Karia Ritesh M
2012-04-01
Full Text Available Objective: Objectives of this study is to study effect of smoking on Peak Expiratory Flow Rate and Maximum Voluntary Ventilation in apparently healthy tobacco smokers and non-smokers and to compare the result of both the studies to assess the effects of smoking Method: The present study was carried out by computerized software of Pulmonary Function Test named ‘Spiro Excel’ on 50 non-smokers and 50 smokers. Smokers are divided in three gropus. Full series of test take 4 to 5 minutes. Tests were compared in the both smokers and non-smokers group by the ‘unpaired t test’. Statistical significance was indicated by ‘p’ value < 0.05. Results: From the result it is found that actual value of Peak Expiratory Flow Rate and Maximum Voluntary Ventilation are significantly lower in all smokers group than non-smokers. The difference of actual mean value is increases as the degree of smoking increases. [National J of Med Res 2012; 2(2.000: 191-193
Mazhar A. Memon
2016-04-01
Full Text Available ABSTRACT Objective: To evaluate correlation between visual prostate score (VPSS and maximum flow rate (Qmax in men with lower urinary tract symptoms. Material and Methods: This is a cross sectional study conducted at a university Hospital. Sixty-seven adult male patients>50 years of age were enrolled in the study after signing an informed consent. Qmax and voided volume recorded at uroflowmetry graph and at the same time VPSS were assessed. The education level was assessed in various defined groups. Pearson correlation coefficient was computed for VPSS and Qmax. Results: Mean age was 66.1±10.1 years (median 68. The mean voided volume on uroflowmetry was 268±160mL (median 208 and the mean Qmax was 9.6±4.96mLs/sec (median 9.0. The mean VPSS score was 11.4±2.72 (11.0. In the univariate linear regression analysis there was strong negative (Pearson's correlation between VPSS and Qmax (r=848, p<0.001. In the multiple linear regression analyses there was a significant correlation between VPSS and Qmax (β-http://www.blogapaixonadosporviagens.com.br/p/caribe.html after adjusting the effect of age, voided volume (V.V and level of education. Multiple linear regression analysis done for independent variables and results showed that there was no significant correlation between the VPSS and independent factors including age (p=0.27, LOE (p=0.941 and V.V (p=0.082. Conclusion: There is a significant negative correlation between VPSS and Qmax. The VPSS can be used in lieu of IPSS score. Men even with limited educational background can complete VPSS without assistance.
The inverse maximum dynamic flow problem
BAGHERIAN; Mehri
2010-01-01
We consider the inverse maximum dynamic flow (IMDF) problem.IMDF problem can be described as: how to change the capacity vector of a dynamic network as little as possible so that a given feasible dynamic flow becomes a maximum dynamic flow.After discussing some characteristics of this problem,it is converted to a constrained minimum dynamic cut problem.Then an efficient algorithm which uses two maximum dynamic flow algorithms is proposed to solve the problem.
Rosewarne, P J; Wilson, J M; Svendsen, J C
2016-01-01
Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology.
Sander, Pia; Mouritsen, L; Andersen, J Thorup
2002-01-01
OBJECTIVE: The aim of this study was to evaluate the value of routine measurements of urinary flow rate and residual urine volume as a part of a "minimal care" assessment programme for women with urinary incontinence in detecting clinical significant bladder emptying problems. MATERIAL AND METHOD...... female urinary incontinence. Thus, primary health care providers can assess women based on simple guidelines without expensive equipment for assessment of urine flow rate and residual urine....
The maximum rate of mammal evolution
Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.
2012-03-01
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
The maximum rate of mammal evolution
Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.
2012-01-01
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous–Paleogene (K–Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. PMID:22308461
The maximum rate of mammal evolution.
Evans, Alistair R; Jones, David; Boyer, Alison G; Brown, James H; Costa, Daniel P; Ernest, S K Morgan; Fitzgerald, Erich M G; Fortelius, Mikael; Gittleman, John L; Hamilton, Marcus J; Harding, Larisa E; Lintulaakso, Kari; Lyons, S Kathleen; Okie, Jordan G; Saarinen, Juha J; Sibly, Richard M; Smith, Felisa A; Stephens, Patrick R; Theodor, Jessica M; Uhen, Mark D
2012-03-13
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
A polynomial algorithm for abstract maximum flow
McCormick, S.T. [Univ. of British Columbia, Vancouver, British Columbia (Canada)
1996-12-31
Ford and Fulkerson`s original 1956 max flow/min cut paper formulated max flow in terms of flows on paths, rather than the more familiar flows on arcs. In 1974 Hoffman pointed out that Ford and Fulkerson`s original proof was quite abstract, and applied to a wide range of max flow-like problems. In this abstract model we have capacitated elements, and linearly ordered subsets of elements called paths. When two paths share an element ({open_quote}cross{close_quote}), then there must be a path that is a subset of the first path up to the cross, and a subset of the second path after the cross. (Hoffman`s generalization of) Ford and Fulkerson`s proof showed that the max flow/min cut theorem still holds under this weak assumption. However, this proof is non-constructive. To get an algorithm, we assume that we have an oracle whose input is an arbitrary subset of elements, and whose output is either a path contained in that subset, or the statement that no such path exists. We then use complementary slackness to show how to augment any feasible set of path flows to a set with a strictly larger total flow value using a polynomial number of calls to the oracle. Then standard scaling techniques yield an overall polynomial algorithm for finding both a max flow and a min cut. Hoffman`s paper actually considers a sort of supermodular objective on the path flows, which allows him to include transportation problems and thus rain-cost flow in his frame-work. We also discuss extending our algorithm to this more general case.
The directed flow maximum near cs = 0
Brachmann, J.; Dumitru, A.; Stöcker, H.; Greiner, W.
2000-07-01
We investigate the excitation function of quark-gluon plasma formation and of directed in-plane flow of nucleons in the energy range of the BNL-AGS and for the E {Lab/kin} = 40 AGeV Pb + Pb collisions performed recently at the CERN-SPS. We employ the three-fluid model with dynamical unification of kinetically equilibrated fluid elements. Within our model with first-order phase transition at high density, droplets of QGP coexisting with hadronic matter are produced already at BNL-AGS energies, E {Lab/kin} ≃ 10 AGeV. A substantial decrease of the isentropic velocity of sound, however, requires higher energies, E {Lab/kin} ≃ 0 AGeV. We show the effect on the flow of nucleons in the reaction plane. According to our model calculations, kinematic requirements and EoS effects work hand-in-hand at E {Lab/kin} = 40 AGeV to allow the observation of the dropping velocity of sound via an increase of the directed flow around midrapidity as compared to top BNL-AGS energy.
A Fast Parametric Maximum Flow Algorithm. Revision,
1987-07-01
26]. ". N. Perfect sharing arises in a network transmission problem studied by Itai and Rodeh [21] and 1 Gusfield [17] and in a network...the network transmission scheduling problem described below. Another application will arise in Section 4.2. Scheduling transmissions. Itai and Rodeh...constructed from the flow in 0(m) time as described in [21]. Itai and Rodeh proposed two 22 "-N., -- %’%’ % %""’ . ,’ ""€"" ",. . -",/a
The inverse maximum flow problem with lower and upper bounds for the flow
Deaconu Adrian
2008-01-01
Full Text Available The general inverse maximum flow problem (denoted GIMF is considered, where lower and upper bounds for the flow are changed so that a given feasible flow becomes a maximum flow and the distance (considering l1 norm between the initial vector of bounds and the modified vector is minimum. Strongly and weakly polynomial algorithms for solving this problem are proposed. In the paper it is also proved that the inverse maximum flow problem where only the upper bound for the flow is changed (IMF is a particular case of the GIMF problem.
Continuous maximum flow segmentation method for nanoparticle interaction analysis.
Marak, L; Tankyevych, O; Talbot, H
2011-10-01
In recent years, tomographic three-dimensional reconstruction approaches using electrons rather than X-rays have become popular. Such images produced with a transmission electron microscope make it possible to image nanometre-scale materials in three-dimensional. However, they are also noisy, limited in contrast and most often have a very poor resolution along the axis of the electron beam. The analysis of images stemming from such modalities, whether fully or semiautomated, is therefore more complicated. In particular, segmentation of objects is difficult. In this paper, we propose to use the continuous maximum flow segmentation method based on a globally optimal minimal surface model. The use of this fully automated segmentation and filtering procedure is illustrated on two different nanoparticle samples and provide comparisons with other classical segmentation methods. The main objectives are the measurement of the attraction rate of polystyrene beads to silica nanoparticle (for the first sample) and interaction of silica nanoparticles with large unilamellar liposomes (for the second sample). We also illustrate how precise measurements such as contact angles can be performed.
Yuan-Hong Jiang
Full Text Available OBJECTIVES: The aim of this study was to investigate the predictive values of the total International Prostate Symptom Score (IPSS-T and voiding to storage subscore ratio (IPSS-V/S in association with total prostate volume (TPV and maximum urinary flow rate (Qmax in the diagnosis of bladder outlet-related lower urinary tract dysfunction (LUTD in men with lower urinary tract symptoms (LUTS. METHODS: A total of 298 men with LUTS were enrolled. Video-urodynamic studies were used to determine the causes of LUTS. Differences in IPSS-T, IPSS-V/S ratio, TPV and Qmax between patients with bladder outlet-related LUTD and bladder-related LUTD were analyzed. The positive and negative predictive values (PPV and NPV for bladder outlet-related LUTD were calculated using these parameters. RESULTS: Of the 298 men, bladder outlet-related LUTD was diagnosed in 167 (56%. We found that IPSS-V/S ratio was significantly higher among those patients with bladder outlet-related LUTD than patients with bladder-related LUTD (2.28±2.25 vs. 0.90±0.88, p1 or >2 was factored into the equation instead of IPSS-T, PPV were 91.4% and 97.3%, respectively, and NPV were 54.8% and 49.8%, respectively. CONCLUSIONS: Combination of IPSS-T with TPV and Qmax increases the PPV of bladder outlet-related LUTD. Furthermore, including IPSS-V/S>1 or >2 into the equation results in a higher PPV than IPSS-T. IPSS-V/S>1 is a stronger predictor of bladder outlet-related LUTD than IPSS-T.
Improved Minimum Cuts and Maximum Flows in Undirected Planar Graphs
Italiano, Giuseppe F
2010-01-01
In this paper we study minimum cut and maximum flow problems on planar graphs, both in static and in dynamic settings. First, we present an algorithm that given an undirected planar graph computes the minimum cut between any two given vertices in O(n log log n) time. Second, we show how to achieve the same O(n log log n) bound for the problem of computing maximum flows in undirected planar graphs. To the best of our knowledge, these are the first algorithms for those two problems that break the O(n log n) barrier, which has been standing for more than 25 years. Third, we present a fully dynamic algorithm that is able to maintain information about minimum cuts and maximum flows in a plane graph (i.e., a planar graph with a fixed embedding): our algorithm is able to insert edges, delete edges and answer min-cut and max-flow queries between any pair of vertices in O(n^(2/3) log^3 n) time per operation. This result is based on a new dynamic shortest path algorithm for planar graphs which may be of independent int...
The mechanics of granitoid systems and maximum entropy production rates.
Hobbs, Bruce E; Ord, Alison
2010-01-13
A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate.
Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.
2014-12-01
Flow batteries show promise for very large-scale stationary energy storage such as needed for the grid and renewable energy implementation. In recent years, researchers and developers of redox flow batteries (RFBs) have found that electrode and flow field designs of PEM fuel cell (PEMFC) technology can increase the power density and consequently push down the cost of flow battery stacks. In this paper we present a macroscopic model of a typical PEMFC-like RFB electrode-flow field design. The model is a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer). The effects of the inlet volumetric flow rate, permeability of the porous layer, thickness of the porous layer and thickness of the flow channel on the flow penetration into the porous layer are investigated. The maximum current density corresponding to stoichiometry is estimated to be 377 mA cm-2 and 724 mA cm-2, which compares favorably with experiments of ∼400 mA cm-2 and ∼750 mA cm-2, for a single layer and three layers of the carbon fiber paper, respectively.
Mean square convergence rates for maximum quasi-likelihood estimator
Arnoud V. den Boer
2015-03-01
Full Text Available In this note we study the behavior of maximum quasilikelihood estimators (MQLEs for a class of statistical models, in which only knowledge about the first two moments of the response variable is assumed. This class includes, but is not restricted to, generalized linear models with general link function. Our main results are related to guarantees on existence, strong consistency and mean square convergence rates of MQLEs. The rates are obtained from first principles and are stronger than known a.s. rates. Our results find important application in sequential decision problems with parametric uncertainty arising in dynamic pricing.
The tropical lapse rate steepened during the Last Glacial Maximum.
Loomis, Shannon E; Russell, James M; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F Alayne; Kelly, Meredith A
2017-01-01
The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted.
The tropical lapse rate steepened during the Last Glacial Maximum
Loomis, Shannon E.; Russell, James M.; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S.; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F. Alayne; Kelly, Meredith A.
2017-01-01
The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted. PMID:28138544
Mapping the MPM maximum flow algorithm on GPUs
Solomon, Steven; Thulasiraman, Parimala
2010-11-01
The GPU offers a high degree of parallelism and computational power that developers can exploit for general purpose parallel applications. As a result, a significant level of interest has been directed towards GPUs in recent years. Regular applications, however, have traditionally been the focus of work on the GPU. Only very recently has there been a growing number of works exploring the potential of irregular applications on the GPU. We present a work that investigates the feasibility of Malhotra, Pramodh Kumar and Maheshwari's "MPM" maximum flow algorithm on the GPU that achieves an average speedup of 8 when compared to a sequential CPU implementation.
Maximum Flow in Planar Networks with Exponentially Distributed Arc Capacities.
1984-12-01
avoid constructing the dual, are described in Itai and Shiloach P 97 91. In this paper, we consider the maximum flow problem in (st) planar networks...use arc e and lies completely below P. If no such path exists we say P(e) - *. An algorithm tc construct P(e) given P and e is described in Itai and...suggested in Ford and Fulkerson [1956], developed in Berge and Ghouila-Houri [1962] and its time complexity is reduced to 0( IVI log IVI ) by Itai and
Maximum orbit plane change with heat-transfer-rate considerations
Lee, J. Y.; Hull, D. G.
1990-01-01
Two aerodynamic maneuvers are considered for maximizing the plane change of a circular orbit: gliding flight with a maximum thrust segment to regain lost energy (aeroglide) and constant altitude cruise with the thrust being used to cancel the drag and maintain a high energy level (aerocruise). In both cases, the stagnation heating rate is limited. For aeroglide, the controls are the angle of attack, the bank angle, the time at which the burn begins, and the length of the burn. For aerocruise, the maneuver is divided into three segments: descent, cruise, and ascent. During descent the thrust is zero, and the controls are the angle of attack and the bank angle. During cruise, the only control is the assumed-constant angle of attack. During ascent, a maximum thrust segment is used to restore lost energy, and the controls are the angle of attack and bank angle. The optimization problems are solved with a nonlinear programming code known as GRG2. Numerical results for the Maneuverable Re-entry Research Vehicle with a heating-rate limit of 100 Btu/ft(2)-s show that aerocruise gives a maximum plane change of 2 deg, which is only 1 deg larger than that of aeroglide. On the other hand, even though aerocruise requires two thrust levels, the cruise characteristics of constant altitude, velocity, thrust, and angle of attack are easy to control.
Invulnerability of power grids based on maximum flow theory
Fan, Wenli; Huang, Shaowei; Mei, Shengwei
2016-11-01
The invulnerability analysis against cascades is of great significance in evaluating the reliability of power systems. In this paper, we propose a novel cascading failure model based on the maximum flow theory to analyze the invulnerability of power grids. In the model, node initial loads are built on the feasible flows of nodes with a tunable parameter γ used to control the initial node load distribution. The simulation results show that both the invulnerability against cascades and the tolerance parameter threshold αT are affected by node load distribution greatly. As γ grows, the invulnerability shows the distinct change rules under different attack strategies and different tolerance parameters α respectively. These results are useful in power grid planning and cascading failure prevention.
Maximum, minimum, and optimal mutation rates in dynamic environments
Ancliff, Mark; Park, Jeong-Man
2009-12-01
We analyze the dynamics of the parallel mutation-selection quasispecies model with a changing environment. For an environment with the sharp-peak fitness function in which the most fit sequence changes by k spin flips every period T , we find analytical expressions for the minimum and maximum mutation rates for which a quasispecies can survive, valid in the limit of large sequence size. We find an asymptotic solution in which the quasispecies population changes periodically according to the periodic environmental change. In this state we compute the mutation rate that gives the optimal mean fitness over a period. We find that the optimal mutation rate per genome, k/T , is independent of genome size, a relationship which is observed across broad groups of real organisms.
Maximum speeds and alpha angles of flowing avalanches
McClung, David; Gauer, Peter
2016-04-01
A flowing avalanche is one which initiates as a slab and, if consisting of dry snow, will be enveloped in a turbulent snow dust cloud once the speed reaches about 10 m/s. A flowing avalanche has a dense core of flowing material which dominates the dynamics by serving as the driving force for downslope motion. The flow thickness typically on the order of 1 -10 m which is on the order of about 1% of the length of the flowing mass. We have collected estimates of maximum frontal speed um (m/s) from 118 avalanche events. The analysis is given here with the aim of using the maximum speed scaled with some measure of the terrain scale over which the avalanches ran. We have chosen two measures for scaling, from McClung (1990), McClung and Schaerer (2006) and Gauer (2012). The two measures are the √H0-;√S0-- (total vertical drop; total path length traversed). Our data consist of 118 avalanches with H0 (m)estimated and 106 with S0 (m)estimated. Of these, we have 29 values with H0 (m),S0 (m)and um (m/s)estimated accurately with the avalanche speeds measured all or nearly all along the path. The remainder of the data set includes approximate estimates of um (m/s)from timing the avalanche motion over a known section of the path where approximate maximum speed is expected and with either H0or S0or both estimated. Our analysis consists of fitting the values of um/√H0--; um/√S0- to probability density functions (pdf) to estimate the exceedance probability for the scaled ratios. In general, we found the best fits for the larger data sets to fit a beta pdf and for the subset of 29, we found a shifted log-logistic (s l-l) pdf was best. Our determinations were as a result of fitting the values to 60 different pdfs considering five goodness-of-fit criteria: three goodness-of-fit statistics :K-S (Kolmogorov-Smirnov); A-D (Anderson-Darling) and C-S (Chi-squared) plus probability plots (P-P) and quantile plots (Q-Q). For less than 10% probability of exceedance the results show that
Maximum entropy analysis of flow and reaction networks
Niven, Robert K.; Abel, Markus; Schlegel, Michael; Waldrip, Steven H.
2015-01-01
We present a generalised MaxEnt method to infer the stationary state of a flow network, subject to "observable" constraints on expectations of various parameters, as well as "physical" constraints arising from frictional properties (resistance functions) and conservation laws (Kirchhoff laws). The method invokes an entropy defined over all uncertainties in the system, in this case the internal and external flow rates and potential differences. The proposed MaxEnt framework is readily extendable to the analysis of networks with uncertainty in the network structure itself.
Predicting the solar maximum with the rising rate
Du, Z L
2011-01-01
The growth rate of solar activity in the early phase of a solar cycle has been known to be well correlated with the subsequent amplitude (solar maximum). It provides very useful information for a new solar cycle as its variation reflects the temporal evolution of the dynamic process of solar magnetic activities from the initial phase to the peak phase of the cycle. The correlation coefficient between the solar maximum (Rmax) and the rising rate ({\\beta}a) at {\\Delta}m months after the solar minimum (Rmin) is studied and shown to increase as the cycle progresses with an inflection point (r = 0.83) at about {\\Delta}m = 20 months. The prediction error of Rmax based on {\\beta}a is found within estimation at the 90% level of confidence and the relative prediction error will be less than 20% when {\\Delta}m \\geq 20. From the above relationship, the current cycle (24) is preliminarily predicted to peak around October 2013 with a size of Rmax =84 \\pm 33 at the 90% level of confidence.
Measurement and relevance of maximum metabolic rate in fishes.
Norin, T; Clark, T D
2016-01-01
Maximum (aerobic) metabolic rate (MMR) is defined here as the maximum rate of oxygen consumption (M˙O2max ) that a fish can achieve at a given temperature under any ecologically relevant circumstance. Different techniques exist for eliciting MMR of fishes, of which swim-flume respirometry (critical swimming speed tests and burst-swimming protocols) and exhaustive chases are the most common. Available data suggest that the most suitable method for eliciting MMR varies with species and ecotype, and depends on the propensity of the fish to sustain swimming for extended durations as well as its capacity to simultaneously exercise and digest food. MMR varies substantially (>10 fold) between species with different lifestyles (i.e. interspecific variation), and to a lesser extent (aerobic scope, interest in measuring this trait has spread across disciplines in attempts to predict effects of climate change on fish populations. Here, various techniques used to elicit and measure MMR in different fish species with contrasting lifestyles are outlined and the relevance of MMR to the ecology, fitness and climate change resilience of fishes is discussed.
Columbus Payloads Flow Rate Anomalies
Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.
2011-01-01
The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.
Maximum flow-based resilience analysis: From component to system
Jin, Chong; Li, Ruiying; Kang, Rui
2017-01-01
Resilience, the ability to withstand disruptions and recover quickly, must be considered during system design because any disruption of the system may cause considerable loss, including economic and societal. This work develops analytic maximum flow-based resilience models for series and parallel systems using Zobel’s resilience measure. The two analytic models can be used to evaluate quantitatively and compare the resilience of the systems with the corresponding performance structures. For systems with identical components, the resilience of the parallel system increases with increasing number of components, while the resilience remains constant in the series system. A Monte Carlo-based simulation method is also provided to verify the correctness of our analytic resilience models and to analyze the resilience of networked systems based on that of components. A road network example is used to illustrate the analysis process, and the resilience comparison among networks with different topologies but the same components indicates that a system with redundant performance is usually more resilient than one without redundant performance. However, not all redundant capacities of components can improve the system resilience, the effectiveness of the capacity redundancy depends on where the redundant capacity is located. PMID:28545135
Perkell, J S; Hillman, R E; Holmberg, E B
1994-08-01
In previous reports, aerodynamic and acoustic measures of voice production were presented for groups of normal male and female speakers [Holmberg et al., J. Acoust. Soc. Am. 84, 511-529 (1988); J. Voice 3, 294-305 (1989)] that were used as norms in studies of voice disorders [Hillman et al., J. Speech Hear. Res. 32, 373-392 (1989); J. Voice 4, 52-63 (1990)]. Several of the measures were extracted from glottal airflow waveforms that were derived by inverse filtering a high-time-resolution oral airflow signal. Recently, the methods have been updated and a new study of additional subjects has been conducted. This report presents previous (1988) and current (1993) group mean values of sound pressure level, fundamental frequency, maximum airflow declination rate, ac flow, peak flow, minimum flow, ac-dc ratio, inferred subglottal air pressure, average flow, and glottal resistance. Statistical tests indicate overall group differences and differences for values of several individual parameters between the 1988 and 1993 studies. Some inter-study differences in parameter values may be due to sampling effects and minor methodological differences; however, a comparative test of 1988 and 1993 inverse filtering algorithms shows that some lower 1988 values of maximum flow declination rate were due at least in part to excessive low-pass filtering in the 1988 algorithm. The observed differences should have had a negligible influence on the conclusions of our studies of voice disorders.
Comparison Between Bayesian and Maximum Entropy Analyses of Flow Networks†
Steven H. Waldrip
2017-02-01
Full Text Available We compare the application of Bayesian inference and the maximum entropy (MaxEnt method for the analysis of ﬂow networks, such as water, electrical and transport networks. The two methods have the advantage of allowing a probabilistic prediction of ﬂow rates and other variables, when there is insufﬁcient information to obtain a deterministic solution, and also allow the effects of uncertainty to be included. Both methods of inference update a prior to a posterior probability density function (pdf by the inclusion of new information, in the form of data or constraints. The MaxEnt method maximises an entropy function subject to constraints, using the method of Lagrange multipliers,to give the posterior, while the Bayesian method ﬁnds its posterior by multiplying the prior with likelihood functions incorporating the measured data. In this study, we examine MaxEnt using soft constraints, either included in the prior or as probabilistic constraints, in addition to standard moment constraints. We show that when the prior is Gaussian,both Bayesian inference and the MaxEnt method with soft prior constraints give the same posterior means, but their covariances are different. In the Bayesian method, the interactions between variables are applied through the likelihood function, using second or higher-order cross-terms within the posterior pdf. In contrast, the MaxEnt method incorporates interactions between variables using Lagrange multipliers, avoiding second-order correlation terms in the posterior covariance. The MaxEnt method with soft prior constraints, therefore, has a numerical advantage over Bayesian inference, in that the covariance terms are avoided in its integrations. The second MaxEnt method with soft probabilistic constraints is shown to give posterior means of similar, but not identical, structure to the other two methods, due to its different formulation.
Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts
Javier Alvarez, Nicolas; Román Marín, José Manuel; Huang, Qian;
2013-01-01
We provide conclusive evidence of nonmonotonic mechanical behavior in the extension of long-chain branched polymer melts. While nonmonotonic behavior is known to occur for solids, for the case of polymeric melts, this phenomenon is in direct contrast with current theoretical models. We rule out...... the possibility of the overshoot being an experimental artifact by confirming the existence of steady flow after a maximum in the ratio of stress to strain rate versus strain under both constant stress and constant strain-rate kinematics. This observation indicates the omission of important physics from current...
47 CFR 65.700 - Determining the maximum allowable rate of return.
2010-10-01
... CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Maximum Allowable Rates of Return § 65.700 Determining the maximum allowable rate of return. (a) The maximum allowable rate of return for any exchange carrier's earnings on any access service category shall...
Ambarita, Himsar; Kishinami, Koki; Daimaruya, Mashashi; Tokura, Ikuo; Kawai, Hideki; Suzuki, Jun; Kobiyama, Mashayosi; Ginting, Armansyah
The present paper is a study on the optimum plate to plate spacing for maximum heat transfer rate from a flat plate type heat exchanger. The heat exchanger consists of a number of parallel flat plates. The working fluids are flowed at the same operational conditions, either fixed pressure head or fixed fan power input. Parallel and counter flow directions of the working fluids were considered. While the volume of the heat exchanger is kept constant, plate number was varied. Hence, the spacing between plates as well as heat transfer rate will vary and there exists a maximum heat transfer rate. The objective of this paper is to seek the optimum plate to plate spacing for maximum heat transfer rate. In order to solve the problem, analytical and numerical solutions have been carried out. In the analytical solution, the correlations of the optimum plate to plate spacing as a function of the non-dimensional parameters were developed. Furthermore, the numerical simulation is carried out to evaluate the correlations. The results show that the optimum plate to plate spacing for a counter flow heat exchanger is smaller than parallel flow ones. On the other hand, the maximum heat transfer rate for a counter flow heat exchanger is bigger than parallel flow ones.
Kuracina Richard
2015-06-01
Full Text Available The article deals with the measurement of maximum explosion pressure and the maximum rate of exposure pressure rise of wood dust cloud. The measurements were carried out according to STN EN 14034-1+A1:2011 Determination of explosion characteristics of dust clouds. Part 1: Determination of the maximum explosion pressure pmax of dust clouds and the maximum rate of explosion pressure rise according to STN EN 14034-2+A1:2012 Determination of explosion characteristics of dust clouds - Part 2: Determination of the maximum rate of explosion pressure rise (dp/dtmax of dust clouds. The wood dust cloud in the chamber is achieved mechanically. The testing of explosions of wood dust clouds showed that the maximum value of the pressure was reached at the concentrations of 450 g / m3 and its value is 7.95 bar. The fastest increase of pressure was observed at the concentrations of 450 g / m3 and its value was 68 bar / s.
The tropical lapse rate steepened during the Last Glacial Maximum
Loomis, S.E.; Russell, J.M.; Verschuren, D.; Morrill, C.; De Cort, G.; Sinninghe Damsté, J.S.; Olago, D.; Eggermont, H.; Street-Perrott, F.A.; Kelly, M.A.
2017-01-01
The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become lesssteep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountainenvironments. However, the sensitivity of the lapse rate to climate
The tropical lapse rate steepened during the Last Glacial Maximum
Loomis, Shannon E; Russell, James M; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S|info:eu-repo/dai/nl/07401370X; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F Alayne; Kelly, Meredith A
The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate
Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics
Schlaikjer, Malene; Jensen, Jørgen Arendt
2004-01-01
The aspect of correlation among the blood velocities in time and space has not received much attention in previous blood velocity estimators. The theory of fluid mechanics predicts this property of the blood flow. Additionally, most estimators based on a cross-correlation analysis are limited...... of simulated and in vivo data from the carotid artery. The estimator is meant for two-dimensional (2-D) color flow imaging. The resulting mathematical relation for the estimator consists of two terms. The first term performs a cross-correlation analysis on the signal segment in the radio frequency (RF......)-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...
Jan Werner; Eva Maria Griebeler
2014-01-01
We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which...
A Maximum Information Rate Quaternion Filter for Spacecraft Attitude Estimation
Reijneveld, J.; Maas, A.; Choukroun, D.; Kuiper, J.M.
2011-01-01
Building on previous works, this paper introduces a novel continuous-time stochastic optimal linear quaternion estimator under the assumptions of rate gyro measurements and of vector observations of the attitude. A quaternion observation model, which observation matrix is rank degenerate, is reduced
78 FR 13999 - Maximum Interest Rates on Guaranteed Farm Loans
2013-03-04
... have removed the term. Comment: Don't remove the ``average agricultural loan customer'' definition. The... the following methods: Federal eRulemaking Portal: Go to http://www.regulations.gov . Follow the.... Comment: FSA should let the market dictate what interest rate lenders charge guaranteed borrowers, rather...
Exchange Rate Forecasting with Information Flow Approach
Irena Mačerinskienė
2016-06-01
Full Text Available The purpose of this article is to assess exchange rate forecasting possibilities with an information flow approach model. In the model the three types of information flows are distinguished: fundamental analysis information flow through particular macroeconomic determinants, microstructure approach information flow through dealer clients’ positioning data, technical analysis information flow through technical indicators. By using regression analysis it is shown that the composed model can forecast the exchange rate, the most significant information flows are distinguished. The results lead to further development of the information flow approach as a tool to forecast exchange rate fluctuations.
Maximum estimates for generalized Forchheimer flows in heterogeneous porous media
Celik, Emine; Hoang, Luan
2017-02-01
This article continues the study in [4] of generalized Forchheimer flows in heterogeneous porous media. Such flows are used to account for deviations from Darcy's law. In heterogeneous media, the derived nonlinear partial differential equation for the pressure can be singular and degenerate in the spatial variables, in addition to being degenerate for large pressure gradient. Here we obtain the estimates for the L∞-norms of the pressure and its time derivative in terms of the initial and the time-dependent boundary data. They are established by implementing De Giorgi-Moser's iteration in the context of weighted norms with the weights specifically defined by the Forchheimer equation's coefficient functions. With these weights, we prove suitable weighted parabolic Poincaré-Sobolev inequalities and use them to facilitate the iteration. Moreover, local in time L∞-bounds are combined with uniform Gronwall-type energy inequalities to obtain long-time L∞-estimates.
Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum
Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.
2016-06-01
Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind
Flow rate logging seepage meter
Reay, William G. (Inventor); Walthall, Harry G. (Inventor)
1996-01-01
An apparatus for remotely measuring and logging the flow rate of groundwater seepage into surface water bodies. As groundwater seeps into a cavity created by a bottomless housing, it displaces water through an inlet and into a waterproof sealed upper compartment, at which point, the water is collected by a collection bag, which is contained in a bag chamber. A magnet on the collection bag approaches a proximity switch as the collection bag fills, and eventually enables the proximity switch to activate a control circuit. The control circuit then rotates a three-way valve from the collection path to a discharge path, enables a data logger to record the time, and enables a pump, which discharges the water from the collection bag, through the three-way valve and pump, and into the sea. As the collection bag empties, the magnet leaves the proximity of the proximity switch, and the control circuit turns off the pump, resets the valve to provide a collection path, and restarts the collection cycle.
HANARO core channel flow-rate measurement
Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1996-06-01
HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.
The directed flow maximum near $c_{s} = 0$
Brachmann, J; Stöcker, H; Greiner, W
2000-01-01
We investigate the excitation function of quark-gluon plasma formation and the rapidity dependence of directed in-plane flow of nucleons in the energy range of the BNL-AGS and for the $E^{kin}_{Lab}=40A$~GeV Pb+Pb collisions performed recently at the CERN-SPS. We employ the three-fluid model with dynamical unification of kinetically equilibrated fluid elements. Within our model with first-order phase transition at high density, droplets of QGP coexisting with hadronic matter are produced already at BNL-AGS energies, $E^{kin}_{Lab}\\simeq 10A$~GeV. A substantial decrease of the isentropic velocity of sound, however, requires higher energies, $E^{kin}_{Lab}\\simeq40A$~GeV. We calculate the response of the directed in-plane momentum per nucleon, $(y)$. According to our model calculations, kinematic requirements and EoS effects work hand-in-hand at $E^{kin}_{Lab}=40A$~GeV to allow the observation of the dropping velocity of sound and of the ``slowly burning'' mixed phase via an {\\em increase} of the directed flow a...
Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion
Dias, Eduardo; Miranda, Jose
2013-11-01
As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.
Entrainment and maximum vapour flow rate of trays
Van Sinderen, AH; Wijn, EF; Zanting, RWJ
This is a report on free entrainment measurements in a small (0.20 m x 0.20 in) air-water column. An adjustable weir controlled the liquid height on a test tray. Several sieve and valve trays were studied. The results were interpreted with a two- or three-layer model of the two-phase mixture on the
Exchange Rate Forecasting with Information Flow Approach
Irena Mačerinskienė; Andrius Balčiūnas
2016-01-01
The purpose of this article is to assess exchange rate forecasting possibilities with an information flow approach model. In the model the three types of information flows are distinguished: fundamental analysis information flow through particular macroeconomic determinants, microstructure approach information flow through dealer clients’ positioning data, technical analysis information flow through technical indicators. By using regression analysis it is shown that the composed model can for...
Optimum solar collector fluid flow rates
Furbo, Simon; Shah, Louise Jivan
1996-01-01
the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...... to the temperature difference between the solar collector and the bottom of the mantle - an increase of about 1% of the thermal performance is possible.Finally, calculations showed that the highest thermal performance for large SDHW systems with constant volume flow rates in the solar collector loops are achieved....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Maximum inspection rates-New turkey inspection system. 381.68 Section 381.68 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection...
Jan Werner
Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule
Werner, Jan; Griebeler, Eva Maria
2014-01-01
We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of
文建国; 崔林刚; 孟庆军; 任川川; 李金升; 吕宇涛; 张艳
2012-01-01
目的 比较尿流加速度(UFA)和最大尿流率(Qmax)诊断膀胱出口梗阻(BOO)的价值. 方法 分别选取50例前列腺增生(BPH)患者和50例健康者进行前列腺体积、UFA和Qmax测定.以P-Q图梗阻区作为参考标准,比较UFA和Qmax诊断BOO的灵敏度和特异性. 结果 BPH组UFA明显低于非BPH组(P＜0.05).以UFA＜2 ml/s2和Qmax＜10 ml/s作为诊断BOO参考标准,灵敏度和特异度分别为88％、75％与81％、63％,与参考标准P-Q图提示梗阻一致性分析Kappa值分别为0.55比0.35. 结论 UFA可以作为诊断BPH患者BOO的依据之一.%Objective To assess the value of the urine flow acceleration(UFA)versus maximum urinary flow rate (Qmax) for diagnosis of bladder outlet obstruction (BOO) in benign prostate hyperplasia (BPH).Methods A total of 50 men with BPH and 50 normal men were included in this study.Urodynamic examinations were performed in all patients according to the recommendations of the International Continence Society.Prostate volume,UFA and Qmax of each patient were analyzed and the results were compared between two groups.Results The UFA and Qmax of BPH group were much lower than that of the control group [(2.05±0.85)ml/s2 vs.(4.60±1.25)ml/s2 ; (8.50±1.05)ml/s vs.(13.00±3.35)ml/s,P＜0.05].The prostate volume in BPH group was increased compared with control group [(28.6±9.8) ml vs.(24.2±7.6)ml,P＜0.05].As diagnosis standard of UFA＜2.05 ml/s2 and Qmax＜ 10 ml/s,the sensitivity and specificity of UFA and Qmax in diagnosing BOO were (88％,75 ％)vs.(81％,63％).While compared with the result of P-Q chart,the Kappa values in correspondence analysis were 0.55 vs.0.35.The sensitivity,specificity and Kappa value of UFA in diagnosing BOO in BPHs were slightly higher than that of Qmax in comparison with the gold standard (BOO diagnosed by P-Q figure).Conclusions The UFA is a useful urodynamics parameter in diagnosing BOO of BPH.
Coriolis mass flow rate meters for low flows
Mehendale, A.
2008-01-01
The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an “enabling technology��? in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do
Coriolis mass flow rate meters for low flows
Mehendale, Aditya
2008-01-01
The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an "enabling technology" in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do no
Capital Flows, Exchange Rate Flexibility, and the Real Exchange Rate
Jean-Louis Combes; Patrick Plane; Tidiane Kinda
2011-01-01
This paper analyzes the impact of capital inflows and exchange rate flexibility on the real exchange rate in developing countries based on panel cointegration techniques. The results show that public and private flows are associated with a real exchange rate appreciation. Among private flows, portfolio investment has the highest appreciation effect-almost seven times that of foreign direct investment or bank loans-and private transfers have the lowest effect. Using a de facto measure of excha...
The Distribution of Maximum Flow with Application to Multi-State Reliability Systems.
1985-11-01
in 0( lVI • JEJ )time, using the max-flow algorithm of Itai and Shiloach (1979). Frank and Frisch (1971) provide a comprehensive discussion of the...maximum flow; for example, taking 0( Ivi log IVI time per replication for a planar network ( Itai and Shiloach 1979). With regard to computing the cell...Edition 8, Houston, Texas. 11. Itai , A. and Y. Shiloach (1979). Maximum flow in planar networks, SIAM J. Comput., 8, 135-150. 12. Kulkarni, V.G. and V. G
Flow rate measurements by means of tracers
Mosetti, F. (Trieste Univ. (Italy). Istituto di Geodesia e Geofisica)
The application of some sources of diffusion for the flow rate measurement of water or other fluids is here presented. The laminar instantaneous source, obtained in practice with easy devices, is very useful in river or channel measurements. The analysis of the measurements could supply the flow rate and the presence of water losses or recharges. The section of the channel can also be determined by such a method.
Importance of maximum snow accumulation for summer low flows in humid catchments
Jenicek, M.; Seibert, J.; Zappa, M.; Staudinger, M.; Jonas, T.
2015-07-01
The expected increase of air temperature will increase the ratio of liquid to solid precipitation during winter and, thus decrease the amount of snow, especially in mid-elevation mountain ranges across Europe. The decrease of snow will affect groundwater recharge during spring and might cause low streamflow values in the subsequent summer period. To evaluate these potential climate change impacts, we investigated the effects of inter-annual variations in snow accumulation on summer low flow and addressed the following research questions: (1) how important is snow for summer low flows and how long is the "memory effect" in catchments with different elevations? (2) How sensitive are summer low flows to any change of winter snowpack? To find suitable predictors of summer low flow we used long time series from 14 alpine and pre-alpine catchments in Switzerland and computed different variables quantifying winter and spring snow conditions. We assessed the sensitivity of individual catchments to the change of maximum snow water equivalent (SWEmax) using the non-parametric Theil-Sen approach as well as an elasticity index. In general, the results indicated that maximum winter snow accumulation influenced summer low flow, but could only partly explain the observed inter-annual variations. One other important factor was the precipitation between maximum snow accumulation and summer low flow. When only the years with below average precipitation amounts during this period were considered, the importance of snow accumulation as a predictor of low flows increased. The slope of the regression between SWEmax and summer low flow and the elasticity index both increased with increasing mean catchment elevation. This indicated a higher sensitivity of summer low flow to snow accumulation in alpine catchments compared to lower elevation catchments.
Daniel L. Rabosky
2006-01-01
Full Text Available Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximum likelihood methods based on the birth-death process to test whether diversification rates have changed over time. LASER contrasts the likelihood of phylogenetic data under models where diversification rates have changed over time to alternative models where rates have remained constant over time. Major strengths of the package include the ability to detect temporal increases in diversification rates and the inference of diversification parameters under multiple rate-variable models of diversification. The program and associated documentation are freely available from the R package archive at http://cran.r-project.org.
13 CFR 107.845 - Maximum rate of amortization on Loans and Debt Securities.
2010-01-01
... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maximum rate of amortization on... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Financing of Small Businesses by Licensees Structuring... rate of amortization on Loans and Debt Securities. The principal of any Loan (or the loan portion...
Applying the maximum information principle to cell transmission model of tra-ffic flow
刘喜敏; 卢守峰
2013-01-01
This paper integrates the maximum information principle with the Cell Transmission Model (CTM) to formulate the velo-city distribution evolution of vehicle traffic flow. The proposed discrete traffic kinetic model uses the cell transmission model to cal-culate the macroscopic variables of the vehicle transmission, and the maximum information principle to examine the velocity distri-bution in each cell. The velocity distribution based on maximum information principle is solved by the Lagrange multiplier method. The advantage of the proposed model is that it can simultaneously calculate the hydrodynamic variables and velocity distribution at the cell level. An example shows how the proposed model works. The proposed model is a hybrid traffic simulation model, which can be used to understand the self-organization phenomena in traffic flows and predict the traffic evolution.
Reserve, flowing electrolyte, high rate lithium battery
Puskar, M.; Harris, P.
Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.
Negative Policy Rates, Banking Flows and Exchange Rates
Khayat, Anwar
2015-01-01
Setting negative nominal rates is one of the unconventional policies implemented after the Great Recession to overcome the Zero Lower Bound. Using data from the euro area and Denmark, I assess the impact of introducing a negative interest rate on reserves. I find that it did put a depreciation pressure on the currency due to a reversal in banking flows. This effect is not only caused by policy differentials, but also by a distinct impact of going into negative territory from lowering interest...
Research on configuration of railway self-equipped tanker based on minimum cost maximum flow model
Yang, Yuefang; Gan, Chunhui; Shen, Tingting
2017-05-01
In the study of the configuration of the tanker of chemical logistics park, the minimum cost maximum flow model is adopted. Firstly, the transport capacity of the park loading and unloading area and the transportation demand of the dangerous goods are taken as the constraint condition of the model; then the transport arc capacity, the transport arc flow and the transport arc edge weight are determined in the transportation network diagram; finally, the software calculations. The calculation results show that the configuration issue of the tankers can be effectively solved by the minimum cost maximum flow model, which has theoretical and practical application value for tanker management of railway transportation of dangerous goods in the chemical logistics park.
The Scaling of Maximum and Basal Metabolic Rates of Mammals and Birds
Barbosa, L A; Silva, J K L; Barbosa, Lauro A.; Garcia, Guilherme J. M.; Silva, Jafferson K. L. da
2004-01-01
Allometric scaling is one of the most pervasive laws in biology. Its origin, however, is still a matter of dispute. Recent studies have established that maximum metabolic rate scales with an exponent larger than that found for basal metabolism. This unpredicted result sets a challenge that can decide which of the concurrent hypotheses is the correct theory. Here we show that both scaling laws can be deduced from a single network model. Besides the 3/4-law for basal metabolism, the model predicts that maximum metabolic rate scales as $M^{6/7}$, maximum heart rate as $M^{-1/7}$, and muscular capillary density as $M^{-1/7}$, in agreement with data.
Responses of prawn to water flow rates
Vascotto, G.L.; Nilas, P.U.
1987-05-28
An aquarium study to determine the responses of postlarval macrobrachium rosenbergii to varying water changes was carried out. Six week old postlarvae were raised in glass aquaria receiving 0, 1.15, 7.2 and 14.4 water changes per day over a 12 week period. The treatments had significant influences on survival, biomass, and average size of the animals. Maximum survival and highest biomass were found in the 1.15 water turnover treatment; however, this treatment also produced the smallest average size animals. Early high mortalities were attributed to poor growing conditions in the high and low flow treatments, while later mortality appeared to be biomass dependent.
Morrison, Glenn; Shaughnessy, Richard; Shu, Shi
2011-02-01
A Monte Carlo analysis of indoor ozone levels in four cities was applied to provide guidance to regulatory agencies on setting maximum ozone emission rates from consumer appliances. Measured distributions of air exchange rates, ozone decay rates and outdoor ozone levels at monitoring stations were combined with a steady-state indoor air quality model resulting in emission rate distributions (mg h -1) as a function of % of building hours protected from exceeding a target maximum indoor concentration of 20 ppb. Whole-year, summer and winter results for Elizabeth, NJ, Houston, TX, Windsor, ON, and Los Angeles, CA exhibited strong regional differences, primarily due to differences in air exchange rates. Infiltration of ambient ozone at higher average air exchange rates significantly reduces allowable emission rates, even though air exchange also dilutes emissions from appliances. For Houston, TX and Windsor, ON, which have lower average residential air exchange rates, emission rates ranged from -1.1 to 2.3 mg h -1 for scenarios that protect 80% or more of building hours from experiencing ozone concentrations greater than 20 ppb in summer. For Los Angeles, CA and Elizabeth, NJ, with higher air exchange rates, only negative emission rates were allowable to provide the same level of protection. For the 80th percentile residence, we estimate that an 8-h average limit concentration of 20 ppb would be exceeded, even in the absence of an indoor ozone source, 40 or more days per year in any of the cities analyzed. The negative emission rates emerging from the analysis suggest that only a zero-emission rate standard is prudent for Los Angeles, Elizabeth, NJ and other regions with higher summertime air exchange rates. For regions such as Houston with lower summertime air exchange rates, the higher emission rates would likely increase occupant exposure to the undesirable products of ozone reactions, thus reinforcing the need for zero-emission rate standard.
