness destroys phase coherence, yet the randomness induced pinning reduces flux flow resistance at low temperatures. Vortex line fluctuations in high temperature superconductors have been studied using a three dimensional XY model. We have considered the melting of the vortex line lattice, and the entanglement and cutting of vortex lines in the vortex line liquid phase. Vortex line entangling and cutting appear to occur on the same length scales in the liquid phase. The vortex structure function has been calculated and from it, elastic properties of the vortex line liquid have been inferred. The two dimensional classical Coulomb gas, where charges map onto vortices in the superconducting system, has been simulated. The melting transitions of ordered charge (vortex) lattices have been studied, and we find evidence that these transitions do not have the critical behavior expected from standard symmetry analysis
Energy Technology Data Exchange (ETDEWEB)
Guyonvarh, M; Lecomte, P; Le Meur, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
It is necessary to know, in irradiation loops, the thermal neutron flux after the irradiation device has been introduced and without being obliged to wait for the discharge of this device. In order to measure the flux and to control it continuously, one possible method is to place in the flux a coiled steel tube through which air passes. By measuring the activity of argon 41, and with a knowledge of the flow rate and the temperature of the air, it is possible to calculate the flux. An air-circulation flux controller is described and the relationship between the flux and the count rate is established The accuracy of an absolute measurement is about 14 per cent; that of a relative measurement is about 3 per cent. The measurement can be carried out equally well whether the reactor is operating at maximum or at low power. The measurement range goes from 10{sup 9} to lO{sup 15} n.cm{sup -2}.sec{sup -1}, and it would be possible after a few modifications to measure fluxes between 10{sup 5} and 10{sup 15} n.cm{sup -2}.sec{sup -1}. Finally, the method is very safe to operate: there is little risk of irradiation because of the low specific activity of the argon-41 formed, and no risk of contamination because the decay product of argon-41 is stable. This method, which is now being used in loops, is thus very practical. (authors) [French] Sur des boucles d'irradiation il est necessaire de connaitre le flux de neutrons thermiques apres mise en place du dispositif d'irradiation et sans etre oblige d'attendre le detournement de ce dispositif. Pour mesurer le flux et le controler en permanence, une methode consiste a placer sous flux un serpentin en acier dans lequel on fait circuler de l'air. La mesure d'activite d'argon 41 permet de calculer le flux, connaissant le debit et la temperature de l'air. Un controleur de flux par circulation d'air est decrit et la relation entre le flux et le taux de comptage est etablie. La precision d'une mesure absolue est de l'ordre de 14 pour
The new high flux neutron source FRM-2 in Munich
International Nuclear Information System (INIS)
Roegler, H.J.; Wierheim, G.
2002-01-01
Quite some years ago in 1974 to be exact, the first consideration on a new neutron source started at the technical university of Munich (Germany). 27 years later the new high flux neutron source (FRM-2) was read for hot operation, now delayed by a refused approval for its third partial license by the federal government of Germany despite a wide support from the scientific community. FRM-2 is a tank-type research reactor cooled by water, moderated by heavy water and whose thermal power was limited to 20 MW maximum. The extreme compact core together with the applied inverse flux principle led to a neutron flux design value of 8.10 18 n/m 2 .s at the reflector peak. 10 beam tubes will allow an optimized use of the high neutron flux. A hot neutron source with graphite at about 2200 Celsius degrees and a cold neutron source with liquid D 2 at about 25 K will provide shifted energy spectra. The utilization of FRM-2 is many-fold: neutronography and tomography, medical irradiation, radio-nuclide production, doping of pure silicon, neutron activation analysis. (A.C.)
Expanded flux variability analysis on metabolic network of Escherichia coli
Institute of Scientific and Technical Information of China (English)
CHEN Tong; XIE ZhengWei; OUYANG Qi
2009-01-01
Flux balance analysis,based on the mass conservation law in a cellular organism,has been extensively employed to study the interplay between structures and functions of cellular metabolic networks.Consequently,the phenotypes of the metabolism can be well elucidated.In this paper,we introduce the Expanded Flux Variability Analysis (EFVA) to characterize the intrinsic nature of metabolic reactions,such as flexibility,modularity and essentiality,by exploring the trend of the range,the maximum and the minimum flux of reactions.We took the metabolic network of Escherichia coli as an example and analyzed the variability of reaction fluxes under different growth rate constraints.The average variability of all reactions decreases dramatically when the growth rate increases.Consider the noise effect on the metabolic system,we thus argue that the microorganism may practically grow under a suboptimal state.Besides,under the EFVA framework,the reactions are easily to be grouped into catabolic and anabolic groups.And the anabolic groups can be further assigned to specific biomass constitute.We also discovered the growth rate dependent essentiality of reactions.
Poloidal and toroidal heat flux distribution in the CCT tokamak
International Nuclear Information System (INIS)
Brown, M.L.; Dhir, V.K.; Taylor, R.J.
