Sample records for maximum flow calculated

  1. OECD Maximum Residue Limit Calculator

    With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.

  2. The inverse maximum dynamic flow problem

    BAGHERIAN; Mehri


    We consider the inverse maximum dynamic flow (IMDF) problem.IMDF problem can be described as: how to change the capacity vector of a dynamic network as little as possible so that a given feasible dynamic flow becomes a maximum dynamic flow.After discussing some characteristics of this problem,it is converted to a constrained minimum dynamic cut problem.Then an efficient algorithm which uses two maximum dynamic flow algorithms is proposed to solve the problem.

  3. The directed flow maximum near cs = 0

    Brachmann, J.; Dumitru, A.; Stöcker, H.; Greiner, W.


    We investigate the excitation function of quark-gluon plasma formation and of directed in-plane flow of nucleons in the energy range of the BNL-AGS and for the E {Lab/kin} = 40 AGeV Pb + Pb collisions performed recently at the CERN-SPS. We employ the three-fluid model with dynamical unification of kinetically equilibrated fluid elements. Within our model with first-order phase transition at high density, droplets of QGP coexisting with hadronic matter are produced already at BNL-AGS energies, E {Lab/kin} ≃ 10 AGeV. A substantial decrease of the isentropic velocity of sound, however, requires higher energies, E {Lab/kin} ≃ 0 AGeV. We show the effect on the flow of nucleons in the reaction plane. According to our model calculations, kinematic requirements and EoS effects work hand-in-hand at E {Lab/kin} = 40 AGeV to allow the observation of the dropping velocity of sound via an increase of the directed flow around midrapidity as compared to top BNL-AGS energy.

  4. A simple approach for maximum heat recovery calculations

    Jezowski, J. (Wroclaw Technical Univ. (PL). Inst. of Chemical Engineering and Heating Equipment); Friedler, F. (Hungarian Academy of Sciences, Egyetem (HU). Research Inst. for Technical Chmeistry)


    This paper addresses the problem of calculating the maximum heat energy recovery for a given set of process streams. Simple, straightforward algorithms of calculations are presented that account for tasks with multiple utilities, forbidden matches and nonpoint utilities. A new way of applying the so-called dual-stream approach to reduce utility usage for tasks with forbidden matches is also given in this paper. The calculation methods do not require computer programs and mathematical programming application. They give the user a proper insight into a problem to understand heat integration as well as to recognize options and traps in heat exchanger network synthesis. (author).

  5. A polynomial algorithm for abstract maximum flow

    McCormick, S.T. [Univ. of British Columbia, Vancouver, British Columbia (Canada)


    Ford and Fulkerson`s original 1956 max flow/min cut paper formulated max flow in terms of flows on paths, rather than the more familiar flows on arcs. In 1974 Hoffman pointed out that Ford and Fulkerson`s original proof was quite abstract, and applied to a wide range of max flow-like problems. In this abstract model we have capacitated elements, and linearly ordered subsets of elements called paths. When two paths share an element ({open_quote}cross{close_quote}), then there must be a path that is a subset of the first path up to the cross, and a subset of the second path after the cross. (Hoffman`s generalization of) Ford and Fulkerson`s proof showed that the max flow/min cut theorem still holds under this weak assumption. However, this proof is non-constructive. To get an algorithm, we assume that we have an oracle whose input is an arbitrary subset of elements, and whose output is either a path contained in that subset, or the statement that no such path exists. We then use complementary slackness to show how to augment any feasible set of path flows to a set with a strictly larger total flow value using a polynomial number of calls to the oracle. Then standard scaling techniques yield an overall polynomial algorithm for finding both a max flow and a min cut. Hoffman`s paper actually considers a sort of supermodular objective on the path flows, which allows him to include transportation problems and thus rain-cost flow in his frame-work. We also discuss extending our algorithm to this more general case.

  6. A Fast Parametric Maximum Flow Algorithm. Revision,


    26]. ". N. Perfect sharing arises in a network transmission problem studied by Itai and Rodeh [21] and 1 Gusfield [17] and in a network...the network transmission scheduling problem described below. Another application will arise in Section 4.2. Scheduling transmissions. Itai and Rodeh...constructed from the flow in 0(m) time as described in [21]. Itai and Rodeh proposed two 22 "-N., -- %’%’ % %""’ . ,’ ""€"" ",. . -",/a

  7. Flow Field Calculations for Afterburner

    ZhaoJianxing; LiuQuanzhong; 等


    In this paper a calculation procedure for simulating the coimbustion flow in the afterburner with the heat shield,flame stabilizer and the contracting nozzle is described and evaluated by comparison with experimental data.The modified two-equation κ-ε model is employed to consider the turbulence effects,and the κ-ε-g turbulent combustion model is used to determine the reaction rate.To take into accunt the influence of heat radiation on gas temperature distribution,heat flux model is applied to predictions of heat flux distributions,The solution domain spanned the entire region between centerline and afterburner wall ,with the heat shield represented as a blockage to the mesh.The enthalpy equation and wall boundary of the heat shield require special handling for two passages in the afterburner,In order to make the computer program suitable to engineering applications,a subregional scheme is developed for calculating flow fields of complex geometries.The computational grids employed are 100×100 and 333×100(non-uniformly distributed).The numerical results are compared with experimental data,Agreement between predictions and measurements shows that the numerical method and the computational program used in the study are fairly reasonable and appopriate for primary design of the afterburner.

  8. Maximum speeds and alpha angles of flowing avalanches

    McClung, David; Gauer, Peter


    A flowing avalanche is one which initiates as a slab and, if consisting of dry snow, will be enveloped in a turbulent snow dust cloud once the speed reaches about 10 m/s. A flowing avalanche has a dense core of flowing material which dominates the dynamics by serving as the driving force for downslope motion. The flow thickness typically on the order of 1 -10 m which is on the order of about 1% of the length of the flowing mass. We have collected estimates of maximum frontal speed um (m/s) from 118 avalanche events. The analysis is given here with the aim of using the maximum speed scaled with some measure of the terrain scale over which the avalanches ran. We have chosen two measures for scaling, from McClung (1990), McClung and Schaerer (2006) and Gauer (2012). The two measures are the √H0-;√S0-- (total vertical drop; total path length traversed). Our data consist of 118 avalanches with H0 (m)estimated and 106 with S0 (m)estimated. Of these, we have 29 values with H0 (m),S0 (m)and um (m/s)estimated accurately with the avalanche speeds measured all or nearly all along the path. The remainder of the data set includes approximate estimates of um (m/s)from timing the avalanche motion over a known section of the path where approximate maximum speed is expected and with either H0or S0or both estimated. Our analysis consists of fitting the values of um/√H0--; um/√S0- to probability density functions (pdf) to estimate the exceedance probability for the scaled ratios. In general, we found the best fits for the larger data sets to fit a beta pdf and for the subset of 29, we found a shifted log-logistic (s l-l) pdf was best. Our determinations were as a result of fitting the values to 60 different pdfs considering five goodness-of-fit criteria: three goodness-of-fit statistics :K-S (Kolmogorov-Smirnov); A-D (Anderson-Darling) and C-S (Chi-squared) plus probability plots (P-P) and quantile plots (Q-Q). For less than 10% probability of exceedance the results show that

  9. The inverse maximum flow problem with lower and upper bounds for the flow

    Deaconu Adrian


    Full Text Available The general inverse maximum flow problem (denoted GIMF is considered, where lower and upper bounds for the flow are changed so that a given feasible flow becomes a maximum flow and the distance (considering l1 norm between the initial vector of bounds and the modified vector is minimum. Strongly and weakly polynomial algorithms for solving this problem are proposed. In the paper it is also proved that the inverse maximum flow problem where only the upper bound for the flow is changed (IMF is a particular case of the GIMF problem.

  10. Improved Minimum Cuts and Maximum Flows in Undirected Planar Graphs

    Italiano, Giuseppe F


    In this paper we study minimum cut and maximum flow problems on planar graphs, both in static and in dynamic settings. First, we present an algorithm that given an undirected planar graph computes the minimum cut between any two given vertices in O(n log log n) time. Second, we show how to achieve the same O(n log log n) bound for the problem of computing maximum flows in undirected planar graphs. To the best of our knowledge, these are the first algorithms for those two problems that break the O(n log n) barrier, which has been standing for more than 25 years. Third, we present a fully dynamic algorithm that is able to maintain information about minimum cuts and maximum flows in a plane graph (i.e., a planar graph with a fixed embedding): our algorithm is able to insert edges, delete edges and answer min-cut and max-flow queries between any pair of vertices in O(n^(2/3) log^3 n) time per operation. This result is based on a new dynamic shortest path algorithm for planar graphs which may be of independent int...

  11. Calculation of the debris flow concentration based on clay content

    CHEN Ningsheng; CUI Peng; LIU Zhonggang; WEI Fangqiang


    maximum mean concentration for the debris flow when the clay content ranges are between 7% and 11%. Especially, for the viscous debris flow, the logarithm formula here is suitable to the concentration calculation with the clay content between 3% and 18%. The maximum concentration calculated by this formula reaches 2.32 t/m3, which matches that tested in practice.

  12. Flow calculation of a bulb turbine

    Goede, E.; Pestalozzi, J.


    In recent years remarkable progress has been made in the field of theoretical flow calculation. Studying the relevant literature one might receive the impression that most problems have been solved. But probing more deeply into details one becomes aware that by no means all questions are answered. The report tries to point out what may be expected of the quasi-three-dimensional flow calculation method employed and - much more important - what it must not be expected to accomplish. (orig.)

  13. Columbia River flow-time calculations

    Soldat, J.K.


    Re-appraisal of the available data on flow times of the Columbia River between the reactor areas and Pasco was undertaken to permit extrapolation of the flow-time curves to lower river flow rates. Comparisons were made between data collected by the US Corps of Engineers and Regional Monitoring and with the equation for calculation of flow times developed by H.T. Norton. Extrapolation of the Regional Monitoring float study data to a flow of 3 {times} 10{sup 5} gallons per second was accomplished by comparison with the slope of the curve obtained from the US Corps of Engineers data; the latter covered flow times from 100-F Area to Pasco over a range of 3.4 {times} 10{sup 5} gps to 3.7 {times} 10{sup 6} gps. The revised flow-time curves are illustrated in Figures 1 through 6.

  14. Applying the maximum information principle to cell transmission model of tra-ffic flow

    刘喜敏; 卢守峰


    This paper integrates the maximum information principle with the Cell Transmission Model (CTM) to formulate the velo-city distribution evolution of vehicle traffic flow. The proposed discrete traffic kinetic model uses the cell transmission model to cal-culate the macroscopic variables of the vehicle transmission, and the maximum information principle to examine the velocity distri-bution in each cell. The velocity distribution based on maximum information principle is solved by the Lagrange multiplier method. The advantage of the proposed model is that it can simultaneously calculate the hydrodynamic variables and velocity distribution at the cell level. An example shows how the proposed model works. The proposed model is a hybrid traffic simulation model, which can be used to understand the self-organization phenomena in traffic flows and predict the traffic evolution.

  15. Research on configuration of railway self-equipped tanker based on minimum cost maximum flow model

    Yang, Yuefang; Gan, Chunhui; Shen, Tingting


    In the study of the configuration of the tanker of chemical logistics park, the minimum cost maximum flow model is adopted. Firstly, the transport capacity of the park loading and unloading area and the transportation demand of the dangerous goods are taken as the constraint condition of the model; then the transport arc capacity, the transport arc flow and the transport arc edge weight are determined in the transportation network diagram; finally, the software calculations. The calculation results show that the configuration issue of the tankers can be effectively solved by the minimum cost maximum flow model, which has theoretical and practical application value for tanker management of railway transportation of dangerous goods in the chemical logistics park.

  16. Mapping the MPM maximum flow algorithm on GPUs

    Solomon, Steven; Thulasiraman, Parimala


    The GPU offers a high degree of parallelism and computational power that developers can exploit for general purpose parallel applications. As a result, a significant level of interest has been directed towards GPUs in recent years. Regular applications, however, have traditionally been the focus of work on the GPU. Only very recently has there been a growing number of works exploring the potential of irregular applications on the GPU. We present a work that investigates the feasibility of Malhotra, Pramodh Kumar and Maheshwari's "MPM" maximum flow algorithm on the GPU that achieves an average speedup of 8 when compared to a sequential CPU implementation.

  17. Maximum Flow in Planar Networks with Exponentially Distributed Arc Capacities.


    avoid constructing the dual, are described in Itai and Shiloach P 97 91. In this paper, we consider the maximum flow problem in (st) planar networks...use arc e and lies completely below P. If no such path exists we say P(e) - *. An algorithm tc construct P(e) given P and e is described in Itai and...suggested in Ford and Fulkerson [1956], developed in Berge and Ghouila-Houri [1962] and its time complexity is reduced to 0( IVI log IVI ) by Itai and

  18. Invulnerability of power grids based on maximum flow theory

    Fan, Wenli; Huang, Shaowei; Mei, Shengwei


    The invulnerability analysis against cascades is of great significance in evaluating the reliability of power systems. In this paper, we propose a novel cascading failure model based on the maximum flow theory to analyze the invulnerability of power grids. In the model, node initial loads are built on the feasible flows of nodes with a tunable parameter γ used to control the initial node load distribution. The simulation results show that both the invulnerability against cascades and the tolerance parameter threshold αT are affected by node load distribution greatly. As γ grows, the invulnerability shows the distinct change rules under different attack strategies and different tolerance parameters α respectively. These results are useful in power grid planning and cascading failure prevention.

  19. Environmental flow allocation and statistics calculator

    Konrad, Christopher P.


    The Environmental Flow Allocation and Statistics Calculator (EFASC) is a computer program that calculates hydrologic statistics based on a time series of daily streamflow values. EFASC will calculate statistics for daily streamflow in an input file or will generate synthetic daily flow series from an input file based on rules for allocating and protecting streamflow and then calculate statistics for the synthetic time series. The program reads dates and daily streamflow values from input files. The program writes statistics out to a series of worksheets and text files. Multiple sites can be processed in series as one run. EFASC is written in MicrosoftRegistered Visual BasicCopyright for Applications and implemented as a macro in MicrosoftOffice Excel 2007Registered. EFASC is intended as a research tool for users familiar with computer programming. The code for EFASC is provided so that it can be modified for specific applications. All users should review how output statistics are calculated and recognize that the algorithms may not comply with conventions used to calculate streamflow statistics published by the U.S. Geological Survey.

  20. The directed flow maximum near $c_{s} = 0$

    Brachmann, J; Stöcker, H; Greiner, W


    We investigate the excitation function of quark-gluon plasma formation and the rapidity dependence of directed in-plane flow of nucleons in the energy range of the BNL-AGS and for the $E^{kin}_{Lab}=40A$~GeV Pb+Pb collisions performed recently at the CERN-SPS. We employ the three-fluid model with dynamical unification of kinetically equilibrated fluid elements. Within our model with first-order phase transition at high density, droplets of QGP coexisting with hadronic matter are produced already at BNL-AGS energies, $E^{kin}_{Lab}\\simeq 10A$~GeV. A substantial decrease of the isentropic velocity of sound, however, requires higher energies, $E^{kin}_{Lab}\\simeq40A$~GeV. We calculate the response of the directed in-plane momentum per nucleon, $(y)$. According to our model calculations, kinematic requirements and EoS effects work hand-in-hand at $E^{kin}_{Lab}=40A$~GeV to allow the observation of the dropping velocity of sound and of the ``slowly burning'' mixed phase via an {\\em increase} of the directed flow a...

  1. Gaseous Nitrogen Orifice Mass Flow Calculator

    Ritrivi, Charles


    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  2. Flow calculation in a bulb turbine

    Goede, E.; Pestalozzi, J.


    In recent years remarkable progress has been made in the field of computational fluid dynamics. Sometimes the impression may arise when reading the relevant literature that most of the problems in this field have already been solved. Upon studying the matter more deeply, however, it is apparent that some questions still remain unanswered. The use of the quasi-3D (Q3D) computational method for calculating the flow in a fuel hydraulic turbine is described.

  3. Numerical calculation of turbomachinery cascade flows

    Liu, Feng

    A numerical method for solving both the Euler and the Reynolds-averaged Navier-Stokes equations for flows in turbomachinery cascades is presented and verified. The method is based on a finite volume method with an explicit multi-stage time-stepping scheme originally developed by Jameson for the Euler equations. Modified discretization schemes, based on Martinelli's work for the second order derivatives in the Navier-Stokes equations, are proposed for both the cell-vertex and the cell-centered schemes. The new schemes avoid a potential discretization problem with kinked meshes. Use of artificial dissipation to stabilize a central difference scheme and capture shocks is discussed. Local time stepping and residual smoothing are used to increase the allowable time steps for stability. A multigrid method is employed to accelerate convergence to steady state. For steady inviscid flows enthalpy damping is also used. The method is capable of handling flows of low Mach number (lower than 0.3), and transonic and supersonic flows. Both laminar and turbulent flows are calculated in solving the Reynolds-averaged equations. The Reynolds number may range from order 1 to 10(exp 7) or even higher as long as enough mesh resolution and a proper turbulence model are provided. The Baldwin-Lomax algebraic turbulence model is used in the current work. An elliptic mesh generator is used to generate H-type meshes for cascades. The cell-centered scheme is programmed in both two- and three-dimensions for the Euler equations. Numerical results included a two-dimensional Hobson cascade, a supersonic wedge cascade and the VKI turbine cascade. The three-dimensional code is used to calculate the flow in a low pressure turbine cascade. Results compare well with experimental data at design conditions. At off-design conditions, the Euler method fails in regions of large separations.

  4. Continuous maximum flow segmentation method for nanoparticle interaction analysis.

    Marak, L; Tankyevych, O; Talbot, H


    In recent years, tomographic three-dimensional reconstruction approaches using electrons rather than X-rays have become popular. Such images produced with a transmission electron microscope make it possible to image nanometre-scale materials in three-dimensional. However, they are also noisy, limited in contrast and most often have a very poor resolution along the axis of the electron beam. The analysis of images stemming from such modalities, whether fully or semiautomated, is therefore more complicated. In particular, segmentation of objects is difficult. In this paper, we propose to use the continuous maximum flow segmentation method based on a globally optimal minimal surface model. The use of this fully automated segmentation and filtering procedure is illustrated on two different nanoparticle samples and provide comparisons with other classical segmentation methods. The main objectives are the measurement of the attraction rate of polystyrene beads to silica nanoparticle (for the first sample) and interaction of silica nanoparticles with large unilamellar liposomes (for the second sample). We also illustrate how precise measurements such as contact angles can be performed.

  5. Maximum flow-based resilience analysis: From component to system

    Jin, Chong; Li, Ruiying; Kang, Rui


    Resilience, the ability to withstand disruptions and recover quickly, must be considered during system design because any disruption of the system may cause considerable loss, including economic and societal. This work develops analytic maximum flow-based resilience models for series and parallel systems using Zobel’s resilience measure. The two analytic models can be used to evaluate quantitatively and compare the resilience of the systems with the corresponding performance structures. For systems with identical components, the resilience of the parallel system increases with increasing number of components, while the resilience remains constant in the series system. A Monte Carlo-based simulation method is also provided to verify the correctness of our analytic resilience models and to analyze the resilience of networked systems based on that of components. A road network example is used to illustrate the analysis process, and the resilience comparison among networks with different topologies but the same components indicates that a system with redundant performance is usually more resilient than one without redundant performance. However, not all redundant capacities of components can improve the system resilience, the effectiveness of the capacity redundancy depends on where the redundant capacity is located. PMID:28545135

  6. Fast calculation of the maximum power point of photovoltaic generators under partial shading

    Carlos Andres Ramos-Paja; Luz Adriana Trejos-Grisales; Javier Herrera-Murcia


    This paper presents a method to calculate the energy production of photovoltaic generators considering partial shading or mismatched conditions. The proposed method is based on the complete one-diode model including the bypass diode in its exponential form, where the current and voltage values of the modules composing the photovoltaic panel array are calculated without using the Lambert-W function. In addition, the method introduces a procedure to calculate the vicinity of the maximum power p...




    Full Text Available A statistical and hydrological analysis of the maximum flow in the Terpezița river drainage basin. Starting from the idea that hydrological and hydrometeorological parameters have a statistical existence over time and a spatial distribution that can be represented by an interaction between the mathematical and geographical elements, the present paper aims to analyze the relationship between maximum flows, hourly rains, flow coefficients and concentration times of the Terpezita Basin. This is the second-largest sub-basin (182km2 in the basin of Desnatui, which is located in the SW of Romania and is a first degree tributary of the Danube. The assessment of the concentration time, which involves the sizes of the liquid flow and specific liquid flow, was attained according to the physical and geographical characteristics of the basin. Thus taking into account the homogenous character from this point of view and the existence of statistically established hydrological and pluviometric background, we could outline the behavior of Terpezița River Basin during the extreme hydro-meteorological events. The documentation was completed through an exemplification of previously calculated results, using observations and measurements of the river bed in the vicinity of Terpezita village and processing the values that resulted from the hydro-graph of the 2005 flash-flood.

  8. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))


    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  9. Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations

    Gupta, N. K.; Mehra, R. K.


    This paper discusses numerical aspects of computing maximum likelihood estimates for linear dynamical systems in state-vector form. Different gradient-based nonlinear programming methods are discussed in a unified framework and their applicability to maximum likelihood estimation is examined. The problems due to singular Hessian or singular information matrix that are common in practice are discussed in detail and methods for their solution are proposed. New results on the calculation of state sensitivity functions via reduced order models are given. Several methods for speeding convergence and reducing computation time are also discussed.

  10. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    Schlaikjer, Malene; Jensen, Jørgen Arendt


    The aspect of correlation among the blood velocities in time and space has not received much attention in previous blood velocity estimators. The theory of fluid mechanics predicts this property of the blood flow. Additionally, most estimators based on a cross-correlation analysis are limited...... of simulated and in vivo data from the carotid artery. The estimator is meant for two-dimensional (2-D) color flow imaging. The resulting mathematical relation for the estimator consists of two terms. The first term performs a cross-correlation analysis on the signal segment in the radio frequency (RF......)-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...

  11. Maximum entropy analysis of flow and reaction networks

    Niven, Robert K.; Abel, Markus; Schlegel, Michael; Waldrip, Steven H.


    We present a generalised MaxEnt method to infer the stationary state of a flow network, subject to "observable" constraints on expectations of various parameters, as well as "physical" constraints arising from frictional properties (resistance functions) and conservation laws (Kirchhoff laws). The method invokes an entropy defined over all uncertainties in the system, in this case the internal and external flow rates and potential differences. The proposed MaxEnt framework is readily extendable to the analysis of networks with uncertainty in the network structure itself.

  12. Maximum estimates for generalized Forchheimer flows in heterogeneous porous media

    Celik, Emine; Hoang, Luan


    This article continues the study in [4] of generalized Forchheimer flows in heterogeneous porous media. Such flows are used to account for deviations from Darcy's law. In heterogeneous media, the derived nonlinear partial differential equation for the pressure can be singular and degenerate in the spatial variables, in addition to being degenerate for large pressure gradient. Here we obtain the estimates for the L∞-norms of the pressure and its time derivative in terms of the initial and the time-dependent boundary data. They are established by implementing De Giorgi-Moser's iteration in the context of weighted norms with the weights specifically defined by the Forchheimer equation's coefficient functions. With these weights, we prove suitable weighted parabolic Poincaré-Sobolev inequalities and use them to facilitate the iteration. Moreover, local in time L∞-bounds are combined with uniform Gronwall-type energy inequalities to obtain long-time L∞-estimates.

  13. Columbia River flow-time calculations

    Soldat, J.K.


    An appraisal of available data on flow times in the Columbia River between the reactor areas and Pasco was made to permit extrapolation of the flow-time curves to lower river flow rates. Comparisons were made between data collected by the US Corps of Engineers and environmental monitoring data and with the previously developed equation for flow times. New equations were developed to fit curves over the range (4 to 40) x 10/sup 4/CFS.

  14. Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel

    Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.


    Flow batteries show promise for very large-scale stationary energy storage such as needed for the grid and renewable energy implementation. In recent years, researchers and developers of redox flow batteries (RFBs) have found that electrode and flow field designs of PEM fuel cell (PEMFC) technology can increase the power density and consequently push down the cost of flow battery stacks. In this paper we present a macroscopic model of a typical PEMFC-like RFB electrode-flow field design. The model is a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer). The effects of the inlet volumetric flow rate, permeability of the porous layer, thickness of the porous layer and thickness of the flow channel on the flow penetration into the porous layer are investigated. The maximum current density corresponding to stoichiometry is estimated to be 377 mA cm-2 and 724 mA cm-2, which compares favorably with experiments of ∼400 mA cm-2 and ∼750 mA cm-2, for a single layer and three layers of the carbon fiber paper, respectively.

  15. Calculation of Confidence Intervals for the Maximum Magnitude of Earthquakes in Different Seismotectonic Zones of Iran

    Salamat, Mona; Zare, Mehdi; Holschneider, Matthias; Zöller, Gert


    The problem of estimating the maximum possible earthquake magnitude m_max has attracted growing attention in recent years. Due to sparse data, the role of uncertainties becomes crucial. In this work, we determine the uncertainties related to the maximum magnitude in terms of confidence intervals. Using an earthquake catalog of Iran, m_max is estimated for different predefined levels of confidence in six seismotectonic zones. Assuming the doubly truncated Gutenberg-Richter distribution as a statistical model for earthquake magnitudes, confidence intervals for the maximum possible magnitude of earthquakes are calculated in each zone. While the lower limit of the confidence interval is the magnitude of the maximum observed event,the upper limit is calculated from the catalog and the statistical model. For this aim, we use the original catalog which no declustering methods applied on as well as a declustered version of the catalog. Based on the study by Holschneider et al. (Bull Seismol Soc Am 101(4):1649-1659, 2011), the confidence interval for m_max is frequently unbounded, especially if high levels of confidence are required. In this case, no information is gained from the data. Therefore, we elaborate for which settings finite confidence levels are obtained. In this work, Iran is divided into six seismotectonic zones, namely Alborz, Azerbaijan, Zagros, Makran, Kopet Dagh, Central Iran. Although calculations of the confidence interval in Central Iran and Zagros seismotectonic zones are relatively acceptable for meaningful levels of confidence, results in Kopet Dagh, Alborz, Azerbaijan and Makran are not that much promising. The results indicate that estimating m_max from an earthquake catalog for reasonable levels of confidence alone is almost impossible.

  16. Calculation of Confidence Intervals for the Maximum Magnitude of Earthquakes in Different Seismotectonic Zones of Iran

    Salamat, Mona; Zare, Mehdi; Holschneider, Matthias; Zöller, Gert


    The problem of estimating the maximum possible earthquake magnitude m_max has attracted growing attention in recent years. Due to sparse data, the role of uncertainties becomes crucial. In this work, we determine the uncertainties related to the maximum magnitude in terms of confidence intervals. Using an earthquake catalog of Iran, m_max is estimated for different predefined levels of confidence in six seismotectonic zones. Assuming the doubly truncated Gutenberg-Richter distribution as a statistical model for earthquake magnitudes, confidence intervals for the maximum possible magnitude of earthquakes are calculated in each zone. While the lower limit of the confidence interval is the magnitude of the maximum observed event,the upper limit is calculated from the catalog and the statistical model. For this aim, we use the original catalog which no declustering methods applied on as well as a declustered version of the catalog. Based on the study by Holschneider et al. (Bull Seismol Soc Am 101(4):1649-1659, 2011), the confidence interval for m_max is frequently unbounded, especially if high levels of confidence are required. In this case, no information is gained from the data. Therefore, we elaborate for which settings finite confidence levels are obtained. In this work, Iran is divided into six seismotectonic zones, namely Alborz, Azerbaijan, Zagros, Makran, Kopet Dagh, Central Iran. Although calculations of the confidence interval in Central Iran and Zagros seismotectonic zones are relatively acceptable for meaningful levels of confidence, results in Kopet Dagh, Alborz, Azerbaijan and Makran are not that much promising. The results indicate that estimating m_max from an earthquake catalog for reasonable levels of confidence alone is almost impossible.

  17. Fast calculation of the maximum power point of photovoltaic generators under partial shading

    Carlos Andres Ramos-Paja


    Full Text Available This paper presents a method to calculate the energy production of photovoltaic generators considering partial shading or mismatched conditions. The proposed method is based on the complete one-diode model including the bypass diode in its exponential form, where the current and voltage values of the modules composing the photovoltaic panel array are calculated without using the Lambert-W function. In addition, the method introduces a procedure to calculate the vicinity of the maximum power points, which enables the reduction of the operations required to obtain the global maximum. The proposed method provides short simulation times and high accuracy. On the other hand, since the method does not require complex mathematical functions, it can be implemented straightforwardly on known software packages and development languages such as C and C++. Those characteristics make this method a useful tool to evaluate the economic viability and return-of-investment time of photovoltaic installations. Simulation results and comparisons with a classical procedure confirm the good performance of the proposed method in terms of execution time and accuracy.

  18. Comparison Between Bayesian and Maximum Entropy Analyses of Flow Networks†

    Steven H. Waldrip


    Full Text Available We compare the application of Bayesian inference and the maximum entropy (MaxEnt method for the analysis of flow networks, such as water, electrical and transport networks. The two methods have the advantage of allowing a probabilistic prediction of flow rates and other variables, when there is insufficient information to obtain a deterministic solution, and also allow the effects of uncertainty to be included. Both methods of inference update a prior to a posterior probability density function (pdf by the inclusion of new information, in the form of data or constraints. The MaxEnt method maximises an entropy function subject to constraints, using the method of Lagrange multipliers,to give the posterior, while the Bayesian method finds its posterior by multiplying the prior with likelihood functions incorporating the measured data. In this study, we examine MaxEnt using soft constraints, either included in the prior or as probabilistic constraints, in addition to standard moment constraints. We show that when the prior is Gaussian,both Bayesian inference and the MaxEnt method with soft prior constraints give the same posterior means, but their covariances are different. In the Bayesian method, the interactions between variables are applied through the likelihood function, using second or higher-order cross-terms within the posterior pdf. In contrast, the MaxEnt method incorporates interactions between variables using Lagrange multipliers, avoiding second-order correlation terms in the posterior covariance. The MaxEnt method with soft prior constraints, therefore, has a numerical advantage over Bayesian inference, in that the covariance terms are avoided in its integrations. The second MaxEnt method with soft probabilistic constraints is shown to give posterior means of similar, but not identical, structure to the other two methods, due to its different formulation.

  19. Application of maximum values for radiation exposure and principles for the calculation of radiation dose



    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  20. A fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation.

    Li, Haisen S; Romeijn, H Edwin; Dempsey, James F


    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near monoenergetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  1. Through-Flow Calculations in Axial Turbomachinery


    downstzega of the effective throat which is displaced upstream away from its kominal plano flow •_stion. Test data .-n nigh deflection blading tested in...AXIAL PIE ANGs-L;- VrELOC.I- T/Y SI~NG,’ c (,o nd) 2 .959 00 SO~ IS~N1RO iCoWLE tNJ\\\\ NJ\\v ON45l~5INi +U~SWC E.AAINZN5W~N3~6 8Lk5~ P-tO RM~ C -5A

  2. Polynomial interpolation methods for viscous flow calculations

    Rubin, S. G.; Khosla, P. K.


    Higher-order collocation procedures which result in block-tridiagonal matrix systems are derived from (1) Taylor series expansions and from (2) polynomial interpolation, and the relationships between the two formulations, called respectively Hermite and spline collocation, are investigated. A Hermite block-tridiagonal system for a nonuniform mesh is derived, and the Hermite approach is extended in order to develop a variable-mesh sixth-order block-tridiagonal procedure. It is shown that all results obtained by Hermite development can be recovered by appropriate spline polynomial interpolation. The additional boundary conditions required for these higher-order procedures are also given. Comparative solutions using second-order accurate finite difference and spline and Hermite formulations are presented for the boundary layer on a flat plate, boundary layers with uniform and variable mass transfer, and the viscous incompressible Navier-Stokes equations describing flow in a driven cavity.

  3. Polynomial interpolation methods for viscous flow calculations

    Rubin, S. G.; Khosla, P. K.


    Higher-order collocation procedures which result in block-tridiagonal matrix systems are derived from (1) Taylor series expansions and from (2) polynomial interpolation, and the relationships between the two formulations, called respectively Hermite and spline collocation, are investigated. A Hermite block-tridiagonal system for a nonuniform mesh is derived, and the Hermite approach is extended in order to develop a variable-mesh sixth-order block-tridiagonal procedure. It is shown that all results obtained by Hermite development can be recovered by appropriate spline polynomial interpolation. The additional boundary conditions required for these higher-order procedures are also given. Comparative solutions using second-order accurate finite difference and spline and Hermite formulations are presented for the boundary layer on a flat plate, boundary layers with uniform and variable mass transfer, and the viscous incompressible Navier-Stokes equations describing flow in a driven cavity.

  4. The Distribution of Maximum Flow with Application to Multi-State Reliability Systems.


    in 0( lVI • JEJ )time, using the max-flow algorithm of Itai and Shiloach (1979). Frank and Frisch (1971) provide a comprehensive discussion of the...maximum flow; for example, taking 0( Ivi log IVI time per replication for a planar network ( Itai and Shiloach 1979). With regard to computing the cell...Edition 8, Houston, Texas. 11. Itai , A. and Y. Shiloach (1979). Maximum flow in planar networks, SIAM J. Comput., 8, 135-150. 12. Kulkarni, V.G. and V. G

  5. Calculation of the Instream Ecological Flow of the Wei River Based on Hydrological Variation

    Shengzhi Huang


    Full Text Available It is of great significance for the watershed management department to reasonably allocate water resources and ensure the sustainable development of river ecosystems. The greatly important issue is to accurately calculate instream ecological flow. In order to precisely compute instream ecological flow, flow variation is taken into account in this study. Moreover, the heuristic segmentation algorithm that is suitable to detect the mutation points of flow series is employed to identify the change points. Besides, based on the law of tolerance and ecological adaptation theory, the maximum instream ecological flow is calculated, which is the highest frequency of the monthly flow based on the GEV distribution and very suitable for healthy development of the river ecosystems. Furthermore, in order to guarantee the sustainable development of river ecosystems under some bad circumstances, minimum instream ecological flow is calculated by a modified Tennant method which is improved by replacing the average flow with the highest frequency of flow. Since the modified Tennant method is more suitable to reflect the law of flow, it has physical significance, and the calculation results are more reasonable.

  6. FlowMax: A Computational Tool for Maximum Likelihood Deconvolution of CFSE Time Courses.

    Maxim Nikolaievich Shokhirev

    Full Text Available The immune response is a concerted dynamic multi-cellular process. Upon infection, the dynamics of lymphocyte populations are an aggregate of molecular processes that determine the activation, division, and longevity of individual cells. The timing of these single-cell processes is remarkably widely distributed with some cells undergoing their third division while others undergo their first. High cell-to-cell variability and technical noise pose challenges for interpreting popular dye-dilution experiments objectively. It remains an unresolved challenge to avoid under- or over-interpretation of such data when phenotyping gene-targeted mouse models or patient samples. Here we develop and characterize a computational methodology to parameterize a cell population model in the context of noisy dye-dilution data. To enable objective interpretation of model fits, our method estimates fit sensitivity and redundancy by stochastically sampling the solution landscape, calculating parameter sensitivities, and clustering to determine the maximum-likelihood solution ranges. Our methodology accounts for both technical and biological variability by using a cell fluorescence model as an adaptor during population model fitting, resulting in improved fit accuracy without the need for ad hoc objective functions. We have incorporated our methodology into an integrated phenotyping tool, FlowMax, and used it to analyze B cells from two NFκB knockout mice with distinct phenotypes; we not only confirm previously published findings at a fraction of the expended effort and cost, but reveal a novel phenotype of nfkb1/p105/50 in limiting the proliferative capacity of B cells following B-cell receptor stimulation. In addition to complementing experimental work, FlowMax is suitable for high throughput analysis of dye dilution studies within clinical and pharmacological screens with objective and quantitative conclusions.

  7. Pressure algorithm for elliptic flow calculations with the PDF method

    Anand, M. S.; Pope, S. B.; Mongia, H. C.


    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  8. A procedure for the calculation of flow through axisymmetric ducts

    P. S. Heyns


    Full Text Available A procedure for the calculation of flow through axisymmetric ducts as are typically found in turbomachines, is presented. The procedure is based on a streamline curvature method with the governing equations formulated along quasi-orthogonals in the flow field. This formulation allows the procedure to be used for segments of a duct wherein the flow direction is predominantly radial. It is assumed that the flow on specific stream surfaces is isentropic, but normal entropy gradients may exist because of processes which took place upstream of the duct.

  9. Calculating e-flow using UAV and ground monitoring

    Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.


    Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements

  10. Importance of maximum snow accumulation for summer low flows in humid catchments

    Jenicek, M.; Seibert, J.; Zappa, M.; Staudinger, M.; Jonas, T.


    The expected increase of air temperature will increase the ratio of liquid to solid precipitation during winter and, thus decrease the amount of snow, especially in mid-elevation mountain ranges across Europe. The decrease of snow will affect groundwater recharge during spring and might cause low streamflow values in the subsequent summer period. To evaluate these potential climate change impacts, we investigated the effects of inter-annual variations in snow accumulation on summer low flow and addressed the following research questions: (1) how important is snow for summer low flows and how long is the "memory effect" in catchments with different elevations? (2) How sensitive are summer low flows to any change of winter snowpack? To find suitable predictors of summer low flow we used long time series from 14 alpine and pre-alpine catchments in Switzerland and computed different variables quantifying winter and spring snow conditions. We assessed the sensitivity of individual catchments to the change of maximum snow water equivalent (SWEmax) using the non-parametric Theil-Sen approach as well as an elasticity index. In general, the results indicated that maximum winter snow accumulation influenced summer low flow, but could only partly explain the observed inter-annual variations. One other important factor was the precipitation between maximum snow accumulation and summer low flow. When only the years with below average precipitation amounts during this period were considered, the importance of snow accumulation as a predictor of low flows increased. The slope of the regression between SWEmax and summer low flow and the elasticity index both increased with increasing mean catchment elevation. This indicated a higher sensitivity of summer low flow to snow accumulation in alpine catchments compared to lower elevation catchments.

  11. Numerical Calculation of Interaction Between Plane Jet and Subsonic Flow

    V. O. Moskalenko


    Full Text Available The paper makes numerical calculation of interaction between plane jet and subsonic flow. Its aim is to determine the jet trajectory, velocity profiles, distribution of pressure coefficient on the plate surface at different jet angles, namely ωj=45°; 90°; 105° and at low blowing strengths ( ≤1.5 as well as a to make comparison with the experimental data of other authors.To simulate a two-dimensional jet in the subsonic flow the software package “CAD SolidWorks Flow Simulation” has been used. Initially, the test task was solved with its calculation results compared with experimental ones [6.8] in order to improve the convergence; the size of the computational domain and a computational grid within the k-ε turbulence model were selected. As a result of the calculation, were identified and analysed the pressure values, jet trajectories, and velocity profiles. In the graphs the solid lines show calculation results, and dots represent experimental data.From the calculation results it is seen that, with increasing intensity of the reduced mass flow ¯q in the above range, the change of the jet pressure coefficient p¯ distribution behind a slotted nozzle is almost linear and significant. Before the nozzle, with increasing ¯q the pressure coefficient increases slightly.Analysis of results has shown that blowing of jets with ωj>90ω, provides a greater perturbation of the subsonic flow. Thus, the jet penetrates into the flow deeper, forms a dead region of the greater length, and more significantly redistributes the pressure coefficient on the surface of the plate.The calculation results are in good compliance with the experimental data both for the jet axis and for the pressure coefficient distribution on the plate surface. The research results can be used in the designing the jet control of aircrafts.

  12. Nonequilibrium flow calculations for the hydrogen constricted arc

    Scott, R. K.; Incropera, F. P.


    A nonequilibrium flow model has been formulated and solved numerically for conditions in an atomic hydrogen cascade arc. Solutions show that although thermal nonequilibrium effects are minor, the departure from chemical equilibrium is significant. Comparisons with results obtained from an equilibrium flow model reveal the deficiencies associated with such a model and parametric calculations reveal the effect of current, pressure, and radius on arc behavior.

  13. Estimation of the maximum contraction velocity of the urinary bladder from pressure and flow throughout micturition.

    R. van Mastrigt (Ron)


    textabstractThe contractility of the urinary bladder can be adequately described in terms of the parameters P0 (isometric pressure) and Vmax (maximum contraction velocity). In about 12% of urodynamic evaluations of patients these clinically relevant parameters can be calculated from pressure and flo

  14. The role of hand calculations in ground water flow modeling.

    Haitjema, Henk


    Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.

  15. A route-based decomposition for the Multi-Commodity k-splittable Maximum Flow Problem

    Gamst, Mette


    The Multi-Commodity k-splittable Maximum Flow Problem routes flow through a capacitated graph such that each commodity uses at most k paths and such that the total amount of routedflow is maximized. This paper proposes a branch-and-price algorithm based on a route-based Dantzig-Wolfe decomposition......, where a route consists of up to k paths. Computational results show that the new algorithm has best performance on seven benchmark instances and is capable of solving two previously unsolved instances....

  16. Minimum cost maximum flow algorithm for upstream bandwidth allocation in OFDMA passive optical networks

    Wu, Yating; Kuang, Bin; Wang, Tao; Zhang, Qianwu; Wang, Min


    This paper presents a minimum cost maximum flow (MCMF) based upstream bandwidth allocation algorithm, which supports differentiated QoS for orthogonal frequency division multiple access passive optical networks (OFDMA-PONs). We define a utility function as the metric to characterize the satisfaction degree of an ONU on the obtained bandwidth. The bandwidth allocation problem is then formulated as maximizing the sum of the weighted total utility functions of all ONUs. By constructing a flow network graph, we obtain the optimized bandwidth allocation using the MCMF algorithm. Simulation results show that the proposed scheme improves the performance in terms of mean packet delay, packet loss ratio and throughput.

  17. Numerical calculation of periodic viscous flow through a circular hole

    Notomi, T.; Namba, M.


    Periodic viscous flows through a circular hole driven by fluctuating far field pressure are studied numerically. The time dependent incompressible Navier-Stokes equations formulated with orthogonal curvilinear co-ordinates are solved by using a finite difference method. The flow patterns and acoustic impedance of the circular hole are investigated for various combinations of the pressure/viscous force ratio, frequency and hole edge thickness. Numerical calculations revealed some interesting facts, as follows. First, the flow patterns are classified into three regimes by fluctuating pressure amplitude and frequency: flows with no laminar separation (high-frequency-low-pressure range), flows with attached separation bubble (intermediate frequency and pressure range) and flows with detached vortex rings (low-frequency-high-pressure range). Second, the flow resistance of the circular hole is proportional to the acoustic particle velocity but independent of the viscosity of the fluid, and almost invariant with the frequency for the low-frequency-high-pressure range. On the other hand, for the high-frequency-low-pressure range, the flow resistance is independent of the periodic pressure amplitude and varies directly with the 2/3 power of the frequency. Finally, the predicted circular hole impedance is in good agreement with the experimental data for the orifice impedance of Ingard and Ising.

  18. Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

    Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.


    Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind

  19. Flow and Performance Calculations of Axial Compressor near Stall Margin

    Hwang, Yoojun; Kang, Shin-Hyoung


    Three-dimensional flows through a Low Speed Research Axial Compressor were numerically conducted in order to estimate the performance through unsteady and steady-state simulations. The first stage with the inlet guide vane was investigated at the design point to confirm that the rotor blade induced periodicity exists. Special attention was paid to the flow near the stall condition to inspect the flow behavior in the vicinity of the stall margin. The performance predicted under the steady-state assumption is in good agreement with the measured data. However, the steady-state calculations induce more blockage through the blade passage. Flow separations on the blade surface and end-walls are reduced when unsteady simulation is conducted. The negative jet due to the wake of the rotor blade periodically distorts the boundary layer on the surface of the stator blade and improves the performance of the compressor in terms of the pressure rise. The advantage of the unsteadiness increases as the flow rate reduces. In addition, the rotor tip leakage flow is forced downstream by the unsteadiness. Consequently, the behavior contributes to extending the range of operation by preventing the leakage flow from proceeding upstream near the stall margin.

  20. Non-Newtonian flow between concentric cylinders calculated from thermophysical properties obtained from simulations

    Narayan, A.P. [Univ. of Colorado, Boulder, CO (United States); Rainwater, J.C. [National Institute of Standards and Technology, Boulder, CO (United States); Hanley, H.J.M. [Univ. of Colorado, Boulder, CO (United States)]|[National Institute of Standards and Technology, Boulder, CO (United States)


    A study of the Weissenberg effect (rod climbing in a stirred system) based on nonequilibrium molecular dynamics (NEMD) is reported. Simulation results from a soft-sphere fluid are used to obtain a self-consistent free-surface profile of the fluid of finite compressibility undergoing Couette flow between concentric cylinders. A numerical procedure is then applied to calculate the height profile for a hypothetical fluid with thermophysical properties of the soft-sphere liquid and of a dense colloidal suspension. The height profile calculated is identified with shear thickening and the forms of the viscometric functions. The maximum climb occurs between the cylinders rather than at the inner cylinder.