A STATISTICAL AND HYDROLOGICAL ANALYSIS OF THE MAXIMUM FLOW IN THE TERPEZITA RIVER DRAINAGE BASIN
GABRIELA ADINA MOROŞANU
2015-03-01
Full Text Available A statistical and hydrological analysis of the maximum flow in the Terpezița river drainage basin. Starting from the idea that hydrological and hydrometeorological parameters have a statistical existence over time and a spatial distribution that can be represented by an interaction between the mathematical and geographical elements, the present paper aims to analyze the relationship between maximum flows, hourly rains, flow coefficients and concentration times of the Terpezita Basin. This is the second-largest sub-basin (182km2 in the basin of Desnatui, which is located in the SW of Romania and is a first degree tributary of the Danube. The assessment of the concentration time, which involves the sizes of the liquid flow and specific liquid flow, was attained according to the physical and geographical characteristics of the basin. Thus taking into account the homogenous character from this point of view and the existence of statistically established hydrological and pluviometric background, we could outline the behavior of Terpezița River Basin during the extreme hydro-meteorological events. The documentation was completed through an exemplification of previously calculated results, using observations and measurements of the river bed in the vicinity of Terpezita village and processing the values that resulted from the hydro-graph of the 2005 flash-flood.
A route-based decomposition for the Multi-Commodity k-splittable Maximum Flow Problem
Gamst, Mette
2012-01-01
The Multi-Commodity k-splittable Maximum Flow Problem routes flow through a capacitated graph such that each commodity uses at most k paths and such that the total amount of routedflow is maximized. This paper proposes a branch-and-price algorithm based on a route-based Dantzig-Wolfe decomposition......, where a route consists of up to k paths. Computational results show that the new algorithm has best performance on seven benchmark instances and is capable of solving two previously unsolved instances....
Wu, Yating; Kuang, Bin; Wang, Tao; Zhang, Qianwu; Wang, Min
2015-12-01
This paper presents a minimum cost maximum flow (MCMF) based upstream bandwidth allocation algorithm, which supports differentiated QoS for orthogonal frequency division multiple access passive optical networks (OFDMA-PONs). We define a utility function as the metric to characterize the satisfaction degree of an ONU on the obtained bandwidth. The bandwidth allocation problem is then formulated as maximizing the sum of the weighted total utility functions of all ONUs. By constructing a flow network graph, we obtain the optimized bandwidth allocation using the MCMF algorithm. Simulation results show that the proposed scheme improves the performance in terms of mean packet delay, packet loss ratio and throughput.
17 CFR 148.7 - Rulemaking on maximum rates for attorney fees.
2010-04-01
... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Rulemaking on maximum rates for attorney fees. 148.7 Section 148.7 Commodity and Securities Exchanges COMMODITY FUTURES TRADING... increase in the cost of living or by special circumstances (such as limited availability of...
The 220-age equation does not predict maximum heart rate in children and adolescents
Verschuren, Olaf; Maltais, Desiree B.; Takken, Tim
Our primary purpose was to provide maximum heart rate (HR(max)) values for ambulatory children with cerebral palsy (CP). The secondary purpose was to determine the effects of age, sex, ambulatory ability, height, and weight on HR(max). In 362 ambulatory children and adolescents with CP (213 males
The 220-age equation does not predict maximum heart rate in children and adolescents
Verschuren, Olaf; Maltais, Desiree B.; Takken, Tim
2011-01-01
Our primary purpose was to provide maximum heart rate (HR(max)) values for ambulatory children with cerebral palsy (CP). The secondary purpose was to determine the effects of age, sex, ambulatory ability, height, and weight on HR(max). In 362 ambulatory children and adolescents with CP (213 males an
Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability
Dell, Z. R.; Pandian, A.; Bhowmick, A. K.; Swisher, N. C.; Stanic, M.; Stellingwerf, R. F.; Abarzhi, S. I.
2017-09-01
We focus on the classical problem of the dependence on the initial conditions of the initial growth-rate of strong shock driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics simulations to describe the simulation data with statistical confidence in a broad parameter regime. For the given values of the shock strength, fluid density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of the RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data.
Electromechanically Actuated Valve for Controlling Flow Rate
Patterson, Paul
2007-01-01
A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces
Effects of electric field on the maximum electro-spinning rate of silk fibroin solutions.
Park, Bo Kyung; Um, In Chul
2017-02-01
Owing to the excellent cyto-compatibility of silk fibroin (SF) and the simple fabrication of nano-fibrous webs, electro-spun SF webs have attracted much research attention in numerous biomedical fields. Because the production rate of electro-spun webs is strongly dependent on the electro-spinning rate used, the electro-spinning rate becomes more important. In the present study, to improve the electro-spinning rate of SF solutions, various electric fields were applied during electro-spinning of SF, and its effects on the maximum electro-spinning rate of SF solution as well as diameters and molecular conformations of the electro-spun SF fibers were examined. As the electric field was increased, the maximum electro-spinning rate of the SF solution also increased. The maximum electro-spinning rate of a 13% SF solution could be increased 12×by increasing the electric field from 0.5kV/cm (0.25mL/h) to 2.5kV/cm (3.0mL/h). The dependence of the fiber diameter on the present electric field was not significant when using less-concentrated SF solutions (7-9% SF). On the other hand, at higher SF concentrations the electric field had a greater effect on the resulting fiber diameter. The electric field had a minimal effect of the molecular conformation and crystallinity index of the electro-spun SF webs. Copyright © 2016 Elsevier B.V. All rights reserved.
Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei
2016-07-30
In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network's performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks.
On the rate of convergence of the maximum likelihood estimator of a k-monotone density
WELLNER; Jon; A
2009-01-01
Bounds for the bracketing entropy of the classes of bounded k-monotone functions on [0,A] are obtained under both the Hellinger distance and the Lp(Q) distance,where 1 p < ∞ and Q is a probability measure on [0,A].The result is then applied to obtain the rate of convergence of the maximum likelihood estimator of a k-monotone density.
On the rate of convergence of the maximum likelihood estimator of a K-monotone density
GAO FuChang; WELLNER Jon A
2009-01-01
Bounds for the bracketing entropy of the classes of bounded K-monotone functions on [0, A] are obtained under both the Hellinger distance and the LP(Q) distance, where 1 ≤ p < ∞ and Q is a probability measure on [0, A]. The result is then applied to obtain the rate of convergence of the maximum likelihood estimator of a K-monotone density.
Maximum Likelihood Estimation of Monocular Optical Flow Field for Mobile Robot Ego-motion
Huajun Liu
2016-01-01
Full Text Available This paper presents an optimized scheme of monocular ego-motion estimation to provide location and pose information for mobile robots with one fixed camera. First, a multi-scale hyper-complex wavelet phase-derived optical flow is applied to estimate micro motion of image blocks. Optical flow computation overcomes the difficulties of unreliable feature selection and feature matching of outdoor scenes; at the same time, the multi-scale strategy overcomes the problem of road surface self-similarity and local occlusions. Secondly, a support probability of flow vector is defined to evaluate the validity of the candidate image motions, and a Maximum Likelihood Estimation (MLE optical flow model is constructed based not only on image motion residuals but also their distribution of inliers and outliers, together with their support probabilities, to evaluate a given transform. This yields an optimized estimation of inlier parts of optical flow. Thirdly, a sampling and consensus strategy is designed to estimate the ego-motion parameters. Our model and algorithms are tested on real datasets collected from an intelligent vehicle. The experimental results demonstrate the estimated ego-motion parameters closely follow the GPS/INS ground truth in complex outdoor road scenarios.
Innovative model-based flow rate optimization for vanadium redox flow batteries
König, S.; Suriyah, M. R.; Leibfried, T.
2016-11-01
In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.
Wall Shear Rates in Taylor Vortex Flow
V. Sobolik
2011-01-01
Full Text Available Wall shear rate and its axial and azimuthal components were evaluated in stable Taylor vortices. The measurements were carried out in a broad interval of Taylor numbers (52-725 and several gap width (R1/R2 = 0.5 – 0.8 by two three-segment electrodiffusion probes and three single probes flush mounted in the wall of the outer fixed cylinder. The axial distribution of wall shear rate components was obtained by sweeping the vortices along the probes using a slow axial flow. The experimental results were verified by CFD simulations. The knowledge of local wall shear rates and its fluctuations is of primordial interest for industrial applications like tangential filtration, membrane reactors and bioreactors containing shear sensitive cells.
Droplet entrainment rate in gas-liquid annular flow
Sawant, P. [Energy Research Inc., Rockville, Maryland (United States); Liu, Y.; Ishii, M. [Purdue Univ., West Lafayette, Indiana (United States); Mori, M. [Tokyo Electric Power Co., Inc., Yokohama (Japan); Chen, S. [Purdue Univ., West Lafayette, Indiana (United States)
2011-07-01
Droplet entrainment and deposition are the two most important physical phenomena in the gas-liquid annular two-phase flow. Modeling of these phenomena is essential for the estimation of dryout margins in the Light Water Reactors (LWRs) and the boilers. In this study, gas-liquid annular two-phase flow experiments are performed in a vertical round tube test section under adiabatic conditions. Air-water and organic fluid Freon-113 are used as the test fluids. The experiments covered a wide range of pressure and flow conditions. Liquid film extraction technique was used for the measurement of droplet entrainment and deposition rates. Additionally, the thickness of liquid film was measured in the air-water experiments using the ring type conductance probes. In this paper, the experimental data on entrainment rate is used to analyze the currently available correlations in the literature. The analysis showed that the existing correlations failed to predict the data at high gas velocity conditions. At high gas velocity, the experimental entrainment rate approaches a maximum limiting value; however, the correlations predicted continuously increasing entrainment rate as the gas velocity increases. (author)
An Exact Solution Approach for the Maximum Multicommodity K-splittable Flow Problem
Gamst, Mette; Petersen, Bjørn
2009-01-01
This talk concerns the NP-hard Maximum Multicommodity k-splittable Flow Problem (MMCkFP) in which each commodity may use at most k paths between its origin and its destination. A new branch-and-cut-and-price algorithm is presented. The master problem is a two-index formulation of the MMCk......FP and the pricing problem is the shortest path problem with forbidden paths. A new branching strategy forcing and forbidding the use of certain paths is developed. The new branch-and-cut-and-price algorithm is computationally evaluated and compared to results from the literature. The new algorithm shows very...
A real-time maximum-likelihood heart-rate estimator for wearable textile sensors.
Cheng, Mu-Huo; Chen, Li-Chung; Hung, Ying-Che; Yang, Chang Ming
2008-01-01
This paper presents a real-time maximum-likelihood heart-rate estimator for ECG data measured via wearable textile sensors. The ECG signals measured from wearable dry electrodes are notorious for its susceptibility to interference from the respiration or the motion of wearing person such that the signal quality may degrade dramatically. To overcome these obstacles, in the proposed heart-rate estimator we first employ the subspace approach to remove the wandering baseline, then use a simple nonlinear absolute operation to reduce the high-frequency noise contamination, and finally apply the maximum likelihood estimation technique for estimating the interval of R-R peaks. A parameter derived from the byproduct of maximum likelihood estimation is also proposed as an indicator for signal quality. To achieve the goal of real-time, we develop a simple adaptive algorithm from the numerical power method to realize the subspace filter and apply the fast-Fourier transform (FFT) technique for realization of the correlation technique such that the whole estimator can be implemented in an FPGA system. Experiments are performed to demonstrate the viability of the proposed system.
Seymour, Roger S
2010-09-01
Effect of size of inflorescences, flowers and cones on maximum rate of heat production is analysed allometrically in 23 species of thermogenic plants having diverse structures and ranging between 1.8 and 600 g. Total respiration rate (, micromol s(-1)) varies with spadix mass (M, g) according to in 15 species of Araceae. Thermal conductance (C, mW degrees C(-1)) for spadices scales according to C = 18.5M(0.73). Mass does not significantly affect the difference between floral and air temperature. Aroids with exposed appendices with high surface area have high thermal conductance, consistent with the need to vaporize attractive scents. True flowers have significantly lower heat production and thermal conductance, because closed petals retain heat that benefits resident insects. The florets on aroid spadices, either within a floral chamber or spathe, have intermediate thermal conductance, consistent with mixed roles. Mass-specific rates of respiration are variable between species, but reach 900 nmol s(-1) g(-1) in aroid male florets, exceeding rates of all other plants and even most animals. Maximum mass-specific respiration appears to be limited by oxygen delivery through individual cells. Reducing mass-specific respiration may be one selective influence on the evolution of large size of thermogenic flowers.
Increasing granular flow rate with obstructions
Alan Murray
2016-03-01
Full Text Available We describe a simple experiment involving spheres rolling down an inclined plane towards a bottleneck and through a gap. Results of the experiment indicate that flow rate can be increased by placing an obstruction at optimal positions near the bottleneck. We use the experiment to develop a computer simulation using the PhysX physics engine. Simulations confirm the experimental results and we state several considerations necessary to obtain a model that agrees well with experiment. We demonstrate that the model exhibits clogging, intermittent and continuous flow, and that it can be used as a tool for further investigations in granular flow. Received: 22 November 2015, Accepted: 19 February 2016; Edited by: L. A. Pugnaloni; Reviewed by: C. M. Carlevaro, Instituto de Física de Líquidos y Sistemas Biológicos, La Plata, Argentina; DOI: http://dx.doi.org/10.4279/PIP.080003 Cite as: A Murray, F Alonso-Marroquin, Papers in Physics 8, 080003 (2016
Solids flow rate measurement in dense slurries
Porges, K.G.; Doss, E.D.
1993-09-01
Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.
ADRIANA MIHAELA PORCUȚAN
2016-11-01
Full Text Available Suceava river basin gets its tributaries from the eastern slopes of the northern group of the Eastern Romanian Carpathians, situated under the influence of Baltic air masses, which bring rainfalls and cold weather, felt into the water flow regime of rivers in the region studied. This water flow regime varies from month to month, with the maximum flow having the most important role in the restoration of underground water reserves. This study examines the temporal (frequency, duration and intensity and quantitative (volume and flow parameters of periods with maximum flow, at monthly and seasonal level, revealing the differences in the water flow regime induced by the relief’s morphometric particularities (altitude, fragmentation degree, exhibition. For the evaluation of mentioned parameters was appealed to the TML 2.1 extension from the HydroOffice software package, which uses quantitative thresholds, depending on which it is set the appearance, and disappearance of periods with maximum flow.
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Mandsberg, Lotte Frigaard
2008-01-01
that best describes data is a model taking into account the full covariance structure. An inference study is made in order to determine whether the growth rate of the five bacteria strains is the same. After applying a likelihood-ratio test to models with a full covariance structure, it is concluded...... that the specific growth rate is the same for all bacteria strains. This study highlights the importance of carrying out an explorative examination of residuals in order to make a correct parametrization of a model including the covariance structure. The ML method is shown to be a strong tool as it enables......The specific growth rate for P. aeruginosa and four mutator strains mutT, mutY, mutM and mutY–mutM is estimated by a suggested Maximum Likelihood, ML, method which takes the autocorrelation of the observation into account. For each bacteria strain, six wells of optical density, OD, measurements...
Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum
Grachev, Andrey A; Di Sabatino, Silvana; Fernando, Harindra J S; Pardyjak, Eric R; Fairall, Christopher W
2015-01-01
Measurements of small-scale turbulence made over the complex-terrain atmospheric boundary layer during the MATERHORN Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels at four towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The multi-level observations made during a 30-day long MATERHORN-Fall field campaign in September-October 2012 allowed studying of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence and their variations in katabatic winds. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along the slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed...
Thermodynamics, maximum power, and the dynamics of preferential river flow structures on continents
A. Kleidon
2012-06-01
Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.
A. Kleidon
2013-01-01
Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.
Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan
2015-10-01
In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.
Determination of zero-coupon and spot rates from treasury data by maximum entropy methods
Gzyl, Henryk; Mayoral, Silvia
2016-08-01
An interesting and important inverse problem in finance consists of the determination of spot rates or prices of the zero coupon bonds, when the only information available consists of the prices of a few coupon bonds. A variety of methods have been proposed to deal with this problem. Here we present variants of a non-parametric method to treat with such problems, which neither imposes an analytic form on the rates or bond prices, nor imposes a model for the (random) evolution of the yields. The procedure consists of transforming the problem of the determination of the prices of the zero coupon bonds into a linear inverse problem with convex constraints, and then applying the method of maximum entropy in the mean. This method is flexible enough to provide a possible solution to a mispricing problem.
Michael D. Hare
2014-09-01
Full Text Available A field trial in northeast Thailand during 2011–2013 compared the establishment and growth of 2 Panicum maximum cultivars, Mombasa and Tanzania, sown at seeding rates of 2, 4, 6, 8, 10 and 12 kg/ha. In the first 3 months of establishment, higher sowing rates produced significantly more DM than sowing at 2 kg/ha, but thereafter there were no significant differences in total DM production between sowing rates of 2–12 kg/ha. Lower sowing rates produced fewer tillers/m2 than higher sowing rates but these fewer tillers were significantly heavier than the more numerous smaller tillers produced by higher sowing rates. Mombasa produced 23% more DM than Tanzania in successive wet seasons (7,060 vs. 5,712 kg DM/ha from 16 June to 1 November 2011; and 16,433 vs. 13,350 kg DM/ha from 25 April to 24 October 2012. Both cultivars produced similar DM yields in the dry seasons (November–April, averaging 2,000 kg DM/ha in the first dry season and 1,750 kg DM/ha in the second dry season. Mombasa produced taller tillers (104 vs. 82 cm, longer leaves (60 vs. 47 cm, wider leaves (2 vs. 1.8 cm and heavier tillers (1 vs. 0.7 g than Tanzania but fewer tillers/m2 (260 vs. 304. If farmers improve soil preparation and place more emphasis on sowing techniques, there is potential to dramatically reduce seed costs.Keywords: Guinea grass, tillering, forage production, seeding rates, Thailand.DOI: 10.17138/TGFT(2246-253
Evangelia Karagianni
2016-04-01
Full Text Available By utilizing meteorological data such as relative humidity, temperature, pressure, rain rate and precipitation duration at eight (8 stations in Aegean Archipelagos from six recent years (2007 – 2012, the effect of the weather on Electromagnetic wave propagation is studied. The EM wave propagation characteristics depend on atmospheric refractivity and consequently on Rain-Rate which vary in time and space randomly. Therefore the statistics of radio refractivity, Rain-Rate and related propagation effects are of main interest. This work investigates the maximum value of rain rate in monthly rainfall records, for a 5 min interval comparing it with different values of integration time as well as different percentages of time. The main goal is to determine the attenuation level for microwave links based on local rainfall data for various sites in Greece (L-zone, namely Aegean Archipelagos, with a view on improved accuracy as compared with more generic zone data available. A measurement of rain attenuation for a link in the S-band has been carried out and the data compared with prediction based on the standard ITU-R method.
Effects of neuropeptide Y on regulation of blood flow rate in canine myocardium
Svendsen, Jesper Hastrup; Sheikh, S P; Jørgensen, J
1990-01-01
The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY......+. In contrast, intracoronary NPY (0.01-10 micrograms) induced a considerable degree of vasoconstriction; the reduction of blood flow rate was dose related, with a maximum reduction to 52% of control values. The effect of intracoronary NPY (1 microgram) on maximally relaxed arterioles elicited by 30 s...... of ischemia was studied in separate experiments during reactive hyperemia. NPY induced a decrease in maximum blood flow during reactive hyperemia (166.6 vs. 214.6% of preocclusive blood flow rate, mean values; P = 0.05), an increase in the cumulative excess blood flow (61.0 vs. 35.3 ml/100 g; P = 0...
Kalafut, Bennett; Visscher, Koen
2008-10-01
Optical tweezers experiments allow us to probe the role of force and mechanical work in a variety of biochemical processes. However, observable states do not usually correspond in a one-to-one fashion with the internal state of an enzyme or enzyme-substrate complex. Different kinetic pathways yield different distributions for the dwells in the observable states. Furthermore, the dwell-time distribution will be dependent upon force, and upon where in the biochemical pathway force acts. I will present a maximum-likelihood method for identifying rate constants and the locations of force-dependent transitions in transcription initiation by T7 RNA Polymerase. This method is generalizable to systems with more complicated kinetic pathways in which there are two observable states (e.g. bound and unbound) and an irreversible final transition.
Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable bit error rates
Ranade, K S; Ranade, Kedar S.; Alber, Gernot
2005-01-01
The general conditions are discussed which quantum state purification protocols have to fulfill in order to be capable of purifying Bell-diagonal qubit-pair states, provided they consist of steps that map Bell-diagonal states to Bell-diagonal states and they finally apply a suitably chosen Calderbank-Shor-Steane code to the outcome of such steps. As a main result a necessary and a sufficient condition on asymptotic correctability are presented, which relate this problem to the magnitude of a characteristic exponent governing the relation between bit and phase errors under the purification steps. These conditions allow a straightforward determination of maximum tolerable bit error rates of quantum key distribution protocols whose security analysis can be reduced to the purification of Bell-diagonal states.
Phylogenetic prediction of the maximum per capita rate of population growth.
Fagan, William F; Pearson, Yanthe E; Larsen, Elise A; Lynch, Heather J; Turner, Jessica B; Staver, Hilary; Noble, Andrew E; Bewick, Sharon; Goldberg, Emma E
2013-07-22
The maximum per capita rate of population growth, r, is a central measure of population biology. However, researchers can only directly calculate r when adequate time series, life tables and similar datasets are available. We instead view r as an evolvable, synthetic life-history trait and use comparative phylogenetic approaches to predict r for poorly known species. Combining molecular phylogenies, life-history trait data and stochastic macroevolutionary models, we predicted r for mammals of the Caniformia and Cervidae. Cross-validation analyses demonstrated that, even with sparse life-history data, comparative methods estimated r well and outperformed models based on body mass. Values of r predicted via comparative methods were in strong rank agreement with observed values and reduced mean prediction errors by approximately 68 per cent compared with two null models. We demonstrate the utility of our method by estimating r for 102 extant species in these mammal groups with unknown life-history traits.
Statistical properties of the maximum Lyapunov exponent calculated via the divergence rate method.
Franchi, Matteo; Ricci, Leonardo
2014-12-01
The embedding of a time series provides a basic tool to analyze dynamical properties of the underlying chaotic system. To this purpose, the choice of the embedding dimension and lag is crucial. Although several methods have been devised to tackle the issue of the optimal setting of these parameters, a conclusive criterion to make the most appropriate choice is still lacking. An accepted procedure to rank different embedding methods relies on the evaluation of the maximum Lyapunov exponent (MLE) out of embedded time series that are generated by chaotic systems with explicit analytic representation. The MLE is evaluated as the local divergence rate of nearby trajectories. Given a system, embedding methods are ranked according to how close such MLE values are to the true MLE. This is provided by the so-called standard method in a way that exploits the mathematical description of the system and does not require embedding. In this paper we study the dependence of the finite-time MLE evaluated via the divergence rate method on the embedding dimension and lag in the case of time series generated by four systems that are widely used as references in the scientific literature. We develop a completely automatic algorithm that provides the divergence rate and its statistical uncertainty. We show that the uncertainty can provide useful information about the optimal choice of the embedding parameters. In addition, our approach allows us to find which systems provide suitable benchmarks for the comparison and ranking of different embedding methods.
Nezhel'skaya, L. A.
2016-09-01
A flow of physical events (photons, electrons, and other elementary particles) is studied. One of the mathematical models of such flows is the modulated MAP flow of events circulating under conditions of unextendable dead time period. It is assumed that the dead time period is an unknown fixed value. The problem of estimation of the dead time period from observations of arrival times of events is solved by the method of maximum likelihood.
Construction of the flow rate nomogram using polynomial regression.
Hosmane, B; Maurath, C; McConnell, M
1993-04-01
The urinary flow rates of normal individuals depend on the initial bladder volume in a non-linear fashion (J. Urol. 109 (1973) 874). A flow rate nomogram was developed by Siroky, Olsson and Krane, (J. Vol. 122 (1979) 665), taking the non-linear relationship into account, as an aid in the interpretation of urinary flow rate data. The use of a flow rate nomogram is to differentiate normal from obstructed individuals and is useful in the post operative follow-up of urinary outflow obstruction. It has been shown (J. Urol. 123 (1980) 123) that the flow rate nomogram is an objective measure of the efficacy of medical or surgical therapy. Instead of manually reading nomogram values from the flow rate nomogram, an algorithm is developed using polynomial regression to fit the flow rate nomograms and hence compute nomogram values directly from the fitted nomogram equations.
FlowMax: A Computational Tool for Maximum Likelihood Deconvolution of CFSE Time Courses.
Maxim Nikolaievich Shokhirev
Full Text Available The immune response is a concerted dynamic multi-cellular process. Upon infection, the dynamics of lymphocyte populations are an aggregate of molecular processes that determine the activation, division, and longevity of individual cells. The timing of these single-cell processes is remarkably widely distributed with some cells undergoing their third division while others undergo their first. High cell-to-cell variability and technical noise pose challenges for interpreting popular dye-dilution experiments objectively. It remains an unresolved challenge to avoid under- or over-interpretation of such data when phenotyping gene-targeted mouse models or patient samples. Here we develop and characterize a computational methodology to parameterize a cell population model in the context of noisy dye-dilution data. To enable objective interpretation of model fits, our method estimates fit sensitivity and redundancy by stochastically sampling the solution landscape, calculating parameter sensitivities, and clustering to determine the maximum-likelihood solution ranges. Our methodology accounts for both technical and biological variability by using a cell fluorescence model as an adaptor during population model fitting, resulting in improved fit accuracy without the need for ad hoc objective functions. We have incorporated our methodology into an integrated phenotyping tool, FlowMax, and used it to analyze B cells from two NFκB knockout mice with distinct phenotypes; we not only confirm previously published findings at a fraction of the expended effort and cost, but reveal a novel phenotype of nfkb1/p105/50 in limiting the proliferative capacity of B cells following B-cell receptor stimulation. In addition to complementing experimental work, FlowMax is suitable for high throughput analysis of dye dilution studies within clinical and pharmacological screens with objective and quantitative conclusions.
Alvah C. Stahlnecker IV
2008-12-01
Full Text Available A percentage of either measured or predicted maximum heart rate is commonly used to prescribe and measure exercise intensity. However, maximum heart rate in athletes may be greater during competition or training than during laboratory exercise testing. Thus, the aim of the present investigation was to determine if endurance-trained runners train and compete at or above laboratory measures of 'maximum' heart rate. Maximum heart rates were measured utilising a treadmill graded exercise test (GXT in a laboratory setting using 10 female and 10 male National Collegiate Athletic Association (NCAA division 2 cross-country and distance event track athletes. Maximum training and competition heart rates were measured during a high-intensity interval training day (TR HR and during competition (COMP HR at an NCAA meet. TR HR (207 ± 5.0 b·min-1; means ± SEM and COMP HR (206 ± 4 b·min-1 were significantly (p < 0.05 higher than maximum heart rates obtained during the GXT (194 ± 2 b·min-1. The heart rate at the ventilatory threshold measured in the laboratory occurred at 83.3 ± 2.5% of the heart rate at VO2 max with no differences between the men and women. However, the heart rate at the ventilatory threshold measured in the laboratory was only 77% of the maximal COMP HR or TR HR. In order to optimize training-induced adaptation, training intensity for NCAA division 2 distance event runners should not be based on laboratory assessment of maximum heart rate, but instead on maximum heart rate obtained either during training or during competition
Effect of the flow composition on outflow rates from accretion discs around black holes
Kumar, Rajiv; Chattopadhyay, Indranil; Chakrabarti, Sandip K
2013-01-01
We studied the outflow behaviour from accretion discs around black holes taking into account the vertical equilibrium accretion flow model. The outflow rate is found to depend crucially on flow composition. Our approach is to study the outflow behaviour as function of inflow around black holes with an equation of state which allows flow to be thermally relativistic close to black holes and non relativistic far away from black holes. We studied shock ejection model. A pure electron positron pair flow never undergoes shock transition while presence of some baryons (common in outflows and jets) makes it possible to have standing shock waves in the flow. It can be concluded that the presence of protons is necessary for the flow to show the outflow behaviour. The outflow rate is maximum when the flow contains the proton number density which is 27% of the electron number density. We conclude that a pure electron-positron jet is unlikely to form.
Vegetative treatment systems (VTSs) are one type of control structure that has shown potential to control runoff from open feedlots. To achieve maximum performance, sheet-flow over the width of the vegetative treatment area (VTA) is required. Tools, such as maps of flow paths through the VTA, are ne...
VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.
KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.
2004-10-01
The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this
Why does steady-state magnetic reconnection have a maximum local rate of order 0.1?
Liu, Yi-Hsin; Guo, F; Daughton, W; Li, H; Cassak, P A; Shay, M A
2016-01-01
Simulations suggest collisionless steady-state magnetic reconnection of Harris-type current sheets proceeds with a rate of order 0.1, independent of dissipation mechanism. We argue this long-standing puzzle is a result of constraints at the magnetohydrodynamic (MHD) scale. We perform a scaling analysis of the reconnection rate as a function of the opening angle made by the upstream magnetic fields, finding a maximum reconnection rate close to 0.2. The predictions compare favorably to particle-in-cell simulations of relativistic electron-positron and non-relativistic electron-proton reconnection. The fact that simulated reconnection rates are close to the predicted maximum suggests reconnection proceeds near the most efficient state allowed at the MHD-scale. The rate near the maximum is relatively insensitive to the opening angle, potentially explaining why reconnection has a similar fast rate in differing models.
Direct Measurement of Planar Flow Rate in Excised Canine Larynx Model
Oren, Liran; Khosla, Sid; Dembinski, Doug; Ying, Jun; Gutmark, Ephraim
2014-01-01
Objective During phonation, skewing of the glottal flow waveform (Q) during phonation refers to a phenomenon that occurs when the flow decelerates more rapidly than it accelerates. This skewing is clinically important because it increases the glottal efficiency, which is defined by the acoustic intensity (units are sound pressure level or SPL) divided by the subglottal pressure. Current theoretical models predict that the only mechanism to cause skewing of Q involves changes in the vocal tract inertance. The purpose of the current work is to show that other factors at the vocal fold level can also cause skewing of Q and to determine if the acoustic intensity is correlated with MFDR. Study design Basic Science Methods Intraglottal geometry and velocity measurements were taken in five canine larynges at the mid-membranous plane using two-dimensional particle imaging velocimetry (PIV). The flow rate at the glottal exit was computed from the PIV measurements for low, medium, and high subglottal pressures. Results Vortices form in the superior aspect of the divergent glottis during closing. These vortices produce negative pressure that increases both the maximum value of Q and the rapid deceleration of the flow. The skewing of the flow rate is increased as the intraglottal vortices are increased by increasing the subglottal pressure. The increase in the acoustic intensity is highly correlated with certain properties of the flow rate waveform, such as maximum flow rate. Conclusion Flow skewing and the acoustic intensity can be increased by increasing the intraglottal vortices. PMID:25093928
Uncertainties in transient projections of maximum and minimum flows over the United States
Giuntoli, Ignazio; Villarini, Gabriele; Prudhomme, Christel; Hannah, David M.
2016-04-01
Global multi-model ensemble experiments provide a valuable basis for the examination of potential future changes in runoff. However, these projections suffer from uncertainties that originate from different sources at different levels in the modelling chain. We present the partitioning of uncertainty into four distinct sources of projections of decadally-averaged annual maximum (AMax) and minimum (AMin) flows over the USA. More specifically, we quantify the relative contribution of the uncertainties arising from internal variability, global impact models (GIMs), global climate models (GCMs), and representative concentration pathways (RCPs). We use a set of nine state-of-the-art GIMs driven by five CMIP5 GCMs under four RCPs from the ISI-MIP multi-model ensemble. We examine the temporal changes in the relative contribution of each source of uncertainty over the course of the 21st century. Results show that GCMs and GIMs are responsible for the majority of uncertainty over most of the study area, followed by internal variability and RCPs. Proportions vary regionally and depend on the end of the runoff spectrum (AMax, AMin) considered. In particular, for AMax, large fractions of uncertainty are attributable to GCMs throughout the century with the GIMs increasing their share especially in mountainous and cold areas. For Amin, the contribution of GIMs to uncertainty increases with time, becoming the dominant source over most of the country by the end of the 21st century. Importantly, compared to the other sources, the RCPs contribution to uncertainty is negligible generally (for AMin especially). This finding indicates that the effects of different emission scenarios are barely noticeable in hydrological impact studies, while GIMs and GCMs make up most of the amplitude of the ensemble spread (uncertainty).
Benício, Kadja; Dias, Fernando A. L.; Gualdi, Lucien P.; Aliverti, Andrea; Resqueti, Vanessa R.; Fregonezi, Guilherme A. F.
2015-01-01
OBJECTIVE: To assess the influence of diaphragmatic activation control (diaphC) on Sniff Nasal-Inspiratory Pressure (SNIP) and Maximum Relaxation Rate of inspiratory muscles (MRR) in healthy subjects. METHOD: Twenty subjects (9 male; age: 23 (SD=2.9) years; BMI: 23.8 (SD=3) kg/m2; FEV1/FVC: 0.9 (SD=0.1)] performed 5 sniff maneuvers in two different moments: with or without instruction on diaphC. Before the first maneuver, a brief explanation was given to the subjects on how to perform the sniff test. For sniff test with diaphC, subjects were instructed to perform intense diaphragm activation. The best SNIP and MRR values were used for analysis. MRR was calculated as the ratio of first derivative of pressure over time (dP/dtmax) and were normalized by dividing it by peak pressure (SNIP) from the same maneuver. RESULTS: SNIP values were significantly different in maneuvers with and without diaphC [without diaphC: -100 (SD=27.1) cmH2O/ with diaphC: -72.8 (SD=22.3) cmH2O; p<0.0001], normalized MRR values were not statistically different [without diaphC: -9.7 (SD=2.6); with diaphC: -8.9 (SD=1.5); p=0.19]. Without diaphC, 40% of the sample did not reach the appropriate sniff criteria found in the literature. CONCLUSION: Diaphragmatic control performed during SNIP test influences obtained inspiratory pressure, being lower when diaphC is performed. However, there was no influence on normalized MRR. PMID:26578254
A novel concept of measuring mass flow rates using flow induced stresses
P I Jagad; B P Puranik; A W Date
2015-08-01
Measurement of mass flow rate is important for automatic control of the mass flow rate in many industries such as semiconductor manufacturing and chemical industry (for supply of catalyst to a reaction). In the present work, a new concept for direct measurement of mass flow rates which does not depend on the volumetric flow rate measurement and obviates the need for the knowledge of density is proposed from the measurement of the flow induced stresses in a substrate. The concept is formulated by establishing the relationship between the mass flow rate and the stress in the substrate. To this end, the flow field and the stress field in the substrate are evaluated simultaneously using a numerical procedure and the necessary correlations are derived. A least squares based procedure is used to derive the mass flow rate from the correlations as a function of the stress in the substrate.
Continuum modeling of rate-dependent granular flows in SPH
Hurley, Ryan C.; Andrade, José E.
2016-09-01
We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.
Continuum modeling of rate-dependent granular flows in SPH
Hurley, Ryan C.; Andrade, José E.
2017-01-01
We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.
GROWTH RATE DISTRIBUTION OF BORAX SINGLE CRYSTALS ON THE (001 FACE UNDER VARIOUS FLOW RATES
Suharso Suharso
2010-06-01
Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution. Keywords: growth rate dispersion (GRD, borax, flow rate
A local search heuristic for the Multi-Commodity k-splittable Maximum Flow Problem
Gamst, Mette
2014-01-01
The Multi-Commodity k-splittable Maximum Flow Problem consists of maximizing the amount of flow routed through a network such that each commodity uses at most k paths and such that edge capacities are satisfied. The problem is NP -hard and has application in a.o. telecommunications. In this paper......, a local search heuristic for solving the problem is proposed. The heuristic is an iterative shortest path procedure on a reduced graph combined with a local search procedure to modify certain path flows and prioritize the different commodities. The heuristic is tested on benchmark instances from...
Effect of flow rate on diameter of electrospun nanoporous fibers
Tang Xiao-Peng
2014-01-01
Full Text Available The effect of flow rate on the diameter of the charged jet in the electrospinning process is studied theoretically. The obtained theoretical results offer in-depth physical understanding and mechanism of nanoporous fibers. It also reveals that the morphology and diameter of nanoporous microspheres can be controlled by the flow rate.
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095 Section 23.1095 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system...
Optimum poultry litter rates for maximum profit vs. yield in cotton production
Cotton lint yield responds well to increasing rates of poultry litter fertilization, but little is known of how optimum rates for yield compare with optimum rates for profit. The objectives of this study were to analyze cotton lint yield response to poultry litter application rates, determine and co...
无
2008-01-01
Quasi-likelihood nonlinear models (QLNM) include generalized linear models as a special case.Under some regularity conditions,the rate of the strong consistency of the maximum quasi-likelihood estimation (MQLE) is obtained in QLNM.In an important case,this rate is O(n-1/2(loglogn)1/2),which is just the rate of LIL of partial sums for I.I.d variables,and thus cannot be improved anymore.
COMPUTATIONAL FLOW RATE FEEDBACK AND CONTROL METHOD IN HYDRAULIC ELEVATORS
Xu Bing; Ma Jien; Lin Jianjie
2005-01-01
The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments are carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.
On the maximum rate of change in sunspot number growth and the size of the sunspot cycle
Wilson, Robert M.
1990-01-01
Statistically significant correlations exist between the size (maximum amplitude) of the sunspot cycle and, especially, the maximum value of the rate of rise during the ascending portion of the sunspot cycle, where the rate of rise is computed either as the difference in the month-to-month smoothed sunspot number values or as the 'average rate of growth' in smoothed sunspot number from sunspot minimum. Based on the observed values of these quantities (equal to 10.6 and 4.63, respectively) as of early 1989, it is inferred that cycle 22's maximum amplitude will be about 175 + or - 30 or 185 + or - 10, respectively, where the error bars represent approximately twice the average error found during cycles 10-21 from the two fits.
Impact of gas flow rate on breakdown of filamentary dielectric barrier discharges
Höft, H.; Becker, M. M.; Kettlitz, M.
2016-03-01
The influence of gas flow rate on breakdown properties and stability of pulsed dielectric barrier discharges (DBDs) in a single filament arrangement using a gas mixture of 0.1 vol. % O2 in N2 at atmospheric pressure was investigated by means of electrical and optical diagnostics, accompanied by fluid dynamics and electrostatics simulations. A higher flow rate perpendicular to the electrode symmetry axis resulted in an increased breakdown voltage and DBD current maximum, a higher discharge inception jitter, and a larger emission diameter of the discharge channel. In addition, a shift of the filament position for low gas flow rates with respect to the electrode symmetry axis was observed. These effects can be explained by the change of the residence time of charge carriers in the discharge region—i.e., the volume pre-ionization—for changed flow conditions due to the convective transport of particles out of the center of the gap.
Ferguson Marina
2011-07-01
Full Text Available Abstract Background Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS. However, mechanisms governing advanced plaque progression are not well understood. Method In vivo serial MRI data (patient follow-up were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months. Thirty-two scan pairs (baseline and follow-up scans were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen. Point-wise plaque progression was defined as the wall thickness increase (WTI at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS. FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Results Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4, and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4. Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5 and (2/26/4, respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10 and (9/13/10 for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9, corresponding to maximum and minimum
Yang, Chun; Canton, Gador; Yuan, Chun; Ferguson, Marina; Hatsukami, Thomas S; Tang, Dalin
2011-07-19
Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). However, mechanisms governing advanced plaque progression are not well understood. In vivo serial MRI data (patient follow-up) were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months). Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen). Point-wise plaque progression was defined as the wall thickness increase (WTI) at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS) on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS). FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4). Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5) and (2/26/4), respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10) and (9/13/10) for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9), corresponding to maximum and minimum flow rates. Flow shear stress
Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate
Abulon DJK
2015-02-01
Full Text Available Dina Joy K Abulon Medical Affairs, Alcon Research, Ltd, Lake Forest, CA, USA Purpose: We aimed to investigate effects of instrument settings on porcine vitreous flow rates through dual pneumatic high-speed vitrectomy probes. Methods: The CONSTELLATION® Vision System was tested with 250, 450, and 650 mmHg of vacuum using six ULTRAVIT® vitrectomy probes of each diameter (25+®, 25, 23, and 20 gauge operated from 500 cuts per minute (cpm up to 5,000 cpm. Duty cycle modes tested included biased open, 50/50, and biased closed. Flow rates were calculated by assessing the change in weight of porcine eyes during vitreous aspiration. Volumetric flow rate was measured with a computer-connected electronic scale. Results: At lower cut rates, the biased open mode produced higher flow than did the 50/50 mode, which produced higher flow than did the biased closed mode. In the biased closed and 50/50 modes, vitreous flow rates tended to increase with increasing cut rate. Vitreous flow rates in the biased open duty cycle mode remained relatively constant across cut rates. Conclusion: Vitreous flow rates through dual pneumatic vitrectomy probes could be manipulated by changing the duty cycle modes on the vitrectomy system. Differences in duty cycle behavior suggest that high-speed cut rates of 5,000 cpm may optimize vitreous aspiration. Keywords: enhanced 25-gauge vitrectomy, 25-gauge vitrectomy, 20-gauge vitrectomy, 23-gauge vitrectomy, aspiration, Constellation Vision System
R. van Mastrigt (Ron)
1990-01-01
textabstractThe contractility of the urinary bladder can be adequately described in terms of the parameters P0 (isometric pressure) and Vmax (maximum contraction velocity). In about 12% of urodynamic evaluations of patients these clinically relevant parameters can be calculated from pressure and flo
Studies on pressure losses and flow rate optimization in vanadium redox flow battery
Tang, Ao; Bao, Jie; Skyllas-Kazacos, Maria
2014-02-01
Premature voltage cut-off in the operation of the vanadium redox flow battery is largely associated with the rise in concentration overpotential at high state-of-charge (SOC) or state-of-discharge (SOD). The use of high constant volumetric flow rate will reduce concentration overpotential, although potentially at the cost of consuming excessive pumping energy which in turn lowers system efficiency. On the other hand, any improper reduction in flow rate will also limit the operating SOC and lead to deterioration in battery efficiency. Pressure drop losses are further exacerbated by the need to reduce shunt currents in flow battery stacks that requires the use of long, narrow channels and manifolds. In this paper, the concentration overpotential is modelled as a function of flow rate in an effort to determine an appropriate variable flow rate that can yield high system efficiency, along with the analysis of pressure losses and total pumping energy. Simulation results for a 40-cell stack under pre-set voltage cut-off limits have shown that variable flow rates are superior to constant flow rates for the given system design and the use of a flow factor of 7.5 with respect to the theoretical flow rate can reach overall high system efficiencies for different charge-discharge operations.
Maximum Acceptable Vibrato Excursion as a Function of Vibrato Rate in Musicians and Non-musicians
Vatti, Marianna; Santurette, Sébastien; Pontoppidan, Niels H.
and, in most listeners, exhibited a peak at medium vibrato rates (5–7 Hz). Large across-subject variability was observed, and no significant effect of musical experience was found. Overall, most listeners were not solely sensitive to the vibrato excursion and there was a listener-dependent rate...
Maximum Acceptable Vibrato Excursion as a Function of Vibrato Rate in Musicians and Non-musicians
Vatti, Marianna; Santurette, Sébastien; Pontoppidan, Niels H.
2014-01-01
and, in most listeners, exhibited a peak at medium vibrato rates (5–7 Hz). Large across-subject variability was observed, and no significant effect of musical experience was found. Overall, most listeners were not solely sensitive to the vibrato excursion and there was a listener-dependent rate...
7 CFR 1.187 - Rulemaking on maximum rates for attorney fees.
2010-01-01
... the types of proceedings in which the rate should be used. It also should explain fully the reasons... certain types of proceedings), the Department may adopt regulations providing that attorney fees may be awarded at a rate higher than $125 per hour in some or all of the types of proceedings covered by...
Analytically computed rates of seepage flow into drains and cavities
Fujii, N.; Kacimov, A. R.
1998-04-01
The known formulae of Freeze and Cherry, Polubarinova-Kochina, Vedernikov for flow rate during 2-D seepage into horizontal drains and axisymmetric flow into cavities are examined and generalized. The case of an empty drain under ponded soil surface is studied and existence of drain depth providing minimal seepage rate is presented. The depth is found exhibiting maximal difference in rate between a filled and an empty drain. 3-D flow to an empty semi-spherical cavity on an impervious bottom is analysed and the difference in rate as compared with a completely filled cavity is established. Rate values for slot drains in a two-layer aquifer are inverted using the Schulgasser theorem from the Polubarinova-Kochina expressions for corresponding flow rates under a dam. Flow to a point sink modelling a semi-circular drain in a layered aquifer is treated by the Fourier transform method. For unsaturated flow the catchment area of a single drain is established in terms of the quasi-linear model assuming the isobaric boundary condition along the drain contour. Optimal shape design problems for irrigation cavities are addressed in the class of arbitrary contours with seepage rate as a criterion and cavity cross-sectional area as an isoperimetric restriction.
Exchange Flow Rate Measurement Technique in Density Different Gases
Motoo Fumizawa
2012-04-01
Full Text Available Buoyancy-driven exchange flows of helium-air through inclined a narrow tube was investigated. Exchange flows may occur following the opening of a window for ventilation, as well as when a pipe ruptures in a high temperature gas-cooled reactor. The experiment in this paper was carried out in a test chamber filled with helium and the flow was visualized using the smoke wire method. A high-speed camera recorded the flow behavior. The image of the flow was transferred to digital data, and the slow flow velocity, i.e. micro flow rate was measured by PIV software. Numerical simulation was carried out by the code of moving particle method with Lagrange method.
Maximum likelihood methods for investigating reporting rates of rings on hunter-shot birds
Conroy, M.J.; Morgan, B.J.T.; North, P.M.
1985-01-01
It is well known that hunters do not report 100% of the rings that they find on shot birds. Reward studies can be used to estimate what this reporting rate is, by comparison of recoveries of rings offering a monetary reward, to ordinary rings. A reward study of American Black Ducks (Anas rubripes) is used to illustrate the design, and to motivate the development of statistical models for estimation and for testing hypotheses of temporal and geographic variation in reporting rates. The method involves indexing the data (recoveries) and parameters (reporting, harvest, and solicitation rates) by geographic and temporal strata. Estimates are obtained under unconstrained (e.g., allowing temporal variability in reporting rates) and constrained (e.g., constant reporting rates) models, and hypotheses are tested by likelihood ratio. A FORTRAN program, available from the author, is used to perform the computations.