1990-01-01
Plasma heat flux to the Faraday shield panels of the UCLA Continuous Current Tokamak (CCT) has been measured calorimetrically in order to identify the dominant parameters affecting the spatial distribution of heat deposition. Three heating methods were investigated: audio frequency discharge cleaning, RF heating, and AC ohmic. Significant poloidal asymmetry is present in the heat flux distribution. On the average, the outer panels received 25-30% greater heat flux than the inner ones, with the ratio of maximum to minimum values attaining a difference of more than a factor of 2. As a diagnostic experiment the current to a selected toroidal field coil was reduced in order to locally deflect the toroidal field lines outward in a ripple-like fashion. Greatly enhanced heat deposition (up to a factor of 4) was observed at this location on the outside Faraday panels. The enhancement was greatest for conditions of low toroidal field and low neutral pressure, leading to low plasma densities, for which Coulomb collisions are the smallest. An exponential model based on a heat flux e-folding length describes the experimentally found localization of thermal energy quite adequately. (orig.)
Flux Enhancement in Membrane Distillation Using Nanofiber Membranes
Directory of Open Access Journals (Sweden)
T. Jiříček
2016-01-01
Full Text Available Membrane distillation (MD is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.
Determination of the maximum-depth to potential field sources by a maximum structural index method
Fedi, M.; Florio, G.
2013-01-01
A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott-Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast. Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP). The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott-Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott-Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio. The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.
Beginner’s guide to flux crystal growth
Tachibana, Makoto
2017-01-01
This book introduces the principles and techniques of crystal growth by the flux method, which is arguably the most useful way to obtain millimeter- to centimeter-sized single crystals for physical research. As it is possible to find an appropriate solvent (“flux”) for nearly all inorganic materials, the flux method can be applied to the growth of many crystals ranging from transition metal oxides to intermetallic compounds. Both important principles and experimental procedures are described in a clear and accessible manner. Practical advice on various aspects of the experiment, which is not readily available in the literature, will assist the beginning graduate students in setting up the lab and conducting successful crystal growth. The mechanisms of crystal growth at an elementary level are also provided to better understand the techniques and to help in assessing the quality of the crystals. The book also contains many photographs of beautiful crystals with important physical properties of current inte...
Flux lattice melting in high-Tc superconductors
International Nuclear Information System (INIS)
Houghton, A.; Pelcovits, R.A.; Sudbo, A.
1989-01-01
We derive the wave-vector-dependent elastic moduli for a flux line lattice in compounds with underlying tetragonal crystalline symmetry. We find that it is essential to retain wave-vector dependence of the moduli when dealing with compounds where κ is large, as it is in the high-T c materials. We use our results to establish a Lindemann criterion for flux lattice melting, which we then compare with experimental data on two materials, and find excellent agreement. The melting curves are suppressed well below the mean-field superconducting-normal transition line and are linear in temperature over a wide range of magnetic fields. The point H=0, T=T c is approached as 1-T/T c ∼H 1/2 . The degree of suppression of the melting curves among the different compounds is accounted for in the main by differences in mass anisotropy
Collisionless magnetic reconnection associated with coalescence of flux bundles
International Nuclear Information System (INIS)
Tanaka, Motohiko.
1994-11-01
The basic process of collisionless reconnection is studied in terms of coalescence of magnetized flux bundles using an implicit particle simulation of two-dimensions. The toroidal electric field that directly relates to magnetic reconnection is generated solenoidally in a region much broader than the current sheet whose width is a few electron skin depths. The reconnected flux increases linearly in time, but it is insensitive to finite Larmor radii of the ions in this Sweet-Parker regime. The toroidal electric field is controlled by a balance of transit acceleration of finite-mass electrons and their removal by sub-Alfvenic E x B drift outflow. The simulation results supports the collisionless Ohm's law E t ≅η eq J t with η eq the inertia resistivity. (author)
Weighted Maximum-Clique Transversal Sets of Graphs
Chuan-Min Lee
2011-01-01
A maximum-clique transversal set of a graph G is a subset of vertices intersecting all maximum cliques of G. The maximum-clique transversal set problem is to find a maximum-clique transversal set of G of minimum cardinality. Motivated by the placement of transmitters for cellular telephones, Chang, Kloks, and Lee introduced the concept of maximum-clique transversal sets on graphs in 2001. In this paper, we study the weighted version of the maximum-clique transversal set problem for split grap...
Measurements of Critical Heat Flux using Mass Transfer System
Energy Technology Data Exchange (ETDEWEB)
Hong, Seung Hyun; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)
2016-05-15
In a severe accident, the reactor vessel is heated by the decay heat from core melts and the outer surface of reactor vessel is cooled by the natural convection of water pool. When the heat flux increases, boiling will start. Further increase of the heat flux may result in the CHF, which is generated by the bubble combinations. The CHF means that the reactor vessel was separated with coolant and wall temperature is raised rapidly. It may damage the reactor vessel. Also the CHF indicates the maximum cooling capability of the system. Therefore, the CHF has been used as a criterion for the regulatory and licensing. Mechanism of hydrogen vapor bubbles generated and combined can be simulated water bubbles mechanism. And also the both heat and mass transfer mechanism of CHF can be identified in the same methods. Therefore, the CHF phenomena can be simulated enough by mass transfer.