  1. A calculation procedure for viscous flow in turbomachines, volume 1

    Khalil, I.; Tabakoff, W.


    A method for analyzing the nonadiabatic viscous flow through turbomachine rotors is presented. The field analysis is based upon the numerical integration of the full incompressible stream function vorticity form of the Navier-Stokes equations, together with the energy equation, over the rotor blade-to-blade stream channels. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system that suits the most complicated blade geometries. A numerical scheme is used to carry out the necessary integration of the elliptic governing equations. The flow characteristics within the rotor of a radial inflow turbine are investigated over a wide range of operating conditions. The calculated results are compared to existing experimental data. The flow in a radial compressor is analyzed in order to study the behavior of viscous flow in diffusing cascades. The results are compared qualitatively to known experimental trends. The solution obtained provides insight into the flow phenomena in this type of turbomachine. It is concluded that the method of analysis is quite general and gives a good representation of the actual flow behavior within turbomachine passages.

  2. Calculation of the dynamic air flow resistivity of fibre materials

    Tarnow, Viggo


    The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly. ......-consistent procedure gives the same results as the more complicated procedure based on average over Voronoi cells. Graphs of the dynamic resistivity versus frequency are given for fiber densities and diameters typical for acoustic fiber materials.......The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly...

  3. Stress Analysis and Calculation of Flow Interruption Capability Test Loop

    FENG; Bo; QI; Xiao-guang; CHENG; Dao-xi


    <正>A stress-analysis and calculation has been done for the flow interruption capability test loop (Fig. 1). In the design condition, the test loop is operated on 350 ℃ and 20MPa. By reasonably simplifying and modeling, a stress-analysis program named Triflex was used to analyze the piping stress and optimize the piping supports, which meet the compliance. The work will provide the necessary basis for the construction of the loop and operation security.

  4. Design of a lube oil reservoir by using flow calculations

    Rinkinen, J.; Alfthan, A. [Institute of Hydraulics and Automation IHA, Tampere University of Technology, Tampere (Finland)] Suominen, J. [Institute of Energy and Process Engineering, Tampere University of Technology, Tampere (Finland); Airaksinen, A.; Antila, K. [R and D Engineer Safematic Oy, Muurame (Finland)


    The volume of usual oil reservoir for lubrication oil systems is designed by the traditional rule of thumb so that the total oil volume is theoretically changed in every 30 minutes by rated pumping capacity. This is commonly used settling time for air, water and particles to separate by gravity from the oil returning of the bearings. This leads to rather big volumes of lube oil reservoirs, which are sometimes difficult to situate in different applications. In this presentation traditionally sized lube oil reservoir (8 m{sup 3}) is modelled in rectangular coordinates and laminar oil flow is calculated by using FLUENT software that is based on finite difference method. The results of calculation are velocity and temperature fields inside the reservoir. The velocity field is used to visualize different particle paths through the reservoir. Particles that are studied by the model are air bubbles and water droplets. The interest of the study has been to define the size of the air bubbles that are released and the size of the water droplets that are separated in the reservoir. The velocity field is also used to calculate the modelled circulating time of the oil volume which is then compared with the theoretical circulating time that is obtained from the rated pump flow. These results have been used for designing a new lube oil reservoir. This reservoir has also been modelled and optimized by the aid of flow calculations. The best shape of the designed reservoir is constructed in real size for empirical measurements. Some results of the oil flow measurements are shown. (orig.) 7 refs.

  5. Maximum Likelihood Estimation of Monocular Optical Flow Field for Mobile Robot Ego-motion

    Huajun Liu


    Full Text Available This paper presents an optimized scheme of monocular ego-motion estimation to provide location and pose information for mobile robots with one fixed camera. First, a multi-scale hyper-complex wavelet phase-derived optical flow is applied to estimate micro motion of image blocks. Optical flow computation overcomes the difficulties of unreliable feature selection and feature matching of outdoor scenes; at the same time, the multi-scale strategy overcomes the problem of road surface self-similarity and local occlusions. Secondly, a support probability of flow vector is defined to evaluate the validity of the candidate image motions, and a Maximum Likelihood Estimation (MLE optical flow model is constructed based not only on image motion residuals but also their distribution of inliers and outliers, together with their support probabilities, to evaluate a given transform. This yields an optimized estimation of inlier parts of optical flow. Thirdly, a sampling and consensus strategy is designed to estimate the ego-motion parameters. Our model and algorithms are tested on real datasets collected from an intelligent vehicle. The experimental results demonstrate the estimated ego-motion parameters closely follow the GPS/INS ground truth in complex outdoor road scenarios.

  6. Statistical properties of the maximum Lyapunov exponent calculated via the divergence rate method.

    Franchi, Matteo; Ricci, Leonardo


    The embedding of a time series provides a basic tool to analyze dynamical properties of the underlying chaotic system. To this purpose, the choice of the embedding dimension and lag is crucial. Although several methods have been devised to tackle the issue of the optimal setting of these parameters, a conclusive criterion to make the most appropriate choice is still lacking. An accepted procedure to rank different embedding methods relies on the evaluation of the maximum Lyapunov exponent (MLE) out of embedded time series that are generated by chaotic systems with explicit analytic representation. The MLE is evaluated as the local divergence rate of nearby trajectories. Given a system, embedding methods are ranked according to how close such MLE values are to the true MLE. This is provided by the so-called standard method in a way that exploits the mathematical description of the system and does not require embedding. In this paper we study the dependence of the finite-time MLE evaluated via the divergence rate method on the embedding dimension and lag in the case of time series generated by four systems that are widely used as references in the scientific literature. We develop a completely automatic algorithm that provides the divergence rate and its statistical uncertainty. We show that the uncertainty can provide useful information about the optimal choice of the embedding parameters. In addition, our approach allows us to find which systems provide suitable benchmarks for the comparison and ranking of different embedding methods.

  7. Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts

    Javier Alvarez, Nicolas; Román Marín, José Manuel; Huang, Qian;


    We provide conclusive evidence of nonmonotonic mechanical behavior in the extension of long-chain branched polymer melts. While nonmonotonic behavior is known to occur for solids, for the case of polymeric melts, this phenomenon is in direct contrast with current theoretical models. We rule out...... the possibility of the overshoot being an experimental artifact by confirming the existence of steady flow after a maximum in the ratio of stress to strain rate versus strain under both constant stress and constant strain-rate kinematics. This observation indicates the omission of important physics from current...

  8. An Exact Solution Approach for the Maximum Multicommodity K-splittable Flow Problem

    Gamst, Mette; Petersen, Bjørn


    This talk concerns the NP-hard Maximum Multicommodity k-splittable Flow Problem (MMCkFP) in which each commodity may use at most k paths between its origin and its destination. A new branch-and-cut-and-price algorithm is presented. The master problem is a two-index formulation of the MMCk......FP and the pricing problem is the shortest path problem with forbidden paths. A new branching strategy forcing and forbidding the use of certain paths is developed. The new branch-and-cut-and-price algorithm is computationally evaluated and compared to results from the literature. The new algorithm shows very...

  9. Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion

    Dias, Eduardo; Miranda, Jose


    As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.

  10. Particularities of periods with maximum water flow on the rivers from the Suceava hydrographic basin (1981–2005



    Full Text Available Suceava river basin gets its tributaries from the eastern slopes of the northern group of the Eastern Romanian Carpathians, situated under the influence of Baltic air masses, which bring rainfalls and cold weather, felt into the water flow regime of rivers in the region studied. This water flow regime varies from month to month, with the maximum flow having the most important role in the restoration of underground water reserves. This study examines the temporal (frequency, duration and intensity and quantitative (volume and flow parameters of periods with maximum flow, at monthly and seasonal level, revealing the differences in the water flow regime induced by the relief’s morphometric particularities (altitude, fragmentation degree, exhibition. For the evaluation of mentioned parameters was appealed to the TML 2.1 extension from the HydroOffice software package, which uses quantitative thresholds, depending on which it is set the appearance, and disappearance of periods with maximum flow.

  11. The New Performance Calculation Method of Fouled Axial Flow Compressor

    Huadong Yang


    Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  12. The new performance calculation method of fouled axial flow compressor.

    Yang, Huadong; Xu, Hong


    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  13. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Swadling, G. F.; Lebedev, S. V.; Harvey-Thompson, A. J.; Rozmus, W.; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Yuan, J.


    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  14. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Swadling, G. F., E-mail:; Lebedev, S. V., E-mail:; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)


    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  15. Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum

    Grachev, Andrey A; Di Sabatino, Silvana; Fernando, Harindra J S; Pardyjak, Eric R; Fairall, Christopher W


    Measurements of small-scale turbulence made over the complex-terrain atmospheric boundary layer during the MATERHORN Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels at four towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The multi-level observations made during a 30-day long MATERHORN-Fall field campaign in September-October 2012 allowed studying of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence and their variations in katabatic winds. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along the slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed...

  16. Thermodynamics, maximum power, and the dynamics of preferential river flow structures on continents

    A. Kleidon


    Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.

  17. Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale

    A. Kleidon


    Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.

  18. [Estimation of topographical factors in revised universal soil loss model based on maximum up-stream flow path].

    Luo, Hong; Ma, You-xin; Liu, Wen-jun; Li, Hong-mei


    By using maximum upstream flow path, a self-developed new method for calculating slope length value based on Arc Macro Language (AML), five groups of DEM data for different regions in Bijie Prefecture of Guizhou Province were extracted to compute the slope length and topographical factors in the Prefecture. The time cost for calculating the slope length and the values of the topographical factors were analyzed, and compared with those by iterative slope length method based on AML (ISLA) and on C++ (ISLC). The results showed that the new method was feasible to calculate the slope length and topographical factors in revised universal soil loss model, and had the same effect as iterative slope length method. Comparing with ISLA, the new method had a high computing efficiency and greatly decreased the time consumption, and could be applied to a large area to estimate the slope length and topographical factors based on AML. Comparing with ISLC, the new method had the similar computing efficiency, but its coding was easily to be written, modified, and debugged by using AML. Therefore, the new method could be more broadly used by GIS users.


    P. V. Bulat


    Full Text Available Subject of Research. Numerical solution methods of gas dynamics problems based on exact and approximate solution of Riemann problem are considered. We have developed an approach to the solution of Euler equations describing flows of inviscid compressible gas based on finite volume method and finite difference schemes of various order of accuracy. Godunov scheme, Kolgan scheme, Roe scheme, Harten scheme and Chakravarthy-Osher scheme are used in calculations (order of accuracy of finite difference schemes varies from 1st to 3rd. Comparison of accuracy and efficiency of various finite difference schemes is demonstrated on the calculation example of inviscid compressible gas flow in Laval nozzle in the case of continuous acceleration of flow in the nozzle and in the case of nozzle shock wave presence. Conclusions about accuracy of various finite difference schemes and time required for calculations are made. Main Results. Comparative analysis of difference schemes for Euler equations integration has been carried out. These schemes are based on accurate and approximate solution for the problem of an arbitrary discontinuity breakdown. Calculation results show that monotonic derivative correction provides numerical solution uniformity in the breakdown neighbourhood. From the one hand, it prevents formation of new points of extremum, providing the monotonicity property, but from the other hand, causes smoothing of existing minimums and maximums and accuracy loss. Practical Relevance. Developed numerical calculation method gives the possibility to perform high accuracy calculations of flows with strong non-stationary shock and detonation waves. At the same time, there are no non-physical solution oscillations on the shock wave front.

  20. Calculation of flow distribution in large radius ratio stages of axial flow turbines and comparison of theory and experiment

    Herzog, J.


    A method of calculating stage parameters and flow distribution of axial turbines is described. The governing equations apply to space between the blade rows and are based on the assumption of rotationally symmetrical, compressible, adiabatic flow conditions. Results are presented for stage design and flow analysis calculations. Theoretical results from the calculation system are compared with experimental data from low pressure steam turbine tests.

  1. Dose calculation for asymmetric fields and irregular fields with multileaf collimators. Approximation of tissue-maximum ratio and field factor using modified Day`s calculation method

    Nakata, Manabu; Okada, Takashi; Komai, Yoshinori; Nohara, Hiroki [Kyoto Univ. (Japan). Hospital


    Modern linear accelerators have four independent jaws and multileaf collimators (MLC) of 1 cm width at the isocenter. Asymmetric fields defined by such independent jaws and irregular multileaf collimated fields can be used to match adjacent fields or to spare the spinal cord in external photon beam radiotherapy. We have developed a new approximate algorithm for depth dose calculations at the collimator rotation axis. The program is based on Clarkson`s principle, and uses a more accurate modification of Day`s method for asymmetric fields. Using this method, tissue-maximum ratios (TMR) and field factors of ten kinds of asymmetric fields and ten different irregular multileaf collimated fields were calculated and compared with the measured data for 6 MV and 15 MV photon beams. The dose accuracy with the general A/Pe method was about 3%, however, with the new modified Day`s method, accuracy was within 1.7% for TMR and 1.2% for field factors. The calculated TMR and field factors were found to be in good agreement with measurements for both the 6 MV and 15 MV photon beams. (author)

  2. Structure and flow calculation of cake layer on microfiltration membranes

    Yadong Yu; Zhen Yang; Yuanyuan Duan


    Submerged membrane bioreactors (SMBR) are widely used in wastewater treatment.The permeability of a membrane declines rapidly because of the formation of a cake layer on the membrane surface.In this paper,a multiple staining protocol was conducted to probe the four major foulants in the cake layer formed on a filtration membrane.Fluorescent images of the foulants were obtained using a confocal laser scanning microscope (CLSM).The three dimensional structure of the cake layer was reconstructed,and the internal flow was calculated using computational fluid dynamics (CFD).Simulation results agreed well with the experimental data on the permeability of the cake layer during filtration and showed better accuracy than the calculation by Kozeny-Carman method.β-D-Glucopyranose polysaccharides and proteins are the two main foulants with relatively large volume fractions,while α-D-glucopyranose polysaccharides and nucleic acids have relatively large specific surface areas.The fast growth of β-D-glucopyranose polysaccharides in the volume fraction is mainly responsible for the increase in cake volume fraction and the decrease in permeability.The specific area,or the aggregation/dispersion of foulants,is less important to its permeability compared to its volume fraction.

  3. The research of the maximum wind speed in Tomsk and calculations of dynamic load on antenna systems

    Belan, B.; Belan, S.; Romanovskiy, O.; Girshtein, A.; Yanovich, A.; Baidali, S.; Terehov, S.


    The work is concerned with calculations and analysis of the maximum wind speed in Tomsk city. The data for analysis were taken from the TOR-station located in the north-eastern part of the city. The TOR-station sensors to measure a speed and a direction of wind are installed on the 10-meter meteorological mast. Wind is measured by M-63, which uses the standard approach and the program with one-minute averaging for wind gusts recording as well. According to the measured results in the research performed, the estimation of the dynamic and wind load on different types of antenna systems was performed. The work shows the calculations of wind load on ten types of antenna systems, distinguished by their different constructions and antenna areas. For implementation of calculations, we used methods developed in the Central Research and Development Institute of Building Constructions named after V.A. Kucherenko. The research results could be used for design engineering of the static antenna systems and mobile tracking systems for the distant objects.

  4. Estimation of the Unextendable Dead Time Period in a Flow of Physical Events by the Method of Maximum Likelihood

    Nezhel'skaya, L. A.


    A flow of physical events (photons, electrons, and other elementary particles) is studied. One of the mathematical models of such flows is the modulated MAP flow of events circulating under conditions of unextendable dead time period. It is assumed that the dead time period is an unknown fixed value. The problem of estimation of the dead time period from observations of arrival times of events is solved by the method of maximum likelihood.

  5. A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems

    Kaldellis, J.K.; Kavadias, K.A. [Lab of Soft Energy Applications and Environmental Protection, TEI Piraeus, P.O. Box 41046, Athens 12201 (Greece); Filios, A.E. [Fluid Mechanics and Turbomachines Lab., School of Pedagogical and Technological Education, 14121 N. Heraklio Attica (Greece)


    The entirety of Aegean Sea Islands, including Crete, is characterized during the last decade by a considerable annual increase of the electrical power demand exceeding the 5% in annual basis. This continuous amplifying electricity consumption is hardly fulfilled by several outmoded internal combustion engines usually at a very high operational cost. On the other hand most of the islands possess high wind potential that may substantially contribute in order to meet the corresponding load demand. However, in this case some wind energy absorption problems related with the collaboration between wind parks and the local electricity production system cannot be neglected. In this context, the present study is devoted to realistically estimating the maximum wind energy absorption in autonomous electrical island networks. For this purpose a new reliable and integrated numerical algorithm is developed, using the available information of the corresponding electricity generation system, in order to calculate the maximum acceptable wind power contribution in the system, under the normal restrictions that the system manager imposes. The proposed algorithm is successfully compared with existing historical data as well as with the results of a recent investigation based almost exclusively on the existing wind park's energy production. (author)

  6. A Comparison of Electromagnetic Induction Mapping to Measurements of Maximum Effluent Flow Depth for Assessing Flow Paths in Vegetative Treatment Areas

    Vegetative treatment systems (VTSs) are one type of control structure that has shown potential to control runoff from open feedlots. To achieve maximum performance, sheet-flow over the width of the vegetative treatment area (VTA) is required. Tools, such as maps of flow paths through the VTA, are ne...

  7. Uncertainties in transient projections of maximum and minimum flows over the United States

    Giuntoli, Ignazio; Villarini, Gabriele; Prudhomme, Christel; Hannah, David M.


    Global multi-model ensemble experiments provide a valuable basis for the examination of potential future changes in runoff. However, these projections suffer from uncertainties that originate from different sources at different levels in the modelling chain. We present the partitioning of uncertainty into four distinct sources of projections of decadally-averaged annual maximum (AMax) and minimum (AMin) flows over the USA. More specifically, we quantify the relative contribution of the uncertainties arising from internal variability, global impact models (GIMs), global climate models (GCMs), and representative concentration pathways (RCPs). We use a set of nine state-of-the-art GIMs driven by five CMIP5 GCMs under four RCPs from the ISI-MIP multi-model ensemble. We examine the temporal changes in the relative contribution of each source of uncertainty over the course of the 21st century. Results show that GCMs and GIMs are responsible for the majority of uncertainty over most of the study area, followed by internal variability and RCPs. Proportions vary regionally and depend on the end of the runoff spectrum (AMax, AMin) considered. In particular, for AMax, large fractions of uncertainty are attributable to GCMs throughout the century with the GIMs increasing their share especially in mountainous and cold areas. For Amin, the contribution of GIMs to uncertainty increases with time, becoming the dominant source over most of the country by the end of the 21st century. Importantly, compared to the other sources, the RCPs contribution to uncertainty is negligible generally (for AMin especially). This finding indicates that the effects of different emission scenarios are barely noticeable in hydrological impact studies, while GIMs and GCMs make up most of the amplitude of the ensemble spread (uncertainty).



    From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow, the calculating method on flowtransients of two-phase flow is developed by means of characteristic method. As one example, a gas-liquid flow transientis calculated and it agrees well with the experimental result. It is shown that the method is satisfactory for engineeringdemand.

  9. A local search heuristic for the Multi-Commodity k-splittable Maximum Flow Problem

    Gamst, Mette


    The Multi-Commodity k-splittable Maximum Flow Problem consists of maximizing the amount of flow routed through a network such that each commodity uses at most k paths and such that edge capacities are satisfied. The problem is NP -hard and has application in a.o. telecommunications. In this paper......, a local search heuristic for solving the problem is proposed. The heuristic is an iterative shortest path procedure on a reduced graph combined with a local search procedure to modify certain path flows and prioritize the different commodities. The heuristic is tested on benchmark instances from...


    Vasyl Buivol


    Full Text Available A mathematical model of a cavity under the influence of perturbations of various origins is evaluated. The model is based on hydrodynamics of flows with free boundaries and the theory of small perturbations. Specific analysis is provided for cavitational flows behind cones

  11. A calculation procedure for viscous flow in turbomachines, volume 2

    Khalil, J.; Tabakoff, W.


    Turbulent flow within turbomachines having arbitrary blade geometries is examined. Effects of turbulence are modeled using two equations, one expressing the development of the turbulence kinetic energy and the other its dissipation rate. To account for complicated blade geometries, the flow equations are formulated in terms of a nonorthogonal boundary fitted coordinate system. The analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between the different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.

  12. CFD Calculations of the Flow Around a Wind Turbine Nacelle

    Varela, J.; Bercebal, D. [Ciemat, Madrid (Spain)


    The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs.

  13. A power flow solvability identification and calculation algorithm

    Echavarren, F.M.; Lobato, E.; Rouco, L. [School of Engineering of Universidad Pontificia Comillas, C/Alberto Aguilera 23, 28015 Madrid (Spain)


    This paper presents a continuation and optimization based algorithm to detect power flow unsolvability. In addition, the algorithm obtains the power flow solution, if it exists, no matter how ill-conditioned the power system is. The proposed algorithm is based on the parameterization of the distance from the starting point to the real power flow to be solved, using a convergence margin. The performance of the algorithm is illustrated considering an highly loaded scenario of the operation of the Spanish power system. (author)

  14. Neutral stability calculations for boundary-layer flows

    Nayfeh, A. H.; Padhye, A.


    An analysis is presented of the parallel neutral stability of three-dimensional incompressible, isothermal boundary-layer flows. A Taylor-series expansion of the dispersion relation is used to derive the general eigenvalues. These equations are functions of the complex group velocity. These relations are verified by numerical results obtained for two- and three-dimensional disturbances in two- and three-dimensional flows.

  15. Three dimensional inviscid compressible calculations around axial flow turbine blades

    Fourmaux, Antoine; Petot, Bertrand


    The application of a three dimensional (3D) method to the prediction of steady inviscid compressible flows in highly loaded stator bladings is presented. The complete set of Euler equations is solved by a finite difference method using a time marching two step Lax-Wendorff algorithm. The treatment of the boundary conditions is based on the use of the characteristic relations. This technique offers a great versatility and allows to prescribe conditions close to the physics of flows encountered in turbomachines. The code was adapted in order to build a 3D design tool able to run in different types of turbine blade geometries. Two types of multidomain structured meshes were tested (H+0+H and H+C). The H+C type of grid was finally choosen for industrial applications. Two applications to turbine nozzles are presented. The first is a low pressure turbine vane with evolutive flow path outer diameter. The results demonstrate the ability to predict flow features that cannot be computed via the classical two dimensional approach. The second is a high pressure inlet guide vane at transonic conditions. The strong radial evolution of pressure distribution and the trailing edge flow pattern are correctly predicted.

  16. An eddy viscosity calculation method for a turbulent duct flow

    Antonia, R. A.; Bisset, D. K.; Kim, J.


    The mean velocity profile across a fully developed turbulent duct flow is obtained from an eddy viscosity relation combined with an empirical outer region wake function. Results are in good agreement with experiments and with direct numerical simulations in the same flow at two Reynolds numbers. In particular, the near-wall trend of the Reynolds shear stress and its variation with Reynolds number are similar to those of the simulations. The eddy viscosity method is more accurate than previous mixing length or implicit function methods.

  17. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.


    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  18. Movable scour protection. CFD calculation of flow and scour around foundation

    Miller, R.


    In the design of scour protections a basic parameter is the variation of the bed shear stress around the structure and the potential of the flow for using the stones of the scour protection. This report investigates whether it is: 1. Possible to calculate the correct bed shear stress for various wave and current situations at the base of the foundations, 2. Possible to calculate the scour depths with and without scour protection or in the case of movable scour protection. A number of test runs were made with the Elypsos computer code with the added morphological module (=sediment transport module). It turned out that it is possible to make such calculations but they are extremely time consuming on even a large computer for a simple structure like the circular foundation. It turns out that the computations overpredict the scour depth somewhat. Therefore a more practical approach was made. The morphological model was taken out. Instead the distribution of bottom shear stress distribution around the base of the structure was calculated. This is the important parameter for designing the armour layer of the scour protection. The Shields criterion was used for predicting stable stones and a suitable high value of the shear stress is used. The high bottom shear stress appears for a horizontal bottom. If the sea bottom is allowed to deepen in the areas with maximum shear stress amplification the horseshoe eddy is weakened. This again reduces the shear stress amplification. The computer program was used to perform such calculations and it turned out to be a powerful tool for this. The shear stress amplification can be reduced with a factor 2. Interactively, it is thus possible to calculate the form of a scour hole by trial and error. The scour protection surface shape with the smallest amplification of the shear stress and with the shear stress below the critical Shields Parameter is the optimum scour protection. The program can be used interactively to calculate the extent

  19. Calculating the respiratory flow velocity fluctuations in pericardial diseases.

    Siniorakis, Eftychios; Arvanitakis, Spyridon; Zarreas, Elias; Barlagiannis, Dimitris; Skandalakis, Nikos; Karidis, Constantinos


    An excessive respiratory fluctuation (RTFV) in transmitral early diastolic velocity E is a pivotal Doppler echocardiographic sign of haemodynamic compromise, in constrictive pericardial diseases. RTFV is expressed as a percentage and 25% is considered a threshold value. Unfortunately there is no unanimity in calculating RTFV. Sometimes it is expressed as a percentage of expiratory E velocity, while others of inspiratory E velocity. This disparity has led to gross misinterpretations in medical literature. Here we emphasize the importance of a rational procedure calculating RTFV and we propose the appropriate mathematical model.

  20. Finite element calculations and experimental verification of the unsteady potential flow in a centrifugal volute pump

    Badie, R.; Jonker, J.B.; Braembussche, van den R.A.


    In this paper we present a finite-element-based methode for the calculation of the unsteady potential flow in rotor/stator configurations. A numerical algorithm was developed to calculate the two-dimensional flow through a centrifugal volute pump, taking into account the width variation of the volut


    Lau Nguyen Dinh


    Full Text Available The problem of finding maximum flow in network graph is extremely interesting and practically applicable in many fields in our daily life, especially in transportation. Therefore, a lot of researchers have been studying this problem in various methods. Especially in 2013, we has developed a new algorithm namely, postflow-pull algorithm to find the maximum flow on traditional networks. In this paper, we revised postflow-push methods to solve this problem of finding maximum flow on extended mixed network. In addition, to take more advantage of multi-core architecture of the parallel computing system, we build this parallel algorithm. This is a completely new method not being announced in the world. The results of this paper are basically systematized and proven. The idea of this algorithm is using multi processors to work in parallel by postflow_push algorithm. Among these processors, there is one main processor managing data, sending data to the sub processors, receiving data from the sub-processors. The sub-processors simultaneously execute their work and send their data to the main processor until the job is finished, the main processor will show the results of the problem.

  2. Finite elements and finite differences for transonic flow calculations

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.


    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  3. Calculation of turbulent reactive flows in general orthogonal coordinates

    Lai, M. K. Y.


    The mathematical and numerical methodology for an extended and enhanced version of the TURCOM computer code, called TURCOM-BFC, is presented. This code solves the conservation equations of multi-component chemically reactive and turbulent flows in general curvilinear orthogonal coordinates. The k-epsilon turbulence submodel is used. Flame chemistry assumes a number of species and chemical reactions. The latter are subdivided into finite-rate reaction steps and a one-step irreversible reaction, whose rate is controlled by a combination of mixing and global kinetics. Both the SIMPLE and PISO algorithms are implemented to solve the system of equations. The capability of TURCOM-BFC is tested and demonstrated by predicting 3-dimensional combustion flow inside a reaction furnace, where both polar-cylindrical and bipolar coordinates are used.

  4. 40 CFR 1065.640 - Flow meter calibration calculations.


    ....013 V rev = 0.03166 m3/rev (2) PDP slip correction factor, Ks (s/rev): ER13JY05.065 Example: f nPDP... judgment. Note that the equation for the flow coefficient, C f, is based on the ideal gas assumption that... follows: ER13JY05.067 Where: C d = Discharge coefficient, as determined in paragraph (c)(1) of...

  5. Chemically reacting supersonic flow calculation using an assumed PDF model

    Farshchi, M.


    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  6. Environmental flow calculation for the maintenance of the water reserve of the Piaxtla River, Sinaloa, Mexico

    Guadalupe de la Lanza Espino


    status to be achieved within the watershed to maintain the integrity of existing ecosystems or when they believe that they are degraded, contributing to the recovery or rehabilitation; and annual percentage rate recommended for environmental protection. Based on this, the purpose of this study was to quantify the river flow of the Piaxtla river, in the state of Sinaloa. The river runoff data bases for 36 and nine years were compared, showed differences mainly between the frequency of maximum runoff and its origin, and indicated that it is advisable to use a data base of more than 20 years. However, results were similar in the final calculation of the environmental or ecological river flows; that is to say, total runoff volume was 62.1% considering 36 years and 57.7% for nine years of information. We conclude that the ecological importance of Piaxtla river was very high and the use of water pressure was low (considering that database runoff only included until 1999 and did not take into account population growth and activities. To determine the final volume reserved for the environment or ecological flow, could be estimated not only with a database of 36 years, but for nine years also confirming that those rivers that have databases of 10 years can the methodology used hydrological indicated by the NMX said. Particularly in this study it was determined that for parameters more detailed as the volume of the base rate of the annual volume, according to the frequency of occurrence, both very dry years, dry, average and wet, and influence of meteorological events that determine periods separate return, it is advisable to use minimum data bases as brand NMX 20 years.

  7. Computer program to calculate three-dimensional boundary layer flows over wings with wall mass transfer

    Mclean, J. D.; Randall, J. L.


    A system of computer programs for calculating three dimensional transonic flow over wings, including details of the three dimensional viscous boundary layer flow, was developed. The flow is calculated in two overlapping regions: an outer potential flow region, and a boundary layer region in which the first order, three dimensional boundary layer equations are numerically solved. A consistent matching of the two solutions is achieved iteratively, thus taking into account viscous-inviscid interaction. For the inviscid outer flow calculations, the Jameson-Caughey transonic wing program FLO 27 is used, and the boundary layer calculations are performed by a finite difference boundary layer prediction program. Interface programs provide communication between the two basic flow analysis programs. Computed results are presented for the NASA F8 research wing, both with and without distributed surface suction.

  8. Numerical Calculation of the Three-Dimensional Swirling Flow Inside the Centrifugal Pump Volutes

    E. Cezmi Nursen


    Full Text Available The flow inside the volute of a centrifugal pump is threedimensional and, depending upon the position of the inlet relative to the cross-section center line, a single or double swirling flow occurs. The purpose of this study was the calculation of the three-dimensional swirling flow inside the centrifugal pump volute.

  9. Viscous-flow Calculations of Submarine Maneuvering Hydrodynamic Coefficients and Flow Field based on Same Grid Topology

    Liushuai CAO; Jun ZHU; Guanghui ZENG


    .... In a collaborative exercise, the authors performed calculations on the bare hull DRAPA SUBOFF submarine to investigate the capability of viscous-flow solvers to predict the forces and moments as well...

  10. Numerical Calculation of Secondary Flow in Pump Volute and Circular Casings using 3D Viscous Flow Techniques

    K. Majidi


    Full Text Available The flow field in volute and circular casings interacting with a centrifugal impeller is obtained by numerical analysis. In the present study, effects of the volute and circular casings on the flow pattern have been investigated by successively combining a volute casing and a circular casing with a single centrifugal impeller. The numerical calculations are carried out with a multiple frame of reference to predict the flow field inside the entire impeller and casings. The impeller flow field is solved in a rotating frame and the flow field in the casings in a stationary frame. The static pressure and velocity in the casing and impeller, and the static pressures and secondary velocity vectors at several cross-sectional planes of the casings are calculated. The calculations show that the curvature of the casings creates pressure gradients that cause vortices at cross-sectional planes of the casings.

  11. A multilevel approximate projections for incompressible flow calculations

    Howell, L.H. [Lawrence Livermore National Lab., CA (United States)


    An adaptive-mesh projection algorithm for unsteady, variable-density, incompressible flow at high Reynolds number has been developed in the Applied Mathematics Group at LLNL. A grid-based refinement scheme combines the theoretical efficiencies of adaptive methods with the computational advantages of uniform grids, while a second-order Godunov method provides a robust and accurate treatment of advection in the presence of discontinuities without excessive dissipation. This paper focuses on the work of the present author concerning the approximate projection itself, which involves the numerical inversion of the operator {del} {center_dot} (1/{rho}){del} on various subsets of the adaptive grid hierarchy.

  12. Axisymmetric and 3D calculations of melt flow during VCz growth

    Bänsch, E.; Davis, D.; Langmach, H.; Miller, W.; Rehse, U.; Reinhardt, G.; Uhle, M.


    Axisymmetric and 3D calculations of melt flow have been performed for a configuration used at the vapour-pressure-controlled Czochalski growth of GaAs single crystals. Thermal boundary conditions were adapted from a global simulation of the temperature field. The axisymmetric calculations with the code NAVIER confirmed the ones previously perfomed with FIDAP TM. The 3D calculations showed that the flow exhibits an asymmetric transient behaviour beyond a certain critical Reynolds number.

  13. Calculation of transonic flow in a linear cascade

    Donovan, L. F.


    Turbomachinery blade designs are becoming more aggressive in order to achieve higher loading and greater range. New analysis tools are required to cope with these heavily loaded blades that may operate with a thin separated region near the trailing edge on the suction surface. An existing, viscous airfoil code was adapted to cascade conditions in an attempt to provide this capability. Comparisons with recently obtained data show that calculated and experimental surface Mach numbers were in good agreement but loss coefficients and outlet air angles were not. Previously announced in STAR as N84-24539

  14. Calculation of shocks in oil reservoir modeling and porous flow

    Concus, P.


    For many enhanced recovery methods propagating fronts arise that may be steep or discontinuous. One example is the waterflooding of a petroleum reservoir, in which there is forced out residual oil that remains after outflow by decompression has declined. In this paper high-resolution numerical methods to solve porous flow problems having propagating discontinuities are discussed. The random choice method can track solution discontinuities sharply and accurately for one space dimension. The first phase of this study adapted this method for solving the Buckley-Leverett equation for immiscible displacement in one space dimension. Extensions to more than one space dimension for the random choice method were carried out subsequently by means of fractional splitting. Because inaccuracies could be introduced for some problems at dicontinuity fronts propagating obliquely to the splitting directions, efforts are currently being directed at investigating alternatives for multidimensional cases.

  15. Computer program for calculating flow parameters and power requirements for cryogenic wind tunnels

    Dress, D. A.


    A computer program has been written that performs the flow parameter calculations for cryogenic wind tunnels which use nitrogen as a test gas. The flow parameters calculated include static pressure, static temperature, compressibility factor, ratio of specific heats, dynamic viscosity, total and static density, velocity, dynamic pressure, mass-flow rate, and Reynolds number. Simplifying assumptions have been made so that the calculations of Reynolds number, as well as the other flow parameters can be made on relatively small desktop digital computers. The program, which also includes various power calculations, has been developed to the point where it has become a very useful tool for the users and possible future designers of fan-driven continuous-flow cryogenic wind tunnels.

  16. Neutrino Induced 4He Break-up Reaction -- Application of the Maximum Entropy Method in Calculating Nuclear Strength Function

    Murata, T; Sato, T; Nakamura, S X


    The maximum entropy method is examined as a new tool for solving the ill-posed inversion problem involved in the Lorentz integral transformation (LIT) method. As an example, we apply the method to the spin-dipole strength function of 4He. We show that the method can be successfully used for inversion of LIT, provided the LIT function is available with a sufficient accuracy.

  17. Error Representation in Time For Compressible Flow Calculations

    Barth, Timothy J.


    Time plays an essential role in most real world fluid mechanics problems, e.g. turbulence, combustion, acoustic noise, moving geometries, blast waves, etc. Time dependent calculations now dominate the computational landscape at the various NASA Research Centers but the accuracy of these computations is often not well understood. In this presentation, we investigate error representation (and error control) for time-periodic problems as a prelude to the investigation of feasibility of error control for stationary statistics and space-time averages. o These statistics and averages (e.g. time-averaged lift and drag forces) are often the output quantities sought by engineers. o For systems such as the Navier-Stokes equations, pointwise error estimates deteriorate rapidly which increasing Reynolds number while statistics and averages may remain well behaved.



    Using the T63L16 analysis data with the resolution of 1.875╳1.875 degree of latitude and longitude obtained from National Meteorological Center (NMC) and the real central position information of tropical cyclone (referred to as TC hereafter) numbered by NMC, the basic environmental geostrophic flow at 126 time levels of 25 TCs in 1996 are calculated. The vertical distribution features of the flows are analyzed. Besides, the deviation of real TC tracks from the flows (referred as steering deviation hereafter, namely, the deviation between the real central position of TC and the position calculated according to the steering flow) is also investigated. The result shows that the steering deviation would be different if the domain used to calculate the steering flow is different. The present paper obtains the optimum domain size to calculate the steering flow. It is found that the steering deviation is related to the velocity of steering flow and the initial latitude and intensity of TC itself, and that TC motion has relationship with the vertical shear structure of environmental geostrophic flow. The result also shows that the optimum steering flow is the deep-layer averaged basic flow from 1000 hPa to 200 hPa. Having the knowledge of these principle and features would help make accurate forecast of TC motion.

  19. An Analysis of Internal Flow of Diagonal Flow Blower with Quasi-Three-Dimensional Calculation Method Considering the Spanwise Mixing due to Secondary Flow

    Park, S.R. [Inha University, Inchon (Korea); Kim, Y.J.; Kim, T.W. [Doowon Technical College, Ansung (Korea)


    This paper presents a quasi-three-dimensional calculation method considered a spanwise mixing effect in a diagonal flow impeller. The effect of this spanwise mixing caused by spanwise distribution of blade loading is evaluated by a secondary flow theory. In order to verify the validity of this method, it is applied to the analysis of a diagonal flow fan designed under a vortex type of constant circumferential velocity and that of a free vortex. The comparison of the calculated result with experimental data shows a good agreement except the regions near the casing where the flow field is affected by the tip leakage flow. (author). 18 refs., 10 figs.

  20. Three-dimensional hypersonic rarefied flow calculations using direct simulation Monte Carlo method

    Celenligil, M. Cevdet; Moss, James N.


    A summary of three-dimensional simulations on the hypersonic rarefied flows in an effort to understand the highly nonequilibrium flows about space vehicles entering the Earth's atmosphere for a realistic estimation of the aerothermal loads is presented. Calculations are performed using the direct simulation Monte Carlo method with a five-species reacting gas model, which accounts for rotational and vibrational internal energies. Results are obtained for the external flows about various bodies in the transitional flow regime. For the cases considered, convective heating, flowfield structure and overall aerodynamic coefficients are presented and comparisons are made with the available experimental data. The agreement between the calculated and measured results are very good.

  1. Pre-test CFD Calculations for a Bypass Flow Standard Problem

    Rich Johnson


    The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.

  2. Magnetohydrodynamic calculations with a nonmonotonic q profile and equilibrium, sheared toroidal flow

    Held, E.D. [Univ. of Wisconsin, Madison, WI (United States). Center for Plasma Theory and Computation; Leboeuf, J.N.; Carreras, B.A. [Oak Ridge National Lab., TN (United States). Fusion Energy Div.


    The linear and nonlinear stability of a nonmonotonic q profile is examined using a reduced set of magnetohydrodynamic (MHD) equations with an equilibrium, sheared toroidal flow. The reversed shear profile is shown to be unstable to a rich variety of resistive MHD modes including pressure-driven instabilities and tearing instabilities possessing a tearing/interchange character at low Lundquist number, S, and taking on a double/triple tearing structure at high S. Linear calculations show that the destabilizing effect of toroidal velocity shear on tearing modes is enhanced at finite pressure seen previously for tearing modes at high S. Nonlinear calculations show the generation of a large, m = 1, n = 0, Reynolds-stress-driven poloidal flow in the absence of significant flow damping. Calculations in which the poloidal flow was heavily damped show that sub-Alfvenic, sheared toroidal flows have a minimal effect on weakly-coupled, localized instabilities.

  3. Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution

    McDonald, James G.; Groth, Clinton P. T.


    The ability to predict continuum and transition-regime flows by hyperbolic moment methods offers the promise of several advantages over traditional techniques. These methods offer an extended range of physical validity as compared with the Navier-Stokes equations and can be used for the prediction of many non-equilibrium flows with a lower expense than particle-based methods. Also, the hyperbolic first-order nature of the resulting partial differential equations leads to mathematical and numerical advantages. Moment equations generated through an entropy-maximization principle are particularly attractive due to their apparent robustness; however, their application to practical situations involving viscous, heat-conducting gases has been hampered by several issues. Firstly, the lack of closed-form expressions for closing fluxes leads to numerical expense as many integrals of distribution functions must be computed numerically during the course of a flow computation. Secondly, it has been shown that there exist physically realizable moment states for which the entropy-maximizing problem on which the method is based cannot be solved. Following a review of the theory surrounding maximum-entropy moment closures, this paper shows that both of these problems can be addressed in practice, at least for a simplified one-dimensional gas, and that the resulting flow predictions can be surprisingly good. The numerical results described provide significant motivations for the extension of these ideas to the fully three-dimensional case.

  4. Evaluation of a New Equation for Calculating the Maximum Wait Time for Pilots That Have Used an Impairing Medication


    2 x Dose (2) CAMI (3) Medication Max Hrs Hrs Half-lives Interv Hrs Half-lives Eq Hrs Half-lives Codeine 4.0 24 6.0 8.0 2.0 15 3.6 Morphine 7.0 24...return-to-duty time, even for individuals on the extreme metabolic margins of the general population. The variation in t½ (calculated by the CAMI



    In this paper, an energy equation of silt-laden water flow is educed based on the energy equation of continuum fluid flow. The dissipation functions of liquid phase and solid phase are presented respectively. Then the extremity law of energy dissipation rate is introduced for the research of the silt-laden water flow and a new mathematical model is developed. The corresponding procedure based on the finite difference method (FDM) is developed to calculate the two phase flow in hydraulic turbine. The method is applied to analyze the silt-laden water flow between stay vanes, and the numerical results are in good agreement with the experimental ones.

  6. Neural-net based calculation of voltage dips at maximum angular swing in direct transient stability analysis [of power systems

    Djukanovic, M. (Inst. ' Nikola Tesla' , Belgrade (Yugoslavia)); Sobajic, D.J.; Yohhan Pao (Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE inc., Cleveland, OH (United States))


    In heavily stressed power systems, post-fault transient voltage dips can lead to undesired tripping of industrial drives and large induction motors. The lowest transient voltage dips occur when fault clearing times are less than critical ones. In this paper, we propose a new iterative analytical methodology to obtain more accurate estimates of voltage dips at maximum angular swing in direct transient stability analysis. We also propose and demonstrate the possibility of storing the results of these computations in the associative memory (AM) system, which exhibits remarkable generalization capabilities. Feature-based models stored in the AM can be utilized for fast and accurate prediction of the location, duration and the amount of the worst voltage dips, thereby avoiding the need and cost for lengthy time-domain simulations. Numerical results obtained using the example of the New England power system are presented to illustrate our approach. (Author)

  7. Comparative Study of Peak Expiratory Flow Rate and Maximum Voluntary Ventilation Between Smokers and Non-Smokers

    Karia Ritesh M


    Full Text Available Objective: Objectives of this study is to study effect of smoking on Peak Expiratory Flow Rate and Maximum Voluntary Ventilation in apparently healthy tobacco smokers and non-smokers and to compare the result of both the studies to assess the effects of smoking Method: The present study was carried out by computerized software of Pulmonary Function Test named ‘Spiro Excel’ on 50 non-smokers and 50 smokers. Smokers are divided in three gropus. Full series of test take 4 to 5 minutes. Tests were compared in the both smokers and non-smokers group by the ‘unpaired t test’. Statistical significance was indicated by ‘p’ value < 0.05. Results: From the result it is found that actual value of Peak Expiratory Flow Rate and Maximum Voluntary Ventilation are significantly lower in all smokers group than non-smokers. The difference of actual mean value is increases as the degree of smoking increases. [National J of Med Res 2012; 2(2.000: 191-193

  8. Viscous-flow calculations for KVLCC2 in deep and shallow water

    Toxopeus, S.L.


    In the SIMMAN 2008 workshop, the capability of CFD tools to predict the flow around manoeuvring ships has been investigated. It was decided to continue this effort but to extend the work to the flow around ships in shallow water. In this paper, CFD calculations for the KLVCC2 are presented. The aim

  9. Viscous-flow calculations for KVLCC2 in deep and shallow water

    Toxopeus, S.L.