Rate of strong consistency of quasi maximum likelihood estimate in generalized linear models
无
2004-01-01
［1］McCullagh, P., Nelder, J. A., Generalized Linear Models, New York: Chapman and Hall, 1989.［2］Wedderbum, R. W. M., Quasi-likelihood functions, generalized linear models and Gauss-Newton method,Biometrika, 1974, 61:439-447.［3］Fahrmeir, L., Maximum likelihood estimation in misspecified generalized linear models, Statistics, 1990, 21:487-502.［4］Fahrmeir, L., Kaufmann, H., Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann. Statist., 1985, 13: 342-368.［5］Melder, J. A., Pregibon, D., An extended quasi-likelihood function, Biometrika, 1987, 74: 221-232.［6］Bennet, G., Probability inequalities for the sum of independent random variables, JASA, 1962, 57: 33-45.［7］Stout, W. F., Almost Sure Convergence, New York:Academic Press, 1974.［8］Petrov, V, V., Sums of Independent Random Variables, Berlin, New York: Springer-Verlag, 1975.
Design and Implementation of Automatic Air Flow Rate Control System
Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal
2016-08-01
Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.
FLUVIAL PROCESSES AND SEDIMENT SCOUR RATE OF THE YELLOW RIVER UNDER ACTION OF UNSTEADY FLOWS
Yong-Nian XU; Zhi-Yong LIANG; Zhao-Yin WANG
2001-01-01
Riverbed scour of the main channel by floods in the Yellow River and its tributaries was investigated, including scour by hyper-concentrated floods. Flood scour usually causes variation of river cross-sections in a way similar to that occured when the sediment inflow is less than the sediment-laden capacity. Scour rate equation for the main channel derived based on the momentum and continuous equations was verified by field data. This equation indicates that unsteady flow scour rate is proportional to the flow density, the velocity of the flood peak, the rising rate of flow discharge per unit width, and so on. The Maximum scour depth after a flood could be predicted by the scour rate equation proposed in this paper.
Lau Nguyen Dinh
2016-01-01
Full Text Available The problem of finding maximum flow in network graph is extremely interesting and practically applicable in many fields in our daily life, especially in transportation. Therefore, a lot of researchers have been studying this problem in various methods. Especially in 2013, we has developed a new algorithm namely, postflow-pull algorithm to find the maximum flow on traditional networks. In this paper, we revised postflow-push methods to solve this problem of finding maximum flow on extended mixed network. In addition, to take more advantage of multi-core architecture of the parallel computing system, we build this parallel algorithm. This is a completely new method not being announced in the world. The results of this paper are basically systematized and proven. The idea of this algorithm is using multi processors to work in parallel by postflow_push algorithm. Among these processors, there is one main processor managing data, sending data to the sub processors, receiving data from the sub-processors. The sub-processors simultaneously execute their work and send their data to the main processor until the job is finished, the main processor will show the results of the problem.
Blood flow rate measurements with indicator techniques revisited
Sejrsen, Per; Bülow, Jens
2009-01-01
In view of the emerging role, disturbances in regional blood flow rate seem to play in the pathogenesis of the metabolic syndrome; we review the concepts of the classical indicator dilution and washout techniques used for determinations of regional blood flow rate. Prerequisites, assumptions......, necessary precautions for the application of these experimental techniques are emphasized. Special attention has been carried out to elucidate the consequence of a choice of indicators having a large distribution volume in the tissues....
McCarthy, C M; Taylor, M A; Dennis, M W
1987-01-01
Mycobacterium avium is a human pathogen which may cause either chronic or disseminated disease and the organism exhibits a slow rate of growth. This study provides information on the growth rate of the organism in chronically infected mice and its maximal growth rate in vitro. M. avium was grown in continuous culture, limited for nitrogen with 0.5 mM ammonium chloride and dilution rates that ranged from 0.054 to 0.153 h-1. The steady-state concentration of ammonia nitrogen and M. avium cells for each dilution rate were determined. The bacterial saturation constant for growth-limiting ammonia was 0.29 mM (4 micrograms nitrogen/ml) and, from this, the maximal growth rate for M. avium was estimated to be 0.206 h-1 or a doubling time of 3.4 h. BALB/c mice were infected intravenously with 3 x 10(6) colony-forming units and a chronic infection resulted, typical of virulent M. avium strains. During a period of 3 months, the number of mycobacteria remained constant in the lungs, but increased 30-fold and 8,900-fold, respectively, in the spleen and mesenteric lymph nodes. The latter increase appeared to be due to proliferation in situ. The generation time of M. avium in the mesenteric lymph nodes was estimated to be 7 days.
High Frame Rate Synthetic Aperture 3D Vector Flow Imaging
Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo
2016-01-01
3-D blood flow quantification with high spatial and temporal resolution would strongly benefit clinical research on cardiovascular pathologies. Ultrasonic velocity techniques are known for their ability to measure blood flow with high precision at high spatial and temporal resolution. However......, current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI......) technique is extended to estimate the 3-D velocity components inside a volume at high temporal resolutions (
Quinn, T Alexander; Kohl, Peter
2016-12-01
Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates
M.A. Chowdhury
2012-12-01
Full Text Available Solid thin films have been deposited on stainless steel 202 (SS 202 substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in gas flow rate within the observed range. It is also found that deposition rate increases with the decrease in gap between activation heater and substrate. In addition, friction coefficient and wear rate of SS 202 sliding against SS 304 under different sliding velocities are also investigated before and after deposition. The experimental results reveal that improved friction coefficient and wear rate is obtained after deposition than that of before deposition.
Maximum Rate of Growth of Enstrophy in Solutions of the Fractional Burgers Equation
Yun, Dongfang
2016-01-01
This investigation is a part of a research program aiming to characterize the extreme behavior possible in hydrodynamic models by probing the sharpness of estimates on the growth of certain fundamental quantities. We consider here the rate of growth of the classical and fractional enstrophy in the fractional Burgers equation in the subcritical, critical and supercritical regime. First, we obtain estimates on these rates of growth and then show that these estimates are sharp up to numerical prefactors. In particular, we conclude that the power-law dependence of the enstrophy rate of growth on the fractional dissipation exponent has the same global form in the subcritical, critical and parts of the supercritical regime. This is done by numerically solving suitably defined constrained maximization problems and then demonstrating that for different values of the fractional dissipation exponent the obtained maximizers saturate the upper bounds in the estimates as the enstrophy increases. In addition, nontrivial be...
Rate of strong consistency of quasi maximum likelihood estimate in generalized linear models
YUE Li; CHEN Xiru
2004-01-01
Under the assumption that in the generalized linear model (GLM) the expectation of the response variable has a correct specification and some other smooth conditions,it is shown that with probability one the quasi-likelihood equation for the GLM has a solution when the sample size n is sufficiently large. The rate of this solution tending to the true value is determined. In an important special case, this rate is the same as specified in the LIL for iid partial sums and thus cannot be improved anymore.
Numerical study on flow rate limitation of open capillary channel flow through a wedge
Ting-Ting Zhang
2016-04-01
Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.
The influence of the flow rate on periodic flow unsteadiness behaviors in a sewage centrifugal pump
裴吉; 袁寿其; 袁建平; 王文杰
2013-01-01
To design a single-blade pump with a good performance in a wide operational range and to increase the pump reliability in the multi-conditional hydraulic design process, an understanding of the unsteady flow behaviors as related with the flow rate is very important. However, the traditional design often considers only a single design condition, and the unsteady flow behaviors have not been well studied for single-blade pumps under different conditions. A comparison analysis of the flow unsteadiness behaviors at di-fferent flow rates within the whole flow passage of the pump is carried out in this paper by solving the three-dimensional unsteady Reynolds-averaged Navier-Stokes equations with the Shear Stress Transport (SST) turbulence model. A definition of the unsteadi-ness in the pump is made and applied to analyze the unsteady intensity distributions, and the flow rate effect on the complex unsteady flow in the pump is studied quantitatively while the flow mechanism is also analyzed. The CFD results are validated by experimental data collected at the laboratory. It is shown that a significant flow rate effect on the time-averaged unsteadiness and the turbulence in-tensity distribution can be observed in both rotor and stator domains including the side chamber. The findings would be useful to re-duce the flow unsteadiness and to increase the pump reliability under multi-conditions.
Riisgård, Hans Ulrik; Larsen, Poul Scheel; Pleissner, Daniel
2014-01-01
rate (F, l h-1), W (g), and L (mm) as described by the equations: FW = aWb and FL = cLd, respectively. This is done by using available and new experimental laboratory data on M. edulis obtained by members of the same research team using different methods and controlled diets of cultivated algal cells...
Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste.
Nagao, Norio; Tajima, Nobuyuki; Kawai, Minako; Niwa, Chiaki; Kurosawa, Norio; Matsuyama, Tatsushi; Yusoff, Fatimah Md; Toda, Tatsuki
2012-08-01
Anaerobic digestion of food waste was conducted at high OLR from 3.7 to 12.9 kg-VS m(-3) day(-1) for 225 days. Periods without organic loading were arranged between the each loading period. Stable operation at an OLR of 9.2 kg-VS (15.0 kg-COD) m(-3) day(-1) was achieved with a high VS reduction (91.8%) and high methane yield (455 mL g-VS-1). The cell density increased in the periods without organic loading, and reached to 10.9×10(10) cells mL(-1) on day 187, which was around 15 times higher than that of the seed sludge. There was a significant correlation between OLR and saturated TSS in the sludge (y=17.3e(0.1679×), r(2)=0.996, P<0.05). A theoretical maximum OLR of 10.5 kg-VS (17.0 kg-COD) m(-3) day(-1) was obtained for mesophilic single-stage wet anaerobic digestion that is able to maintain a stable operation with high methane yield and VS reduction.
Microstructure from simulated Brownian suspension flows at large shear rate
Morris, Jeffrey F.; Katyal, Bhavana
2002-06-01
Pair microstructure of concentrated Brownian suspensions in simple-shear flow is studied by sampling of configurations from dynamic simulations by the Stokesian Dynamics technique. Simulated motions are three dimensional with periodic boundary conditions to mimic an infinitely extended suspension. Hydrodynamic interactions through Newtonian fluid and Brownian motion are the only physical influences upon the motion of the monodisperse hard-sphere particles. The dimensionless parameters characterizing the suspension are the particle volume fraction and Péclet number, defined, respectively, as φ=(4π/3)na3 with n the number density and a the sphere radius, and Pe=6πηγ˙a3/kT with η the fluid viscosity, γ˙ the shear rate, and kT the thermal energy. The majority of the results reported are from simulations at Pe=1000; results of simulations at Pe=1, 25, and 100 are also reported for φ=0.3 and φ=0.45. The pair structure is characterized by the pair distribution function, g(r)=P1|1(r)/n, where P1|1(r) is the conditional probability of finding a pair at a separation vector r. The structure under strong shearing exhibits an accumulation of pair probability at contact, and angular distortion (from spherical symmetry at Pe=0), with both effects increasing with Pe. Flow simulations were performed at Pe=1000 for eight volume fractions in the range 0.2⩽φ⩽0.585. For φ=0.2-0.3, the pair structure at contact, g(|r|=2)≡g(2), is found to exhibit a single region of strong correlation, g(2)≫1, at points around the axis of compression, with a particle-deficient wake in the extensional zones. A qualitative change in microstructure is observed between φ=0.3 and φ=0.37. For φ⩾0.37, the maximum g(2) lies at points in the shear plane nearly on the x axis of the bulk simple shear flow Ux=γ˙y, while at smaller φ, the maximum g(2) lies near the compressional axis; long-range string ordering is not observed. For φ=0.3 and φ=0.45, g(2)˜Pe0.7 for 1⩽Pe⩽1000, a
Flow of granular materials-I. Discharge rates from hoppers
Nedderman, R.M. (Univ. of Cambridge, England); Tuezuen, U.; Savage, S.B.; Houlsby, G.T.
1982-01-01
This was the first of a set of three review papers on the flow of granular materials. The objective of the papers was to review the published literature in these fields. Much information was drawn from a body of unpulished work represented by internal reports of the Chemical Engineering Department at Cambridge. This paper discussed the experimental results for hopper discharge rates and the correlations of these results. Then theoretical analyses that have been advanced to explain the observations were presented. Also the effects of interstitial pressure gradients were discussed, both those that arise due to deliberate pressurization of the hopper and those caused by the dilation of the flowing material. The flow of coarse, free-flowing materials through orifices seemed to have been adequately investigated experimentally and the correlation of Beverloo or minor modifications of it appeared to predict the flow rates with acceptable precision. Some difficulties were however encountered with narrow angled conical hoppers or in cases where the orifice is close to a vertical wall. The effects of an imposed gas flow were also correlated to reasonable precision at least for modest gas flow rates. Though the correlations seemed satisfactory, there was no really adequate theoretical explanations of the observations. Several theories exist that give qualitative trends in accord with obsrvation but there is no theory that can be used without empirical adjustments of the coefficients. However, with fine particles many more difficulties are encountered. 6 figures. (DP)
Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates
SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro
2016-11-01
Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.
Ultrasonic 3-D vector flow method for quantitative in vivo peak velocity and flow rate estimation
Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed;
2017-01-01
Current clinical ultrasound systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the Transverse Oscillation (TO) method, a 32 x 32 element matrix array, and the experimental ultrasound scanner SARUS...... is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames per second in a plane, and was used to estimate 3-D vector flow in a cross sectional image plane....... The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom (ø = 8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow...
Validity of heart rate based nomogram fors estimation of maximum oxygen uptake in Indian population.
Kumar, S Krishna; Khare, P; Jaryal, A K; Talwar, A
2012-01-01
Maximal oxygen uptake (VO2max) during a graded maximal exercise test is the objective method to assess cardiorespiratory fitness. Maximal oxygen uptake testing is limited to only a few laboratories as it requires trained personnel and strenuous effort by the subject. At the population level, submaximal tests have been developed to derive VO2max indirectly based on heart rate based nomograms or it can be calculated using anthropometric measures. These heart rate based predicted standards have been developed for western population and are used routinely to predict VO2max in Indian population. In the present study VO2max was directly measured by maximal exercise test using a bicycle ergometer and was compared with VO2max derived by recovery heart rate in Queen's College step test (QCST) (PVO2max I) and with VO2max derived from Wasserman equation based on anthropometric parameters and age (PVO2max II) in a well defined age group of healthy male adults from New Delhi. The values of directly measured VO2max showed no significant correlation either with the estimated VO2max with QCST or with VO2max predicted by Wasserman equation. Bland and Altman method of approach for limit of agreement between VO2max and PVO2max I or PVO2max II revealed that the limits of agreement between directly measured VO2max and PVO2max I or PVO2max II was large indicating inapplicability of prediction equations of western population in the population under study. Thus it is evident that there is an urgent need to develop nomogram for Indian population, may be even for different ethnic sub-population in the country.
Longitudinal Examination of Age-Predicted Symptom-Limited Exercise Maximum Heart Rate
Zhu, Na; Suarez, Jose; Sidney, Steve; Sternfeld, Barbara; Schreiner, Pamela J.; Carnethon, Mercedes R.; Lewis, Cora E.; Crow, Richard S.; Bouchard, Claude; Haskell, William; Jacobs, David R.
2010-01-01
Purpose To estimate the association of age with maximal heart rate (MHR). Methods Data were obtained in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Participants were black and white men and women aged 18-30 in 1985-86 (year 0). A symptom-limited maximal graded exercise test was completed at years 0, 7, and 20 by 4969, 2583, and 2870 participants, respectively. After exclusion 9622 eligible tests remained. Results In all 9622 tests, estimated MHR (eMHR, beats/minute) had a quadratic relation to age in the age range 18 to 50 years, eMHR=179+0.29*age-0.011*age2. The age-MHR association was approximately linear in the restricted age ranges of consecutive tests. In 2215 people who completed both year 0 and 7 tests (age range 18 to 37), eMHR=189–0.35*age; and in 1574 people who completed both year 7 and 20 tests (age range 25 to 50), eMHR=199–0.63*age. In the lowest baseline BMI quartile, the rate of decline was 0.20 beats/minute/year between years 0-7 and 0.51 beats/minute/year between years 7-20; while in the highest baseline BMI quartile there was a linear rate of decline of approximately 0.7 beats/minute/year over the full age of 18 to 50 years. Conclusion Clinicians making exercise prescriptions should be aware that the loss of symptom-limited MHR is much slower at young adulthood and more pronounced in later adulthood. In particular, MHR loss is very slow in those with lowest BMI below age 40. PMID:20639723
Estimation of Saturation Flow Rates at Signalized Intersections
Chang-qiao Shao
2012-01-01
Full Text Available The saturation flow rate is a fundamental parameter to measure the intersection capacity and time the traffic signals. However, it is revealed that traditional methods which are mainly developed using the average value of observed queue discharge headways to estimate the saturation headway might lead to underestimate saturation flow rate. The goal of this paper is to study the stochastic nature of queue discharge headways and to develop a more accurate estimate method for saturation headway and saturation flow rate. Based on the surveyed data, the characteristics of queue discharge headways and the estimation method of saturated flow rate are studied. It is found that the average value of queue discharge headways is greater than the median value and that the skewness of the headways is positive. Normal distribution tests were conducted before and after a log transformation of the headways. The goodness-of-fit test showed that for some surveyed sites, the queue discharge headways can be fitted by the normal distribution and for other surveyed sites, the headways can be fitted by lognormal distribution. According to the queue discharge headway characteristics, the median value of queue discharge headways is suggested to estimate the saturation headway and a new method of estimation saturation flow rates is developed.
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Mandsberg, Lotte Frigaard
2008-01-01
with an exponentially decaying function of the time between observations is suggested. A model with a full covariance structure containing OD-dependent variance and an autocorrelation structure is compared to a model with variance only and with no variance or correlation implemented. It is shown that the model...... are used for parameter estimation. The data is log-transformed such that a linear model can be applied. The transformation changes the variance structure, and hence an OD-dependent variance is implemented in the model. The autocorrelation in the data is demonstrated, and a correlation model...... that best describes data is a model taking into account the full covariance structure. An inference study is made in order to determine whether the growth rate of the five bacteria strains is the same. After applying a likelihood-ratio test to models with a full covariance structure, it is concluded...
Doppler-Based Flow Rate Sensing in Microfluidic Channels
Liron Stern
2014-09-01
Full Text Available We design, fabricate and experimentally demonstrate a novel generic method to detect flow rates and precise changes of flow velocity in microfluidic devices. Using our method we can measure flow rates of ~2 mm/s with a resolution of 0.08 mm/s. The operation principle is based on the Doppler shifting of light diffracted from a self-generated periodic array of bubbles within the channel and using self-heterodyne detection to analyze the diffracted light. As such, the device is appealing for variety of “lab on chip” bio-applications where a simple and accurate speed measurement is needed, e.g., for flow-cytometry and cell sorting.
Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M
2017-01-01
Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent
Chia-Yen Lee
2009-07-01
Full Text Available This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD. In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5o error.
Ma, Rong-Hua; Wang, Dung-An; Hsueh, Tzu-Han; Lee, Chia-Yen
2009-01-01
This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD). In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5° error.
Flow Rate of He Ⅱ Liquid-Vapor Phase Separator
Xingen YU; Qing LI; Qiang LI; Zhengyu LI
2005-01-01
Experimental results are presented for superfluld (He Ⅱ) flow through porous plug liquid-vapor phase separators.Tests have been performed on seven porous plugs with different thicknesses or different permeabilities. The temperature was measured from 1.5K to 1.9K. Two flow regions were observed in small and large pressure and temperature differences regions respectively. The experimental data are compared with theoretical predictions.The performance and applicability of the basic theory are discussed. Hysteresis of the flow rate is also observed and discussed.
Tinck, Stefan; Tillocher, Thomas; Dussart, Rémi; Neyts, Erik C.; Bogaerts, Annemie
2016-09-01
Experiments show that the etch rate of Si with SF6 inductively coupled plasma (ICP) is significantly influenced by the absolute gas flow rate in the range of 50-600 sccm, with a maximum at around 200 sccm. Therefore, we numerically investigate the effects of the gas flow rate on the bulk plasma properties and on the etch rate, to obtain more insight in the underlying reasons of this effect. A hybrid Monte Carlo—fluid model is applied to simulate an SF6 ICP. It is found that the etch rate is influenced by two simultaneous effects: (i) the residence time of the gas and (ii) the temperature profile of the plasma in the ICP volume, resulting indeed in a maximum etch rate at 200 sccm.
Relationship between salivary flow rates and Candida albicans counts.
Navazesh, M; Wood, G J; Brightman, V J
1995-09-01
Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.
A Flow Rate Control Approach on Off-Design Analysis of an Organic Rankine Cycle System
Ben-Ran Fu
2016-09-01
Full Text Available This study explored effects of off-design heat source temperature (TW,in or flow rate (mW on heat transfer characteristics and performance of an organic Rankine cycle system by controlling the flow rate of working fluid R245fa (i.e., the operation flow rate of R245fa was controlled to ensure that R245fa reached saturation liquid and vapor states at the outlets of the preheater and evaporator, respectively. The results showed that the operation flow rate of R245fa increased with TW,in or mW; higher TW,in or mW yielded better heat transfer performance of the designed preheater and required higher heat capacity of the evaporator; heat transfer characteristics of preheater and evaporator differed for off-design TW,in and mW; and net power output increased with TW,in or mW. The results further indicated that the control strategy should be different for various off-design conditions. Regarding maximum net power output, the flow rate control approach is optimal when TW,in or mW exceeds the design point, but the pressure control approach is better when TW,in or mW is lower than the design point.
Debris flows and cosmogenic catchment wide denudation rates
Kober, F.; Hippe, K.; Salcher, B.; Ivy-Ochs, S.; Kubik, P. W.; Christl, M.; Wacker, L.
2012-04-01
One of the basic question in alpine Quantitative Geomorphology is: Are widely measured cosmogenic nuclide-derived denudation rates in alpine catchments truly representative for the whole catchment at any given time? Or in contrast can they vary markedly in response to extreme events and perturbations? And if such perturbations affect cosmogenic nuclide-derived denudation rates then what bias can occur when such denudation rates are compared with sediment yield or thermochronological data or to various morphometric parameters, such as slope, mean elevation or uplift rates as potential controlling factors? We present 10Be and 14C results measured in sand samples from an active river channel from a single catchment (upper Aare), in the Swiss Alps (up to monthly sampling between 2008 to 2011). Our goal was to establish a time series to see if extreme events (such as landslides or debris flows) do have a discernible effect on derived denudation rates. The admixture of sediment of debris flows in 2009, originating upstream of the sampling spot, began to have a marked effect on 10Be concentrations and thus catchment wide denudation rates that are assumed to be in a long-term range mode prior to 2009. In summer of 2010, several extreme debris flows were recorded in the studied catchment. Samples taken document a doubling of denudation rates over the values determined from 2008. These cosmogenic nuclide data clearly demonstrate the impact of episodic events on sediment flux and the related perturbation of catchment wide denudation rates. We have recently expanded this dataset into 2011, with i) a spatial sub-sampling of debris flow and non-debris flow catchment compartments and ii) including again a major debris flow event in early autumn 2011. These data will be presented at the conference. Never-the-less the fact that the CWDR's only doubled does suggest a certain robustness in the method beyond a certain catchment size. In addition to the 10Be data, in situ 14C
Efficiencies of flat plate solar collectors at different flow rates
Chen, Ziqian; Furbo, Simon; Perers, Bengt;
2012-01-01
Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...
Jing Fan; Chong Xie; Jianzheng Jiang
2007-01-01
Measured mass flow rates and streamwise pressure distributions of gas flowing through microchannels were reported by many researchers. Assessment of these data is crucial before they are used in the examination of slip models and numerical schemes, and in the design of microchannel elements in various MEMS devices. On the basis of kinetic solutions of the mass flow rates and pressure distributions in microchannel gas flows, the measured data available are properly normalized and then are compared with each other. The 69 normalized data of measured pressure distributions are in excellent agreement, and 67 of them are within 1 ± 0.05. The normalized data of mass flow-rates ranging between 0.95 and 1 agree well with each other as the inlet Knudsen number Kni ＞ 0.02, but they scat ter between 0.85 and 1.15 as Kni ＜ 0.02 with, to some extent, a very interesting bifurcation trend.
McDonald, James G.; Groth, Clinton P. T.
2013-09-01
The ability to predict continuum and transition-regime flows by hyperbolic moment methods offers the promise of several advantages over traditional techniques. These methods offer an extended range of physical validity as compared with the Navier-Stokes equations and can be used for the prediction of many non-equilibrium flows with a lower expense than particle-based methods. Also, the hyperbolic first-order nature of the resulting partial differential equations leads to mathematical and numerical advantages. Moment equations generated through an entropy-maximization principle are particularly attractive due to their apparent robustness; however, their application to practical situations involving viscous, heat-conducting gases has been hampered by several issues. Firstly, the lack of closed-form expressions for closing fluxes leads to numerical expense as many integrals of distribution functions must be computed numerically during the course of a flow computation. Secondly, it has been shown that there exist physically realizable moment states for which the entropy-maximizing problem on which the method is based cannot be solved. Following a review of the theory surrounding maximum-entropy moment closures, this paper shows that both of these problems can be addressed in practice, at least for a simplified one-dimensional gas, and that the resulting flow predictions can be surprisingly good. The numerical results described provide significant motivations for the extension of these ideas to the fully three-dimensional case.
Schram, E.; Verdegem, M.C.J.; Widjaja, R.T.O.B.H.; Kloet, C.J.; Foss, A.; Schelvis-Smit, A.A.M.
2009-01-01
The effect of flow rate on growth was investigated in juvenile turbot. Fish with a mean (SD) initial weight of 102 (10.4) g were reared at 6 different flow rates, equaling 1, 2, 3, 4, 6 or 8 tank volumes/h in 196 L tanks during 29 days at 18 ± 0.29 °C, a salinity of 18.0 ± 0.77¿ and a pH ranging
Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic
2016-05-30
Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Snelling, Edward P; Seymour, Roger S; Matthews, Philip G D; Runciman, Sue; White, Craig R
2011-10-01
The hemimetabolous migratory locust Locusta migratoria progresses through five instars to the adult, increasing in size from 0.02 to 0.95 g, a 45-fold change. Hopping locomotion occurs at all life stages and is supported by aerobic metabolism and provision of oxygen through the tracheal system. This allometric study investigates the effect of body mass (Mb) on oxygen consumption rate (MO2, μmol h(-1)) to establish resting metabolic rate (MRO2), maximum metabolic rate during hopping (MMO2) and maximum metabolic rate of the hopping muscles (MMO2,hop) in first instar, third instar, fifth instar and adult locusts. Oxygen consumption rates increased throughout development according to the allometric equations MRO2=30.1Mb(0.83±0.02), MMO2=155Mb(1.01±0.02), MMO2,hop=120Mb(1.07±0.02) and, if adults are excluded, MMO2,juv=136Mb(0.97±0.02) and MMO2,juv,hop=103Mb(1.02±0.02). Increasing body mass by 20-45% with attached weights did not increase mass-specific MMO2 significantly at any life stage, although mean mass-specific hopping MO2 was slightly higher (ca. 8%) when juvenile data were pooled. The allometric exponents for all measures of metabolic rate are much greater than 0.75, and therefore do not support West, Brown and Enquist’s optimised fractal network model, which predicts that metabolism scales with a 3⁄4-power exponent owing to limitations in the rate at which resources can be transported within the body.
Controlling Surface Roughness to Enhance Mass Flow Rates in Nanochannels
Zimon, Malgorzata; Emerson, David; Reese, Jason
2012-11-01
A very active field of research in fluid mechanics and material science is predicting the behavior of Newtonian fluids flowing over porous media with different wettabilities. Opposite effects have been observed: some state that wall roughness always suppresses fluid-slip, whereas others show that for some cases roughness may reduce the surface friction. In this work, MD simulations were carried out to further investigate physical mechanisms for liquid slip, and factors affecting it. A rough wall was formed by either periodically spaced rectangular protrusions or was represented by a cosine wave. The MD simulations were conducted to study Poiseuille and Couette flow of liquid argon in a nanochannel with hydrophilic kryptonian walls. The effect of wall roughness and interface wettability on the streaming velocity, and the slip-length at the walls, is observed to be significant. Our results show a dependency of mass flow rate on the type of flow and topography of the channel walls. For a fixed magnitude of the driving force, an increase in the mass flow rate, compared to the smooth surface, was observed for the wavy roughness, whereas the opposite effect was observed for Couette flow where a higher slip was obtained for rectangular gaps. The study is funded in the UK by the Engineering and Physical Sciences Research Council.
Islam S.M. Khalil
2016-06-01
Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr−1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr−1 and 30 ml.hr−1 are calculated to be 45 μm.s−1 and 15 μm.s−1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.
Islam S.M. Khalil
2016-06-01
Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr-1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr-1, 6 ml.hr-1, 17 ml.hr-1, and 35 ml.hr-1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr-1 and 30 ml.hr-1 are calculated to be 45 μm.s-1 and 15 μm.s-1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr-1, 6 ml.hr-1, 17 ml.hr-1, and 35 ml.hr-1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.
Effects of argon gas flow rate on laser-welding.
Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro
2012-01-01
The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.
Assessment of salivary flow rate: biologic variation and measure error.
Jongerius, P.H.; Limbeek, J. van; Rotteveel, J.J.
2004-01-01
OBJECTIVE: To investigate the applicability of the swab method in the measurement of salivary flow rate in multiple-handicap drooling children. To quantify the measurement error of the procedure and the biologic variation in the population. STUDY DESIGN: Cohort study. METHODS: In a repeated measurem
Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier
2011-10-01
Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/
Proposed method for measurement of flow rate in turbulent periodic pipe flow
Werzner, E.; Ray, S.; Trimis, D.
2011-12-01
The present investigation deals with a previously proposed flow metering technique for laminar, fully-developed, time-periodic pipe flow. Employing knowledge of the pulsation frequency-dependent relationship between the mass flow rate and the pressure gradient, the method allows reconstruction of the instantaneous mass flow rate on the basis of a recorded pressure gradient time series. In order to explore if the procedure can be extended for turbulent flows, numerical simulations for turbulent, fully-developed, sinusoidally pulsating pipe flow with low pulse amplitude have been carried out using a ν2-f turbulence model. The study covers pulsation frequencies, ranging from the quasi-steady up to the inertia-dominated frequency regime, and three cycle-averaged Reynolds numbers of 4360, 9750 and 15400. After providing the theoretical background of the flow rate reconstruction principle, the numerical model and an experimental facility for the verification of simulations are explained. The obtained results, presented in time and frequency domain, show good agreement with each other and indicate a frequency dependence, similar to that used for the signal reconstruction for laminar flows. A modified dimensionless frequency definition has been introduced, which allows a generalised representation of the results considering the influence of Reynolds number.
Natural Examples of Olivine Lattice Preferred Orientation Patterns With a Flow-Normal a-Axis Maximum
Mizukami, T.; Wallis, S.; Yamamoto, J.
2004-12-01
Olivine lattice preferred orientation (LPO) due to ductile deformation is one of the main causes of mechanical anisotropy in the upper mantle and the patterns are useful to infer the direction of mantle flow from the seismic anisotropy in various settings. In subduction zones the mantle anisotropy near subduction boundaries suggests that olivine a-axes are arranged roughly perpendicular to plate motion. This anisotropy has been attributed to localized subduction-normal flow, applying a common type of olivine LPO with a `flow-parallel' a-axis maximum to the mantle. However, a recent deformational experiment provides an alternative interpretation that the B-type LPO with a `flow-normal' a-axis maximum can be developed in water-rich mantle above subducting slab. We document the widespread occurrence of B-type LPO in the Higashi-akaishi peridotite body, SW Japan, and examine the physical conditions in which it was formed. Our structural studies define four deformational phases in the Higashi-akaishi body (D1-D4) that are related to the tectonic evolution in the Cretaceous subduction zone at the Eurasian margin. The main deformational stage, D2, is associated with dynamic recrystallization of olivine to form porphyroclastic microstructure consisting of clear olivine neoblasts and porphyroclasts with abundant micro-inclusions. Parallel alginment of olivine neoblasts defines a stretching lineation (L2) and tectonic foliation (S2) and the D2 olivine LPO is identified as the B-type fabric with a-axes normal to L2, b-axes normal to S2 and c-axes parallel to L2. Micro-Raman spectroscopic analyses reveal that the syn-D2 micro-inclusions include hydrous minerals such as serpentine, indicating water-rich conditions for the D2 deformation. Garnet-orthopyroxene geothermobarometry applied to the D2 garnet peridotite reveals that the D2 stage was associated with the almost isothermal burial (700-800C, 2-3GPa). These D2 physical conditions in which the B-type LPO was formed are
Kruse, Marcelo Lapa; Kruse, José Cláudio Lupi; Leiria, Tiago Luiz Luz; Pires, Leonardo Martins; Gensas, Caroline Saltz; Gomes, Daniel Garcia; Boris, Douglas; Mantovani, Augusto; Lima, Gustavo Glotz de
2014-12-01
Occurrences of asymptomatic atrial fibrillation (AF) are common. It is important to identify AF because it increases morbidity and mortality. 24-hour Holter has been used to detect paroxysmal AF (PAF). The objective of this study was to investigate the relationship between occurrence of PAF in 24-hour Holter and the symptoms of the population studied. Cross-sectional study conducted at a cardiology hospital. 11,321 consecutive 24-hour Holter tests performed at a referral service were analyzed. Patients with pacemakers or with AF throughout the recording were excluded. There were 75 tests (0.67%) with PAF. The mean age was 67 ± 13 years and 45% were female. The heart rate (HR) over the 24 hours was a minimum of 45 ± 8 bpm, mean of 74 ± 17 bpm and maximum of 151 ± 32 bpm. Among the tests showing PAF, only 26% had symptoms. The only factor tested that showed a correlation with symptomatic AF was maximum HR (165 ± 34 versus 147 ± 30 bpm) (P = 0.03). Use of beta blockers had a protective effect against occurrence of PAF symptoms (odds ratio: 0.24, P = 0.031). PAF is a rare event in 24-hour Holter. The maximum HR during the 24 hours was the only factor correlated with symptomatic AF, and use of beta blockers had a protective effect against AF symptom occurrence.
Fast pyrolysis of sunflower-pressed bagasse: effects of sweeping gas flow rate
Gercel, H.F.; Putun, E.
2002-05-01
Sunflower (Helianthus annus L.)-pressed bagasse pyrolysis experiments were performed in a fixed-bed tubular reactor. The effects of nitrogen flow rate and final pyrolysis temperature on the pyrolysis product yields and chemical compositions have been investigated. The maximum bio-oil yield of 52.85 wt% was obtained in a nitrogen atmosphere and a nitrogen flow rate of 50 cm{sup 3} min{sup -1} and at a pyrolysis temperature of 550{sup o}C and heating rate of 5{sup o}C s{sup -1}. The chemical characterization has shown that the oil obtained from sunflower-pressed bagasse may be potentially valuable as fuel and chemical feedstocks. (author)
The effect of a sweeping gas flow rate on the fast pyrolysis of biomass
Gercel, H.F.
2002-07-01
Sunflower (Helianthus annus L.)-pressed bagasse pyrolysis experiments were performed in a fixed-bed tubular reactor. The effects of nitrogen flow rate and final pyrolysis temperature on the pyrolysis product yields and chemical compositions have been investigated. The maximum bio-oil yield of 46.62 wt% was obtained in a nitrogen atmosphere with a nitrogen flow rate of 25 cm{sup 3}min{sup -1} and at a pyrolysis temperature of 550{sup o}C with a heating rate of 300{sup o}C min{sup -1}. The chemical characterization showed that the oil obtained from sunflower-pressed bagasse may be potentially valuable as fuel and chemical feedstocks. (author)
Flow rate dependency of critical wall shear stress in a radial-flow cell
Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.
2009-01-01
of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress......In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...
Process Measurement Deviation Analysis for Flow Rate due to Miscalibration
Oh, Eunsuk; Kim, Byung Rae; Jeong, Seog Hwan; Choi, Ji Hye; Shin, Yong Chul; Yun, Jae Hee [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)
2016-10-15
An analysis was initiated to identify the root cause, and the exemption of high static line pressure correction to differential pressure (DP) transmitters was one of the major deviation factors. Also the miscalibrated DP transmitter range was identified as another major deviation factor. This paper presents considerations to be incorporated in the process flow measurement instrumentation calibration and the analysis results identified that the DP flow transmitter electrical output decreased by 3%. Thereafter, flow rate indication decreased by 1.9% resulting from the high static line pressure correction exemption and measurement range miscalibration. After re-calibration, the flow rate indication increased by 1.9%, which is consistent with the analysis result. This paper presents the brief calibration procedures for Rosemount DP flow transmitter, and analyzes possible three cases of measurement deviation including error and cause. Generally, the DP transmitter is required to be calibrated with precise process input range according to the calibration procedure provided for specific DP transmitter. Especially, in case of the DP transmitter installed in high static line pressure, it is important to correct the high static line pressure effect to avoid the inherent systematic error for Rosemount DP transmitter. Otherwise, failure to notice the correction may lead to indicating deviation from actual value.
Siegler, Jason C; Marshall, Paul W M; Raftry, Sean; Brooks, Cristy; Dowswell, Ben; Romero, Rick; Green, Simon
2013-12-01
The purpose of this investigation was to assess the influence of sodium bicarbonate supplementation on maximal force production, rate of force development (RFD), and muscle recruitment during repeated bouts of high-intensity cycling. Ten male and female (n = 10) subjects completed two fixed-cadence, high-intensity cycling trials. Each trial consisted of a series of 30-s efforts at 120% peak power output (maximum graded test) that were interspersed with 30-s recovery periods until task failure. Prior to each trial, subjects consumed 0.3 g/kg sodium bicarbonate (ALK) or placebo (PLA). Maximal voluntary contractions were performed immediately after each 30-s effort. Maximal force (F max) was calculated as the greatest force recorded over a 25-ms period throughout the entire contraction duration while maximal RFD (RFD max) was calculated as the greatest 10-ms average slope throughout that same contraction. F max declined similarly in both the ALK and PLA conditions, with baseline values (ALK: 1,226 ± 393 N; PLA: 1,222 ± 369 N) declining nearly 295 ± 54 N [95% confidence interval (CI) = 84-508 N; P force vs. maximum rate of force development during a whole body fatiguing task.
Larson, Eric D.; St. Clair, Joshua R.; Sumner, Whitney A.; Bannister, Roger A.; Proenza, Cathy
2013-01-01
An inexorable decline in maximum heart rate (mHR) progressively limits human aerobic capacity with advancing age. This decrease in mHR results from an age-dependent reduction in “intrinsic heart rate” (iHR), which is measured during autonomic blockade. The reduced iHR indicates, by definition, that pacemaker function of the sinoatrial node is compromised during aging. However, little is known about the properties of pacemaker myocytes in the aged sinoatrial node. Here, we show that depressed excitability of individual sinoatrial node myocytes (SAMs) contributes to reductions in heart rate with advancing age. We found that age-dependent declines in mHR and iHR in ECG recordings from mice were paralleled by declines in spontaneous action potential (AP) firing rates (FRs) in patch-clamp recordings from acutely isolated SAMs. The slower FR of aged SAMs resulted from changes in the AP waveform that were limited to hyperpolarization of the maximum diastolic potential and slowing of the early part of the diastolic depolarization. These AP waveform changes were associated with cellular hypertrophy, reduced current densities for L- and T-type Ca2+ currents and the “funny current” (If), and a hyperpolarizing shift in the voltage dependence of If. The age-dependent reduction in sinoatrial node function was not associated with changes in β-adrenergic responsiveness, which was preserved during aging for heart rate, SAM FR, L- and T-type Ca2+ currents, and If. Our results indicate that depressed excitability of individual SAMs due to altered ion channel activity contributes to the decline in mHR, and thus aerobic capacity, during normal aging. PMID:24128759
Vacuum rated flow controllers for inert gas ion engines
Pless, L. C.
1987-01-01
Electrical propulsion systems which use a gas as a propellant require a gas flowmeter/controller which is capable of operating in a vacuum environment. The presently available instruments in the required flow ranges are designed and calibrated for use at ambient pressure. These instruments operate by heating a small diameter tube through which the gas is flowing and then sensing the change in temperature along the length of the tube. This temperature change is a function of the flow rate and the gas heat capacity. When installed in a vacuum, the change in the external thermal characteristics cause the tube to overheat and the temperature sensors are then operating outside their calibrated range. In addition, the variation in heat capacity with temperature limit the accuracy obtainable. These problems and the work in progress to solve them are discussed.
Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels
Chakraborty, Suman; Ray, Subhashis
2008-08-01
The present study is directed towards devising a scientific strategy for obtaining controlled time-periodic mass flow-rate characteristics through the employment of pulsating electric fields in circular microchannels by exploiting certain intrinsic characteristics of periodic electro-osmosis phenomenon. Within the assumption of thin electrical double layers, the governing equations for potential distribution and fluid flow are derived, corresponding to a steady base state and a time-varying perturbed state, by assuming periodic forms of the imposed electrical fields and the resultant velocity fields. For sinusoidal pulsations of the electric field superimposed over its mean, a signature map depicting the amplitudes of the mass flow rate and the electrical field as well as their phase differences is obtained from the theoretical analysis as a function of a nondimensional frequency parameter for different ratios of the characteristic electric double layer thickness relative to the microchannel radius. Distinctive characteristics in the signature profiles are obtained for lower and higher frequencies, primarily attributed to the finite time scale for momentum propagation away from the walls. The signature characteristics, obtained from the solution of the prescribed sinusoidal electric field, are subsequently used to solve the "inverse" problem, where the mass flow rate is prescribed in the form of sinusoidal pulsations and the desired electric fields that would produce the required mass flow-rate variations are obtained. The analysis is subsequently extended for controlled triangular and trapezoidal pulsations in the mass flow rate and the required electric fields are successfully obtained. It is observed that the higher the double layer thickness is in comparison to the channel radius, the more prominent is the deviation of the shape of the required electric field pulsation from the desired transience in the mass flow-rate characteristics. Possible extensions of the
Loyka, Sergey; Gagnon, Francois
2009-01-01
Motivated by a recent surge of interest in convex optimization techniques, convexity/concavity properties of error rates of the maximum likelihood detector operating in the AWGN channel are studied and extended to frequency-flat slow-fading channels. Generic conditions are identified under which the symbol error rate (SER) is convex/concave for arbitrary multi-dimensional constellations. In particular, the SER is convex in SNR for any one- and two-dimensional constellation, and also in higher dimensions at high SNR. Pairwise error probability and bit error rate are shown to be convex at high SNR, for arbitrary constellations and bit mapping. Universal bounds for the SER 1st and 2nd derivatives are obtained, which hold for arbitrary constellations and are tight for some of them. Applications of the results are discussed, which include optimum power allocation in spatial multiplexing systems, optimum power/time sharing to decrease or increase (jamming problem) error rate, an implication for fading channels ("fa...
Tintin Sukartini
2017-07-01
Full Text Available Introduction: Limited progressive air flow in Chronic Obstructive Pulmonary Disease (COPD can caused by small airway disease (bronchiolitis obstructive and loss of elasticity of the lung (emphysema. Further it can be decreasing the quality of life in COPD patients because dyspnea and uncomfortable in activity. Progressive muscle relaxation (PMR is one of the relaxation technique that can repair pulmonary ventilation by decreasing chronic constriction of the respiratory muscles. The objective of this study was to analyze the effect of progressive muscle relaxation on raised peak expiratory flow rate (PEFR. Method: A pre-experimental one group pre-post test design was used in this study. Population was all of the COPD patients at Pulmonary Specialist Polyclinic Dr Mohamad Soewandhie Surabaya. There were 8 respondents taken by using purposive sampling. PEFR was counted by using peak flow meter every six day. Data were analyzed by using Paired t-Test with significance level p≤0.05. Result: The result showed that PMR had significance level on increasing of PEFR (p=0.012. Discussion: It can be concluded that PMR has an effect on raise PEFR. Further studies are recommended to measure the effect of PMR on respiratory rate (RR, heart rate (HR subjective dyspnoe symptoms, forced expiration volume on the first minute (FEV1 and mid maximum flow rate (MMFR in COPD patients.
Variation analysis of flow rate delivered using a blister pump
Selvakumar, Sivesh; Linares, Rodrigo; Oppenheimer, Aaron; Anthony, Brian
2012-03-01
Components for on-chip storage and delivery of liquid reagent are necessary for many commercial applications of lab-on- a-chip technology. One such system uses a 'blister-pack' that is pushed by an actuator. This paper explores the sensitivity of the flow rate produced by a blister-actuator pair to the expected manufacturing variations in its dimensions. A numerical model of the blister-actuator pair is developed and the tool of Variation Simulation Modeling (VSM) is used to determine the robustness of fluid delivery. For a flow-rate requirement of +/- 10%, the number of out-of-spec parts is found to be less than 0.01%. The critical dimensions that need to be controlled to improve robustness are also identified.
THE OPTIMIZATION OF FLOW RATES OF AN EXTRUDER
I.O. Popoola
2012-01-01
Full Text Available
ENGLISH ABSTRACT: The article addresses how the flow rates of an extruder can be optimized. It mentions the plastic recycling industry as an example, which is only one of many solid waste recycling industries. The literature on flow rates is reviewed to demonstrate a gap that the current study aims to fills, in the hope that it will stimulate further research in a fertile area.
AFRIKAANSE OPSOMMING: Die artikel adresseer die vraagstuk van vloeitempo van ‘n ekstrusieproses. Dit handel met ‘n voorbeeld van ‘n plastiekherwinningsproses wat spruit uit soliede afvalverwerking. ‘n Literatuurstudie toon hoedat die navorsing verdere areas wat braak lê, aanspreek in die hoop dat verdere studie gestimuleer sal word.
Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray
Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2007-10-15
The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm{sup 2} at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode.
Harry X.ZHANG; Shaw L.YU
2008-01-01
One of the key challenges in the total max-imum daily load (TMDL) development process is how to define the critical condition for a receiving water-body. The main concern in using a continuous simu-lation approach is the absence of any guarantee that the most critical condition will be captured during the selected representative hydrologic period, given the scar-city of long-term continuous data. The objectives of this paper are to clearly address the critical condition in the TMDL development process and to compare continu-ous and evEnt-based approaches in defining critical con-dition during TMDL development for a waterbody impacted by both point and nonpoint source pollution. A practical, event-based critical flow-storm (CFS) approach was developed to explicitly addresses the crit-ical condition as a combination of a low stream flow and a storm event of a selected magnitude, both having cer-tain frequencies of occurrence. This paper illustrated the CFS concept and provided its theoretical basis using a derived analytical conceptual model. The CFS approach clearly defined a critical condition, obtained reasonable results and could be considered as an alternative method in TMDL development.