High frequency characterization of Galfenol minor flux density loops
Directory of Open Access Journals (Sweden)
Ling Weng
2017-05-01
Full Text Available This paper presents the first measurement of ring-shaped Galfenol’s high frequency-dependent minor flux density loops. The frequencies of applied AC magnetic field are 1k, 5k, 10k, 50k, 100k, 200k, 300k, 500 kHz. The measurements show that the cycle area between the flux density and magnetic field curves increase with increasing frequency. High frequency-dependent characterization, including coercivity, specific power loss, residual induction, and maximum relative permeability are discussed. Minor loops for different max induction are also measured and discussed at the same frequency 100 kHz. Minor loops with the same max induction 0.05 T for different frequencies 50, 100, 200, 300, 400 kHz are measured and specific power loss are discussed.
Energy Technology Data Exchange (ETDEWEB)
Koch, L; Labeyrie, J; Tarassenko, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-07-01
The detector described is designed for the instantaneous measurement of thermal neutron fluxes, in the presence of high {gamma} ray activity; this detector can withstand temperatures as high as 500 deg. C. It is based on the following principle: radioactive atoms resulting from heavy-nucleus fission are carried by a gas flow to a detector recording their {beta} and {gamma} disintegration. Thermal neutron fluxes as low as few neutrons per cm{sup 2} per second can be measured. This detector may be used to control a nuclear reactor, to plot the thermal flux distribution with an excellent definition (1 mm{sup 2}) for fluxes higher than 10{sup 8} n/cm{sup 2}/s. The time response of the system to a sharp variation of flux is limited, in case of large fluxes, to the transit time of the gas flow between the fission product emitter and the detector; of the order of one tenth of a sec per meter of piping. The detector may also be applied for spectroscopy of fission products eider than 0,1 s. (author)Fren. [French] On decrit un appareil permettant la mesure instantanee des flux de neutrons thermiques accompagnes de flux intenses de rayons {gamma} et situes dans des enceintes pouvant etre portees a des temperatures superieures a 500 deg. C. On utilise la radioactivite des atomes resultant de la fission des noyaux lourds; ces atomes sont entraines par un courant gazeux vers un detecteur de radioactivite qui enregistre leurs desintegrations {beta} et {gamma}. On peut mesurer des flux partir de quelques neutrons thermiques par cm{sup 2} et par seconde. L'appareil permet de suivre la puissance d'un reacteur atomique, de tracer des cartes de densite de neutrons avec une tres bonne definition (1 mm{sup 2}) dans le cas de flux superieurs a 10{sup 8} cm{sup 2}/s. Le temps de reponse du systeme a une variation du flux de neutrons est limite, poes flux importants, par le temps de transit du gaz entre l'emetteur de produits de fission et le detecteur: soit quelques dizaines de
International Nuclear Information System (INIS)
Gray, K.E.; Kampwirth, R.T.; Capone, D.W. II; Murduck, J.M.
1988-08-01
A flux pinning model is presented which predicts the maximum critical current density attainable in superconductors. That such a limit must exist comes from the realization that flux pinning is strongest in regions of weak superconductivity, but these regions cannot carry a large supercurrent. Since the same regions within the superconductor cannot be used for both pinning and supercurrent conductions, there must be an optimum mix, leading to a maximum J/sub c/. Measurements on films and multilayers of NbN have verified many details of the model including anisotropy effects and a strong reduction in J/sub c/ for defect spacings smaller than the flux core diameter. In an optimized multilayer the pinning force reached /approximately/22% of the theoretical maximum. The implications of these results on the practical applications of NbN films and on the maximum critical current density in the new high temperature superconductors are also discussed. 24 refs., 4 figs
Phase transitions induced by the Aharonov-Bohm field
International Nuclear Information System (INIS)
Krive, I.V.; Naftulin, S.A.
1990-07-01
The influence of the Aharonov-Bohm flux (φ) on the order parameters of the 3-dimensional Gross-Neveu model and CP N -model in R 2 xS 1 space is considered. It is shown that the variation of flux causes the order parameter oscillations and for the small enough length of circular coordinate l c these oscillations attended with re-ordering phase transitions (i.e. the repeating transitions between the ordered and the disordered phases of the models in question). (author). 22 refs, 3 figs
Flavour mixings in flux compactifications
International Nuclear Information System (INIS)
Buchmuller, Wilfried; Schweizer, Julian
2017-01-01
A multiplicity of quark-lepton families can naturally arise as zero-modes in flux compactifications. The flavour structure of quark and lepton mass matrices is then determined by the wave function profiles of the zero-modes. We consider a supersymmetric SO(10) x U(1) model in six dimensions compactified on the orbifold T 2 =Z 2 with Abelian magnetic flux. A bulk 16-plet charged under the U(1) provides the quark-lepton generations whereas two uncharged 10-plets yield two Higgs doublets. Bulk anomaly cancellation requires the presence of additional 16- and 10-plets. The corresponding zero-modes form vectorlike split multiplets that are needed to obtain a successful flavour phenomenology. We analyze the pattern of flavour mixings for the two heaviest families of the Standard Model and discuss possible generalizations to three and more generations.