    In the SIMMAN 2008 workshop, the capability of CFD tools to predict the flow around manoeuvring ships has been investigated. It was decided to continue this effort but to extend the work to the flow around ships in shallow water. In this paper, CFD calculations for the KLVCC2 are presented. The aim


    Kostjantin Kapitanchuk


    Full Text Available Describe analysis of eddy viscosity actual mathematical models for numerical simulation a reversal gas flow in subsonic gas ejector. Considered advantages and disadvantages each of it. Proposed use method of finite elements for provides viscous gas flow calculation of gas ejectors.

  11. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    Shan Yang


    Full Text Available Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent to Iθ bus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.

  12. 40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.


    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...

  13. Contributions of the secondary jet to the maximum tangential velocity and to the collection efficiency of the fixed guide vane type axial flow cyclone dust collector

    Ogawa, Akira; Anzou, Hideki; Yamamoto, So; Shimagaki, Mituru


    In order to control the maximum tangential velocity Vθm(m/s) of the turbulent rotational air flow and the collection efficiency ηc (%) using the fly ash of the mean diameter XR50=5.57 µm, two secondary jet nozzles were installed to the body of the axial flow cyclone dust collector with the body diameter D1=99mm. Then in order to estimate Vθm (m/s), the conservation theory of the angular momentum flux with Ogawa combined vortex model was applied. The comparisons of the estimated results of Vθm(m/s) with the measured results by the cylindrical Pitot-tube were shown in good agreement. And also the estimated collection efficiencies ηcth (%) basing upon the cut-size Xc (µm) which was calculated by using the estimated Vθ m(m/s) and also the particle size distribution R(Xp) were shown a little higher values than the experimental results due to the re-entrainment of the collected dust. The best method for adjustment of ηc (%) related to the contribution of the secondary jet flow is principally to apply the centrifugal effect Φc (1). Above stated results are described in detail.

  14. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect

    Lan, C. Edward


    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  15. Finite element calculations of viscoelastic fluid flow in a spinning and nutating cylinder

    Rosenblat, S.; Gooding, A.; Engleman, M. S.


    An investigation has been performed of the flow of a non-Newtonian liquid in a spinning and nutating cylinder. An approximate analysis has been effected on the assumption that the ratio of coning rate to spin rate is small and applied to the case of a cylinder of infinite length. A numerical calculation has been performed for the actual flow of two specified non-Newtonian liquids, using the finite element code FIDAP. Results are presented in both graphical and tabular form showing flow fields and calculated values of the despin moment for ranges of parameters. The question of appropriate representation of the liquid's non-Newtonian behavior is discussed.

  16. A Computer Program to Calculate the Supersonic Flow over a Solid Cone in Air or Water.


    ix air or water. The rain objective is to calculate the ccne semi-vertei angle given prescribed initial ccndi- tions. The program is written the motion of the metal jet frcm an explczive shaped-charge fired underwater. A tiical result for supersonic flow over a ccne in water is as follcws...the ccne semi-vertex angle is calculated to be 7.23 degrees. Gene rally, pressures invclved in water flow are much larger than for air flow, and the

  17. Natural Examples of Olivine Lattice Preferred Orientation Patterns With a Flow-Normal a-Axis Maximum

    Mizukami, T.; Wallis, S.; Yamamoto, J.


    Olivine lattice preferred orientation (LPO) due to ductile deformation is one of the main causes of mechanical anisotropy in the upper mantle and the patterns are useful to infer the direction of mantle flow from the seismic anisotropy in various settings. In subduction zones the mantle anisotropy near subduction boundaries suggests that olivine a-axes are arranged roughly perpendicular to plate motion. This anisotropy has been attributed to localized subduction-normal flow, applying a common type of olivine LPO with a `flow-parallel' a-axis maximum to the mantle. However, a recent deformational experiment provides an alternative interpretation that the B-type LPO with a `flow-normal' a-axis maximum can be developed in water-rich mantle above subducting slab. We document the widespread occurrence of B-type LPO in the Higashi-akaishi peridotite body, SW Japan, and examine the physical conditions in which it was formed. Our structural studies define four deformational phases in the Higashi-akaishi body (D1-D4) that are related to the tectonic evolution in the Cretaceous subduction zone at the Eurasian margin. The main deformational stage, D2, is associated with dynamic recrystallization of olivine to form porphyroclastic microstructure consisting of clear olivine neoblasts and porphyroclasts with abundant micro-inclusions. Parallel alginment of olivine neoblasts defines a stretching lineation (L2) and tectonic foliation (S2) and the D2 olivine LPO is identified as the B-type fabric with a-axes normal to L2, b-axes normal to S2 and c-axes parallel to L2. Micro-Raman spectroscopic analyses reveal that the syn-D2 micro-inclusions include hydrous minerals such as serpentine, indicating water-rich conditions for the D2 deformation. Garnet-orthopyroxene geothermobarometry applied to the D2 garnet peridotite reveals that the D2 stage was associated with the almost isothermal burial (700-800C, 2-3GPa). These D2 physical conditions in which the B-type LPO was formed are

  18. Use of software tools for calculating flow accelerated corrosion of nuclear power plant equipment and pipelines

    Naftal', M. M.; Baranenko, V. I.; Gulina, O. M.


    The results obtained from calculations of flow accelerated corrosion of equipment and pipelines operating at nuclear power plants constructed on the basis of PWR, VVER, and RBMK reactors carried out using the EKI-02 and EKI-03 software tools are presented. It is shown that the calculation error does not exceed its value indicated in the qualification certificates for these software tools. It is pointed out that calculations aimed at predicting the service life of pipelines and efficient surveillance of flow accelerated corrosion wear are hardly possible without using the above-mentioned software tools.

  19. PSFC: a Pathway Signal Flow Calculator App for Cytoscape [version 2; referees: 2 approved

    Lilit Nersisyan


    Full Text Available Cell signaling pathways are sequences of biochemical reactions that propagate an input signal, such as a hormone binding to a cell-surface receptor, into the cell to trigger a reactive process. Assessment of pathway activities is crucial for determining which pathways play roles in disease versus normal conditions. To date various pathway flow/perturbation assessment tools are available, however they are constrained to specific algorithms and specific data types. There are no accepted standards for evaluation of pathway activities or simulation of flow propagation events in pathways, and the results of different software are difficult to compare. Here we present Pathway Signal Flow Calculator (PSFC, a Cytoscape app for calculation of a pathway signal flow based on the pathway topology and node input data. The app provides a rich framework for customization of different signal flow algorithms to allow users to apply various approaches within a single computational framework.

  20. PSFC: a Pathway Signal Flow Calculator App for Cytoscape [version 1; referees: 2 approved

    Lilit Nersisyan


    Full Text Available Cell signaling pathways are sequences of biochemical reactions that propagate an input signal, such as a hormone binding to a cell-surface receptor, into the cell to trigger a reactive process. Assessment of pathway activities is crucial for determining which pathways play roles in disease versus normal conditions. To date various pathway flow/perturbation assessment tools are available, however they are constrained to specific algorithms and specific data types. There are no accepted standards for evaluation of pathway activities or simulation of flow propagation events in pathways, and the results of different software are difficult to compare. Here we present Pathway Signal Flow Calculator (PSFC, a Cytoscape app for calculation of a pathway signal flow based on the pathway topology and node input data. The app provides a rich framework for customization of different signal flow algorithms to allow users to apply various approaches within a single computational framework.

  1. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    Strong, Stuart L.; Meade, Andrew J., Jr.


    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.


    Pan Zhongyong; Yuan Shouqi; Li Hong; Cao Weidong


    The calculation method for vane numbers is obtained on the intention that it should have no back flow area in the flow passage of centrifugal passage.Then a criterion that the design of splitting vanes of centrifugal compound impeller should ensure that the back flow area ratio be the minimum is proposed.On the basis of the criterion, the slippery theory is used as one of CFD methods to analyze the inner flow field of the impeller of various kinds of splitting vanes design, therefore, the optimized design of splitting vanes is obtained and which agrees with that of some testing results.

  3. Calculation of watershed flow concentration based on the grid drop concept

    Rui Xiaofang


    Full Text Available The grid drop concept is introduced and used to develop a micromechanism-based methodology for calculating watershed flow concentration. The flow path and distance traveled by a grid drop to the outlet of the watershed are obtained using a digital elevation model (DEM. Regarding the slope as an uneven carpet through which the grid drop passes, a formula for overland flow velocity differing from Manning’s formula for stream flow as well as Darcy's formula for pore flow is proposed. Compared with the commonly used unit hydrograph and isochronal methods, this new methodology has outstanding advantages in that it considers the influences of the slope velocity field and the heterogeneity of spatial distribution of rainfall on the flow concentration process, and includes only one parameter that needs to be calibrated. This method can also be effectively applied to the prediction of hydrologic processes in un-gauged basins.

  4. Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields

    Chen, C. P.; Shang, H. M.; Huang, J.


    Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.

  5. Calculation of watershed flow concentration based on the grid drop concept

    Rui Xiaofang; Yu Mei; Liu Fanggui; Gong Xinglong


    The grid drop concept is introduced and used to develop a micromechanism-based methodology for calculating watershed flow concentration. The flow path and distance traveled by a grid drop to the outlet of the watershed are obtained using a digital elevation model (DEM). Regarding the slope as an uneven carpet through which the grid drop passes, a formula for overland flow velocity differing from Manning's formula for stream flow as well as Darcy's formula for pore flow is proposed. Compared with the commonly used unit hydrograph and isochronal methods, this new methodology has outstanding advantages in that it considers the influences of the slope velocity field and the heterogeneity of spatial distribution of rainfall on the flow concentration process, and includes only one parameter that needs to be calibrated. This method can also be effectively applied to the prediction of hydrologic processes in un-gauged basins.

  6. VOF Calculations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg

    M. Murase


    Full Text Available We improved the computational grid and schemes in the VOF (volume of fluid method with the standard − turbulent model in our previous study to evaluate CCFL (countercurrent flow limitation characteristics in a full-scale PWR hot leg (750 mm diameter, and the calculated CCFL characteristics agreed well with the UPTF data at 1.5 MPa. In this paper, therefore, to evaluate applicability of the VOF method to different fluid properties and a different scale, we did numerical simulations for full-scale air-water conditions and the 1/15-scale air-water tests (50 mm diameter, respectively. The results calculated for full-scale conditions agreed well with CCFL data and showed that CCFL characteristics in the Wallis diagram were mitigated under 1.5 MPa steam-water conditions comparing with air-water flows. However, the results calculated for the 1/15-scale air-water tests greatly underestimated the falling water flow rates in calculations with the standard − turbulent model, but agreed well with the CCFL data in calculations with a laminar flow model. This indicated that suitable calculation models and conditions should be selected to get good agreement with data for each scale.


    A. Cheer; Harry A. Dwyer; T. Kim


    Using an improved computational fluid dynamics (CFD) method developed for highly unsteady three-dimensional flows,numerical simulations for oscillating flow cycles and detailed unsteady simulations of the flow and forces on the aortic vessels at the iliac bifurcation,for both healthy and diseased patients,are analyzed.Improvements in computational efficiency and acceleration in convergence are achieved by calculating both an unsteady pressure gradient which is due to fluid acceleration and a good global pressure field correction based on mass flow for the pressure Poisson equation.Applications of the enhanced method to oscillatory flow in curved pipes yield an order of magnitude increase in speed and efficiency,thus allowing the study of more complex flow problems such as flow through the mammalian abdominal aorta at the iliac arteries bifurcation.To analyze the large forces which can exist on stent graft of patients with abdominal aortic aneurysm (AAA) disease,a complete derivation of the force equations is presented.The accelerated numerical algorithm and the force equations derived are used to calculate flow and forces for two individuals whose geometry is obtained from CT data and whose respective blood pressure measurements are obtained experimentally.Although the use of endovascular stent grafts in diseased patients can alter vessel geometries,the physical characteristics of stents are still very different when compared to native blood vessels of healthy subjects.The geometry for the AAA stent graph patient studied in this investigation induced flows that resulted in large forces that are primarily caused by the blood pressure.These forces are also directly related to the flow cross-sectional area and the angle of the iliac arteries relative to the main descending aorta.Furthermore,the fluid flow is significantly disturbed in the diseased patient with large flow recirculation and stagnant regions which are not present for healthy subjects.

  8. Critical flow-storm approach to total maximum daily load(TMDL) development: an analytical conceptual model

    Harry X.ZHANG; Shaw L.YU


    One of the key challenges in the total max-imum daily load (TMDL) development process is how to define the critical condition for a receiving water-body. The main concern in using a continuous simu-lation approach is the absence of any guarantee that the most critical condition will be captured during the selected representative hydrologic period, given the scar-city of long-term continuous data. The objectives of this paper are to clearly address the critical condition in the TMDL development process and to compare continu-ous and evEnt-based approaches in defining critical con-dition during TMDL development for a waterbody impacted by both point and nonpoint source pollution. A practical, event-based critical flow-storm (CFS) approach was developed to explicitly addresses the crit-ical condition as a combination of a low stream flow and a storm event of a selected magnitude, both having cer-tain frequencies of occurrence. This paper illustrated the CFS concept and provided its theoretical basis using a derived analytical conceptual model. The CFS approach clearly defined a critical condition, obtained reasonable results and could be considered as an alternative method in TMDL development.



    Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction,then general equations of velocities of solid phase and liquid phase were founded in twophase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.

  10. Measurement and calculations of laminar flow in a ninety degree bifurcation.

    Liepsch, D; Moravec, S; Rastogi, A K; Vlachos, N S


    Measurements and numericaL calculations of laminar flow in a plane 90 degrees bifurcation are presented. The corresponding two-dimensional steady flow Navier-Stokes equations solved by a finite-difference procedure employing pressure and velocity as dependent variables. The influence of Reynolds number and mass flow ratio on the velocity field, streamlines, local shear stress and pressure drop are quantified and shown to be substantial. The circulation patterns and shear stresses are examined in view of available data regarding the formation of atherotic plaques in the human circulatory system. The calculated velocity profiles are compared with measurements obtained with laser Doppler anemometry and the agreement is shown to be satisfactory. Calculations outside the range of measurements which are of value to biomechanics are also presented.

  11. Reynolds shear stress and heat flux calculations in a fully developed turbulent duct flow

    Antonia, R. A.; Kim, J.


    The use of a modified form of the Van Driest mixing length for a fully developed turbulent channel flow leads to mean velocity and Reynolds stress distributions that are in close agreement with data obtained either from experiments or direct numerical simulations. The calculations are then extended to a nonisothermal flow by assuming a constant turbulent Prandtl number, the value of which depends on the molecular Prandtl number. Calculated distributions of mean temperature and lateral heat flux are in reasonable agreement with the simulations. The extension of the calculations to higher Reynolds numbers provides some idea of the Reynolds number required for scaling on wall variables to apply in the inner region of the flow.

  12. A method for calculating turbulent boundary layers and losses in the flow channels of turbomachines

    Schumann, Lawrence F.


    An interactive inviscid core flow-boundary layer method is presented for the calculation of turbomachine channel flows. For this method, a one-dimensional inviscid core flow is assumed. The end-wall and blade surface boundary layers are calculated using an integral entrainment method. The boundary layers are assumed to be collateral and thus are two-dimensional. The boundary layer equations are written in a streamline coordinate system. The streamwise velocity profiles are approximated by power law profiles. Compressibility is accounted for in the streamwise direction but not in the normal direction. Equations are derived for the special cases of conical and two-dimensional rectangular diffusers. For these cases, the assumptions of a one-dimensional core flow and collateral boundary layers are valid. Results using the method are compared with experiment and good quantitative agreement is obtained.

  13. Calculation of three-dimensional transonic flows in turbomachinery with generalized von Mises corrdinate system

    沈孟育; 刘秋生; 张增产


    An efficient numerical method for calculating the three-dimensional transonic flows in turbomachinery is proposed. Instead of the Euler equation, streamsurface-governing equations are deduced in the generalized von Mises coordinate system to reflect the flow feature in turbomachinery. Its main advantage is that it is easier to specify more reasonable initial values, i.e. initial streamsurface position, thus accelerating the convergence rate of the iteration process. Moreover, to use the generalized von Mises coordinates makes the present method capable of incorporating the calculation of the flow field, design and modification of the blade contour into a unified algorithm. A rotated finite difference scheme for the streamsurface-governing equations is constructed, and a new measure is presented to deal with the double-value problem of the velocity and density caused by the application of the stream functions as coordinates in the transonic flow. Three test cases were considered with the present approach

  14. Optimal power flow calculation for power system with UPFC considering load rate equalization

    Liu, Jiankun; Chen, Jing; Zhang, Qingsong


    Unified power flow controller (UPFC) device can change system electrical quantity (such as voltage, impedance, phase angle, etc.) rapidly and flexibly under the premise of maintain security, stability and reliability of power system, thus can improve the transmission power and transmission line utilization, so as to enhance the power supply capacity of the power grid. Based on a thorough study of the steady-state model of UPFC, taking load rate equalization as objective function, the optimal power flow model is established with UPFC, and simplified interior point method is used to solve it. Finally, optimal power flow of 24 continuous sections actual data is calculated on a typical day of Nanjing network. The results show that the optimal power flow calculation with UPFC can optimize the load rate equalization on the basis of eliminating line overload, improving the voltage level of local power network.

  15. The new high resolution method of Godunov`s type for 3D viscous flow calculations

    Yershov, S.V.; Rusanov, A.V. [Ukranian National Academy of Sciences, Kahrkov (Ukraine)


    The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunov`s finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author)

  16. Convection Heat Transfer and Flow Calculations Suitable for Electric Machines Thermal Models

    Cavagnino, Andrea


    This paper deals with the formulations used to predict convection cooling and flow in electric machines. Empirical dimensionless analysis formulations are used to calculate convection heat transfer. The particular formulation used is selected to match the geometry of the surface under consideration and the cooling type used. Flow network analysis, which is used to study the ventilation inside the machine, is also presented. In order to focus the discussion using examples, a commercial softwar...

  17. Propulsion and Energetics Panel Working Group 12 on through Flow Calculations in Axial Turbomachines


    form: of" z•G* (2 (M1 - Micr) + 1) cr = critical where again the double prime denotes the corrected value. 3. For off-design operation a parabolic... prime importance, but frequently very difficult, to determine what simplifications are made in each method. Whether a specific through-flow method is...unsteady through-flow calculations Erdos , Alzner and McNally (1977) have developed a time- dependent, inviscid computation system with capability in

  18. Comparison of the flows and radial electric field in the HSX stellarator to neoclassical calculations

    Briesemeister, A.; Zhai, K.; Anderson, D. T.; Anderson, F. S. B.; Talmadge, J. N.


    Intrinsic flow velocities of up to ˜20 km s-1 have been measured using charge exchange recombination spectroscopy (CHERS) in the quasi-helically symmetric HSX stellarator and are compared with the neoclassical values calculated using an updated version (Lore 2010 Measurement and Transport Modeling with Momentum Conservation of an Electron Internal Transport Barrier in HSX (Madison, WI: University of Wisconsin); Lore et al 2010 Phys. Plasmas 17 056101) of the PENTA code (Spong 2005 Phys. Plasmas. 12 056114). PENTA uses the monoenergetic transport coefficients calculated by the drift kinetic equation solver code (Hirshman et al 1986 Phys. Fluids 29 2951; van Rij and Hirshman 1989 Phys. Fluids B 1 563), but corrects for momentum conservation. In the outer half of the plasma good agreement is seen between the measured parallel flow profile and the calculated neoclassical values when momentum correction is included. The flow velocity in HSX is underpredicted by an order of magnitude when this momentum correction is not applied. The parallel flow is calculated to be approximately equal for the majority hydrogen ions and the C6+ ions used for the CHERS measurements. The pressure gradient of the protons is the primary drive of the calculated parallel flow for a significant portion of the outer half of the plasma. The values of the radial electric field calculated with and without momentum correction were similar, but both were smaller than the measured values in the outer half of the plasma. Differences between the measured and predicted radial electric field are possibly a result of uncertainty in the composition of the ion population and sensitivity of the ion flux calculation to resonances in the radial electric field.


    邓小刚; 庄逢甘


    By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perfect gas flows is derived. In view of numerical calculations, this model is proved very efficient,for it is kept within the p-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solutions. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cellcentered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model.Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performaces are shown for sphere viscous flows.

  20. A modified calculation model for groundwater flowing to horizontal seepage wells

    Wei Wang; Peng Chen; Qingqing Zheng; Xinyu Zheng; Kunming Lu


    The simulation models for groundwater flowing to horizontal seepage wells proposed by Wang and Zhang (2007) are based on the theory of coupled seepage-pipe flow model which treats the well pipe as a highly permeable medium. However, the limitations of the existing model were found during applications. Specifically, a high-resolution grid is required to depict the complex structure of horizontal seepage wells; the permeability of the screen or wall material of radiating bores is usually neglected; and the irregularly distributed radiating bores cannot be accurately simulated. A modified calculation model of groundwater flowing to a horizontal seepage well is introduced in this paper. The exchange flow between well pipe and aquifer couples the turbulent flow inside the horizontal seepage well with laminar flow in the aquifer. The modified calculation model can reliably calculate the pumpage of a real horizontal seepage well. The characteristics of radiating bores, including the diameter, the permeability of screen material and irregular distribution of radiating bores, can be accurately depicted using the modified model that simulates the scenario in which several horizontal seepage wells work together.

  1. On calculation of a steam-water flow in a geothermal well

    Shulyupin, A. N.; Chermoshentseva, A. A.


    Approaches to calculation of a steam-water flow in a geothermal well are considered. For hydraulic applications, a WELL-4 model of a steam-water well is developed. Data obtained using this model are compared with experimental data and also with calculations by similar models including the well-known HOLA model. The capacity of the A-2 well in the Mutnovskoe flash-steam field (Kamchatka half-island, Russia) after planned reconstruction is predicted.

  2. A new approach for thermal performance calculation of cross-flow heat exchangers

    Navarro, H.A. [Universidade Estadual Paulista, Rio Claro (Brazil). Dpto. de Estatistica; Cabezas-Gomez, L. [Universidade de Sao Paulo, Sao Carlos (Brazil). Dpto. de Engenharia Mecanica


    A new numerical methodology for thermal performance calculation in cross-flow heat exchangers is developed. Effectiveness-number of transfer units ({epsilon}-NTU) data for several standard and complex flow arrangements are obtained using this methodology. The results are validated through comparison with analytical solutions for one-pass cross-flow heat exchangers with one to four rows and with approximate series solution for an unmixed-unmixed heat exchanger, obtaining in all cases very small errors. New effectiveness data for some complex configurations are provided. (author)


    Hu Zhen-hong; Shen Yong-ming; Zheng Yong-hong; Liu Cai-guang


    Based on the N-S equation, taking the character of thermal and saline stratified flow into account, and considering the effects of buoyancy on turbulence, the k-ε model of thermal and saline stratified flow is established.Density stratified flow with both the vertical temperature gradient and the vertical salinity gradient is simulated numerically, in which turbulent terms are calculated by the k-ε turbulent model.The distributions of velocity, temperature and salinity are given in this paper.The feature of stratification and turbulence is described correctly by the model.The computational results agree well with the experimental data.

  4. The calculation of mechanical energy loss for incompressible steady pipe flow of homogeneous fluid

    刘士和; 薛娇; 范敏


    The calculation of the mechanical energy loss is one of the fundamental problems in the field of Hydraulics and Enginee- ring Fluid Mechanics. However, for a non-uniform flow the relation between the mechanical energy loss in a volume of fluid and the kinematical and dynamical characteristics of the flow field is not clearly established. In this paper a new mechanical energy equation for the incompressible steady non-uniform pipe flow of homogeneous fluid is derived, which includes the variation of the mean tur- bulent kinetic energy, and the formula for the calculation of the mechanical energy transformation loss for the non-uniform flow bet- ween two cross sections is obtained based on this equation. This formula can be simplified to the Darcy-Weisbach formula for the uniform flow as widely used in Hydraulics. Furthermore, the contributions of the mechanical energy loss relative to the time avera- ged velocity gradient and the dissipation of the turbulent kinetic energy in the turbulent uniform pipe flow are discussed, and the con- tributions of the mechanical energy loss in the viscous sublayer, the buffer layer and the region above the buffer layer for the turbu- lent uniform flow are also analyzed.

  5. Research on network maximum flows algorithm of cascade level graph%级连层次图的网络最大流算法研究

    潘荷新; 伊崇信; 李满


    给出一种通过构造网络级连层次图的方法,来间接求出最大网络流的算法.对于给定的有n个顶点,P条边的网络N=(G,s,t,C),该算法可在O(n2)时间内快速求出流经网络N的最大网络流及达最大流时的网络流.%This paper gives an algoritm that structures a network cascade level graph to find out maximum flow of the network indirectly.For the given network N=(G,s,t,C) that has n vetexes and e arcs,this algorithm finds out the maximum value of the network flow fast in O(n2) time that flows from the network N and the network flows when the value of the one reach maximum.

  6. Numerical calculations of mass transfer flow in semi-detached binary systems. [of stars

    Edwards, D. A.; Pringle, J. E.


    The details of the mass transfer flow near the inner Lagrangian point in a semidetached binary system are numerically calculated. A polytropic equation of state with n = 3/2 is used. The dependence of the mass transfer rate on the degree to which the star overfills its Roche lobe is calculated, and good agreement with previous analytic estimates is found. The variation of mass transfer rate which occurs if the binary system has a small eccentricity is calculated and is used to cast doubt on the model for superhumps in dwarf novae proposed by Papaloizou and Pringle (1979).

  7. Analysis of inflow in geothermal wells to determine their maximum flow; Analisis del influjo en pozos geotermicos para la determinacion de sus flujos maximos

    Aragon-Aguilar, Alfonso; Izquierdo-Montalvo, Georgina; Pal-Verma, Mahendra; Santoyo-Gutierrez, Socrates [Instituto de Investigaciones Electricas (Mexico); Moya-Acosta, Sara L [Centro Nacional de Investigacion y Desarrollo Tecnologico (Mexico)


    Inflow performance relationships developed for petroleum and geothermal reservoirs are presented. Four of them were selected to be used in this work. Such relationships were developed considering features of a typical geothermal system. The performance of the selected relationships was assessed using data from production tests in several wells of different fields. A methodology is presented to determine the value of the maximum flow (W{sub max}) from the inflow relationships; its application is demonstrated using the data of the 10 production tests. It was found that the calculated value of W{sub max} under stabilization conditions may be related to the reservoir response. In general, there is a good agreement between the calculated values of W{sub max} from the different methods. The differences in the W{sub max} values vary within 10%. It was found that the stability in the calculated values of W{sub max} as a response of the reservoir is a function of the flow magnitude. So, the wells with flow greater than 200 t/h reach the stability of W{sub max} at openings 50% less of their total capacity. [Spanish] Se presentan las relaciones del comportamiento de influjo desarrolladas para yacimientos petroleros y geotermicos. Se seleccionaron cuatro de ellas para usar en este trabajo. Tales relaciones fueron desarrolladas considerando condiciones de un sistema geotermico tipico. Se analizo el comportamiento de las relaciones escogidas utilizando datos de pruebas de produccion de varios pozos de diferentes campos. Se presenta una metodologia para determinar el valor del flujo maximo (W{sub max}) a partir de las relaciones de influjo; se demuestra su aplicabilidad usando los datos de diez pruebas de produccion. Se encontro que el valor de W{sub max} calculado bajo condiciones de estabilizacion se puede relacionar con la respuesta del yacimiento. En general se encuentra buena concordancia entre los valores calculados de W{sub max} usando los diferentes metodos. Las

  8. Calculation of flow distribution in air reverse circulation bit interior fluid field by simplifying air flow model

    Shuqing HAO; Hongwei HUANG; Kun YIN


    By simplifying the characters in the air reverse circulation bit interior fluid field, the authors used air dynamics and fluid mechanics to calculate the air distribution in the bit and obtained an equation of flow distribution with a unique resolution. This study will provide help for making certain the bit parameters of the bit structure effectively and study the air reverse circulation bit interior fluid field character deeply.

  9. Method of calculation of a thermolysis and friction of a turbulent disperse flow in nozzles

    Kovalnogov, Vladislav N.; Fedorov, Ruslan V.; Boyarkin, Mikhail S.


    The mathematical model and method of calculation of exchange processes in boundary layer of a carrying agent of a dispersible flow in nozzles which are adequately reflecting intensive aero mechanical and thermal influences of the condensed elements in the conditions of their directed cross movement in boundary layer and also effects of a laminarization of a current in a gradient stream.

  10. Two methods for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations

    Kanno, I; Lassen, N A


    Two methods are described for calculation of regional cerebral blood flow from completed tomographic data of radioactive inert gas distribution in a slice of brain tissue. It is assumed that the tomographic picture gives the average inert gas concentration in each pixel over data collection periods...

  11. A method for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations

    Celsis, P; Goldman, T; Henriksen, L


    to avoid loss of information in brain areas with low flow rates. It is based on linearizing and scaling the early isotope distribution picture (recorded from 0 to 2 min) in rCBF units of ml/100 g/min. This is done by calculating the time constant ki for pixels with high count rate using the entire sequence...

  12. Power flow model/calculation for power systems with multiple FACTS controllers

    Radman, Ghadir; Raje, Reshma S. [Center for Energy Systems Research, Tennessee Technological University, P.O. Box 5004, Cookeville, Tennessee-38505 (United States)


    This paper presents a new procedure for steady state power flow calculation of power systems with multiple flexible AC transmission system (FACTS) controllers. The focus of this paper is to show how the conventional power flow calculation method can systematically be modified to include multiple FACTS controllers. Newton-Raphson method of iterative solution is used for power flow equations in polar coordinate. The impacts of FACTS controllers on power flow is accommodated by adding new entries and modifying some existing entries in the linearized Jacobian equation of the same system with no FACTS controllers. Three major FACTS controllers (STATic synchronous COMpensator (STATCOM), static synchronous series compensator (SSSC), and unified power flow controller (UPFC)) are studied in this paper. STATCOM is modeled in voltage control mode. SSSC controls the active power of the link to which it is connected. The UPFC controls the active and the reactive power flow of the link while maintaining a constant voltage at one of the buses. The modeling approach presented in this paper is tested on the 9-bus western system coordinating council (WSCC) power system and implemented using MATLAB software package. The numerical results show the robust convergence of the presented procedure. (author)

  13. Model-based calculating tool for pollen-mediated gene flow frequencies in plants.

    Lei, Wang; Bao-Rong, Lu


    The potential social-economic and environmental impacts caused by transgene flow from genetically engineered (GE) crops have stimulated worldwide biosafety concerns. To determine transgene flow frequencies resulted from pollination is the first critical step for assessing such impacts, in addition to the determination of transgene expression and fitness in crop-wild hybrid descendants. Two methods are commonly used to estimate pollen-mediated gene flow (PMGF) frequencies: field experimenting and mathematical modeling. Field experiments can provide relatively accurate results but are time/resource consuming. Modeling offers an effective complement for PMGF experimental assessment. However, many published models describe PMGF by mathematical equations and are practically not easy to use. To increase the application of PMGF modeling for the estimation of transgene flow, we established a tool to calculate PMGF frequencies based on a quasi-mechanistic PMGF model for wind-pollination species. This tool includes a calculating program displayed by an easy-operating interface. PMGF frequencies of different plant species can be quickly calculated under different environmental conditions by including a number of biological and wind speed parameters that can be measured in the fields/laboratories or obtained from published data. The tool is freely available in the public domain ( Case studies including rice, wheat, and maize demonstrated similar results between the calculated frequencies based on this tool and those from published PMGF data. This PMGF calculating tool will provide useful information for assessing and monitoring social-economic and environmental impacts caused by transgene flow from GE crops. This tool can also be applied to determine the isolation distances between GE and non-GE crops in a coexistence agro-ecosystem, and to ensure the purity of certified seeds by setting proper isolation distances

  14. A method to calculate finite-time Lyapunov exponents for inertial particles in incompressible flows

    Garaboa-Paz, D.; Pérez-Muñuzuri, V.


    The present study aims to improve the calculus of finite-time Lyapunov exponents (FTLEs) applied to describe the transport of inertial particles in a fluid flow. To this aim, the deformation tensor is modified to take into account that the stretching rate between particles separated by a certain distance is influenced by the initial velocity of the particles. Thus, the inertial FTLEs (iFTLEs) are defined in terms of the maximum stretching between infinitesimally close trajectories that have different initial velocities. The advantages of this improvement, if compared to the standard method (Shadden et al., 2005), are discussed for the double-gyre flow and the meandering jet flow. The new method allows one to identify the initial velocity that inertial particles must have in order to maximize their dispersion.

  15. The Calculated Ratio of the Gas Flow in a Countercurrent Cyclone Dust Concentrator

    Vasilevsky Michail


    Full Text Available There are numerous studies of the structure of swirling flow in a variety of devices in which the peculiarities of the parameters associated with the twist flow. The values of the local parameters of the twist of the axial direction are experimentally and connect them with a constructive twist parameter, which is built from the idealized repose of the gas flow in vortex distribution and speed at the exit of the swirl. For counter flow chamber is the equation for the input pulse in the radial direction and the twist parameter is provided in the radial direction. It allows us to estimate the maximum radius of the circumferential velocity not only near the outlet, but also near the end surface of the chamber. On a cylindrical surface with a radius of outlet cyclone tangential turbulent friction in the radial direction depends on the product of a circle and radial speeds. Compiled equation changes the flow of angular momentum in the axial zone, depending on the force of friction tangential flow on the surface with the radius of the outlet pipe of the cyclone. This equation allowed assessing the circulation of gas in the axial zone.

  16. A potential-flow/boundary-layer method for calculating subsonic and transonic airfoil flow with trailing-edge separation

    Barnwell, R. W.


    The development of a potential-flow/boundary-layer method for calculating subsonic and transonic turbulent flow past airfoils with trailing-edge separation is reported. A moment-of-momentum integral boundary-layer method is used which employs the law-of-the-wall/law-of-the-wake velocity profile and a two-layer eddy-viscosity model and ignores the laminar sublayer. All integrals across the boundary layer are obtained in closed form. Separation is assumed to occur when the shearing-stress velocity vanishes. A closed-form solution is derived for separated-flow regions where the shearing stress is negligible. In the potential-flow method, the exact form of the airfoil boundary condition is used, but it is applied at the chord line rather than the airfoil surface. This allows the accurate computation of flow about airfoils at large angles of attack but permits the use of body-oriented Cartesian computational grids. The governing equation for the perturbation velocity potential contains several terms in addition to the classical small-disturbance terms.

  17. Incompressible turbulent flow calculation in body-fitted coordinates using block-implicit finite difference method

    Hu, Zeming; Chen, Xuechun; Wu, Yulin

    The block-implicit finite-difference method is used to calculate 3D incompressible turbulent flows in the body-fitted coordinate system. In the numerical discretization the hybrid difference scheme is used to treat Reynolds-averaged Navier-Stokes equations. The iterative solution of velocities and pressure on the flow field is obtained by solving simultaneously the Reynolds-averaged N-S equations and continuity equation for each cell. In the iterative process the Gauss-Seidel method is used to solve nonlinear algebraic equations. The turbulent flow is simulated by the k-epsilon turbulence modeling in conjunction with Reynolds equations. The turbulent flow of a curved duct with square cross sections is treated in detail.

  18. Large scale steam flow test: Pressure drop data and calculated pressure loss coefficients

    Meadows, J.B.; Spears, J.R.; Feder, A.R.; Moore, B.P.; Young, C.E. [Bettis Atomic Power Lab., Pittsburgh, PA (United States)


    This report presents the result of large scale steam flow testing, 3 million to 7 million lbs/hr., conducted at approximate steam qualities of 25, 45, 70 and 100 percent (dry, saturated). It is concluded from the test data that reasonable estimates of piping component pressure loss coefficients for single phase flow in complex piping geometries can be calculated using available engineering literature. This includes the effects of nearby upstream and downstream components, compressibility, and internal obstructions, such as splitters, and ladder rungs on individual piping components. Despite expected uncertainties in the data resulting from the complexity of the piping geometry and two-phase flow, the test data support the conclusion that the predicted dry steam K-factors are accurate and provide useful insight into the effect of entrained liquid on the flow resistance. The K-factors calculated from the wet steam test data were compared to two-phase K-factors based on the Martinelli-Nelson pressure drop correlations. This comparison supports the concept of a two-phase multiplier for estimating the resistance of piping with liquid entrained into the flow. The test data in general appears to be reasonably consistent with the shape of a curve based on the Martinelli-Nelson correlation over the tested range of steam quality.

  19. Calculation of arterial wall temperature in atherosclerotic arteries: effect of pulsatile flow, arterial geometry, and plaque structure

    Kim Taehong


    Full Text Available Abstract Background This paper presents calculations of the temperature distribution in an atherosclerotic plaque experiencing an inflammatory process; it analyzes the presence of hot spots in the plaque region and their relationship to blood flow, arterial geometry, and inflammatory cell distribution. Determination of the plaque temperature has become an important topic because plaques showing a temperature inhomogeneity have a higher likelihood of rupture. As a result, monitoring plaque temperature and knowing the factors affecting it can help in the prevention of sudden rupture. Methods The transient temperature profile in inflamed atherosclerotic plaques is calculated by solving an energy equation and the Navier-Stokes equations in 2D idealized arterial models of a bending artery and an arterial bifurcation. For obtaining the numerical solution, the commercial package COMSOL 3.2 was used. The calculations correspond to a parametric study where arterial type and size, as well as plaque geometry and composition, are varied. These calculations are used to analyze the contribution of different factors affecting arterial wall temperature measurements. The main factors considered are the metabolic heat production of inflammatory cells, atherosclerotic plaque length lp, inflammatory cell layer length lmp, and inflammatory cell layer thickness dmp. Results The calculations indicate that the best location to perform the temperature measurement is at the back region of the plaque (0.5 ≤ l/lp ≤ 0.7. The location of the maximum temperature, or hot spot, at the plaque surface can move during the cardiac cycle depending on the arterial geometry and is a direct result of the blood flow pattern. For the bending artery, the hot spot moves 0.6 millimeters along the longitudinal direction; for the arterial bifurcation, the hot spot is concentrated at a single location due to the flow recirculation observed at both ends of the plaque. Focusing on the

  20. Relationship between visual prostate score (VPSS and maximum flow rate (Qmax in men with urinary tract symptoms

    Mazhar A. Memon


    Full Text Available ABSTRACT Objective: To evaluate correlation between visual prostate score (VPSS and maximum flow rate (Qmax in men with lower urinary tract symptoms. Material and Methods: This is a cross sectional study conducted at a university Hospital. Sixty-seven adult male patients>50 years of age were enrolled in the study after signing an informed consent. Qmax and voided volume recorded at uroflowmetry graph and at the same time VPSS were assessed. The education level was assessed in various defined groups. Pearson correlation coefficient was computed for VPSS and Qmax. Results: Mean age was 66.1±10.1 years (median 68. The mean voided volume on uroflowmetry was 268±160mL (median 208 and the mean Qmax was 9.6±4.96mLs/sec (median 9.0. The mean VPSS score was 11.4±2.72 (11.0. In the univariate linear regression analysis there was strong negative (Pearson's correlation between VPSS and Qmax (r=848, p<0.001. In the multiple linear regression analyses there was a significant correlation between VPSS and Qmax (β- after adjusting the effect of age, voided volume (V.V and level of education. Multiple linear regression analysis done for independent variables and results showed that there was no significant correlation between the VPSS and independent factors including age (p=0.27, LOE (p=0.941 and V.V (p=0.082. Conclusion: There is a significant negative correlation between VPSS and Qmax. The VPSS can be used in lieu of IPSS score. Men even with limited educational background can complete VPSS without assistance.

  1. Comparison of different multiple flow algorithms for topographic RUSLE factor (LS) calculation in Switzerland

    Bircher, Pascal; Liniger, Hanspeter; Prasuhn, Volker


    Soil erosion is a well-known challenge both from a global perspective and in Switzerland, and it is assessed and discussed in many projects (e.g. national or European erosion risk maps). Meaningful assessment of soil erosion requires models that adequately reflect surface water flows. Various studies have attempted to achieve better modelling results by including multiple flow algorithms in the topographic length and slope factor (LS-factor) of the Revised Universal Soil Loss Equation (RUSLE). The choice of multiple flow algorithms is wide, and many of them have been implemented in programs or tools like Saga-Gis, GrassGis, ArcGIS, ArcView, Taudem, and others. This study compares six different multiple flow algorithms with the aim of identifying a suitable approach to calculating the LS factor for a new soil erosion risk map of Switzerland. The comparison of multiple flow algorithms is part of a broader project to model soil erosion for the entire agriculturally used area in Switzerland and to renew and optimize the current erosion risk map of Switzerland (ERM2). The ERM2 was calculated in 2009, using a high resolution digital elevation model (2 m) and a multiple flow algorithm in ArcView. This map has provided the basis for enforcing soil protection regulations since 2010 and has proved its worth in practice, but it has become outdated (new basic data are now available, e.g. data on land use change, a new rainfall erosivity map, a new digital elevation model, etc.) and is no longer user friendly (ArcView). In a first step towards its renewal, a new data set from the Swiss Federal Office of Topography (Swisstopo) was used to generate the agricultural area based on the existing field block map. A field block is an area consisting of farmland, pastures, and meadows which is bounded by hydrological borders such as streets, forests, villages, surface waters, etc. In our study, we compared the six multiple flow algorithms with the LS factor calculation approach used in

  2. Viscous-flow Calculations of Submarine Maneuvering Hydrodynamic Coefficients and Flow Field based on Same Grid Topology

    Liushuai CAO


    Full Text Available To estimate the maneuverability of a submarine at the early design stage, an accurate evaluation of the hydrodynamic coefficients is important. In a collaborative exercise, the authors performed calculations on the bare hull DRAPA SUBOFF submarine to investigate the capability of viscous-flow solvers to predict the forces and moments as well as flow field around the body. A typical simulation program was performed for both the steady drift tests and rotating arm tests. The same grid topology based on multi-block mesh strategy was used to discretize the computational domain. A procedure designated drift sweep was implemented to automatically increment the drift angle during the simulation of steady drift tests. The rotating coordinate system was adopted to perform the simulation of rotating arm tests. The Coriolis force and centrifugal force due to the computation in a rotating frame of reference were treated explicitly and added to momentum equations as source terms. Lastly, the computed forces and moment as a function of angles of drift in both conditions are compared with experimental results and literature values. They always show the correct trend. Flow field quantities including pressure coefficients and vorticity and axial velocity contours are also visualized to vividly describe the evolution of flow motions along the hull.

  3. Statistical fluctuations in Monte Carlo calculations. [for solution of rarefied flow problems

    Boyd, I. D.; Stark, J. P. W.


    The time counter and modified Nanbu simulation techniques are analyzed, with emphasis placed on the convergence of the calculations to a steady macroscopic state. Such variables as translational and rotational temperature, and flow velocity, sampled at several points in the flowfield, are considered. Both macroscopic averages and molecular distribution functions are analyzed. The calculation of inelastic collisions, in which transfer of energy between translational and internal energy modes is performed, is achieved through the use of the Larsen-Borgnakke phenomenological model. It is noted that, with reference to translational temperature, the time counter method shows less statistical scatter than that found with the modified Nanbu simulation technique.

  4. AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows

    Campbell, M. F.; Haylett, D. R.; Davidson, D. F.; Hanson, R. K.


    This article introduces an algorithm that determines the thermodynamic conditions behind incident and reflected shocks in aerosol-laden flows. Importantly, the algorithm accounts for the effects of droplet evaporation on post-shock properties. Additionally, this article describes an algorithm for resolving the effects of multiple-component-fuel droplets. This article presents the solution methodology and compares the results to those of another similar shock calculator. It also provides examples to show the impact of droplets on post-shock properties and the impact that multi-component fuel droplets have on shock experimental parameters. Finally, this paper presents a detailed uncertainty analysis of this algorithm's calculations given typical experimental uncertainties.

  5. The calculation of steady non-linear transonic flow over finite wings with linear theory aerodynamics

    Cunningham, A. M., Jr.


    The feasibility of calculating steady mean flow solutions for nonlinear transonic flow over finite wings with a linear theory aerodynamic computer program is studied. The methodology is based on independent solutions for upper and lower surface pressures that are coupled through the external flow fields. Two approaches for coupling the solutions are investigated which include the diaphragm and the edge singularity method. The final method is a combination of both where a line source along the wing leading edge is used to account for blunt nose airfoil effects; and the upper and lower surface flow fields are coupled through a diaphragm in the plane of the wing. An iterative solution is used to arrive at the nonuniform flow solution for both nonlifting and lifting cases. Final results for a swept tapered wing in subcritical flow show that the method converges in three iterations and gives excellent agreement with experiment at alpha = 0 deg and 2 deg. Recommendations are made for development of a procedure for routine application.