A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.
Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric
2012-03-07
We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.
A correction to collision rates of droplets in turbulent flows
Zhang, Huang
2016-01-01
This paper makes a correction to the collision rates of small droplets in turbulent fluid derived by Saffman and Turner(1956). Not only the distortion but also the rotation of the fluid is taken into account between two close droplets. A rotation reference is fixed on one drop, and the fluxes of the other drops moving towards the fixed one are carried out based on this new reference. The behaviors of turbulent flow are analyzed within the smallest eddies under the rotation reference, and a correction is made to the collision rates by multiplying a factor sqrt(2).
Noise-induced convergence of the low flow rate chaos in the Belousov-Zhabotinsky reaction
Yoshimoto, Minoru; Nakaiwa, Masaru; Akiya, Takaji; Ohmori, Takao; Yamaguchi, Tomohiko
The effect of noise on the low flow-rate chaos in the Belousov-Zhabotinsky (BZ) reaction was studied. The chaos was simulated using the three-variable model of Györgyi and Field. Gaussian white noise was imposed on the flow-rate of the reactant solutions fed into CSTR to simulate the so-called type P noise. The range of average noise amplitudes was chosen between 0.01% and 1% related to the inverse residence time. The calculated time series were analyzed on the basis of their Fourier spectra, maximum Lyapunov exponent, Kolmogorov entropies, return maps and invariant density. We found that the noise induces partial order of the period-3-like oscillations in the low flowrate chaos.
Wang Kexiong; Zhang Laibin; Jiang Hongwei
2007-01-01
Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper,the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.
Rezaeian Mahdi
2015-01-01
Full Text Available Containment of a transport cask during both normal and accident conditions is important to the health and safety of the public and of the operators. Based on IAEA regulations, releasable activity and maximum permissible volumetric leakage rate within the cask containing fuel samples of Tehran Research Reactor enclosed in an irradiated capsule are calculated. The contributions to the total activity from the four sources of gas, volatile, fines, and corrosion products are treated separately. These calculations are necessary to identify an appropriate leak test that must be performed on the cask and the results can be utilized as the source term for dose evaluation in the safety assessment of the cask.
Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N
2014-06-01
Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Studies on effect of oxygen flow rate in textured grain growth of ZnO thin films
Thomas, Deepu; Vattappalam, Sunil C.; Mathew, Sunny; Augustine, Simon
2015-02-01
ZnO thin films were deposited on glass substrate by Successive Ionic Layer Adsorption Reaction (SILAR) method. Effect of oxygen flow rate in textured grain growth, resistance and band gap of the thin films have been done. Textured grain growth of the samples were measured by comparing the peak intensities from XRD. Textured grain growth was found to be maximum when the oxygen flow rate is 2.5 litre/minute. It is found that as the oxygen flow rate increases above this limit, textured grain growth decreases and resistance the samples increases. The optical band gap of ZnO film was found to be increased with the increase of oxygen flow rate.
Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas
2015-01-01
BACKGROUND: If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect of redu...
Research on network maximum flows algorithm of cascade level graph%级连层次图的网络最大流算法研究
潘荷新; 伊崇信; 李满
2011-01-01
给出一种通过构造网络级连层次图的方法,来间接求出最大网络流的算法.对于给定的有n个顶点,P条边的网络N=(G,s,t,C),该算法可在O(n2)时间内快速求出流经网络N的最大网络流及达最大流时的网络流.%This paper gives an algoritm that structures a network cascade level graph to find out maximum flow of the network indirectly.For the given network N=(G,s,t,C) that has n vetexes and e arcs,this algorithm finds out the maximum value of the network flow fast in O(n2) time that flows from the network N and the network flows when the value of the one reach maximum.
Rate Control Protocol for Fast Flows: A Survey
Mr. Gaganpreet Singh,
2014-01-01
Full Text Available In today’s world, congestion control is a main objective to maximize fairness, utilization and throughput of the Internet. Every protocol has its own features to handle the congestion. The most widely used protocol over the Internet is Transfer Control Protocol. It aims at reliable and in order delivery of bytes to the higher layer and it also protect the network from congestive control. Other congestion control protocols are XCP and RCP. These new protocols are advancement over TCP. We study new congestion control protocol like Rate Control Protocol that make flows complete frequently as compared to TCP and other version of TCP and XCP. In this paper we have presented a comparison between TCP, XCP and RCP, which shows that RCP is a superior choice to use over the Internet to make flows complete quickly
Jorge Cuadrado Reyes
2011-05-01
Full Text Available Abstract This research developed a logarithms for calculating the maximum heart rate (max. HR for players in team sports in game situations. The sample was made of thirteen players (aged 24 ± 3 to a Division Two Handball team. HR was initially measured by Course Navette test. Later, twenty one training sessions were conducted in which HR and Rate of Perceived Exertion (RPE, were continuously monitored, in each task. A lineal regression analysis was done to help find a max. HR prediction equation from the max. HR of the three highest intensity sessions. Results from this equation correlate significantly with data obtained in the Course Navette test and with those obtained by other indirect methods. The conclusion of this research is that this equation provides a very useful and easy way to measure the max. HR in real game situations, avoiding non-specific analytical tests and, therefore laboratory testing.. Key words: workout control, functional evaluation, prediction equation.
The wall shear rate in non-Newtonian turbulent pipe flow
Trinh, K T
2010-01-01
This paper presents a method for calculating the wall shear rate in pipe turbulent flow. It collapses adequately the data measured in laminar flow and turbulent flow into a single flow curve and gives the basis for the design of turbulent flow viscometers. Key words: non-Newtonian, wall shear rate, turbulent, rheometer
Luo, Hong; Ma, You-xin; Liu, Wen-jun; Li, Hong-mei
2010-05-01
By using maximum upstream flow path, a self-developed new method for calculating slope length value based on Arc Macro Language (AML), five groups of DEM data for different regions in Bijie Prefecture of Guizhou Province were extracted to compute the slope length and topographical factors in the Prefecture. The time cost for calculating the slope length and the values of the topographical factors were analyzed, and compared with those by iterative slope length method based on AML (ISLA) and on C++ (ISLC). The results showed that the new method was feasible to calculate the slope length and topographical factors in revised universal soil loss model, and had the same effect as iterative slope length method. Comparing with ISLA, the new method had a high computing efficiency and greatly decreased the time consumption, and could be applied to a large area to estimate the slope length and topographical factors based on AML. Comparing with ISLC, the new method had the similar computing efficiency, but its coding was easily to be written, modified, and debugged by using AML. Therefore, the new method could be more broadly used by GIS users.
Computational Study of the Noise Radiation in a Centrifugal Pump When Flow Rate Changes
Ming Gao
2017-02-01
Full Text Available Noise radiation is of importance for the performance of centrifugal pumps. Aiming at exploring noise radiation patterns of a typical centrifugal pump at different flow rates, a three-dimensional unsteady hydro/aero acoustic model with large eddy simulation (LES closure is developed. Specifically, the Ffowcs Williams-Hawkings model (FW-H is employed to predict noise generation by the impeller and volute. The simulated flow fields reveal that the interactions of the blades with the volute induce root mean square (RMS pressure and further lead to noise radiation. Moreover, it is found that the profiles of total sound pressure level (TSPL regarding the directivity field for the impeller-generated noise demonstrate a typical dipole characteristic behavior, whereas strictly the volute-generated noise exhibits an apparently asymmetric behavior. Additionally, the design operation (Here, 1 Q represents the design operation generates the lowest TSPL vis-a-vis the off-design operations for all the flow rates studied. In general, as the flow rates decrease from 1 Q to 0.25 Q, TSPL initially increases significantly before 0.75 Q and then levels off afterwards. A similar trend appears for cases having the larger flow rates (1–1.25 Q. The TSPL deviates with the radiation directivity and the maximum is about 50%. It is also found that TSPL by the volute and the blades can reach ~87 dB and ~70 dB at most, respectively. The study may offer a priori guidance for the experimental set up and the actual design layout.
THE IMPACT OF THE EXCHANGE RATE ON THE COMMERCIALS FLOWS
Mihaela IAVORSCHI
2015-04-01
Full Text Available The liberalization of capital movements between states and of the trade of goods and services, are one of the most important phenomena in the current world economy. The purpose of the present study, in the case of Romania, is to answer the question whether the interventions by means of the exchange rate of the national currency contributes to the fluidization and improvement of the commercial trades. The study demonstrates that the leu devaluation does not lead to a substantial increase of the exports. As a mechanism of influence of the commercials flows, the exchange rate has a short-term influence and the economy requires structural reforms, meant to stimulate the growth of the economic competitiveness.
Characterization of Absorbent Flow Rate in Towel and Tissue
Paul D. Beuther
2010-06-01
Full Text Available The quality of a paper towel is often judged based on how quickly it can wipe up a spill. However, the test methods currently available cannot repeatably measure significant differences in absorbent rate between samples. Recent round-robin testing evaluations by TAPPI and CEN organizations have shown that past methods, such as ASTM D5802-95 and TAPPI T561-pm [1], are unreliable due to high variability. The reasons for the lack of repeatability are unclear. The relation between the wicking mechanism and the fundamental absorbent properties needs to be better understood. This paper uses x-ray imaging to show the overall flow characteristics of fluid absorption within a towel, and compares the results to model predictions to show which parameters are important to the process. From this understanding, a revised test method is proposed that provides adequate statistical discernment of absorbent rate properties of tissue on a simple lab-bench scale device.
2010-07-01
... PREPARING TOMORROW'S TEACHERS TO USE TECHNOLOGY § 614.6 What is the maximum indirect cost rate for all... requirements; or (3) Charged by the grantee to another Federal award. (Authority: 20 U.S.C. 6832)...
Rousse Maria G
2011-04-01
Full Text Available Abstract Background The determination of coronary flow reserve (CFR is an essential concept at the moment of decision-making in ischemic heart disease. There are several direct and indirect tests to evaluate this parameter. In this sense, dobutamine stress echocardiography is one of the pharmacological method most commonly used worldwide. It has been previously demonstrated that CFR can be determined by this technique. Despite our wide experience with dobutamine stress echocardiography, we ignored the necessary heart rate to consider sufficient the test for the analysis of CFR. For this reason, our main goal was to determine the velocity of coronary flow in each stage of dobutamine stress echocardiography and the heart rate value necessary to double the baseline values of coronary flow velocity in the territory of the left anterior descending (LAD coronary artery. Methods A total of 33 consecutive patients were analyzed. The patients included had low risk for coronary artery disease. All the participants underwent dobutamine stress echocardiography and coronary artery flow velocity was evaluated in the distal segment of LAD coronary artery using transthoracic color-Doppler echocardiography. Results The feasibility of determining CFR in the territory of the LAD during dobutamine stress echocardiography was high: 31/33 patients (94%. Mean CFR was 2.67 at de end of dobutamine test. There was an excellent concordance between delta HR (difference between baseline HR and maximum HR and the increase in the CFR (correlation coefficient 0.84. In this sense, we found that when HR increased by 50 beats, CFR was ≥ 2 (CI 93-99.2%. In addition, 96.4% of patients reached a CFR ≥ 2 (IC 91.1 - 99% at 75% of their predicted maximum heart rate. Conclusions We found that the feasibility of dobutamine stress echocardiography to determine CFR in the territory of the LAD coronary artery was high. In this study, it was necessary to achieve a difference of 50 bpm
Energy dissipation rate limits for flow through rough channels and tidal flow across topography
Kerswell, R R
2016-01-01
An upper bound on the energy dissipation rate per unit mass, $\\epsilon$, for pressure-driven flow through a channel with rough walls is derived for the first time. For large Reynolds numbers, $Re$, the bound - $\\epsilon \\,\\leq \\, c\\, U^3/h$ where $U$ is the mean flow through the channel, $h$ the channel height and $c$ a numerical prefactor - is independent of $Re$ (i.e. the viscosity) as in the smooth channel case but the numerical prefactor $c$, which is only a function of the surface heights and surface gradients (i.e. not higher derivatives), is increased. Crucially, this new bound captures the correct scaling law of what is observed in rough pipes and demonstrates that while a smooth pipe is a singular limit of the Navier-Stokes equations (data suggests $\\epsilon \\, \\sim \\, 1/(\\log Re)^2\\, U^3/h$ as $Re \\rightarrow \\infty$), it is a regular limit for current bounding techniques. As an application, the bound is extended to oscillatory flow to estimate the energy dissipation rate for tidal flow across botto...
Development of digital flow control system for multi-channel variable-rate sprayers
Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...
Intergenic DNA sequences from the human X chromosome reveal high rates of global gene flow
Wall Jeffrey D
2008-11-01
Full Text Available Abstract Background Despite intensive efforts devoted to collecting human polymorphism data, little is known about the role of gene flow in the ancestry of human populations. This is partly because most analyses have applied one of two simple models of population structure, the island model or the splitting model, which make unrealistic biological assumptions. Results Here, we analyze 98-kb of DNA sequence from 20 independently evolving intergenic regions on the X chromosome in a sample of 90 humans from six globally diverse populations. We employ an isolation-with-migration (IM model, which assumes that populations split and subsequently exchange migrants, to independently estimate effective population sizes and migration rates. While the maximum effective size of modern humans is estimated at ~10,000, individual populations vary substantially in size, with African populations tending to be larger (2,300–9,000 than non-African populations (300–3,300. We estimate mean rates of bidirectional gene flow at 4.8 × 10-4/generation. Bidirectional migration rates are ~5-fold higher among non-African populations (1.5 × 10-3 than among African populations (2.7 × 10-4. Interestingly, because effective sizes and migration rates are inversely related in African and non-African populations, population migration rates are similar within Africa and Eurasia (e.g., global mean Nm = 2.4. Conclusion We conclude that gene flow has played an important role in structuring global human populations and that migration rates should be incorporated as critical parameters in models of human demography.
Sada, H
1978-10-01
Effects of phentolamine (13.3, 26.5 and 53.0 micron), alprenolol (3.5, 7.0 and 17.5 micron) and prenylamine (2.4, 4.8 and 11.9 micron) on the transmembrane potential were studied in isolated guinea-pig papillary muscles, superfused with Tyrode's solution. 1. Phentolamine, alprenolol and prenylamine reduced the maximum rate of rise of action potential (.Vmax) dose-dependently. Higher concentrations of phentolamine and prenylamine caused a loss of plateau in a majority of the preparations. Resting potential was not altered by any of the drugs. Readmittance of drug-free Tyrode's solution reversed these changes induced by 13.3 micron of phentolamine and all conconcentrations of alprenolol almost completely but those induced by higher concentrations of phentolamine and all concentrations of prenylamine only slightly. 2. .Vmax at steady state was increased with decreasing driving frequencies (0.5 and 0.25 Hz) and was decreased with increasing ones (2--5 Hz) in comparison with that at 1 Hz. Such changes were all exaggerated by the above drugs, particularly by prenylamine. 3. Prenylamine and, to a lesser degree, phentolamine and alprenolol delayed dose-dependently the recovery process of .Vmax in premature responses. 4. .Vmax in the first response after interruption of stimulation recovered toward the predrug value in the presence of the above three drugs. The time constants of recovery process ranged between 10.5 and 15.0s for phentolamine, between 4.5 and 15.5s for alprenolol. The time constant of the main component was estimated to be approximately 2s for the recovery process with prenylamine. 5. On the basis of the model recently proposed by Hondeghem and Katzung (1977), it is suggested that the drug molecules associate with the open sodium channels and dissociated slowly from the closed channels and that the inactivation parameter in the drug-associated channels is shifted in the hyperpolarizing direction.
Broeckhoven, K; Verstraeten, M; Choikhet, K; Dittmann, M; Witt, K; Desmet, G
2011-02-25
We report on a general theoretical assessment of the potential kinetic advantages of running LC gradient elution separations in the constant-pressure mode instead of in the customarily used constant-flow rate mode. Analytical calculations as well as numerical simulation results are presented. It is shown that, provided both modes are run with the same volume-based gradient program, the constant-pressure mode can potentially offer an identical separation selectivity (except from some small differences induced by the difference in pressure and viscous heating trajectory), but in a significantly shorter time. For a gradient running between 5 and 95% of organic modifier, the decrease in analysis time can be expected to be of the order of some 20% for both water-methanol and water-acetonitrile gradients, and only weakly depending on the value of V(G)/V₀ (or equivalently t(G)/t₀). Obviously, the gain will be smaller when the start and end composition lie closer to the viscosity maximum of the considered water-organic modifier system. The assumptions underlying the obtained results (no effects of pressure and temperature on the viscosity or retention coefficient) are critically reviewed, and can be inferred to only have a small effect on the general conclusions. It is also shown that, under the adopted assumptions, the kinetic plot theory also holds for operations where the flow rate varies with the time, as is the case for constant-pressure operation. Comparing both operation modes in a kinetic plot representing the maximal peak capacity versus time, it is theoretically predicted here that both modes can be expected to perform equally well in the fully C-term dominated regime (where H varies linearly with the flow rate), while the constant pressure mode is advantageous for all lower flow rates. Near the optimal flow rate, and for linear gradients running from 5 to 95% organic modifier, time gains of the order of some 20% can be expected (or 25-30% when accounting for
Copepod feeding currents : flow patterns, filtration rates and energetics
van Duren, LA; Stamhuis, EJ; Videler, JJ
2003-01-01
Particle image velocimetry was used to construct a quasi 3-dimensional image of the flow generated by the feeding appendages of the calanoid copepod Temora longicornis. By scanning layers of flow, detailed information was obtained on flow velocity and velocity gradients. The flow around feeding T. l
Yoon, Seok Ho; Lee, Jungho; Yu, Cheong Hwan; Park, San-Jin; Chung, Chang-Hwan
2010-06-01
For testing large-capacity pump, the accurate flow rate measurement is needed in the test loop. As a measuring method of flow rate, venturi tube is recommended due to its low pressure loss. However, upstream disturbance of loop component such as valve has an effect upon the accuracy of flow rate measurement. For controlling flow rate in case of high flow rate and large-scale piping system, butterfly-type valve is generally used due to its compactness. However, butterfly valve disturbs downstream flow by generating turbulence, cavities, or abrupt pressure change. In this study, the effect of downstream disturbance of butterfly valve on the flow rate measurement using venturi tube is investigated. Test loop consists of circulation pump, reservoir, butterfly valve, venturi tube, and reference flow meter. The test is conducted with regard to a different valve opening angle of butterfly valve. PIV system is used to visualize and analyze flow in the downstream region of butterfly valve. According to valve opening angle, the flow characteristics and the accuracy of flow rate measurement are investigated.
Design and construction of a novel Coriolis mass flow rate meter
Mehendale, Aditya; Zwikker, Rini; Jouwsma, Wybren
2009-01-01
The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente
Design and construction of a novel Coriolis mass flow rate meter
Mehendale, A.; Zwikker, Rini; Jouwsma, Wybren
2009-01-01
The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente
GROWTH RATE DISPERSION (GRD OF THE (010 FACE OF BORAX CRYSTALS IN FLOWING SOLUTION
Suharso Suharso
2010-06-01
Full Text Available The growth rates of borax crystals from aqueous solutions in the (010 direction at various flow rates were measured. The observed variations of the growth rate can be represented by a normal distribution. It was found that there is no correlation between growth rate distribution and solution flow under these experimental conditions. Keywords: Growth rate dispersion (GRD, borax, flow rate
Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant
Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.
2017-03-01
The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.
LI Yi-min; ZHOU Zhong-ning
2008-01-01
Because of unstable properties of axial mine flow fans working under conditions of low flow rates, the safety and reli-ability of fans in their operational zone is reduced. At times, serious vibration may bring about the destruction of equipment or even jeopardize the safety of entire factories. By means of oil flow visualization techniques and numerical simulation, we have investi-gated the inner-flow of an axial mine flow fan working under low flow rate conditions. The fundamental reasons of complex flow phenomena of the inner-flow of the flow fan under these stated conditions were revealed. At the same time and in order to improve the inner-flow under conditions of low flow rates, a blade separator and air separator were designed. From our tests we found that the blade separator and air separator are two kinds efficient methods to improve the unstable working characteristics of the axial mine flow fan operating under low flow rate conditions. The effect of the improvement of the air separator is stronger than that of the blade separator.
High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography.
van Leeuwen, T G; Kulkarni, M D; Yazdanfar, S; Rollins, A M; Izatt, J A
1999-11-15
Color Doppler optical coherence tomography (CDOCT) is capable of precise velocity mapping in turbid media. Previous CDOCT systems based on the short-time Fourier transform have been limited to maximum flow velocities of the order of tens of millimeters per second. We describe a technique, based on interference signal demodulation at multiple frequencies, to extend the physiological relevance of CDOCT by increasing the dynamic range of measurable velocities to hundreds of millimeters per second. The physiologically important parameter of shear rate is also derived from CDOCT measurements. The measured flow-velocity profiles and shear-rate distributions correlate very well with theoretical predictions. The multiple demodulation technique, therefore, may be useful to monitor blood flow in vivo and to identify regions with high and low shear rates.
Eduard Hanslík
2016-06-01
The results show that in the monitored profiles, there is a direct relationship with flow rate in case of N-NO3-, suspended solids and O2. Temperature shows an inverse relationship with the flow rate. Other parameters show different relationship with the flow rate in individual monitored profiles or do not show statistically significant relation.
Van Deynse, A.; Cools, P.; Leys, C.; De Geyter, N.; Morent, R.
2015-02-01
Atmospheric pressure plasma technology offers attractive perspectives to alter the surface properties of polymers. Within this context, the surface modification of polyethylene (LDPE) by an argon atmospheric pressure plasma jet (APPJ) is profoundly investigated in this work. The influence of two different parameters (applied power and argon flow rate) on the plasma jet characteristics and the LDPE surface properties is examined in detail. In a first step, the APPJ is electrically and visually characterized and visual inspection of the afterglow clearly shows that mainly a variation in argon flow rate can result in a changing afterglow length. A maximum afterglow length is obtained at an argon flow rate of 1-1.25 slm, while higher gas flows result in turbulence leading to a shorter afterglow. Secondly, the surface modification of LDPE is examined using different analyzing techniques namely water contact angle (WCA) measurements for the wettability, X-ray photoelectron spectroscopy (XPS) for the chemical composition and atomic force microscopy (AFM) for the surface morphology determination. WCA measurements show that by increasing the applied power the wettability of the LDPE increases. Increasing the argon flow rate up to 1.25 slm gives a decrease in WCA value or in other words an increased wettability. From 1.25 slm on, an increase in argon flow rate during plasma treatment decreases the LDPE wettability as can be concluded from the increased WCA values. An increased wettability can be explained by the incorporation of oxygen moieties. By increasing the discharge power, the concentrations of all oxygen containing groups such as Csbnd O, Cdbnd O and Osbnd Cdbnd O increase. Increasing the flow rate up to 1.25 slm results mainly in an increase in Osbnd Cdbnd O groups. However, from a flow rate of 1.25 slm on, the concentration of all oxygen groups again decreases. Based on these results, the appropriate settings for an efficient plasma treatment can easily be selected.
Zhang, J; Jones, M; Shandas, R; Valdes-Cruz, L M; Murillo, A; Yamada, I; Kang, S U; Weintraub, R G; Shiota, T; Sahn, D J
1993-02-01
The proximal flow convergence method of multiplying color Doppler aliasing velocity by flow convergence surface area has yielded a new means of quantifying flow rate by noninvasively derived measurements. Unlike previous methods of visualizing the turbulent jet of mitral regurgitation on color flow Doppler mapping, flow convergence methods are less influenced by machine factors because of the systematic structure of the laminar flow convergence region. However, recent studies have demonstrated that the flow rate calculated from the first aliasing boundary of color flow Doppler imaging is dependent on orifice size, flow rate, aliasing velocity and therefore on the distance from the orifice chosen for measurement. In this study we calculated the regurgitant flow rates acquired by use of multiple proximal aliasing boundaries on color Doppler M-mode traces and assessed the effect of distances of measurement and aliasing velocities on the calculated regurgitant flow rate. Six sheep with surgically induced mitral regurgitation were studied. The distances from the mitral valve leaflet M-mode line to the first, second, and third sequential aliasing boundaries on color Doppler M-mode traces were measured and converted to the regurgitant flow rates calculated by applying the hemispheric flow equation and averaging instantaneous flow rates throughout systole. The flow rates that were calculated from the first, second, and third aliasing boundaries correlated well with the actual regurgitant flow rates (r = 0.91 to 0.96). The mean percentage error from the actual flow rates were 151% for the first aliasing boundary, 7% for the second aliasing boundary, and -43% for the third aliasing boundary; and the association between aliasing velocities and calculated flow rates indicates an inverse relationship, which suggests that in this model, there were limited velocity-distance combinations that fit with a hemispheric assumption for flow convergence geometry. The second aliasing
Method and apparatus for controlling the flow rate of mercury in a flow system
Grossman, Mark W.; Speer, Richard
1991-01-01
A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.
Sengupta, Tapan K.; Gullapalli, Atchyut
2016-11-01
Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].
Volumetric flow rate comparisons for water and product on pasteurization systems.
Schlesser, J E; Stroup, W H; McKinstry, J A
1994-04-01
A flow calibration tube system was assembled to determine the volumetric flow rates for water and various dairy products through a holding tube, using three different flow promotion methods. With the homogenizer, the volumetric flow rates of water and reconstituted skim milk were within 1.5% of each other. With the positive displacement pump, the flow rate for reconstituted skim milk increased compared with that for water as the pressure increased or temperature decreased. The largest increase in flow rate was at 310-kPa gauge and 20 degrees C. On a magnetic flow meter system, the volumetric flow rates of water and reconstituted skim milk were within .5% of the flow rate measured from the volume collected in a calibrated tank. The flow rate of whole milk was similar to that of skim milk on the three flow promoters evaluated. Ice milk mix increased the flow rate of the positive displacement pump, but not the homogenizer and magnetic flow meter system.
Nielsen, K G; Auk, I L; Bojsen, K
1998-01-01
In vitro studies with the Diskus inhaler at low and high flow rates show consistent doses of drug as fine particles ... at low (30 L x min[-1]) and high (90 L x min[-1]) flow rates. A pilot study in 129 children aged 3-10 yrs demonstrated that 99% of children of 3 yrs and above can generate a flow > or = 30 L x min(-1) through the device, while 26% performed > or = 90 L x min(-1). Eighteen children aged 8-15 yrs...... with exercise induced asthma inhaled placebo or salmeterol 50 microg at either 30 L x min(-1) or 90 L x min(-1). Exercise challenges were carried out 1 h and 12 h after dosing. The maximum percentage fall in forced expiratory volume in one second (FEVI) after exercise 12 h after treatment was significantly less...
Osada, T; Iwane, H; Katsumura, T; Murase, N; Higuchi, H; Sakamoto, A; Hamaoka, T; Shimomitsu, T
2012-03-01
To examine the blood flow (BF) response in the lower abdomen (LAB) in recovery following upright cycling exercise at three levels of relative maximum pulmonary oxygen consumption (VO(2max)) and the relationship of BF(LAB) to heart rate (HR) and target intensity. For 11 healthy subjects, BF (Doppler ultrasound) in the upper abdominal aorta (Ao) above the coeliac trunk and in the right femoral artery (RFA) was measured repeatedly for 720 s after the end of cycling exercises at target intensities of 30%, 50% and 85% VO(2max), respectively. Blood flow in the lower abdomen (BF(LAB)) can be measured by subtracting bilateral BF(FAs) (≈twofolds of BF(RFA)) from BF(Ao). Change in BF(LAB) (or BF(LAB) volume) at any point was evaluated by difference between change in BF(Ao) and in BF(FAs). Heart rate and blood pressure were also measured. At 85% VO(2max), significant reduction in BF(LAB) by approx. 89% was shown at 90 s and remained until 360 s. At 50% VO(2max), reduction in BF(LAB) by approx. 33% was found at 90 s although it returned to pre-exercise value at 120 s. On the contrary at 30% VO(2max), BF(LAB) showed a light increase (exercise intensities. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
Vigne, Emmanuelle; Choubert, Jean-Marc; Canler, Jean-Pierre; Heduit, Alain; Sørensen, Kim Helleshøj; Lessard, Paul
2011-01-01
The vertical distribution of nitrification performances in an up-flow biological aerated filter operated at tertiary nitrification stage is evaluated in this paper. Experimental data were collected from a semi-industrial pilot-plant under various operating conditions. The actual and the maximum nitrification rates were measured at different levels inside the up-flow biofilter. A nitrogen loading rate higher than 1.0 kg NH4-Nm(-3)_mediad(-1) is necessary to obtain nitrification activity over all the height of the biofilter. The increase in water and air velocities from 6 to 10 m h(-1) and 10 to 20 m h(-1) has increased the nitrification rate by 80% and 20% respectively. Backwashing decreases the maximum nitrification rate in the media by only 3-14%. The nitrification rate measured at a level of 0.5 m above the bottom of the filter is four times higher than the applied daily average volumetric nitrogen loading rate up to 1.5 kg NH4-N m(-3)_mediad(-1). Finally, it is shown that 58% of the available nitrification activity is mobilized in steady-state conditions while up to 100% is used under inflow-rate increase.
Correia, Mafalda; Provost, Jean; Tanter, Mickael; Pernot, Mathieu
2016-12-01
We present herein 4D ultrafast ultrasound flow imaging, a novel ultrasound-based volumetric imaging technique for the quantitative mapping of blood flow. Complete volumetric blood flow distribution imaging was achieved through 2D tilted plane-wave insonification, 2D multi-angle cross-beam beamforming, and 3D vector Doppler velocity components estimation by least-squares fitting. 4D ultrafast ultrasound flow imaging was performed in large volumetric fields of view at very high volume rate (>4000 volumes s-1) using a 1024-channel 4D ultrafast ultrasound scanner and a 2D matrix-array transducer. The precision of the technique was evaluated in vitro by using 3D velocity vector maps to estimate volumetric flow rates in a vessel phantom. Volumetric Flow rate errors of less than 5% were found when volumetric flow rates and peak velocities were respectively less than 360 ml min-1 and 100 cm s-1. The average volumetric flow rate error increased to 18.3% when volumetric flow rates and peak velocities were up to 490 ml min-1 and 1.3 m s-1, respectively. The in vivo feasibility of the technique was shown in the carotid arteries of two healthy volunteers. The 3D blood flow velocity distribution was assessed during one cardiac cycle in a full volume and it was used to quantify volumetric flow rates (375 ± 57 ml min-1 and 275 ± 43 ml min-1). Finally, the formation of 3D vortices at the carotid artery bifurcation was imaged at high volume rates.
Van Deynse, A., E-mail: Annick.VanDeynse@ugent.be [Department Industrial Technology and Construction, Faculty of Engineering & Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent (Belgium); Cools, P., E-mail: Pieter.Cools@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Leys, C., E-mail: Christophe.Leys@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); De Geyter, N., E-mail: Nathalie.DeGeyter@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Morent, R., E-mail: Rino.Morent@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium)
2015-02-15
Highlights: • Surface modification of polyethylene by an argon atmospheric pressure plasma jet. • Investigation of the influence of the applied power and argon flow rate. • Turbulence in the gas flow leads to a shorter afterglow. • Turbulence in the gas flow results in a lower wettability of the polyethylene. • Increasing the applied power increases the wettability of the polyethylene. - Abstract: Atmospheric pressure plasma technology offers attractive perspectives to alter the surface properties of polymers. Within this context, the surface modification of polyethylene (LDPE) by an argon atmospheric pressure plasma jet (APPJ) is profoundly investigated in this work. The influence of two different parameters (applied power and argon flow rate) on the plasma jet characteristics and the LDPE surface properties is examined in detail. In a first step, the APPJ is electrically and visually characterized and visual inspection of the afterglow clearly shows that mainly a variation in argon flow rate can result in a changing afterglow length. A maximum afterglow length is obtained at an argon flow rate of 1–1.25 slm, while higher gas flows result in turbulence leading to a shorter afterglow. Secondly, the surface modification of LDPE is examined using different analyzing techniques namely water contact angle (WCA) measurements for the wettability, X-ray photoelectron spectroscopy (XPS) for the chemical composition and atomic force microscopy (AFM) for the surface morphology determination. WCA measurements show that by increasing the applied power the wettability of the LDPE increases. Increasing the argon flow rate up to 1.25 slm gives a decrease in WCA value or in other words an increased wettability. From 1.25 slm on, an increase in argon flow rate during plasma treatment decreases the LDPE wettability as can be concluded from the increased WCA values. An increased wettability can be explained by the incorporation of oxygen moieties. By increasing the
Effects of inlet radius and bell mouth radius on flow rate and sound quality of centrifugal blower
Son, Pham Ngoc; Kim, Jae Won; Byun, S. M. [Sunmoon University, Asan (Korea, Republic of); Ahn, E. Y. [Hanbat National University, Daejeon (Korea, Republic of)
2012-05-15
The effect of inlet radius and bell mouth radius on flow rate of centrifugal blower were numerically simulated using a commercial CFD program, FLUENT. In this research, a total of eight numerical models were prepared by combining different values of bell mouth radii and inlet radii (the cross section of bell mouth was chosen as a circular arc in this research). The frozen rotor method combined with a realizable k-epsilon turbulence model and non-equilibrium wall function was used to simulate the three-dimensional flow inside the centrifugal blowers. The inlet radius was then revealed to have significant impact on flow rate with the maximum difference between analyzed models was about 4.5% while the bell mouth radius had about 3% impact on flow rate. Parallel experiments were carried out to confirm the results of CFD analysis. The CFD results were thereafter validated owning to the good agreement between CFD results and the parallel experiment results. In addition to performance analysis, noise experiments were carried out to analyze the dependence of sound quality on inlet radius and bell mouth radius with different flow rate. The noise experiment results showed that the loudness and sharpness value of different models were quite similar, which mean the inlet radius and the bell mouth radius didn't have a clear impact on sound quality of centrifugal blower.
40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.
2010-07-01
... definitions. (1) Sample flow rate means the quantitative volumetric flow rate of the air stream caused by the... the flow rate cut-off test, download the archived data from the test sampler and verify that the...
34 CFR 694.9 - What is the maximum indirect cost rate for an agency of a State or local government?
2010-07-01
... for an agency of a State or local government? Notwithstanding 34 CFR 75.560-75.562 and 34 CFR 80.22, the maximum indirect cost rate that an agency of a State or local government receiving funds under... a State or local government? 694.9 Section 694.9 Education Regulations of the Offices of...
Dividend growth, cash flow, and discount rate news
Garrett, Ian; Priestley, Richard
2012-01-01
Using a new variable based on a model of dividend smoothing, we find that dividend growth is highly predictable and that cash flow news contributes importantly to return variability. Cash flow betas derived from this predictability are central to explaining the size effect in the cross section of returns. However, they do not explain the value effect; this is explained by noise betas. We also find that the relative importance of cash flow news in explaining recent stock price run-ups and subs...
Dividend growth, cash flow, and discount rate news
Garrett, Ian; Priestley, Richard
2012-01-01
Using a new variable based on a model of dividend smoothing, we find that dividend growth is highly predictable and that cash flow news contributes importantly to return variability. Cash flow betas derived from this predictability are central to explaining the size effect in the cross section of returns. However, they do not explain the value effect; this is explained by noise betas. We also find that the relative importance of cash flow news in explaining recent stock price run-ups and subs...
DONG Yuxiang; S L NAMIKAS; P A HESP; MA Jun
2008-01-01
The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Province,which is one of the most typical coastal aeolian distribution regions in China and famous for the tall and typical coastal transverse ridges.The measurement results show that,on the conditions of approximate wind velocities and same surface materials and environments,some changes happen to the structure of wind-sand flow with the increase of total sand transport rate on the crest of coastal transverse ridge.First,the sand transport rates of layers at different heights in the wind-sand flow increase,with the maximum increase at the height layer of 4-8cm.Second,the ratios of sand transport rates of layers at different heights to total sand transport rate decrease at the low height layer (0-4cm),but increase at the high height layer (4-60cm).Third,the distribution of the sand transport rate in the wind-sand flow can be expressed by an exponential function at the height layer of 0-40cm,but it changes fi'om power function model to exponential function model in the whole height layer (0-60cm) and changes into polynomial function model at the height layer of 40-60cm with the increase of total sand transport rate.Those changes have a close relationship with the limit of sand grain size of wind flow transporting and composition of sand grain size in the wind-sand flow.
无
2010-01-01
The main goal of this work is to investigate the possible different flow patterns existing in pump turbine under off-design conditions in pump mode. Numerical simulations by solving the Navier-Stokes equation, coupled with the "SST k-ω" turbulence model, were carried out. Flow characteristics were assumed to be stalled in the appropriate region of ?ow rate levels of Q/QD=0.15–0.61. The simulation result was compared with experimental data and they showed good agreement. Consequently, velocity fields in three axial locations in stay vanes and guide vanes were analysed in details. It was shown that "jet-wake" flow pattern exists near the band, which changes little in the whole shape with flow rate increasing; to the middle location of vanes, reverse flow begins to appear on the interface between the runner and guide vanes, which will disappear gradually as the flow rate increases; massive reverse flow is captured near the crown, whose intensity will be weakened as the flow rate increases. Ultimately, it was found that the special head-flow profile can be ascribed to the special hydraulic loss characteristics of the stay vanes and guide vanes.
Yu. M. Timofeev
2016-01-01
Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the
Influence of total gas flow rate on microcrystalline silicon films prepared by VHF-PECVD
Gao Yan-Tao; Zhang Xiao-Dan; Zhao Ying; Sun Jian; Zhu Feng; Wei Chang-Chun; Chen Fei
2006-01-01
Hydrogenated microcrystalline silicon (μc-Si:H) films are fabricated by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at a silane concentration of 7% and a varying total gas flow rate (H2+SiH4).Relations between the total gas flow rate and the electrical and structural properties as well as deposition rate of the films are studied. The results indicate that with the total gas flow rate increasing the photosensitivity and deposition rate increase, but the crystalline volume fraction (Xc) and dark conductivity decrease. And the intensity of (220) peak first increases then decreases with the increase of the total gas flow rate. The cause for the changes in the structure and deposition rate of the films with the total gas flow rate is investigated using optical emission spectroscopy (OES).
An electronic flow control system for a variable-rate tree sprayer
Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...
Real time mass flow rate measurement using multiple fan beam optical tomography.
Abdul Rahim, R; Leong, L C; Chan, K S; Rahiman, M H; Pang, J F
2008-01-01
This paper presents the implementing multiple fan beam projection technique using optical fibre sensors for a tomography system. From the dynamic experiment of solid/gas flow using plastic beads in a gravity flow rig, the designed optical fibre sensors are reliable in measuring the mass flow rate below 40% of flow. Another important matter that has been discussed is the image processing rate or IPR. Generally, the applied image reconstruction algorithms, the construction of the sensor and also the designed software are considered to be reliable and suitable to perform real-time image reconstruction and mass flow rate measurements.
Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.
Vitale, Sarah A; Robbins, Gary A
2017-03-22
Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%.
High Sensitivity Carbon Nanotubes Flow-Rate Sensors and Their Performance Improvement by Coating
Xing Yang
2010-05-01
Full Text Available A new type of hot-wire flow-rate sensor (HWFS with a sensing element made of a macro-sized carbon nanotube (CNT strand is presented in this study. An effective way to improve repeatability of the CNT flow-rate sensor by coating a layer of Al2O3 on the CNT surface is proposed. Experimental results show that due to the large surface-to-volume ratio and thin coated Al2O3 layer, the CNT flow-rate sensor has higher sensitivity and faster response than a conventional platinum (Pt HWFS. It is also demonstrated that the covered CNT flow-rate sensor has better repeatability than its bare counterpart due to insulation from the surrounding environment. The proposed CNT flow-rate sensor shows application potential for high-sensitivity measurement of flow rate.
Lee, Sang-Yong; Ortega, Antonio
2000-04-01
We address the problem of online rate control in digital cameras, where the goal is to achieve near-constant distortion for each image. Digital cameras usually have a pre-determined number of images that can be stored for the given memory size and require limited time delay and constant quality for each image. Due to time delay restrictions, each image should be stored before the next image is received. Therefore, we need to define an online rate control that is based on the amount of memory used by previously stored images, the current image, and the estimated rate of future images. In this paper, we propose an algorithm for online rate control, in which an adaptive reference, a 'buffer-like' constraint, and a minimax criterion (as a distortion metric to achieve near-constant quality) are used. The adaptive reference is used to estimate future images and the 'buffer-like' constraint is required to keep enough memory for future images. We show that using our algorithm to select online bit allocation for each image in a randomly given set of images provides near constant quality. Also, we show that our result is near optimal when a minimax criterion is used, i.e., it achieves a performance close to that obtained by applying an off-line rate control that assumes exact knowledge of the images. Suboptimal behavior is only observed in situations where the distribution of images is not truly random (e.g., if most of the 'complex' images are captured at the end of the sequence.) Finally, we propose a T- step delay rate control algorithm and using the result of 1- step delay rate control algorithm, we show that this algorithm removes the suboptimal behavior.
Changes in Peak Expiratory Flow Rate, Blood Pressure
FinePrint
2010-03-23
Mar 23, 2010 ... (PEFR), blood pressure and pulse rate in an attempt to determine some physiological effects of ... SBP increased significantly at 4g and 6g when compared .... Decrease in heart rate associated with ... exercise performance .
The influence of the gas flow rate during methane biofiltration on an inorganic packing material
Nikiema, J.; Heitz, M. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering
2009-02-15
Sanitary landfills are a major anthropogenic source of methane (CH{sub 4}), an important greenhouse gas (GHG). In 2005, sanitary landfills contributed nearly 25 per cent of the total atmospheric CH{sub 4} emissions in Canada. In order to address this concern, 52 landfills were equipped with gas collection systems in 2005. This study measured the influence of the gas flow rate (GFR) on CH{sub 4} elimination through biofiltration and estimated the maximum level of GFR that allowed conversions within the biofilter above 90 per cent. Since CH{sub 4} biodegrades in the biofilter due to microbial activity, the efficiency of this bioprocess is affected by the number and type of microorganisms present in the biofilter. This study also compared the performance of the biofilter under different gas flow regimes, at two different phosphorus concentrations. The experiments involved the use of a nitrogen minimal salt nutrient solution, for the biofilter periodic irrigation, in which the nitrogen concentration was maintained at 0.75 g/L, while the phosphorus concentration was 1.5 g/L. The objective was to determine if the phosphorus concentration can modify the influence of the GFR on the biofilter. The results showed that the GFR is an important parameter which affects the biofilter performance. It was concluded that the biofiltration process requires a high phosphorus level in the nutrient solution. 23 refs., 2 tabs., 5 figs.
Nonlinear Analysis of Bedload Transport Rate of Paroxysm Debris Flow
无
2005-01-01
The evolution characteristics of bedload transport feature of paroxysm debris flow have been studied by means of both theory analysis and experimental data.The analysis based on the flume experiment data of a sand pile model as well as a large amount of field data of debris flow clearly shown that the statistical distribu- tion for the main variable of the sand pile made of non-uniform sand (according the sand pile experiment,φ≥2.55) conform to the negative power law,that means the non-uniform sand syste...
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Young chicken and squab slaughter... INSPECTION REGULATIONS Operating Procedures § 381.67 Young chicken and squab slaughter inspection rate... inspector per minute under the traditional inspection procedure for the different young chicken and...
Skjaerpe Terje
2003-04-01
Full Text Available Abstract Background Strain Rate Imaging shows the filling phases of the left ventricle to consist of a wave of myocardial stretching, propagating from base to apex. The propagation velocity of the strain rate wave is reduced in delayed relaxation. This study examined the relation between the propagation velocity of strain rate in the myocardium and the propagation velocity of flow during early filling. Methods 12 normal subjects and 13 patients with treated hypertension and normal systolic function were studied. Patients and controls differed significantly in diastolic early mitral flow measurements, peak early diastolic tissue velocity and peak early diastolic strain rate, showing delayed relaxation in the patient group. There were no significant differences in EF or diastolic diameter. Results Strain rate propagation velocity was reduced in the patient group while flow propagation velocity was increased. There was a negative correlation (R = -0.57 between strain rate propagation and deceleration time of the mitral flow E-wave (R = -0.51 and between strain rate propagation and flow propagation velocity and there was a positive correlation (R = 0.67 between the ratio between peak mitral flow velocity / strain rate propagation velocity and flow propagation velocity. Conclusion The present study shows strain rate propagation to be a measure of filling time, but flow propagation to be a function of both flow velocity and strain rate propagation. Thus flow propagation is not a simple index of diastolic function in delayed relaxation.
Flow Rate in the Discharge of a Two-dimensional Silo
Zuriguel, I.; Janda, A.; Garcimartín, A.; Maza, D.
2009-06-01
We present an experimental study of the flow rate in the discharge of a flat bottomed two-dimensional silo. The results of the flow rate dependence on the size of the orifice evidence that the Beverloo expression is not valid for small outlet sizes. This behavior is related with the properties of the flow rate which has been found to fluctuate in a gaussian like form for large orifices. On the contrary, for small orifices extreme events appear at zero flow rates causing a significant slow down of the average flow rate. These events are explained in terms of the existence of arches that block the outlet instantaneously but are unstable to permanently halt the flow.
Litter ammonia losses amplified by higher air flow rates
ABSTRACT Broiler litter utilization has largely been associated with land application as fertilizer. Reducing ammonia (NH3) released from litter enhances its fertilizer value and negates detrimental impacts to the environment. A laboratory study was conducted to quantify the effect of air flow var...
Serejo, Mayara L; Posadas, Esther; Boncz, Marc A; Blanco, Saúl; García-Encina, Pedro; Muñoz, Raúl
2015-03-03
The influence of biogas flow rate (0, 0.3, 0.6, and 1.2 m(3) m(-2) h(-1)) on the elemental and macromolecular composition of the algal-bacterial biomass produced from biogas upgrading in a 180 L photobioreactor interconnected to a 2.5 L external bubbled absorption column was investigated using diluted anaerobically digested vinasse as cultivation medium. The influence of the external liquid recirculation/biogas ratio (0.5 biogas, was also evaluated. A L/G ratio of 10 was considered optimum to support CO2 and H2S removals of 80% and 100%, respectively, at all biogas flow rates tested. Biomass productivity increased at increasing biogas flow rate, with a maximum of 12 ± 1 g m(-2) d(-1) at 1.2 m(3) m(-2) h(-1), while the C, N, and P biomass content remained constant at 49 ± 2%, 9 ± 0%, and 1 ± 0%, respectively, over the 175 days of experimentation. The high carbohydrate contents (60-76%), inversely correlated to biogas flow rates, would allow the production of ≈100 L of ethanol per 1000 m(3) of biogas upgraded under a biorefinery process approach.