Superconducting flux flow digital circuits
International Nuclear Information System (INIS)
Martens, J.S.; Zipperian, T.E.; Hietala, V.M.; Ginley, D.S.; Tigges, C.P.; Phillips, J.M.; Siegal, M.P.
1993-01-01
The authors have developed a family of digital logic circuits based on superconducting flux flow transistors that show high speed, reasonable signal levels, large fan-out, and large noise margins. The circuits are made from high-temperature superconductors (HTS) and have been shown to operate at over 90 K. NOR gates have been demonstrated with fan-outs of more than 5 and fully loaded switching times less than a fixture-limited 50 ps. Ring-oscillator data suggest inverter delay times of about 40ps when using a 3-μm linewidths. Simple flip-flops have also been demonstrated showing large noise margins, response times of less than 30 ps, and static power dissipation on the order of 30 nW. Among other uses, this logic family is appropriate as an interface between logic families such as single flux quantum and conventional semiconductor logic
Heisenberg groups and noncommutative fluxes
International Nuclear Information System (INIS)
Freed, Daniel S.; Moore, Gregory W.; Segal, Graeme
2007-01-01
We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z 2 -graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k+2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured
Neutron flux enhancement at LASREF
International Nuclear Information System (INIS)
Sommer, W.F.; Ferguson, P.D.; Wechsler, M.S.
1992-01-01
The accelerator at the Los Alamos Meson Physiscs Facility produces a 1 mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of 10 from the present level of about 5 E + 17 m -2 s -1 . This requires changing the beam stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. (orig.)
Absolute flux scale for radioastronomy
International Nuclear Information System (INIS)
Ivanov, V.P.; Stankevich, K.S.
1986-01-01
The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized
Non-equilibrium phase transition
International Nuclear Information System (INIS)
Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.
1998-01-01
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken
Rapid reconnection of flux lines
International Nuclear Information System (INIS)
Samain, A.
1982-01-01
The rapid reconnection of flux lines in an incompressible fluid through a singular layer of the current density is discussed. It is shown that the liberated magnetic energy must partially appear in the form of plasma kinetic energy. A laminar structure of the flow is possible, but Alfven velocity must be achieved in eddies of growing size at the ends of the layer. The gross structure of the flow and the magnetic configuration may be obtained from variational principles. (author)
1km Global Terrestrial Carbon Flux: Estimations and Evaluations
Murakami, K.; Sasai, T.; Kato, S.; Saito, M.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.
2017-12-01
Estimating global scale of the terrestrial carbon flux change with high accuracy and high resolution is important to understand global environmental changes. Furthermore the estimations of the global spatiotemporal distribution may contribute to the political and social activities such as REDD+. In order to reveal the current state of terrestrial carbon fluxes covering all over the world and a decadal scale. The satellite-based diagnostic biosphere model is suitable for achieving this purpose owing to observing on the present global land surface condition uniformly at some time interval. In this study, we estimated the global terrestrial carbon fluxes with 1km grids by using the terrestrial biosphere model (BEAMS). And we evaluated our new carbon flux estimations on various spatial scales and showed the transition of forest carbon stocks in some regions. Because BEAMS required high resolution meteorological data and satellite data as input data, we made 1km interpolated data using a kriging method. The data used in this study were JRA-55, GPCP, GOSAT L4B atmospheric CO2 data as meteorological data, and MODIS land product as land surface satellite data. Interpolating process was performed on the meteorological data because of insufficient resolution, but not on MODIS data. We evaluated our new carbon flux estimations using the flux tower measurement (FLUXNET2015 Datasets) in a point scale. We used 166 sites data for evaluating our model results. These flux sites are classified following vegetation type (DBF, EBF, ENF, mixed forests, grass lands, croplands, shrub lands, Savannas, wetlands). In global scale, the BEAMS estimations was underestimated compared to the flux measurements in the case of carbon uptake and release. The monthly variations of NEP showed relatively high correlations in DBF and mixed forests, but the correlation coefficients of EBF, ENF, and grass lands were less than 0.5. In the meteorological factors, air temperature and solar radiation showed
BVOC ecosystem flux measurements at a high latitude wetland site
Directory of Open Access Journals (Sweden)
T. Holst
2010-02-01
Full Text Available In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC technique based on a proton transfer reaction mass spectrometer (PTR-MS. The vegetation at the site was dominated by Sphagnum, Carex and extit{Eriophorum} spp. The measurements reported here cover a period of 50 days (1 August to 19 September 2006, approximately one half of the growing season at the site, and allowed to investigate the effect of day-to-day variation in weather as well as of vegetation senescence on daily BVOC fluxes, and on their temperature and light responses. The sensitivity drift of the DEC system was assessed by comparing H_{3}O^{+}-ion cluster formed with water molecules (H_{3}O^{+}(H_{2}O at m37 with water vapour concentration measurements made using an adjacent humidity sensor, and the applicability of the DEC method was analysed by a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations.