  6. Flow induced noise calculations for non-axially distributed hydrophones in towed arrays

    WANG Bin; TANG Weilin; FAN Jun


    Two improvements are put forward on the analyses of flow induced noise in towed arrays. First, the differences between Corcos/Carpenter pressure fluctuation models have been discussed at length, as well as flow induced noise calculated with these two models. Second, flow induced noise received by the finite hydrophones distributed non-axially is discussed and the relevant power spectrum is deduced. The results show that there are some disparities between the wavenumber spectrums and the responses of flow induced noise of these two models. Flow induced noise is closely related with the tow speed, the tube radius and the off-axis distance. The numerical analyses with Carpenter model indicate that the power spectrum of flow induced noise will increase 24 dB approximately with the tow speed doubled, decrease with the radius of the tube, and increase with the off-axis distance. The tube radius and the off-axis distance have greater influence on the high-frequency components than on the low-frequency components.

  7. Bayesian inference in mass flow simulations - from back calculation to prediction

    Kofler, Andreas; Fischer, Jan-Thomas; Hellweger, Valentin; Huber, Andreas; Mergili, Martin; Pudasaini, Shiva; Fellin, Wolfgang; Oberguggenberger, Michael


    Mass flow simulations are an integral part of hazard assessment. Determining the hazard potential requires a multidisciplinary approach, including different scientific fields such as geomorphology, meteorology, physics, civil engineering and mathematics. An important task in snow avalanche simulation is to predict process intensities (runout, flow velocity and depth, ...). The application of probabilistic methods allows one to develop a comprehensive simulation concept, ranging from back to forward calculation and finally to prediction of mass flow events. In this context optimized parameter sets for the used simulation model or intensities of the modeled mass flow process (e.g. runout distances) are represented by probability distributions. Existing deterministic flow models, in particular with respect to snow avalanche dynamics, contain several parameters (e.g. friction). Some of these parameters are more conceptual than physical and their direct measurement in the field is hardly possible. Hence, parameters have to be optimized by matching simulation results to field observations. This inverse problem can be solved by a Bayesian approach (Markov chain Monte Carlo). The optimization process yields parameter distributions, that can be utilized for probabilistic reconstruction and prediction of avalanche events. Arising challenges include the limited amount of observations, correlations appearing in model parameters or observed avalanche characteristics (e.g. velocity and runout) and the accurate handling of ensemble simulations, always taking into account the related uncertainties. Here we present an operational Bayesian simulation framework with r.avaflow, the open source GIS simulation model for granular avalanches and debris flows.

  8. Three-dimensional flow calculations of axial compressors and turbines using CFD techniques.

    Jesuino Takachi Tomita


    With the advent of powerful computer hardware, Computational Fluid Dynamics (CFD) has been vastly used by researches and scientists to investigate flow behavior and its properties. The cost of CFD simulation is very small compared to the experimental arsenal as test facilities and wind-tunnels. In the last years many CFD commercial packages were developed and some of them possess prominence in industry and academia. However, some specific CFD calculations are particular cases and sometimes ne...

  9. Turbulent Fluid Flow and Heat Transfer Calculation in Mold Filling and Solidification Processes of Castings


    Based on the time-averaging equations and a modified engineering turbulence model, the mold filling and solidification processes of castings are approximately described. The algorithm for the control equations is briefly introduced, and some problems and improvement methods for the traditional method are also presented. Both calculation and tests proved that, comparing with the laminar fluid flow and heat transfer, the simulation results by using the turbulence model are closer to the real mold filling and solidification processes of castings.

  10. Advanced numerical methods for three dimensional two-phase flow calculations

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)


    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  11. A New Parallel Algorithm in Power Flow Calculation: Dynamic Asynchronous Parallel Algorithm


    Based on the general methods in power flow calculation of power system and onconceptions and classifications of parallel algorithm, a new approach named DynamicAsynchronous Parallel Algorithm that applies to the online analysis and real-time dispatching and controlling of large-scale power network was put forward in this paper. Its performances of high speed and dynamic following have been verified on IEEE-14 bus system.

  12. Calculation of three-dimensional supersonic flow of a gas past a cube

    Barausov, D. I.; Drobyshevskii, E. M.


    Flow of a nonviscous gas near the front face of a cube is investigated numerically using a second-order MacCormack scheme. Calculations are performed on a 40 x 32 x 32 grid using Godunov's finite difference scheme. The drag coefficient of a cube moving in air at Mach 20 is estimated at 1.7-1.8. The results of the study are relevant to the development of electrodynamic rail-gun launchers.

  13. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers.

    Rosewarne, P J; Wilson, J M; Svendsen, J C


    Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology.

  14. An Improved Method for Calculating Paleoheat Flow from Vitrinite Reflectance Profiles


    Based on the models developed by Lerche et al. (1984) and Pang et al. (1993), an improved model for calculating paleoheat flow into basins is investigated. The new model is an optimization problem with the state variables governed by a thermal conduction equation. A genetic algorithm is used to solve the highly nonlinear optimization problem. As an application, the model is applied to the research into the history of heat flow in the Pearl River Mouth basin located in the South China Sea. The numerical analysis shows that the simulation results are in good agreement with the measured data and indicates that the basin may have undergone three rifting and thermal events. It is also demonstrated that a high R. gradient reflects a response to high paleoheat flow during the early, rapid subsidence stage,while a Iow Ro gradient is a result of the thermal decay during the thermal subsidence because of thermal contraction of a cooling lithosphere.

  15. A steady-state solver and stability calculator for nonlinear internal wave flows

    Viner, Kevin C.; Epifanio, Craig C.; Doyle, James D.


    A steady solver and stability calculator is presented for the problem of nonlinear internal gravity waves forced by topography. Steady-state solutions are obtained using Newton's method, as applied to a finite-difference discretization in terrain-following coordinates. The iteration is initialized using a boundary-inflation scheme, in which the nonlinearity of the flow is gradually increased over the first few Newton steps. The resulting method is shown to be robust over the full range of nonhydrostatic and rotating parameter space. Examples are given for both nonhydrostatic and rotating flows, as well as flows with realistic upstream shear and static stability profiles. With a modest extension, the solver also allows for a linear stability analysis of the steady-state wave fields. Unstable modes are computed using a shifted-inverse method, combined with a parameter-space search over a set of realistic target values. An example is given showing resonant instability in a nonhydrostatic mountain wave.


    V. P. Avtushko


    Full Text Available The paper analyzes prospects pertaining to development of methods for dynamic calculation of monitoring hydraulic units with various types of relations.  Calculated diagram of steering hydraulic drive with flow amplifier and turning cylinder has been given in the paper and its dynamic model has been developed. A hydraulic drive is considered as a system with lumped parameters. It is supposed that properties of working fluid are unchangeable during transient process; leakages and cavitations do not occur; fluid can be pressed; resistance of service drain line is taken into account. Model has been developed with due account of resistance of manifolds and internal channels of flow amplifier, hydrodynamic forces, that influence on amplifier control valves, and friction forces of movable elements. Multi-variant dynamic calculation has been done and some results of the investigations are presented in the paper. The paper also contains analysis that shows influence of various design and component parameters of flow amplifier on the drive dynamics. 

  17. Full-Quantum chemical calculation of the absorption maximum of bacteriorhodopsin: a comprehensive analysis of the amino acid residues contributing to the opsin shift

    Hayashi, Tomohiko; Matsuura, Azuma; Sato, Hiroyuki; Sakurai, Minoru


    Herein, the absorption maximum of bacteriorhodopsin (bR) is calculated using our recently developed method in which the whole protein can be treated quantum mechanically at the level of INDO/S-CIS//ONIOM (B3LYP/6-31G(d,p): AMBER). The full quantum mechanical calculation is shown to reproduce the so-called opsin shift of bR with an error of less than 0.04 eV. We also apply the same calculation for 226 different bR mutants, each of which was constructed by replacing any one of the amino acid residues of the wild-type bR with Gly. This substitution makes it possible to elucidate the extent to which each amino acid contributes to the opsin shift and to estimate the inter-residue synergistic effect. It was found that one of the most important contributions to the opsin shift is the electron transfer from Tyr185 to the chromophore upon excitation. We also indicate that some aromatic (Trp86, Trp182) and polar (Ser141, Thr142) residues, located in the vicinity of the retinal polyene chain and the β-ionone ring, respectively, play an important role in compensating for the large blue-shift induced by both the counterion residues (Asp85, Asp212) and an internal water molecule (W402) located near the Schiff base linkage. In particular, the effect of Trp86 is comparable to that of Tyr185. In addition, Ser141 and Thr142 were found to contribute to an increase in the dipole moment of bR in the excited state. Finally, we provide a complete energy diagram for the opsin shift together with the contribution of the chromophore-protein steric interaction. PMID:27493528



    Three-dimensional numerical simulation of a uniform incompressible viscous flow around a stationary circular cylinder was conducted. The CFX-4 software was used to calculate the hydrodynamic characteristics of the flow and the finite volume method for incompressible Navier-Stokes equations was employed in the program. The simulation of the flow was performed for Re=103 and Re=104 respectively within the sub-critical region. In order to overcome numerical instability for the high Reynolds number flows, a quadratic upwind scheme was incorporated for the Navier-Stokes equations. The periodicity boundary condition was used at the ends of the cylinder. It was found that the evolution of the lift and drag coefficients in each plane along the cylinder span is different. Comparison between the predicted results based on the three-dimensional and the two-dimensional analysis was also given. It is concluded that at the high Reynolds number the effect of three-dimensionality of the flow around the circular cylinder is remarkable, and in addition hydrodynamic coefficients with of 3-D simulation are less than those given by 2-D simulation.

  19. Calculations of the flow resistance and heat emission of a sphere in the laminar and high-turbulent gas flows

    Simakov, N. N.


    An early drag crisis can occur at high turbulence of incoming gas flow to a sphere. To study the influence of a crisis on heat transfer from a sphere to gas, a numerical experiment was carried out in which the free gas flow around a sphere with a temperature lower than the sphere temperature was simulated for two cases. The flow was laminar in the first case and highly turbulent in the second case. To take into account turbulence, the kinematic coefficient of turbulent viscosity with a value, which is much higher (up to 2000 times) than that for physical viscosity, was introduced. The results of calculations show that the early drag crisis occurs at Reynolds numbers of about 100 and results in considerable (by four to seven times) decrease in the hydrodynamic force and sphere drag coefficient C d . The early drag crisis is also accompanied by the crisis of heat transfer from a sphere to gas with a decrease in Nusselt numbers Nu by three to six times.

  20. Numerical Simulation of Muzzle Flow Field Based on Calculation of Combustion Productions in Bore

    Liang Wang∗,Houqian Xu,Wei Wu; Rui Xue


    To improve the accuracy of numerical simulation of muzzle chemical flow field, and study the gunpowder combustion productions, the muzzle flow field is simulated coupled with the calculation of combustion productions in bore. The calculation in bore uses the gibbs free⁃energy minimization method and the classical interior ballistics model. The simulation of the muzzle flow field employs the multi⁃component ALE ( Arbitrary Lagrange⁃Euler ) equations. Computations are performed for a 12�7 mm gun. From 2�48 ms to 3�14 ms, the projectile moves in the gun barrel. CO and H2 O masses decrease by 3�37% and 6�51%, and H2 and CO2 masses increase by 11�11% and 10�58%. The changes conform to the fact that the water⁃gas equilibrium reaction of all reactions plays a dominant role in this phase. After the projectile leaves the barrel, the masses of H2 and CO decrease, and the masses of H2 O and CO2 increase. When it moves to 80d away from the muzzle, the decreases are 12�75% and 8�05%, and the increases are 12�76% and 36�26%, which tallies with the existence of muzzle flame. Further, CO and H2 burn more and more fiercely with the muzzle pressure pg increasing, and burn more and more weakly with the altitude rising. When two projectiles launch in series, the combustion of the second projectile muzzle flow field is fiercer than the first projectile. Analysis results have shown that the proposed method is effective for simulating the muzzle flow filed.

  1. Semianalytical calculation of the zonal-flow oscillation frequency in stellarators

    Monreal, Pedro; Sánchez, Edilberto; Calvo, Iván; Bustos, Andrés; Parra, Félix I.; Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf


    Due to their capability to reduce turbulent transport in magnetized plasmas, understanding the dynamics of zonal flows is an important problem in the fusion program. Since the pioneering work by Rosenbluth and Hinton in axisymmetric tokamaks, it is known that studying the linear and collisionless relaxation of zonal flow perturbations gives valuable information and physical insight. Recently, the problem has been investigated in stellarators and it has been found that in these devices the relaxation process exhibits a characteristic feature: a damped oscillation. The frequency of this oscillation might be a relevant parameter in the regulation of turbulent transport, and therefore its efficient and accurate calculation is important. Although an analytical expression can be derived for the frequency, its numerical evaluation is not simple and has not been exploited systematically so far. Here, a numerical method for its evaluation is considered, and the results are compared with those obtained by calculating the frequency from gyrokinetic simulations. This ‘semianalytical’ approach for the determination of the zonal-flow frequency is revealed to be accurate and faster than the one based on gyrokinetic simulations.

  2. A porosity model for flow resistance calculation of heat exchanger with louvered fins

    Kim, Taek Keun [Halla Visteon Climate Control Corp. Daejeon (Korea, Republic of); Kang, Hie Chan [Kunsan National University, Gunsan (Korea, Republic of); Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)


    A full 3-dimensional flow simulation of a louvered fin heat exchanger assembly requires a huge number of grid points and enormous computing time. This work proposes a porous media model for the flow resistance calculation of the louvered fin side in order to efficiently simulate a complex 3-dimensional flow over the louvered fins. In the present model, we determine the permeability and Ergun constant in the modified Darcy equation. We first build up a database of the friction factor from the available experimental data and our own CFD data, and then develop the friction factor correlation in the range of the Reynolds number based on the louver pitch from 0.001 to 20000 for 14 different louvered fin types. We use the non-linear and multi-linear regression analyses to obtain the friction factor correlation as a function of louvered fin geometric parameters such as louver pitch, louver angle and fin pitch. The present friction factor correlation shows an excellent agreement with the previous experimental and CFD data. The modified Darcy equation with the proposed permeability and Ergun constant for the louvered fin side can easily be coupled with the 3-dimensional computation of the main tube flow.

  3. Comparison of Steady-State SVC Models in Load Flow Calculations

    Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte


    This paper compares in a load flow calculation three existing steady-state models of static var compensator (SVC), i.e. the generator-fixed susceptance model, the total susceptance model and the firing angle model. The comparison is made in terms of the voltage at the SVC regulated bus, equivalent...... SVC susceptance at the fundamental frequency and the load flow convergence rate both when SVC is operating within and on the limits. The latter two models give inaccurate results of the equivalent SVC susceptance as compared to the generator model due to the assumption of constant voltage when the SVC...... is operating within the limits. This may underestimate or overestimate the SVC regulating capability. Two modified models are proposed to improve the SVC regulated voltage according to its steady-state characteristic. The simulation results of the two modified models show the improved accuracy...

  4. The Calculation of Supersonic Flows with Strong Viscous-Inviscid Interaction Using the Parabolized Navier - Equations

    Barnett, Mark

    This investigation is concerned with calculating strong viscous-inviscid interactions in two-dimensional laminar supersonic flows with and without separation. The equations solved are the so-called parabolized Navier-Stokes equations. The streamwise pressure gradient term is written as a combination of a forward and a backward difference to provide a path for upstream propogation of information. Global iteration is employed to repeatedly update the solution from an initial guess until convergence is achieved. Interacting boundary layer theory is discussed in order to provide some essential background information for the development of the present calculation technique. The numerical scheme used is an alternating direction explicit (ADE) procedure which is adapted from the Saul'yev method. This technique is chosen as an alternative to the more difficult to program multigrid strategy used by other investigators and the slower converging Gauss-Seidel method. Separated flows are computed using the ADE method. Only small or moderate separation bubbles are considered. This restriction permits simple approximations to the convective terms in reversed flow regions without introducing severe error since the reversed flow velocities are small. Results are presented for a number of geometries including compression ramps and humps on flat plates with separation. The present results are compared with those obtained by other investigators using the full Navier-Stokes equations and interacting boundary layer theory. Comparisons were found to be qualitatively good. The quantitative comparisons varied, however mesh refinement studies indicated that the parabolized Navier-Stokes solutions tended towards second-order accurate full Navier-Stokes solutions as well as interacting boundary layer solutions for which mesh refinement studies were also executed.

  5. Aerodynamic load calculation of horizontal axis wind turbine in non-uniform flow

    Lupo, E.


    An aerodynamic computer program, applicable to upwind rotors, was developed to calculate variable loads on rotor blades due to nonuniform flow. This program takes into account the atmospheric boundary layer, the variation in wind direction, and tower reflection. The aerodynamic analysis is based on a combination of momentum and blade element equations. The aerodynamic conditions and the airloads are for 36 azimuth positions of a rigid blade during its rotation. The inputs of the program are the geometric characteristics of the rotor and blades, the aerodynamic characteristic of the airfoil sections, the wind shear expression, the yaw and tilt angle with wind direction and the rotor-tower diameter ratio for cylindrical towers.

  6. Application of bilateral filtration with weight coefficients for similarity metric calculation in optical flow computation algorithm

    Panin, S. V.; Titkov, V. V.; Lyubutin, P. S.; Chemezov, V. O.; Eremin, A. V.


    Application of weight coefficients of the bilateral filter used to determine weighted similarity metrics of image ranges in optical flow computation algorithm that employs 3-dimension recursive search (3DRS) was investigated. By testing the algorithm applying images taken from the public test database Middlebury benchmark, the effectiveness of this weighted similarity metrics for solving the image processing problem was demonstrated. The necessity of matching the equation parameter values when calculating the weight coefficients aimed at taking into account image texture features was proved for reaching the higher noise resistance under the vector field construction. The adaptation technique which allows excluding manual determination of parameter values was proposed and its efficiency was demonstrated.

  7. Analytical Calculation of Stall-inception and Surge Points for an Axial-flow Compresor Rotor

    Moreno Benavides, Efren; López Juste, Gregorio


    Recently, a theoretical criterion to calculate the stability of an axial-flow compressor rotor has been presented in the scientific literature. This theoretical criterion was used for determining the locus of the stability line over the rotor map and for predicting the post-stall evolution of the constant-speed line of a rotor. The main objective of this paper is to improve the predictions of such a model. To do that, the paper proposes a different characterization of the characteristic az...

  8. Calculation of the fresh gas flow requirements of the Hafnia A and D anaesthetic circuits.

    Thomsen, A


    Semi-closed anaesthetic circuits are converted into the corresponding Hafnia circuits by replacing the expiratory valve by a side tube connected to an ejector flowmeter. Theoretical analysis of the Hafnia A and D circuits revealed by the fresh gas flow requirements are dependent on the inspiration/expiration time ratio. Using a ratio of 1/1.2 and a sine-wave respiratory waveform, the minimal fresh gas requirements were calculated as 2.1 (Hafnia A) and 2.5 (Hafnia D) times the respiratory minute volume. The fresh gas requirements are identical with spontaneous or controlled ventilation.

  9. Assessment model validity document. NAMMU: A program for calculating groundwater flow and transport through porous media

    Cliffe, K.A.; Morris, S.T.; Porter, J.D. [AEA Technology, Harwell (United Kingdom)


    NAMMU is a computer program for modelling groundwater flow and transport through porous media. This document provides an overview of the use of the program for geosphere modelling in performance assessment calculations and gives a detailed description of the program itself. The aim of the document is to give an indication of the grounds for having confidence in NAMMU as a performance assessment tool. In order to achieve this the following topics are discussed. The basic premises of the assessment approach and the purpose of and nature of the calculations that can be undertaken using NAMMU are outlined. The concepts of the validation of models and the considerations that can lead to increased confidence in models are described. The physical processes that can be modelled using NAMMU and the mathematical models and numerical techniques that are used to represent them are discussed in some detail. Finally, the grounds that would lead one to have confidence that NAMMU is fit for purpose are summarised.

  10. Large-Scale Eigenvalue Calculations for Stability Analysis of Steady Flows on Massively Parallel Computers

    Lehoucq, Richard B.; Salinger, Andrew G.


    We present an approach for determining the linear stability of steady states of PDEs on massively parallel computers. Linearizing the transient behavior around a steady state leads to a generalized eigenvalue problem. The eigenvalues with largest real part are calculated using Arnoldi's iteration driven by a novel implementation of the Cayley transformation to recast the problem as an ordinary eigenvalue problem. The Cayley transformation requires the solution of a linear system at each Arnoldi iteration, which must be done iteratively for the algorithm to scale with problem size. A representative model problem of 3D incompressible flow and heat transfer in a rotating disk reactor is used to analyze the effect of algorithmic parameters on the performance of the eigenvalue algorithm. Successful calculations of leading eigenvalues for matrix systems of order up to 4 million were performed, identifying the critical Grashof number for a Hopf bifurcation.

  11. Numerical Calculation of Marine Propeller Hydrodynamic Characteristics in Unsteady Flow by Boundary Element Method


    In this paper,a low-order potential based on surface panel method is used for the analysis of marine propellers in unsteady flow.A linear propeller wake model is employed and its geometry is assumed to be independent of the time.The calculation in time domain is carried out from a moment when the rotation of the propeller becomes steady instead of from the moment when the rotation starts from stationary condition.At every time step a linear algebraic equation established on a key blade is solved numerically combined with the Kutta pressure condition.The calculated results by developed code indicate good convergency and effectiveness of present algorithm for conventional propellers and highly skewed propellers.

  12. Analysis of Flow Structure and Calculation of Drag Coefficient for Concurrent-up Gas-Solid Flow

    杨宁; 王维; 等


    This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent up gas-solid flow.The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of structure parameters with solids concentration,showing the tendency for particles to aggregated to form clusters and for fluid to pass around clusters.The global drag coefficient is resolved into that for the dense phase,for the dilutephase and for the so-called inter-phase,all of which can be obtained from their respective phase-specific structure parameters.The computational results show that the drag coefficients of the different phases are quite different,and the global drag coefficient calculated from the EMMS approach is much lower than that from the correlation of Wen and Yu.The simulation results demonstrate that the EMMS approach can well describe the heterogeneous flow structure,and is very promising for incorporation into the two-fluid model or the discrete particle model as the closure law for drag coefficient.

  13. Development of Waste Acceptance Criteria at 221-U Building: Initial Flow and Transport Scoping Calculations

    Freedman, Vicky L.; Zhang, Z. F.; Keller, Jason M.; Chen, Yousu


    This report documents numerical flow and transport simulations performed that establish initial waste acceptance criteria for the potential waste streams that may be safely sequestered in the 221-U Building and similar canyon structures. Specifically, simulations were executed to identify the maximum loading of contaminant mass (without respect to volume) that can be emplaced within the 221-U Building with no more than 1 pCi/m2 of contaminant migrating outside the structure within a 1,000 year time period. The initial scoping simulations were executed in one dimension to assess important processes, and then two dimensions to establish waste acceptance criteria. Two monolithic conditions were assessed: (1) a grouted canyon monolith; and (2) a canyon monolith filled with sand, both assuming no cracks or fissures were present to cause preferential transport. A three-staged approach was taken to account for different processes that may impact the amount of contaminant that can be safely sequestered in canyon structure. In the first stage, flow and transport simulations established waste acceptance criteria based on a linear (Kd) isotherm approach. In the second stage, impacts on thermal loading were examined and the differences in waste acceptance criteria quantified. In the third stage of modeling, precipitation/dissolution reactions were considered on the release and transport of the contaminants, and the subsequent impact on the maximum contaminant loading. The reactive transport modeling is considered a demonstration of the reactive transport capability, and shows the importance of its use for future performance predictions once site-specific data have been obtained.

  14. Influence of leakage flow through labyrinth seals on rotordynamics: numerical calculations and experimental measurements

    Liu, Y.Z.; Wang, W.Z.; Chen, H.P. [Shanghai Jiao Tong University, Thermal Fluid Flow and Turbomachinery Lab., The key lab of Ministry of Education, School of Mechanical Engineering, Shanghai (China); Ge, Q.; Yuan, Y. [Shanghai Turbine Company, Department of Research and Development, Shanghai (China)


    An extensive investigation of the influence of the leakage flow through a labyrinth seal at supply pressure of 12 bar on the rotordynamics was performed by using numerical calculations and experimental measurements. Toward this end, an experimental rotor setup was established in Shanghai Jiao Tong University. Two labyrinth seals were chosen for comparison, e.g., an interlocking seal and a stepped one. The numerical calculations based on the bulk-flow theory and the perturbation analysis were accomplished. Simultaneous acquisitions of the fluctuating static pressure at the stator wall and the displacement of the whirling rotor were made. The influence of the aerodynamic forcing on the rotor was analyzed in terms of the axial distribution of the mean static pressure, the circumferential distribution of the fluctuating pressure, the fist critical speed and the destabilization rotating speed of the rotor. The experimental results demonstrated that the sinusoidal distribution of the fluctuating static pressure on the stator wall was closely related to the whirling motion of the rotor. The first critical speed of the rotor was reduced by the aerodynamic forcing, resulting in intensified destabilization of the rotor system. Furthermore, the numerical analyses were in good agreement to the experimental measurements. (orig.)

  15. Parallelizing flow-accumulation calculations on graphics processing units—From iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm

    Qin, Cheng-Zhi; Zhan, Lijun


    As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU

  16. High-Resolution Chronostratigraphic Correlation and Sedimentation Rate Calculations With Maximum Depositional Ages Derived From Large-n Detrital Zircon Datasets

    Hubbard, S. M.; Coutts, D. S.; Matthews, W.; Guest, B.; Bain, H.


    In basins adjacent to continually active arcs, detrital zircon geochronology can be used to establish a high-resolution chronostratigraphic framework for deep-time strata. Large-nU-Pb geochronological datasets can yield a statistically significant signature from the youngest sub-population of detrital zircons, which we deduce from maximum depositional age (MDA) calculations. MDA is determined through numerous methods such as the mean age of three or more overlapping grain ages at 2σ error, favored in this analysis. Positive identification of the youngest detrital zircon population in a rock is the limiting factor on precision and resolution. The Campanian-Paleogene Nanaimo Group of B.C., Canada, was deposited in a forearc basin, outboard of the Coast Mountain Batholith. The record of a deep-water sediment-routing system is exhumed at Denman and Hornby islands; sandstone- and conglomerate- dominated strata compose a composite sedimentary unit 20 km across and 1.5 km thick, in strike section. Volcanic ashes are absent from the succession, which has been constrained biostratigraphically. Eleven detrital zircon samples are analyzed to define stratigraphic architecture and provide insight into sedimentation rates. Our dataset (n=3081) constrains the overall duration of channelization to ~18 Ma. A series of at least five distinct composite channel fills 3-6 km wide and 400-600 m thick are identified. The MDA of these units are statistically distinct and constrained to better than 3% precision. Sedimentation rates amongst the channel fills increase upward, from 60-100 m/Ma to >500 m/Ma. This is likely linked to the tendency of a slope channel system to be dominated by sediment bypass early in its evolution, and later dominated by aggradation as large-scale levees develop. Channel processes were not continuous, with the longest hiatus ~6 Ma. The large-n detrital zircon dataset provides unprecedented insight into long-term sediment routing, evidence for which is

  17. Noniterative grid generation using parabolic difference equations for fuselage-wing flow calculations

    Nakamura, S.


    A fast method for generating three-dimensional grids for fuselage-wing transonic flow calculations using parabolic difference equations is described. No iterative scheme is used in the three-dimensional sense; grids are generated from one grid surface to the next starting from the fuselage surface. The computational procedure is similar to the iterative solution of the two-dimensional heat conduction equation. The proposed method is at least 10 times faster than the elliptic grid generation method and has much smaller memory requirements. Results are presented for a fuselage and wing of NACA-0012 section and thickness ratio of 10 percent. Although only H-grids are demonstrated, the present technique should be applicable to C-grids and O-grids in three dimensions.

  18. Comparison of calculated and measured heat transfer coefficients for transonic and supersonic boundary-layer flows

    Huerst, C.; Schulz, A.; Wittig, S. [Univ. Karlsruhe (Germany). Lehrstuhl und Inst. fuer Thermische Stroemungsmaschinen


    The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U{sub {infinity}} = 230 {divided_by} 880 m/s, Re* = 0.37 {divided_by} 1.07 {times} 10{sup 6}). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent-divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number {kappa}-{epsilon} turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.

  19. Improvement of Power Flow Calculation with Optimization Factor Based on Current Injection Method

    Lei Wang


    Full Text Available This paper presents an improvement in power flow calculation based on current injection method by introducing optimization factor. In the method proposed by this paper, the PQ buses are represented by current mismatches while the PV buses are represented by power mismatches. It is different from the representations in conventional current injection power flow equations. By using the combined power and current injection mismatches method, the number of the equations required can be decreased to only one for each PV bus. The optimization factor is used to improve the iteration process and to ensure the effectiveness of the improved method proposed when the system is ill-conditioned. To verify the effectiveness of the method, the IEEE test systems are tested by conventional current injection method and the improved method proposed separately. Then the results are compared. The comparisons show that the optimization factor improves the convergence character effectively, especially that when the system is at high loading level and R/X ratio, the iteration number is one or two times less than the conventional current injection method. When the overloading condition of the system is serious, the iteration number in this paper appears 4 times less than the conventional current injection method.

  20. An exploratory study of a finite difference method for calculating unsteady transonic potential flow

    Bennett, R. M.; Bland, S. R.


    A method for calculating transonic flow over steady and oscillating airfoils was developed by Isogai. The full potential equation is solved with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. The method is described in general terms and results for the case of an airfoil with an oscillating flap are presented for Mach numbers 0.500 and 0.875. Although satisfactory results are obtained for some reduced frequencies, it is found that the numerical technique generates spurious oscillations in the indicial response functions and in the variation of the aerodynamic coefficients with reduced frequency. These oscillations are examined with a dynamic data reduction method to evaluate their effects and trends with reduced frequency and Mach number. Further development of the numerical method is needed to eliminate these oscillations.

  1. Comparison of Different Methods for the Calculation of the Microvascular Flow Index

    Mario O. Pozo


    Full Text Available The microvascular flow index (MFI is commonly used to semiquantitatively characterize the velocity of microcirculatory perfusion as absent (0, intermittent (1, sluggish (2, or normal (3. There are three approaches to compute MFI: (1 the average of the predominant flow in each of the four quadrants (MFIby quadrants, (2 the direct assessment during the bedside video acquisition (MFIpoint of care, and (3 the mean value of the MFIs determined in each individual vessel (MFIvessel by vessel. We hypothesized that the agreement between the MFIs is poor and that the MFIvessel by vessel better reflects the microvascular perfusion. For this purpose, we analyzed 100 videos from septic patients. In 25 of them, red blood cell (RBC velocity was also measured. There were wide 95% limits of agreement between MFIby quadrants and MFIpoint of care (1.46, between MFIby quadrants and MFIvessel by vessel (2.85, and between MFIby point of care and MFIvessel by vessel (2.56. The MFIs significantly correlated with the RBC velocity and with the fraction of perfused small vessels, but MFIvessel by vessel showed the best R2. Although the different methods for the calculation of MFI reflect microvascular perfusion, they are not interchangeable and MFIvessel by vessel might be better.

  2. A decomposition based on path sets for the Multi-Commodity k-splittable Maximum Flow Problem

    Gamst, Mette

    Switching. In the literature, the problem is solved to optimality using branch-and-price algorithms built on path-based Dantzig-Wolfe decompositions. This paper proposes a new branch-and-price algorithm built on a path set-based Dantzig-Wolfe decomposition. A path set consists of up to k paths, each...... carrying a certain amount of flow. The new branch-and-price algorithm is implemented and compared to the leading algorithms in the literature. Results for the proposed method are competitive and the method even has best performance on some instances. However, the results also indicate some scaling issues....

  3. A comparison of two methods for calculating CR (time constant) during studies of arterial blood flow in rats.

    Sasaoka, K; Ogawa, K


    Some of our earlier reports have dealt with experiments on the central caudal arteries of a series of anesthetized rats. The results of these experiments were expressed by a relationship derived from the Windkessel theory where f(t) = alpha dz(t)/dt + beta z(t). When this theory is used, the measured blood flow forms f(t) and calculated wave forms alpha dz(t)/dt + beta z(t) agree closely. In these studies, we discovered that, when blood flow adz(t)/dt + beta z(t) agree closely. In these studies, we discovered that, when blood flow decreases, CR (time constant tau, the product of the blood vessel compliance C and the peripheral resistance R) values increase and vary widely. In the present study, 1) we investigated changes in CR when blood flow increases, and, 2) the method of least squares was used in calculating the formula given above. We achieved a better conformity between measured blood flow and calculated blood flow and perceived a clearer relationship between mean blood flow and CR than when they were calculated by the old method.

  4. Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments

    Escudier, M.P.; Smith, S. [Department of Engineering, Mechanical Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom); Oliveira, P.J. [Departamento de Engenharia Electromecanica, Universidade da Beira Interior, Rua Marques D' Avila e Boloma, 6200 Covilha (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)


    Experimental data are reported for fully developed laminar flow of a shear-thinning liquid through both a concentric and an 80% eccentric annulus with and without centrebody rotation. The working fluid was an aqueous solution of 0.1% xanthan gum and 0.1% carboxymethylcellulose for which the flow curve is well represented by the Cross model. Comparisons are reported between numerical calculations and the flow data, as well as with other laminar annular-flow data for a variety of shear-thinning liquids previously reported in the literature. In general, the calculations are in good quantitative agreement with the experimental data, even in situations where viscoelastic effects, neglected in the calculations, would be expected to play a role. (orig.)

  5. A probabilistic calculation of load flow as a method for the evaluation of the impact of stochastic generators and consumers on the network flow; Probabilistische Leistungsflussberechnung als Methode zur Bewertung der Einfluesse stochastischer Erzeuger und Verbraucher auf die Netzbelastung

    Huehnerbein, Benjamin Rudolf


    The load flow situation has significantly changed in electric power systems throughout the deregulation of European electricity market and the development of renewable energy sources. In the past load profiles of transmission lines and transformers were only dependent on the customers power demand. Today it is a mixture of load curves, power feed in by renewables and power transits which affect the usage of the transmission system. This leads to a fluctuating utilisation with a certain probability for each state with respect to the stochastic character of the above influences. Knowledge of the utilisation is the precondition for an efficient dimensioning of the power system. For these specific requirements the probabilistic power flow calculation is introduced and further developed. The state variables of the power system are defined as random variables and the probability of each grid state is determined. Different types of network equations and calculation techniques, resulting from various assumptions and simplifications of the well-known power flow equations are compared. The solution is found by either convolution techniques or Monte-Carlo-Simulation. The mathematic models is completed by implementation of a balanced power generation as well as by the integration of a correlation approach. This allows more or less realistic behavior for the interaction of load and generation on the one hand and the concurrence of similar nodal powers on the other hand. The result is proven by a boundary load flow on the base of the exact load flow equations. This allows a comparison of the minimum and the maximum values between the linearised and the exact solution. As long as this deviation is known, the results of the probabilistic power flow can be used in power system evaluation. At least an approach for the combination of probabilistic power flow and reliability evaluation is outlined to determine the probability for overloading components for the reason of network

  6. Inference of Gene Flow in the Process of Speciation: An Efficient Maximum-Likelihood Method for the Isolation-with-Initial-Migration Model

    Costa, Rui J.; Wilkinson-Herbots, Hilde


    The isolation-with-migration (IM) model is commonly used to make inferences about gene flow during speciation, using polymorphism data. However, it has been reported that the parameter estimates obtained by fitting the IM model are very sensitive to the model’s assumptions—including the assumption of constant gene flow until the present. This article is concerned with the isolation-with-initial-migration (IIM) model, which drops precisely this assumption. In the IIM model, one ancestral population divides into two descendant subpopulations, between which there is an initial period of gene flow and a subsequent period of isolation. We derive a very fast method of fitting an extended version of the IIM model, which also allows for asymmetric gene flow and unequal population sizes. This is a maximum-likelihood method, applicable to data on the number of segregating sites between pairs of DNA sequences from a large number of independent loci. In addition to obtaining parameter estimates, our method can also be used, by means of likelihood-ratio tests, to distinguish between alternative models representing the following divergence scenarios: (a) divergence with potentially asymmetric gene flow until the present, (b) divergence with potentially asymmetric gene flow until some point in the past and in isolation since then, and (c) divergence in complete isolation. We illustrate the procedure on pairs of Drosophila sequences from ∼30,000 loci. The computing time needed to fit the most complex version of the model to this data set is only a couple of minutes. The R code to fit the IIM model can be found in the supplementary files of this article. PMID:28193727

  7. Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy).

    Lombardo, L.


    This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north-eastern sector of Sicily (southern Italy), as test site. On 1/10/2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence-only-based statistical method was applied to obtain susceptibility models capable of distinguish future activation sites of debris flow and debris slide, which where the main source failure mechanisms for flow or avalanche type propagation. The set of predictors used in this experiment comprised primary and secondary topographic attributes, derived by processing a high resolution digital elevation model, CORINE land cover data and a set of vegetation and mineral indices obtained by processing multispectral ASTER images. All the selected data sources are dated before the disaster. A spatially random partition technique was adopted for validation, generating fifty replicates for each of the two considered movement typologies in order to assess accuracy, precision and reliability of the models. The debris slide and debris flow susceptibility models produced high performances with the first type being the best fitted. The evaluation of the probability estimates around the mean value for each mapped pixel shows an inverted relation, with the most robust models corresponding to the debris flows. With respect to the role of each predictor within the modelling phase, debris flows appeared to be primarily controlled by topographic attributes whilst the debris slides were better explained by remotely sensed derived indices, particularly by the occurrence of previous wildfires across the slope. The overall excellent performances of the two models suggest promising perspectives for

  8. [Calculation of thermally caused blood flow changes in a finger using thermographic skin temperature measurements (author's transl)].

    Hundhausen, E; Theves, B


    The skin temperature changes of the third finger were registered with the help of an infrared camera during a cooling process of the hand and forearm of a male, 38-years-old subject. Using the system of formulae, explained in previous publications [4-7], it was possible to describe the blood flow changes in the finger. The results are: 1. A formula for the "pseudo thermal conductivity" (material constant of the thermal conductivity plus the convective contribution), which is similar to the formula used for theat release of the whole body [4], describes well the experimental results. The "pseudo thermal conductivity" is a measure for the specific blood flow and can be converted into it. 2. The "pseudo thermal conductivity" has a local maximum. 3. The position of the maximum is independent of the tissue temperature. The anatomical properties of the finger seem to determine the position of the maximum. 4. The maximum of the "pseudo thermal conductivity"--and therefore the maximal blood flow--increases stronger than linearly with the tissue temperature.

  9. Numerical calculation of the transonic flow past a swept wing. [FLO 22

    Jameson, A; Caughey, D A


    A numerical method is presented for analyzing the transonic potential flow past a lifting, swept wing. A finite-difference approximation to the full potential equation is solved in a coordinate system which is nearly conformally mapped from the physical space in planes parallel to the symmetry plane, and reduces the wing surface to a portion of one boundary of the computational grid. A coordinate invariant, rotated difference scheme is used, and the difference equations are solved by relaxation. The method is capable of treating wings of arbitrary planform and dihedral, although approximations in treating the tips and vortex sheet make its accuracy suspect for wings of small aspect ratio. Comparisons of calculated results with experimental data are shown for examples of both conventional and supercritical transport wings. Agreement is quite good for both types, but it was found necessary to account for the displacement effect of the boundary layer for the supercritical wing, presumably because of its greater sensitivity to changes in effective geometry.

  10. Accurate calculation of Stokes drag for point-particle tracking in two-way coupled flows

    Horwitz, Jeremy


    In this work, we propose and test a method for calculating Stokes drag applicable to particle-laden fluid flows where two-way momentum coupling is important. In the point-particle formulation, particle dynamics are coupled to fluid dynamics via a source term that appears in the respective momentum equations. When the particle Reynolds number is small and the particle diameter is smaller than the fluid scales, it is common to approximate the momentum coupling source term as the Stokes drag. The Stokes drag force depends on the difference between the undisturbed fluid velocity evaluated at the particle location, and the particle velocity. However, owing to two-way coupling, the fluid velocity is modified in the neighborhood of a particle, relative to its undisturbed value. This causes the computed Stokes drag force to be underestimated in two-way coupled point-particle simulations. We develop estimates for the drag force error as function of the particle size relative to the grid size. We then develop a correct...

  11. Generalization of Martinelli-Nelson method of pressure drop calculation in two-phase flows

    Trela Marian


    Full Text Available A simple method of pressure drop calculation for two-phase flows of different fluids during convective boiling in channels is presented. It is based on experimental data of pressure drop multiplier R and void fraction φ obtained by Martinelli and Nelson for boiling of water in vertical tubes. The data cover the whole two-phase domain from ambient to critical pressure. Unfortunately, they have been presented in graphical forms. The first step in the procedure proposed in the paper was a transformation of the graphical data into analytical formulas which contain such dimensionless quantities as steam quality x, Martinelli parameter X, multiplier Φl2 and dimensionless coefficients D, m, E and k. In the second step, simple analytical formulas were determined to express the dimensionless coefficients as a function of physical property parameter K. In this way two simple analytical expressions for the multiplier R and void fraction φ were obtained. They are in analytical dimensionless form so they may be used directly for different fluids, not only for water. This is the main advantage of the proposed method.




    Full Text Available The purpose of the paper is to identify and locate some species related to habitats from Pricop-Huta-Certeze and Upper Tisa Natura 2000 Protected Areas (PHCTS and to determine if they are vulnerable to risks induced by maximum flow phases. In the first chapter are mentioned few references about the morphometric parameters of the hydrographic networks within the study area, as well as some references related to the maximum flow phases frequency. After the second chapter, where methods and databases used in the study are described, we proceed to the identification of the areas that are covered by water during flood, as well as determining the risk level related to these areas. The GIS modeling reveals small extent of the flood high risk for natural environment related to protected areas and greater extent for the anthropic environment. The last chapter refers to several species of fish and batrachia, as well as to those amphibious mammals identified in the study area that are vulnerable to floods (high turbidity effect, reduction of dissolved oxygen quantity, habitats destruction etc..

  13. Ecological hydraulic radius model to calculate instream flow requirements for transporting sediment in the western water transfer region


    Transporting sediment is a natural function of the river. To maintain the normal evolution of the river certain amount of water flow is required, which is called the instream flow requirements for transporting sediment (IFRTS). We defined the permitting flow velocity by the conception of IFRTS, and also put forward the ecological hydraulic radius model (EHRM) to estimate IFRTS. The calculating process of EHRM is explained by the example of Daofu Hydrological Station on Xianshui branch of Yalong River in the west line first-stage construction of South-North Water Transfer Project. The result shows that the IFRTS occupied 29.7%―59.5% of annual mean discharge in flood season, the average of IFRTS was about 100.2 m3/s during 1966―1987, it is close to the IFRTS 90 m3/s calculated by IFRTS conception. Hence, it is feasible to use EHRM to calculate IFRTS.

  14. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges

    Möhlenkamp Stefan


    Full Text Available Abstract Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD. The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal

  15. Quasi-three dimensional hydraulic design and performance calculation of high specific speed mixed-flow pump

    Su, M.; Zhang, Y. X.; Zhang, J. Y.; Hou, H. C.


    According to the basic parameters of 211-80 high specific speed mixed-flow pump, based on the quasi-three dimensional flow theory, the hydraulic design of impeller and its matching spaced guide vanes for high specific speed mixed flow pump was completed, in which the iterative calculation of S 1, S 2 stream surfaces was employed to obtain meridional flow fields and the point-by-point integration method was employed to draw blade camber lines. Blades are thickened as well as blade leading edges are smoothed in the conformal mapping surface. Subsequently the internal fields of the whole flow passage of the designed pump were simulated by using RANS equations with RNG k-ε two-equation turbulent model. The results show that, compared with the 211-80 model, the hydraulic efficiency of the designed pump at the optimal flow rate increases 9.1%. The hydraulic efficiency of designed pump in low flow rate condition (78% designed flow rate) increases 6.46%. The hydraulic efficiency in high flow rate areas increases obviously and there is no bad phenomenon of suddenly decrease of hydraulic efficiency in model pump. From the distributions of velocity and pressure fields, it can be seen that the flow in impeller is uniform and the increase of pressure is gentle. There are no obvious impact phenomenon on impeller inlet and obvious wake shedding vortex phenomenon from impeller outlet to guide vanes inlet.

  16. Calculating Method for Influence of Material Flow on Energy Consumption in Steel Manufacturing Process

    YU Qing-bo; LU Zhong-wu; CAI Jiu-ju


    From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.

  17. Numerical method for calculation of 3D viscous turbomachine flow taking into account stator/rotor unsteady interaction

    Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)


    The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.

  18. A penalization method for calculating the flow beneath travelling water waves of large amplitude

    Constantin, Adrian; Scherzer, Otmar


    A penalization method for a suitable reformulation of the governing equations as a constrained optimization problem provides accurate numerical simulations for large-amplitude travelling water waves in irrotational flows and in flows with constant vorticity.