A decomposition based on path sets for the Multi-Commodity k-splittable Maximum Flow Problem
Gamst, Mette
Switching. In the literature, the problem is solved to optimality using branch-and-price algorithms built on path-based Dantzig-Wolfe decompositions. This paper proposes a new branch-and-price algorithm built on a path set-based Dantzig-Wolfe decomposition. A path set consists of up to k paths, each...... carrying a certain amount of flow. The new branch-and-price algorithm is implemented and compared to the leading algorithms in the literature. Results for the proposed method are competitive and the method even has best performance on some instances. However, the results also indicate some scaling issues....
Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade
Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund
2008-01-01
Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full-scale ...
In Vivo Three-Dimensional Velocity Vector Imaging and Volumetric Flow Rate Measurements
Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev
2013-01-01
scanner SARUS. Measurements are conducted on a carotid artery flow phantom from Danish Phantom Design, and 20 frames are acquired with a constant flow rate of 16.7±0.17 mL/s provided by a Shelley Medical Imaging Technologies CompuFlow 1000 system. The peak velocity magnitude in the vessel is found...
Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow
Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha
We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.
Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics
Kenny, R Jeremy; Hulka, James R.
2008-01-01
Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.
Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics
Kenny, R Jeremy; Hulka, James R.
2008-01-01
Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.
Sánchez, Raúl; Zubelzu, Sergio; Rodríguez-Sinobas, Leonor; Juana, Luis
2016-04-01
In some cases flow varies along conduits, such as in irrigated land drainage pipes and channels, irrigation laterals and others. Detailed knowledge of flow rate along the conduit makes possible analytical evaluation of water distribution and collection systems performance. Flow rate can change continuously in some systems, like in drainage pipes and channels, or abruptly, like in conduits bifurcations or emitter insertions. A heat pulse along the conduit makes possible to get flow rate from continuity and heat balance equations. Due to the great value of specific heat of water, temperature changes along conduit are smaller than the noise that involves the measurement process. This work presents a methodology that, dealing with the noise of distributed temperature measurements, leads to flow rate determination along pressurized pipes or open channel flows.
Navazesh, M; Mulligan, R A; Kipnis, V; Denny, P A; Denny, P C
1992-06-01
Unstimulated and chewing-stimulated whole saliva samples were obtained from 42 healthy Caucasians; 21 were between 18 and 35 years of age, and 21 between 65 and 83 years of age. The unstimulated salivary flow rate was significantly lower in the aged group, but the stimulated flow rate was significantly higher in the aged than in the young group. Both groups showed significantly increased flow during salivary stimulation. MG1 and MG2 concentrations in unstimulated and stimulated saliva samples were significantly lower in the aged group. There were no significant correlations between salivary flow rates and MG1 and MG2 concentrations.
Wang Sheng-zu
2006-01-01
According to the "Netlike Plastic-Flow (NPF)" continental dynamics model, the transition of the deformation regime from brittle in shallow layers to ductile in deep layers in the lithosphere, and the controlling effect of NPF in the lower lithosphere result in intraplate multilayer tectonic deformation. NPF is a viscous (plastic) flow accompanied by shear strain localization, forming a plastic-flow network in the lower lithosphere. The strain rates in the seismogenic layer can be estimated using the "earthquake-recurrence-interval" method, in which the strain rate is calculated in terms of the recurrence interval of two sequential carthquakes and the seismic probability of the second earthquake. The strains in the lower lithosphere are estimated using the "conjugate-angle" method, which takes the relationship between the conjugate angles and the compressive strains of the network, and calculates the characteristic strain rates in this layer from the strains and the durations of deformation inferred. The contour map of characteristic maximum principal compressive strain rates in the lower lithosphere in central-eastern Asia given in the paper shows strain rates with magnitudes on the order of 10-15 ～ 10-14/s in this region. The strain rates within the plastic-flow belts,which control seismic activities in the seismogenic layer, are greater than the characteristic strain rates of the network and, in addition, the strain rates and seismic activities in the seismogenic layer are also influenced by other factors, including the directive action of driving boundary along the upper crust, the effects of plastic-flow waves and the existence of the transitional weak layer distributed discontinuously between the upper and lower layers. The comparison between the strain rates in the seismogenic layer and the characteristic strain rates in the lower lithosphere for 11 potential hypocenter areas in the region from the Qinghai-Xizang (Tibet) plateau to the North China plain
Parametric expressions of tritium flow rates and inventories in a target factory
Sherohman, J.W.
1980-12-29
Parametric expressions have been derived for tritium flow rates and inventories in a target factory. The expressions are based on a tritium system that interfaces with a generalized target production process. The relationship of flow rates and inventories to target production form a basis for parametric study to determine the amount of tritium involved in the target factory of an ICF power plant.
Dang, Cuong Cao; Le, Vinh Sy; Gascuel, Olivier; Hazes, Bart; Le, Quang Si
2014-10-24
Amino acid replacement rate matrices are a crucial component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Ideally, the rate matrix reflects the mutational behavior of the actual data under study; however, estimating amino acid replacement rate matrices requires large protein alignments and is computationally expensive and complex. As a compromise, sub-optimal pre-calculated generic matrices are typically used for protein-based phylogeny. Sequence availability has now grown to a point where problem-specific rate matrices can often be calculated if the computational cost can be controlled. The most time consuming step in estimating rate matrices by maximum likelihood is building maximum likelihood phylogenetic trees from protein alignments. We propose a new procedure, called FastMG, to overcome this obstacle. The key innovation is the alignment-splitting algorithm that splits alignments with many sequences into non-overlapping sub-alignments prior to estimating amino acid replacement rates. Experiments with different large data sets showed that the FastMG procedure was an order of magnitude faster than without splitting. Importantly, there was no apparent loss in matrix quality if an appropriate splitting procedure is used. FastMG is a simple, fast and accurate procedure to estimate amino acid replacement rate matrices from large data sets. It enables researchers to study the evolutionary relationships for specific groups of proteins or taxa with optimized, data-specific amino acid replacement rate matrices. The programs, data sets, and the new mammalian mitochondrial protein rate matrix are available at http://fastmg.codeplex.com.
Impact of catheter on uroflow rate in pressure-flow study
张鹏; 武治津; 高居忠
2004-01-01
@@ The importance of a pressure-flow study in the diagnostic work-up of patients suffering from benign prostatic hyperplasia (BPH) has been recognized. However, there is still uncertainty regarding the role the catheter might play in affecting uroflow rate during a pressure-flow study. In this present study, we retrospectively analyzed voiding data from pressure-flow studies taken before and after catheterization in 44 patients suffering from BPH to investigate whether catheterization has an effect on uroflow rate.
International Portfolio Flows and Exchange Rate Volatility for Emerging Markets
Caporale, Guglielmo Maria; Ali, Faek Menla; Spagnolo, Fabio; Spagnolo, Nicola
2015-01-01
This paper investigates the effects of equity and bond portfolio inflows on exchange rate volatility, using monthly bilateral data for the US vis-a-vis eight Asian developing and emerging countries (India, Indonesia, South Korea, Pakistan, Hong Kong, Thailand, the Philippines, and Taiwan) over the period 1993:01-2012:11, and estimating a time-varying transition probability Markov-switching model. We find that net equity (bond) inflows drive the exchange rate to a high (low) volatility state. ...
Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans
Sindrup, J H; Kastrup, J; Christensen, H
1991-01-01
was associated with a 30-40% increase in blood flow rate and a highly significant decrease in mean arterial blood pressure and heart rate (P less than 0.001 for all). Approximately 100 min after the subjects went to sleep an additional blood flow rate increment (mean 56%) and a simultaneous significant decrease......Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...... were used for measurement of blood flow rates. An automatic portable blood pressure recorder and processor unit was used for measurement of systolic blood pressure, diastolic blood pressure, and heart rate every 15 min. The change from upright to supine position at the beginning of the night period...
Jing, J.P.; Li, Z.Q.; Wang, L.; Chen, Z.C.; Chen, L.Z.; Zhang, F.C. [Harbin Institute of Technology, Harbin (China)
2011-06-15
The influence of the mass flow rate of secondary air on the gas/particle flow characteristics of a double swirl flow burner, in the near-burner region, was measured by a three-component particle-dynamics anemometer, in conjunction with a gas/particle two-phase test facility. Velocities, particle volume flux profiles, and normalized particle number concentrations were obtained. The relationship between the gas/particle flows and the combustion characteristics of the burners was discussed. For different mass flow rates of secondary air, annular recirculation zones formed only in the region of r/d=0.3-0.6 at x/d=0.1-0.3. With an increasing mass flow rate of secondary air, the peaks of the root mean square (RMS) axial fluctuating velocities, radial mean velocities, RMS radial fluctuating velocities, and tangential velocities all increased, while the recirculation increased slightly. There was a low particle volume flux in the central zone of the burner. At x/d=0.1-0.7, the profiles of particle volume flux had two peaks in the secondary air flow zone near the wall. With an increasing mass flow rate of secondary air, the peak of particle volume flux in the secondary air flow zone decreased, but the peak of particle volume flux near the wall increased. In section x/d=0.1-0.5, the particle diameter in the central zone of the burner was always less than the particle diameter at other locations.
Surface supersaturation in flow-rate modulation epitaxy of GaN
Akasaka, Tetsuya; Lin, Chia-Hung; Yamamoto, Hideki; Kumakura, Kazuhide
2017-06-01
Hillocks on N-face GaN (000 1 bar) films are effectively eliminated by group-III-source flow-rate modulation epitaxy (FME), wherein the flow-rate of group-III sources are sequentially modulated under a constant supply of NH3. A hillock-free smooth surface obtained by group-III-source FME is attributed to the enhancement of step-flow growth. We found that a hillock originates from a micropipe and grows by spiral growth around the micropipe. The spiral growth rate rapidly decreases with decreasing the degree of surface supersaturation σ, while the step-flow growth rate decreases linearly. For group-III-source FME, wherein σ is lower than conventional continuous growth, the spiral growth rate could be lower than the step-flow growth one so that the formation of hillocks is suppressed.
Adaptive real-time forecast of river flow-rates from rainfall data
Bolzern, P.; Ferrario, M.; Fronza, G.
1980-07-01
The paper describes a stochastic rainfall—river flow-rate model of the ARMAX type. Then a real-time Kalman predictor is derived from the model, namely a recursive relationship which, at the beginning of each time step, supplies the "best" forecast of future flow-rate on the basis of current rainfall and flow-rate measurements. Three different versions (ordered in the sense of increasing complexity) of the predictor are considered, corresponding to different approaches for estimating parameters and noise statistics of the stochastic model. The flood forecast performance of all predictors is tested on a real case (Lake Maggiore water system). The performance is satisfactory (for instance correlations about 99% between forecast and true values, standard deviation of the forecast error less than 1% of the average flood flow-rate) and conspicuously better than the one given by the trivial persistence predictor (the future flow-rate is the present one).
Costa, Rui J.; Wilkinson-Herbots, Hilde
2017-01-01
The isolation-with-migration (IM) model is commonly used to make inferences about gene flow during speciation, using polymorphism data. However, it has been reported that the parameter estimates obtained by fitting the IM model are very sensitive to the model’s assumptions—including the assumption of constant gene flow until the present. This article is concerned with the isolation-with-initial-migration (IIM) model, which drops precisely this assumption. In the IIM model, one ancestral population divides into two descendant subpopulations, between which there is an initial period of gene flow and a subsequent period of isolation. We derive a very fast method of fitting an extended version of the IIM model, which also allows for asymmetric gene flow and unequal population sizes. This is a maximum-likelihood method, applicable to data on the number of segregating sites between pairs of DNA sequences from a large number of independent loci. In addition to obtaining parameter estimates, our method can also be used, by means of likelihood-ratio tests, to distinguish between alternative models representing the following divergence scenarios: (a) divergence with potentially asymmetric gene flow until the present, (b) divergence with potentially asymmetric gene flow until some point in the past and in isolation since then, and (c) divergence in complete isolation. We illustrate the procedure on pairs of Drosophila sequences from ∼30,000 loci. The computing time needed to fit the most complex version of the model to this data set is only a couple of minutes. The R code to fit the IIM model can be found in the supplementary files of this article. PMID:28193727
Lombardo, L.
2016-07-18
This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north-eastern sector of Sicily (southern Italy), as test site. On 1/10/2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence-only-based statistical method was applied to obtain susceptibility models capable of distinguish future activation sites of debris flow and debris slide, which where the main source failure mechanisms for flow or avalanche type propagation. The set of predictors used in this experiment comprised primary and secondary topographic attributes, derived by processing a high resolution digital elevation model, CORINE land cover data and a set of vegetation and mineral indices obtained by processing multispectral ASTER images. All the selected data sources are dated before the disaster. A spatially random partition technique was adopted for validation, generating fifty replicates for each of the two considered movement typologies in order to assess accuracy, precision and reliability of the models. The debris slide and debris flow susceptibility models produced high performances with the first type being the best fitted. The evaluation of the probability estimates around the mean value for each mapped pixel shows an inverted relation, with the most robust models corresponding to the debris flows. With respect to the role of each predictor within the modelling phase, debris flows appeared to be primarily controlled by topographic attributes whilst the debris slides were better explained by remotely sensed derived indices, particularly by the occurrence of previous wildfires across the slope. The overall excellent performances of the two models suggest promising perspectives for
Single-pulse dynamics and flow rates of inertial micropumps
Govyadinov, A N; Markel, D P; Torniainen, E D
2015-01-01
Bubble-driven inertial pumps are a novel method of moving liquids through microchannels. We combine high-speed imaging, computational fluid dynamics (CFD) simulations and an effective one-dimensional model to study the fundamentals of inertial pumping. Single-pulse flow through 22 x 17 um2 U-shaped channels containing 4-um polystyrene tracer beads has been imaged with a high-speed camera. The results are used to calibrate the CFD and one-dimensional models to extract an effective bubble strength. Then the frequency dependence of inertial pumping is studied both experimentally and numerically. The pump efficiency is found to gradually decrease once the successive pulses start to overlap in time.
GH. ŞERBAN
2016-03-01
Full Text Available The purpose of the paper is to identify and locate some species related to habitats from Pricop-Huta-Certeze and Upper Tisa Natura 2000 Protected Areas (PHCTS and to determine if they are vulnerable to risks induced by maximum flow phases. In the first chapter are mentioned few references about the morphometric parameters of the hydrographic networks within the study area, as well as some references related to the maximum flow phases frequency. After the second chapter, where methods and databases used in the study are described, we proceed to the identification of the areas that are covered by water during flood, as well as determining the risk level related to these areas. The GIS modeling reveals small extent of the flood high risk for natural environment related to protected areas and greater extent for the anthropic environment. The last chapter refers to several species of fish and batrachia, as well as to those amphibious mammals identified in the study area that are vulnerable to floods (high turbidity effect, reduction of dissolved oxygen quantity, habitats destruction etc..
Gonzalez-Lopezlira, Rosa A; Kroupa, Pavel
2012-01-01
We analyze the relationship between maximum cluster mass, M_max, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H2) and star formation rate (Sigma_SFR) in the flocculent galaxy M33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M_max is proportional to Sigma_gas^4.7, M_max is proportional Sigma_H2^1.3, and M_max is proportional to Sigma_SFR^1.0. We rule out that these correlations result from the size of sample; hence, the change of the maximum cluster mass must be due to physical causes.
Flow rate-pressure drop relation for deformable shallow microfluidic channels
Christov, Ivan C.; Cognet, Vincent; Stone, Howard A.
2013-11-01
Laminar flow in devices fabricated from PDMS causes deformation of the passage geometry, which affects the flow rate-pressure drop relation. Having an accurate flow rate-pressure drop relation for deformable microchannels is of importance given that the flow rate for a given pressure drop can be as much as 500% of the flow rate predicted by Poiseuille's law for a rigid channel. proposed a successful model of the latter phenomenon by heuristically coupling linear elasticity with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbative derivation of the flow rate-pressure drop relation in a shallow deformable microchannel using Kirchoff-Love theory of isotropic quasi-static plate bending and Stokes' equations under a ``double lubrication'' approximation (i.e., the ratio of the channel's height to its width and of the channel's width to its length are both assumed small). Our result contains no free parameters and confirms Gervais et al.'s observation that the flow rate is a quartic polynomial of the pressure drop. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1132835.
FAN Wei; ZHANG Hongli; WANG Tao; PENG Guangzheng; ONEYAMA Naotake
2009-01-01
Regulators are important components in pneumatic system, and their flow-rate characteristics are the key parameters for designers. According to the correlatively international standard and national standard of China, which describe the flow-rate characteristics measurement method of pneumatic regulators, the pressure and the flow are measured point by point, and then the flow-rate characteristics curve is plotted point to point. This method has some disadvantages, such as equipment complexity, much air consumption, and low efficiency. To settle the problems presented above, this paper puts forward a new high efficient and energy saving flow-rate characteristics measurement method of regulators, which is based on the pressure response when charging and discharging to an isothermal tank without any flow meters. The measurement principle, the system and the steps are introduced. And the tracking differentiator is used for the data processing of the pressure difference. Two typical kinds of regulators were experimentally investigated, and their flow-rate characteristics curves were obtained with the new and the conventional method, respectively. Comparatively, it's proved that this new method is feasible because it is not only able to meet the demand of the measurement precision, but also to save energy and improve efficiency. Compared to the conventional method, the new method takes only about 1/10 amount of time and consumes about only 1/30 amount of air. Hopefully it will be able to serve as an international standard of flow-rate characteristics measurement method of regulators.
A generalized Forchheimer radial flow model for constant-rate tests
Liu, Ming-Ming; Chen, Yi-Feng; Zhan, Hongbin; Hu, Ran; Zhou, Chuang-Bing
2017-09-01
Models used for data interpretation of constant-rate tests (CRTs) are commonly derived with the assumption of Darcian flow in an idealized integer flow dimension, where the non-Darcian nature of fluid flow and the complexity of flow geometry are disregarded. In this study, a Forchheimer's law-based analytical model is proposed with the assumption of buildup (or drawdown) decomposition for characterizing the non-Darcian flow in a generalized radial formation where the flow dimension n may become non-integer. The proposed model immediately reduces to Barker's (1988) model for Darcian flow in the generalized radial formation and to Mathias et al.'s (2008) model for non-Darcian flow in a two-dimensional confined aquifer. A comparison with numerical simulations shows that the proposed model behaves well at late times for flow dimension n > 1.5. The proposed model is finally applied for data interpretation of the constant-rate pumping tests performed at Ploemeur (Le Borgne et al., 2004), showing that the intrinsic hydraulic conductivity of formations will be underestimated and the specific storage will be overestimated if the non-Darcian effect is ignored. The proposed model is an extension of the generalized radial flow (GRF) model based on Forchheimer's law, which would be of significance for data interpretation of CRTs in aquifers of complex flow geometry in which non-Darcian flow occurs.
Gian Paolo Beretta
2008-08-01
Full Text Available A rate equation for a discrete probability distribution is discussed as a route to describe smooth relaxation towards the maximum entropy distribution compatible at all times with one or more linear constraints. The resulting dynamics follows the path of steepest entropy ascent compatible with the constraints. The rate equation is consistent with the Onsager theorem of reciprocity and the fluctuation-dissipation theorem. The mathematical formalism was originally developed to obtain a quantum theoretical unification of mechanics and thermodinamics. It is presented here in a general, non-quantal formulation as a part of an effort to develop tools for the phenomenological treatment of non-equilibrium problems with applications in engineering, biology, sociology, and economics. The rate equation is also extended to include the case of assigned time-dependences of the constraints and the entropy, such as for modeling non-equilibrium energy and entropy exchanges.
Beretta, Gian P.
2008-09-01
A rate equation for a discrete probability distribution is discussed as a route to describe smooth relaxation towards the maximum entropy distribution compatible at all times with one or more linear constraints. The resulting dynamics follows the path of steepest entropy ascent compatible with the constraints. The rate equation is consistent with the Onsager theorem of reciprocity and the fluctuation-dissipation theorem. The mathematical formalism was originally developed to obtain a quantum theoretical unification of mechanics and thermodinamics. It is presented here in a general, non-quantal formulation as a part of an effort to develop tools for the phenomenological treatment of non-equilibrium problems with applications in engineering, biology, sociology, and economics. The rate equation is also extended to include the case of assigned time-dependences of the constraints and the entropy, such as for modeling non-equilibrium energy and entropy exchanges.
Passive sampling of perfluorinated chemicals in water: flow rate effects on chemical uptake.
Kaserzon, Sarit L; Vermeirssen, Etiënne L M; Hawker, Darryl W; Kennedy, Karen; Bentley, Christie; Thompson, Jack; Booij, Kees; Mueller, Jochen F
2013-06-01
A recently developed modified polar organic chemical integrative sampler (POCIS) provides a means for monitoring perfluorinated chemicals (PFCs) in water. However, changes in external flow rates may alter POCIS sampling behaviour and consequently affect estimated water concentrations of analytes. In this work, uptake kinetics of selected PFCs, over 15 days, were investigated. A flow-through channel system was employed with spiked river water at flow rates between 0.02 and 0.34 m s(-1). PFC sampling rates (Rs) (0.09-0.29 L d(-1) depending on analyte and flow rate) increased from the lowest to highest flow rate employed for some PFCs (MW ≤ 464) but not for others (MW ≥ 500). Rs's for some of these smaller PFCs were increasingly less sensitive to flow rate as this increased within the range investigated. This device shows promise as a sampling tool to support monitoring efforts for PFCs in a range of flow rate conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fachun Lai; Ming Li; Haiqian Wang; Yousong Jiang; Yizhou Song
2005-01-01
@@ SiOx (x = 0- 2) films were deposited on BK-7 substrates by a low frequency reactive magnetron sputtering system with the oxygen flow rate (OFR) changing from 0 to 30 sccm. The samples were characterized by atomic force microscopy, spectrophotometer, and X-ray photoelectron spectroscopy. The extinction coefficient and refractive index decrease, while the optical transmittance increases with the increase of OFR from 0 to 17 sccm. The root mean square surface roughness has a maximum at 10 sccm OFR. The highest deposition rate is at 15 sccm OFR. Our results show that the films deposited at 20 sccm OFR are stoichiometric silica with relatively high deposition rate, low extinction coefficient, and low surface roughness. Therefore, a precise control of OFR is very important to obtain high quality films for optical applications.
Tangential stretching rate (TSR) analysis of non premixed reactive flows
Valorani, Mauro
2016-10-16
We discuss how the Tangential stretching rate (TSR) analysis, originally developed and tested for spatially homogeneous systems (batch reactors), is extended to spatially non homogeneous systems. To illustrate the effectiveness of the TSR diagnostics, we study the ignition transient in a non premixed, reaction–diffusion model in the mixture fraction space, whose dependent variables are temperature and mixture composition. The reactive mixture considered is syngas/air. A detailed H2/CO mechanism with 12 species and 33 chemical reactions is employed. We will discuss two cases, one involving only kinetics as a model of front propagation purely driven by spontaneous ignition, the other as a model of deflagration wave involving kinetics/diffusion coupling. We explore different aspects of the system dynamics such as the relative role of diffusion and kinetics, the evolution of kinetic eigenvalues, and of the tangential stretching rates computed by accounting for the combined action of diffusion and kinetics as well for kinetics only. We propose criteria based on the TSR concept which allow to identify the most ignitable conditions and to discriminate between spontaneous ignition and deflagration front.
Jeon, Young-Chul; Kim, Sung-Hoon
2012-07-01
Carbon coils could be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under the thermal chemical vapor deposition system. The nickel catalyst layer deposition and then hydrogen plasma pretreatment were performed prior to the carbon coils deposition reaction. The flow rate and the injection time of SF6 varied according to the different reaction processes. Geometries of carbon coils developed from embryos to nanosized coils with increasing SF, flow rate from 5 to 35 sccm under the short SF6 flow injection time (5 minutes) condition. The gradual development of carbon coils geometries from nanosized to microsized types could be observed with increasing SF6 flow rate under the full time (90 minutes) SF6 flow injection condition. The flow rate of SF6 for the coil-type geometry formation should be more than or at least equal to the flow rate of carbon source gas (C2H2). A longer injection time of SF6 flow would increase the size of coils diameters from nanometer to micrometer.
Quartz measurement in coal dust with high-flow rate samplers: laboratory study.
Lee, Taekhee; Lee, Eun Gyung; Kim, Seung Won; Chisholm, William P; Kashon, Michael; Harper, Martin
2012-05-01
A laboratory study was performed to measure quartz in coal dust using high-flow rate samplers (CIP10-R, GK2.69 cyclone, and FSP10 cyclone) and low-flow rate samplers [10-mm nylon and Higgins-Dewell type (BGI4L) cyclones] and to determine whether an increased mass collection from high-flow rate samplers would affect the subsequent quartz measurement by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analytical procedures. Two different sizes of coal dusts, mass median aerodynamic diameter 4.48 μm (Coal Dust A) and 2.33 μm (Coal Dust B), were aerosolized in a calm air chamber. The mass of coal dust collected by the samplers was measured gravimetrically, while the mass of quartz collected by the samplers was determined by FTIR (NIOSH Manual of Analytical Method 7603) and XRD (NIOSH Manual of Analytical Method 7500) after one of two different indirect preparations. Comparisons between high-flow rate samplers and low-flow rate samplers were made by calculating mass concentration ratios of coal dusts, net mass ratios of coal dusts, and quartz net mass. Mass concentrations of coal dust from the FSP10 cyclone were significantly higher than those from other samplers and mass concentrations of coal dust from 10-mm nylon cyclone were significantly lower than those from other samplers, while the CIP10-R, GK2.69, and BGI4L samplers did not show significant difference in the comparison of mass concentration of coal dusts. The BGI4L cyclone showed larger mass concentration of ∼9% compared to the 10-mm nylon cyclone. All cyclones provided dust mass concentrations that can be used in complying with the International Standard Organization standard for the determination of respirable dust concentration. The amount of coal dust collected from the high-flow rate samplers was found to be higher with a factor of 2-8 compared to the low-flow rate samplers but not in direct proportion of increased flow rates. The high-flow rate samplers collected more quartz compared to
Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling
Karapetian, Emil [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Aguilar, Guillermo [Department of Biomedical Engineering, University of California, Irvine, CA (United States); Kimel, Sol [Beckman Laser Institute, University of California, Irvine, CA (United States); Lavernia, Enrique J [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Nelson, J Stuart [Department of Biomedical Engineering, University of California, Irvine, CA (United States)
2003-01-07
Cryogen spray cooling (CSC) is used to protect the epidermis during dermatologic laser surgery. To date, the relative influence of the fundamental spray parameters on surface cooling remains incompletely understood. This study explores the effects of mass flow rate and average droplet velocity on the surface heat flux during CSC. It is shown that the effect of mass flow rate on the surface heat flux is much more important compared to that of droplet velocity. However, for fully atomized sprays with small flow rates, droplet velocity can make a substantial difference in the surface heat flux. (note)
Ogawa, Akira; Anzou, Hideki; Yamamoto, So; Shimagaki, Mituru
2015-11-01
In order to control the maximum tangential velocity Vθm(m/s) of the turbulent rotational air flow and the collection efficiency ηc (%) using the fly ash of the mean diameter XR50=5.57 µm, two secondary jet nozzles were installed to the body of the axial flow cyclone dust collector with the body diameter D1=99mm. Then in order to estimate Vθm (m/s), the conservation theory of the angular momentum flux with Ogawa combined vortex model was applied. The comparisons of the estimated results of Vθm(m/s) with the measured results by the cylindrical Pitot-tube were shown in good agreement. And also the estimated collection efficiencies ηcth (%) basing upon the cut-size Xc (µm) which was calculated by using the estimated Vθ m(m/s) and also the particle size distribution R(Xp) were shown a little higher values than the experimental results due to the re-entrainment of the collected dust. The best method for adjustment of ηc (%) related to the contribution of the secondary jet flow is principally to apply the centrifugal effect Φc (1). Above stated results are described in detail.
Lexa, Frank James; Berlin, Jonathan W
2005-03-01
In this article, the authors cover tools for financial modeling. Commonly used time lines and cash flow diagrams are discussed. Commonly used but limited terms such as payback and breakeven are introduced. The important topics of the time value of money and discount rates are introduced to lay the foundation for their use in modeling and in more advanced metrics such as the internal rate of return. Finally, the authors broach the more sophisticated topic of net present value.
Lovell, Dale I; Cuneo, Ross; Gass, Greg C
2010-06-01
This study examined the effect of strength training (ST) and short-term detraining on maximum force and rate of force development (RFD) in previously sedentary, healthy older men. Twenty-four older men (70-80 years) were randomly assigned to a ST group (n = 12) and C group (control, n = 12). Training consisted of three sets of six to ten repetitions on an incline squat at 70-90% of one repetition maximum three times per week for 16 weeks followed by 4 weeks of detraining. Regional muscle mass was assessed before and after training by dual-energy X-ray absorptiometry. Training increased RFD, maximum bilateral isometric force, and force in 500 ms, upper leg muscle mass and strength above pre-training values (14, 25, 22, 7, 90%, respectively; P force and RFD of older men. However, older individuals may lose some neuromuscular performance after a period of short-term detraining and that resistance exercise should be performed on a regular basis to maintain training adaptations.
Mercury flow experiments. 4th report Measurements of erosion rate caused by mercury flow
Kinoshita, H; Hino, R; Kaminaga, M
2002-01-01
The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be we...
Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade
Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per
2007-01-01
Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...
CASH FLOW IMPLICATIONS OF FIXED VERSUS VARIABLE INTEREST RATE DEBT STRUCTURES
Moe, Lonn; Thompson, Jerry L.
1984-01-01
The objective of this study was to discover the magnitude of the effect variable rate loans have on net operating cash flow over the period from 1968 to 1981. This was done by comparing a variable rate loan model with a fixed rate loan model under varying debt loads for four farm types.
CASH FLOW IMPLICATIONS OF FIXED VERSUS VARIABLE INTEREST RATE DEBT STRUCTURES
Moe, Lonn; Thompson, Jerry L.
1984-01-01
The objective of this study was to discover the magnitude of the effect variable rate loans have on net operating cash flow over the period from 1968 to 1981. This was done by comparing a variable rate loan model with a fixed rate loan model under varying debt loads for four farm types.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
Effects of Asymmetrical Micro Electrode Surface Topography to AC Electroosmosis flow Rate
Hong-Yuan, Jiang; Zhen-Xiu, Hou; Yu-Kun, Ren; Yong-Jun, Sun
2010-01-01
AC Electroosmosis (ACEO) has many advantages such as low power consumption, non-moving parts, and easy to integrate etc., so it is widely used for low concentration microfluid manipulation in low frequency range. Classical ACEO theory assumes that electric double layer (EDL) is the main cause of electric field induced flow, and gives electric-flow field coupling equations for ACEO flow rate. But the calculation data usually are tens times faster than the experimental velocities. In this paper, electrode surface topography is included to solve ACEO flow rate. With electrode surface roughness as the characteristic parameter, equivalent EDL model is set up to modify the classical EDL model. The relationship between flow rate and electrode surface roughness is studied. Experiment results agree with the simulation very well, proving the feasibility of equivalent EDL model.
Tiwari, Arvind [Department of Design, Production and Management, University of Twente, Enschede (Netherlands); Dubey, Swapnil; Sandhu, G.S. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Sodha, M.S. [Department of Education and Physics, Lucknow University, Lucknow 226007 (India); Anwar, S.I. [Indian Institute of Sugar-cane Research, Lucknow, U.P. (India)
2009-12-15
In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, respectively, in the terms of design and climatic parameters. Further, an analysis has also been extended for hot water withdrawal at constant collection temperature. Numerical computations have been carried out for the design and climatic parameters of the system used by Huang et al. [Huang BJ, Lin TH, Hung WC, Sun FS. Performance evaluation of solar photovoltaic/thermal systems. Sol Energy 2001; 70(5): 443-8]. It is observed that the daily overall thermal efficiency of IPVTS system increases with increase constant flow rate and decrease with increase of constant collection temperature. The exergy analysis of IPVTS system has also been carried out. It is further to be noted that the overall exergy and thermal efficiency of an integrated photovoltaic thermal solar system (IPVTS) is maximum at the hot water withdrawal flow rate of 0.006 kg/s. The hourly net electrical power available from the system has also been evaluated. (author)
Macropore system characteristics controls on non-reactive solute transport at different flow rates
Larsbo, Mats; Koestel, John
2014-05-01
Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.
Malekifarsani, A; Skachek, M A
2009-10-01
shown that the concentrations of the following radionuclides are limited by solubility and precipitate around the waste and buffer: U, Np, Ra, Sm, Zr, Se, Tc, and Pd. The Sensitivity of maximum release rates in case precipitation shows that some nuclides such as Cs-135, Nb-94, Nb-93 m, Zr-93, Sn-126, Th-230, Pu-240, Pu-242, Pu-239, Cm-245, Am-243, Cm-245, U-233, Ac-227, Pb-210, Pa-231 and Th-229 are very little changed in case the maximum release rate from EBS corresponding to eliminate precipitation in buffer material. Some nuclides such as Se-79, Tc-99, Pd-107, Th-232, U-236, U-233, Ra-226, Np-237 U-235, U-234, and U-238 are virtually changed in the maximum release rate compared to case that taking account precipitation. In Sensitivity of maximum release rates in case to taking account stable isotopes (according to the table of inventory) there are only some nuclides with their stable isotopes in the vitrified waste. And calculation shows that Pd-107 and Se-79 are very increase in case eliminate stable isotope. The Sensitivity of maximum release rates in case retardation with sorption shows that some nuclides such as Pu-240, Pu-241, Pu-239, Cm-245, Am-241, Cm-246, and Am-243 are increased in some time in case maximum release rate from EBS corresponding to eliminate retardation in buffer material. Some nuclides such as U-235, U-233 and U-236 have a little decrease in case maximum release because their parents have short live and before decay to their daughter will released from the EBS. If the characteristic time taken for a nuclide to diffuse across the buffer exceeds its half-life, then the release rate of that nuclide from the EBS will be attenuated by radioactive decay. Thus, the retardation of the diffusion process due to sorption tends to reduce the release rates of short-lived nuclides more effectively than for the long-lived ones. For example, release rates of Pu-240, Cm-246 and Am-241, which are relatively short-lived and strongly sorbing, are very small
Particle Flow Cell Formation at Minimum Fluidization Flow Rates in a Rectangular Gas-Fluidized Bed.
1981-03-01
Kunii and Levenspiel Model ----------------- 66 C. FLUIDIZED BED VARIABLES THAT AFFECT HEAT TRANSFER ---------------------------------- 69 5 1...and Levenspiel Model -------------------------- 68 25. Heat transfer coefficient vs. mass velocity --------- 72 26. Contact geometry of surface-particle...becomes a very important factor. According to Kunii and Levenspiel [34], distributors should have a sufficient pressure drop to achieve equal flow
QU Tian-peng; LIU Cheng-jun; JIANG Mao-fa
2012-01-01
The fluid flow in tundish is a non-isothermal process and the temperature variation of stream from teeming ladle dominates the fluid flow and thermal distribution in tundish. A numerical model was established to investigate the effect of inlet cooling rate on fluid flow and temperature distribution in tundish based on a FTSC （Flexible Thin Slab Casting） tundish. The inlet cooling rate varies from 0. 5 to 0. 25 ~C/rain. Under the present calculation conditions, the following conclusions were made. When the stream temperature from teeming ladle drops seriously （for inlet cooling rate of 0.5℃/min）, there is a ＂backward flow＂ at the coming end of casting. The horizontal flow along the free surface turns to flow along the bottom of tundish. The bottom flow shortens the fluid flow route in tundish and deteriorates the removal effect of nonmetallic inclusions from molten steel. Nevertheless, when the inlet cooling rate decreases to 0.25℃/min, the horizontal flow is sustained during the whole casting period. The present research provides theoretical directions for temperature control in teeming ladle and continuous casting tundish during production of advanced steels.
Shuai Zeng
2013-01-01
Full Text Available With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of life. The social network of both fixed and mobile users can be seen as networked agent system. At present, kinds of devices and access network technology are widely used. Different users in this networked agent system may need different coding rates multimedia data due to their heterogeneous demand. This paper proposes a distributed flow rate control algorithm to optimize multimedia data transmission of the networked agent system with the coexisting various coding rates. In this proposed algorithm, transmission path and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed algorithm and compares the system that adopts the proposed algorithm with the existing system based on the simulation experiment and mathematical analysis. The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth utilization of user nodes and lower upload bandwidth consumption of source node.
Effects of the flow rate of hydrogen on the growth of graphene
Yong-gui Shi; Yue Hao; Dong Wang; Jin-cheng Zhang; Peng Zhang; Xue-fang Shi; Dang Han; Zheng Chai; Jing-dong Yan
2015-01-01
Graphene samples with different morphologies were fabricated on the inside of copper enclosures by low pressure chemical vapor deposition and tuning the flow rate of hydrogen. It is found that the flow rate of hydrogen greatly influences the growth of graphene. Ther-modynamic analysis indicates that a higher flow rate of hydrogen is favorable to the formation of good quality graphene with regular mor-phology. However, the mass-transfer process of methane dominates the growth driving force. At very low pressure, mass-transfer proceeds by Knudsen diffusion, and the mass-transfer flux of methane decreases as the flow rate of hydrogen increases, leading to a decrease in the growth driving force. At a higher pressure, mass-transfer proceeds by Fick’s diffusion, and the mass-transfer flux of methane is dominated by the gas velocity, whose variation determines the growth driving force variation of graphene.
Passive sampling of perfluorinated chemicals in water: Flow rate effects on chemical uptake
Kaserzon, S.L.; Vermeirssen, E.L.M.; Hawker, D.W.; Kennedy, K.; Bentley, C.; Thompson, J.; Booij, K.; Mueller, J.F.
2013-01-01
A recently developed modified polar organic chemical integrative sampler (POCIS) provides a means for monitoring perfluorinated chemicals (PFCs) in water. However, changes in external flow rates may alter POCIS sampling behaviour and consequently affect estimated water concentrations of analytes. In
Taisuke Maruyama
2015-04-01
Full Text Available Many studies have already considered starved lubrication. However, there have been no reports on the oil film thicknesses under steady starved EHL (elastohydrodynamic lubrication, where the ultra-low volume of oil supplied per unit time is uniform. The present study examined the relationship between the supplied oil flow rate and oil film thickness under steady starved lubrication. A ball-on-disk testing machine was used in experiments to measure the oil film thickness by means of optical interferometry. A microsyringe pump was used to accurately control the supplied oil flow rate. The supplied oil flow rate was kept constant, and the minimum oil film thickness was measured for 1 h after the start of the tests to determine the relationship between the supplied oil flow rate and oil film thickness.
Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst
S.A. Khorrami
2016-07-01
Full Text Available Carbon nanotubes (CNTs were grown on copper catalyst by thermal chemical vapor deposition (TCVD using H2 and N2 as carrier gases. CNTs with different morphologies were observed using different carrier gas flow rates. The influence of carrier gas flow rates on the structure of carbon nanotubes was compared. Catalyst nanolayer was sputtered on mirror polished silicon wafers. The catalyst film thickness was determined by using the Rutherford Back Scattering (RBS technique. Ethanol as carbon source has been used. The surface morphology and nanostructure were studied by Scanning Electron Microscopy (SEM, Raman Spectroscopy, Tunneling Electron Microscopy (TEM and Atomic Force Microscopy (AFM. Results indicated that the amounts of deposited carbon decrease with increasing flow rates. These results showed that CNTs’ length decreased with increasing flow rates. Results suggest that Cu nanolayer is suitable as catalyst due to the fact that CNTs are monotonous.
An in vivo assessment of the influence of needle gauges on endodontic irrigation flow rate
Velayutham Gopikrishna
2016-01-01
Statistical Analysis Used: The following tests were used for the statistical analysis: Independent sample "T" test, one-way ANOVA test, and post hoc multiple comparison was carried out using Tukey′s honest significant difference (HSD test using Statistical Package for the Social Sciences (SPSS version 16 for Windows. Results: The average flow rate of 26 gauge was 0.27 mLs−1 , of 27 gauge was 0.19 mLs−1 , and of 30 gauge was 0.09 mls−1 . There was statistical significance among the gauges (P < 0.001. 26 gauge had highest flow rate when compared with other groups followed by 27 gauge and 30 gauge respectively. The operator variability for flow rate of three endodontic irrigation needle gauges (26 gauge, 27 gauge, and 30 gauge was found to be not significant. Conclusions: Needle gauge has significant influence on endodontic irrigation flow rate.
Luis Eduardo Cruz-Martínez
2014-10-01
Full Text Available Background. The formulas to predict maximum heart rate have been used for many years in different populations. Objective. To verify the significance and the association of formulas of Tanaka and 220-age when compared to real maximum heart rate. Materials and methods. 30 subjects -22 men, 8 women- between 18 and 30 years of age were evaluated on a cycle ergometer and their real MHR values were statistically compared with the values of formulas currently used to predict MHR. Results. The results demonstrate that both Tanaka p=0.0026 and 220-age p=0.000003 do not predict real MHR, nor does a linear association exist between them. Conclusions. Due to the overestimation with respect to real MHR value that these formulas make, we suggest a correction of 6 bpm to the final result. This value represents the median of the difference between the Tanaka value and the real MHR. Both Tanaka (r=0.272 and 220-age (r=0.276 are not adequate predictors of MHR during exercise at the elevation of Bogotá in subjects of 18 to 30 years of age, although more study with a larger sample size is suggested.
Shaw, A; Takács, I; Pagilla, K R; Murthy, S
2013-10-15
The Monod equation is often used to describe biological treatment processes and is the foundation for many activated sludge models. The Monod equation includes a "half-saturation coefficient" to describe the effect of substrate limitations on the process rate and it is customary to consider this parameter to be a constant for a given system. The purpose of this study was to develop a methodology, and its use to show that the half-saturation coefficient for denitrification is not constant but is in fact a function of the maximum denitrification rate. A 4-step procedure is developed to investigate the dependency of half-saturation coefficients on the maximum rate and two different models are used to describe this dependency: (a) an empirical linear model and (b) a deterministic model based on Fick's law of diffusion. Both models are proved better for describing denitrification kinetics than assuming a fixed K(NO3) at low nitrate concentrations. The empirical model is more utilitarian whereas the model based on Fick's law has a fundamental basis that enables the intrinsic K(NO3) to be estimated. In this study data was analyzed from 56 denitrification rate tests and it was found that the extant K(NO3) varied between 0.07 mgN/L and 1.47 mgN/L (5th and 95th percentile respectively) with an average of 0.47 mgN/L. In contrast to this, the intrinsic K(NO3) estimated for the diffusion model was 0.01 mgN/L which indicates that the extant K(NO3) is greatly influenced by, and mostly describes, diffusion limitations.
Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe
2016-03-01
Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.
Two Models of DMFC under Effects of Cathode Humidification Temperature and Anode Flow Rate
无
2005-01-01
This paper introduced a novel self-adjustment of parameters of fuzzy neural networks. Then,the effects of cathode humidification temperature and anode flow rate on the performance of direct methanol fuel cell (DMFC)were described respectively. Two dynamic performance models of DMFC under the influences of cathode humidification temperature and anode flow rate were established separately based on fuzzy neural networks. The simulation results show the accuracy of the models established is satisfactory.
Joris Meurs
2016-01-01
This paper aimed to develop a standalone application for optimizing flow rates in liquid chromatography (LC), gas chromatography (GC) and supercritical fluid chromatography (SFC). To do so, Van Deemter’s equation, Knox’ equation and Golay’s equation were implemented in a MATLAB script and subsequently a graphical user interface (GUI) was created. The application will show the optimal flow rate or linear velocity and the corresponding plate height for the set input parameters. Furthermore, a p...
Effect of Flow Rate of Side-Type Orifice Intake on Withdrawn Water Temperature
Xueping Gao; Guangning Li; Yunpeng Han
2014-01-01
Side-type orifice intake is a type of selective withdrawal facility used in managing reservoirs to mitigate the negative effects of low-temperature water. Based on the temperature data of a thermal stratified reservoir in China, an experiment was conducted in flume to study the influence of intake flow rate on withdrawn water temperature with different temperature distributions. Results indicated that withdrawn water temperature changed with different flow rates. The temperature change was de...
Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.
Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming
2010-12-01
Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.
Kinkhabwala, Ali
2013-01-01
The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...
Risk Factors for Reduced Salivary Flow Rate in a Japanese Population: The Hisayama Study
Kenji Takeuchi
2015-01-01
Full Text Available The purpose of this study was to determine distinct risk factors causing reduced salivary flow rate in a community-dwelling population using a prospective cohort study design. This was a 5-year follow-up survey of 1,377 community-dwelling Japanese individuals aged ≥40 years. The salivary flow rate was evaluated at baseline and follow-up by collecting stimulated saliva. Data on demographic characteristics, use of medication, and general and oral health status were obtained at baseline. The relationship between reduced salivary flow rate during the follow-up period and its predictors was evaluated after adjustment for confounding factors. In a multivariate logistic regression model, higher age and plaque score and lower serum albumin levels were significantly associated with greater odds of an obvious reduction in salivary flow rate (age per decade, odds ratio [OR] = 1.25, 95% confidence interval [CI] = 1.03–1.51; serum albumin levels <4 g/dL, OR = 1.60, 95% CI = 1.04–2.46; plaque score ≥1, OR = 1.53, 95% CI = 1.04–2.24. In a multivariate linear regression model, age and plaque score remained independently associated with the increased rate of reduced salivary flow. These results suggest that aging and plaque score are important predictors of reduced salivary flow rate in Japanese adults.