Standardised (20 °C and 1000 μmol m^{−2} s^{−1} PAR summer isoprene emission rates found in this study of 329 μg C m^{−2} (ground area h^{−1} were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence than emissions from temperate or (subtropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m^{−2} h^{−1}
Neutron flux control systems validation
International Nuclear Information System (INIS)
Hascik, R.
2003-01-01
In nuclear installations main requirement is to obtain corresponding nuclear safety in all operation conditions. From the nuclear safety point of view is commissioning and start-up after reactor refuelling appropriate period for safety systems verification. In this paper, methodology, performance and results of neutron flux measurements systems validation is presented. Standard neutron flux measuring chains incorporated into the reactor protection and control system are used. Standard neutron flux measuring chain contains detector, preamplifier, wiring to data acquisition unit, data acquisition unit, wiring to display at control room and display at control room. During reactor outage only data acquisition unit and wiring and displaying at reactor control room is verified. It is impossible to verify detector, preamplifier and wiring to data acquisition recording unit during reactor refuelling according to low power. Adjustment and accurate functionality of these chains is confirmed by start-up rate (SUR) measurement during start-up tests after refuelling of the reactors. This measurement has direct impact to nuclear safety and increase operational nuclear safety level. Briefly description of each measuring system is given. Results are illustrated on measurements performed at Bohunice NPP during reactor start-up tests. Main failures and their elimination are described (Authors)
Surface fluxes in heterogeneous landscape
Energy Technology Data Exchange (ETDEWEB)
Bay Hasager, C
1997-01-01
The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.
Generalized drift-flux correlation
International Nuclear Information System (INIS)
Takeuchi, K.; Young, M.Y.; Hochreiter, L.E.
1991-01-01
A one-dimensional drift-flux model with five conservation equations is frequently employed in major computer codes, such as TRAC-PD2, and in simulator codes. In this method, the relative velocity between liquid and vapor phases, or slip ratio, is given by correlations, rather than by direct solution of the phasic momentum equations, as in the case of the two-fluid model used in TRAC-PF1. The correlations for churn-turbulent bubbly flow and slug flow regimes were given in terms of drift velocities by Zuber and Findlay. For the annular flow regime, the drift velocity correlations were developed by Ishii et al., using interphasic force balances. Another approach is to define the drift velocity so that flooding and liquid hold-up conditions are properly simulated, as reported here. The generalized correlation is used to reanalyze the MB-2 test data for two-phase flow in a large-diameter pipe. The results are applied to the generalized drift flux velocity, whose relationship to the other correlations is discussed. Finally, the generalized drift flux correlation is implemented in TRAC-PD2. Flow reversal from countercurrent to cocurrent flow is computed in small-diameter U-shaped tubes and is compared with the flooding curve
Energy Technology Data Exchange (ETDEWEB)
Takei, Y; Yamasaki, N Y; Hirakoso, W; Kimura, S; Mitsuda, K, E-mail: takei@astro.isas.jaxa.j [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, 229-8510 (Japan)
2009-11-15
A microcalorimeter array based on a transition-edge sensor (TES) thermometer is a promising imaging spectrometer for use in future x-ray astronomy missions. A TES microcalorimeter achieves {approx}<5 eV energy resolution and an array of >100 pixels also provides a moderate imaging capability. For a large format array, signal multiplexing at the low temperature stage is mandatory in order to reduce heat loads from cold stage preamplifiers and through wirings. We are developing frequency division multiplexing (FDM). In FDM, each TES is ac-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one dc SQUID (superconducting quantum interference device). The maximum number of multiplexed pixels is limited by the bandwidth of a SQUID in a flux-locked loop. Assuming 1 m cable length between the room temperature and the cold stage, the bandwidth is only <1 MHz with a standard flux-locked loop, due to the delay and phase shift of wirings. We report our development of baseband feedback, a new feedback scheme that overcomes the bandwidth limitation. In baseband feedback, the signal ({approx}<10 kHz) from the TES is sent back to the SQUID after the phase of carrier frequency ({approx}1 MHz) has been adjusted. We demonstrated open-loop gain of 8 for 10 kHz signal at 5 MHz carrier frequency, which indicates the possibility of {approx}40-pixel multiplexing of the TES signal.
Final Report on DE-FG02-04ER46107: Glasses, Noise and Phase Transitions
Energy Technology Data Exchange (ETDEWEB)
Yu, Clare C. [Univ. of California, Irvine, CA (United States)
2011-12-31
We showed that noise has distinct signatures at phase transitions in spin systems. We also studied charge noise, critical current noise, and flux noise in superconducting qubits and Josephson junctions.