  19. A new technique for calculating reentry base heating. [analysis of laminar base flow field of two dimensional reentry body

    Meng, J. C. S.


    The laminar base flow field of a two-dimensional reentry body has been studied by Telenin's method. The flow domain was divided into strips along the x-axis, and the flow variations were represented by Lagrange interpolation polynomials in the transformed vertical coordinate. The complete Navier-Stokes equations were used in the near wake region, and the boundary layer equations were applied elsewhere. The boundary conditions consisted of the flat plate thermal boundary layer in the forebody region and the near wake profile in the downstream region. The resulting two-point boundary value problem of 33 ordinary differential equations was then solved by the multiple shooting method. The detailed flow field and thermal environment in the base region are presented in the form of temperature contours, Mach number contours, velocity vectors, pressure distributions, and heat transfer coefficients on the base surface. The maximum heating rate was found on the centerline, and the two-dimensional stagnation point flow solution was adquate to estimate the maximum heating rate so long as the local Reynolds number could be obtained.

  20. Singularity method applied to the classical Helmholtz flow coupling procedure with boundary layer calculation

    Legallais, Ph.; Hureau, J.


    A free streamline wake model based on singularity distribution is proposed in order to treat the flow past an arbitrary curved obstacle with Helmholtz's wake. The slipping condition gives the vortex distribution on the obstacle and the steady evolution condition is written on the first part of the free streamlines in order to find their locations, the geometry of the second part being fixed by an asymptotic study. The validity of the method is judged by comparing results with those obtained by a formulation, to be used as a standard, which encloses conformal mapping and is an adaptation of Levi-Civita's method. Good agreement leads us to envisage extending the method to multi-element systems. Correlatively, we show a coupling procedure with a boundary layer calculation. Applied to the circular cylinder, it allows to bring out the existence of sub-and supercritical ranges. Although the latter is well predicted for the separation angle and the drag coefficient, the former is only approximately approached, with an overestimate of the critical Reynolds number as an immediate consequence. Nous mettons en œuvre une méthode de singularités pour calculer l'écoulement autour d'un obstacle à paroi courbe quelconque en présence d'un sillage de Helmholtz. La répartition de densité tourbillonnaire sur la paroi baignée de l'obstacle est calculée par l'application de la condition de glissement. La condition d'évolution stationnaire est écrite sur la première partie des lignes de glissement afin de déterminer leur position, la géométrie de la seconde partie provenant d'une étude asymptotique. Nous jugeons de la validité de la méthode en comparant les résultats avec ceux obtenus par une méthode étalon utilisant la transformation conforme, et qui est une adaptation de la méthode de Levi-Civita. Le bon accord entre les deux nous permet d'envisager l'extension de la méthode au cas multi-obstacles. Nous proposons ensuite une procédure de couplage avec un calcul

  1. Off-design computer code for calculating the aerodynamic performance of axial-flow fans and compressors

    Schmidt, James F.


    An off-design axial-flow compressor code is presented and is available from COSMIC for predicting the aerodynamic performance maps of fans and compressors. Steady axisymmetric flow is assumed and the aerodynamic solution reduces to solving the two-dimensional flow field in the meridional plane. A streamline curvature method is used for calculating this flow-field outside the blade rows. This code allows for bleed flows and the first five stators can be reset for each rotational speed, capabilities which are necessary for large multistage compressors. The accuracy of the off-design performance predictions depend upon the validity of the flow loss and deviation correlation models. These empirical correlations for the flow loss and deviation are used to model the real flow effects and the off-design code will compute through small reverse flow regions. The input to this off-design code is fully described and a user's example case for a two-stage fan is included with complete input and output data sets. Also, a comparison of the off-design code predictions with experimental data is included which generally shows good agreement.

  2. Calculations of Internal Ballistic Flow with a Projectile to Wall Gap


    of the flow and force the central part of the gap flow to become supersonic. See Figure 19. An additional process, just starting to appear at this...0.3 ms the gap flow settles down to a balance between a nearly fully developed boundary layer and a weak pressure gradient. As Figure 26 shows flow...eddy is stronger here because the gap flow is downward. 71 TIME = .I9305E-02 V = 529.3 30.01 20.0 10.01 0.0 4i - 0.0 M

  3. Three-dimensional flow calculations inside SSME GGGT first stage blade rows

    Hah, Chunill; Nash, Steven; Swartwout, Gregory


    A numerical analysis of the first stage of the Space Shuttle Main Engine (SSME) GGGT was conducted using a 3-D Reynolds averaged Navier-Stokes flow solver. This turbine stage was designed to improve both aerodynamic efficiency and durability. The blade has an unconventional shape with a large blade thickness. No experimental data is available to verify the computational results. The objective of the current study is to analyze this turbine blade stage with a well established Navier-Stokes computational method in order to determine if the turbine is operating in the subsonic flow regime and if these are any significant separated flow regions. The stage was analyzed in a steady state flow condition. The inlet vane was analyzed with the flow conditions from the axisymmetric entire stage solution. The viscous flow solution of the first vane is used as the inlet flow condition for the rotor.

  4. Numerical calculation of flow and heat transfer process in the new-type external combustion swirl-flowing hot stove

    Shuchen Zhang; Hongzhi Guo; Xiangjun Liu; Zhangping Cai; Xiancheng Gao; Sidong Xu


    It is clarified that the important method to improve the blast temperature of the small and the middle blast furnaces whose production is about two-thirds of total sum of China from 1000℃ to 1250-1300℃ is to preheat both their combustion-supporting air and coal gas. The air temperature of blast furnaces can be reached to 1250-1300℃ by burning single blast furnace coal gas if high speed burner is applied to blast furnaces and new-type external combustion swirl-flowing hot stove is used to preheat their combustion-supporting air. The computational results of the flow and heat transfer processions in the bot stove prove that the surface of the bed of the thernal storage balls there have not eccentric flow and the flow field and temperature field distribution is even. The computational results of the blast temperature distribution are similar to those determination experiment data. The numerical results also provide references for developing and designing the new-type external combustion swirl-flowing hot stoves.

  5. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    Walitt, L.


    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  6. The edge-based face element method for 3D-stream function and flux calculations in porous media flow

    Zijl, W.; Nawalany, M.


    We present a velocity-oriented discrete analog of the partial differential equations governing porous media flow: the edge-based face element method. Conventional finite element techniques calculate pressures in the nodes of the grid. However, such methods do not satisfy the requirement of flux cont

  7. AC-DC integrated load flow calculation for variable speed offshore wind farms

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede


    This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....

  8. Short-term variations in core surface flow resolved from an improved method of calculating observatory monthly means

    Olsen, Nils; Whaler, K. A.; Finlay, Chris


    Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field and the underlying core flow. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet...... as well as disturbed) and all local times (day and night) may result in contributions from external (magnetospheric and ionospheric) origin in the (ordinary, omm) monthly means. Such contamination makes monthly means less favourable for core studies. We calculated revised monthly means (rmm...... a secular variation spherical harmonic model. The main field is specified by the CHAOS-4 model. Data from up to 128 observatories between 1997 and 2013 were used to calculate 185 flow models from the omm and rmm, for each possible set of three consecutive months. The full 3x3 (non-diagonal) data covariance...

  9. Maximum Fidelity

    Kinkhabwala, Ali


    The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...

  10. Speeding up the flash calculations in two-phase compositional flow simulations - The application of sparse grids

    Wu, Yuanqing


    Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from the reservoir simulation. So instead of doing a flash calculation in each time step of the simulation, we just generate a sparse grid approximation of all possible results of the flash calculation before the reservoir simulation. Then we evaluate the constructed surrogate model to approximate the values of the flash calculation results from this surrogate during the simulations. The execution of the true flash calculation has been shifted from the online phase during the simulation to the offline phase before the simulation. Sparse grids are known to require only few unknowns in order to obtain good approximation qualities. In conjunction with local adaptivity, sparse grids ensure that the accuracy of the surrogate is acceptable while keeping the memory usage small by only storing a minimal amount of values for the surrogate. The accuracy of the sparse grid surrogate during the reservoir simulation is compared to the accuracy of using a surrogate based on regular Cartesian grids and the original flash calculation. The surrogate model improves the speed of the flash calculations and the simulation of the whole reservoir. In an experiment, it is shown that the speed of the online flash calculations is increased by about 2000 times and as a result the speed of the reservoir simulations has been enhanced by 21 times in the best conditions.

  11. Calculation of temperature field in gas flow with internal heat source

    Gerasimov Alexander V.


    Full Text Available Gas flow sequentially moving through three zones (input z1 of a cylindrical channel was considered. Analytical solutions taking into account the influence of heat source limitation in the axial direction and intensity of air flow in this direction on thermal balance were obtained.

  12. Comparison of different methods for the calculation of the microvascular flow index

    M.O. Pozo (Mario); V.S. Kanoore Edul (Vanina ); C. Ince (Can); A. Dubin (Arnaldo)


    textabstractThe microvascular flow index (MFI) is commonly used to semiquantitatively characterize the velocity of microcirculatory perfusion as absent (0), intermittent (1), sluggish (2), or normal (3). There are three approaches to compute MFI: (1) the average of the predominant flow in each of

  13. Calculating residual flows through a multiple-inlet system: the conundrum of the tidal period

    Duran Matute, M.; Gerkema, T.


    The concept of residual, i.e., tidally-averaged,flows through a multiple inlet system is reappraised. Theevaluation of the residual through-flow depends on the timeinterval over which is integrated, in other words, on how onedefines the tidal period. It is demonstrated that this definitionis

  14. A modified nodal pressure method for calculating flow distribution in hydraulic circuits for the case of unconventional closing relations

    Egor M. Mikhailovsky


    Full Text Available We proposed a method for numerically solving the problem of flow distribution in hydraulic circuits with lumped parameters for the case of random closing relations. The conventional and unconventional types of relations for the laws of isothermal steady fluid flow through the individual hydraulic circuit components are studied. The unconventional relations are presented by those given implicitly by the flow rate and dependent on the pressure of the working fluid. In addition to the unconventional relations, the formal conditions of applicability were introduced. These conditions provide a unique solution to the flow distribution problem. A new modified nodal pressure method is suggested. The method is more versatile in terms of the closing relation form as compared to the unmodified one, and has lower computational costs as compared to the known technique of double-loop iteration. The paper presents an analysis of the new method and its algorithm, gives a calculated example of a gas transportation network, and its results.

  15. Calculation of the drag and heat transfer from a sphere in the gas flow in a cylindrical channel

    Simakov, N. N.


    A numerical experiment on the simulation of heat transfer from a sphere to a gas flow in a cylindrical channel in the Stokes and transient flow regimes has been described. Radial and axial profiles of the gas temperature and the dependences of drag coefficient C d of the body and Nusselt number Nu on Reynolds number Re have been calculated and analyzed. The problem of the influence of the early drag crisis for a sphere on its heat transfer to the gas flow has been considered. The estimation of this phenomenon has shown that the early drag crisis of the sphere in a strongly turbulent flow causes a reduction in heat transfer from the sphere to the gas by three to six times (in approximately the same proportion as for its drag coefficient).

  16. A calculation procedure for viscous flow in turbomachines, volume 3. [computer programs

    Khalil, I.; Sheoran, Y.; Tabakoff, W.


    A method for analyzing the nonadiabatic viscous flow through turbomachine blade passages was developed. The field analysis is based upon the numerical integration of the full incompressible Navier-Stokes equations, together with the energy equation on the blade-to-blade surface. A FORTRAN IV computer program was written based on this method. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The flow may be axial, radial or mixed and there may be a change in stream channel thickness in the through-flow direction. The inputs required for two FORTRAN IV programs are presented. The first program considers laminar flows and the second can handle turbulent flows. Numerical examples are included to illustrate the use of the program, and to show the results that are obtained.


    Weiming WU; Sam S. Y. WANG


    The helical flow significantly affects the flow, sediment transport and morphological evolution in curved channels. A semi-empirical formula is proposed to determine the cross-stream distribution of the helical flow intensity in the developed regions of a channel bend. It is then used to evaluate the dispersion terms in the depth-averaged 2-D momentum equations and suspended-load transport equation as well as the bed-load transport angle, thus enhancing the depth-averaged 2-D model to account for the effect of helical flow. The tests in several experimental and field cases show that the enhanced depth-averaged 2-D model can much more reasonably predict the shifting of main flow from inner bank to outer bank, the erosion along outer bank and deposition along inner bank than the depth-averaged 2-D model without considering this effect.

  18. Flow of Compressible Fluids through Pipes with constant cross section: Calculation Algorithms for Ideal Gases

    Armijo C., Javier; Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú


    We are proposing algoritms to solve problems of flow of an ideal gas in a pipe of constant section. With the compressible flow equations we have determined the pressure and velocity profile for both isothermal and adiabatic flow of air and methane. Se presentan algoritmos para resolver los problemas de flujo de fluidos de gases ideales a través de tubos de sección transversal constante. Con las ecuaciones de flujo compresible se determinan los perfiles de presión y velocidad, en flujo isot...

  19. Calculation of convective heat transfer on highly blunt bodies at flow incidence

    Li, C. P.


    An implicit finite-difference code is used to study three-dimensional viscous heat-conducting flows over the forebody of hypersonic vehicles. In the method, adaptive grids are generated to the shock and body contour, and local flow gradients and total enthalpy are used to control numerical dissipation. Typical axisymmetric configurations of a sphere, ellipsoid, and flat-face disk are considered, along with the cases of a blunt 70-deg cone at 0 and 20 deg flow incidences and an asymmetric 60-deg cone raked off at a 73-deg angle.

  20. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    Chang, S.C.


    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane.

  1. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    Hammond, L A; Care, C M; Stevens, A


    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 sup 5. In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow.

  2. A Mathematical Scheme for Calculating Flows and Pressure Drops in Lit and Unlit Cigarettes

    Dwyer RW


    Full Text Available A computational methodology is presented for evaluating the flows and pressure drops in both lit and unlit cigarettes. The flows and pressure drops across rows of tipping-paper perforations are considered explicitly, as are the locations and relative sizes of the ventilation holes. The flows and pressure drops across air-permeable cigarette papers are included. The influence of plugwrappermeabilities on filter ventilation is developed. Lit cigarettes are mimicked by adding a “coal” pressure drop to the upstream end of the cigarette. The computational scheme is used to predict the effects of tobacco-rod length, puff volume, and vent blocking on cigarette ventilation and pressure drop. A derivation of the pressure-drop and flow equations for a cigarette with an upstream pressure drop is included in an appendix.

  3. Analytic Back Calculation of Debris Flow Damage Incurred to a Masonry Building: The Case of Scaletta Zanclea 2009 Event

    Soleimankhani Hossein


    Full Text Available In an attempt to do a back analysis of the damages caused to a nineteenth century masonry structure due to the October 2009 flash flood/debris flow event in Scaletta Zanclea, the flood discharge hydrograph is reconstructed in the ungauged conditions. The hydrograph for the solid discharge is then estimated by scaling up the liquid volume to the estimated debris volume. The debris flow diffusion is simulated by solving the differential equations for a single-phase 2D flow employing triangular mesh elements, taking into account also the channelling of the flow through the buildings. The damage to the building is modelled, based on the maximum hydraulic actions caused by the debris flow, using 2D finite shell elements to model the building, boundary conditions provided by the openings, floor slab, orthogonal wall panels, and the foundation. The reconstruction of the event and the damages to the case-study building confirms the location of the damages induced by the event.

  4. Calculation of sample problems related to two-phase flow blowdown transients in pressure relief piping of a PWR pressurizer

    Shin, Y.W.; Wiedermann, A.H.


    A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients.

  5. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    M. Malík


    Full Text Available This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect. A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  6. On calculation of quasi-two-dimensional divergence-free projections for visualization of three-dimensional incompressible flows

    Gelfgat, Alexander


    A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field on three coordinate planes was recently proposed. The projections were calculated using divergence-free Galerkin bases, which resulted in the whole procedure being complicated and CPU-time consuming. Here we propose an alternative way based on the Chorin projection combined with a SIMPLE-like iteration. The approach proposed is much easier in realization, allows...

  7. A Mixed Finite Volume Element Method for Flow Calculations in Porous Media

    Jones, Jim E.


    A key ingredient in the simulation of flow in porous media is the accurate determination of the velocities that drive the flow. The large scale irregularities of the geology, such as faults, fractures, and layers suggest the use of irregular grids in the simulation. Work has been done in applying the finite volume element (FVE) methodology as developed by McCormick in conjunction with mixed methods which were developed by Raviart and Thomas. The resulting mixed finite volume element discretization scheme has the potential to generate more accurate solutions than standard approaches. The focus of this paper is on a multilevel algorithm for solving the discrete mixed FVE equations. The algorithm uses a standard cell centered finite difference scheme as the 'coarse' level and the more accurate mixed FVE scheme as the 'fine' level. The algorithm appears to have potential as a fast solver for large size simulations of flow in porous media.

  8. An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations

    João Luiz F. Azevedo


    Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.

  9. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations.

    Braun, Sabine; Schindler, Christian; Leuzinger, Sebastian


    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model.

  10. User's guide for the computer code COLTS for calculating the coupled laminar and turbulent flow over a Jovian entry probe

    Kumar, A.; Graeves, R. A.


    A user's guide for a computer code 'COLTS' (Coupled Laminar and Turbulent Solutions) is provided which calculates the laminar and turbulent hypersonic flows with radiation and coupled ablation injection past a Jovian entry probe. Time-dependent viscous-shock-layer equations are used to describe the flow field. These equations are solved by an explicit, two-step, time-asymptotic finite-difference method. Eddy viscosity in the turbulent flow is approximated by a two-layer model. In all, 19 chemical species are used to describe the injection of carbon-phenolic ablator in the hydrogen-helium gas mixture. The equilibrium composition of the mixture is determined by a free-energy minimization technique. A detailed frequency dependence of the absorption coefficient for various species is considered to obtain the radiative flux. The code is written for a CDC-CYBER-203 computer and is capable of providing solutions for ablated probe shapes also.

  11. Injector Nozzle Flow Model and Its Effects on the Calculations of High Pressure Sprays

    WEI Ming-rui; LIU Yong-chang; WEN Hua; ZHANG Yue-heng


    This paper discusses the flowing process inside a nozzle, especially the formation mechanism of cavitations within the nozzle and puts forward a nozzle flow model, which takes account of the injection conditions and nozzle geometry. By the model being implemented to the KIVA codes, the spray characteristics (e.g., spray penetration and cone angle) of diesel and dimethyl ether (DME) are simulated. The comparisons between the computational and experimental results are performed, which show that the liquid spray characteristics could be more truly demonstrated by considering the existence of the cavitations.

  12. A κ-ε Turbulence Model Considering Compressibility in Three-Dimensional Transonic Turbulent Flow Calculation


    Based on the standark κ-ε turbulence model,a new compressible κ-ε model considering the pressure expansion influence due to the compressibility of fluid is developed and aplied to the simulation of 3D transonic turbulent flows in a nozzle and a cascade.The Reynolds averaged N-S equations in generalized curvilinear coordinates are solved with implementation of the new model,the high resolution TVD scheme is used to discretize the convective terms.The numerical results show that the compressible κ-ε odel behaves well in the simulation of transonic internal turbulent flows.

  13. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations

    Braun, Sabine, E-mail: sabine.braun@iap.c [Institute for Applied Plant Biology, Sangrubenstrasse 25, CH-4124 Schoenenbuch (Switzerland); Schindler, Christian [Swiss Tropical and Public Health Institute, University of Basel, Socinstrasse 57, CH-4051 Basel (Switzerland); Leuzinger, Sebastian [Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstr. 16, 8092 Zuerich (Switzerland)


    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO{sub 3}SE model. - A method was developed to derive stomatal functions and ozone uptake calculation from sap flow.

  14. An algorithm for calculating unsteady flow with free surface; Ein Verfahren zur Berechnung instationaerer Stroemungen mit freier Oberflaeche

    Janetzky, B.


    A numerical model for the transient, free surface flow is implemented in a Finite-Element program for the unsteady calculation of incompressible flow with free surface. The program is used to calculate the flow in different components of a hydraulic turbine, the Pelton turbine. The movement of the fluid with free surface is described mathematically by introducing a partial differential equation for the volume fraction. This equation is simply a transport equation for f, i.e. the volume fraction is advected with the flow in time. The equations is solved numerically. (orig.) [German] Es wird ein Verfahren zur Modellierung von veraenderlichen, freien Oberflaechen vorgestellt und in einem Finite-Elemente-Programm zur numerischen Berechnung von instationaeren, inkompressiblen Stroemungen implementiert. Die veraenderliche, freie Oberflaeche wird mit einem Volume-Of-Fluid Ansatz erfasst. Zur Approximierung der freien Oberflaeche werden stueckweise konstante oder gestufte Verlaeufe im Element angesetzt. Es werden die Eigenschaften des Verfahrens an ausgewaehlten Beispielen mit freier Oberflaeche untersucht. Das erweiterte Programm wird auf instationaere Stroemungen mit freier Oberflaeche in einer hydraulischen Maschine, der Peltonturbine, angewandt. (orig.)

  15. Flow field calculation around the measuring part of a circulated flow tank for measurement; Keisokuyo kairyu suiso sokuteibu no ryujo keisan ni tsuite

    Nishimoto, H.; Ogura, R.; Yamazaki, R. [West Japan Fluid Engineering Co. Ltd., Nagasaki (Japan)


    In order to increase a fluid dynamic understanding of the flow field around the measuring part as for the leveling of free surface of the circulated flow tank for measurement, the velocity and free surface profile at the measuring part have been calculated by applying the numerical fluid dynamics. The results were compared with actual phenomena. For the average velocity at the measuring part, inclining angle of surpressing plate, and quantity of water in the tank, the flow field simulation by the numerical fluid dynamics has provided a qualitative agreement with actual phenomena. Especially, it was clarified from the viewpoint of numerical fluid dynamics that the fine adjustment of the inclining angle of surpressing plate and quantity of water in the tank greatly affect the creation of horizontal free surface at the measuring part. Furthermore, effects of the length of measuring part and the ceiling tilt angle of pipe conduit in the downstream of measuring part, which were hard to be analyzed experimentally from the viewpoint of facility and cost, were investigated. Consequently, it was clarified that there are critical length of the measuring part and optimum ceiling tilt angle in the leveling of horizontal free surface. Thus, an instruction for designing was obtained. The present flow field simulation was useful for the fluid dynamic understanding of the flow field at the measuring part, as for the leveling of horizontal free surface. 1 ref., 8 figs.

  16. CFD Calculations of the Air Flow Along a Cold Vertical Wall with an Obstacle

    Svidt, Kjeld; Heiselberg, Per

    This paper deals with the ability of Computational Fluid Dynamics to predict downdraught at a plane wall and at a wall with large obstacles. Quite simple boundary conditions were used in this study. Predictions of the main flow characteristics and the velocity levels in the occupied zone showed...

  17. Algorithm Preserving Mass Fraction Maximum Principle for Multi-component Flows%多组份流动质量分数保极值原理算法

    唐维军; 蒋浪; 程军波


    We propose a new method for compressible multi⁃component flows with Mie⁃Gruneisen equation of state based on mass fraction. The model preserves conservation law of mass, momentum and total energy for mixture flows. It also preserves conservation of mass of all single components. Moreover, it prevents pressure and velocity from jumping across interface that separate regions of different fluid components. Wave propagation method is used to discretize this quasi⁃conservation system. Modification of numerical method is adopted for conservative equation of mass fraction. This preserves the maximum principle of mass fraction. The wave propagation method which is not modified for conservation equations of flow components mass, cannot preserve the mass fraction in the interval [0,1]. Numerical results confirm validity of the method.%对基于质量分数的Mie⁃Gruneisen状态方程多流体组份模型提出了新的数值方法。该模型保持混合流体的质量、动量、和能量守恒,保持各组份分质量守恒,在多流体组份界面处保持压力和速度一致。该模型是拟守恒型方程系统。对该模型系统的离散采用波传播算法。与直接对模型中所有守恒方程采用相同算法不同的是,在处理分介质质量守恒方程时,对波传播算法进行了修正,使之满足质量分数保极值原理。而不作修改的算法则不能保证质量分数在[0,1]范围。数值实验验证了该方法有效。


    Weiming WU; Sam S.Y. WANG


    A depth-averaged 2-D numerical model for unsteady flow, salinity and cohesive sediment transport in estuaries is established using the finite volume method on the non-staggered, curvilinear grid. The convection terms are discretized by upwind schemes, the diffusion terms are by the central difference scheme, and the time derivative terms are by the three-time-level implicit scheme. The coupling of flow velocity and water level in the 2-D shallow water equations is achieved by the SIMPLEC algorithm with the Rhie and Chow's momentum interpolation method. The sediment model calculates the settling, deposition, erosion and transport of cohesive sediment, taking into account the influence of sediment size, sediment concentration, salinity and turbulence intensity on the flocculation of cohesive sediment. The flow model is first tested against the measurement data in the Tokyo Bay and San Francisco Bay, showing good agreements. And then, the entire model of flow, salinity and sediment transport is verified in the Gironde Estuary. The water elevation, flow velocity, salinity and sediment concentration are well predicted.

  19. Numerical Calculation of 3—D TUrbulent Flow in Curvilinear Coordinate Systems with Nostaggered Grids

    ZhangJingzhou; LiLiguo; 等


    The nonstaggered grids are adopted in this paper for solving the governing equations of flows in the curvilinear coordinate systems.The present paper demonstrates the basic reason and corresponding eliminating method for the pressure oscillation,and deduces the corrected expressions for the curvilinear velocity components in which and additional term representing the difference between the 1-δ and 2-δ difference values for the pressure gradient appears.Thus if an oscillatory pressure filed were arisen,the magnitude of this term would be large and would act to remove the oscillation;whereas for nonoscillatory field the magnitude of this term remains small.As examination for the numerical method 3-D turbulent flow in a square duct with 90° bend and 3-D turbulent mixing low in a lobed-mixer were calculatied respectively.The numerical results are satisfactory.

  20. Quantification of smoothing requirement for 3D optic flow calculation of volumetric images

    Bab-Hadiashar, Alireza; Tennakoon, Ruwan B.; de Bruijne, Marleen


    that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called 'just enough' smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D...... dynamic scans. To demonstrate the effect of 'just enough' smoothing, a robust 3D optic flow method with quantized local smoothing is presented, and the effect of local smoothing on the accuracy of motion estimation in dynamic lung CT images is examined using both synthetic and real image sequences......Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show...


    WANGSuo-fang; LILi-guo; WUGuo-chuan


    The flow and the temperature in the threestream mixing flow of the lobed nozzle mixer-ejector with double-wall diffuser are numerically investigated. The domain of computation is divided into sub-domalns according to the shapes of the double-plate and lobed nozzle. The three-dimensional body-fitted coordinated grids are generated respectively in these sub-domains by solving Lapalace's equations. Grids are dense on the boundaries and orthogonal at the lobe. The grids of all sub-domains compose the whole grid of the domain. In order to avoid the divergence of the computation as the serious non-orthogonality of the grid from the lobe, the co-located grid, SIMPLEC and Chen-Kim modified k-εturbulence model are applied. The great viscosity, the linear and simultaneous cooperation under-relaxation factors are used to solve the coupling of the fluid and solid. Results show that the air is ejected into the double wall section to form the cooling flow. The wall temperature of the double-wall diffuser is lower than that of the single-wall diffuser. The average wall temperature goes down as the diffuser angle increases at the range of 0~5°,otherwise, the result at the range of 5~10°is opposite.

  2. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.


    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  3. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A. [Sandia National Labs., Albuquerque, NM (United States)


    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty (infiltration, fracture-matrix connectivity, fracture frequency, and matrix air entry pressure or van Genuchten {alpha}); and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM)). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  4. 76 FR 1504 - Pipeline Safety: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure...


    ...: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure Using Record Evidence, and... facilities of their responsibilities, under Federal integrity management (IM) regulations, to perform... system, especially when calculating Maximum Allowable Operating Pressure (MAOP) or Maximum Operating...

  5. Calculations of Gas-liquid Equilibrium in Wellbore with High Carbon dioxide Flow

    Zhang, Jiaming; Wu, Xiaodong; Wang, Bo; Liu, Kai; Gao, Yue


    Carbon dioxide injection not only enhances the oil recovery dramatically, but also it will reduce the greenhouse effect, therefore, Carbon dioxide injection technique is applied extensively. During the process of carbon dioxide displacement, when carbon dioxide breaks though into oil production wells, carbon dioxide content will impacts the phase state and physical properties of the mixed liquor in the wellbore, as a result, it will affect the calculation of temperature and pressure in oil production wells. Applying the conventional black-oil model to calculate the phase state of the miscible fluids is unacceptable. To tackle the problem, this paper uses the gas-liquid flash theory and component model to program software, so that the phase state (gas, liquid or gas-liquid) and physical properties of the mixed liquor (including hydrogen sulfide, carbon dioxide and hydrocarbon) under initial conditions is calculated, moreover, the impact of carbon dioxide content on the physical properties(mainly including density, viscosity, specific heat at const pressure, surface tension, etc) of mixed liquor in oil production wells is analyzed in this paper. The comparison of the results shows that this model can meet the engineering needs with high accuracy.

  6. A Study of the Conditions of Maximum Filtration Efficiency for a HGMF-Axial Magnetic Filter Cell With Bounded Flow Field

    Badescu, V.; Murariu, V.; Rotariu, O; Rezlescu, N.


    The theory of magnetic particles′ capture on a HGMF-axial magnetic filter cell with bounded flow field is presented. The equations of particle motion for both potential and laminar flow are obtained. By analytical solving of these equations, the trajectories of particles are established. The flow velocity of the fluid suspension for the case of potential flow is set equal with the velocity averaged across the tube section for the laminar flow. Thus, it is possible to make a comparison between...

  7. A physical approach of the short-term wind power prediction based on CFD pre-calculated flow fields

    LI Li; LIU Yong-qian; YANG Yong-ping; HAN Shuang; WANG Yi-mei


    A physical approach of the wind power prediction based on the CFD pre-calculated flow fields is proposed in this paper.The flow fields are obtained based on a steady CFD model with the discrete inflow wind conditions as the boundary conditions,and a database is established containing the important parameters including the inflow wind conditions,the flow fields and the corresponding wind power for each wind turbine.The power is predicted via the database by taking the Numerical Weather Prediction (NWP)wind as the input data.In order to evaluate the approach,the short-term wind power prediction for an actual wind farm is conducted as an example during the period of the year 2010.Compared with the measured power,the predicted results enjoy a high accuracy with the annual Root Mean Square Error (RMSE) of 15.2% and the annual MAE of 10.80%.A good performance is shown in predicting the wind power's changing trend.This approach is independent of the historical data and can be widely used for all kinds of wind farms including the newly-built wind farms.At the same time,it does not take much computation time while it captures the local air flows more precisely by the CFD model.So it is especially practical for engineering projects.

  8. On calculation of quasi-two-dimensional divergence-free projections for visualization of three-dimensional incompressible flows

    Gelfgat, Alexander


    A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field on three coordinate planes was recently proposed. The projections were calculated using divergence-free Galerkin bases, which resulted in the whole procedure being complicated and CPU-time consuming. Here we propose an alternative way based on the Chorin projection combined with a SIMPLE-like iteration. The approach proposed is much easier in realization, allows for faster computations, and can be generalized for arbitrary curvilinear orthogonal coordinates. To illustrate the visualization method, examples of flow visualization in cylindrical and spherical coordinates, as well as post-processing of experimental 3D-PTV data are presented.

  9. Aerodynamic design by jointly applying S2 flow surface calculation and modern optimization methods on multistage axial turbine

    Honglei ZHAO; Songtao WANG; Wanjin HAN; Guotai FENG


    A three-stage axial turbine was redesigned by jointly applying S2 flow surface direct problem calculation methods and multistage local optimization methods. A genetic algorithm and artificial neural network were jointly adopted during optimization. A three-dimensional viscosity Navier-Stokes equation solver was applied for flow computation. H-O-H-topology grid was adopted as computation grid, that is, an H-topology grid was adopted for inlet and outlet segment, whereas an O-topology grid was adopted for stator zone and rotor zone. Through the optimization design, the total efficiency increases 1.1%, thus indicating that the total performance is improved and the design objective is achieved.

  10. Application of the high-resolution Godunov method to the multi-fluid flow calculations

    Bai Jing-Song; Li Ping; Zhang Zhan-Ji; Hua Jing-Song; Tan Hua


    In this paper, we have numerically solved the multi-fluid problems using an operator-split two-step high-resolution Godunov PPM (parabolic piecewise method) for the flow in complex geometries. By using the front capturing method,the PPM integrator captures the interface in the solution process. The basic multi-fluid integrator is coupled to a Cartesian grid algorithm where a VOF (volume of fluid) representation of the fluid interface is also used. As an application of this method, we test the 2D interfacial advection example and simulate an experimental hypervelocity launcher model from Sandia National Laboratories. The computational design of the hypervelocity launcher is also given in the paper.

  11. Equivalent Method of Integrated Power Generation System of Wind, Photovoltaic and Energy Storage in Power Flow Calculation and Transient Simulation


    The integrated power generation system of wind, photovoltaic (PV) and energy storage is composed of several wind turbines, PV units and energy storage units. The detailed model of integrated generation is not suitable for the large-scale powe.r system simulation because of the model's complexity and long computation time. An equivalent method for power flow calculation and transient simulation of the integrated generation system is proposed based on actual projects, so as to establish the foundation of such integrated system simulation and analysis.

  12. Theoretical and numerical approaches to the forward problem and sensitivity calculation of a novel contactless inductive flow tomography (CIFT)

    Yin, W.; Peyton, A. J.; Stefani, F.; Gerbeth, G.


    A completely contactless flow measurement technique based on the principle of EM induction measurements—contactless inductive flow tomography (CIFT)—has been previously reported by a team based at Forschungszentrum Dresden-Rossendorf (FZD). This technique is suited to the measurement of velocity fields in high conductivity liquids, and the possible applications range from monitoring metal casting and silicon crystal growth in industry to gaining insights into the working of the geodynamo. The forward problem, i.e. calculating the induced magnetic field from a known velocity profile, can be described as a linear relationship when the magnetic Reynolds number is small. Previously, an integral equation method was used to formulate the forward problem; however, although the sensitivity matrices were calculated, they were not explicitly expressed and computation involved the solution of an ill-conditioned system of equations using a so-called deflation method. In this paper, we present the derivation of the sensitivity matrix directly from electromagnetic field theory and the results are expressed very concisely as the cross product of two field vectors. A numerical method based on a finite difference method has also been developed to verify the formulation. It is believed that this approach provides a simple yet fast route to the forward solution of CIFT. Furthermore, a method for sensor design selection based on eigenvalue analysis is presented.

  13. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil


    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  14. Computer quantification of “angle of collapse” on maximum expiratory flow volume curve for diagnosing asthma-COPD overlap syndrome

    Wang W


    Full Text Available Wei Wang, Mengshuang Xie, Shuang Dou, Liwei Cui, Wei Xiao Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People’s Republic of China Background: In a previous study, we demonstrated that asthma patients with signs of emphysema on quantitative computed tomography (CT fulfill the diagnosis of asthma-COPD overlap syndrome (ACOS. However, quantitative CT measurements of emphysema are not routinely available for patients with chronic airway disease, which limits their application. Spirometry was a widely used examination tool in clinical settings and shows emphysema as a sharp angle in the maximum expiratory flow volume (MEFV curve, called the “angle of collapse (AC”. The aim of this study was to investigate the value of the AC in the diagnosis of emphysema and ACOS. Methods: This study included 716 participants: 151 asthma patients, 173 COPD patients, and 392 normal control subjects. All the participants underwent pulmonary function tests. COPD and asthma patients also underwent quantitative CT measurements of emphysema. The AC was measured using computer models based on Matlab software. The value of the AC in the diagnosis of emphysema and ACOS was evaluated using receiver-operating characteristic (ROC curve analysis. Results: The AC of COPD patients was significantly lower than that of asthma patients and control subjects. The AC was significantly negatively correlated with emphysema index (EI; r=-0.666, P<0.001, and patients with high EI had a lower AC than those with low EI. The ROC curve analysis showed that the AC had higher diagnostic efficiency for high EI (area under the curve =0.876 than did other spirometry parameters. In asthma patients, using the AC ≤137° as a surrogate criterion for the diagnosis of ACOS, the sensitivity and specificity were 62.5% and 89.1%, respectively. Conclusion: The AC on the MEFV curve quantified by computer models correlates with the extent of emphysema. The AC may become a

  15. Forest fuel reduces the nitrogen load - calculations of nitrogen flows; Skogsbraensle minskar kvaevebelastningen - Beraekningar av kvaevefloeden

    Burstroem, F.; Johansson, Jan


    Nitrogen deposition in Sweden has increased strongly during recent decades, particularly in southern Sweden. Nitrogen appears to be largely accumulated in biomass and in the soil. It is therefore desirable to check the accumulation of nitrogen in the forest. The most suitable way of doing this is to remove more nitrogen-rich biomass from the forest, i.e., increase the removal of felling residues from final fellings and cleanings. An ecological condition for intensive removal of fuel is that the ashes are returned. The critical load for nitrogen, CL(N), indicates the level of nitrogen deposition that the forest can withstand without leading to ecological changes. Today, nitrogen deposition is higher than the CL(N) in almost all of Sweden. CL(N) is calculated in such a manner that nitrogen deposition should largely be balanced by nitrogen losses through harvesting during a forest rotation. The value of CL(N) thus largely depends on how much nitrogen is removed with the harvested biomass. When both stems and felling residues are harvested, the CL(N) is about three times higher than in conventional forestry. The increase is directly related to the amount of nitrogen in the removed biofuel. Use of biofuel also causes a certain amount of nitrogen emissions. From the environmental viewpoint there is no difference between the sources of the nitrogen compounds. An analysis of the entire fuel chain shows that, compared with the amount of nitrogen removed from the forest with the fuel, about 5 % will be emitted as nitrogen oxides or ammonia during combustion, and a further ca 5 % during handling and transports. A net amount of about 90 % of biomass nitrogen is removed from the system and becomes inert nitrogen (N{sub 2}). 60 refs, 3 figs, 4 tabs, 11 appendices

  16. Wave intensity amplification and attenuation in non-linear flow: implications for the calculation of local reflection coefficients.

    Mynard, Jonathan; Penny, Daniel J; Smolich, Joseph J


    Local reflection coefficients (R) provide important insights into the influence of wave reflection on vascular haemodynamics. Using the relatively new time-domain method of wave intensity analysis, R has been calculated as the ratio of the peak intensities (R(PI)) or areas (R(CI)) of incident and reflected waves, or as the ratio of the changes in pressure caused by these waves (R(DeltaP)). While these methods have not yet been compared, it is likely that elastic non-linearities present in large arteries will lead to changes in the size of waves as they propagate and thus errors in the calculation of R(PI) and R(CI). To test this proposition, R(PI), R(CI) and R(DeltaP) were calculated in a non-linear computer model of a single vessel with various degrees of elastic non-linearity, determined by wave speed and pulse amplitude (DeltaP(+)), and a terminal admittance to produce reflections. Results obtained from this model demonstrated that under linear flow conditions (i.e. as DeltaP(+)-->0), R(DeltaP) is equivalent to the square-root of R(PI) and R(CI) (denoted by R(PI)(p) and R(CI)(p)). However for non-linear flow, pressure-increasing (compression) waves undergo amplification while pressure-reducing (expansion) waves undergo attenuation as they propagate. Consequently, significant errors related to the degree of elastic non-linearity arise in R(PI) and R(CI), and also R(PI)(p) and R(CI)(p), with greater errors associated with larger reflections. Conversely, R(Delta)(P) is unaffected by the degree of non-linearity and is thus more accurate than R(PI) and R(CI).

  17. 基于遗传算法的多个光伏电源极限功率计算%Calculation of Maximum Penetration Level of Multi PV Generation Systems Based on Genetic Algorithm

    丁明; 刘盛


    The random fluctuation and Intermittency of photovoltaic (PV) generation system bring obvious affection on power grid. The higher the capacity of PV generation system, the more obvious the affection will be. A genetic algorithm (GA) based approach for the calculation of maximum penetration level of multi PV generations simultaneously connected to distribution network is proposed. In the proposed approach, the abrupt change of output of PV generations in distribution network and the condition that on-load tap changer (OLTC) and shunt capacitor participate in voltage regulation are taken into account. To verify the effectiveness of the proposed method, IEEE 33-bus test system is taken for example and calculation results show that the network-connected positions of PV generations, load level of the test system and power factors of PV generations evidently affect the maximum penetration level of multi PV generations.%  光伏电站出力具有随机波动性和间歇性,给电网带来很大的影响,且容量越大,影响越显著。提出了基于遗传算法求解多个光伏电源同时接入配电网的极限功率的计算方法。该方法考虑了配电网中光伏电源出力突变以及有载调压变压器和并联电容器参与调压的情况。以IEEE33测试系统为例,分析了光伏电源接入位置、电网负荷水平以及光伏电源功率因数对极限功率的影响,验证了该方法的有效性。

  18. Numerical calculations for internal flow field in centrifugal pump impeller%离心泵叶轮内部流场的数值计算

    谭磊; 曹树良; 王玉明; 邴浩; 祝宝山


    To solve the shortages of flow field calculation based on one dimension flow theory, a computer code was developed in Fortran language to calculate the internal flow field in centrifugal pump impellers based on continuity equation and motion equation. The iterative calculation was conducted by applying the finite-element method on the S1 stream surface and the streamline-curvature method on the S2 stream surface. The distributions of pressure and velocity in the impeller were obtained from the numerical calculation as the iteration converged. Results showed that the relative velocity distribution in the impeller was reasonable. The velocities at the blade head between pressure surface and suction surface were different due to the impact action of the fluid on blade head. The pressure in impeller increased gradually from impeller import to export and the pressure gradient was small. The pressure at the impeller inlet decreased from hub to shroud. Compared to the results of the traditional method, the meridional velocity distributions of this method based on both fluid continuity and motion equations were obviously different in each stream line from hub to shroud, with the maximum difference in the impeller inlet. The three-dimensional characteristic of the velocity distribution is distinct, which demonstrates that the numerical results of this method can reflect the three dimensional flow law more accurately.%为弥补基于传统一元理论方法中流场计算的不足,该文基于流体的连续方程和运动方程,用Fortran语言编程实现了离心泵叶轮内部流场的数值计算,S1流面上采用有限单元法、S2流面上采用流线曲率法,2类流面迭代计算直至收敛得到离心泵叶轮内部流场分布.对2类相对流面方法计算得到的叶轮内部流场进行了分析.结果表明,叶轮内部相对速度分布合理,叶片头部受冲击作用,压力面和吸力面流速相差较大.叶轮内部压力分布从进口到出口逐

  19. Recommendations for computer code selection of a flow and transport code to be used in undisturbed vadose zone calculations for TWRS immobilized environmental analyses

    VOOGD, J.A.


    An analysis of three software proposals is performed to recommend a computer code for immobilized low activity waste flow and transport modeling. The document uses criteria restablished in HNF-1839, ''Computer Code Selection Criteria for Flow and Transport Codes to be Used in Undisturbed Vadose Zone Calculation for TWRS Environmental Analyses'' as the basis for this analysis.

  20. Variational calculation of neoclassical ion heat flux and poloidal flow in the banana regime for axisymmetric magnetic geometry

    Parker, Jeffrey B.; Catto, Peter J.


    We present a numerical solution of the drift-kinetic equation retaining the linearized Fokker-Planck collision operator which is valid for general axisymmetric magnetic geometry in the low collisionality limit. We use the well-known variational principle based on entropy production and expand in basis functions. Uniquely, we expand in pitch-angle basis functions which are eigenfunctions of the transit-averaged test particle collision operator. These eigenfunctions, which depend on the geometry, are extremely well suited to this problem, with only one or two basis functions required to obtain an accurate solution. As a simple example of the technique, the neoclassical ion heat flux and poloidal flow are calculated for circular flux surfaces and compared with analytic approximations for arbitrary aspect ratio.

  1. International Prostatic Symptom Score-voiding/storage subscore ratio in association with total prostatic volume and maximum flow rate is diagnostic of bladder outlet-related lower urinary tract dysfunction in men with lower urinary tract symptoms.