Flow rate of polygonal grains through a bottleneck: Interplay between shape and size
Ezequiel Goldberg
2015-11-01
Full Text Available We report two-dimensional simulations of circular and polygonal grains passing through an aperture at the bottom of a silo. The mass flow rate for regular polygons is lower than for disks\\red{,} as observed by other authors. We show that both the exit velocity of the grains and the packing fraction are lower for polygons, which leads to the reduced flow rate. We point out the importance of the criteria used to define when two objects of different shape are considered to be of the same size. Depending on this criteria, the mass flow rate may vary significantly for some polygons. Moreover, the particle flow rate is non-trivially related to a combination of mass flow rate, particle shape and particle size. For some polygons, the particle flow rate may be lower or higher than that of the corresponding disks depending on the size comparison criteria. Received: 18 May 2015, Accepted: 30 October 2015; Edited by: F. Melo; Reviewed by: J.-N. Roux, Universite Parsi Est, Laboratoire Navier, Champs-sur-Marne, France; DOI: http://dx.doi.org/10.4279/PIP.070016 Cite as: E Goldberg, C M Carlevaro, L A Pugnaloni, Papers in Physics 7, 070016 (2015
Candela, Thibault; Brodsky, Emily E.; Marone, Chris; Elsworth, Derek
2015-04-01
Seismic waves have been observed to increase the permeability in fractured aquifers. A detailed, predictive understanding of the process has been hampered by a lack of constraint on the primary physical controls. What aspect of the oscillatory forcing is most important in determining the magnitude of the permeability enhancement? Here we present laboratory results showing that flow rate is the primary control on permeability increases in the laboratory. We fractured Berea sandstone samples under triaxial stresses of tens of megapascals and applied dynamic fluid stresses via pore pressure oscillations. In each experiment, we varied either the amplitude or the frequency of the pressure changes. Amplitude and frequency each separately correlated with the resultant permeability increase. More importantly, the permeability changes correlate with the flow rate in each configuration, regardless of whether flow rate variations were driven by varying amplitude or frequency. We also track the permeability evolution during a single set of oscillations by measuring the phase lags (time delays) of successive oscillations. Interpreting the responses with a poroelastic model shows that 80% of the permeability enhancement is reached during the first oscillation and the final permeability enhancement scales exponentially with the imposed change in flow rate integrated over the rock volume. The establishment of flow rate as the primary control on permeability enhancement from seismic waves opens the door to quantitative studies of earthquake-hydrogeological coupling. The result also suggests that reservoir permeability could be engineered by imposing dynamic stresses and changes in flow rate.
A constant air flow rate control of blower for residential applications
Yang, S.M. [Tamkang Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering
1998-03-01
This paper presents a technique to control a blower for residential applications at constant air flow rate using an induction motor drive. The control scheme combines a variable volt/hertz ratio inverter drive and an average motor current regulation loop to achieve control of the motor torque-speed characteristics, consequently controlling the air flow rate of the blower which the motor is driving. The controller is simple to implement and practical for commercialization. It is also reliable, since no external pressure or air flow sensor is required. Both a theoretical derivation and an experimental verification for the control scheme are presented in this paper.
Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).
Terblanche, John S; Chown, Steven L
2010-05-01
Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (prate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume.
Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter
Ileana Wald
2012-01-01
Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.
Adam, Tijjani; Hashim, U.
2017-03-01
Optimum flow in micro channel for sensing purpose is challenging. In this study, The optimizations of the fluid sample flows are made through the design and characterization of the novel microfluidics' architectures to achieve the optimal flow rate in the micro channels. The biocompatibility of the Polydimetylsiloxane (Sylgard 184 silicon elastomer) polymer used to fabricate the device offers avenue for the device to be implemented as the universal fluidic delivery system for bio-molecules sensing in various bio-medical applications. The study uses the following methodological approaches, designing a novel microfluidics' architectures by integrating the devices on a single 4 inches silicon substrate, fabricating the designed microfluidic devices using low-cost solution soft lithography technique, characterizing and validating the flow throughput of urine samples in the micro channels by generating pressure gradients through the devices' inlets. The characterization on the urine samples flow in the micro channels have witnessed the constant flow throughout the devices.
Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.
2008-01-01
A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370
Ma, Jingxing; Mungoni, Lucy Jubeki; Verstraete, Willy; Carballa, Marta
2009-07-01
The maximum propionic acid (HPr) removal rate (R(HPr)) was investigated in two lab-scale Upflow Anaerobic Sludge Bed (UASB) reactors. Two feeding strategies were applied by modifying the hydraulic retention time (HRT) in the UASB(HRT) and the influent HPr concentration in the UASB(HPr), respectively. The experiment was divided into three main phases: phase 1, influent with only HPr; phase 2, HPr with macro-nutrients supplementation and phase 3, HPr with macro- and micro-nutrients supplementation. During phase 1, the maximum R(HPr) achieved was less than 3 g HPr-CODL(-1)d(-1) in both reactors. However, the subsequent supplementation of macro- and micro-nutrients during phases 2 and 3 allowed to increase the R(HPr) up to 18.1 and 32.8 g HPr-CODL(-1)d(-1), respectively, corresponding with an HRT of 0.5h in the UASB(HRT) and an influent HPr concentration of 10.5 g HPr-CODL(-1) in the UASB(HPr). Therefore, the high operational capacity of these reactor systems, specifically converting HPr with high throughput and high influent HPr level, was demonstrated. Moreover, the presence of macro- and micro-nutrients is clearly essential for stable and high HPr removal in anaerobic digestion.
Gonzalez-Lopezlira, Rosa A; Kroupa, Pavel
2013-01-01
We analyze the relationship between maximum cluster mass, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H_2), neutral gas (Sigma_HI) and star formation rate (Sigma_SFR) in the grand design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. We find for clusters older than 25 Myr that M_3rd, the median of the 5 most massive clusters, is proportional to Sigma_HI^0.4. There is no correlation with Sigma_gas, Sigma_H2, or Sigma_SFR. For clusters younger than 10 Myr, M_3rd is proportional to Sigma_HI^0.6, M_3rd is proportional to Sigma_gas^0.5; there is no correlation with either Sigma_H_2 or Sigma_SFR. The results could hardly be more different than those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but M_3rd is proportional to Sigma_g...
R.K. Luz
2011-08-01
Full Text Available The effects of different water flow rates and feed training on the production of "pacamã" Lophiosilurus alexandri juveniles were evaluated. In the first experiment, nine day post-hatch larvae (n= 2,400 were stocked at a density of 5 larvae/L. Different water flow (F rates were tested: F1 = 180; F2 = 600; F3 = 1,300; and F4 = 2,600mL/min. Artemia nauplii were offered as food during the first 15 days of active feeding. In the second experiment for feed training, 720 juveniles (total length of 22.2mm were stocked at a density of 1.5 juveniles/L. A water flow rate similar to F1 was used. The use of extruded dry diet was tested, and feed training was done with and without other enhanced flavors (Artemia nauplii or Scott emulsion. The water flow rates did not influence the survival or growth of L. alexandri. Cannibalism occurred during feed training. The worst survival, specific growth rate and high mortality were found with the use of extruded dry diet, while similar values were registered with the different feed training diets used. Reduced water flow rate can be used to lower water consumption during larviculture and feed training of L. alexandri.
Influence of chemistry on steam generator primary-to-secondary stabilized low leak flow rate
Hervouet, C.; Pages, D. [EDF R and D (France); Fauchon, C.; Bretelle, J.L. [EDF GDL (France); Bus, F. [EDF DPN (France)
2002-07-01
The comparison of the leak flow rate behavior between the previous and the new boron/lithium coordination, the second one corresponding to an higher pH during the cycle than the first one, leads to the following conclusions, confirmed by the experimental and theoretical studies: Low leak flow rate is extremely sensitive to pH in the zone of pH of primary water because the behavior of metallic oxide is changing drastically in that range of pH (from precipitation to dissolution); Leak flow rate is often maintained lower with low pH. Let's recall however that pH can not reach a too low value which could enhance corrosion product deposition, increase dose rates along the primary circuit, and lead to reactor outages due to problems on fuel assemblies. The understanding of the governing phenomena led to adapt in 2000 the reactor cooling system chemical conditioning for the French Pressurized Water reactors facing problems with the management of the stabilized leak flow rate fluctuations, once no degradation of tube bundle integrity is proved. Each part of the cycle and operating conditions lead to an advised operating action. In general, the new recommendations for the reactors facing problems with the management of low leak flow rate are based on the principle of helping the precipitation of metallic oxide within the crack and preventing their dissolution. (authors)
Tan Chan Sin
2015-01-01
Full Text Available Productivity rate (Q or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.
High-repetition-rate XeCl waveguide laser without gas flow
Christensen, C.P.; Gordon C. III; Moutoulas, C.; Feldman, B.J.
1987-03-01
Operation of a microwave discharge XeCl laser at pulse-repetition rates extending to 8 kHz without flow of the laser gas is reported. Present limits on pulse-repetition rate appear to be imposed by thermally induced refractive-index gradients.
Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.
Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao
2017-07-18
Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r(2) of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Acute short-term mental stress does not influence salivary flow rate dynamics.
Ella A Naumova
Full Text Available BACKGROUND: Results of studies that address the influence of stress on salivary flow rate and composition are controversial. The aim of this study was to reveal the influence of stress vulnerability and different phases of stress reactivity on the unstimulated and stimulated salivary flow rate. We examined that acute mental stress does not change the salivary flow rate. In addition, we also examined the salivary cortisol and protein level in relation to acute mental stress stimuli. METHODS: Saliva of male subjects was collected for five minutes before, immediately, 10, 30 and 120 min after toothbrushing. Before toothbrushing, the subjects were exposed to acute stress in the form of a 2 min public speech. Salivary flow rate and total protein was measured. The physiological stress marker cortisol was analyzed using enzyme-linked immunosorbent assay. To determine the subjects' psychological stress reaction, the State-Trait-Anxiety Inventory State questionnaire (STAI data were obtained. The subjects were divided into stress subgroup (S1 (psychological reactivity, stress subgroup (S2 (psychological and physiological reactivity and a control group. The area under the curve for salivarycortisol concentration and STAI-State scores were calculated. All data underwent statistical analysis using one-way analysis of variance. RESULTS: Immediately after stress exposure, all participants exhibited a psychological stress reaction. Stress exposure did not change the salivary flow rate. Only 69% of the subjects continued to display a physiological stress reaction 20 minutes after the public talk. There was no significant change in the salivary flow rate during the psychological and the physiological stress reaction phases relative to the baseline. CONCLUSIONS: Acute stress has no impact on the salivary flow rate; however, there may be other responses through salivary proteins that are increased with the acute stress stimuli. Future studies are needed to examine
Silica Measurement with High Flow Rate Respirable Size Selective Samplers: A Field Study.
Lee, Taekhee; Harper, Martin; Kashon, Michael; Lee, Larry A; Healy, Catherine B; Coggins, Marie A; Susi, Pam; O'Brien, Andrew
2016-04-01
High and low flow rate respirable size selective samplers including the CIP10-R (10 l min(-1)), FSP10 (11.2 l min(-1)), GK2.69 (4.4 l min(-1)), 10-mm nylon (1.7 l min(-1)), and Higgins-Dewell type (2.2 l min(-1)) were compared via side-by-side sampling in workplaces for respirable crystalline silica measurement. Sampling was conducted at eight different occupational sites in the USA and five different stonemasonry sites in Ireland. A total of 536 (268 pairs) personal samples and 55 area samples were collected. Gravimetric analysis was used to determine respirable dust mass and X-ray diffraction analysis was used to determine quartz mass. Ratios of respirable dust mass concentration, quartz mass concentration, respirable dust mass, and quartz mass from high and low flow rate samplers were compared. In general, samplers did not show significant differences greater than 30% in respirable dust mass concentration and quartz mass concentration when outliers (ratio 3.0) were removed from the analysis. The frequency of samples above the limit of detection and limit of quantification of quartz was significantly higher for the CIP10-R and FSP10 samplers compared to low flow rate samplers, while the GK2.69 cyclone did not show significant difference from low flow rate samplers. High flow rate samplers collected significantly more respirable dust and quartz than low flow rate samplers as expected indicating that utilizing high flow rate samplers might improve precision in quartz measurement. Although the samplers did not show significant differences in respirable dust and quartz concentrations, other practical attributes might make them more or less suitable for personal sampling.
Aryana, Arash; O'Neill, Padraig Gearoid; Pujara, Deep K; Singh, Steve K; Bowers, Mark R; Allen, Shelley L; d'Avila, André
2016-08-01
The optimal irrigation flow rate (IFR) during epicardial radiofrequency (RF) ablation has not been established. This study specifically examined the impact of IFR and intrapericardial fluid (IPF) accumulation during epicardial RF ablation. Altogether, 452 ex vivo RF applications (10 g for 60 seconds) delivered to the epicardial surface of bovine myocardium using 3 open-irrigated ablation catheters (ThermoCool SmartTouch, ThermoCool SmartTouch-SF, and FlexAbility) and 50 in vivo RF applications delivered (ThermoCool SmartTouch-SF) in 4 healthy adult swine in the presence or absence of IPF were examined. Ex vivo, RF was delivered at low (≤3 mL/min), reduced (5-7 mL/min), and high (≥10 mL/min) IFRs using intermediate (25-35 W) and high (35-45 W) power. In vivo, applications were delivered (at 9.3 ± 2.2 g for 60 seconds at 39 W) using reduced (5 mL/min) and high (15 mL/min) IFRs. Ex vivo, surface lesion diameter inversely correlated with IFR, whereas maximum lesion diameter and depth did not differ. While steam pops occurred more frequently at low IFR using high power (ThermoCool SmartTouch and ThermoCool SmartTouch-SF), tissue disruption was rare and did not vary with IFR. In vivo, charring/steam pop was not detected. Although there were no discernible differences in lesion size with IFR, surface lesion diameter, maximum diameter, depth, and volume were all smaller in the presence of IPF at both IFRs. Cooled-tip epicardial RF ablation created using reduced IFRs (5-7 mL/min) yields lesion sizes similar to those created using high IFRs (≥10 mL/min) without an increase in steam pop/tissue disruption, whereas the presence of IPF significantly reduces the lesion size. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Assessment of Average Tracer Concentration Approach for Flow Rate Measurement and Field Calibration
P. Sidauruk
2015-12-01
Full Text Available Tracer method is one of the methods available for open channel flow rate measurements such as in irrigation canals. Average tracer concentration approach is an instantaneous injection method that based on the average tracer concentrations value at the sampling point. If the procedures are correct and scientific considerations are justified, tracer method will give relatively high accuracy of measurements. The accuracy of the average tracer concentration approach has been assessed both in laboratory and field. The results of accuracy tests of open channel flow that has been conducted at the Center for Application Isotopes and Radiation Laboratory-BATAN showed that the accuracy level of average concentrations approach method was higher than 90% compared to the true value (volumetric flow rate. The accuracy of average tracer concentration approach was also assessed during the application of the method to measure flow rate of Mrican irrigation canals as an effort to perform field calibration of existing weirs. Both average tracer concentration approach and weirs can predict the trend of the flow correctly. However, it was observed that flow discrepancies between weirs measurement and average tracer concentration approach predictions were as high as 27%. The discrepancies might be due to the downgrading performances of the weirs because of previous floods and high sediment contents of the flow
Hans, Rinki; Thomas, Susan; Garla, Bharat; Dagli, Rushabh J; Hans, Manoj Kumar
2016-01-01
Introduction. Diet is a major aetiological factor for dental caries and enamel erosion. This study was undertaken with the aim of assessing the effect of selected locally available beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Materials and Method. This clinical trial comprised 120 subjects. Test beverages undertaken were pepsi, fruit drink, coffee, and sweetened milk. Statistical analysis was carried out using SPSS version 17. Descriptive statistics, one-way ANOVA, and post hoc Tukey's test were applied in the statistical tests. Results. It was found that salivary pH decreased for all the beverages immediately after consumption and the salivary flow rate increased after their consumption. The oral clearance rate of sweetened milk was found to be the least at 6.5 minutes and that of pepsi was found to be 13 minutes. However, the oral clearance rates of fruit drink and coffee were found to be equal at 15 minutes. Conclusion. Although it was found out that liquids cleared rapidly from the oral cavity, they had a significant cariogenic and erosive potential. Hence, it is always advised to minimise the consumption of beverages, especially amongst children and young adults to maintain a good oral health.
Effect of Various Sugary Beverages on Salivary pH, Flow Rate, and Oral Clearance Rate amongst Adults
Rinki Hans
2016-01-01
Full Text Available Introduction. Diet is a major aetiological factor for dental caries and enamel erosion. This study was undertaken with the aim of assessing the effect of selected locally available beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Materials and Method. This clinical trial comprised 120 subjects. Test beverages undertaken were pepsi, fruit drink, coffee, and sweetened milk. Statistical analysis was carried out using SPSS version 17. Descriptive statistics, one-way ANOVA, and post hoc Tukey’s test were applied in the statistical tests. Results. It was found that salivary pH decreased for all the beverages immediately after consumption and the salivary flow rate increased after their consumption. The oral clearance rate of sweetened milk was found to be the least at 6.5 minutes and that of pepsi was found to be 13 minutes. However, the oral clearance rates of fruit drink and coffee were found to be equal at 15 minutes. Conclusion. Although it was found out that liquids cleared rapidly from the oral cavity, they had a significant cariogenic and erosive potential. Hence, it is always advised to minimise the consumption of beverages, especially amongst children and young adults to maintain a good oral health.
Tracheal compliance and limit flow rate changes in a murine model of asthma
2008-01-01
Trachea is the unique passage for air to flow in and out. Its tone is of importance for the respiration system. However, investigation on how tracheal tone changes due to asthma is limited. Aiming at studying how the mechanical property changes due to asthma as well as the compliance and flow limitation, the following methods are adopted. Static and passive pressure-volume tests of rats’ trachea of the asthmatic and control groups are carried out and a new type of tube law is formulated to fit the experimental data, based on which changes of compliance and limit flow rate are investigated. In order to give explanation to such changes, histological examinations with tracheal soft tissues are made. The results show that compliance, limit flow rate and material constants included in the tube law largely depend on the longitudinal stretching ratio. Compared with the control group, the tracheal compliance of asthmatic animals decreases significantly, which results in an increased limit flow rate. Histological studies indicate that asthma can lead to hyperplasia/hypertrophy of smooth muscle cells, and increase elastin and collagen fibres in the muscular membrane. Though decreasing compliance increases sta- bility, during the onset of asthma, limit flow rate is much smaller due to the lower transmural pressure. Asthma leads to a stiffer trachea and the obtained results reveal some aspects relevant to asthma-induced tracheal remodelling.
Tracheal compliance and limit flow rate changes in a urine model of asthma
TENG ZhongZhao; WANG YiQin; LI FuFeng; YAN HaiXia; LIU ZhaoRong
2008-01-01
Trachea is the unique passage for air to flow in and out. Its tone is of importance for the respiration system. However, investigation on how tracheal tone changes due to asthma is limited. Aiming at studying how the mechanical property changes due to asthma as well as the compliance and flow limitation, the following methods are adopted. Static and passive pressure-volume tests of rats' trachea of the asthmatic and control groups are carried out and a new type of tube law is formulated to fit the experimental data, based on which changes of compliance and limit flow rate are investigated. In order to give explanation to such changes, histological examinations with tracheal soft tissues are made. The results show that compliance, limit flow rate and material constants included in the tube law largely depend on the longitudinal stretching ratio. Compared with the control group, the tracheal compliance of asthmatic animals decreases significantly, which results in an increased limit flow rate. Histological studies indicate that asthma can lead to hyperplasia/hypertrophy of smooth muscle cells, and increase elastin and collagen fibres in the muscular membrane. Though decreasing compliance increases sta-bility, during the onset of asthma, limit flow rate is much smaller due to the lower transmural pressure. Asthma leads to a stiffer trachea and the obtained results reveal some aspects relevant to asthma-induced tracheal remodelling.
Characterization of fractured reservoirs using tracer and flow-rate data
Juliusson, Egill; Horne, Roland N.
2013-05-01
This article introduces a robust method for characterizing fractured reservoirs using tracer and flow-rate data. The flow-rate data are used to infer the interwell connectivity matrix, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find a function called the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods was developed to estimate the tracer kernels in situations where data are collected at variable flow rate or variable-injected concentration conditions. This characterization method was developed to describe enhanced geothermal systems, although it works well in general for characterizing incompressible flow in fractured reservoirs (e.g., geothermal, carbon sequestration, radioactive waste and waterfloods of oil fields) where transverse dispersivity can be considered negligible and production takes place at constant bottomhole pressure conditions. The inferred metrics can be used to sketch informative field maps and predict tracer breakthrough curves at variable flow-rate conditions.
Mechanism for measurement of flow rate of cerebrospinal fluid in hydrocephalus shunts.
Rajasekaran, Sathish; Kovar, Spencer; Qu, Peng; Inwald, David; Williams, Evan; Qu, Hongwei; Zakalik, Karol
2014-01-01
The measurement of the flow rate of cerebrospinal fluid (CSF) or existence of CSF flow inside the shunt tube after shunt implant have been reported as tedious process for both patients and doctors; this paper outlines a potential in vitro flow rate measurement method for CSF in the hydrocephalus shunt. The use of implantable titanium elements in the shunt has been proposed to allow for an accurate temperature measurement along the shunt for prediction of CSF flow rate. The CSF flow velocity can be deduced by decoupling the thermal transfer in the measured differential time at a pair of measurement spots of the titanium elements. Finite element analyses on the fluidic and thermal behaviors of the shunt system have been conducted. Preliminary bench-top measurements on a simulated system have been carried out. The measured flow rates, ranging from 0.5 mm/sec to 1.0 mm/sec, which is clinically practical, demonstrate good agreements with the simulation results.
Minatti, Lorenzo; Nicoletta De Cicco, Pina; Paris, Enio
2014-05-01
In common engineering practice, rating curves are obtained from direct stage-discharge measurements or, more often, from stage measurements coupled with flow simulations. The present work mainly focuses on the latter technique, where stage-measuring gauges are usually installed on bridges with flow conditions likely to be influenced by local geometry constraints. In such cases, backwater flow and flow transition to supercritical state may occur, influencing sediment transport capacity and triggering more intense changes in river morphology. The unsteadiness of the flow hydrograph may play an important role too, according to the velocity of its rising and falling limbs. Nevertheless, the simulations conducted to build a rating curve are often carried out with steady flow and fixed bed conditions where the afore-mentioned effects are not taken into account at all. Numerical simulations with mobile bed and different unsteady flow conditions have been conducted on some real case studies in the rivers of Tuscany (Italy), in order to assess how rating curves change with respect to the "standard" one (that is, the classical steady flow rating curve). A 1D finite volume numerical model (REMo, River Evolution Modeler) has been employed for the simulations. The model solves the 1D Shallow Water equations coupled with the sediments continuity equation in composite channels, where the overbanks are treated with fixed bed conditions while the main channel can either aggrade or be scoured. The model employs an explicit scheme with 2nd order accuracy in both space and time: this allows the correct handling of moderately stiff source terms via a local corrector step. Such capability is very important for the applications of the present work as it allows the modelling of abrupt contractions and jumps in bed bottom elevations which often occur near bridges. The outcomes of the simulations are critically analyzed in order to provide a first insight on the conditions inducing
Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.
Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert
2009-08-01
This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.
Reeve, J.; Arlot, M.; Wootton, R.; Edouard, C.; Tellez, M.; Hesp, R.; Green, J.R.; Meunier, P.J.
1988-06-01
In 20 untreated patients with idiopathic or postmenopausal osteoporosis, kinetic studies of skeletal blood flow (using /sup 18/F) and bone turnover (using /sup 85/Sr) were combined with dynamic histomorphometry performed on transiliac biopsies taken within 6 weeks of each other. In 8 patients the combined studies were repeated after treatment. A further 5 patients were studied only while receiving treatment. As expected, skeletal blood flow measured by /sup 18/F correlated with an index of /sup 85/Sr uptake into the exchangeable pools of bone. Additionally and independently, skeletal blood flow correlated with an index of the work rate of the osteoblasts in each multicellular unit of bone (the corrected apposition rate of Parfitt). These correlations were statistically significant in both the untreated patients (P less than 0.05) and the whole group (P less than 0.001). Further indices related to bone turnover at the level of the skeleton as a whole were significantly associated with skeletal blood flow only in the combined group.
Design and Analysis of a High Force, Low Voltage and High Flow Rate Electro-Thermal Micropump
Ghader Yosefi
2014-12-01
Full Text Available This paper presents the design and simulation of an improved electro-thermal micromachined pump for drug delivery applications. Thermal actuators, which are a type of Micro Electro Mechanical system (MEMS device, are highly useful because of their ability to deliver with great force and displacement. Thus, our structure is based on a thermal actuator that exploits the Joule heating effect and has been improved using the springy length properties of MEMS chevron beams. The Joule heating effect results in a difference in temperature and therefore displacement in the beams (actuators. Simulation results show that a maximum force of 4.4 mN and a maximum flow rate of 16 μL/min can be obtained by applying an AC voltage as low as 8 V at different frequencies ranging from 1 to 32 Hz. The maximum temperature was a problem at the chevron beams and the center shaft. Thus, to locally increase the temperature of the chevron beams alone and not that of the pumping diaphragm: (1 The air gaps 2 μm underneath and above the device layer were optimized for heat transfer. (2 Release holes and providing fins were created at the center shaft and actuator, respectively, to decrease the temperature by approximately 10 °C. (3 We inserted and used a polymer tube to serve as an insulator and eliminate leakage problems in the fluidic channel.
Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian
2017-09-01
We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.
Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials
Khosrownejad, S. M.; Curtin, W. A.
2016-09-01
Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.
Control of skin blood flow, sweating, and heart rate - Role of skin vs. core temperature
Wyss, C. R.; Brengelmann, G. L.; Johnson, J. M.; Rowell, L. B.; Niederberger, M.
1974-01-01
A study was conducted to generate quantitative expressions for the influence of core temperature, skin temperature, and the rate of change of skin temperature on sweat rate, skin blood flow, and heart rate. A second goal of the study was to determine whether the use of esophageal temperature rather than the right atrial temperature as a measure of core temperature would lead to different conclusions about the control of measured effector variables.
ChargeOut! : discounted cash flow compared with traditional machine-rate analysis
Ted Bilek
2008-01-01
ChargeOut!, a discounted cash-flow methodology in spreadsheet format for analyzing machine costs, is compared with traditional machine-rate methodologies. Four machine-rate models are compared and a common data set representative of logging skiddersâ costs is used to illustrate the differences between ChargeOut! and the machine-rate methods. The study found that the...
李岩; 陈宽民; 过秀成
2013-01-01
In order to analyze the impact of stretching-segment on the saturated flow rate of signalized intersection approach, an improved cellular automation model was proposed to estimate its saturated flow rate. The NaSch model was improved by adding different slow probabilities, turning deceleration rules and modified lane changing rules. The relationship between the saturated flow rate of stretching-segments and adjacent lanes was tested in numerical simulation. The length of stretching-segment, cycle length and green time were selected as impact factors of the cellular automation model. The simulation result indicates that the geometrics design of stretching-segment and the traffic signal timing scenario have major effects on the saturated flow rate of the intersection approach. The saturated flow rate will continually increase with increasing stretching-segment length until it reaches a threshold. After reaching the threshold, the stretching-segment can be treated as a separate lane. The green time is approximately linearly related to the threshold length of the stretching-segment. An optimum cycle length exists when the length of the stretching-segment is not long enough, and it is approximately linearly related to the length of stretching-segment.
Optimal power flow calculation for power system with UPFC considering load rate equalization
Liu, Jiankun; Chen, Jing; Zhang, Qingsong
2017-06-01
Unified power flow controller (UPFC) device can change system electrical quantity (such as voltage, impedance, phase angle, etc.) rapidly and flexibly under the premise of maintain security, stability and reliability of power system, thus can improve the transmission power and transmission line utilization, so as to enhance the power supply capacity of the power grid. Based on a thorough study of the steady-state model of UPFC, taking load rate equalization as objective function, the optimal power flow model is established with UPFC, and simplified interior point method is used to solve it. Finally, optimal power flow of 24 continuous sections actual data is calculated on a typical day of Nanjing network. The results show that the optimal power flow calculation with UPFC can optimize the load rate equalization on the basis of eliminating line overload, improving the voltage level of local power network.
Flow Rate of Particles through Apertures Obtained from Self-Similar Density and Velocity Profiles
Janda, Alvaro; Zuriguel, Iker; Maza, Diego
2012-06-01
“Beverloo’s law” is considered as the standard expression to estimate the flow rate of particles through apertures. This relation was obtained by simple dimensional analysis and includes empirical parameters whose physical meaning is poorly justified. In this Letter, we study the density and velocity profiles in the flow of particles through an aperture. We find that, for the whole range of apertures studied, both profiles are self-similar. Hence, by means of the functionality obtained for them the mass flow rate is calculated. The comparison of this expression with the Beverloo’s one reveals some differences which are crucial to understanding the mechanism that governs the flow of particles through orifices.
Propellant flow rate through simulated liquid-core nuclear rocket fuel bed.
Mcguirk, J. P.; Park, C.
1972-01-01
Experimental investigation of the validity of Zuber and Finlay's (1965) gas flow-rate formula for a two-phase flow in a rotating cylinder under high centrifugal acceleration. This formula was originally derived from tests in a 1-g environment in pipes. In the light of the investigation results obtained, the formula is valid also for a high-g environment in the rotating chamber tested.
Time Decay Rates of the Isotropic Non-Newtonian Flows in Rn
Bo-Qing Dong
2007-01-01
This paper is concerned with time decay rates for weak solutions to a class system of isotropic incompressible non-Newtonian fluid motion in Rn. With the use of the spectral decomposition methods of Stokes operator, the optimal decay estimates of weak solutions in L2 norm are derived under the different conditions on the initial velocity. Moreover, the error estimates of the difference between non-Newtonian flow and Navier-Stokes flow are also investigated.
Zaylaa, Amira; Oudjemia, Souad; Charara, Jamal; Girault, Jean-Marc
2015-09-01
This paper presents two new concepts for discrimination of signals of different complexity. The first focused initially on solving the problem of setting entropy descriptors by varying the pattern size instead of the tolerance. This led to the search for the optimal pattern size that maximized the similarity entropy. The second paradigm was based on the n-order similarity entropy that encompasses the 1-order similarity entropy. To improve the statistical stability, n-order fuzzy similarity entropy was proposed. Fractional Brownian motion was simulated to validate the different methods proposed, and fetal heart rate signals were used to discriminate normal from abnormal fetuses. In all cases, it was found that it was possible to discriminate time series of different complexity such as fractional Brownian motion and fetal heart rate signals. The best levels of performance in terms of sensitivity (90%) and specificity (90%) were obtained with the n-order fuzzy similarity entropy. However, it was shown that the optimal pattern size and the maximum similarity measurement were related to intrinsic features of the time series.
1993-07-01
This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).
Laminar flow at a three-dimensional stagnation point with large rates of injection
Libby, P. A.
1976-01-01
Exact calculations of the titled flow are presented and compared to the predictions of an asymptotic analysis for large rates of injection. The inner layer of the boundary layer is found to involve outflow in both orthogonal directions whether the external flow along the y axis is inward or outward. As a result, the flow at a nearly two-dimensional stagnation point involves drastic changes as a weak outflow changes to a weak inflow. It is also found that the velocity profiles in the two directions in the inner layer are quite different.
Yinwei Lin; Chen, C. K.
2015-01-01
In order to solve the velocity profile and pressure gradient of the unsteady unidirectional slip flow of Voigt fluid, Laplace transform method is adopted in this research. Between the parallel microgap plates, the flow motion is induced by a prescribed arbitrary inlet volume flow rate which varies with time. The velocity slip condition on the wall and the flow conditions are known. In this paper, two basic flow situations are solved, which are a suddenly started and a constant acc...
Mass flow-rate control unit to calibrate hot-wire sensors
Durst, F.; Uensal, B. [FMP Technology GmbH, Erlangen (Germany); Haddad, K. [FMP Technology GmbH, Erlangen (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, LSTM-Erlangen, Institute of Fluid Mechanics, Erlangen (Germany); Al-Salaymeh, A.; Eid, Shadi [University of Jordan, Mechanical Engineering Department, Faculty of Engineering and Technology, Amman (Jordan)
2008-02-15
Hot-wire anemometry is a measuring technique that is widely employed in fluid mechanics research to study the velocity fields of gas flows. It is general practice to calibrate hot-wire sensors against velocity. Calibrations are usually carried out under atmospheric pressure conditions and these suggest that the wire is sensitive to the instantaneous local volume flow rate. It is pointed out, however, that hot wires are sensitive to the instantaneous local mass flow rate and, of course, also to the gas heat conductivity. To calibrate hot wires with respect to mass flow rates per unit area, i.e., with respect to ({rho}U), requires special calibration test rigs. Such a device is described and its application is summarized within the ({rho}U) range 0.1-25 kg/m{sup 2} s. Calibrations are shown to yield the same hot-wire response curves for density variations in the range 1-7 kg/m{sup 3}. The application of the calibrated wires to measure pulsating mass flows is demonstrated, and suggestions are made for carrying out extensive calibrations to yield the ({rho}U) wire response as a basis for advanced fluid mechanics research on ({rho}U) data in density-varying flows. (orig.)
Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States
Schmidt, K.M.; Menges, C.M.; ,
2003-01-01
Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.
Flow rate and humidification effects on a PEM fuel cell performance and operation
Guvelioglu, Galip H.; Stenger, Harvey G.
A new algorithm is presented to integrate component balances along polymer electrolyte membrane fuel cell (PEMFC) channels to obtain three-dimensional results from a detailed two-dimensional finite element model. The analysis studies the cell performance at various hydrogen flow rates, air flow rates and humidification levels. This analysis shows that hydrogen and air flow rates and their relative humidity are critical to current density, membrane dry-out, and electrode flooding. Uniform current densities along the channels are known to be critical for thermal management and fuel cell life. This approach, of integrating a detailed two-dimensional across-the-channel model, is a promising method for fuel cell design due to its low computational cost compared to three-dimensional computational fluid dynamics models, its applicability to a wide range of fuel cell designs, and its ease of extending to fuel cell stack models.
Pre-Spud Mud Loss Flow Rate in Steeply Folded Structures
Wang Zhiyuan
2014-12-01
Full Text Available In this paper, a new method that predicts the pre-spud mud loss flow rate in formations with tectonic fractures of steeply folded structures is proposed. The new method is based on finite element analysis of the palaeo-tectonic and current tectonic stress field and fracture distribution. The steps of the method are as follows. First, palaeo-tectonic stress distribution is simulated through finite element analysis. The tectonic fracture distribution of the region is obtained by combining rock failure criteria with palaeo-tectonic stress distribution. Afterward, the tectonic fracture density, aperture, porosity and permeability are calculated by studying the rebuilding process of current stress to the fracture parameters. Finally, the mud loss flow rate is calculated according to fracture parameters and the basic data of a given well. The new method enables the prediction of the mud loss flow rate before drilling steeply folded structures.
Abadi, Ali Salehi Sahl; Mazlomi, Adel; Saraji, Gebraeil Nasl; Zeraati, Hojjat; Hadian, Mohammad Reza; Jafari, Amir Homayoun
2015-10-01
In spite of the widespread use of automation in industry, manual material handling (MMH) is still performed in many occupational settings. The emphasis on ergonomics in MMH tasks is due to the potential risks of workplace accidents and injuries. This study aimed to assess the effect of box size, frequency of lift, and height of lift on maximum acceptable weight of lift (MAWL) on the heart rates of male university students in Iran. This experimental study was conducted in 2015 with 15 male students recruited from Tehran University of Medical Sciences. Each participant performed 18 different lifting tasks that involved three lifting frequencies (1lift/min, 4.3 lifts/min and 6.67 lifts/min), three lifting heights (floor to knuckle, knuckle to shoulder, and shoulder to arm reach), and two box sizes. Each set of experiments was conducted during the 20 min work period using the free-style lifting technique. The working heart rates (WHR) were recorded for the entire duration. In this study, we used SPSS version 18 software and descriptive statistical methods, analysis of variance (ANOVA), and the t-test for data analysis. The results of the ANOVA showed that there was a significant difference between the mean of MAWL in terms of frequencies of lifts (p = 0.02). Tukey's post hoc test indicated that there was a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0. 01). There was a significant difference between the mean heart rates in terms of frequencies of lifts (p = 0.006), and Tukey's post hoc test indicated a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0.004). But, there was no significant difference between the mean of MAWL and the mean heart rate in terms of lifting heights (p > 0.05). The results of the t-test showed that there was a significant difference between the mean of MAWL and the mean heart rate in terms of the sizes of the two boxes (p = 0.000). Based on the results of
Effect of transient change in strain rate on plastic flow behaviour of low carbon steel
A Ray; P Barat; P Mukherjee; A Sarkar; S K Bandyopadhyay
2007-02-01
Plastic flow behaviour of low carbon steel has been studied at room temperature during tensile deformation by varying the initial strain rate of 3.3 × 10-4 s-1 to a final strain rate ranging from 1.33 × 10-3 s-1 to 2 × 10-3 s-1 at a fixed engineering strain of 12%. Haasen plot revealed that the mobile dislocation density remained almost invariant at the juncture where there was a sudden increase in stress with a change in strain rate and the plastic flow was solely dependent on the velocity of mobile dislocations. In that critical regime, the variation of stress with time was fitted with a Boltzmann type Sigmoid function. The increase in stress was found to increase with final strain rate and the time elapsed in attaining these stress values showed a decreasing trend. Both of these parameters saturated asymptotically at a higher final strain rate.
Ravindranadh BOBBILI; B. RAMAKRISHNA; V. MADHU; A.K. GOGIA
2015-01-01
An artificial neural network (ANN) constitutive model and JohnsoneCook (JeC) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tem-peratures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25?e300 ?C), strains (0.05e0.3) and strain rates (1500e4500 s?1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.
Evaluation of Bubbler Irrigation System at Different Emission Flow Rates for Young Mango Orchard
Rajesh Kumar Soothar
2016-08-01
Full Text Available An experiment was conducted on evaluating performance of bubbler irrigation system under young mango plant rows at the Higher Education Commission, research station at Sindh Agriculture University, Tandojam. The experimental station possesses more than 70 mango plants, irrigated by micro and traditional irrigation methods fed by tubewell with average water static level of 9 ft below ground surface. Bubbler irrigation system was designed to irrigate 12 mango plants. The aim of study was to assess the performance of the bubbler irrigation system at different emission flow rates with an installed bubbler irrigation system to improve water distribution uniformity. The result of this study showed that the high pressure losses and the system operated on one gallon per minute flow rate of each bubbler, water distribution uniformity was low, with an average of 68 %. Other hand, comparison with emission (bubbler flow rate was adjusted at half gallon per minute has shown high water emission uniformity of system performed with an average of 92 % distribution uniformity. The reasons for the minimum distribution uniformity of bubblers were observed at one gallon per minute emission flow and this study recommended to improve the bubbler irrigation at dissimilar flow rates.
Ha, Chang Hoon
2005-02-15
The objective of this study is to investigate experimentally the relationship between an operator's mental workload and the information flow rate of accident diagnosis tasks and further to propose the information flow rate as an analytic method for measuring the mental workload. There are two types of mental workload in the advanced MCR of NPPs: the information processing workload, which is the processing that the human operator must actually perform in order to complete the diagnosis task, and emotional stress workload experienced by the operator. In this study, the focus is on the former. Three kinds of methods are used to measure the operator's workload: information flow rate, subjective methods, and physiological measures. Information flows for eight accident diagnosis tasks are modeled qualitatively using a stage model and are quantified using Conant's model. The eight accident cases are considered here are: Loss Of Coolant Accident (LOCA), Steam Generator Tube Rupture (SGTR), Steam Line Break (SLB), Feedwater Line Break (FLB), Pressurizer (PZR) spray and heater failure, Reactor Coolant Pump (RCP) trip, Main Steam Isolation Valve (MSIV) failure, and PZR spray failure. The information flow rate is obtained for each diagnosis task by imposing time limit restrictions for the tasks. Subjective methods require the operators to respond to questionnaires to rate their level of mental effort. NASA-TLX and MCH scale are selected as subjective methods. NASA-TLX is a subjective method used in the various fields including the aviation, automobile, and nuclear industries. It has a multi-dimensional rating technique and provides an overall workload score based on a weighted average on six subscales using pair-wise comparison tests. MCH, on the other hand, is one-dimensional and uses a 10- point rating technique. As with NASA-TLX, the higher the score is, the higher the subjective workload is. For the physiological measurements, an eye tracking system analyzes
Estimation of Leak Flow Rate during Post-LOCA Using Cascaded Fuzzy Neural Networks
Kim, Dong Yeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)
2016-10-15
In this study, important parameters such as the break position, size, and leak flow rate of loss of coolant accidents (LOCAs), provide operators with essential information for recovering the cooling capability of the nuclear reactor core, for preventing the reactor core from melting down, and for managing severe accidents effectively. Leak flow rate should consist of break size, differential pressure, temperature, and so on (where differential pressure means difference between internal and external reactor vessel pressure). The leak flow rate is strongly dependent on the break size and the differential pressure, but the break size is not measured and the integrity of pressure sensors is not assured in severe circumstances. In this paper, a cascaded fuzzy neural network (CFNN) model is appropriately proposed to estimate the leak flow rate out of break, which has a direct impact on the important times (time approaching the core exit temperature that exceeds 1200 .deg. F, core uncover time, reactor vessel failure time, etc.). The CFNN is a data-based model, it requires data to develop and verify itself. Because few actual severe accident data exist, it is essential to obtain the data required in the proposed model using numerical simulations. In this study, a CFNN model was developed to predict the leak flow rate before proceeding to severe LOCAs. The simulations showed that the developed CFNN model accurately predicted the leak flow rate with less error than 0.5%. The CFNN model is much better than FNN model under the same conditions, such as the same fuzzy rules. At the result of comparison, the RMS errors of the CFNN model were reduced by approximately 82 ~ 97% of those of the FNN model.
Co-Relationships between Glandular Salivary Flow Rates and Dental Caries
de Guillory, Carolina Diaz; Schoolfield, John D; Johnson, Dorthea; Yeh, Chih-Ko; Chen, Shuo; Cappelli, David P; Bober-Moken, Irene G; Dang, Howard
2013-01-01
Objective This study was designed to evaluate the relationship of age, gender, ethnicity and salivary flow rates on dental caries in an adult population using data collected from the Oral Health San Antonio Longitudinal Study of Aging (OH:SALSA). Background Saliva is essential to maintain a healthy oral environment and diminished output can result in dental caries. Although gender and age play a role in the quantity of saliva, little is known about the interaction of age, gender and ethnicity on dental caries and salivary flow rates. Materials and Methods Data from the 1,147 participants in the OH: SALSA was analyzed. The dependent variables were the number of teeth with untreated coronal caries, number of teeth with root caries, and the number of coronal and root surfaces with untreated caries. The independent variables were stimulated and unstimulated glandular salivary flow rates along with the age, sex, and ethnicity (e.g. European or Mexican ancestry) of the participants. Results Coronal caries experience was greater in younger participants while root surface caries experience was greater in the older participants. Coronal caries was lower in the older age groups while the root caries experience increased. Men had a statistically significant (p<0.02) higher experience of root caries than women. Values for unstimulated and stimulated parotid salivary flow rates showed no age difference and remained constant with age, whereas the age differences in the unstimulated and stimulated submandibular/sublingual salivary flow rates were significant. The mean number of teeth with coronal and root caries was higher in Mexican-Americans than in European-Americans. Conclusions Over one-fourth of the adults between the ages of 60 and 79 have untreated root caries over one-third having untreated coronal caries. Lower salivary flow rates play a significant role in the both the number of teeth and the number of surfaces developing caries in these adults. Women and individuals
Aragon-Aguilar, Alfonso; Izquierdo-Montalvo, Georgina; Pal-Verma, Mahendra; Santoyo-Gutierrez, Socrates [Instituto de Investigaciones Electricas (Mexico); Moya-Acosta, Sara L [Centro Nacional de Investigacion y Desarrollo Tecnologico (Mexico)
2009-01-15
Inflow performance relationships developed for petroleum and geothermal reservoirs are presented. Four of them were selected to be used in this work. Such relationships were developed considering features of a typical geothermal system. The performance of the selected relationships was assessed using data from production tests in several wells of different fields. A methodology is presented to determine the value of the maximum flow (W{sub max}) from the inflow relationships; its application is demonstrated using the data of the 10 production tests. It was found that the calculated value of W{sub max} under stabilization conditions may be related to the reservoir response. In general, there is a good agreement between the calculated values of W{sub max} from the different methods. The differences in the W{sub max} values vary within 10%. It was found that the stability in the calculated values of W{sub max} as a response of the reservoir is a function of the flow magnitude. So, the wells with flow greater than 200 t/h reach the stability of W{sub max} at openings 50% less of their total capacity. [Spanish] Se presentan las relaciones del comportamiento de influjo desarrolladas para yacimientos petroleros y geotermicos. Se seleccionaron cuatro de ellas para usar en este trabajo. Tales relaciones fueron desarrolladas considerando condiciones de un sistema geotermico tipico. Se analizo el comportamiento de las relaciones escogidas utilizando datos de pruebas de produccion de varios pozos de diferentes campos. Se presenta una metodologia para determinar el valor del flujo maximo (W{sub max}) a partir de las relaciones de influjo; se demuestra su aplicabilidad usando los datos de diez pruebas de produccion. Se encontro que el valor de W{sub max} calculado bajo condiciones de estabilizacion se puede relacionar con la respuesta del yacimiento. En general se encuentra buena concordancia entre los valores calculados de W{sub max} usando los diferentes metodos. Las
Algorithm Preserving Mass Fraction Maximum Principle for Multi-component Flows%多组份流动质量分数保极值原理算法
唐维军; 蒋浪; 程军波
2014-01-01
We propose a new method for compressible multi⁃component flows with Mie⁃Gruneisen equation of state based on mass fraction. The model preserves conservation law of mass, momentum and total energy for mixture flows. It also preserves conservation of mass of all single components. Moreover, it prevents pressure and velocity from jumping across interface that separate regions of different fluid components. Wave propagation method is used to discretize this quasi⁃conservation system. Modification of numerical method is adopted for conservative equation of mass fraction. This preserves the maximum principle of mass fraction. The wave propagation method which is not modified for conservation equations of flow components mass, cannot preserve the mass fraction in the interval [0,1]. Numerical results confirm validity of the method.%对基于质量分数的Mie⁃Gruneisen状态方程多流体组份模型提出了新的数值方法。该模型保持混合流体的质量、动量、和能量守恒，保持各组份分质量守恒，在多流体组份界面处保持压力和速度一致。该模型是拟守恒型方程系统。对该模型系统的离散采用波传播算法。与直接对模型中所有守恒方程采用相同算法不同的是，在处理分介质质量守恒方程时，对波传播算法进行了修正，使之满足质量分数保极值原理。而不作修改的算法则不能保证质量分数在[0，1]范围。数值实验验证了该方法有效。
Investigations on efficiencies of HT solar collectors for different flow rates and collector tilts
Chen, Ziqian; Perers, Bengt; Furbo, Simon;
2013-01-01
Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates and tilt. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rates are obtained. The calculated efficiencies are in good...... agreement with the measured efficiencies....