A road map to solar neutrino fluxe, neutrino oscillation parameters, and tests for new physics
Bahcall, J N; Bahcall, John N.; Peña-Garay, Carlos
2003-01-01
We analyze all available solar and related reactor neutrino experiments, as well as simulated future ^7Be, p-p, pep, and ^8B solar neutrino experiments. We treat all solar neutrino fluxes as free parameters subject to the condition that the total luminosity represented by the neutrinos equals the observed solar luminosity (the `luminosity constraint'). Existing experiments show that the p-p solar neutrino flux is 1.01 + - 0.02 (1 sigma) times the flux predicted by the BP00 standard solar model; the ^7Be neutrino flux is 0.97^{+0.28}_{-0.54} the predicted flux; and the ^8B flux is 1.01 + - 0.06 the predicted flux. The oscillation parameters are: Delta m^2 = 7.3^{+0.4}_{-0.6} 10^{-5} eV^2 and tan^2 theta_{12} = 0.42^{+0.08}_{-0.06}. We evaluate how accurate future experiments must be to determine more precisely neutrino oscillation parameters and solar neutrino fluxes, and to elucidate the transition from vacuum-dominated to matter-dominated oscillations. A future ^7Be nu-e scattering experiment accurate to + -...
Accurate modeling and maximum power point detection of ...
African Journals Online (AJOL)
Accurate modeling and maximum power point detection of photovoltaic ... Determination of MPP enables the PV system to deliver maximum available power. ..... adaptive artificial neural network: Proposition for a new sizing procedure.
Maximum power per VA control of vector controlled interior ...
Indian Academy of Sciences (India)
Thakur Sumeet Singh
2018-04-11
Apr 11, 2018 ... Department of Electrical Engineering, Indian Institute of Technology Delhi, New ... The MPVA operation allows maximum-utilization of the drive-system. ... Permanent magnet motor; unity power factor; maximum VA utilization; ...
Electron density distribution in Si and Ge using multipole, maximum ...
Indian Academy of Sciences (India)
Si and Ge has been studied using multipole, maximum entropy method (MEM) and ... and electron density distribution using the currently available versatile ..... data should be subjected to maximum possible utility for the characterization of.
High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array
Energy Technology Data Exchange (ETDEWEB)
Noroozian, Omid [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 (United States); Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Kang, Zhao [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States)
2013-11-11
We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.
Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube
International Nuclear Information System (INIS)
Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance
1997-03-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)
Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow
International Nuclear Information System (INIS)
Boscary, J.
1995-10-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs
Criticality predicts maximum irregularity in recurrent networks of excitatory nodes.
Directory of Open Access Journals (Sweden)
Yahya Karimipanah
Full Text Available A rigorous understanding of brain dynamics and function requires a conceptual bridge between multiple levels of organization, including neural spiking and network-level population activity. Mounting evidence suggests that neural networks of cerebral cortex operate at a critical regime, which is defined as a transition point between two phases of short lasting and chaotic activity. However, despite the fact that criticality brings about certain functional advantages for information processing, its supporting evidence is still far from conclusive, as it has been mostly based on power law scaling of size and durations of cascades of activity. Moreover, to what degree such hypothesis could explain some fundamental features of neural activity is still largely unknown. One of the most prevalent features of cortical activity in vivo is known to be spike irregularity of spike trains, which is measured in terms of the coefficient of variation (CV larger than one. Here, using a minimal computational model of excitatory nodes, we show that irregular spiking (CV > 1 naturally emerges in a recurrent network operating at criticality. More importantly, we show that even at the presence of other sources of spike irregularity, being at criticality maximizes the mean coefficient of variation of neurons, thereby maximizing their spike irregularity. Furthermore, we also show that such a maximized irregularity results in maximum correlation between neuronal firing rates and their corresponding spike irregularity (measured in terms of CV. On the one hand, using a model in the universality class of directed percolation, we propose new hallmarks of criticality at single-unit level, which could be applicable to any network of excitable nodes. On the other hand, given the controversy of the neural criticality hypothesis, we discuss the limitation of this approach to neural systems and to what degree they support the criticality hypothesis in real neural networks. Finally
Analysis of reaction schemes using maximum rates of constituent steps
Motagamwala, Ali Hussain; Dumesic, James A.
2016-01-01
We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366
The mechanism of heat transfer in transition boiling
International Nuclear Information System (INIS)
Chin Pan; Hwang, J.Y.; Lin, T.L.
1989-01-01
Liquid-solid contact in transition boiling is modelled by involving transient conduction, boiling incipience, macrolayer evaporation and vapour film boiling. The prediction of liquid contact duration and time fraction agrees reasonably well with experimental data, and the model is able to predict both of the boiling curve transitions - the critical and minimum heat fluxes. The study concludes that the liquid turbulence due to buoyancy forces and bubble agitation is an important parameter for transition boiling. It is found that surface coating (oxidation or deposition) tends to improve the transition boiling heat transfer and elevate the wall superheats at both the critical heat flux and the minimum film boiling points, which agrees with the experimental observations. (author)
Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels
Li, Ting; Zhang, Jun; Ji, Haisheng
2015-06-01
We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.