    Yuan-Hong Jiang

    Full Text Available OBJECTIVES: The aim of this study was to investigate the predictive values of the total International Prostate Symptom Score (IPSS-T and voiding to storage subscore ratio (IPSS-V/S in association with total prostate volume (TPV and maximum urinary flow rate (Qmax in the diagnosis of bladder outlet-related lower urinary tract dysfunction (LUTD in men with lower urinary tract symptoms (LUTS. METHODS: A total of 298 men with LUTS were enrolled. Video-urodynamic studies were used to determine the causes of LUTS. Differences in IPSS-T, IPSS-V/S ratio, TPV and Qmax between patients with bladder outlet-related LUTD and bladder-related LUTD were analyzed. The positive and negative predictive values (PPV and NPV for bladder outlet-related LUTD were calculated using these parameters. RESULTS: Of the 298 men, bladder outlet-related LUTD was diagnosed in 167 (56%. We found that IPSS-V/S ratio was significantly higher among those patients with bladder outlet-related LUTD than patients with bladder-related LUTD (2.28±2.25 vs. 0.90±0.88, p1 or >2 was factored into the equation instead of IPSS-T, PPV were 91.4% and 97.3%, respectively, and NPV were 54.8% and 49.8%, respectively. CONCLUSIONS: Combination of IPSS-T with TPV and Qmax increases the PPV of bladder outlet-related LUTD. Furthermore, including IPSS-V/S>1 or >2 into the equation results in a higher PPV than IPSS-T. IPSS-V/S>1 is a stronger predictor of bladder outlet-related LUTD than IPSS-T.

  2. Full 3-D MHD calculations of accretion flow Structure in magnetic cataclysmic variable stars with strong and complex magnetic fields

    Zhilkin, A G; Mason, P A; 10.1134/S1063772912040087


    We performed 3D MHD calculations of stream accretion in cataclysmic variable stars for which the white dwarf primary star possesses a strong and complex magnetic field. These calculations are motivated by observations of polars; cataclysmic variables containing white dwarfs with magnetic fields sufficiently strong to prevent the formation of an accretion disk. So an accretion stream flows from the L1 point and impacts directly onto one or more spots on the surface of the white dwarf. Observations indicate that the white dwarf, in some binaries, possesses a complex (non-dipolar) magnetic field. We perform simulations of 10 polars or equivalently one asynchronous polar at 10 different beat phases. Our models have an aligned dipole plus quadrupole magnetic field centered on the white dwarf primary. We find that for a sufficiently strong quadrupole component an accretion spot occurs near the magnetic equator for slightly less than half of our simulations while a polar accretion zone is active for most of the rest...

  3. First Kinetic Reactive-Flow and Melting Calculations for Entropy Budget and Major Elements in Heterogeneous Mantle Lithologies (Invited)

    Asimow, P. D.


    The consequences of source heterogeneity and reactive flow during melt transport in the mantle can be classified by scale. At the smallest spatial and longest temporal scales, we can assume complete equilibrium and use batch melting of homogenized sources or equilibrium porous flow treatments. At large enough spatial scale or short enough temporal scale to prevent any thermal or chemical interaction between heterogeneities or between melt and matrix, we can assume perfectly fractional melting and transport and apply simple melt-mixing calculations. At a somewhat smaller spatial or longer temporal scale, thermal but not chemical interactions are significant and various lithologies and channel/matrix systems must follow common pressure-temperature paths, with energy flows between them. All these cases are tractable to model with current tools, whether we are interested in the energy budget, major elements, trace elements, or isotopes. There remains, however, the very important range of scales where none of these simple theories applies because of partial chemical interaction among lithologies or along the flow path. Such disequilibrium or kinetic cases have only been modeled, in the case of mantle minerals and melts, for trace elements and isotopes, with fixed melting rates instead of complete energy budgets. In order to interpret volumes of magma production and major element basalt and residue compositions that might emerge from a heterogeneous mantle in this last range of scales, we must develop tools that can combine a kinetic formulation with a major element and energy-constrained thermodynamic calculation. The kinetics can be handled either with a chemical kinetic approach with rate constants for various net transfer and exchange reactions, or with a physical diffusion-limited approach. A physical diffusion-limited approach can be built with the following elements. At grain scale, spherical grains of an arbitrary number of solid phases can evolve zoning profiles

  4. Should measurement of maximum urinary flow rate and residual urine volume be a part of a "minimal care" assessment programme in female incontinence?

    Sander, Pia; Mouritsen, L; Andersen, J Thorup


    OBJECTIVE: The aim of this study was to evaluate the value of routine measurements of urinary flow rate and residual urine volume as a part of a "minimal care" assessment programme for women with urinary incontinence in detecting clinical significant bladder emptying problems. MATERIAL AND METHOD...... female urinary incontinence. Thus, primary health care providers can assess women based on simple guidelines without expensive equipment for assessment of urine flow rate and residual urine....

  5. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    Jordan, K. A.; Schubring, D. [Univ. of Florida, Florida (United States); Girardin, G.; Pautz, A. [Swiss Federal Institute of Technology, Zuerich (Switzerland)


    A collaboration between the University of Florida and the Swiss Federal Institute of Technology, Lausanne (EPFL) has been formed to develop and validate detailed coupled multiphysics models of the zero-power (100 W) CROCUS reactor at EPFL and the 100 kW University of Florida Training Reactor, for the comprehensive analysis of the reactor behavior under transient (neutronic or thermal-hydraulic induced) conditions. These two reactors differ significantly in the core design and thermal power output, but share unique heat transfer and flow characteristics. They are characterized by single-phase laminar water flow at near-atmospheric pressures in complex geometries with the possibility of mechanically entrained air bubbles. Validation experiments will be designed to expand the validation domain of these existing models, computational codes and techniques. In this process, emphasis will be placed on validation of the coupled models developed to gain confidence in their applicability for safety analysis. EPFL is responsible for the design and implementation of transient experiments to generate a database of reactor parameters (flow distribution, power profile, and power evolution) to be used to validate against code predictions. The transient experiments performed at EPFL will be simulated on the basis of developed models for these tasks. Comparative analysis will be performed with SERPENT and MCNPX reference core models. UF focuses on the generation of the coupled neutron kinetics and thermal-hydraulic models, including implementation of a TRACE/PARCS reactor simulator model, a PARET model, and development of full-field computational fluid dynamics models (using OpenFOAM) for refined thermal-hydraulics physics treatments. In this subtask of the project, the aim is to verify by means of CFD the validity of TRACE predictions for near-atmospheric pressure water flow in the presence of mechanically entrained air bubbles. The scientific understanding of these multiphysics

  6. A new numerical method to calculate inhomogeneous and time-dependent large deformation of two-dimensional geodynamic flows with application to diapirism

    Fuchs, L.; Schmeling, H.


    A key to understand many geodynamic processes is studying the associated large deformation fields. Finite deformation can be measured in the field by using geological strain markers giving the logarithmic strain f = log 10(R), where R is the ellipticity of the strain ellipse. It has been challenging to accurately quantify finite deformation of geodynamic models for inhomogeneous and time-dependent large deformation cases. We present a new formulation invoking a 2-D marker-in-cell approach. Mathematically, one can describe finite deformation by a coordinate transformation to a Lagrangian reference frame. For a known velocity field the deformation gradient tensor, F, can be calculated by integrating the differential equation DtFij = LikFkj, where L is the velocity gradient tensor and Dt the Lagrangian derivative. The tensor F contains all information about the minor and major semi-half axes and orientation of the strain ellipse and the rotation. To integrate the equation centrally in time and space along a particle's path, we use the numerical 2-D finite difference code FDCON in combination with a marker-in-cell approach. For a sufficiently high marker density we can accurately calculate F for any 2-D inhomogeneous and time-dependent creeping flow at any point for a deformation f up to 4. Comparison between the analytical and numerical solution for the finite deformation within a Poiseuille-Couette flow shows an error of less than 2 per cent for a deformation up to f = 1.7. Moreover, we determine the finite deformation and strain partitioning within Rayleigh-Taylor instabilities (RTIs) of different viscosity and layer thickness ratios. These models provide a finite strain complement to the RTI benchmark of van Keken et al. Large finite deformation of up to f = 4 accumulates in RTIs within the stem and near the compositional boundaries. Distinction between different stages of diapirism shows a strong correlation between a maximum occurring deformation of f = 1, 3 and

  7. The method of the maximum entropy for the reconstruction of the distribution bolt the bolt of the neutrons flow in a fuel element; O metodo da maxima entropia para a reconstrucao da distribuicao pino a pino do fluxo de neutrons em um elemento combustivel

    Ancalla, Lourdes Pilar Zaragoza


    The reconstruction of the distribution of density of potency pin upright in a heterogeneous combustible element, of the nucleus of a nuclear reactor, it is a subject that has been studied inside by a long time in Physics of Reactors area. Several methods exist to do this reconstruction, one of them is Maximum Entropy's Method, that besides being an optimization method that finds the best solution of all the possible solutions, it is a method also improved that uses multipliers of Lagrange to obtain the distribution of the flows in the faces of the combustible element. This distribution of the flows in the faces is used then as a contour condition in the calculations of a detailed distribution of flow inside the combustible element. In this work, in first place it was made the homogenization of the heterogeneous element. Soon after the factor of the multiplication executes and the medium values of the flow and of the liquid current they are computed, with the program NEM2D. These values medium nodal are, then, used upright in the reconstruction of the distribution pin of the flow inside the combustible element. The obtained results were acceptable, when compared with those obtained using fine mesh. (author)

  8. Maximum-throughput scheduling with limited resources for iterative data-flow graphs by means of the scheduling-range chart

    Heemstra de Groot, S.M.; Herrmann, O.E.


    An algorithm based on an alternative scheduling approach for iterative acyclic and cyclid DFGs (data-flow graphs) with limited resources that exploits inter- and intra-iteration parallelism is presented. The method is based on guiding the scheduling algorithm with the information supplied by a

  9. Thermodynamic performance experiment and cooling number calculation of a counter-flow spray humidifier in the HAT cycle

    Yuzhang WANG; Yixing LI; Shilie WENG; Yonghong WANG


    An experimental investigation of the ther-modynamic performance of a counter-flow spray humidi-fier was conducted on the basis of theoretical analysis of the heat and mass transfer mechanism inside the humidi-fier. Critical parameters such as the temperature and relative humidity of air and the temperature of water at the inlet and outlet were measured. The influence of every measured parameter on the thermal performance of the humidifier was obtained under different experimental conditions. The cooling number, whose variation was also obtained, was calculated according to the measured data. The experimental results show that both the temperature and the temperature increment of outlet humid air and the temperature of outlet water increase with an increase of the water-gas ratio, whereas the cooling number decreases. Under all experimental conditions, the outlet humid air reaches or is close to the saturation level. The lower cooling number is favorable for the system, but it has an optimal value for a certain humidifier.

  10. Prognostic value of the standardized uptake value maximum change calculated by dual-time-point 18F-fluorodeoxyglucose positron emission tomography imaging in patients with advanced non-small-cell lung cancer

    Jin F


    Full Text Available Feng Jin,1,2 Hui Zhu,2 Zheng Fu,3 Li Kong,2 Jinming Yu2 1School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 2Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, 3Department of Nuclear Medicine, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, People’s Republic of China Purpose: The purpose of this study was to investigate the prognostic value of the standardized uptake value maximum (SUVmax change calculated by dual-time-point 18F-fluorodeoxyglucose positron emission tomography (PET imaging in patients with advanced non-small-cell lung cancer (NSCLC.Patients and methods: We conducted a retrospective review of 115 patients with advanced NSCLC who underwent pretreatment dual-time-point 18F-fluorodeoxyglucose PET acquired at 1 and 2 hours after injection. The SUVmax from early images (SUVmax1 and SUVmax from delayed images (SUVmax2 were recorded and used to calculate the SUVmax changes, including the SUVmax increment (ΔSUVmax and percent change of the SUVmax (%ΔSUVmax. Progression-free survival (PFS and overall survival (OS were determined by the Kaplan–Meier method and were compared with the studied PET parameters, and the clinicopathological prognostic factors in univariate analyses and multivariate analyses were constructed using Cox proportional hazards regression.Results: One hundred and fifteen consecutive patients were reviewed, and the median follow-up time was 12.5 months. The estimated median PFS and OS were 3.8 and 9.6 months, respectively. In univariate analysis, SUVmax1, SUVmax2, ΔSUVmax, %ΔSUVmax, clinical stage, and Eastern Cooperative Oncology Group (ECOG scores were significant prognostic factors for PFS. Similar results were significantly correlated with OS, except %ΔSUVmax. In multivariate analysis, ΔSUVmax and %ΔSUVmax were significant

  11. Projection methods for the calculation of incompressible or dilatable flows; Methodes de projection pour le calcul d'ecoulements incompressibles ou dilatables

    Jobelin, M


    This thesis treats of time resolution methods for the Navier-Stokes equations. Based on the well-known projection method of Chorin and Temam, an original pressure correction method, named 'projection-penalty' is developed. Its specificity concerns the addition of a penalty term in the prediction step, which constrains the predicted velocity to fit with the mass balance. The precision improvements added by this method are demonstrated by some analysis results and by some numerical experiments of incompressible or dilatable flows. Finally, the potentialities offered by the use of the joint finite elements method in this type of fractionary step scheme is studied. Two applications are presented, one for local refinement purpose, the other for the resolution of a multi-physics problem. (J.S.)

  12. 砂土中吸力式沉箱基础的最大承载力计算方法%Calculation method for maximum bearing capacity of suction caisson foundation in sand

    黎冰; 高玉峰; 沙成明; 童小东


    To accurately determine the maximum pull-out loading capacity of suction caisson foundation in sand, the limit equilibrium method is applied. Based on the mechanical characteristics of suction caisson foundation with horizontal translation, a method for three-dimensional limit equilibrium analysis of maximum pull-out loading capacity of suction caisson foundation in sand is proposed. In the proposed method, the development process of earth pressure and shear resistance with displacement, and the characteristics of different earth pressure and side shear resistance over the caisson cross-section are considered. The earth pressure acting on the caisson is assumed to obey the Winkler model and is not in excess of the limiting earth pressure. The shear resistance between caisson and soil is assumed to be linearly proportional to the relative displacement between them before reaching its ultimate value. Fifteen model tests of suction caisson foundation under horizontal loading in sand are conducted to investigate its pull-out behaviors, and the load-displacement curves are obtained. The calculation results by the proposed method agree well with the experimental results, indicating that the proposed method is accurate and effective. Key w%为了准确确定砂土中吸力式沉箱基础的最大承载力,应用极限平衡法对其进行分析.基于吸力式沉箱基础平动时的受力特点,充分考虑土压力和摩擦力的发挥过程以及沉箱横截面上各点土压力大小的不同,提出了一种计算砂土中吸力式沉箱基础最大承载力的三维极限平衡方法.方法中假定沉箱侧壁土压力满足Winkler模型,但其值不超过水平极限土压力值;假定沉箱侧壁与地基土之间的摩擦力在达到最大值之前与两者之间的相对位移成线性正比关系.开展了15组水平荷载作用下吸力式沉箱基础的模型试验,得到了吸力式沉箱基础的荷载-位移曲线.利用所提方法得到的计

  13. Finding Multiple Internal Rates of Return for a Project with Non-Conventional Cash Flows: Utilizing Popular Financial/Graphing Calculators and Spreadsheet Software

    Chen, Jeng-Hong


    This study demonstrates that a popular graphing calculator among students, TI-83 Plus, has a powerful function to draw the NPV profile and find the accurate multiple IRRs for a project with non-conventional cash flows. However, finance textbooks or related supplementary materials do not provide students instructions for this part. The detailed…

  14. Finding Multiple Internal Rates of Return for a Project with Non-Conventional Cash Flows: Utilizing Popular Financial/Graphing Calculators and Spreadsheet Software

    Chen, Jeng-Hong


    This study demonstrates that a popular graphing calculator among students, TI-83 Plus, has a powerful function to draw the NPV profile and find the accurate multiple IRRs for a project with non-conventional cash flows. However, finance textbooks or related supplementary materials do not provide students instructions for this part. The detailed…

  15. Load Flow Calculation of Electric Power System Based on MATLAB%基于MATLAB的电力系统潮流计算

    毕永廷; 杨海波; 师秀凤


    通过应用MATLAB软件对给定的电力系统进行潮流计算。通过比较MATLAB程序、Simulink仿真和Matpower同一负荷变化情况下的潮流计算结果,结果满足系统要求,验证了三种方法的有效性。同时三种方法运算效率符合现在潮流计算的发展,为电网潮流计算开辟了新方向。%MATLAB is used to calculate the load flow of the electric system. By comparing the calculation results of MATLAB, Simulation and Matpower under the same load change, it is found that all the results meet the system requirements, thus the three methods' effectiveness is verified. And the calculation efficiency of the three methods conform to the development of modern load flow calculation, so these methods have opened up a new direction for power flow calculation.

  16. Ejercicio físico, salud y supuestos en el cálculo de la frecuencia cardíaca máxima estimada / Exercise, Health and Assumptions in Calculating the Estimated Maximum Heart Rate

    Alixon David Reyes Rodríguez


    theoretical points of reference that responded to scientific needs before, but which are insufficient now.  It has been observed in national and international conferences, seminaries, research encounters, in our universities and in different kinds of scientific meetings that some obsolete assumptions are still being taught, which slows down progress in Education Sciences and Sports Science. We recognize that some predictive formulas used to calculate the estimated maximum heart rate (EMHR represented progress for Exercise Science and Exercise Physiology, at some point; however, there are important aspects that should be considered. It is not that we despise them, but we intend to demonstrate and demystify the use of the traditional formula almost as the only calculation and measurement pattern for EMHR and, to offer, from the perspective of other researchers, better possibilities of exercise dosage for certain populations with particular characteristics.

  17. PSAT 在电力系统潮流计算教学中的应用%Application of PSAT simulation software in teaching of power flow calculation

    周晓华; 王荔芳; 刘胜永


    将 PSAT 仿真技术应用于电力系统分析课程计算机潮流计算的教学中,通过电力系统的潮流计算实例,介绍了利用 PSAT 软件建模、参数设置及仿真分析的过程.PSAT 仿真得到的计算结果与 Matpower 仿真计算结果基本一致.应用 PSAT 软件可使电力系统潮流计算的原理与概念形象化,将原理性内容更直观地展示出来,有利于加深学生对基本理论的理解,提高电力系统分析课程的教学效果.%In order to improve the teaching effect of the course of Power System Analysis, the PSAT simulation technology can be applied to the teaching of power flow calculation using computer in Power System Analysis course.This paper introduces the software modeling,analysis,parameter settings and simulation process by using the case of power flow calculation. The calculation results obtained by simulation experiments are in accordance with the calculation results of Matpower simulation software.The application of PSAT software makes the principles or concepts of power flow calculation visualized and displays the original rational content more intuitive.The flexible use of simulation teaching plays a vital role for enhancing the students’learning interest,deepening students’understanding of the basic theory of power flow calculation.

  18. Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique

    Friberg, L; Kastrup, J; Hansen, M


    values. With a two-compartmental analysis of the wash-out curves during cooling there was a significant reduction of the CBF indices f1, representing mainly fast blood flow in the grey matter and f2, representing blood flow in the slowly perfused white matter and extracerebral structures. The reduction...

  19. A Unified Two-Dimensional Approach to the Calculation of Three- Dimensional Hypersonic Flows, with Application to Bodies of Revolution


    8217rinRE-DifMENSONAL HtYPERtSONIC 15.W indicated-flow-separation oin the leewardl side of (lie body for excellent agreemelnt in tlie plano of symmlletry...REIMARKS b~ound~ary layers may, inl like imanner, prove useful il- pie - A mnethod of characteristics employing p)ressure and-flow deigdrednesoa

  20. Maximum capacities of the 100-B water plant

    Strand, N.O.


    Increases in process water flows will be needed as the current program of increasing pile power levels continues. The future process water flows that will be required are known to be beyond the present maximum capacities of component parts of the water system. It is desirable to determine the present maximum capacities of each major component part so that plans can be mode for modifications and/or additions to the present equipment to meet future required flows. The apparent hydraulic limit of the present piles is about 68,000 gpm. This figure is based on a tube inlet pressure of 400 psi, a tube flow of 34 gpm, and 2,000 effective tubes. In this document the results of tests and calculations to determine the present maximum capacities of each major component part of the 100-B water system will be presented. Emergency steam operated pumps will not be considered as it is doubtful of year around operation of a steam driven pump could be economically justified. Some possible ways to increase the process water flows of each component part of the water system to the ultimate of 68,000 gpm are given.

  1. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.


    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  2. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Numerical simulation of the accurate RCP start-up flow rate

    Martin, A.; Alvarez, D.; Cases, F.; Stelletta, S. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d`Hydraulique


    This report explains the last results about the mixing in the 900 MW PWR vessels. The accurate fluid flow transient, induced by the RCP starting-up, is represented. In a first time, we present the Thermalhydraulic Finite Element Code N3S used for the 3D numerical computations. After that, results obtained for one reactor operation case are given. This case is dealing with the transient mixing of a clear plug in the vessel when one primary pump starts-up. A comparison made between two injection modes; a steady state fluid flow conditions or the accurate RCP transient fluid flow conditions. The results giving the local minimum of concentration and the time response of the mean concentration at the core inlet are compared. The results show the real importance of the unsteadiness characteristics of the fluid flow transport of the clear water plug. (author) 12 refs.

  3. 多回直流输电线路的离子流场计算%Ion Flow Field Calculation of Multi-circuit DC Transmission Lines

    李伟; 张波; 何金良


    An upwind finite element (FE) based algorithm to calculate the ion flow field in the vicinity of multi-circuit DC transmission lines is described. The initial value estimation and boundary condition are optimized, so details of the transmission lines such as bundle conductors and ground wires can be taken into account in the simulation model. Comparison between measured and computed ground level total electrical field and ion current density shows satisfactory agreement. The ion flow field of a ±500 kV HVDC Project with bipolar lines on the same tower is simulated. The total electrical field and ion current density on ground level are compared among different line arrangements.

  4. About new dynamical interpretations of entropic model of correspondence matrix calculation and Nash-Wardrop's equilibrium in Beckmann's traffic flow distribution model

    Nagapetyan, Tigran


    In this work we widespread statistical physics (chemical kinetic stochastic) approach to the investigation of macrosystems, arise in economic, sociology and traffic flow theory. The main line is a definition of equilibrium of macrosystem as most probable macrostate of invariant measure of Markov dynamic (corresponds to the macrosystem). We demonstrate new dynamical interpretations for the well known static model of correspondence matrix calculation. Based on this model we propose a best response dynamics for the Beckmann's traffic flow distribution model. We prove that this "natural" dynamic under quite general conditions converges to the Nash-Wardrop's equilibrium. After that we consider two interesting demonstration examples.

  5. Validation of computational fluid dynamics calculation using Rossendorf coolant mixing model flow measurements in primary loop of coolant in a pressurized water reactor model

    Farkas, Istvan; Hutli, Ezddin; Faekas, Tatiana; Takacs, Antal; Guba, Attila; Toth, Ivan [Dept. of Thermohydraulics, Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary)


    The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM) 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD) calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal. The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively) with experimental results.

  6. The Analysis and Calculation of Energy Flow and Ecological Efficiency in Agro-Ecological Engineering——With the Beijing Liuminying as an Example

    Bian Yousheng


    The paper gives a general description of the energy flow in Liuminying agro-eco-system through the facts of on-the-spot tests, quantitative analysis and calculation of output-input ratio of energy as well as of some main subsystems' ecological efficiency. The results show that the output-input rate of the artificial supplementary energy was 1, the energy conversion efficiency of primary producer reached 1.54 % and the light energy utilization rate was 0.65 %. All kept higher rates. However, the ratio of secondary production was a little lower. The paper also gives a brief analysis of the calculation result and the relevant conclusion as well.

  7. Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94)

    Arnold, B.W.; Altman, S.J. [Sandia National Labs., Albuquerque, NM (United States); Robey, T.H. [Spectra Research Institute, Albuquerque, NM (United States)] [and others


    Evaluation of groundwater travel time (GWTT) is required as part of the investigation of the suitability of Yucca Mountain as a potential high-level nuclear-waste repository site. The Nuclear Regulatory Commission`s GWTT regulation is considered to be a measure of the intrinsic ability of the site to contain radionuclide releases from the repository. The work reported here is the first step in a program to provide an estimate of GWTT at the Yucca Mountain site in support of the DOE`s Technical Site Suitability and as a component of a license application. Preliminary estimation of the GWTT distribution in the unsaturated zone was accomplished using a numerical model of the physical processes of groundwater flow in the fractured, porous medium of the bedrock. Based on prior investigations of groundwater flow at the site, fractures are thought to provide the fastest paths for groundwater flow; conditions that lead to flow in fractures were investigated and simulated. Uncertainty in the geologic interpretation of Yucca Mountain was incorporated through the use of geostatistical simulations, while variability of hydrogeologic parameters within each unit was accounted for by the random sampling of parameter probability density functions. The composite-porosity formulation of groundwater flow was employed to simulate flow in both the matrix and fracture domains. In this conceptualization, the occurrence of locally saturated conditions within the unsaturated zone is responsible for the initiation of fast-path flow through fractures. The results of the GWTT-94 study show that heterogeneity in the hydraulic properties of the model domain is an important factor in simulating local regions of high groundwater saturation. Capillary-pressure conditions at the surface boundary influence the extent of the local saturation simulated.

  8. A simple and rational numerical method of two-phase flow with volume-junction model. 1. Verification calculation in saturated condition

    Okazaki, Motoaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    A new numerical method to achieve a rigorous numerical calculation of each phase using a simple explicit method with volume-junction model is proposed. For this purpose, difference equations for numerical use are carefully derived so as to preserve the physical meaning of the basic equations. Specifically, momentum equations for the flow in the volume are newly derived to keep strict conservation of energy within the volume. To prove the validity of the numerical method and of previously proposed basic equations, including the original phase change equations, which were rigorously derived, some numerical calculations were made for each phase independently to examine the correctness of calculated results. The numerical calculation is advanced by simple integration of an explicitly obtained solution of difference equations without any special treatment. Calculated results of density and specific internal energy of each phase for saturated two-phase blowdown behavior are consistent for two different solution scheme as described below. Further, no accumulation of error in mass or energy was found. These results prove the consistency among basic equations, including phase change equations, and the correctness of numerical calculation method. The two different solution schemes used were: (1) solutions of pressure and void fraction in saturated condition were obtained by using mass conservation equation of each phase simultaneously, and (2) fluid properties were calculated directly from mass and energy conservation equation of each phase. (author)

  9. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...

  10. Generalized Maximum Entropy

    Cheeseman, Peter; Stutz, John


    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].


    FU Xiao-li; LI Da-mei; JIN Guo-yu


    The Chinese sturgeon (Acipenser Sinensis) is one of the unique and important fishery resources in China. Since the construction of the Gezhouba Dam, the traditional migration route of the sturgeon has been blocked; consequently, the length of natural spawning sites is reduced from 800 km in the past to less than 5 km at present. As an endangered species, the Chinese sturgeon has become one of the most conserved aquatic species. In this article, the flow field of its spawning states in the downstream of Gezhouba Dam was simulated and analyzed using N-S equations and turbulence model. Volume Of Fluid (VOF) method with the Finite Volume Method (FVM) was used to simulate the water-air two-phase flow to examine the computed area. On the basis of the ecological-hydraulic characteristics of Chinese sturgeon, the features of the flow field were investigated to provide theoretical support for the proper management of the Three Gorges Reservoir.

  12. A computer program for the calculation of the flow field including boundary layer effects for mixed-compression inlets at angle of attack

    Vadyak, J.; Hoffman, J. D.


    A computer program was developed which is capable of calculating the flow field in the supersonic portion of a mixed compression aircraft inlet operating at angle of attack. The supersonic core flow is computed using a second-order three dimensional method-of-characteristics algorithm. The bow shock and the internal shock train are treated discretely using a three dimensional shock fitting procedure. The boundary layer flows are computed using a second-order implicit finite difference method. The shock wave-boundary layer interaction is computed using an integral formulation. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data listings, are provided.

  13. Analysis of uncertainties, associated to the calculating hypothesis, in discharge tables for high flows estimating, based on mathematics models for calculating water surface profiles fore steady gradually varied flow; Analisis de las incertidumbres, asociadas a las hipotesis de calculo, en la estimacion de curvas de gasto para crcidas, basada en el empleo de modelo matematico de calculo hidraulico en regimen permanente

    Aldana Valverde, A. L.; Gonzalez Rodriguez, J. C.


    In this paper are analyzed some of the most important factors which can influence on the results of calculating water surface profiles for steady gradually varied flow. In this case, the objective of this kind of modeling, has been the estimation of discharges tables for high flows of river station gages connected to the hydrologic automatic information system (SAIH) of the Confederacion Hidrografica del Sur de Espana, system named red Hidrosur. (Author) 3 refs

  14. Pressure drop calculation using a one-dimensional mathematical model for two-phase flow through an orifice

    Petkov, K.P.; Puton, M; Madsen, Søren Peder


    A model based on a homogeneous formulation of the governing differential equations (Navier-Stokes equations) describing the process of pressure drop in a simplified geometry of an expansion valve is investigated and simulated. Numerical solutions are compared to experimental results. The model...... is a one dimensional formulation in space and the equations incorporates the change in tubes and orifice diameter as formulated in (S. Madsen, Dynamic Modeling of Phase Crossings in Two-Phase Flow, Communications in Computational Physics 12 (4), 1129-1147). The pressure changes in the flow...

  15. Compari son and Analysis of Several Calculations of Power System Flow%几种电力系统潮流计算的比较与分析

    姚勇; 李健; 王雨虹


    Power system power flow calculation is one of the research on power grid planning and operation analysis method, it plays a decisive role in the power system. The purpose of this paper is to use C language and write Newton-Raphson method rectangular coordinate method, Newton-Raphson method-polar coordinate method, P-Q decomposition method and Gauss-Seidel method of power flow calculation program according to the principle of power flow calculation. Then, compare with different trend programs, including check instance USES the IEEE standard example, this paper analyzed their respective applicable occasions and superiority.%电力系统潮流计算是对电力网规划、运行研究分析的一种方法,其在电力系统中具有举足轻重的作用。本文旨在利用C语言根据潮流计算原理编写出牛顿---拉夫逊直角坐标法、牛顿拉夫逊---极坐标法、P-Q分解法以及高斯-赛德尔法的潮流计算程序,然后对不同潮流程序进行比较,其中校验实例采用IEEE标准算例,分析出它们各自的适用场合及优越性。

  16. Numerical calculation of viscoelastic flows through eccentric abrupt contraction; Henshin kyushuku shoryuro ni okeru nendansei ryutai no nagare no suchi kaiseki

    Nakamura, K.; Mori, N.; Matsumura, K. [Osaka University, Osaka (Japan). Faculty of Engineering


    Numerical simulations of viscoelastic flows through an eccentric four-to-one abrupt contraction are carried out using the Giesekus model. The SMAC (Simplified-Marker-and-Cell) method is used to analyze the three-dimensional flows. The velocity profiles along the path line passing through the center of the exit exhibit an overshoot near the entry section, and at high Weissenberg numbers an undershoot follows the overshoot. The magnitude of the stress along the same path line has a peak near the entry, section, and its slow relaxation process indicates that a large downstream length is necessary for fully developed stress conditions to exist. The peak is lower than that for the flow through the concentric four-to-one abrupt contraction ; the decrease in the peak amplitude is understood to be due to the distortion of the path line in the eccentric geometry. A corner vortex, the height of which is a maximum at the widest corner, grows as the Weissenberg number increases. Furthermore, the tangential flow toward the widest section inside the vortex is determined. 19 refs., 10 figs.

  17. Artificial Neural Network for Real Time Load Flow Calculation: Application to a Micro Grid with Wind Generators

    H. Hadj Abdallah


    Full Text Available This work presents a method for solving the problem of load flow in electric power systems including a wind power station with asynchronous generators. For this type of power station, the generated active power is only known and consequently the absorbed reactive power must be determined. So we have used the circular diagram at each iteration and by considering this node as a consuming node in the load flow program. Since the wind speed is not constant, the generated power is neither constant. To predict the state of the network in real time, we have used the artificial neural networks after a stage of training using a rich base of data.

  18. Motive flow calculation through ejectors for transcritical CO2 heat pumps. Comparison between new experimental data and predictive methods

    Boccardi, G.; Lillo, G.; Mastrullo, R.; Mauro, A. W.; Pieve, M.; Trinchieri, R.


    The revival of CO2 as refrigerant is due to new restrictions in the use of current refrigerants in developed countries, as consequence of environmental policy agreements. An optimal design of each part is necessary to overcome the possible penalty in performance, and the use of ejectors instead of throttling valves can improve the performance. Especially for applications as CO2 HPs for space heating, the use of ejectors has been little investigated. The data collected in a cooperation project between ENEA (C.R. Casaccia) and Federico II University of Naples have been used to experimentally characterize several ejectors in terms of motive mass flow rate, both in transcritical CO2 conditions and not. A statistical comparison is presented in order to assess the reliability of predictive methods available in the open literature for choked flow conditions.

  19. 基于 GPU 并行的改进 SPH 方法对粘性流场的模拟%Viscosity flow simulation using improved SPH method based on GPU parallel calculation

    金善勤; 郑兴; 段文洋


    光滑粒子水动力学( SPH)方法对模拟破碎波问题有着良好的适应性. 基于众核架构的GPU计算平台在加速SPH方法方面有着强大的优势. 针对传统SPH方法计算效率低和计算精度差的问题,采用δ-SPH方法对腔内剪切流动、Poiseuille流动、Couette流动问题、孤立波砰击问题进行了模拟,并且提出一种基于粒子对的GPU并行计算方法. 通过比较,得到不同边界处理方法对粘性流场模拟结果的影响规律,并且研究基于粒子对和单个粒子2种不同GPU并行计算方法,对比不同计算方法的精度和CPU时间. 结果表明,采用粒子对的GPU并行方法可以使δ-SPH方法的最大加速比超过10.%The smoothed particle hydrodynamics ( SPH ) method has a good adaptability for the simulation of breaking wave problems.The GPU computing platform based on many-core architecture has a strong advantage in SPH method acceleration.In view of the low efficiency and the accuracy problem of traditional SPH method, this paper puts forward a new GPU parallel computing model based on the particle pair and improvedδ-SPH method for simulating viscosity flows such as lid-drive cavity flow, Poiseuille flow, Couette flow and solitary wave slamming. According to the comparison of different boundary handling methods, their rules on viscous flow simulation are got. Furthermore, two GPU parallel calculation methods which are respectively based on the particle pair and single par-ticle are researched, and their accuracy and CPU time are compared.The results show that the GPU parallel calcu-lation method based on particle pairs makesδ-SPH exceed 10 times of the maximum speed-up ratio.

  20. A new blade element method for calculating the performance of high and intermediate solidity axial flow fans

    Borst, H. V.


    A method is presented to design and predict the performance of axial flow rotors operating in a duct. The same method is suitable for the design of ducted fans and open propellers. The unified method is based on the blade element approach and the vortex theory for determining the three dimensional effects, so that two dimensional airfoil data can be used for determining the resultant force on each blade element. Resolution of this force in the thrust and torque planes and integration allows the total performance of the rotor, fan or propeller to be predicted. Three different methods of analysis, one based on a momentum flow theory; another on the vortex theory of propellers; and a third based on the theory of ducted fans, agree and reduce cascade airfoil data to single line as a function of the loading and induced angle of attack at values of constant inflow angle. The theory applies for any solidity from .01 to over 1 and any blade section camber. The effects of the duct and blade number can be determined so that the procedure applies over the entire range from two blade open propellers, to ducted helicopter tail rotors, to axial flow compressors with or without guide vanes, and to wind tunnel drive fans.

  1. 基于基流比例法的渭河生态基流计算%Calculation of ecological basic flow of Weihe River based on basic flow ratio method

    吴喜军; 李怀恩; 董颖; 林启才


    To make the ecological basic flow better reflect river life water demand inter-annual and years change in the north of China, the basic flow ratio method was proposed, which divided long-term runoff statistical data into different hydrological years such as wet, normal, dry and special dry. By using traditional methods to determine the basic flow ratio of a certain hydrological year and counting the ratio of average runoff between this hydrological year and other years, the relationship between each basic flow ratio could be ascertained. Thus, the basic flow ratio of other hydrological years and ecological basic flow values could be calculated. Also, the value of ecological basic flow could be calculated for different periods in a year respectively. Taking mainstream of Weihe river in Baoji section as an example, the ecological basic flow was calculated based on basic flow ratio method. The results showed that the ecological basic flow for different hydrological years and periods calculated with this method was 5.00-36.00 m3/s. Results of other methods, such as Tennant and Texas method, were in this scope and guarantee degree of every hydrological year could reach 90%. This method could be applied to calculating the river ecological basic flow in northern China.%为使生态基流更好地体现中国北方河流生物需水的年际间和年内变化,该文提出基流比例法.将长期径流系列资料划分为丰、平、枯及特枯年等不同年型,采用传统方法确定某一年型的基流比例后,通过该年型与其他各年型平均径流量之间的比值,推求出基流比例之间的关系,由此计算出其他各年型的基流比例及生态基流值.根据需要,还可进一步将年内划分为不同时段分别计算.以渭河干流宝鸡段为例,应用该方法计算了各年型及年内各时段的生态基流值,其结果为5.02~36.73 m3/s,比较后发现其他几种常见方法计算的生态基流值均在该范围之内,各代表

  2. Calculation of the Pressure Distribution on Bodies of Revolution in the Subsonic Flow of a Gas. Part 1; Axially Symmetrical Flow

    Bilharz, Herbert; Hoelder, Ernst


    The present report concerns a method of computing the velocity and pressure distributions on bodies of revolution in axially symmetrical flow in the subsonic range. The differential equation for the velocity potential Phi of a compressible fluid motion is linearized tn the conventional manner, and then put in the form Delta(Phi) = 0 by affine transformation. The quantity Phi represents the velocity potential of a fictitious incompressible flow, for which a constant superposition of sources by sections is secured by a method patterned after von Karman which must comply with the boundary condition delta(phi)/delta(n) = 0 at the originally specified contour. This requirement yields for the "pseudo-stream function" psi a differential equation which must be fulfilled for as many points on the contour as source lengths are assumed. In this manner, the problem of defining the still unknown source intensities is reduced to the solution of an inhomogeneous equation system. The pressure distribution is then determined with the aid of Bernoulli's equation and adiabatic equation of state. Lastly, the pressure distributions in compressible and incompressible medium are compared on a model problem.

  3. 基流计算方法的进展与应用%A review on base-flow calculation and its application

    钱开铸; 吕京京; 陈婷; 梁四海; 万力


    基流是由地下水补给河流的基本径流,被视为具有维持生态系统稳定功能的河道基本径流,其水量的准确计算在河流断流、湖泊萎缩和植被退化等一系列生态环境问题的研究中具有重要意义.本文阐述了基流的定义与研究意义,归纳评价了基流计算方法的类型、适用范围和优先发展方向.其中计算方法可分为图解法、数值模拟法、水文模型法、物理化学法及数学物理法等五类方法.在此基础上,还着重总结了基流研究在模型校验、水资源利用、生态需水量、河流输沙量和河流自净力等方面的应用.该研究将在如何合理估算基流量及相关领域中具有重要的参考价值.%Base-flow is the base river runoff supplied by groundwater. With features of sustaining a stable ecological system, exact calculation of base-flow is of important significance in eco-environmental problems of river cut off, land subsidence, shrinkage of lakes, degradation of vegetation, and so on. The focus of this paper is on the definition of base-flow, research importance, types of calculation methods, evaluation of application scope and prior developmental direction of these methods. The calculation types can be classified into graphic analysis method, numerical simulation method, hydrological modeling method, physical chemistry method and mathematical physics method. The paper places its emphasis on the base-flow application into calibration and validation of models, water resources management, ecological water demand, sediment transportation and ability of river self-purification. The research results can provide an important reference in base-flow calculation and its application in other fields.

  4. 含PV节点的配电网合环潮流算法%A loop closing power flow calculation algorithm of distribution network with PV nodes

    胡晓松; 张殷; 谢光彬; 肖先勇; 李长松


    Loop closing scenarios change with distributed generations connected to distribution network, which puts forward new requirement for the calculation of loop closing power flow. A loop closing power flow calculation algorithm of distribution network with PV nodes is proposed. For the weak ability of back-forward sweep method to deal with PV nodes and looped network, the improved sensitivity matrix is used to realize the processing of PV nodes with power correction, and based on the superposition principle, the calculation of loop closing power flow is realized with loop closing power flow compensation method. The algorithm performance is verified by IEEE 33-node test system, results show that the proposed algorithm can effectively solve the calculation problem of loop closing power flow in distribution network with PV nodes.%随着分布式电源(Distributed generation, DG)的接入,配电网合环场景发生改变,给配电网合环潮流计算提出了新的要求。以PV型DG为例,提出一种含PV节点的配电网合环潮流算法。针对前推回代法处理PV节点和环网能力弱的特点,利用改进灵敏度矩阵对PV 节点进行无功修正,实现对PV 节点的处理。依据叠加原理,用合环功率补偿法对合环端口节点进行功率补偿,从而实现配电网合环潮流计算。最后对IEEE 33节点测试系统进行仿真分析,结果表明该算法能够有效解决含PV节点的配电网合环潮流计算问题。

  5. Estimating the maximum potential revenue for grid connected electricity storage :

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.


    The valuation of an electricity storage device is based on the expected future cash flow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the

  6. Receiver function estimated by maximum entropy deconvolution

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生


    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  7. [Calculation of the mitral valve area with the proximal convergent flow method with Doppler-color in patients with mitral stenosis].

    Aguilar, J A; Summerson, C; Flores, D; Espinosa, R A; Enciso, R; Badui, E; Hurtado, R


    In this study we evaluate prospectively a new color Doppler method for calculating the mitral valve area based on identifying a blue-red aliasing interfase proximal to the orifice, corresponding to the flow convergence region (FCR). This method can be used to calculate areas using the continuity equation. We studied 61 patients with stenosis. The mitral valve area was calculated using pressure half-time (PHT) Doppler method which were compared with values that obtained by the FCR method, according to the following formula. AVM (cm2) = 2 pi r2 x VN/Vmax; where "r" is the FCR radius measured from the orifice to the first color aliasing (blue-red interface); VN is Nyquist velocity and Vmax is the peak flow velocity by continuous wave Doppler. Twenty three patients had pure mitral stenosis and 38 double mitral lesion. Twenty patients were on sinus rhythm while 41 in atrial fibrillation. Calculated mitral valve area using the FCR method correlated well with mitral valve area determined by PHT method at a correlation coefficient of r = 0.96 (y = 0.097 x + 54.9, SEE = 0.10 cm2, p < 0.001). MVA by FCR ranged from 0.4 to 2.5 cm2 (mean = 1.19 cm2). MVA by PHT ranged from 0.42 to 2.48 cm2 (mean = 1.15 cm2). Color Doppler FCR method provides an accurate estimate of effective mitral valve area and may be useful as an alternative to the pressure half-time method. The calculated mitral valve area by the FCR method is not influenced by the presence of mitral regurgitation nor atrial fibrillation.

  8. An experience in mesh generation for three-dimensional calculation of potential flow around a rotating propeller

    Jou, W.-H.


    An attempt is made to develop a three-dimensional, finite volume computational code for highly swept, twisted, small aspect ratio propeller blades with supersonic tip speeds, in a way that accounts for cascade effects, hub-induced flow, and nonlinear transonic effects. Attention is presently given to the generation of a computational mesh for such a complex propeller configuration, with the aim of sharing developmental process experience. The problem treated is unique, in that blade chord, blade length, hub length and blade-to-blade distance represent several characteristic length scales among which there is considerable disparity. An ad hoc mesh-generation scheme is accordingly developed.

  9. Renal blood flow using arterial spin labelling MRI and calculated filtration fraction in healthy adult kidney donors pre-nephrectomy and post-nephrectomy

    Cutajar, Marica; Clark, Christopher A.; Gordon, Isky [University College London, Imaging and Biophysics Unit, Institute of Child Health, London (United Kingdom); Hilton, Rachel; Olsburgh, Jonathon [Renal Unit, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Marks, Stephen D. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Paediatric Nephrology, London (United Kingdom); Thomas, David L. [University College London, Department of Brain Repair and Rehabilitation, Institute of Neurology, London (United Kingdom); Banks, Tina [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Radiology, London (United Kingdom)


    Renal plasma flow (RPF) (derived from renal blood flow, RBF) and glomerular filtration rate (GFR) allow the determination of the filtration fraction (FF), which may have a role as a non-invasive renal biomarker. This is a hypothesis-generating pilot study assessing the effect of nephrectomy on renal function in healthy kidney donors. Eight living kidney donors underwent arterial spin labelling (ASL) magnetic resonance imaging (MRI) and GFR measurement prior to and 1 year after nephrectomy. Chromium-51 labelled ethylenediamine tetraacetic acid ({sup 51}Cr-EDTA) with multi-blood sampling was undertaken and GFR calculated. The RBF and GFR obtained were used to calculate FF. All donors showed an increase in single kidney GFR of 24 - 75 %, and all but two showed an increase in FF (-7 to +52 %) after nephrectomy. The increase in RBF, and hence RPF, post-nephrectomy was not as great as the increase in GFR in seven out of eight donors. As with any pilot study, the small number of donors and their relatively narrow age range are potential limiting factors. The ability to measure RBF, and hence RPF, non-invasively, coupled with GFR measurement, allows calculation of FF, a biomarker that might provide a sensitive indicator of loss of renal reserve in potential donors. (orig.)