Cash flow and discount rate risk in up and down markets: What is actually priced?
Botshekan, M.; Kraeussl, R.G.W.; Lucas, A
2010-01-01
This discussion paper resulted in a publication in the 'Journal of Financial and Quantitative Analysis', 2012, 47(6), 1279-1301. We test whether asymmetric preferences for losses versus gains as in Ang, Chen, and Xing (2006) also affect the pricing of cash flow versus discount rate news as in Campbell and Vuolteenaho (2004). We construct a new four-fold beta decomposition, distinguishing cash flow and discount rate betas in up and down markets. Using CRSP data over 1963--2008, we find that th...
Castruccio, Angelo; Contreras, María Angélica
2016-11-01
We analyzed two historical lava flows from the Southern Andes of Chile: The lava flows from the 1971 Villarrica volcano eruption and the 1988-1990 Lonquimay volcano eruption. The 1971 lava flow has a volume of 2.3 × 107 m3, a maximum length of 16.5 km and was emplaced in two days, with maximum effusion rates of 800 m3/s. The lava has a mean width of 150 m and thicknesses that decrease from 10 to 12 m at 5 km from the vent to 5-8 m at the flow front. The morphology is mainly 'a'ā. The 1988-1990 lava flow has a volume of 2.3 × 108 m3, a maximum length of 10.2 km and was emplaced in 330 days, with peak effusion rates of 80 m3/s. The flow has a mean width of 600 m and thicknesses that increase from 10 to 15 m near the vent to > 50 m at the front. The morphology varies from 'a'ā in proximal sectors to blocky in the rest of the flow. We modelled the advance rate and thickness of these flows assuming two possible dynamical regimes: An internal rheology regime modelled as a Herschel-Bulkley (HB) fluid and a Yield Strength in the Crust (YSC) regime. We compared our results with the widely used Newtonian and Bingham rheologies. Our results indicate that the 1971 flow can be modelled either by the HB, Bingham or Newtonian rheologies using a single temperature, while the 1988-1990 flow was controlled by the YSC regime. Our analysis and comparison of models shows that care should be taken when modelling a lava flow, as different rheologies and assumptions can reach the same results in terms of advance rate and flow thickness. These examples suggest that the crustal strength should be taken into account in any model of lava flow advance.
Effects of Purge-Flow Rate on Microbubble Capture in Radial Arterial-Line Filters.
Herbst, Daniel P
2016-09-01
The process of microbubble filtration from blood is complex and highly dependent on the forces of flow and buoyancy. To protect the patient from air emboli, arterial-line filters commonly use a micropore screen, a large volume housing with purpose-built shape, and a purge port to trap, separate, and remove circulating microbubbles. Although it has been proposed that an insufficient buoyancy force renders the purge port ineffective at removing microbubbles smaller than 500 μm, this research attempts to investigate the purge flow of an arterial-line filter to better understand the microbubble removal function in a typical radial filter design. As its primary objective, the study aims to determine the effect of purge-flow rate on bubble capture using air bolus injections from a syringe pump with 22-gauge needle and Doppler ultrasound bubble detection. The measureable bubble size generated in the test circuit ranged between 30 and 500 μm, while purge flow was varied between .1 and .5 L/min for testing. Statistical analysis of the test data was handled using a repeated measures design with significance set at p purge flows yielded higher bubble counts, but the effect of purge-flow rate on bubble capture decreased as bubble size increased. Results also showed that purge flow from the test filter was capable of capturing all bubble sizes being generated over the entire flow range tested, and confirms utility of the purge port in removing microbubbles smaller than 500 μm. By analyzing bubble counts in the purge flow of a typical radial-filter design, this study demonstrates that currently available micropore filter technology is capable of removing the size range of bubbles that commonly pass through modern pump-oxygenator systems and should continue to be considered during extracorporeal circulation as a measure to improve patient safety.
L. Ocola
2008-01-01
Full Text Available Post-disaster reconstruction management of urban areas requires timely information on the ground response microzonation to strong levels of ground shaking to minimize the rebuilt-environment vulnerability to future earthquakes. In this paper, a procedure is proposed to quantitatively estimate the severity of ground response in terms of peak ground acceleration, that is computed from macroseismic rating data, soil properties (acoustic impedance and predominant frequency of shear waves at a site. The basic mathematical relationships are derived from properties of wave propagation in a homogeneous and isotropic media. We define a Macroseismic Intensity Scale I_{MS} as the logarithm of the quantity of seismic energy that flows through a unit area normal to the direction of wave propagation in unit time. The derived constants that relate the I_{MS} scale and peak acceleration agree well with coefficients derived from a linear regression between MSK macroseismic rating and peak ground acceleration for historical earthquakes recorded at a strong motion station, at IGP's former headquarters, since 1954. The procedure was applied to 3-October-1974 Lima macroseismic intensity data at places where there was geotechnical data and predominant ground frequency information. The observed and computed peak acceleration values, at nearby sites, agree well.
Determination of flow rates of oil, water and gas in pipelines
Roach, G.J.; Watt, J.S.; Zastawny, H.W. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lucas Heights, NSW (Australia). Div. of Mineral Physics
1993-12-31
This paper describes a multiphase flow meter developed by CSIRO for determining of the flow rates of oil, water and gas in high pressure pipelines, and the results of a trial of this flow meter on an offshore oil platform. Two gamma-ray transmission gauges are mounted about a pipeline carrying the full flow of oil, water and gas. The flow rates are determined by combining single energy gamma-ray transmission measurements which determine the mass per unit area of fluids in the gamma-ray beam as a function of time, dual energy gamma-ray transmission (DUET) which determine the approximate mass fraction of oil in the liquids, cross-correlation of gamma-ray transmission measurements, with one gauge upstream of the other, which determines flow velocity, pressure and temperature measurements, and knowledge of the specific gravities of oil and (salt) water, and solubility of the gas in the liquids, all as a function of pressure and temperature. 3 figs.
Variability in venom volume, flow rate and duration in defensive stings of five scorpion species.
van der Meijden, Arie; Coelho, Pedro; Rasko, Mykola
2015-06-15
Scorpions have been shown to control their venom usage in defensive encounters, depending on the perceived threat. Potentially, the venom amount that is injected could be controlled by reducing the flow speed, the flow duration, or both. We here investigated these variables by allowing scorpions to sting into an oil-filled chamber, and recording the accreting venom droplets with high-speed video. The size of the spherical droplets on the video can then be used to calculate their volume. We recorded defensive stings of 20 specimens representing 5 species. Significant differences in the flow rate and total expelled volume were found between species. These differences are likely due to differences in overall size between the species. Large variation in both venom flow speed and duration are described between stinging events of single individuals. Both venom flow rate and flow duration correlate highly with the total expelled volume, indicating that scorpions may control both variables in order to achieve a desired end volume of venom during a sting.
Lee, J.-H.
1985-01-01
This paper examines the vibrational excitation rate processes expected in the flow field of aeroassisted orbital transfer vehicles (AOTVs). An analysis of the multiple-quantum vibrational excitation processes by electron impact is made to predict the vibrational excitation cross sections, rate coefficients, and relaxation times which control vibrational temperature. The expression for the rate of electron-vibration energy transfer is derived by solving the system of master equations which account for the multiple-level transitions. The vibrational excitation coefficients, which are the prerequisite physical quantities in solving the obtained vibrational equation, are calculated based on the theoretically predicted cross sections. These cross sections are obtained from quantum mechanical calculations, based on the concept that vibrational excitation of molecules by electron impact occurs through formation of an intermediate negative ion state. Finally, the modified Landau-Teller-type rate equation, which is suitable for the numerical calculations for the AOTV flow fields, is suggested.
Research on Gas-liquid Flow Rate Optimization in Foam Drilling
Gao, B. K.; Sun, D. G.; Jia, Z. G.; Huang, Z. Q.
2010-03-01
With the advantages of less gas consumption, higher carrying rocks ability, lower leakage and higher penetration rate, foam drilling is widely used today in petroleum industry. In the process of foam underbalanced drilling, the mixture of gas, liquid and cuttings flows upwards through the annular, so it is a typical gas-liquid-solid multi-phase flow. In order to protect the reservoir and avoid borehole wall collapsing during foam drilling, it is crucial to ensure that the bottom hole pressure is lower than the formation pressure and higher than the formation collapse pressure, and in the mean time, foam drilling fluid in the whole wellbore should be in the best foam quality stage in order to have sufficient capacity to carry cuttings. In this paper, main relations between bottom hole pressure and gas-liquid injecting rate are analyzed with the underbalanced multiphase flow models. And in order to obtain precise flow pattern and flow pressure, the whole well bore is spatial meshed and iterative method is used. So, a convenient safety window expressed by gas-liquid injecting rate is obtained instead of that by bottom hole pressure. Finally, a foam drilling example from a block in Yemen is presented; the drilling results show that this method is reliable and practical.
Prédélus, Dieuseul; Lassabatere, Laurent; Louis, Cédric; Gehan, Hélène; Brichart, Thomas; Winiarski, Thierry; Angulo-Jaramillo, Rafael
2017-03-01
This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO2-FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10-2 M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.
Sakimoto, S. E. H.; Gregg, T. K. P.
2004-01-01
The Cerberus Fossae and Elysium Planitia regions have been suggested as some of the youngest martian surfaces since the Viking mission, although there was doubt whether the origins were predominantly volcanic or fluvial. The Mars Global Surveyor and Mars Odyssey Missions have shown that the region is certainly young in terms of the topographic preservation and the youthful crater counts (e.g. in the tens to a few hundred million yrs.). Numerous authors have shown that fluvial and volcanic features share common flow paths and vent systems, and that there is evidence for some interaction between the lava flows and underlying volatiles as well as the use by lavas and water of the same vent system. Given the youthful age and possible water-volcanism interaction environment, we'd like constraints on water and volcanic flux rates and interactions. Here, we model ranges of volcanic flow rates where we can well-constrain them, and consider the modest flow rate results results in context with local eruption styles, and track vent locations, edifice volumes, and flow sources and data.
Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet
Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan
2015-09-01
A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)
Walker, Anthony P.; Quaife, Tristan; Van Bodegom, Peter M.; De Kauwe, Martin G.; Keenan, Trevor F.; Joiner, Joanna; Lomas, Mark R.; MacBean, Natasha; Xu, Chongang; Yang, Xiaojuan;
2017-01-01
The maximum photosynthetic carboxylation rate (V (sub cmax)) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V(sub cmax) distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 petagrams of Carbon (PgC) per year, 65 percent of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27percent coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r equals 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V(sub cmax) variation in the field, particularly in northern latitudes.
Modal dispersion, pulse broadening and maximum transmission rate in GRIN optical fibers encompass a central dip in the core index profile
El-Diasty, Fouad; El-Hennawi, H. A.; El-Ghandoor, H.; Soliman, Mona A.
2013-12-01
Intermodal and intramodal dispersions signify one of the problems in graded-index multi-mode optical fibers (GRIN) used for LAN communication systems and for sensing applications. A central index dip (depression) in the profile of core refractive-index may occur due to the CVD fabrication processes. The index dip may also be intentionally designed to broaden the fundamental mode field profile toward a plateau-like distribution, which have advantages for fiber-source connections, fiber amplifiers and self-imaging applications. Effect of core central index dip on the propagation parameters of GRIN fiber, such as intermodal dispersion, intramodal dispersion and root-mean-square broadening, is investigated. The conventional methods usually study optical signal propagation in optical fiber in terms of mode characteristics and the number of modes, but in this work multiple-beam Fizeau interferometry is proposed as an inductive but alternative methodology to afford a radial approach to determine dispersion, pulse broadening and maximum transmission rate in GRIN optical fiber having a central index dip.
Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R
2008-04-01
The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.
Review of flow rate estimates of the Deepwater Horizon oil spill
McNutt, Marcia K.; Camilli, Rich; Crone, Timothy J.; Guthrie, George D.; Hsieh, Paul A.; Ryerson, Thomas B.; Savas, Omer; Shaffer, Frank
2012-01-01
The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ observations of the leaking well with a time-dependent flow rate model derived from pressure readings taken after the Macondo well was shut in for the well integrity test. Model simulations also proved valuable for predicting the effect of partial deployment of the blowout preventer rams on flow rate. Taken together, the scientific analyses support flow rates in the range of ~50,000–70,000 barrels/d, perhaps modestly decreasing over the duration of the oil spill, for a total release of ~5.0 million barrels of oil, not accounting for BP's collection effort. By quantifying the amount of oil at different locations (wellhead, ocean surface, and atmosphere), we conclude that just over 2 million barrels of oil (after accounting for containment) and all of the released methane remained in the deep sea. By better understanding the fate of the hydrocarbons, the total discharge can be partitioned into separate components that pose threats to deep sea vs. coastal ecosystems, allowing responders in future events to scale their actions accordingly.
Relationship of medical status, medications, and salivary flow rates in adults of different ages.
Navazesh, M; Brightman, V J; Pogoda, J M
1996-02-01
Multiple systemic disorders and medications have been reported to cause xerostomia or salivary gland hypofunction. The purpose of this study was to evaluate the relationship among systemic disorders, medications, and salivary flow rates. Sixty-three ambulatory dental patients aged 23 to 82 years were randomly selected. The nature, duration, and number of systemic disorders and medications were documented. Repeated measurements of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid salivary flow rates were obtained. Data were analyzed with the Wilcoxon rank-sum test, nonparametric multivariate analysis of variance, and Fisher's exact test. For persons with systemic disorders who were taking medication, all salivary flow rates were significantly (p = 0.03 - 0.001) lower than the flow rates in healthy persons. Among persons with at least one systemic disorder who were taking medication, those who had been taking medication for longer than 2 years had significantly lower unstimulated whole saliva (p = 0.002), chewing-stimulated whole saliva (p = 0.0004), and candy-stimulated parotid saliva (p = 0.02) flow rates than those who had been taking medication for 1 to 2 years. The number of systemic disorders significantly (p = 0.02) and negatively affected the acid-stimulated parotid salivary rates. The prevalence of salivary hypofunction determined on the basis of unstimulated whole saliva and acid-stimulated parotid saliva was significantly higher (p = < 0.001, p = 0.007) in the those persons with systemic disorders and taking medications. The results suggest that salivary secretion is affected by the number of systemic disorders and duration of the potentially xerogenic medications.
Corporate Cash Flow and Stock Price Exposures to Foreign Exchange Rate Risk
Bartram, Söhnke M.
2007-01-01
This paper estimates the foreign exchange rate exposure of 6,917 U.S. nonfinancial firms on the basis of stock prices and corporate cash flows. The results show that several firms are significantly exposed to at least one of the foreign exchange rates Canadian Dollar, Japanese Yen and Euro, and significant exposures are more frequent at longer horizons. The percentage of firms for which stock price and earnings exposures are significantly different is relatively low, though it increases with ...
Corporate Cash Flow and Stock Price Exposures to Foreign Exchange Rate Risk
Bartram, Söhnke M.
2007-01-01
This paper estimates the foreign exchange rate exposure of 6,917 U.S. nonfinancial firms on the basis of stock prices and corporate cash flows. The results show that several firms are significantly exposed to at least one of the foreign exchange rates Canadian Dollar, Japanese Yen and Euro, and significant exposures are more frequent at longer horizons. The percentage of firms for which stock price and earnings exposures are significantly different is relatively low, though it increases with ...
The Effect of the Volume Flow rate on the Efficiency of a Solar Collector
Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon
rates. Theoretically, a simplified model of the solar collector panel is built by means of the CFD (Computational Fluid Dynamics) code Fluent, where the geometry of the collector panel except the casing is fully modeled. Both lateral and longitudinal heat conduction in the absorber fins, the heat...... transfer from the absorber to the solar collector fluid and the heat loss from the absorber are considered. Flow and temperature distribution in the collector panel are investigated with buoyancy effect. Measurements are carried out with the solar collector panel. Collector efficiencies are measured......The flow distribution inside a collector panel with an area of 12.5 m² and with 16 parallel connected horizontal fins and the effect of the flow nonuniformity on the risk of boiling and on the collector efficiency have been theoretically and experimentally investigated for different volume flow...
Song, S. j.; Noh, K. Y.; Min, B. C.; Yang, J. S.; Choi, G. M.; Kim, D. J.
2015-08-01
The oil circulation rate (OCR) of the rolling piston rotary compressor is a significant factor which affects the performance of refrigeration system. The increase of oil discharge causes decreasing of the heat transfer efficiency in the heat exchanger, pressure drop and lack of oil in lubricate part in compressor. In this study, the internal flow of compressor was visualized to figure out the oil droplet flow characteristics. The experiments and Computational Fluid Dynamics (CFD) simulations were conducted in various frequency of compressor to observe the effect of operation frequency on oil droplet flow characteristics for reducing OCR. In situ, measurement of oil droplet diameter and velocity were conducted by using high speed image visualization and Particle Image Velocimetry (PIV). The flow paths were dominated by copper wire parts driving the motor which was inserted in compressor. In order to verify the reliability of CFD simulation, the tendency of oil flow characteristics in each flow path and the compressor operating conditions were applied in CFD simulation. For reducing OCR, the structure such as vane, disk and ring is installed in the compressor to restrict the main flow path of oil particle. The effect of additional structure for reducing OCR was evaluated using CFD simulation and the results were discussed in detail.
Toward compressed DMD: spectral analysis of fluid flows using sub-Nyquist-rate PIV data
Tu, Jonathan H; Kutz, J Nathan; Shang, Jessica K
2014-01-01
Dynamic mode decomposition (DMD) is a powerful and increasingly popular tool for performing spectral analysis of fluid flows. However, it requires data that satisfy the Nyquist-Shannon sampling criterion. In many fluid flow experiments, such data are impossible to capture. We propose a new approach that combines ideas from DMD and compressed sensing. Given a vector-valued signal, we take measurements randomly in time (at a sub-Nyquist rate) and project the data onto a low-dimensional subspace. We then use compressed sensing to identify the dominant frequencies in the signal and their corresponding modes. We demonstrate this method using two examples, analyzing both an artificially constructed test dataset and particle image velocimetry data collected from the flow past a cylinder. In each case, our method correctly identifies the characteristic frequencies and oscillatory modes dominating the signal, proving the proposed method to be a capable tool for spectral analysis using sub-Nyquist-rate sampling.
High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography
Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Bechsgaard, Thor
2016-01-01
This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view...... (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter....... In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle...
Flow rate estimation by optical coherence tomography using contrast dilution approach
Štohanzlová, Petra; Kolář, Radim
2015-07-01
This paper describes experiments and methodology for flow rate estimation using optical coherence tomography and dilution method in single fiber setup. The single fiber is created from custom made glass capillary and polypropylene hollow fiber. As a data source, measurements on single fiber phantom with continuous flow of carrier medium and bolus of Intralipid solution as a contrast agent were used using Thorlabs OCT OCS1300SS. The measured data were processed by methods of image processing, in order to precisely align the individual images in the sequence and extract dilution curves from the area inside the fiber. An experiment proved that optical coherence tomography can be used for flow rate estimation by the dilution method with precision around 7%.
Energy policy act transportation study: Interim report on natural gas flows and rates
NONE
1995-11-17
This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.
Rongrong Li
2014-11-01
Full Text Available The impact of varying pressure, feed rate, and abrasive mass flow rate on the efficiency of an abrasive water jet cutting process was studied in this work. Recombinant bamboo samples with thicknesses of 5, 10, and 15 mm were cut by the abrasive water jet. The upper kerf width, lower kerf width, and the ratio of the upper kerf width to lower kerf width were chosen as the efficiency parameters. Mathematical models were developed to describe the relationship between the input process parameters and the efficiency parameters. The arrangement of experiments and analysis of results were performed based on response surface methodology. The evaluated model yielded predictions in agreement with experimental results.
40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...
Fabric inlet stratifiers for solar tanks with different volume flow rates
Andersen, Elsa; Furbo, Simon
2006-01-01
in the centre of a glass tank (400 x 400 x 900 mm). The forced volume flow rate is in the range of 6 – 10 l/min, and water enters the stratification pipe from the bottom of the tank. The thermal behaviour of the stratification pipes is investigated for different realistic operation conditions...
Accurate Angle Estimator for High-Frame-rate 2-D Vector Flow Imaging
Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Lindskov Hansen, Kristoffer
2016-01-01
This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using the ex...
Determination of flow-rate characteristics and parameters of piezo pilot valves
Takosoglu Jakub
2017-01-01
Full Text Available Pneumatic directional valves are used in most industrial pneumatic systems. Most of them are two-stage valves controlled by a pilot valve. Pilot valves are often chosen randomly. Experimental studies in order to determine the flow-rate characteristics and parameters of pilot valves were not conducted. The paper presents experimental research of two piezo pilot valves.
Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration
Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)
2015-12-29
Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.
A Direct inverse model to determine permeability fields from pressure and flow rate measurements
Brouwer, G.K.; Fokker, P.A.; Wilschut, F.; Zijl, W.
2008-01-01
The determination of the permeability field from pressure and flow rate measurements in wells is a key problem in reservoir engineering. This paper presents a Double Constraint method for inverse modeling that is an example of direct inverse modeling. The method is used with a standard block-centere
The control of self-propelled microjets inside a microchannel with time-varying flow rates
Khalil, Islam S.M.; Magdanz, Veronika; Sanchez, Samuel; Schmidt, Oliver S.; Misra, Sarthak
2013-01-01
We demonstrate the closed-loop motion control of self-propelled microjets inside a fluidic microchannel. The motion control of the microjets is achieved in hydrogen peroxide solution with time-varying flow rates, under the influence of the controlled magnetic fields and the self-propulsion force. Ma
De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2016-08-12
When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure.
Effect of flow rate and lead/copper pipe sequence on lead release from service lines.
Cartier, Clément; Arnold, Roger B; Triantafyllidou, Simoni; Prévost, Michèle; Edwards, Marc
2012-09-01
A pilot experiment examined lead leaching from four representative configurations of service lines including: (1) 100% lead (Pb), (2) 100% copper (Cu), (3) 50% Pb upstream of 50% Cu, and (4) 50% Pb-downstream of 50% Cu using a range of flow rates. The cumulative mass of lead release indicated that a typical partial replacement configuration (50% lead downstream of copper) did not provide a net reduction in lead when compared to 100% lead pipe (85 mg for 50% Pb-downstream versus 83 mg for 100%-Pb) due to galvanic and deposition corrosion. The partially replaced service line configuration also had a much greater likelihood of producing water with "spikes" of lead particulates at higher flow rates, while tending to produce lower levels of lead at very low flow rates. After the first 214 days the galvanic current between copper and lead was only reduced by 34%, proving that galvanic impacts can be highly persistent even in water with optimized corrosion control by dosing of zinc orthophosphate. Finally, this experiment raises concern about the low flow rates used during some prior home sampling events, which may underestimate exposure to lead during normal water use, especially when galvanic Pb:Cu connections are present.
Nocturnal variations in subcutaneous blood flow rate in lower leg of normal human subjects
Sindrup, J H; Kastrup, J; Jørgensen, B;
1991-01-01
Subcutaneous adipose tissue blood flow rate was measured in the lower leg of 22 normal human subjects over 12- to 20-h ambulatory conditions. The 133Xe washout technique, portable CdTe(Cl) detectors, and a portable data storage unit were used. The tracer depot was applied on the medial aspect...
Sindrup, J H; Kastrup, J; Kristensen, J K
1991-01-01
telluride (CdTe(Cl)) detectors. In both groups, the change from an upright to a supine position at the beginning of the night period elicited an instantaneous increment in the blood flow rate of 30-40% with a decrease in the central and local postural sympathetic vasoconstrictor activity. After...
Sindrup, J H; Kastrup, J; Jørgensen, B
1991-01-01
aspect of the right lower leg of normal human subjects. In the present study subcutaneous adipose tissue blood flow rates were measured simultaneously in the right and left lower legs of 16 normal human subjects over 12-20 h ambulatory conditions. The 133Xe wash-out technique, portable CdTe(Cl) detectors...
Botulinum toxin effect on salivary flow rate in children with cerebral palsy.
Jongerius, P.H.; Rotteveel, J.J.; Limbeek, J. van; Gabreëls, F.J.M.; Hulst, K. van; Hoogen, F.J.A. van den
2004-01-01
OBJECTIVE: To investigate the effectiveness of botulinum neurotoxin (BoNT) type A in reducing salivary flow rate in children with cerebral palsy (CP) with severe drooling. METHODS: During a controlled clinical trial, single-dose BoNT injections into the submandibular salivary glands were compared wi
Hemant Kumar Gupta
2015-03-01
Full Text Available The efficiency of conventional tube‐ in plate type solar collectors is limited due to higher heat losses for surface based solar energy absorption and indirect transfer of heat from hot absorber surface to working fluid having poor heat transfer properties flowing through tubes. In this paper, a prototype direct absorption solar collector having gross area 1.4 m2 working on volumetric absorption principle is developed to investigate the effect of using Al2O3–H2O nanofluid as heat transfer fluid at different flow rates. Experimentation was carried using distilled water and 0.005% volume fractions of 20 nm size Al2O3 nanoparticles at three flow rates of 1.5, 2 and 2.5 lpm. ASHRAE standard 93-86 was followed for calculation of instantaneous efficiency of solar collector. Use of nanofluid improves the optical and thermo physical properties that result into an increase in the efficiency of the collector in all cases of using nanofluids in place of water. Collector efficiency enhancement of 8.1% and 4.2% has been observed for 1.5 and 2 lpm flow rate of nanofluid respectively. Optimum flow rate of 2.5 and 2 lpm towards maximum collector efficiency have also been observed for water and nanofluid respectively.
Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.
Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P
2016-11-01
Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.
Badescu, V.; Murariu, V.; Rotariu, O; Rezlescu, N.
1996-01-01
The theory of magnetic particles′ capture on a HGMF-axial magnetic filter cell with bounded flow field is presented. The equations of particle motion for both potential and laminar flow are obtained. By analytical solving of these equations, the trajectories of particles are established. The flow velocity of the fluid suspension for the case of potential flow is set equal with the velocity averaged across the tube section for the laminar flow. Thus, it is possible to make a comparison between...
Jasikova D.
2015-01-01
Full Text Available Here we present the results of measurement in micro-channel with the Y-junction and narrow structure for various flow rates. There was used BSG micro-channel with trapezoidal cross-section. The parameters of the channel are described in the paper. The flow in the micro-channel was invested with micro-PIV technique and various flow rates were set on each inlet. The resulting flow rate in the steady area follows the laminar flow with very low Re 30. Here we are focused on the flow characteristic in the Y-junction and in selected narrow structure. The fluid flow is evaluated with vector and scalar maps and the profile plots that were taken in the point of interest.
Prediction of Leak Flow Rate Using FNNs in Severe LOCA Circumstances
Kim, Dong Yeong; Yoo, Kwae Hwan; Kim, Ju Hyun; Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of); Hur, Seop; Kim, Chang Hwoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
Leak flow rate is a function of break size, differential pressure ( i.e., difference between internal and external reactor vessel pressure), temperature, and so on. Specially, the leak flow rate is strongly dependent on the break size and the differential pressure, but the break size is not measured and the integrity of pressure sensors is not assured in severe circumstances. In this study, a fuzzy neural network (FNN) model is proposed to predict the leak flow rate out of break, which has a direct impact on the important times (time approaching the core exit temperature that exceeds 1200 .deg. F, core uncover time, reactor vessel failure time, etc.). Since FNN is a data-based model, it requires data to develop and verify itself. However, because actual severe accident data do not exist to the best of our knowledge, it is essential to obtain the data required in the proposed model using numerical simulations. These data were obtained by simulating severe accident scenarios for the optimized power reactor 1000 (OPR 1000) using MAAP4 code. In this study, FNN model was developed to predict the leak flow rate in severe post-LOCA circumstances.. The training data were selected from among all the acquired data using an SC method to train the proposed FNN model with more informative data. The developed FNN model predicted the leak flow rate using the time elapsed after reactor shutdown and the predicted break size, and its validity was verified in the basis of the simulation data of OPR1000 using MAAP4 code.
Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara
2016-04-01
Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D
Food loss rate in food supply chain using material flow analysis.
Ju, Munsol; Osako, Masahiro; Harashina, Sachihiko
2017-03-01
The food loss rate is a factor that represents food consumption efficiency. To improve food consumption efficiency, we need to fundamentally quantify food loss at national and global levels. This study examines food and food waste flow and calculates the food loss rate in the food supply chain by targeting Japan. We analyzed inedible food waste and avoidable food losses in wholesale, manufacturing, retail, food services, and households and considered different supply chain pathways, different food categories representing whole Japanese meals, and weight changes after cooking. The results are as follows: (1) Japan has an overall rate of avoidable food losses of approximately 15% for meals (excluding agricultural losses), (2) the supply sector with the highest food loss rate is food services, and (3) the food category with the highest food loss rate is vegetables. Finally, we proposed a model for calculating food loss rates that could be used for future analysis in Japan or other countries.
Effects of flow and water chemistry on lead release rates from pipe scales.
Xie, Yanjiao; Giammar, Daniel E
2011-12-01
Lead release from pipe scales was investigated under different water compositions, stagnation times, and flow regimes. Pipe scales containing PbO(2) and hydrocerussite (Pb(3)(OH)(2)(CO(3))(2)) were developed on lead pipes by conditioning the pipes with water containing free chlorine for eight months. Water chemistry and the composition of the pipe scales are two key factors affecting lead release from pipe scales. The water rarely reached equilibrium with pipe scales within one day, which makes solid-water contact time and corrosion product dissolution rates the controlling factors of lead concentrations for the conditions tested. Among five water compositions studied, a solution with orthophosphate had the lowest dissolved lead release rate and highest particulate lead release rate. Free chlorine also decreased the dissolved lead release rate at stagnant conditions. Water flow increased rates of release of both dissolved and particulate lead by accelerating the mass transfer of lead out of the porous pipe scales and by physically destabilizing pipe scales. Dissolved lead comprised the majority of the lead released at both stagnant and laminar flow conditions. Copyright Â© 2011 Elsevier Ltd. All rights reserved.
Christensen, Preben; Boelling, Dorothee; Pedersen, Kurt Myrup; Korsgaard, Inge Riis; Jensen, Just
2005-01-01
A newly developed flow cytometric method for determination of sperm concentration and viability was tested in an insemination trial with cryopreserved bull sperm to establish the relationship between sperm viability and nonreturn rates. Semen for experimental inseminations was produced from 157 young sires (114 Holstein and 43 Jersey), each contributing 4 experimental semen collections. Straws containing approximately 15 x 10(6) motile sperm before freezing were used in 118,680 experimental inseminations performed by 254 artificial insemination technicians in 6352 Danish herds. Statistical analysis based on 44,946 experimental first inseminations showed that the major part (95.4%) of variation in the 56-day nonreturn rate (NRR56) was residual. Only 0.38% of the total variation in NRR56 was due to bulls and differences between ejaculate within bull. However, bulls were preselected, and a relatively high insemination dose was used. Correlations between sperm viability as assessed by flow cytometry and NRR56 was slightly lower than observed for microscopic assessment of sperm motility. However, flow cytometry makes it possible to achieve an objective and precise determination of sperm viability. It was therefore possible to calculate the effect on NRR56 provided selection of semen is based on the flow cytometric method. Three freezing extenders were used in this experiment, but a significant difference in NRR56 was not observed. Flow cytometric results for 1 extender (Biociphos Plus) indicated poorer sperm survival during postthaw incubation compared with Triladyl extender with whole and with clarified egg yolk.
Use of Flow Cytometry to Measure Biogeochemical Rates and Processes in the Ocean
Lomas, Michael W.; Bronk, Deborah A.; van den Engh, Ger
2011-01-01
An important goal of marine biogeochemists is to quantify the rates at which elements cycle through the ocean's diverse microbial assemblage, as well as to determine how these rates vary in time and space. The traditional view that phytoplankton are producers and bacteria are consumers has been found to be overly simplistic, and environmental metagenomics is discovering new and important microbial metabolisms at an accelerating rate. Many nutritional strategies previously attributed to one microorganism or functional group are also or instead carried out by other groups. To tease apart which organism is doing what will require new analytical approaches. Flow cytometry, when combined with other techniques, has great potential for expanding our understanding of microbial interactions because groups can be distinguished optically, sorted, and then collected for subsequent analyses. Herein, we review the advances in our understanding of marine biogeochemistry that have arisen from the use of flow cytometry.
A Rate-Based Flow Control Mechanism for AvoidingCongestion
张孝林; 王宇宏; 吴介一
2002-01-01
The rate-based flow control mechanisms for the Available Bit Rate (ABR) service are used to share the available bandwidth of a bottleneck switch connected to a bottleneck link fairly and reasonably among many competitive users, and to maintain the buffer queue length of the switch at a desired level in order to avoid congestion in Asynchronous Transfer Mode (ATM) networks. In this paper, a control theoretic approach that uses a DeadbeatResponse (DR) controller to the design of a rate-based flow control mechanism is presented.The mechanism has a simple structure and is robust in the sense that its stability is not sensitive to the change of the number of active Virtual Connections (VCs). Simulation results show that this mechanism not only ensures fair share of the bandwidth for all active VCs regardless of the number of hops they traverse but also has the advantages of fast convergence, no oscillation,and high link bandwidth utilization.
Gonzalez-Lopezlira, Rosa A. [On sabbatical leave from the Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089, Mexico. (Mexico); Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: r.gonzalez@crya.unam.mx [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)
2013-06-20
We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, Hg, and flow rate.
2010-07-01
... SO2 concentration (MPC) value for each type of fuel combusted in the unit, in a manner consistent with... units. For each hour of missing volumetric flow rate data, NOX emission rate data, or NOX concentration... units using operational bins. Whenever no prior quality-assured flow rate data, NOX concentration data...
Grain-size-independent plastic flow at ultrahigh pressures and strain rates.
Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T
2015-02-13
A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100 GPa) and strain rate (∼10(7) s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25 μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.
PWM Flow Rate Control of ER Valve and its Application to ER Actuator Control
Nakano, Masami; Minagawa, Shuji; Hagino, Katsuya
The PWM (Pulse Width Modulation) control of ER valve consisting of two parallel electrodes has been investigated to continuously control the flow rate of an electrorheological (ER) suspension containing sulfonated polymer particles in silicone oil. PWM wave voltages are applied to the electrodes of the ER valve. It is possible to control continuously the flow rate by changing the duty ratio of the PWM wave from 1 to 0, where the duty ratio of 1 corresponds to the state to stop the flow. A miniature bellows actuator driven by a pair of PWM controlled ER valves has been developed, and the control characteristics of the actuator have been investigated. The duty ratios of both ER valves have been proposed to be changed alternately in proportion to the control voltage V to control the flow rate into and out of the bellows chamber, and also an overlap duty ratio Dov at V=0V has been introduced. The introduction of the overlap duty ratio Dov was found to be very important to smoothly control the actuator and to improve the control performance.
Chiba Shigeru
2007-09-01
Full Text Available Abstract Background Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. Methods An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index ρmax, which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. Results The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in ρmax with time. Conclusion The physiological index, ρmax, will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.
Mass flow rate of granular material in silos with lateral exit holes
Medina, Abraham; Serrano, Armando; Sanchez, Florencio
2014-11-01
In this work we have analyzed experimentally the mass flow rate, m', of the lateral outflow of cohesionless granular material through circular orifices of diameter D and rectangular and triangular slots of hydraulic diameter DH made in vertical walls of bins. Experiments were made in order to determine also the influence of the wall thickness of the bin, w. Geometrical and physical arguments, are given to get a general correlation for m' embracing both quantities, D (DH) and w. The angle of repose is also an important factor characterizing these flows.
Jensen, Kaare H.; Valente, André X. C. N.; Stone, Howard A.
2014-05-01
We examine the fluid mechanics of viscous flow through filters consisting of perforated thin plates. We classify the effects that contribute to the hydraulic resistance of the filter. Classical analyses assume a single pore size and account only for filter thickness. We extend these results to obtain an analytical formula for the pressure drop across the microfilter versus the flow rate that accounts for the non-uniform distribution of pore sizes, the hydrodynamic interactions between the pores given their layout pattern, and wall slip. Further, we discuss inertial effects and their order of scaling.
Jensen, Kaare Hartvig; Valente, Andre X. C. N.; Stone, Howard A.
2014-01-01
to obtain an analytical formula for the pressure drop across the microfilter versus the flow rate that accounts for the non-uniform distribution of pore sizes, the hydrodynamic interactions between the pores given their layout pattern, and wall slip. Further, we discuss inertial effects and their order......We examine the fluid mechanics of viscous flow through filters consisting of perforated thin plates. We classify the effects that contribute to the hydraulic resistance of the filter. Classical analyses assume a single pore size and account only for filter thickness. We extend these results...
Flow Rate Driven by Peristaltic Movement in Plasmodial Tube of Physarum Polycephalum
Yamada, Hiroyasu; Nakagaki, Toshiyuki
2008-07-01
We report a theoretical analysis of protoplasmic streaming driven by peristaltic movement in an elastic tube of an amoeba-like organism. The Plasmodium of Physarum polycephalum, a true slime mold, is a large amoeboid organism that adopts a sheet-like form with a tubular network. The network extends throughout the Plasmodium and enables the transport and circulation of chemical signals and nutrients. This tubular flow is driven by periodically propagating waves of active contraction of the tube cortex, a process known as peristaltic movement. We derive the relationship between the phase velocity of the contraction wave and the flow rate, and we discuss the physiological implications of this relationship.
Investigations on Oil Flow Rates Projected on the Casing Walls by Splashed Lubricated Gears
2012-01-01
In order to investigate the oil projected by gears rotating in an oil bath, a test rig has been set up in which the quantity of lubricant splashed at several locations on the casing walls can be measured. An oblong-shaped window of variable size is connected to a tank for flow measurements, and the system can be placed at several locations. A series of formulae have been deduced using dimensional analysis which can predict the lubricant flow rate generated by one spur gear or one disk at vari...
A QUASI-FLOW CONSTITUTIVE MODEL WITH STRAIN-RATE DEPENDENCE
HU Ping; SHEN Guozhe; YANG Guang
2004-01-01
In this paper, the proposed is a quasi-flow constitutive model with strain-rate sensitivity for elastic plastic large deformation. The model is based on the Quasi-flow Corner theory,and is suitable for the sheet metal forming process simulation with a variable punch machine velocity.Uniaxial tensile tests and deep-drawing tests of a circular blank with square punch are carried out and numerically simulated. The consistency between the experimental and the numerically simulated results shows the validity of the present new constitutive model.
Hubbard, S. M.; Coutts, D. S.; Matthews, W.; Guest, B.; Bain, H.
2015-12-01
In basins adjacent to continually active arcs, detrital zircon geochronology can be used to establish a high-resolution chronostratigraphic framework for deep-time strata. Large-nU-Pb geochronological datasets can yield a statistically significant signature from the youngest sub-population of detrital zircons, which we deduce from maximum depositional age (MDA) calculations. MDA is determined through numerous methods such as the mean age of three or more overlapping grain ages at 2σ error, favored in this analysis. Positive identification of the youngest detrital zircon population in a rock is the limiting factor on precision and resolution. The Campanian-Paleogene Nanaimo Group of B.C., Canada, was deposited in a forearc basin, outboard of the Coast Mountain Batholith. The record of a deep-water sediment-routing system is exhumed at Denman and Hornby islands; sandstone- and conglomerate- dominated strata compose a composite sedimentary unit 20 km across and 1.5 km thick, in strike section. Volcanic ashes are absent from the succession, which has been constrained biostratigraphically. Eleven detrital zircon samples are analyzed to define stratigraphic architecture and provide insight into sedimentation rates. Our dataset (n=3081) constrains the overall duration of channelization to ~18 Ma. A series of at least five distinct composite channel fills 3-6 km wide and 400-600 m thick are identified. The MDA of these units are statistically distinct and constrained to better than 3% precision. Sedimentation rates amongst the channel fills increase upward, from 60-100 m/Ma to >500 m/Ma. This is likely linked to the tendency of a slope channel system to be dominated by sediment bypass early in its evolution, and later dominated by aggradation as large-scale levees develop. Channel processes were not continuous, with the longest hiatus ~6 Ma. The large-n detrital zircon dataset provides unprecedented insight into long-term sediment routing, evidence for which is
Ferraz, Antônio Djalma Nunes; Zaiat, Marcelo; Gupta, Medhavi; Elbeshbishy, Elsayed; Hafez, Hisham; Nakhla, George
2014-07-01
This study assesses the impact of organic loading rate on biohydrogen production from glucose in an up-flow anaerobic packed bed reactor (UAnPBR). Two mesophilic UAPBRs (UAnPBR1 and 2) were tested at organic loading rates (OLRs) ranging from 6.5 to 51.4 g COD L(-1)d(-1). To overcome biomass washout, design modifications were made in the UAnPBR2 to include a settling zone to capture the detached biomass. The design modifications in UAnPBR2 increased the average hydrogen yield from 0.98 to 2.0 mol-H2 mol(-1)-glucose at an OLR of 25.7 g COD L(-1)d(-1). Although, a maximum hydrogen production rate of 23.4 ± 0.9 L H2 L(-1)d(-1) was achieved in the UAnPBR2 at an OLR of 51.4 g COD L(-1)d(-1), the hydrogen yield dropped by 50% to around 1 mol-H2 mol(-1)-glucose. The microbiological analysis (PCR/DGGE) showed that the biohydrogen production was due to the presence of the hydrogen and volatile acid producers such as Clostridium beijerinckii, Clostridium butyricum, Megasphaera elsdenii and Propionispira arboris.
Non-contact flow gauging for the extension and development of rating curves
Perks, Matthew; Large, Andy; Russell, Andy
2015-04-01
Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves
Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis
S. W. Lyon
2009-05-01
Full Text Available Permafrost thawing is likely to change the flow pathways taken by water as it moves through arctic and sub-arctic landscapes. The location and distribution of these pathways directly influence the carbon and other biogeochemical cycling in northern latitude catchments. While permafrost thawing due to climate change has been observed in the arctic and sub-arctic, direct observations of permafrost depth are difficult to perform at scales larger than a local scale. Using recession flow analysis, it may be possible to detect and estimate the rate of permafrost thawing based on a long-term streamflow record. We demonstrate the application of this approach to the sub-arctic Abiskojokken catchment in northern Sweden. Based on recession flow analysis, we estimate that permafrost in this catchment may be thawing at an average rate of about 0.9 cm/yr during the past 90 years. This estimated thawing rate is consistent with direct observations of permafrost thawing rates, ranging from 0.7 to 1.3 cm/yr over the past 30 years in the region.
B Subramanian; K Prabakaran; M Jayachandran
2012-08-01
Chromium nitride (CrN) hard thin films were deposited on different substrates by reactive direct current (d.c.) magnetron sputtering with different nitrogen flow rates. The X-ray diffraction patterns showed mixed Cr2N and CrN phases. The variations in structural parameters are discussed. The grain size increased with increasing nitrogen flow rates. Scanning electron microscopy image showed columnar and dense microstructure with varying nitrogen flow rates. An elemental analysis of the samples was realized by means of energy dispersive spectroscopy. The electrical studies indicated the semiconducting behaviour of the films at the nitrogen flow rate of 15 sccm.
CAO Zhangyi; SUN Zhuo; GUO Pingsheng; CHEN Yiwei
2007-01-01
Carbon nanotube (CNT) films were grown on nickel foil substrates by thermal chemical vapor deposition (CVD) with acetylene and hydrogen as the precursors. The morphology and structure of CNTs depending on the acetylene flow rate were characterized by a scanning electron microscope (SEM),a transmission electron microscope (TEM) and a Raman spectrometer,respectively.The effect of acetylene flow rate on the morphology and structure of CNT films was investigated.By increasing the acetylene flow rate from 10 to 90 sccm (standard cubic centimeter perminute),the yield and the diameter of CNTs increase.Also, the defects and amorphous phase in CNT films increase with increasing acetylene flow rate.
Guan, Y; Evans, P M; Kemp, R B
1998-06-05
One of the requirements for enhanced productivity by the animal culture systems used in biotechnology is the direct assessment of the metabolic rate by on-line biosensors. Based on the fact that cell growth is associated with an enthalpy change, it is shown that the specific heat flow rate is stoichiometrically related to the net specific rates of substrates, products, and indeed to specific growth rate, and therefore a direct reflection of metabolic rate. Heat flow rate measured by conduction calorimetry has a technical advantage over estimates for many material flows which require assays at a minimum of two discrete times to give the rate. In order to make heat flow rate specific to the amount of the living cellular system, it would be advantageous to divide it by viable biomass. This requirement has been fulfilled by combining a continuous flow microcalorimeter ex situ with a dielectric spectroscope in situ, the latter measuring the viable cell mass volume fraction. The quality of the resulting biosensor for specific heat flow rate was illustrated using batch cultures of Chinese hamster ovary cells (CHO 320) producing recombinant human interferon-gamma (IFN-gamma) during growth in a stirred tank bioreactor under fully aerobic conditions. The measuring scatter of the probe was decreased significantly by applying the moving average technique to the two participant signals. It was demonstrated that the total metabolic rate of the cells, as indicated by the specific heat flow rate sensor, decreased with increasing time in batch culture, coincident with the decline in the two major substrates, glucose and glutamine, and the accumulation of the by-products, ammonia and lactate. Furthermore, the specific heat flow rate was an earlier indicator of substrate depletion than the flow rate alone. The calorimetric-respirometric ratio showed the intensive participation of anaerobic processes during growth and the related IFN-gamma production. Specific heat flow rate was
Poker, Gilad; Zarai, Yoram; Margaliot, Michael; Tuller, Tamir
2014-11-06
Translation is an important stage in gene expression. During this stage, macro-molecules called ribosomes travel along the mRNA strand linking amino acids together in a specific order to create a functioning protein. An important question, related to many biomedical disciplines, is how to maximize protein production. Indeed, translation is known to be one of the most energy-consuming processes in the cell, and it is natural to assume that evolution shaped this process so that it maximizes the protein production rate. If this is indeed so then one can estimate various parameters of the translation machinery by solving an appropriate mathematical optimization problem. The same problem also arises in the context of synthetic biology, namely, re-engineer heterologous genes in order to maximize their translation rate in a host organism. We consider the problem of maximizing the protein production rate using a computational model for translation-elongation called the ribosome flow model (RFM). This model describes the flow of the ribosomes along an mRNA chain of length n using a set of n first-order nonlinear ordinary differential equations. It also includes n + 1 positive parameters: the ribosomal initiation rate into the mRNA chain, and n elongation rates along the chain sites. We show that the steady-state translation rate in the RFM is a strictly concave function of its parameters. This means that the problem of maximizing the translation rate under a suitable constraint always admits a unique solution, and that this solution can be determined using highly efficient algorithms for solving convex optimization problems even for large values of n. Furthermore, our analysis shows that the optimal translation rate can be computed based only on the optimal initiation rate and the elongation rate of the codons near the beginning of the ORF. We discuss some applications of the theoretical results to synthetic biology, molecular evolution, and functional genomics.