Study on radiation flux of the receiver with a parabolic solar concentrator system
International Nuclear Information System (INIS)
Mao, Qianjun; Shuai, Yong; Yuan, Yuan
2014-01-01
Highlights: • The idea of integral dish and multi-dishes in a parabolic solar collector has been proposed. • The impacts of three factors of the receiver have been investigated. • The radiation flux distribution can benefit from a large system error. - Abstract: The solar receiver plays a key role in the performance of a solar dish electric generator. Its radiation flux distribution can directly affect the efficiency of the parabolic solar concentrator system. In this paper, radiation flux distribution of the receiver is simulated successfully using MCRT method. The impacts of incident solar irradiation, aspect ratio (the ratio of the receiver height to the receiver diameter), and system error on the radiation flux of the receiver are investigated. The parameters are studied in the following ranges: incident solar irradiation from 100 to 1100 W/m 2 , receiver aspect ratio from 0.5 to 1.5, and the system error from 0 to 10 mrad. A non-dimensional parameter Θ is defined to represent the ratio of radiation flux to incident solar irradiation. The results show that the maximum of Θ is about 200 in simulation conditions. The aspect ratio and system error have a significant impact on the radiation flux. The optimal receiver aspect ratio is 1.5 at a constant incident solar irradiation, and the maximum of radiation flux increases with decreasing system error, however, the radiation flux distribution can benefit from a large system error. Meanwhile, effects of integral dish and multi-dishes on the radiation flux distribution have been investigated. The results show that the accuracy of two cases can be ignored within the same parameters
Force sensor using changes in magnetic flux
Pickens, Herman L. (Inventor); Richard, James A. (Inventor)
2012-01-01
A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.
The causal relation between turbulent particle flux and density gradient
Energy Technology Data Exchange (ETDEWEB)
Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C. [CIEMAT - Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Carreras, B. A. [BACV Solutions, 110 Mohawk Road, Oak Ridge, Tennessee 37830 (United States); García, L.; Nicolau, J. H. [Universidad Carlos III, 28911 Leganés, Madrid (Spain)
2016-07-15
A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local and instantaneous, as is sometimes assumed.
Vertical motions in an intense magnetic flux tube. Pt. 4
International Nuclear Information System (INIS)
Webb, A.R.; Roberts, B.
1980-01-01
Radiative damping of waves is important in the upper photosphere. It is thus of interest to examine the effect of radiative relaxation on the propagation of waves in an intense magnetic flux tube embedded in a uniform atmosphere. Assuming Newton's law of cooling, it is shown that the radiative energy loss leads to wave damping. Both the damping per wavelength and the damping per period reach maximum value when the sound and radiative timescales are comparable. The stronger the magnetic field, the greater is the damping. (orig.)
40 CFR 141.13 - Maximum contaminant levels for turbidity.
2010-07-01
... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Maximum contaminant levels for turbidity. The maximum contaminant levels for turbidity are applicable to... part. The maximum contaminant levels for turbidity in drinking water, measured at a representative...
Maximum Power Training and Plyometrics for Cross-Country Running.
Ebben, William P.
2001-01-01
Provides a rationale for maximum power training and plyometrics as conditioning strategies for cross-country runners, examining: an evaluation of training methods (strength training and maximum power training and plyometrics); biomechanic and velocity specificity (role in preventing injury); and practical application of maximum power training and…
13 CFR 107.840 - Maximum term of Financing.
2010-01-01
... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maximum term of Financing. 107.840... COMPANIES Financing of Small Businesses by Licensees Structuring Licensee's Financing of An Eligible Small Business: Terms and Conditions of Financing § 107.840 Maximum term of Financing. The maximum term of any...
7 CFR 3565.210 - Maximum interest rate.
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Maximum interest rate. 3565.210 Section 3565.210... AGRICULTURE GUARANTEED RURAL RENTAL HOUSING PROGRAM Loan Requirements § 3565.210 Maximum interest rate. The interest rate for a guaranteed loan must not exceed the maximum allowable rate specified by the Agency in...
Characterizing graphs of maximum matching width at most 2
DEFF Research Database (Denmark)
Jeong, Jisu; Ok, Seongmin; Suh, Geewon
2017-01-01
The maximum matching width is a width-parameter that is de ned on a branch-decomposition over the vertex set of a graph. The size of a maximum matching in the bipartite graph is used as a cut-function. In this paper, we characterize the graphs of maximum matching width at most 2 using the minor o...
International Nuclear Information System (INIS)
Khelifi, R.; Idiri, Z.; Bode, P.
2002-01-01
The CITATION code based on neutron diffusion theory was used for flux calculations inside voluminous samples in prompt gamma activation analysis with an isotopic neutron source (Am-Be). The code uses specific parameters related to the energy spectrum source and irradiation system materials (shielding, reflector). The flux distribution (thermal and fast) was calculated in the three-dimensional geometry for the system: air, polyethylene and water cuboidal sample (50x50x50 cm). Thermal flux was calculated in a series of points inside the sample. The results agreed reasonably well with observed values. The maximum thermal flux was observed at a distance of 3.2 cm while CITATION gave 3.7 cm. Beyond a depth of 7.2 cm, the thermal flux to fast flux ratio increases up to twice and allows us to optimise the detection system position in the scope of in-situ PGAA
Reluctance motor employing superconducting magnetic flux switches
International Nuclear Information System (INIS)
Spyker, R.L.; Ruckstadter, E.J.