  10. Finite volume calculation of two-phase flows with Lagrange and Euler description; Finite-Volumen Berechnung von Zweiphasenstroemungen in Lagrangescher und Eulerscher Beschreibung

    Fogt, H. [Technikum Joanneum, Fachhochschule-Studiengang Fahrzeugtechnik, Graz (Austria); Kneer, A. [Battelle Ingenieurtechnik GmbH, Eschborn (Germany); Seidel, V. [ICCM Inst. of Computational Continuum Mechanics GmbH, Hamburg (Germany)


    Apart from experimental and empirical methods, numerical calculations are increasingly being used for the examination and judging of two-phase flows and for the design of flow mechanics systems and components. Typical examples are injection systems, atomisers, mixers, steam-raising units and plants for smoke and exhaust gas cleaning. One frequently counteracts the long calculation times that occur in the numerical solution of two- or multi-phase equations by simplifying the assumptions. In energy and process technology, one often falls back on one-dimensional calculation procedures. This has the advantage that the behaviour of whole plants can be described by them the spatial and temporal resolution down to detecting small sale detail phenomena is only successful up to a point with these methods. Due to the constantly rising performance of the computers and by applying new mathematical/information methods, CFD methods make detailed numerical investigations of two-phase flow processes possible with reasonable computing times. The possibilities and limits are shown in the article by some examples. [Deutsch] Zur Untersuchung und Beurteilung von Zweiphasenstroemungen und fuer die Auslegung stroemungsmechanischer Systeme und Komponenten werden neben experimentellen und empirischen Methoden zunehmend numerische Rechenverfahren eingesetzt. Typische Beispiele sind Einspritzsysteme, Zerstaeuber, Mischer, Dampferzeuger und Anlagen zur Rauch- bzw. Abgasreinigung. Den hohen Rechenzeiten, die bei der numerischen Loesung der zwei- und mehrphasigen Erhaltungsgleichungen anfallen, wird haeufig durch Vereinfachung der Ansaetze entgegengewirkt. In der Enegie- und Verfahrenstechnik wird oft auf eindimensionale Rechenverfahren zurueckgegriffen. Sie bieten den Vorteil, dass mit ihnen das Verhalten ganzer Anlagen beschrieben werden kann. Die raeumliche und zeitliche Aufloesung bis hin zur Erfassung kleinskaliger Detailerscheinungen gelingt mit diesen Methoden nur bedingt. CFD Methoden

  11. Noninvasive 3D pressure calculation from PC-MRI via non-iterative harmonics-based orthogonal projection: constant flow experiment.

    Negahdar, M J; Kadbi, Mo; Cha, J; Cebral, J; Amini, A


    Use of phase-contrast (PC) MRI in assessment of hemodynamics has significant clinical importance. In this paper we develop a novel approach to determination of hemodynamic pressures. 3D gradients of pressure obtained from Navier-Stokes equation are expanded into a series of orthogonal basis functions, and are subsequently projected onto an integrable subspace. Before the projection step however, a scheme is devised to eliminate the discontinuity at the vessel and image boundaries. In terms of the computation time, the proposed approach significantly improves on previous iterative methods for pressure calculations. The method has been validated using computational fluid dynamic simulations and in-vitro MRI studies of stenotic flows.

  12. Study of power flow calculation based on Matpower%基于Matpower的潮流计算方法

    徐恒娇; 王洪诚; 胡江航; 沈霞


      介绍了Matpower软件的基本操作方法,并通过实际分析和计算,说明了Matpower软件在电力系统分析中的优越性,同时介绍了Matpower软件应用简易、计算精度高、准确快速和直观明了等特点。%This paper introduces the basic operation method of the software Matpower, and based on the actual analysis and calculation, explains the superiority of the software Matpower. And at the same time the paper analyzes that Matpower has the characteristics of simple application, high accuracy, fast speed and intuitiveness.

  13. Estimating the accuracy of a reduced-order model for the calculation of fractional flow reserve (FFR).

    Boileau, Etienne; Pant, Sanjay; Roobottom, Carl; Sazonov, Igor; Deng, Jingjing; Xie, Xianghua; Nithiarasu, Perumal


    Image-based noninvasive fractional flow reserve (FFR) is an emergent approach to determine the functional relevance of coronary stenoses. The present work aimed to determine the feasibility of using a method based on coronary computed tomography angiography (CCTA) and reduced-order models (0D-1D) for the evaluation of coronary stenoses. The reduced-order methodology (cFFRRO ) was kept as simple as possible and did not include pressure drop or stenosis models. The geometry definition was incorporated into the physical model used to solve coronary flow and pressure. cFFRRO was assessed on a virtual cohort of 30 coronary artery stenoses in 25 vessels and compared with a standard approach based on 3D computational fluid dynamics (cFFR3D ). In this proof-of-concept study, we sought to investigate the influence of geometry and boundary conditions on the agreement between both methods. Performance on a per-vessel level showed a good correlation between both methods (Pearson's product-moment R=0.885, P<0.01), when using cFFR3D  as the reference standard. The 95% limits of agreement were -0.116 and 0.08, and the mean bias was -0.018 (SD =0.05). Our results suggest no appreciable difference between cFFRRO  and cFFR3D with respect to lesion length and/or aspect ratio. At a fixed aspect ratio, however, stenosis severity and shape appeared to be the most critical factors accounting for differences in both methods. Despite the assumptions inherent to the 1D formulation, asymmetry did not seem to affect the agreement. The choice of boundary conditions is critical in obtaining a functionally significant drop in pressure. Our initial data suggest that this approach may be part of a broader risk assessment strategy aimed at increasing the diagnostic yield of cardiac catheterisation for in-hospital evaluation of haemodynamically significant stenoses. Copyright © 2017 John Wiley & Sons, Ltd.


    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail:, E-mail: [Department of Physics, University of Utah, 201 JFB, Salt Lake City, UT 84112 (United States)


    We investigate whether coagulation models of planet formation can explain the observed size distributions of trans-Neptunian objects (TNOs). Analyzing published and new calculations, we demonstrate robust relations between the size of the largest object and the slope of the size distribution for sizes 0.1 km and larger. These relations yield clear, testable predictions for TNOs and other icy objects throughout the solar system. Applying our results to existing observations, we show that a broad range of initial disk masses, planetesimal sizes, and fragmentation parameters can explain the data. Adding dynamical constraints on the initial semimajor axis of 'hot' Kuiper Belt objects along with probable TNO formation times of 10-700 Myr restricts the viable models to those with a massive disk composed of relatively small (1-10 km) planetesimals.

  15. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...

  16. Maximum Power from a Solar Panel

    Michael Miller


    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  17. 基于GP U并行的改进SP H方法对粘性流场的模拟%Viscosity flow simulation using improved SPH method based on GPU parallel calculation

    金善勤; 郑兴; 段文洋


    光滑粒子水动力学( SPH)方法对模拟破碎波问题有着良好的适应性。基于众核架构的GPU计算平台在加速SPH方法方面有着强大的优势。针对传统SPH方法计算效率低和计算精度差的问题,采用δ⁃SPH方法对腔内剪切流动、Poiseuille流动、Couette流动问题、孤立波砰击问题进行了模拟,并且提出一种基于粒子对的GPU并行计算方法。通过比较,得到不同边界处理方法对粘性流场模拟结果的影响规律,并且研究基于粒子对和单个粒子2种不同GPU并行计算方法,对比不同计算方法的精度和CPU时间。结果表明,采用粒子对的GPU并行方法可以使δ⁃SPH方法的最大加速比超过10。%The smoothed particle hydrodynamics ( SPH) method has a good adaptability for the simulation of breaking wave problems. The GPU computing platform based on many⁃core architecture has a strong advantage in SPH method acceleration. In view of the low efficiency and the accuracy problem of traditional SPH method, this paper puts forward a new GPU parallel computing model based on the particle pair and improvedδ⁃SPH method for simulating viscosity flows such as lid⁃drive cavity flow, Poiseuille flow, Couette flow and solitary wave slamming. According to the comparison of different boundary handling methods, their rules on viscous flow simulation are got. Furthermore, two GPU parallel calculation methods which are respectively based on the particle pair and single par⁃ticle are researched, and their accuracy and CPU time are compared. The results show that the GPU parallel calcu⁃lation method based on particle pairs makesδ⁃SPH exceed 10 times of the maximum speed⁃up ratio.

  18. A computer program for calculating the perfect gas inviscid flow field about blunt axisymmetric bodies at an angle of attack of 0 deg

    Zoby, E. V.; Graves, R. A., Jr.


    A method for the rapid calculation of the inviscid shock layer about blunt axisymmetric bodies at an angle of attack of 0 deg has been developed. The procedure is of an inverse nature, that is, a shock wave is assumed and calculations proceed along rays normal to the shock. The solution is iterated until the given body is computed. The flow field solution procedure is programed at the Langley Research Center for the Control Data 6600 computer. The geometries specified in the program are sphores, ellipsoids, paraboloids, and hyperboloids which may conical afterbodies. The normal momentum equation is replaced with an approximate algebraic expression. This simplification significantly reduces machine computation time. Comparisons of the present results with shock shapes and surface pressure distributions obtained by the more exact methods indicate that the program provides reasonably accurate results for smooth bodies in axisymmetric flow. However, further research is required to establish the proper approximate form of the normal momentum equation for the two-dimensional case.

  19. Predicting location-specific extreme coastal floods in the future climate by introducing a probabilistic method to calculate maximum elevation of the continuous water mass caused by a combination of water level variations and wind waves

    Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu


    Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and



    A dual-time method is introduced to calculate the unsteady flow in a certain vibrating flat cascade. An implicit lower-upper symmetric-gauss-seidel scheme(LU-SGS) is applied for time stepping in pseudo time domains, and the convection items are discretized with the spatial three-order weighted non-oscillatory and non-free-parameter dissipation difference (WNND) scheme. The turbulence model adopts q-( low-Reynolds-number model. The frequency spectrums of lift coefficients and the unsteady pressure-difference coefficients at different spanwise heights as well as the entropy contours at blade tips on different vibrating instants, are obtained. By the analysis of frequency spectrums of lift coefficients at three spanwise heights, it is considered that there exist obvious non-linear perturbations in the flow induced by the vibrating, and the perturbation frequencies are higher than the basic frequency. The entropy contours at blade tips at different times display an intensively unsteady attribute of the flow under large amplitudes.

  1. Calculation of Maximum Waste Heat and Recovery Rate of Liquid and Gas Fuels%液气燃料烟气的最大余热量与节能率计算研究



    The consumption of various liqui d oil and gas fuel grows rapidly in Chinese energy structure. The discharged flue's temperature is generally 160℃ ~180℃ after these fuels are combusted. This part of energy can be used as secondary energy, though whose grade is low. A lot of H elements are in the form of liquid and gas fuels, and the vapor is the flue's main ingredi-ents. In this paper, the waste heat quantity and recovery rate of 0# light diesel oil and natural gas's flue is calculated, whose tem-perature is from 180℃ to 25℃ at the condition of 1 atm. In the 0# light diesel's flue, the residual heat's proportion of the vapor's heat is about 55. 08%. In the natural gas's flue, which proportion is about 79. 41%. Moreover, the vapor's latent heat is about 3/4. Therefore, recovering the latent heat of vapor is of great significance for the heat recovery of the low temperature waste heat.%在中国能源结构中,燃油与天然气所占比例迅速上升.燃烧后排烟温度一般为160℃~180℃,仍含有较多能量,可以二次利用.本文通过对液、气体燃料中具有代表性的0号轻质柴油及天然气烟气的余热量与节能率进行计算,发现低温烟气余热中的水蒸气余热量占有很大比例,柴油烟气为55.08%,天热气烟气为79.41%.回收烟气余热,尤其是其中水蒸汽的潜热对低温烟气的热回收具有重要意义.若有效回收利用,既是对一次能源的二次利用,更符合"十三五"期间国家节能减排的相关政策要求.

  2. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Oyama, Y. [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y.; Osuga, M.; Yamauchi, T. [Hitachi, Ltd., Tokyo (Japan)


    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  3. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  4. 基于最小费用最大流理论的 CCN 多路径路由算法%A Multipath Routing Algorithm for CCN Networks Based on the Minimum Cost Maximum Flow Theory

    雷苏娇; 李俊; 吴海博; 冯宗明


    Multipath routing is a new feature in CCN (Content-Centric Networking) which can be used to enhance the efifciency of network resources usage and balance network congestion. Based on the minimum cost maximum flow theory, we propose a multipath routing algorithm which aims to minimize delay and maximize bandwidth. It can choose different routing paths automatically according to the difference of network bandwidth environment and delay between links to achieve optimal bandwidth utilization of the entire network. The simulation experiment shows that our algorithm can reduce packet loss rate, decrease the bottleneck link load by approximately 60%, and alleviate network congestion.%在CCN (Content-Centric Networking,内容中心网络)中,多路径路由是一个新的特性,采用多路径路由可以更高效地利用网络资源,平衡网络拥塞。本文基于最小费用最大流理论,提出了一种适用于CCN网络的最小时延最大带宽多路径路由算法。该算法可以根据网络链路的带宽差异和链路的时延来选择不同的路由路径,达到整个网络的带宽最优利用。仿真实验表明,该算法与最短路径算法相比可以减少网络丢包,将瓶颈链路的负载量降低60%左右,缓解网络拥塞。

  5. Developing a Method of Calculating the Operational Flow of Methanol to Prevent the Formation of Crystalline Hydrates in the Operation of Underground Gas Storage Facilities

    Shipovalov Anton


    Full Text Available When operating underground storage (UGS of gas hydrates liquidation formed untimely could lead to serious consequences - a complete shut-in and elimination of its process. With a small fund operating wells with high daily output storage operation would entail a violation of technological regime, the failure of gas sales plans, increased hours of downtime operational fund. Therefore, ensuring the smooth and reliable operation of underground gas storage wells fund is an urgent task. The authors of the article developed a methodology for calculating the operational flow of methanol to prevent the formation of gas hydrates in UGS operation. On the basis of the developed technique using industrial operating data Punginskoye UGS made the study of technological modes of its work and recommendations to prevent hydrate formation in the underground gas storage wells.

  6. 全钒液流电池支路电流的理论计算及实验分析%Theoretical calculation and experimental analysis of shunt current in all vanadium redox flow battery

    马军; 李爱魁; 杨祥军; 刘飞; 张爱芳


    The calculation of shunt current in the all vanadium redox flow battery was described and the calculation process was completed by MATLAB software. The regularity of distribution and effect factors of shunt current was reviewed. In addition, the energy efficiency of 7.5 kW stack was tested. The results show that the center battery has the minimum feed port shunt current and the maximum manifold road shunt current. The modular construction has lower shunt current and higher energy efficiency.%提出了钒电池支路电流计算方法,采用MATLAB软件对不同结构7.5 kW钒电池的支路电流进行了理论计算,分析了支路电流的分布规律及影响因素,并对7.5 kW钒电池进行效率测试,结果表明:支管上的支路电流在电堆中心最小,而总管及主路上的支路电流在电堆中心为最大值,同时单电池个数减少有利于减小支路电流;采用模块化结构的7.5 kW电堆(由2组共30个单电池串联而成,即15个单电池组成一个模块)的支路电流明显降低,其能量效率达到74.4%,高于一体化结构电堆(由1组共30个单电池串联而成,即每组30个单电池)的能量效率(69.4%).

  7. Maximum information photoelectron metrology

    Hockett, P; Wollenhaupt, M; Baumert, T


    Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...

  8. 重力式泥石流拦挡坝稳定性计算%Calculation of the Stability of the Gravity Dam in Front of Debris Flows

    吴玮江; 冯乐涛


    Based on the structure types, the combination of loads and other characteristics of thdam, the Calculation of the stability of the gravity dam is discussed. The method of calculations and formulas are put forward, and they can promote the reliability and safety of the dam in design and reduce the damages of debris flows.%在分析重力式拦挡坝的结构形式、受力荷载组合及变化特征的基础上,对重力式泥石流拦挡坝稳定性计算问题进行了探讨,规范和统一了重力式拦挡坝的稳定性计算方法和公式以及不同地震烈度区地震角的取值,工程实践证明,这套方法简单可靠,可保证重力式泥石流拦挡坝的可靠性和安全性.

  9. 77 FR 37554 - Calculation of Maximum Obligation Limitation


    ... Orderly Liquidation Authority (``OLA'') to resolve a large interconnected financial company upon a... on financial stability in the United States and the use of OLA would avoid or mitigate such adverse... of law. \\7\\ Dodd Frank Act, section 202(a)(1)(A)(iii). The OLA in the Dodd-Frank Act is intended as...

  10. 76 FR 72645 - Calculation of Maximum Obligation Limitation


    ... that fair value measurement is context dependant and the result of numerous variables, including the... fair value of the total consolidated assets of each covered financial company that are available for... of each covered financial company be measured at their ``fair value.'' The Dodd-Frank Act does not...

  11. The STATFLUX code: a statistical method for calculation of flow and set of parameters, based on the Multiple-Compartment Biokinetical Model

    Garcia, F.; Mesa, J.; Arruda-Neto, J. D. T.; Helene, O.; Vanin, V.; Milian, F.; Deppman, A.; Rodrigues, T. E.; Rodriguez, O.


    The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo simulation procedure. Program summaryTitle of program:STATFLUX Catalogue identifier:ADYS_v1_0 Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it has been tested:Micro-computer with Intel Pentium III, 3.0 GHz Installation:Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, Brazil Operating system:Windows 2000 and Windows XP Programming language used:Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program. Memory required to execute with typical data:8 Mbytes of RAM memory and 100 MB of Hard disk memory No. of bits in a word:16 No. of lines in distributed program, including test data, etc.:6912 No. of bytes in distributed program, including test data, etc.:229 541 Distribution format:tar.gz Nature of the physical problem:The investigation of transport mechanisms for

  12. Maximum Likelihood Associative Memories

    Gripon, Vincent; Rabbat, Michael


    Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...

  13. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....

  14. Economics and Maximum Entropy Production

    Lorenz, R. D.


    Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.

  15. Maximum Entropy Fundamentals

    F. Topsøe


    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  16. Predicting the Potentials, Solubilities and Stabilities of Metal-Acetylacetonates for Non-Aqueous Redox Flow Batteries Using Density Functional Theory Calculations.

    Kucharyson, J. F.; Cheng, L.; Tung, S. O.; Curtiss, L. A.; Thompson, L. T.


    New active materials are needed to improve the performance and reduce the cost of non-aqueous redox flow batteries (RFBs) for grid-scale energy storage applications. Efforts to develop better performing materials, which have largely been empirical, would benefit from a better understanding of relationships between structural, electronic and RFB-relevant functional properties. This paper focuses on metal-acetylacetonates, a class of metal coordination complexes that has shown promise for use in RFBs, and describes correlations between their experimentally measured standard potentials, solubilities, and stabilities (cycle lifes), and selected chemical, structural and electronic properties determined from Density Functional Theory (DFT) calculations. The training set consisted of 16 complexes including 5 different metals and 11 different substituents on the acetylacetonate ligand. Standard potentials for those compounds were calculated and are in good agreement with experimentally measured results. A predictive equation based on the solvation energies and dipole moments, two easily computed properties, reasonably modeled the experimentally determined solubilities. Importantly, we were able to identify a descriptor for the stability of acetylacetonates. The experimentally determined stability, quantified as the cycle life to a given degree of degradation, correlated with the percentage of the highest occupied (HOMO) or lowest unoccupied molecular orbital (LUMO) on the metal of the complex. This percentage is influenced by the degree of ligand innocence (irreducibility), and complexes with the most innocent ligands yielded the most stable redox reactions. To this end, VO(acetylacetonate)(2) and Fe(acetylacetonate)(3), with nearly 80% of the HOMO and LUMO on the metal, possessed the most stable oxidation and reduction half-reactions, respectively. The structure-function relationships and correlations presented in this paper could be used to predict new, highly soluble

  17. Regularized maximum correntropy machine

    Wang, Jim Jing-Yan


    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  18. 基于奇点分布法的轴流泵叶片翼型设计与计算%Design and calculation of airfoil profile of blade in axial flow pump based on singularity approach

    严敬; 刘小兵; 周绪成; 刘小梅; 杨小林


    Singularity calculating program is an important approach to design blade airfoils of axial flow machinery. This method is originally used in the runner design of propeller turbines. High efficiency and satisfactory performance of the runners has proved that this program has many advantages compared with other calculating methods for axial flow machines. To improve performance characteristics of axial flow pumps, it is valuable to introduce singularity calculating approach for the design of axial flow pumps. The principles in this program can be described briefly as follows. A vortex sheet is placed along a special curve in the uniform flow field with planar potential flow. If the induced velocity superimposed with the original planar uniform flow can ensure the curve to be a streamline and this streamline can meet all flowing boundary conditions, a solid curved thin plate can be used to replace the vortex sheet, for the flow field formed by the plate and the flow field without the plate are identical. Because velocity distribution of a potential flow is determined by its potential function, which satisfies the Laplacian equation. The solution to any Laplacian equation is solely determined by boundary conditions of the flow. As the induced velocity is developed by vortex sheet, the vortex density distribution along the sheet is very important. In a developed planar flow surface, for the same cascade, energy conversion and relative velocity in the runners and impellers are opposite, and stagnant point and singular point are also located in 2 opposite positions of the same airfoil. As a result, the vortex density distribution along the airfoil mean line can’t be the same for the cascade when used for 2 kinds of hydraulic machines. However, there is only one distribution function presented in traditional approaches reported in all literatures. Further analysis showed that the traditional distribution function was only suitable for boundary conditions of runner

  19. On the maximum-entropy method for kinetic equation of radiation, particle and gas

    El-Wakil, S.A. [Mansoura Univ. (Egypt). Phys. Dept.; Madkour, M.A. [Mansoura Univ. (Egypt). Phys. Dept.; Degheidy, A.R. [Mansoura Univ. (Egypt). Phys. Dept.; Machali, H.M. [Mansoura Univ. (Egypt). Phys. Dept.


    The maximum-entropy approach is used to calculate some problems in radiative transfer and reactor physics such as the escape probability, the emergent and transmitted intensities for a finite slab as well as the emergent intensity for a semi-infinite medium. Also, it is employed to solve problems involving spherical geometry, such as luminosity (the total energy emitted by a sphere), neutron capture probability and the albedo problem. The technique is also employed in the kinetic theory of gases to calculate the Poiseuille flow and thermal creep of a rarefied gas between two plates. Numerical calculations are achieved and compared with the published data. The comparisons demonstrate that the maximum-entropy results are good in agreement with the exact ones. (orig.).

  20. Study on Calculation Method of Liquid Holdup of Gas-Liquid Two-phase Flow in Inclined Tube Column%倾斜管柱气液两相流持液率计算方法研究

    曾祥柱; 罗威; 刘政轩; 张瑞尧


    The calculation method of liquid holdup of gas-liquid two-phase flow in inclined tube column plays an important role in petroleum industry. In this paper, Beggs-Brill correlation, Mukherjee-Brill correlation, Eaton correlation and Dukler II correlation formula were used to calculate liquid holdup. Through experiments, the liquid holdup in inclined tube column with different angles under the same gas liquid volume flow rate was tested, and the accuracies of the four formulas were analyzed. The results showed that Beggs-Brill correlation was more accurate. The Beggs Brill correlation were analyzed. It's found that when the other conditions are the same, the calculated liquid holdup has symmetry with the tube column tilting angle, symmetry axis is 50 degrees, calculated liquid holdups of tilt angle of 90 degrees and 10 degrees are equal. Combined with the measured experimental data, the drawn curve shows that liquid holdup between 45 and 60 degrees inclination angle is the maximum, and the liquid holdup of 90 degree is close to the liquid holdup of 10 degrees, on the whole, the liquid holdup has a certain symmetry with the change of the angle.%倾斜管柱气液两相流持液率的计算方法在石油工业中具有重要地位。采用 Beggs-Brill 相关式、Mukherjee-Brill 相关式、Eaton 相关式和杜克勒Ⅱ相关式计算了倾斜管柱的持液率,通过实验手段测量相同气液体积流量下,不同角度的持液率数据,分析了上述4种计算式的准确性,发现 Beggs-Brill 相关式比较准确。对Beggs-Brill 相关式进行了分析,发现当其他条件一定时,其计算的持液率关于管柱倾斜角度具有一定的对称性,对称轴为50°,倾斜角度为90°时和10°时计算的持液率相等,结合所测量的实验数据,做出曲线发现在倾斜角度在45°到60°之间持液率最大,倾斜角度为90°的持液率与为10°的持液率比较接近,同时持液率随角度的变化具有一定的对称性。


    HAN Dong; FANG Hong-wei; BAI Jing; HE Guo-jian


    A coupled one-dimensional(1-D)and two-dimensional(2-D)channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article.For the 1-D model,the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network.The Alternating Direction Implicit(ADI)method is adopted for the 2-D model at the nodes.In the coupled model,the 1-D model provides a good approximation with small computational effort,while the 2-D model is applied for complex topography to achieve a high accuracy.An Artificial Neural Network(ANN)method is used for the data exchange and the connectivity between the 1-D and 2-D models.The coupled model is applied to the Jingjiang-Dongting Lake region,to simulate the tremendous looped channel network system,and the results are compared with field data.The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.

  2. Calculation of portal contribution to hepatic blood flow with 99mTc-microcolloids. A noninvasive method to diagnose liver graft rejection

    Martin-Comin, J.; Mora, J.; Figueras, J.; Puchal, R.; Jaurrieta, E.; Badosa, F.; Ramos, M.


    The portal contribution (PC) to hepatic blood flow was calculated in 13 liver graft patients and 13 normal volunteers. The method is based on the quantification and normalization of the liver and spleen activity after the administration of 7 mCi (259 MBq) of 99mTc microcolloid. Forty examinations were performed in liver grafts and 13 in normal subjects. The PC was significantly higher in normal native liver (64.0 +/- 3.0%) than in functioning grafts (58.8 +/- 3.1%). In acutely rejecting patients, PC was significantly lower (52.4 +/- 2.0%) than in functioning grafts and similar to that observed in cholangitis (53.5 +/- 0.7%). The PC increases again once rejection has resolved (57.3 +/- 2.6%). During hepatitis post-transplant PC values (59.7 +/- 3.4%) were similar to those observed in functioning grafts. Overall, PC values over 55% are very unlikely to be due to rejection.

  3. Analysis of the two-fluid model and the drift-flux model for numerical calculation of two-phase flow

    Munkejord, Svend Tollak


    This thesis analyses models for two-phase flows and methods for the numerical resolution of these models. It is therefore one contribution to the development of reliable design tools for multiphase applications. Such tools are needed and expected by engineers in a range of fields, including in the oil and gas industry. The approximate Riemann solver of Roe has been studied. Roe schemes for three different two-phase flow models have been implemented in the framework of a standard numerical algorithm for the solution of hyperbolic conservation laws. The schemes have been analysed by calculation of benchmark tests from the literature, and by comparison with each other. A Roe scheme for the four-equation one-pressure two-fluid model has been implemented, and a second-order extension based on wave decomposition and flux-difference splitting was shown to work well and to give improved results compared to the first-order scheme. The convergence properties of the scheme were tested on smooth and discontinuous solutions. A Roe scheme has been proposed for a five-equation two-pressure two-fluid model with pressure relaxation. The use of analogous numerical methods for the five-equation and four-equation models allowed for a direct comparison of a method with and without pressure relaxation. Numerical experiments demonstrated that the two approaches converged to the same results, but that the five-equation pressure-relaxation method was significantly more dissipative, particularly for contact discontinuities. Furthermore, even though the five-equation model with instantaneous pressure relaxation has real eigenvalues, the calculations showed that it produced oscillations for cases where the four-equation model had complex eigenvalues. A Roe scheme has been constructed for the drift-flux model with general closure laws. For the case of the Zuber-Findlay slip law describing bubbly flows, the Roe matrix is completely analytical. Hence the present Roe scheme is more efficient than

  4. Equalized near maximum likelihood detector


    This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.

  5. Correction model for flow calculation of plain river network%平原区河网水流计算校正模型

    吴晓玲; 向小华; 李菲菲; 王船海


    Complex water movement and fewer measuring points are the unfavorable factors in improving the accuracy of flow calculation of river networks. For this reason, a correction model for a plain river network was developed based on the three-step method in dealing with the water levels at key nodes of a looping river network, with the coefficients in the equation considered to be the media carrying the correction information. The correction information of the model errors at observation stations was transmitted to the other cross sections of the river network to correct the forecasted values of water levels and discharges at the cross sections of neighboring rivers. A case study was conducted in the river network of the Chengtong section of the Yangtze River. Hydrological data in September 2004 were selected for model calculation. The results show that the proposed model can effectively transmit the correction information of model errors in a certain spatial range and has practical significance in improving the accuracy of forecasts for river networks.%为提高平原河网水流计算的精度,针对其中交错相连的复杂河网水流运动以及测点又相对较少的情况,提出以环状河网节点水位三级解法为基础、河段方程系数为载体的平原河网校正模型.将观测位置上的模型系统误差校正信息由测点向河网其他断面传播,修正相邻河道断面的水位、流量预报值.选择长江澄通段河网进行实例分析,选用2004年9月的水文资料进行演算.结果表明,该方法能在一定空间范围内有效地传播误差修正量,对提高河网水流预报精度具有实用意义.

  6. The Sherpa Maximum Likelihood Estimator

    Nguyen, D.; Doe, S.; Evans, I.; Hain, R.; Primini, F.


    A primary goal for the second release of the Chandra Source Catalog (CSC) is to include X-ray sources with as few as 5 photon counts detected in stacked observations of the same field, while maintaining acceptable detection efficiency and false source rates. Aggressive source detection methods will result in detection of many false positive source candidates. Candidate detections will then be sent to a new tool, the Maximum Likelihood Estimator (MLE), to evaluate the likelihood that a detection is a real source. MLE uses the Sherpa modeling and fitting engine to fit a model of a background and source to multiple overlapping candidate source regions. A background model is calculated by simultaneously fitting the observed photon flux in multiple background regions. This model is used to determine the quality of the fit statistic for a background-only hypothesis in the potential source region. The statistic for a background-plus-source hypothesis is calculated by adding a Gaussian source model convolved with the appropriate Chandra point spread function (PSF) and simultaneously fitting the observed photon flux in each observation in the stack. Since a candidate source may be located anywhere in the field of view of each stacked observation, a different PSF must be used for each observation because of the strong spatial dependence of the Chandra PSF. The likelihood of a valid source being detected is a function of the two statistics (for background alone, and for background-plus-source). The MLE tool is an extensible Python module with potential for use by the general Chandra user.

  7. Modifications of the maximum expiratory flow in bronchial asthma treatment using Intal and Ketotifeno. Modificaciones del flujo expiratorio máximo en el tratamiento del asma bronquial con intal y ketotifeno.

    Marylin Aroche Quintana


    Full Text Available Introduction: The studies of the lung function are essential for the diagnosis, classification and treatment of the Bronchial Asthma and inside them the mensuration of the flow maximum expiratory (FEM it provides a quantitative value of the obstruction of the air roads. Methods: It was carried out a study in two stages, the first one descriptive in which was included the 15 year-old patients and more with diagnostic of Bronchial Asthma and belonging to the CMF #26 of the Policlínico Area V of the Municipality Cienfuegos, with the objective of determining the modifications of the value of the FEM according to outline of treatment used intercrisis. The sample was constituted for 37 patients, to those that were applied a form of data where it was included the age, sex, clinical characteristics of its illness and the current treatment. In the second stage two groups were created selected by the simple random method. The first one received treatment with Intal Spray (four aplications per day and the second with Ketotifeno (tab. 1 mg. /2tab par day egining to make mensurations from FEM to the three, six, nine and twelve months of having implemented the treatment. Results: They in our patient prevailed the ages of 15- 24 years and of 25- 34 years and the feminine sex, the Salbutamol was the more utilized in the previous treatments, initially the greater number of asthmatic they were classified like moderates and upon concluding the 12mo month the 72.9% they of the total of the pattern behaved like light; they with both treatments improved the courages of FEM, although the group of patient that you received treatment with Intal you showed an improvement in statements security much more rapid. Conclusions: That patient that they utilized Intal had a more rapid elevation of the FEM.

    Introducción: Los estudios de la función pulmonar son


    罗小平; 邓先和; 邓颂九


    The calculating formula of flow resistance of heat exchanger with longitudinal fluid flow on shell side is derived by the method of regarding zero shear stress line as separate boundary of tube unit. The parameters are derived by experiment ,and the variations of flow resistance correspond with experiment data .The maximum deviation with experimental data is less than 6%.

  9. The Throughput Flow Constraint Theorem and its Applications

    Michael T. Todinov


    Full Text Available The paper states and proves an important result related to the theory of flow networks with disturbed flows:“the throughput flow constraint in any network is always equal to the throughput flow constraint in its dual network”. After the failure or congestion of several edges in the network, the throughput flow constraint theorem provides the basis of a very efficient algorithm for determining the edge flows which correspond to the optimal throughput flow from sources to destinations which is the throughput flow achieved with the smallest amount of generation shedding from the sources. In the case where a failure of an edge causes a loss of the entire flow through the edge, the throughput flow constraint theorem permits the calculation of the new maximum throughput flow to be done in time, where m is the number of edges in the network.In this case, the new maximum throughput flow is calculated by inspecting the network only locally, in the vicinity of the failed edge, without inspecting the rest of the network. The superior average running time of the presented algorithm, makes it particularly suitable for decongesting overloaded transmission links of telecommunication networks, in real time.In the paper, it is also shown that the deliberate choking of flows along overloaded edges, leading to a generation of momentary excess and deficit flow, provides a very efficient mechanism for decongesting overloaded branches.

  10. Maximum Profit Configurations of Commercial Engines

    Yiran Chen


    An investigation of commercial engines with finite capacity low- and high-price economic subsystems and a generalized commodity transfer law [n ∝ Δ (P m)] in commodity flow processes, in which effects of the price elasticities of supply and demand are introduced, is presented in this paper. Optimal cycle configurations of commercial engines for maximum profit are obtained by applying optimal control theory. In some special cases, the eventual state—market equilibrium—is solely determined by t...

  11. Computer code selection criteria for flow and transport code(s) to be used in undisturbed vadose zone calculations for TWRS environmental analyses

    Mann, F.M.


    The Tank Waste Remediation System (TWRS) is responsible for the safe storage, retrieval, and disposal of waste currently being held in 177 underground tanks at the Hanford Site. In order to successfully carry out its mission, TWRS must perform environmental analyses describing the consequences of tank contents leaking from tanks and associated facilities during the storage, retrieval, or closure periods and immobilized low-activity tank waste contaminants leaving disposal facilities. Because of the large size of the facilities and the great depth of the dry zone (known as the vadose zone) underneath the facilities, sophisticated computer codes are needed to model the transport of the tank contents or contaminants. This document presents the code selection criteria for those vadose zone analyses (a subset of the above analyses) where the hydraulic properties of the vadose zone are constant in time the geochemical behavior of the contaminant-soil interaction can be described by simple models, and the geologic or engineered structures are complicated enough to require a two-or three dimensional model. Thus, simple analyses would not need to use the fairly sophisticated codes which would meet the selection criteria in this document. Similarly, those analyses which involve complex chemical modeling (such as those analyses involving large tank leaks or those analyses involving the modeling of contaminant release from glass waste forms) are excluded. The analyses covered here are those where the movement of contaminants can be relatively simply calculated from the moisture flow. These code selection criteria are based on the information from the low-level waste programs of the US Department of Energy (DOE) and of the US Nuclear Regulatory Commission as well as experience gained in the DOE Complex in applying these criteria. Appendix table A-1 provides a comparison between the criteria in these documents and those used here. This document does not define the models (that

  12. Probabilistic Optimal Power Flow Calculation Based on Digital Nets Method%基于数字网系方法的概率最优潮流计算

    潘雄; 张龙; 黄家栋; 王莉莉; 吴瑞华


    风电场和光伏电站的大规模接入使得在进行电力系统最优潮流计算时需要考虑风电场和光伏电站出力的随机性。传统的蒙特卡洛法耗时长、占用内存大,文中提出一种利用数字网系(DN)的采样值具有等分布这一特性来改善输入随机变量分布空间覆盖程度的方法,并将该方法用于含风电场和光伏电站的电力系统概率最优潮流计算中。以 IEEE 30节点系统对所提方法的准确性与有效性进行了验证,仿真结果表明:DN 方法可以较好地估计输出随机变量的概率分布,能有效地处理电力市场中的不确定性问题。将该方法用于 IEEE 300节点系统,研究了系统接入不同容量光伏电站对节点电价的影响。同时,还将风电场和光伏混合系统与单独风电场系统进行对比,得到前者的节点电价、网损和支路功率波动更小的结论。%With large-scale integration of wind farms and photovoltaic plants into the power system,it becomes necessary to take the wind power and photovoltaic power uncertainty into consideration during optimal power flow (OPF) calculation.The traditional Monte Carlo simulation method cannot be used for the thousands of stochastic simulations required to achieve a rational result.Hence the digital nets (DN) method with equivalent distribution sample values is proposed to improve the sample value coverage of random variable input spaces.And the method is used in the OPF calculation of power system containing wind farms and photovoltaic plants.The accuracy and validity of the proposed method tested on an IEEE 30-bus system and the simulation results show that the proposed method has the advantages of fast computation and high accuracy while capable of estimating the probability distribution of the output random variables and dealing with the uncertainties in the electricity market.Then the DN method is applied to an IEEE 300-bus system to study the influence

  13. Calculation of the distributed loads on the blades of individual multiblade propellers in axial flow using linear and nonlinear lifting surface theories

    Pesetskaya, N. N.; Timofeev, I. YA.; Shipilov, S. D.


    In recent years much attention has been given to the development of methods and programs for the calculation of the aerodynamic characteristics of multiblade, saber-shaped air propellers. Most existing methods are based on the theory of lifting lines. Elsewhere, the theory of a lifting surface is used to calculate screw and lifting propellers. In this work, methods of discrete eddies are described for the calculation of the aerodynamic characteristics of propellers using the linear and nonlinear theories of lifting surfaces.

  14. Calculation of the distributed loads on the blades of individual multiblade propellers in axial flow using linear and nonlinear lifting surface theories

    Pesetskaya, N. N.; Timofeev, I. YA.; Shipilov, S. D.


    In recent years much attention has been given to the development of methods and programs for the calculation of the aerodynamic characteristics of multiblade, saber-shaped air propellers. Most existing methods are based on the theory of lifting lines. Elsewhere, the theory of a lifting surface is used to calculate screw and lifting propellers. In this work, methods of discrete eddies are described for the calculation of the aerodynamic characteristics of propellers using the linear and nonlinear theories of lifting surfaces.




    Full Text Available Ship squat is a combined effect of ship’s draft and trim increase due to ship motion in limited navigation conditions. Over time, researchers conducted tests on models and ships to find a mathematical formula that can define squat. Various forms of calculating squat can be found in the literature. Among those most commonly used are of Barrass, Millward, Eryuzlu or ICORELS. This paper presents a comparison between the squat formulas to see the differences between them and which one provides the most satisfactory results. In this respect a cargo ship at different speeds was considered as a model for maximum squat calculations in canal navigation conditions.

  16. Technical Status Review Appraisal of the Suitability of Turbulence Models in Flow Calculations (Revue Technique - L’Evaluation de l’Applicabilite des Modeles de Turbulence dans de Calcul des Ecoulements)


    decomposition of <fij> is less important extensions and on the peculiarities of corn - because the viscous stresses are negligible in pressible flows, turbulent...experiment, an adverse TUSAS Aer)space Industries (TAI), Inc. and pressure gradient is applied on a 35" swept flat the Middle East Technical University...The fice. Figure 16 shows the top view of the jet corn - prescribed motion is a(S) - 10’ +bt*i(2A1.t) where paring the surface pressures of the

  17. New calculation method to solve moisture balance in the room with regenerator heat recovery and infiltration – validation and comparison to counter-flow heat exchanger

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Drivsholm, Christian


    The use of solar shading in future low energy office buildings is essential for minimizing energy consumption for building services, while maintaining thermal conditions. Implementing solar shading technologies in energy calculations and thermal building simulation programs is essential in order...

  18. A computer program for the calculation of the flow field in supersonic mixed-compression inlets at angle of attack using the three-dimensional method of characteristics with discrete shock wave fitting

    Vadyak, J.; Hoffman, J. D.; Bishop, A. R.


    The calculation procedure is based on the method of characteristics for steady three-dimensional flow. The bow shock wave and the internal shock wave system were computed using a discrete shock wave fitting procedure. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data deck listings, are presented.


    杨建; 张鸣远; 苏玉亮; 张超杰; 王金照


    This paper presents a statistical method to calculate local interfacial variables in horizontal gas-liquid bubbly flows based on the data measured with a double-sensor probe.The geometrical relationship between the apparent and actual bubble velocities and the relationship between the chord intersected by the sensor and bubble diameter were determined.A probability density function was introduced to consider the effect of both axial and radial movements of bubbles on bubble velocity and bubble size.

  20. Declination Calculator

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  1. Buoyancy-driven flow excursions in fuel assemblies

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.


    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating moderator downward through channels in cylindrical fuel tubes. Powers were limited to prevent a flow excursion from occurring in one or more of these parallel channels. During full-power operation, limits prevented a boiling flow excursion from taking place. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increases beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of historical levels.

  2. Buoyancy-driven flow excursions in fuel assemblies

    Laurinat, J.E.; Paul, P.K.; Menna, J.D. [Westinghouse Savannah River Company, Aiken, SC (United States)


    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  3. A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network


    Garg and J. Koenemann, “Faster and simpler algorithms for multi- commodity flow and other fractional packing problems,” SIAM Journal on Computing, vol...A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network Greg Kuperman, Jun Sun, Nathaniel M. Jones, and... algorithm to rapidly determine the maximum concurrent flow for an arbitrary number of unicast and multicast connections subject to arbitrary binary

  4. Development of a method of analysis and computer program for calculating the inviscid flow about the windward surfaces of space shuttle configurations at large angles of attack

    Maslen, S. H.


    A general method developed for the analysis of inviscid hypersonic shock layers is discussed for application to the case of the shuttle vehicle at high (65 deg) angle of attack. The associated extensive subsonic flow region caused convergence difficulties whose resolution is discussed. It is required that the solution be smoother than anticipated.

  5. Elimination of flow-induced pulsations and vibrations in a process installation: a combination of on site measurements, calculations and scale modeling

    Bokhorst, E. van; Peters, M.C.A.M.


    The aim of the work described in this paper was to trace and eliminate vibration sources in a low pressure system with high flow velocities. Considerable vibration on the pipe system between a flashing vessel (6.5 m diameter) and heat-exchangers resulted in fatigue failure, leakage and subsequent sh

  6. MOLOCH. A Calculation process dealing with incompressible flows. Technical reference 1.0; MOLOCH. Ein Stroemungsverfahren fuer inkompressible Stroemungen. Technische Referenz 1.0

    Muench, M. [Freie Univ. Berlin (Germany). Fachbereich Mathematik und Informatik


    Many flows relevant for climate research, weather forecasting, heating, ventilation, air-conditioning (HVAC), and fire safety are characterized by relatively small velocities compared to the speed of sound. The efficient computation of such low Mach number flows requires computational methods that avoid the Courant-Friedrich-Lewy time step restriction, based on the speed of sound. An essential issue in the context meterological flow modelling, as investigated at the Potsdam Institute for Climate Impact Research, is the construction of efficient numerical schemes for such flows that are in conservation form with respect to all physically conserved quantities, i.e., mass, momentum, and energy. Extending initial developments by Klein et. al [9, 13, 15, 19, 20], a new scheme for such flows is currently under development which accounts for flows in three space dimensions, is fully conservative, with second order accuracy and covers the entire regime 0 {<=} M {<=} 1. To transfer this scheme to practical applications, the author has created the programm code MOLOCH. This technical report collects the background theory of the scheme and describes the current state of its implementation. The code is based on a finite-volume method using a cartesian grid. Currently, the scheme is limited to Zero-Mach number. The first four chapters describe the mathematical background of the scheme. After a short presentation of the underlying set of equations, the result of a one-scale asymptotic analysis is discussed to elucidate the main problems in the context of constructing numerical simulation schemes, and to motivate the construction of the method. Chapter 5 describes the details of the numerical technique and provides additional information regarding the discretization and the implementation of boundary conditions. Chapter 6 describes the implementation of gravitational forces, necessary to run the falling droplet test case, which will be described in Chapter 7. An empirical

  7. Research on Unbalanced Three-phase Power Flow Calculation Method in Islanding Micro Grid%孤岛运行的微电网三相不平衡潮流计算方法研究

    刘杨华; 吴政球; 林舜江


    提出了适用于孤岛运行的微电网三相不平衡潮流计算方法:结合实际,对传统潮流计算方法予以改进,计算中考虑了配电系统各分布式电源的有功、无功控制能力,即电压、频率静态调节特性,考虑了变压器移相角对潮流的影响以及线路参数的相间耦合;算法采用相分量分析,能够应对线路参数三相不平衡、负荷三相不平衡等情况;用牛顿-拉夫逊法求解,易于处理环网结构配电网的潮流计算;不仅能进行三相不平衡潮流分析,还能同时计算出系统的频率.%This paper presented a new method for unbalanced three-phase power flow calculation in islanding micro grid. No balance node was set, while the auto power adjusting of each DGR, the static P-f and V-Q characteristics of each distributed generation resources (DGRs) were considered. The phase shifting in the power flow between the primary and the secondary windings of the transformer caused by the transformer winding connection and the coupling of the lines were also discussed. Using phase component, the three-phase power flow calculation method proposed in this paper can deal with several circumstances, such as asymmetrical line coefficients, and the unbalanced load of three phases. With Newton-Raphson method, it can solve the power flow calculation of the network in ringing topological structure. This work can make both the power flow and the frequency of the power system. This research provides a new reference for real unbalanced three-phase power flow calculation in islanding distributed power generation system.