Intrapericardial denervation - Radial artery blood flow and heart rate responses to LBNP
Mckeever, Kenneth H.; Skidmore, Michael G.; Keil, Lanny C.; Sandler, Harold
1990-01-01
The effects of intrapericardial denervation on the radial artery blood flow velocity (RABFV) and heart rate (HR) responses to LBNP in rhesus monkeys were investigated by measuring the RABFV transcutaneously by a continuous-wave Doppler ultrasonic flowmeter in order to derive an index of forearm blood flow response to low (0 to -20 mm Hg) and high (0 to -60 mm Hg) ramp exposures during supine LBNP. Four of the eight subjects were subjected to efferent and afferent cardiac denervation. It was found that, during low levels of LBNP, monkeys with cardiac denervation exhibited no cardiopulmonary baroreceptor-mediated change in the RABFV or HR, unlike the intact animals, which showed steady decreases in RABFV during both high- and low-pressure protocols. It is suggested that forearm blood flow and HR responses to low-level LBNP, along with pharmacological challenge, are viable physiological tests for verifying the completeness of atrial and cardiopulmonary baroreceptor denervation.
Kim, Sangho; Zhen, Janet; Popel, Aleksander S; Intaglietta, Marcos; Johnson, Paul C
2007-09-01
Red blood cell aggregation at low flow rates increases venous vascular resistance, but the process of aggregate formation in these vessels is not well understood. We previously reported that aggregate formation in postcapillary venules of the rat spinotrapezius muscle mainly occurs in a middle region between 15 and 30 microm downstream from the entrance. In light of the findings in that study, the main purpose of this study was to test two hypotheses by measuring collision frequency along the length of the venules during low flow. We tested the hypothesis that aggregation rarely occurs in the initial 15-microm region of the venule because collision frequency is very low. We found that collision frequency was lower than in other regions, but collision efficiency (the ratio of aggregate formation to collisions) was almost nil in this region, most likely because of entrance effects and time required for aggregation. Radial migration of red blood cells and Dextran 500 had no effect on collision frequency. We also tested the hypothesis that aggregation was reduced in the distal venule region because of the low aggregability of remaining nonaggregated cells. Our findings support this hypothesis, since a simple model based on the ratio of aggregatable to nonaggregatable red blood cells predicts the time course of collision efficiency in this region. Collision efficiency averaged 18% overall but varied from 0 to 52% and was highest in the middle region. We conclude that while collision frequency influences red blood cell aggregate formation in postcapillary venules, collision efficiency is more important.
The efficacy of centralized flow rate control in 802.11-based wireless mesh networks
Jamshaid, K.
2013-06-13
Commodity WiFi-based wireless mesh networks (WMNs) can be used to provide last mile Internet access. These networks exhibit extreme unfairness with backlogged traffic sources. Current solutions propose distributed source-rate control algorithms requiring link-layer or transport-layer changes on all mesh nodes. This is often infeasible in large practical deployments. In wireline networks, router-assisted rate control techniques have been proposed for use alongside end-to-end mechanisms. We wish to evaluate the feasibility of establishing similar centralized control via gateways in WMNs. In this paper, we focus on the efficacy of this control rather than the specifics of the controller design mechanism. We answer the question: Given sources that react predictably to congestion notification, can we enforce a desired rate allocation through a single centralized controller? The answer is not obvious because flows experience varying contention levels, and transmissions are scheduled by a node using imperfect local knowledge. We find that common router-assisted flow control schemes used in wired networks fail in WMNs because they assume that (1) links are independent, and (2) router queue buildups are sufficient for detecting congestion. We show that non-work-conserving, rate-based centralized scheduling can effectively enforce rate allocation. It can achieve results comparable to source rate limiting, without requiring any modifications to mesh routers or client devices. 2013 Jamshaid et al.; licensee Springer.
Improved determination of vascular blood-flow shear rate using Doppler ultrasound
Farison, James B.; Begeman, Garett A.; Salles-Cunha, Sergio X.; Beebe, Hugh G.
1997-05-01
Shear rate has been linked to endothelial and smooth muscle cell function, neointimal hyperplasia, poststenotic dilation and progression of atherosclerotic plaque. In vivo studies of shear rate have been limited in humans due to the lack of a truly accurate noninvasive method of measuring blood flow. In clinical vascular laboratories, the primary method of wall shear rate estimation is the scaled ratio between the center line systolic velocity and the local arterial radius. The present study compares this method with the shear rate calculated directly from data collected using a Doppler ultrasound scanner. Blood flow in the superficial femoral artery of 20 subjects was measured during three stages of distal resistance. Analysis and display programs were written for use with the MATLAB image processing software package. The experimental values of shear rate were calculated using the formal definition and then compared to the standard estimate. In all three states of distal resistance, the experimental values were significantly higher than the estimated values by a factor of approximately 1.57. These results led to the conclusion that the direct method of measuring shear rate is more precise and should replace the estimation model in the clinical laboratory.
Wang W
2016-12-01
Full Text Available Wei Wang, Mengshuang Xie, Shuang Dou, Liwei Cui, Wei Xiao Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People’s Republic of China Background: In a previous study, we demonstrated that asthma patients with signs of emphysema on quantitative computed tomography (CT fulfill the diagnosis of asthma-COPD overlap syndrome (ACOS. However, quantitative CT measurements of emphysema are not routinely available for patients with chronic airway disease, which limits their application. Spirometry was a widely used examination tool in clinical settings and shows emphysema as a sharp angle in the maximum expiratory flow volume (MEFV curve, called the “angle of collapse (AC”. The aim of this study was to investigate the value of the AC in the diagnosis of emphysema and ACOS. Methods: This study included 716 participants: 151 asthma patients, 173 COPD patients, and 392 normal control subjects. All the participants underwent pulmonary function tests. COPD and asthma patients also underwent quantitative CT measurements of emphysema. The AC was measured using computer models based on Matlab software. The value of the AC in the diagnosis of emphysema and ACOS was evaluated using receiver-operating characteristic (ROC curve analysis. Results: The AC of COPD patients was significantly lower than that of asthma patients and control subjects. The AC was significantly negatively correlated with emphysema index (EI; r=-0.666, P<0.001, and patients with high EI had a lower AC than those with low EI. The ROC curve analysis showed that the AC had higher diagnostic efficiency for high EI (area under the curve =0.876 than did other spirometry parameters. In asthma patients, using the AC ≤137° as a surrogate criterion for the diagnosis of ACOS, the sensitivity and specificity were 62.5% and 89.1%, respectively. Conclusion: The AC on the MEFV curve quantified by computer models correlates with the extent of emphysema. The AC may become a
Investigation of oil-air two-phase mass flow rate measurement using Venturi and void fraction sensor
ZHANG Hong-jian; YUE Wei-ting; HUANG Zhi-yao
2005-01-01
Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered.With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus,both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that ofoil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.
Effect of flow rate and insulin priming on the recovery of insulin from microbore infusion tubing.
Fuloria, M; Friedberg, M A; DuRant, R H; Aschner, J L
1998-12-01
A retrospective medical record review of 13 consecutive, hyperglycemic, extremely low birth weight (ELBW) infants treated with continuous insulin infusions revealed a 14- to 24-hour delay (mean, 19 hours) in blood glucose normalization despite stepwise increases in insulin infusion rates. This in vitro study examined the effects of flow rate and insulin priming on insulin recovery from polyvinyl chloride (PVC) tubing and polyethylene (PE)-lined PVC tubing infused with a standard insulin stock solution. Stock insulin solution (0.2 U/mL) was infused through microbore PVC or PE-lined tubing at flow rates of 0.05 and 0.2 mL/h. To determine if saturation of nonspecific binding sites would alter effluent insulin concentration, we compared insulin recovery from tubing previously flushed with the stock solution and tubing primed with 5 U/mL of insulin for 20 minutes. Effluent samples, which were collected at baseline and at six time points during a 24-hour period, were immediately frozen at -20 degreesC. Insulin concentration was measured by IMx immunoassay. Data were analyzed using general linear modeling with repeated measures. At 0.05 mL/h flow rate, insulin recovery from unprimed PVC tubing at 1, 2, 4, and 8 hours was 17%, 11%, 27%, and 55%, respectively, with 100% recovery at 24 hours. From insulin-primed tubing, insulin recovery was approximately 70% at 1, 2, and 4 hours, and close to 100% at 8 hours. At a faster flow rate of 0.2 mL/h, insulin recovery at 1, 2, 4, and 8 hours was 22%, 38%, 67%, and 75% vs 42%, 85%, 91% and 95% from unprimed and insulin-primed PVC tubing, respectively. Similar results were obtained from unprimed and insulin-primed PE-lined tubing at 0.2 mL/h flow rate. Priming of microbore tubing with 5 U/mL of insulin solution for 20 minutes to block nonspecific binding sites enhances delivery of a standard insulin stock at infusion rates typically used to treat hyperglycemic ELBW infants. We conclude that priming the tubing with a higher
Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.
Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N
2016-02-01
Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min(-1)) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its adverse effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min(-1) flow, 500 mA current, and 5 mg L(-1) initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated.
A Study of the Critical Nozzle for Flow Rate Measurement of High-Pressure Hydrogen Gas
H.D.Kim; J.H.Lee; K.A.Park; T.Setoguchi; S.Matsuo
2007-01-01
The mass flow rate measurement using a critical nozzle shows the validity of the inviscid theory, indicating that the discharge coefficient increases and approaches unity as the Reynolds number increases under the ideal gas law.However, when the critical nozzle measures the mass flow rate of a real gas such as hydrogen at a pressure of hundreds bar, the discharge coefficient exceeds unity, and the real gas effects should be taken into account. The present study aims at investigating the flow features of the critical nozzle using high-pressured hydrogen gas. The axisymmetric, compressible Navier-Stokes computation is employed to simulate the critical nozzle flow, and a fully implicit finite volume method is used to discretize the governing equation system. The real gas effects are simulated to consider the intermolecular forces, which account for the possibility of liquefying hydrogen gas. The computational results are compared with past experimental data. It has been found that the coefficient of discharge for real gas can be corrected properly below unity adopting the real gas assumption.
Turbulent transport measurements in a cold model of GT-burner at realistic flow rates
Gobyzov Oleg
2016-01-01
Full Text Available In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF and particle image velocimetry technique (PIV at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.
Granular-flow rheology: Role of shear-rate number in transition regime
Chen, C.-L.; Ling, C.-H.
1996-01-01
This paper examines the rationale behind the semiempirical formulation of a generalized viscoplastic fluid (GVF) model in the light of the Reiner-Rivlin constitutive theory and the viscoplastic theory, thereby identifying the parameters that control the rheology of granular flow. The shear-rate number (N) proves to be among the most significant parameters identified from the GVF model. As N ??? 0 and N ??? ???, the GVF model can reduce asymptotically to the theoretical stress versus shear-rate relations in the macroviscous and graininertia regimes, respectively, where the grain concentration (C) also plays a major role in the rheology of granular flow. Using available data obtained from the rotating-cylinder experiments of neutrally buoyant solid spheres dispersing in an interstitial fluid, the shear stress for granular flow in transition between the two regimes proves dependent on N and C in addition to some material constants, such as the coefficient of restitution. The insufficiency of data on rotating-cylinder experiments cannot presently allow the GVF model to predict how a granular flow may behave in the entire range of N; however, the analyzed data provide an insight on the interrelation among the relevant dimensionless parameters.
Definition of hydraulic stability of KVGM-100 hot-water boiler and minimum water flow rate
Belov, A. A.; Ozerov, A. N.; Usikov, N. V.; Shkondin, I. A.
2016-08-01
In domestic power engineering, the methods of quantitative and qualitative-quantitative adjusting the load of the heat supply systems are widely distributed; furthermore, during the greater part of the heating period, the actual discharge of network water is less than estimated values when changing to quantitative adjustment. Hence, the hydraulic circuits of hot-water boilers should ensure the water velocities, minimizing the scale formation and excluding the formation of stagnant zones. The results of the calculations of hot-water KVGM-100 boiler and minimum water flow rate for the basic and peak modes at the fulfillment of condition of the lack of surface boil are presented in the article. The minimal flow rates of water at its underheating to the saturation state and the thermal flows in the furnace chamber were defined. The boiler hydraulic calculation was performed using the "Hydraulic" program, and the analysis of permissible and actual velocities of the water movement in the pipes of the heating surfaces was carried out. Based on the thermal calculations of furnace chamber and thermal- hydraulic calculations of heating surfaces, the following conclusions were drawn: the minimum velocity of water movement (by condition of boiling surface) at lifting movement of environment increases from 0.64 to 0.79 m/s; it increases from 1.14 to 1.38 m/s at down movement of environmental; the minimum water flow rate by the boiler in the basic mode (by condition of the surface boiling) increased from 887 t/h at the load of 20% up to 1074 t/h at the load of 100%. The minimum flow rate is 1074 t/h at nominal load and is achieved at the pressure at the boiler outlet equal to 1.1 MPa; the minimum water flow rate by the boiler in the peak mode by condition of surface boiling increases from 1669 t/h at the load of 20% up to 2021 t/h at the load of 100%.
Flow-rate fluctuations in the outpouring of grains from a two-dimensional silo.
Janda, A; Harich, R; Zuriguel, I; Maza, D; Cixous, P; Garcimartín, A
2009-03-01
We present experimental results obtained with a two-dimensional silo discharging under gravity through an orifice at the flat bottom. High-speed measurements provide enough time resolution to detect every single bead that goes out and this allows the measurement of the flow rate in short-time windows. Two different regimes are clearly distinguished: one for large orifices, which can be described by Gaussian fluctuations, and another for small orifices, in which extreme events appear. The frontier between those two regimes coincides with the outlet size below which jamming events are frequent. Moreover, it is shown that the power spectrum of the flow-rate oscillations is not dominated by any particular frequency.
Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Yi, Sun [North Carolina A and T State Univ., Raleigh (United States)
2016-08-15
In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.
Design and optimization of a large flow rate booster pump in SWRO energy recovery system
Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.
2013-12-01
Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.
Effect of Flow Rate of Side-Type Orifice Intake on Withdrawn Water Temperature
Xueping Gao
2014-01-01
Full Text Available Side-type orifice intake is a type of selective withdrawal facility used in managing reservoirs to mitigate the negative effects of low-temperature water. Based on the temperature data of a thermal stratified reservoir in China, an experiment was conducted in flume to study the influence of intake flow rate on withdrawn water temperature with different temperature distributions. Results indicated that withdrawn water temperature changed with different flow rates. The temperature change was determined by the water temperature gradients above and below the intake, whereas the change trend of temperature depended on the difference between the water temperature gradient above and below the intake. We likewise proposed a new equation with which the withdrawn water temperature of a thermal stratified reservoir using a side-type orifice could be calculated. These findings could be directly applied to the design and operation of side-type orifice intake in thermal stratified reservoirs.
Effect of flow rate of side-type orifice intake on withdrawn water temperature.
Gao, Xueping; Li, Guangning; Han, Yunpeng
2014-01-01
Side-type orifice intake is a type of selective withdrawal facility used in managing reservoirs to mitigate the negative effects of low-temperature water. Based on the temperature data of a thermal stratified reservoir in China, an experiment was conducted in flume to study the influence of intake flow rate on withdrawn water temperature with different temperature distributions. Results indicated that withdrawn water temperature changed with different flow rates. The temperature change was determined by the water temperature gradients above and below the intake, whereas the change trend of temperature depended on the difference between the water temperature gradient above and below the intake. We likewise proposed a new equation with which the withdrawn water temperature of a thermal stratified reservoir using a side-type orifice could be calculated. These findings could be directly applied to the design and operation of side-type orifice intake in thermal stratified reservoirs.
Chemical elements potentially toxic at different flow rates in the Turvo Sujo river, MG, Brazil
Paulo Roberto Cecon
2009-08-01
Full Text Available Some chemical elements in small amounts are essential to life; however, in high concentrations can commit the quality of the water courses and cause damages to human health. The objective of this work was to quantify the presence of potentially toxic elements, in a section of the Turvo Sujo river in the Viçosa city during different flow rates. In this river five collection points were chosen and monitored in four different seasons. For each point, the concentrations of copper, manganese, iron, zinc, chromium, cadmium and lead were obtained. The iron and manganese concentrations were larger in summer time, due to the largest superficial drainage in this period, while the most toxic elements, such as chromium, cadmium and lead were observed in higher concentrations in the spring period corresponding to the lowest rate flow.
M. Shirzaiy
2015-06-01
Full Text Available Background: Dry mouth is one of the most common complications during menopause that affects quality of life as well as oral tissue dysfunction. Objective: The aim of this study was to compare the unstimulated salivary flow rate and oral symptoms between premenopausal and postmenopausal women. Methods: This case-control study was conducted in 80 healthy women including 40 postmenopausal women as case group and 40 over 30-year-old premenopausal women as control group. Data were collected through a questionnaire including demographics, oral symptoms and examination. The subjects were asked to avoid eating and drinking 90 minutes before examination. The unstimulated salivary flow rate was measured by spitting method in milliliters per minute. Data were analyzed using Chi-square test, Mann Whitney U test, T-test, and Spearman correlation coefficient. Findings: The mean unstimulated saliva was 0.182±0.149 ml/min and 0.304±0.129 ml/min in postmenopausal and premenopausal women, respectively and the difference was statistically significant. The prevalence of dry mouth was 45% in postmenopausal women and was 12.5% in premenopausal women. Burning sensation in mouth and change in taste sensation were 27.5% and 5% in postmenopausal women and were 2.5% and 0% in premenopausal women. There was negative significant correlation between the unstimulated salivary flow rate and age. Conclusion: The unstimulated salivary flow rate decreases after menopause. Oral symptoms are more prevalent in this period compared to before menopause. These differences may be due to hormonal changes (decreased estrogen and progesterone during menopause.
Development and evaluation of a meter for measuring return line fluid flow rates during drilling
Loeppke, G.E.; Schafer, D.M.; Glowka, D.A.; Scott, D.D.; Wernig, M.D. (Sandia National Labs., Albuquerque, NM (United States)); Wright, E.K. (Ktech Corp., Albuquerque, NM (United States))
1992-06-01
The most costly problem routinely encountered in geothermal drilling is lost circulation, which occurs when drilling fluid is lost to the formation rather than circulating back to the surface. The successful and economical treatment of lost circulation requires the accurate measurement of drilling fluid flow rate both into and out of the well. This report documents the development of a meter for measuring drilling fluid outflow rates in the return line of a drilling rig. The meter employs a rolling counterbalanced float that rides on the surface of the fluid in the return line. The angle of the float pivot arm is sensed with a pendulum potentiometer, and the height of the float is calculated from this measurement. The float height is closely related to the fluid height and, therefore, the flow rate in the line. The prototype rolling float meter was extensively tested under laboratory conditions in the Wellbore Hydraulics Flow Facility; results from these tests were used in the design of the field prototype rolling float meter. The field prototype meter was tested under actual drilling conditions in August and September 1991 at the Long Valley Exploratory Well near Mammoth Lakes, Ca. In addition, the performance of several other commercially available inflow and outflow meters was evaluated in the field. The tested inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flowmeters, and an ultrasonic Doppler flowmeter. On the return flow line, a standard paddlemeter, an acoustic level meter, and the prototype rolling float meter were evaluated for measuring drilling fluid outflow rates.
Peak expiratory flow rate in healthy children aged 6-17 years
Høst, A; Høst, A H; Ibsen, T
1994-01-01
Peak expiratory flow rate (PEFR) was measured in a cross-sectional study in 861 healthy Danish schoolchildren aged 6-17 years using a Mini Wright peak flowmeter. We found a strong correlation between PEFR and height, age and sex. The results were comparable with those from previous studies using...... coefficient in this large sample. Among healthy children without previous asthma, earlier episodes of recurrent wheezing were reported in 8.8% and a significantly lower PEFR was found in this group....
A differential equation for the flow rate during silo discharge: Beyond the Beverloo rule
2016-01-01
We present a differential equation for the flow rate of granular materials during the discharge of a silo. This is based in the energy balance of the variable mass system in contrast with the traditional derivations based on heuristic postulates such as the free fall arch. We show that this new equation is consistent with the well known Beverloo rule, providing an independent estimate for the universal Beverloo prefactor. We also find an analytic expression for the pressure under discharging ...
XU Guo-ren; Fitzpatrick S. B. Caroline; Gregory John; DENG Lin-yu
2007-01-01
Recent Cryptosporidium outbreaks have highlighted concerns about filter efficiency and in particular particle breakthrough. It is essential to ascertain the causes of Cryptosporidium sized particle breakthrough for Cryptosporidium cannot be destroyed by conventional chlorine disinfection. This research tried to investigate the influence of temperature, flow rate and chemical dosing on particle breakthrough during filtration. The results showed that higher temperatures and coagulant doses could reduce particle breakthrough. The increase of filtration rate made the residual particle counts become larger. There was an optimal dose in filtration and was well correlated to ζ potential.
Effect of Dissolved Organic Matter on Basalt Weathering Rates under Flow Conditions
Dontsova, K.; Steefel, C. I.; Chorover, J. D.
2009-12-01
Rock weathering is an important aspect of soil formation that is tightly coupled to the progressive colonization of grain surfaces by microorganisms and plant tissue, both of which are associated with the exudation of complexing ligands and reducing equivalents that are incorporated into dissolved organic matter. As part of a larger hillslope experimental study being designed for Biosphere 2 (Oracle, AZ), we seek to determine how the presence and concentration of dissolved organic matter affects the incongruent dissolution rates of basaltic tuff. Saturated flow column experiments are being conducted using plant-derived soluble organic matter solutions of variable concentrations, and comparisons are being made to experiments conducted with malic acid, a low-molecular weight organic acid commonly exuded into the rhizosphere. Dissolved organic matter was extracted from Ponderosa Pine forest floor and was characterized for aqueous geochemical parameters (pH, EC, ion balance, DOC/TN) and also for DOC composition (UV-Vis, FTIR spectroscopy). Column effluents are being analyzed for major and trace cations, anions, silica and organic solutes. Dissolution rates of primary minerals and precipitation rates of secondary phases will be estimated by fitting the data to a numerical reactive transport model, CrunchFlow2007. At the end of the fluid flow experiment, column materials will be analyzed for biogeochemical composition to detect preferential dissolution of specific phases, the precipitation of new ones, and to monitor the associated formation of biofilms. The influence of organic solutions on weathering patterns of basalt will be discussed.
Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface
Nema, V. K.; Sharma, O. P.
1986-01-01
To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.
Burton, G.R.; Blimkie, M.E.; McGarvey, G.B.; Turner, C.W
2001-03-01
The rate of magnetite deposition on a heated test section was investigated using radiotracing methods as a function of flow rate in the absence and presence of a growing biofilm of Pseudomonas fluorescens. The flow rate was adjusted to span Reynolds numbers from 2200 to 9600. For all flow rates, there was an increase in the rate of magnetite deposition in the presence of the growing biofilm. In addition, the rate of deposition was 10 times greater for a Reynolds number of 6400 than that observed at lower and higher flow rates with Reynolds numbers of 2200 and 9600, respectively. The results are discussed in relation to the shear stress on the biofilm and to the rate of transport of nutrients. (author)
Mantovaneli I. C. C.
2004-01-01
Full Text Available Stevia is being used as a sweetener due to its low calorific value and its taste, which is very similar to that of sucrose. After extraction from dried leaves, stevia extract is dark in colour so needs to be clarified for better acceptance by consumers. Adsorption is one of the most important processes in this clarification. In this work the clarification of extract stevia extract in fixed-bed columns with calcium zeolites was studied. Two temperatures (10ºC and 30ºC and six different flow rates (2, 5, 9, 12, 16 and 19 mL/min were studied. The results showed that the mass-transfer coeffcient increases with an increase in flow rate and the length of unused bed reaches a maximum at 9 mL/min for both temperatures. The fit of the Thomas model with the breakthrough data was not very good.
Oliveira, Jorge Luiz Goes; Passos, Julio Cesar [Departamento de Engenharia Mecanica-LEPTEN/Boiling-UFSC, Campus Universitario, Trindade, 88.040-900 Florianopolis-SC (Brazil); Verschaeren, Ruud; Geld, Cees van der [Eindhoven University of Technology, Faculty of Mechanical Engineering, W-hoog 2.135, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)
2009-01-15
Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi plate is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)
Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.
Paris, Tony; Skali-Lami, Salaheddine; Block, Jean-Claude
2007-08-15
The effect of four-wall shear rates (34.9, 74.8, 142.5, and 194.5 s(-1)) on bacterial deposition on glass slides in drinking water flow chambers was studied. Biofilm image acquisition was performed over a 50-day period. Bacterial accumulation and surface coverage curves were obtained. Microscopic observations allowed us to obtain information about the dynamics and spatial distribution of the biofilm. During the first stage of biofilm formation (210-518 h), bacterial accumulation was a function of the wall shear rate: the higher the wall shear rate, the faster the bacterial deposition (1.1 and 1.9 x 10(4) bacterial cells . cm(-2) for wall shear rates of 34.9 and 142.5 s(-1), respectively). A new similarity relationship characteristic of a non-dimensional time and function of the wall shear rate was proposed to describe initial bacterial deposition. After 50 days of exposure to drinking water, surface coverage was more or less identical under the entire wall shear rates (7.44 +/- 0.9%), suggesting that biofilm bacterial density cannot be controlled using hydrodynamics. However, the spatial distribution of the biofilm was clearly different. Under low wall shear rate, aggregates were composed of bacterial cells able to "vibrate" independently on the surface, whereas, under a high wall shear rate, aggregates were more cohesive. Therefore, susceptibility to the hydraulic discontinuities occurring in drinking water system may not be similar. In all the flow chambers, significant decreases in bacterial biomass (up to 77%) were associated with the presence of amoebae. This grazing preferentially targeted small, isolated cells.
Rogus-Pulia, Nicole M.; Larson, Charles; Mittal, Bharat B; Pierce, Marge; Zecker, Steven; Kennelty, Korey; Kind, Amy; Connor, Nadine P.
2016-01-01
Purpose Patients treated with chemoradiation for head and neck cancer frequently develop dysphagia. Tissue damage to the oral tongue causing weakness and decreases in saliva production may contribute to dysphagia. Yet, effects of these variables on swallowing-related measures are unclear. The purpose of this study was (1) to determine effects of chemoradiation on tongue pressures, as a surrogate for strength, and salivary flow rates and (2) to elucidate relationships among tongue pressures, saliva production, and swallowing efficiency by bolus type. Methods and Materials 21 patients with head and neck cancer treated with chemoradiation were assessed before and after treatment and matched with 21 healthy control participants who did not receive chemoradiation. Each participant was given a questionnaire to rate dysphagia symptoms. Videofluoroscopic evaluation of swallowing was used to determine swallowing efficiency; the Saxon test measured salivary flow rate; and the Iowa Oral Performance Instrument (IOPI) was used for oral tongue maximum and endurance measures. Results Results revealed significantly lower tongue endurance measures for patients post-treatment as compared to controls (p=.012). Salivary flow rates also were lower compared to pre-treatment (p=.000) and controls (p=.000). Simple linear regression analyses showed that change in salivary flow rate was predictive of change in swallow efficiency measures from pre- to post-treatment for 1mL thin liquid (p=.017), 3mL nectar-thick liquid (p=.026), and 3mL standard barium pudding (p=.011) boluses. Conclusions Based on these findings, it appears that chemoradiation treatment affects tongue endurance and salivary flow rate and these changes may impact swallow efficiency. These factors should be considered when planning treatment for dysphagia. PMID:27492408
Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G
2010-11-01
Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.
Tarlow, S.; Lev, E.; Zappa, C. J.; Karson, J.; Wysocki, B.
2011-12-01
Observation and investigation of surface cooling rates of active lava flows can help constrain thermal parameters necessary for creating of more precise lava flow models. To understand how the lava cools, temperature data was collected using an infrared video camera. We explored three models of the release of heat from lava stream; one based on heat conduction, another based on crust thickness and radiation, and a third model based on radiative cooling and variable crust thickness. The lava flow, part of the Syracuse University Lava Project (http://lavaproject.syr.edu), was made by pouring molten basalt at 1300 Celsius from a furnace into a narrow trench of sand. Hanging roughly 2 m over the trench, the infrared camera, records the lava's surface temperature for the duration of the flow. We determine the average surface temperature of the lava flow at a fixed location downstream as the mean of the lateral cross section of each frame of the IR imagery. From the recorded IR frames, we calculate the mean cross-channel temperature for each downstream distance. We then examine how this mean temperature evolves over time, and plot cooling curves for selected down-stream positions. We then compared the observed cooling behavior to that predicted by three cooling models: a conductive cooling model, a radiative cooling model with constant crust thickness, and a radiative cooling model with variable crust thickness. All three models are solutions to the one-dimensional heat equation. To create the best fit for the conductive model, we constrained thermal diffusivity and to create the best fit for the radiative model, we constrained crust thickness. From the comparison of our data to the models we can conclude that the lava flow's cooling is primarily driven by radiation.
Wang, H. L.; Han, W.; Xu, M.
2011-12-01
Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.
Kauppila, TJ; Bruins, AP; Kostiainen, R
In the novel atmospheric pressure photoionization-mass spectrometry the ionization efficiency has been observed to decrease when the solvent flow rate is increased. The effect of the flow rate on the ionization efficiency was studied by comparing the behavior of two analytes, one of which is ionized
Long-term flow-through column experiments and their relevance to natural granitoid weathering rates
White, Art F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.
2017-04-01
Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds-Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico-were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages. Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction (fresh granitoids) or increased slowly with time (weathered granitoids). Analysis of cumulative Na release indicated that plagioclase dissolution achieved steady state in 3 of the 4 fresh granitoids during the last decade of reaction. Surface-area normalized plagioclase dissolution rates exhibited a narrow range (0.95-1.26 10-13 moles m-2 s-1), in spite of significant stoichiometric differences (An0.21 to An0.50). Rates were an order of magnitude slower than previously reported in shorter duration experiments but generally 2-3 orders of magnitude faster than corresponding natural analogs. CrunchFlow simulations indicated that more than a hundredfold decrease in column flow rates would be required to produce near-saturation reaction affinities that would start to slow plagioclase weathering to real-world levels. Extending simulations
Bardow, A; Nyvad, B; Nauntofte, B
2001-05-01
The aim of this study was to describe the relationships between the rate of tooth demineralisation and medication intake, subjective feeling of dry mouth, saliva flow, saliva composition and the salivary level of lactobacilli. The study group consisted of 28 subjects that were divided into three groups according to their unstimulated whole saliva flow rate. Group 1 had an unstimulated saliva low rate 0.30 ml/min (n=9). The rate of tooth demineralization was determined as mineral loss assessed by quantitative microradiography of human root surfaces, exposed to the oral environment for 62 days in situ. The unstimulated and stimulated saliva flow rates, pH, bicarbonate, calcium, phosphate, and protein concentrations, as well as the degree of saturation of saliva with hydroxyapatite and the saliva buffer capacity were determined. The results showed that almost all subjects developed demineralization, albeit at highly varying rates. Eighty-five percent of the subjects in group 1, 33% of the subjects in group 2, and 0% of the subjects in group 3 developed mineral loss above the mean mineral loss for all the root surfaces in this experiment. Futhermore, group 1 differed significantly from groups 2 and 3 in having a higher medication intake, a more pronounced feeling of dry mouth, lower stimulated saliva flow rate, lower stimulated bicarbonate concentration, lower unstimulated and stimulated compositional outputs (bicarbonate, calcium, phosphate, and protein), and a higher Lactobacillus level. The best explanatory variable for high mineral loss in this study was a low unstimulated saliva flow rate. In conclusion, our results suggest that an unstimulated salivary flow rate Navazesh et al. (1992), is a better indicator of increased caries risk due to impaired salivation, than the currently accepted definition of hyposalivation (unstimulated saliva flow rate < or =0.10 ml/min), which relates to the function of the salivary glands (Sreebny, 1992).
The influence of flow rate on inter-nucleation site heat transport
Baltis Coen
2014-01-01
Full Text Available The main topic of this paper is the influence of vertically aligned nucleation sites on each other in upward flow boiling. A setup was constructed to facilitate vertical up-flow of deminiralized water under saturation conditions. The main test section is a glass channel with a set of vertically aligned bubble generators. Each bubble generator is operated independently, where power and wall temperature are registered and the vapour bubbles are visualized by a high-speed camera. During the experiments, the downstream bubble generator (BG1 power is kept constant, while the power fed to the upstream bubble generator (BG2 is incrementally increased. Two main trends have been identified. The first trend is dominated by added convection from one site to the other. Both bubble frequency and detachment diameter on BG1 increase with increased power fed to upstream BG2. This effect decreases with increasing inter-site distance and becomes more significant with increasing liquid flow rate. When vapor bubbles start nucleating from BG2, these vapor bubbles inhibit bubble nucleation BG1 and can even lead to deactivation of this nucleation site. This second trend is only weakly dependent on inter-site distance, since the inhibition originates from bubbles flowing past BG1 in close proximity.
Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter.
Cobos-Becerra, Yazmin Lucero; González-Martínez, Simón
2013-01-01
The aim of this study was to evaluate backwashing effects on the apparent porosity of the filter media and on the hydraulic behaviour of a pilot scale submerged filter, prior to biofilm colonization, under different hydraulic retention times, and different air flow rates. Tracer curves were analysed with two mathematical models for ideal and non-ideal flow (axial dispersion and Wolf and Resnick models). The filter media was lava stones sieved to 4.5 mm. Backwashing causes attrition of media particles, decreasing the void volume of the filter media and, consequently, the tracer flow is more uniform. The eroded media presented lower dead volumes (79% for the filter with aeration and 8% for the filter without aeration) compared with the new media (83% for the filter with aeration and 22% for the filter without aeration). The flow patterns of eroded and new media were different because the more regular shape of the particles decreases the void volume of the filter media. The dead volume is attributed, in the case of the filter with aeration, to the turbulence caused by the air bubbles that generate preferential channelling of the bulk liquid along the filter media, creating large zones of stagnant liquid and, for the filter without aeration, to the channels formed due to the irregular shaped media.
Habitat availability vs. flow rate for the Pecos River, Part 1 : Depth and velocity availability.
James, Scott Carlton; Schaub, Edward F.; Jepsen, Richard Alan; Roberts, Jesse Daniel
2004-02-01
The waters of the Pecos River in New Mexico must be delivered to three primary users: (1) The Pecos River Compact: each year a percentage of water from natural river flow must be delivered to Texas; (2) Agriculture: Carlsbad Irrigation District has a storage and diversion right and Fort Sumner Irrigation District has a direct flow diversion right; and, (3) Endangered Species Act: an as yet unspecified amount of water is to support Pecos Bluntnose Shiner Minnow habitat within and along the Pecos River. Currently, the United States Department of Interior Bureau of Reclamation, the New Mexico Interstate Stream Commission, and the United States Department of the Interior Fish and Wildlife Service are studying the Pecos Bluntnose Shiner Minnow habitat preference. Preliminary work by Fish and Wildlife personnel in the critical habitat suggest that water depth and water velocity are key parameters defining minnow habitat preference. However, river flows that provide adequate preferred habitat to support this species have yet to be determined. Because there is a limited amount of water in the Pecos River and its reservoirs, it is critical to allocate water efficiently such that habitat is maintained, while honoring commitments to agriculture and to the Pecos River Compact. This study identifies the relationship between Pecos River flow rates in cubic feet per second (cfs) and water depth and water velocity.
Radiotherapy Reduced Salivary Flow Rate and Might Induced C. albicans Infection
Nadia Surjadi
2013-07-01
Full Text Available Radiotherapy has impact in oral health especially on the secretion capacity of the salivary glands. Another impact is the increase of Candida albicans colony. Objectives: To evaluate salivary flow in relation with Candida albicans colony in head and neck cancer patients during and after radiotherapy. Methods: Twenty-four head and neck cancer patients in Dharmais Cancer Hospital, Jakarta who were undergoing radiotherapy or had undergone radiotherapy and 24 match healthy volunteers were included in the study. Clinical observation carried out by collecting unstimulated salivary flow rate and followed by culture of Candida in Saboraud agar medium. Data were analyzed statistically by Chi-square. Results: Nasopharynx cancer was the most frequent type of head and neck cancers (87.5% followed by tongue cancer (12.5% and and found in 41-50 years old patients and 51-60 years old patients respectively, with male predilection compare to female (17:7. Approxiamtely 87.5% of subjects showed decreased salivary flow rate (1.01-1.50mL/10min during and after radiotherapy. However, 91.7% of cancer patients had increased C.albicans colony during and after radiotherapy compared to control (p=0.00. Conclusion: This study showed that radiotherapy induced hyposalivation and might increase the C.albicans colony.
Rongshe ZHANG; Guanghe LI; Qi ZHOU; Xu ZHANG
2008-01-01
Nitrogen removal of wetlands under 40 different inflow loadings were studied in the field during 15 months. The removal efficiency of four different sets of beds, namely the reed bed, the Zizania caduciflor bed, the mixing planting bed, and the control bed were studied. The outflow loading and total nitrogen (TN) removal rate of these beds under different inflow loadings and pollution loadings were investigated. The inflow loadings of 4 sub-surface flow systems (SFS) ranged from 400 to 8000 mg· (m2·d)-1, while outflow loadings were less than 7000 mg· (m2·d)-1. The results showed that the inflow and outflow loading of TN removal rate in SFS presented an obvious linear relationship. The optical inflow loading to run the system was between 2000 to 4000 mg·(m2·d)-1. Average removal rate was between 1062 and 2007 mg·(m2·d)-1. SFS with plant had a better removal rate than the control. TN removal rates of the reed and Zizania caduciflora bed were 63% and 27% higher than the control bed, respectively. The results regarding the TN absorption of plants indicated that the absorption amount was very limited, less than 5% of the total removal. It proved that plants clearly increase TN removal rates by improving the water flow, and increasing the biomass, as well as activities of microorganisms around the roots. The research provided a perspective for understanding the TN removal mechanism and design for SFS.
Zhang, G.P., E-mail: princeterry@163.com [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China); Niu, E.W.; Wang, X.Q.; Lv, G.H.; Zhou, L.; Pang, H.; Huang, J.; Chen, W.; Yang, S.Z. [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China)
2012-02-01
Zr-Si-N films were deposited on silicon and steel substrates by cathodic vacuum arc with different N{sub 2}/SiH{sub 4} flow rates. The N{sub 2}/SiH{sub 4} flow rates were adjusted at the range from 0 to 12 sccm. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), hardness and wear tests. The structure and the mechanical properties of Zr-Si-N films were compared to those of ZrN films. The results of XRD and XPS showed that Zr-Si-N films consisted of ZrN crystallites and SiN{sub x} amorphous phase. With increasing N{sub 2}/SiH{sub 4} flow rates, the orientation of Zr-Si-N films became to a mixture of (1 1 1) and (2 0 0). The column width became smaller, and then appeared to vanish with the increase in N{sub 2}/SiH{sub 4} flow rates. The hardness and Young's modulus of Zr-Si-N films increased with the N{sub 2}/SiH{sub 4} flow rates, reached a maximum value of 36 GPa and 320 GPa at 9 sccm, and then decreased 32 GPa and 305 GPa at 12 sccm, respectively. A low and stable of friction coefficient was obtained for the Zr-Si-N films. Friction coefficient was about 0.1.
Peak expiratory flow rates in healthy Turkish children living in Istanbul, Turkey.
Oneş, Ulker; Somer, Ayper; Sapan, Nihat; Dişçi, Rian; Güler, Nermin
2004-01-01
In the evaluation and management of bronchial asthma, simple instruments for measurements of the peak expiratory flow (PEF) rate are needed. The aim of this study was to determine normal PEF values of Turkish children living in Istanbul. This is the largest study conducted in Turkey. In a cross-sectional study, we measured PEF in 2791 healthy schoolchildren (1468 boys and 1323 girls) aged 7-14 years, with a Mini Wright peak flow meter. We entered height, age, and sex into the regression equation. The equation for prediction of PEF in boys was calculated as (3.5 x height [cm]) + (9.2 x age [years]) - 256.5, (p 7 millions inhabitants) can reflect more reliably real PEF values of Turkish children. We concluded that our findings would serve as an important basis for preparing centile curves for normal PEF values for Turkish children.
Measuring the orientation and rotation rate of 3D printed particles in turbulent flow
Voth, Greg; Kramel, Stefan; Cole, Brendan
2015-03-01
The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 ?m. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow.
Investigations on Oil Flow Rates Projected on the Casing Walls by Splashed Lubricated Gears
G. Leprince
2012-01-01
Full Text Available In order to investigate the oil projected by gears rotating in an oil bath, a test rig has been set up in which the quantity of lubricant splashed at several locations on the casing walls can be measured. An oblong-shaped window of variable size is connected to a tank for flow measurements, and the system can be placed at several locations. A series of formulae have been deduced using dimensional analysis which can predict the lubricant flow rate generated by one spur gear or one disk at various places on the casing. These results have been experimentally validated over a wide range of operating conditions (rotational speed, geometry, immersion depth, etc..
High rates of gene flow by pollen and seed in oak populations across Europe.
Sophie Gerber
Full Text Available Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423, mapped, and acorns were collected ([17,147], 51 from several mother trees ([3], [47], 23. Seedlings ([65,387], 178 were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5-8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21-88%. Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20-66%. Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands.
Song, Dean; Liu, Huijuan; Qiang, Zhimin; Qu, Jiuhui
2014-05-15
Free chlorine is extensively used for water and wastewater disinfection nowadays. However, it still remains a big challenge to determine the rate constants of rapid chlorination reactions although competition kinetics and stopped-flow spectrophotometric (SFS) methods have been employed individually to investigate fast reaction kinetics. In this work, we proposed an SFS competition kinetics method to determine the rapid chlorination rate constants by using a common colorimetric reagent, N,N-diethyl-p-phenylenediamine (DPD), as a reference probe. A kinetic equation was first derived to estimate the reaction rate constant of DPD towards chlorine under a given pH and temperature condition. Then, on that basis, an SFS competition kinetics method was proposed to determine directly the chlorination rate constants of several representative compounds including tetracycline, ammonia, and four α-amino acids. Although Cl2O is more reactive than HOCl, its contribution to the overall chlorination kinetics of the test compounds could be neglected in this study. Finally, the developed method was validated through comparing the experimentally measured chlorination rate constants of the selected compounds with those obtained or calculated from literature and analyzing with Taft's correlation as well. This study demonstrates that the SFS competition kinetics method can measure the chlorination rate constants of a test compound rapidly and accurately.
N. Alavizadeh
2017-01-01
Full Text Available ims: Apelin is an adipokine, which secreted from adipose tissue and has positive effects against the insulin resistance. The aim of this study was to investigate the effect of 8-week aerobic exercise on levels of apelin and insulin resistance index in sedentary men. Materials & Methods: In this semi-experimental study with controlled group pre/post-test design in 2015, 27 healthy sedentary men living in Mashhad City, Iran, were selected by convenience sampling method. They were divided into two groups; experimental group (n=14 and control group (n=13. In the trained group, the volunteers participated in 8 weeks aerobic exercise, 3 days/week (equivalent to 75-85% of maximum oxygen consumption for 60 minutes per session. The research variables were assessed before and after the intervention in both groups. The collected data were analyzed using SPSS 20 software using paired and independent sample T tests. Findings: 8-week aerobic exercise significantly decreased the weight, BMI and apelin, insulin and insulin resistance index levels and increased the maximum oxygen consumption in experimental group sedentary men (p<0.05. Moreover, there were significant differences in levels of FBS, insulin, apelin, insulin resistance index and maximum oxygen consumption between experimental and control groups (p<0.05. Conclusion: 8-week aerobic exercise reduces apelin levels and insulin resistance index in sedentary men.
Maximizing Protein Translation Rate in the Ribosome Flow Model: The Homogeneous Case.
Zarai, Yoram; Margaliot, Michael; Tuller, Tamir
2014-01-01
Gene translation is the process in which intracellular macro-molecules, called ribosomes, decode genetic information in the mRNA chain into the corresponding proteins. Gene translation includes several steps. During the elongation step, ribosomes move along the mRNA in a sequential manner and link amino-acids together in the corresponding order to produce the proteins. The homogeneous ribosome flow model (HRFM) is a deterministic computational model for translation-elongation under the assumption of constant elongation rates along the mRNA chain. The HRFM is described by a set of n first-order nonlinear ordinary differential equations, where n represents the number of sites along the mRNA chain. The HRFM also includes two positive parameters: ribosomal initiation rate and the (constant) elongation rate. In this paper, we show that the steady-state translation rate in the HRFM is a concave function of its parameters. This means that the problem of determining the parameter values that maximize the translation rate is relatively simple. Our results may contribute to a better understanding of the mechanisms and evolution of translation-elongation. We demonstrate this by using the theoretical results to estimate the initiation rate in M. musculus embryonic stem cell. The underlying assumption is that evolution optimized the translation mechanism. For the infinite-dimensional HRFM, we derive a closed-form solution to the problem of determining the initiation and transition rates that maximize the protein translation rate. We show that these expressions provide good approximations for the optimal values in the n-dimensional HRFM already for relatively small values of n. These results may have applications for synthetic biology where an important problem is to re-engineer genomic systems in order to maximize the protein production rate.