1992-01-01
This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces
Critical heat-flux experiments under low-flow conditions in a vertical annulus
International Nuclear Information System (INIS)
Mishima, K.; Ishii, M.
1982-03-01
An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF
Near bed suspended sediment flux by single turbulent events
Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian
2018-01-01
The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport
Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog
Nieveen, J.P.; Jacobs, A.F.G.
2002-01-01
Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index
Iron fluxes to Talos Dome, Antarctica, over the past 200 kyr
Directory of Open Access Journals (Sweden)
P. Vallelonga
2013-03-01
Full Text Available Atmospheric fluxes of iron (Fe over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and the reorganisation of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we confirm that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.
Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density
Lodhi, M. A. K.
2005-01-01
No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.
The Maximum Free Magnetic Energy Allowed in a Solar Active Region
Moore, Ronald L.; Falconer, David A.
2009-01-01
Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.
2010-07-01
... cylinders having an internal diameter of 13.0 cm and a 15.5 cm stroke length, the rounded displacement would... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes...
Flux of Cadmium through Euphausiids
International Nuclear Information System (INIS)
Benayoun, G.; Fowler, S.W.; Oregioni, B.
1976-01-01
Flux of the heavy metal cadmium through the euphausiid Meganyctiphanes norvegica was examined. Radiotracer experiments showed that cadmium can be accumulated either directly from water or through the food chain. When comparing equilibrium cadmium concentration factors based on stable element measurements with those obtained from radiotracer experiments, it is evident that exchange between cadmium in the water and that in euphausiid tissue is a relatively slow process, indicating that, in the long term, ingestion of cadmium will probably be the more important route for the accumulation of this metal. Approximately 10% of cadmium ingested by euphausiids was incorporated into internal tissues when the food source was radioactive Artemia. After 1 month cadmium, accumulated directly from water, was found to be most concentrated in the viscera with lesser amounts in eyes, exoskeleton and muscle, respectively. Use of a simple model, based on the assumption that cadmium taken in by the organism must equal cadmium released plus that accumulated in tissue, allowed assessment of the relative importance of various metabolic parameters in controlling the cadmium flux through euphausiids. Fecal pellets, due to their relatively high rate of production and high cadmium content, accounted for 84% of the total cadmium flux through M. norvegica. Comparisons of stable cadmium concentrations in natural euphausiid food and the organism's resultant fecal pellets indicate that the cadmium concentration in ingested material was increased nearly 5-fold during its passage through the euphausiid. From comparisons of all routes by which cadmium can be released from M. norvegica to the water column, it is concluded that fecal pellet deposition represents the principal mechanism effecting the downward vertical transport of cadmium by this species. (author)
Role of magnetic flux perturbations in confinement bifurcations in TUMAN-3M
International Nuclear Information System (INIS)
Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.
2003-01-01
Poloidal magnetic flux variations in the small tokamak TUMAN-3M allowed observation of transitions between different confinement modes. The possibility of switching on/off the ohmic H-mode by edge poloidal magnetic flux perturbations has been found. The flux perturbations were created by fast current ramp up/down or by magnetic compression/decompression produced by fast increase/decrease in the toroidal magnetic field. It was found that positive flux perturbations (current ramp-up and magnetic compression scenarios) are useful means of H-mode triggering. If a negative flux perturbation (current ramp-down or magnetic decompression) is applied, the H-mode terminated. Various mechanisms involved in the L-H and H-L transition physics in the flux perturbation experiments were analyzed. The experimental observations of the transitions between confinement modes might be understood in terms of the model of a sheared radial electric field generation, which takes into account the electron Ware drift in a perturbed longitudinal electric field. Another scenario of improved confinement was observed in the initial phase of an ohmic discharge, when change in the poloidal flux is associated with current ramp-up. Variation of the rates of current ramp-up and working gas puffing in the beginning of a discharge resulted in a fast increase in the electron temperature near the axis. The increase correlates with low m/n MHD mode growth. The observed core electron confinement improvement is apparently connected with the rate of current ramp. Deviation from the optimal rate results in disappearance of the improvement. The role of magnetic shear profile and rational magnetic surfaces in the core electron confinement improvement in the initial phase of ohmic discharges is discussed. (author)
Framework for Flux Qubit Design
Yan, Fei; Kamal, Archana; Krantz, Philip; Campbell, Daniel; Kim, David; Yoder, Jonilyn; Orlando, Terry; Gustavsson, Simon; Oliver, William; Engineering Quantum Systems Team
A qubit design for higher performance relies on the understanding of how various qubit properties are related to design parameters. We construct a framework for understanding the qubit design in the flux regime. We explore different parameter regimes, looking for features desirable for certain purpose in the context of quantum computing. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002.