    This paper presents a procedure for calculating the effective discharge for rivers with alluvial channels.An alluvial river adjusts the bankfull shape and dimensions of its channel to the wide range of flows that mobilize the boundary sediments. It has been shown that time-averaged river morphology is adjusted to the flow that, over a prolonged period, transports most sediment. This is termed the effective discharge.The effective discharge may be calculated provided that the necessary data are available or can be synthesized. The procedure for effective discharge calculation presented here is designed to have general applicability, have the capability to be applied consistently, and represent the effects of physical processes responsible for determining the channel, dimensions. An example of the calculations necessary and applications of the effective discharge concept are presented.

  9. The Calculating Form to Examine the Influence of Mass Flow on Energy Consumption in Steel Manufacturing Process%钢铁生产流程的物流对能耗影响的表格分析法

    于庆波; 陆钟武; 蔡九菊


    Based on the concept of fundamental mass flow chart, all possible situations of ferric material flow in steel manufacturing process were analyzed. The method of describing fundamental mass flow chart was explained based on actual steel manufacturing process. The calculating form and its expressions of mass flow deviated in various ways from fundamental mass flow chart on energy consumption of crude steel and of final product were put forward.%在钢铁生产流程中,物流对能耗具有重要的影响从基准物流图的概念入手,分析了含铁物料在实际钢铁生产流程各工序中可能发生的流动情况,说明了根据实际生产流程构筑基准物流图的方法,构造了计算偏离基准物流图的各股物流对能耗影响的分析表,并给出了计算公式及其计算步骤

  10. Influence of Local Flow Field on Flow Accelerated Corrosion Downstream from an Orifice

    Utanohara, Yoichi; Nagaya, Yukinori; Nakamura, Akira; Murase, Michio

    Flow accelerated corrosion (FAC) rate downstream from an orifice was measured in a high-temperature water test loop to evaluate the effects of flow field on FAC. Orifice flow was also measured using laser Doppler velocimetry (LDV) and simulated by steady RANS simulation and large eddy simulation (LES). The LDV measurements indicated the flow structure did not depend on the flow velocity in the range of Re = 2.3×104 to 1.2×105. Flow fields predicted by RANS and LES agreed well with LDV data. Measured FAC rate was higher downstream than upstream from the orifice and the maximum appeared at 2D (D: pipe diameter) downstream. The shape of the profile of the root mean square (RMS) wall shear stress predicted by LES had relatively good agreement with the shape of the profile of FAC rate. This result indicates that the effects of flow field on FAC can be evaluated using the calculated wall shear stress.

  11. Application of Flow Cytometer in CHO Cell Counting and Cell Survival Rate Calculation%应用流式细胞仪进行CHO细胞计数及存活率计算

    高茜; 管莹; 米其利; 李雪梅; 缪明明; 夭建华


    Using CHO bioengineering cell as target, application of flow cytometer in cell counting and cell survival rate calculation was explored in this paper. The results showed that cell counting and survival rate calculation could be accurate by the flow cytometer through the set of three parameters SS,EV, and FL3. Compared with blood cell counting plate method, flow cytometer method was more efficient and stable with faster operation and lower SD value. Therefore, to improve the production efficiency and toxicological evaluation reliability, flow cytometer method was recommend to be applied in large scale experiments for cell counting and survival rate calculation.%以CHO生物工程细胞为对象,探索了流式细胞仪在细胞计数和细胞存活率计算方面的应用.通过设定侧向角散射SS、电子体积EV及荧光强度FL3等3个参数,编制CHO细胞计数程序,再应用流式细胞仪进行细胞计数和存活率计算,其结果与血球计数板法基本一致,但操作更迅速、SD值更低,说明流式细胞仪法较血球计数板法更高效稳定.流式细胞仪法提高了生物工程的生产效率和毒理学评价的准确性,可应用于大规模细胞实验中.


    汤华中; 邬华谟


    This paper is to study extension of high resolution kinetic flux-vector splitting (KFVS) methods.In this new method,two Maxwellians are first introduced to recover the Euler equations with an additional conservative equation.Next,based on the well-known connection between the Euler equations and Boltzmann equations,a class of high resolution KFVS methods are presented to solve numerically multicomponent flows.Our method does not solve any Riemann problems,and add any nonconservative corrections.The numerical results are also presented to show the accuracy and robustness of our methods.These include one-dimensional shock tube problem,and two-dimensional interface motion in compressible flows.The computed solutions are oscillation-free near material fronts,and produce correct shock speeds.

  13. Clinical value of urine flow acceleration and maximum urinary flow-rate in diagnosing bladder outlet obstruction of patients with benign prostate hyperplasia%尿流加速度和最大尿流率诊断膀胱出口梗阻的价值

    文建国; 崔林刚; 孟庆军; 任川川; 李金升; 吕宇涛; 张艳


    目的 比较尿流加速度(UFA)和最大尿流率(Qmax)诊断膀胱出口梗阻(BOO)的价值. 方法 分别选取50例前列腺增生(BPH)患者和50例健康者进行前列腺体积、UFA和Qmax测定.以P-Q图梗阻区作为参考标准,比较UFA和Qmax诊断BOO的灵敏度和特异性. 结果 BPH组UFA明显低于非BPH组(P<0.05).以UFA<2 ml/s2和Qmax<10 ml/s作为诊断BOO参考标准,灵敏度和特异度分别为88%、75%与81%、63%,与参考标准P-Q图提示梗阻一致性分析Kappa值分别为0.55比0.35. 结论 UFA可以作为诊断BPH患者BOO的依据之一.%Objective To assess the value of the urine flow acceleration(UFA)versus maximum urinary flow rate (Qmax) for diagnosis of bladder outlet obstruction (BOO) in benign prostate hyperplasia (BPH).Methods A total of 50 men with BPH and 50 normal men were included in this study.Urodynamic examinations were performed in all patients according to the recommendations of the International Continence Society.Prostate volume,UFA and Qmax of each patient were analyzed and the results were compared between two groups.Results The UFA and Qmax of BPH group were much lower than that of the control group [(2.05±0.85)ml/s2 vs.(4.60±1.25)ml/s2 ; (8.50±1.05)ml/s vs.(13.00±3.35)ml/s,P<0.05].The prostate volume in BPH group was increased compared with control group [(28.6±9.8) ml vs.(24.2±7.6)ml,P<0.05].As diagnosis standard of UFA<2.05 ml/s2 and Qmax< 10 ml/s,the sensitivity and specificity of UFA and Qmax in diagnosing BOO were (88%,75 %)vs.(81%,63%).While compared with the result of P-Q chart,the Kappa values in correspondence analysis were 0.55 vs.0.35.The sensitivity,specificity and Kappa value of UFA in diagnosing BOO in BPHs were slightly higher than that of Qmax in comparison with the gold standard (BOO diagnosed by P-Q figure).Conclusions The UFA is a useful urodynamics parameter in diagnosing BOO of BPH.

  14. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.


    ... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  15. Maximum Profit Configurations of Commercial Engines

    Yiran Chen


    Full Text Available An investigation of commercial engines with finite capacity low- and high-price economic subsystems and a generalized commodity transfer law [n ∝ Δ (P m] in commodity flow processes, in which effects of the price elasticities of supply and demand are introduced, is presented in this paper. Optimal cycle configurations of commercial engines for maximum profit are obtained by applying optimal control theory. In some special cases, the eventual state—market equilibrium—is solely determined by the initial conditions and the inherent characteristics of two subsystems; while the different ways of transfer affect the model in respects of the specific forms of the paths of prices and the instantaneous commodity flow, i.e., the optimal configuration.

  16. Maximum ceasing angle of inclination and flux formula for granular orifice flow%颗粒孔洞流的最大休止倾角和流量公式

    彭政; 蒋亦民


    This work measured mass flux of a granular sample (glass beads) discharged from an inclined orifice for various inclination angles and orifice diameters. It is found that irrespective the orifice sizes, the fluxes all vary linearly with cosine of the inclination angle, and the linearly extrapolated angle of zero-flux, namely the critical angle of flow ceasing,increases linearly with ratio between grain and orifice diameter, tends to the angle of repose in the limit of infinite orifice diameter within an approximation of the Bagnold angle. The results show that the flux formula varying linearly with cosine of inclination angle is capable to reveal behaviors of the critical ceasing angle, a property that the Beverloo formula of which parameters vary with cosine of inclination angle can not describe.%实验测量了重力驱动下的玻璃珠颗粒样品通过不同倾角和孔径的圆形孔洞的卸载流量.发现无论孔径大小,流量均与倾角的余弦呈良好的线性关系;线性外推得到的零流量角,即流量休止临界角随颗粒粒径与孔洞直径之比的减小而线性增加;在无穷大孔径极限下,此临界角在Bagnold角的误差范围内与样品的安息角一致.这些结果表明流量随倾角余弦线性变化的经验公式能揭示临界角的行为和特性,这是参数随倾角变化的Beverloo公式所不能描述的.

  17. Thermal-hydraulic calculation methods for transients and accidents of the reactor cooling system under special consideration of multi-dimensional flows (ATHLET, FLUBOX, CFX). Final report; Thermohydraulische Rechenmethoden zu Transienten und Stoerfaellen im Reaktorkuehlkreislauf unter besonderer Beruecksichtigung mehrdimensionaler Stroemungen (ATHLET, FLUBOX, CFX). Abschlussbericht

    Glaeser, H.; Graf, U.; Herb, J.; and others


    models have been developed in the frame of further development of ATHLET. The descriptions of these models are provided in the report. The commercial CFX code solves the three-dimensional conservation equations for mass, momentum and energy. The most important physical models in a CFD code for reactor safety applications are the turbulence and multi-phase models. In order to calculate the turbulent transport terms in the averaged conservation equations for momentum and energy, many turbulence models are available. The variety of physical models, to be selected by the code user, range from turbulent one-phase flows up to two-phase flows and mass and heat transfer at the interface. Within this project, available turbulence and two-phase models in ANSYS CFX suitable for reactor-typical transients and detached flows combined with heat transfer were validated and adjusted. If necessary, new models were implemented and tested. The method for uncertainty evaluation of computer code results proposed by GRS is used in many countries and organisations in the meantime. The method is also applied in many licensing cases of nuclear plants. Some extensions of the method were investigated and are proposed. These address two problem areas: 1. Treatment of epistemic and aleatory uncertainties 2. Uncertainty and sensitivity analysis under special consideration of dependences between uncertain input parameters. In the frame of the international OECD/CSNI programme ''Safety Margin Application and Assessment (SM2A)'', GRS performed uncertainty and sensitivity analyses of the results of the thermal-hydraulic computer code ATHLET. The investigated scenario was a steam line break of the pressurized water reactor Zion in USA. The effect of variations of uncertain input parameters on the maximum cladding temperature is significant for the identified relevant event sequences. That result demonstrates the importance of uncertainty analyses.

  18. Visualization Calculation and Experimental Verification of Steady Axial Flow Force on the Converged Flow Sliding Valve%内流式滑阀壁面压力分布可视化计算及试验验证

    张晓俊; 权龙; 赵斌


    针对现有液压阀流场(Computational fluid dynamics,CFD)仿真研究中,采用单相流模型进行计算,忽略了流体气化现象对流体密度及其流场的影响,仿真所得相对压力过低与实际不符的问题,运用Fluent软件,采用两相流模型,研究内流式滑阀流场分布,分析阀口开度、流量变化对于阀芯壁面压力分布及其稳态液动力的影响;设计一种壁面压力分布测量的试验方案,测量得到阀芯壁面的压力分布,并通过表面积积分法求出阀芯所受稳态液动力。结果表明:试验所得的内流式滑阀的壁面压力分布及其稳态液动力与仿真结果趋势一致,壁面压力峰值随着阀口开度的增大而减小;阀口开度较小时,稳态液动力的方向为阀口关闭的方向,在阀口开度达到临界点时,稳态液动力的方向为阀口打开的方向;滑阀稳态液动力公式计算由于忽略了入口射流角的变化及其出口处的动量,得到的稳态液动力误差较大,且方向始终指向阀口打开的方向。%In view of the existing problem which does not accord with the fact, that is, in the hydraulic valve flow field CFD study, the single-phase flow model ignores the influence on fluid density and fluid flow field under the condition of cavitation occurred, which leads to the result of the lower relative pressure, by using Fluent software and multiphase model, field distribution is studied on the converged flow sliding valve,and the influence by the change in the flow rate and valve orifice is analyzed on the spool wall pressure distribution and the steady-state flow force. A measurement scheme of wall pressure distribution is designed. The surface integral of the measurement value is the steady flow force. The result is the experimental data is consistent with the simulation’s, and the peak of the wall pressure distribution decreases with the increasing of the orifice area. the orifice area

  19. Numerical Calculations of the Effect of Moisture Content and Moisture Flow on Ionic Multi-Species Diffusion in the Pore Solution of Porous Materials

    Johannesson, Björn; Hosokawa, Yoshifumi; Yamada, Kazuo


    A method to analyse and calculate concentration profiles of different types of ions in the pore solution of porous materials such as concrete subjected to external wetting and drying is described. The equations in use have a solid theoretical meaning and are derived from a porous media technique......, which is a special branch of the more general mixture theory. The effect of chemical action is ignored making the presented model suitable to be implemented into codes dealing solely with chemical equilibrium. The coupled set of equations for diffusion of ionic species, the internal electrical potential...... on the ionic diffusion resistance in the pore solution of the porous material. The Gauss’ law is included in the model in order to be able to calculate the electrical potential which develops due to small deviations from total charge neutrality among the ionic species in the pore solution. The correctness...

  20. 基于分块网格技术的潜艇粘性绕流场数值计算研究%Numerically Calculating Viscous Flow around a Full-Appendage Submarine Using Multi-Block Structural Grid

    胡斌; 潘光; 杜晓旭; 黄桥高; 王一云


    文章首先建立了全附体潜艇的几何模型,基于分块网格技术耦合生成了全附体的SUBOFFAFF-8潜艇外流场高质量结构化网格,采用RANS雷诺时均方法和SST k-ω湍流模型,并基于有限体积法(FVM),对潜艇粘性绕流场进行了数值计算研究.给出了潜艇纵中剖面线上压力系数、壁面剪应力系数,指挥台围壳和上尾翼表面三个不同高度处压力系数的纵向分布,以及模型总阻力的数值计算结果;并与DTMB水池试验结果进行了对比.结果表明,文中采用的数值模拟方法精度较高,合理有效,为深入研究全附体潜艇粘性绕流场奠定了基础.%Sections 1 and 2 of the full paper explain how we apply CFD (computational fluid dynamics) to calculating the viscous flow around a full-appendage submarine. Their core consists of; ( 1 ) we establish the geometric model of the SUBOFF AFF-8 full-appendage submarine and generate the high-quality multi-block structural grid of its flow field; (2) we use the Reynolds time-averaged method, the SST k-w turbulence model and the finite volume method to numerically calculate the steady viscous flow around the submarine; (3) we give the longitudinal distributions of the pressure coefficient and wall shear stress coefficient along the upper meridian line and also the pressure coefficients at the three heights of the fairwater and the stern respectively; we also give the calculation results of the total resistance of the submarine and compare them with the experimental results obtained from the DTMB tow tank in the U. S. The simulation results, given in Figs. 4 through 9 and Table 1, and their analysis show preliminarily that the calculation results obtained with our method agree well with the experimental results obtained from the DTMB tow tank; this indicates that our numerical calculation method has high precision and is valid and effective, thus laying a solid foundation for the further study of the viscous flow around a

  1. Investigations on the calculation of the third moments of elution peaks: II-linear flow speed dependence of external mass transfer coefficient.

    Gao, Hong; Gritti, Fabrice; Guiochon, Georges


    This work is a systematic investigation of the linear velocity dependence of the external mass transfer coefficient provided by fitting experimental results to the solution of the GR (General Rate) model that was previously derived. The second and third statistical moments of eluted peaks were measured at different flow rates, under different experimental conditions and analyzed. The results of this analysis confirm the validity of this dependence under our current experimental conditions. The other mass transfer parameters provided by the GR model were determined. The variations of these parameters with the experimental conditions were measured. The results are discussed and interpreted. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Maximum margin Bayesian network classifiers.

    Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian


    We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

  3. Maximum Entropy in Drug Discovery

    Chih-Yuan Tseng


    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  4. Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow

    Iannetti, Anthony C.; Moder, Jeffery P.


    Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable results

  5. Calculations of an unsteady flow through a hydraulic axial turbine with reference to interaction between stator and rotor; Instationaere Berechnung einer hydraulischen Axialturbine unter Beruecksichtigung der Interaktion zwischen Leit- und Laufrad

    Bauer, C.


    The objective of this study is the development of an algorithm enabling coupling of nonmatching computational grids to carry out calculations of an unsteady flow through a hydraulic axial turbine with reference to interaction between stator and rotor. The algorithm should offer the possibility to operate the computational grids in a fixed position relative to each other as well as in relative movement. Furthermore, the calculation should be feasible with separate grids in parallel and different frames of reference. Employing selected examples this method is investigated in detail the results are compared with performed measurements. The unsteady numerical examination of the coupling process is carried out with different examples; especially the interaction effects between stator, rotor and draft tube of a hydraulic axial turbine are observed. In addition, the effect of tip clearance of the mean flow is described. Extensive model tests using the axial turbine have been performed at the Institute for Fluid Mechanics and Hydraulic Machinery, IHS. Flow time dependent velocities have been measured with a Laser Doppler Velocimeter placed at midspan of the blading. Periodical changes in static pressure have been recorded at different locations near the wall of the turbine casing. These measurements serve as reference for the comparison with results derived from the unsteady calculations. The confrontation of the time-dependent fluctuations of the flow quantities and the calculation of the efficiency of the turbine resulting from the simulation results allow a comparison in absolute terms. (orig.) [German] Fuer die instationaere Berechnung einer hydraulischen Axialturbine unter Beruecksichtigung der Interaktion zwischen Leit- und Laufrad wird ein Algorithmus zum Koppeln von nichtpassenden Berechnungsnetzen entwickelt. Diese Berechnungsnetze sollen zueinander ortsfest sein oder auch eine Relativbewegung zueinander haben koennen. Sie sollen ausserdem und in unterschiedlichen

  6. The Maximum Density of Water.

    Greenslade, Thomas B., Jr.


    Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)

  7. Abolishing the maximum tension principle

    Dabrowski, Mariusz P


    We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^2/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  8. Abolishing the maximum tension principle

    Mariusz P. Da̧browski


    Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.


    王学滨; 李成全; 张永利; 邰英楼; 章梦涛


    利用流体力学有关原理,导出阿基米德螺线槽流量特性方程,为水力喷砂割缝设备微型流量控制阀的设计、制造、实验、应用提供了初步理论依据。%Based on the principle of hydrodynamics,this paper deduces an equation,which shows a flow rate-relative pressure relation of Archimedes spiral groove.The equation has preliminarily supplied a theoretical foundation for design,manufacture,experiment and application of miniature flow control valve of the water jetting slit-cut equipment.

  10. 泥石流泥沙输移比的概念与计算方法探讨%Discussion on concept and calculation method of sediment delivery ratio (SDR) of debris flows

    张金山; 崔鹏


    ( Channel-SDR) reflects the capacity of the debris-flow channel in transporting eroded solid materials; and (2) The conjunction SDR ( Conjunction-SDR) reflects the capacity of the main river channel in transporting the solid materials contained in the debris flows. In this study, the methods for calculating both Channel-SDR and Conjunction-SDR are developed and applied to a debris-flow event occurred in the Jiangjiagou valley in 2008. The methods are verified by the field data collected from the Jiangjiagou case study, and it is found that the Channel-SDR is equal to 0. 14 while the Conjunction -SDR is equal to 0.31. This study also discusses various factors and parameters affecting the SDR calculation results as well as how to improve the debris-flow SDR modeling process.

  11. Validation and comparison of two-phase flow modeling capabilities of CFD, sub channel and system codes by means of post-test calculations of BFBT transient tests

    Jaeger, Wadim; Manes, Jorge Perez; Imke, Uwe; Escalante, Javier Jimenez; Espinoza, Victor Sanchez, E-mail:


    Highlights: • Simulation of BFBT turbine and pump transients at multiple scales. • CFD, sub-channel and system codes are used for the comparative study. • Heat transfer models are compared to identify difference between the code predictions. • All three scales predict results in good agreement to experiment. • Sub cooled boiling models are identified as field for future research. -- Abstract: The Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in the validation and qualification of modern thermo hydraulic simulations tools at various scales. In the present paper, the prediction capabilities of four codes from three different scales – NEPTUNE{sub C}FD as fine mesh computational fluid dynamics code, SUBCHANFLOW and COBRA-TF as sub channels codes and TRACE as system code – are assessed with respect to their two-phase flow modeling capabilities. The subject of the investigations is the well-known and widely used data base provided within the NUPEC BFBT benchmark related to BWRs. Void fraction measurements simulating a turbine and a re-circulation pump trip are provided at several axial levels of the bundle. The prediction capabilities of the codes for transient conditions with various combinations of boundary conditions are validated by comparing the code predictions with the experimental data. In addition, the physical models of the different codes are described and compared to each other in order to explain the different results and to identify areas for further improvements.

  12. FMGN, RENUMN, POLY, TRIPOLY: Suite of Programs for calculating and analyzing flow and transport in fracture networks embedded in porous matrix blocks

    Birkhoelzer, J.; Karasaki, K.


    This report describes a suite of programs developed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) for simulating flow and solute transport in fracture networks embedded in porous matrix blocks. The codes FMGN, RENUMN and TRIPOLY are extensions of the older codes FMG, RENUM and TRINET developed at the Berkeley Lab, and references are made to previous Berkeley Lab reports which describe those codes. The first section of this report describes the general background of TRIPOLY and the theory of treating the fluid and solute exchange between fractures and rock. The second section is a user`s manual for the programs FMGN, RENUMN, POLY and TRIPOLY. Note that the description of FMGN and RENUMN is very short in this section. FMGN and RENUMN are relatively unchanged from the old codes FMG and RENUM, and only the differences between the old and new versions are listed in this report. For work with FMGN and RENUMN we refer to the detailed description of theory and design in BILLAUX et al. and the user`s manual in BILLAUX et al. respectively. For the other codes POLY (newly developed) and TRIPOLY (features major changes compared to the old program version TRINET) a detailed user`s manual is enclosed in this report. It provides the user with sufficient information to run the programs. The third section of this report comprises some sample problems as a tutorial.

  13. A three-dimensional viscous/potential flow interaction analysis method for multi-element wings: Modifications to the potential flow code to allow part-span, high-lift devices and close-interference calculations

    Maskew, B.


    The description of the modified code includes details of a doublet subpanel technique in which panels that are close to a velocity calculation point are replaced by a subpanel set. This treatment gives the effect of a higher panel density without increasing the number of unknowns. In particular, the technique removes the close approach problem of the earlier singularity model in which distortions occur in the detailed pressure calculation near panel corners. Removal of this problem allowed a complete wake relaxation and roll-up iterative procedure to be installed in the code. The geometry package developed for the new technique and also for the more general configurations is based on a multiple patch scheme. Each patch has a regular array of panels, but arbitrary relationships are allowed between neighboring panels at the edges of adjacent patches. This provides great versatility for treating general configurations.

  14. Spike Code Flow in Cultured Neuronal Networks.

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei


    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  15. Maximum Genus of Strong Embeddings

    Er-ling Wei; Yan-pei Liu; Han Ren


    The strong embedding conjecture states that any 2-connected graph has a strong embedding on some surface. It implies the circuit double cover conjecture: Any 2-connected graph has a circuit double cover.Conversely, it is not true. But for a 3-regular graph, the two conjectures are equivalent. In this paper, a characterization of graphs having a strong embedding with exactly 3 faces, which is the strong embedding of maximum genus, is given. In addition, some graphs with the property are provided. More generally, an upper bound of the maximum genus of strong embeddings of a graph is presented too. Lastly, it is shown that the interpolation theorem is true to planar Halin graph.

  16. D(Maximum)=P(Argmaximum)

    Remizov, Ivan D


    In this note, we represent a subdifferential of a maximum functional defined on the space of all real-valued continuous functions on a given metric compact set. For a given argument, $f$ it coincides with the set of all probability measures on the set of points maximizing $f$ on the initial compact set. This complete characterization lies in the heart of several important identities in microeconomics, such as Roy's identity, Sheppard's lemma, as well as duality theory in production and linear programming.

  17. The Testability of Maximum Magnitude

    Clements, R.; Schorlemmer, D.; Gonzalez, A.; Zoeller, G.; Schneider, M.


    Recent disasters caused by earthquakes of unexpectedly large magnitude (such as Tohoku) illustrate the need for reliable assessments of the seismic hazard. Estimates of the maximum possible magnitude M at a given fault or in a particular zone are essential parameters in probabilistic seismic hazard assessment (PSHA), but their accuracy remains untested. In this study, we discuss the testability of long-term and short-term M estimates and the limitations that arise from testing such rare events. Of considerable importance is whether or not those limitations imply a lack of testability of a useful maximum magnitude estimate, and whether this should have any influence on current PSHA methodology. We use a simple extreme value theory approach to derive a probability distribution for the expected maximum magnitude in a future time interval, and we perform a sensitivity analysis on this distribution to determine if there is a reasonable avenue available for testing M estimates as they are commonly reported today: devoid of an appropriate probability distribution of their own and estimated only for infinite time (or relatively large untestable periods). Our results imply that any attempt at testing such estimates is futile, and that the distribution is highly sensitive to M estimates only under certain optimal conditions that are rarely observed in practice. In the future we suggest that PSHA modelers be brutally honest about the uncertainty of M estimates, or must find a way to decrease its influence on the estimated hazard.

  18. Alternative Multiview Maximum Entropy Discrimination.

    Chao, Guoqing; Sun, Shiliang


    Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on maximum entropy and maximum margin principles, and can produce hard-margin support vector machines under some assumptions. Recently, the multiview version of MED multiview MED (MVMED) was proposed. In this paper, we try to explore a more natural MVMED framework by assuming two separate distributions p1( Θ1) over the first-view classifier parameter Θ1 and p2( Θ2) over the second-view classifier parameter Θ2 . We name the new MVMED framework as alternative MVMED (AMVMED), which enforces the posteriors of two view margins to be equal. The proposed AMVMED is more flexible than the existing MVMED, because compared with MVMED, which optimizes one relative entropy, AMVMED assigns one relative entropy term to each of the two views, thus incorporating a tradeoff between the two views. We give the detailed solving procedure, which can be divided into two steps. The first step is solving our optimization problem without considering the equal margin posteriors from two views, and then, in the second step, we consider the equal posteriors. Experimental results on multiple real-world data sets verify the effectiveness of the AMVMED, and comparisons with MVMED are also reported.

  19. Entrainment and maximum vapour flow rate of trays

    Van Sinderen, AH; Wijn, EF; Zanting, RWJ

    This is a report on free entrainment measurements in a small (0.20 m x 0.20 in) air-water column. An adjustable weir controlled the liquid height on a test tray. Several sieve and valve trays were studied. The results were interpreted with a two- or three-layer model of the two-phase mixture on the

  20. An Experimental and Kinetic Calculation of the Promotion Effect of Hydrocarbons on the NO-NO2 Conversion in a Flow Reacto

    Hori, M; Marinov, N; Matsunaga, N; Pitz, W; Westbrook, C


    The main route to nitrogen dioxide (NOz) formation in combustion systems is through the oxidation of nitric oxide (NO). This process was originally invcstigafed in order to explain the high proportion of NOz found in NOx emissions from the exhaust of gas turbine engines [l]. Moreover, the understanding of the NO-NO2 conversion mechanism is relevant to a number of issues including NOz emission from unflued space heaters, development of NOx control technologies, behavior of NO/N02 in the atmosphere, formation and reduction chemistry of NOx, and the probe sampling techniques for NOx concentration measurements. Originally, the NO-NO2 conversion was thought to proceed through the rapid oxidation of NO by oxidative radicals without much attention to the effect of fuels on the conversion [2-41. Although, in later studies, it was revealed that the conversion was greatly promoted by small quantities of fuels such as hydrocarbons, Hz, CO, and methanol [S-9]. In our former experiment and model calculation of the NO-NO2 conversion in the mixing of hot combustion gas with cold air and nine different fuels [6], the results indicated that NO-NO2 conversion appeared only in the low temperature range, and showed a strong dependence on fuel type. Thus, the interaction between the NO-NO2 reactions and the oxidation reactions of the fuel in the low temperature range must be .understood in order to explain the effect of fuel type on the NO-NO2 conversion and consequently to predict the NO/NO2 emission levels from combustion systems.

  1. Numerical method to calculate flow-induced vibration in turbulent flow. 3rd Report. Analysis of vortex-induced vibration in an array of elastically supported tubes; Ranryuba ni okeru ryutai kozotai rensei shindo kaiseki shuho no kaihatsu. 3. Kangun ni okeru uzu reiki shindo kaiseki

    Sadaoka, N.; Umegaki, K. [Hitachi, Ltd., Tokyo (Japan)


    A vortex-induced vibration of an array of elastically supported tubes is simulated in two-dimension by using a flow-induced vibration analysis program, which was developed in order to evaluate flow-induced vibration in various components such as heat exchangers. From a comparison of calculated results and experimental data, the following points are observed. (1) For the calculated results in a 5 {times} 5 square array, the flow pattern surrounding the first-row tubes is markedly different from that observed in the second-row or third-row tubes. This flow pattern is the same as that obtained from the experiment. (2) All tubes begin to oscillate due to unsteady fluid force and the oscillating mode is different for each row of tubes. These oscillation patterns show the same tendency in the experiments and it is concluded that the developed method can simulate vortex-induced vibration in an array of elastically supported tubes. 19 refs., 10 figs., 1 tab.

  2. Theoretical Estimate of Maximum Possible Nuclear Explosion

    Bethe, H. A.


    The maximum nuclear accident which could occur in a Na-cooled, Be moderated, Pu and power producing reactor is estimated theoretically. (T.R.H.) 2O82 Results of nuclear calculations for a variety of compositions of fast, heterogeneous, sodium-cooled, U-235-fueled, plutonium- and power-producing reactors are reported. Core compositions typical of plate-, pin-, or wire-type fuel elements and with uranium as metal, alloy, and oxide were considered. These compositions included atom ratios in the following range: U-23B to U-235 from 2 to 8; sodium to U-235 from 1.5 to 12; iron to U-235 from 5 to 18; and vanadium to U-235 from 11 to 33. Calculations were performed to determine the effect of lead and iron reflectors between the core and blanket. Both natural and depleted uranium were evaluated as the blanket fertile material. Reactors were compared on a basis of conversion ratio, specific power, and the product of both. The calculated results are in general agreement with the experimental results from fast reactor assemblies. An analysis of the effect of new cross-section values as they became available is included. (auth)

  3. Simulations of methane gas flow in the drainage pipeline network in a coal mine. (1st report). Simulation program for calculation of gas flow in the drainage pipeline network; Tanko ni okeru gas nuki kanmo no ryuryo simulation (1). Gas nuki kanmo no ryuryo kaiseki program

    Oga, K.; Hiramatsu, A.; Higuchi, K. [Hokkaido Univ., Sapporo (Japan)] Kiyono, K. [Japan Heavy Chemical Industry Co., Tokyo (Japan)] Ota, S. [Tokyo Sekkai Kogyo Co. Ltd., Tochigi (Japan)


    At present in a coal mine, various types of gas drainage borings are carried out. As the dilution process of methane by means of ventilation emits methane in the air ultimately which is a artificial greenhouse effect gas, it is a large problem taking into consideration of earth environment. In order to reduce the methane emission from mining panels into the working area, an effective methane drainage from the coal seam at the high concentrations of methane is needed. One of the methods is to control the pressure at the optimum level in methane drainage pipeline network. Authors developed a simulation program for calculation of methane gas flow in methane drainage pipelines of an underground coal mine to control the flow rate of gas and concentration of methane in the network. Some cases were calculated by modeling the practical methane drainage pipelines networks of Taiheiyo Coal Mine. As a result, there was no difference between the calculated results using the developed calculation program and the practical measured results. 4 refs., 8 figs., 1 tab.

  4. Cacti with maximum Kirchhoff index

    Wang, Wen-Rui; Pan, Xiang-Feng


    The concept of resistance distance was first proposed by Klein and Randi\\'c. The Kirchhoff index $Kf(G)$ of a graph $G$ is the sum of resistance distance between all pairs of vertices in $G$. A connected graph $G$ is called a cactus if each block of $G$ is either an edge or a cycle. Let $Cat(n;t)$ be the set of connected cacti possessing $n$ vertices and $t$ cycles, where $0\\leq t \\leq \\lfloor\\frac{n-1}{2}\\rfloor$. In this paper, the maximum kirchhoff index of cacti are characterized, as well...

  5. Generic maximum likely scale selection

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo


    The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...... on second order moments of multiple measurements outputs at a fixed location. These measurements, which reflect local image structure, consist in the cases considered here of Gaussian derivatives taken at several scales and/or having different derivative orders....

  6. Forward-Backward Sweep Power Flow Calculation with Distributed Generation Considering Static Load Characteristics%负荷电压静态特性的含分布式电源的前推回代潮流计算



    分布式电源并网后,配电网中出现了新的节点类型,使得传统的前推回代法不能解决含分布式电源的配电网潮流计算。在考虑恒功率、恒电流及恒阻抗的负荷电压静态特性的情况下,提出了改进的前推回代法对不同分布式电源进行潮流计算。该算法针对风力发电、光伏电池、燃料电池及燃气轮机,分别建立了数学模型,并且在处理PV节点时,通过无功分摊原理设定无功初值,采用无功补偿装置进行功率修正;针对辐射状配电网特征,采用搜索叶节点的方法,形成了便于前推及回代计算的参数矩阵。通过IEEE33配电系统验证表明,提出的方法收敛性能强,能有效解决含不同分布式电源的潮流计算。%Distributed generation connection leads to that the new kinds of nodes appear in distribution network, to make the traditional calcu-lation method of forward-backward sweep power flow fail. Based on the static characteristics of load voltage of constant power, constant current and constant resistance, this paper proposed an improved forward-backward sweep method for power flow calculation of different kinds of node types of distributed generation. The method focused on the wind power, photovoltaic cells, fuel cell and gas turbine, and established the math-ematical modeling respectively. When dealing with the PV node, this design used a reactive power compensation device for power correction, adopting the reactive power allocation principle to determine the initial value. In allusion to the radial distribution characteristics, the method of searching the leaf node was adopted to form a convenient parameter matrix. The IEEE33 distribution system verifies that the convergence performance of the proposed method is strong. This method can effectively solve the problem of power flow calculation of containing different distributed generation.

  7. Maximum Spin of Black Holes Driving Jets

    Benson, Andrew J


    Unbounded outflows in the form of highly collimated jets and broad winds appear to be a ubiquitous feature of accreting black hole systems. The most powerful jets are thought to derive a significant fraction, if not the majority, of their power from the rotational energy of the black hole. Whatever the precise mechanism that causes them, these jets must therefore exert a braking torque on the black hole. We calculate the spin-up function for an accreting black hole, accounting for this braking torque. We find that the predicted black hole spin-up function depends only on the black hole spin and dimensionless parameters describing the accretion flow. Using recent relativistic magnetohydrodynamical numerical simulation results to calibrate the efficiency of angular momentum transfer in the flow, we find that an ADAF flow will spin a black hole up (or down) to an equilibrium value of about 96% of the maximal spin value in the absence of jets. Combining our ADAF system with a simple model for jet power, we demons...

  8. Maximum Segment Sum, Monadically (distilled tutorial

    Jeremy Gibbons


    Full Text Available The maximum segment sum problem is to compute, given a list of integers, the largest of the sums of the contiguous segments of that list. This problem specification maps directly onto a cubic-time algorithm; however, there is a very elegant linear-time solution too. The problem is a classic exercise in the mathematics of program construction, illustrating important principles such as calculational development, pointfree reasoning, algebraic structure, and datatype-genericity. Here, we take a sideways look at the datatype-generic version of the problem in terms of monadic functional programming, instead of the traditional relational approach; the presentation is tutorial in style, and leavened with exercises for the reader.

  9. Maximum Spectral Luminous Efficacy of White Light

    Murphy, T W


    As lighting efficiency improves, it is useful to understand the theoretical limits to luminous efficacy for light that we perceive as white. Independent of the efficiency with which photons are generated, there exists a spectrally-imposed limit to the luminous efficacy of any source of photons. We find that, depending on the acceptable bandpass and---to a lesser extent---the color temperature of the light, the ideal white light source achieves a spectral luminous efficacy of 250--370 lm/W. This is consistent with previous calculations, but here we explore the maximum luminous efficacy as a function of photopic sensitivity threshold, color temperature, and color rendering index; deriving peak performance as a function of all three parameters. We also present example experimental spectra from a variety of light sources, quantifying the intrinsic efficacy of their spectral distributions.

  10. Maximum Likelihood Analysis in the PEN Experiment

    Lehman, Martin


    The experimental determination of the π+ -->e+ ν (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (π+ -->e+ ν , π+ -->μ+ ν , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.

  11. Multitime maximum principle approach of minimal submanifolds and harmonic maps

    Udriste, Constantin


    Some optimization problems coming from the Differential Geometry, as for example, the minimal submanifolds problem and the harmonic maps problem are solved here via interior solutions of appropriate multitime optimal control problems. Section 1 underlines some science domains where appear multitime optimal control problems. Section 2 (Section 3) recalls the multitime maximum principle for optimal control problems with multiple (curvilinear) integral cost functionals and $m$-flow type constraint evolution. Section 4 shows that there exists a multitime maximum principle approach of multitime variational calculus. Section 5 (Section 6) proves that the minimal submanifolds (harmonic maps) are optimal solutions of multitime evolution PDEs in an appropriate multitime optimal control problem. Section 7 uses the multitime maximum principle to show that of all solids having a given surface area, the sphere is the one having the greatest volume. Section 8 studies the minimal area of a multitime linear flow as optimal c...

  12. Objects of maximum electromagnetic chirality

    Fernandez-Corbaton, Ivan


    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.

  13. Maximum mutual information regularized classification

    Wang, Jim Jing-Yan


    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  14. Calculator calculus

    McCarty, George


    How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en­ couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...

  15. 外环流活塞泵数值计算与内流特性分析%Numerical Calculation and Analysis of Internal Flow Characteristics of Outside Circulation Piston Pump

    范意斐; 王新华; 毛洲


    外环流活塞泵是一种适于输送高黏度介质的双转子泵,广泛用于化工、石油等领域。对于这种泵的设计与优化已有一定理论基础,但对其内流特性尚缺少认识。为了研究泵内的流场特性,采用浸入式模型对外环流活塞泵进行了三维瞬态数值计算,并结合相关理论对计算结果进行了分析。结果表明,转子腔室的排液过程由两部分组成,一是转子啮合产生的主脉动,二是易闭死区域的局部高压产生的次脉动。传统流量计算公式误差较大,而根据内流特性提出的用叶片体积计算流量的方法相对误差最小。采用圆弧作为过渡曲线时,增大圆弧半径有助于降低易闭死区域内的压力与真空度,缓解振动、噪声和空化等问题,但流量会小幅降低。%Outside circulation piston pump is a kind of dual rotor pump for transporting high viscosity medium. The design and optimization of this kind of pump already has theoretical basis, but the internal flow characteristics of it is still lack of understanding. To study the internal flow characteristics of outside circulation piston pump, three-dimensional transient numerical calculation is carried out using immersed solid model, and the results are analyzed using related theory. The result shows, the discharge process of the rotor chamber consists of two parts, one is the main pulse produced by the rotor meshing, the other one is the secondary pulse produced by the local high pressure in the dead volume area. Flow rate calculated by traditional formula has a larger error, flow rate calculated according to the volume of the blades has the smallest error. When using arc line as the transition curve, increasing the radius of the arc line could reduce the high pressure and vacuum in the dead volume area, but the flow rate will decrease slightly.

  16. The strong maximum principle revisited

    Pucci, Patrizia; Serrin, James

    In this paper we first present the classical maximum principle due to E. Hopf, together with an extended commentary and discussion of Hopf's paper. We emphasize the comparison technique invented by Hopf to prove this principle, which has since become a main mathematical tool for the study of second order elliptic partial differential equations and has generated an enormous number of important applications. While Hopf's principle is generally understood to apply to linear equations, it is in fact also crucial in nonlinear theories, such as those under consideration here. In particular, we shall treat and discuss recent generalizations of the strong maximum principle, and also the compact support principle, for the case of singular quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear operators and the nonlinearities involved. Our principal interest is in necessary and sufficient conditions for the validity of both principles; in exposing and simplifying earlier proofs of corresponding results; and in extending the conclusions to wider classes of singular operators than previously considered. The results have unexpected ramifications for other problems, as will develop from the exposition, e.g. two point boundary value problems for singular quasilinear ordinary differential equations (Sections 3 and 4); the exterior Dirichlet boundary value problem (Section 5); the existence of dead cores and compact support solutions, i.e. dead cores at infinity (Section 7); Euler-Lagrange inequalities on a Riemannian manifold (Section 9); comparison and uniqueness theorems for solutions of singular quasilinear differential inequalities (Section 10). The case of p-regular elliptic inequalities is briefly considered in Section 11.


    CHEN Hong-xun


    Based on the standard k-ε turbulence model and the RANS equations, the finite volume method and the SIMPLE algorithm were adopted to carry out the three-dimensional viscous numerical simulation of the internal flow within a vortex pump in double reference frames. According to the results of numerical simulation, the internal flow in the vortex pump was analyzed, and the calculated results of blade surface pressure of the impeller were compared with experimental results. The maximum relative error is 6.6% between calculated value and experimental value of the pump head under operation conditions.

  18. 中国实验快堆全堆芯流量分配计算与试验%Calculation and Test of Core Flow Rate Distribution of China Experimental Fast Reactor

    刘一哲; 薛秀丽; 许义军; 冯预恒; 侯志峰


    Based on the core and primary circuit design of China Experimental Fast Reactor(CEFR), a multiple-channel thermal-hydraulic analysis code DAEMON was developed to calculate the core flow rate distribution and unsymmetric coefficient in different conditions. In the commissioning stage, a series of full-scale tests for reactor core were performed in CEFR with a permanent-magnet sodium flow meter. The numerical results of code DAEMON showed a good agreement with test data. The core hydraulic design was also validated with a view to the requirements of design criteria, commissioning and operation specifications.%针对中国实验快堆(CEFR)堆芯和一回路的设计特点,开发水力特性计算程序DAEMON,完成不同工况下的全堆芯流量分配计算,给出流量分配不均匀性等参数.在反应堆调试阶段,进行全堆芯流量分配试验.结果表明,程序计算值与试验值符合较好.在此基础上,验证了CEFR堆芯的流体力学设计,并为反应堆调试和运行提供了基础数据.

  19. Experiment Research and Calculation of the Hot Air Flow Inside the Energy-saving Photovoltaic Double Curtain Wall%节能型热通道光伏幕墙热气流计算与实验研究

    陈海; 毛伙南; 王秋; 姜清海; 潘冬; 隆志军; 郭金基; 陈峰


    The liquid status and rule on the effect of the mechanical ventilation and difference in temperature inside the double curtain wall are researched. And the consecutive and temperature field equations are constituted. In summer, the conversion efficiency of solar energy battery module about the working environment temperature was investigated. The building and photovoltaic battery module's temperature decrease performance by the hot air flow inside the double curtain wall are calculated. Finally, the physical model of energy-saving photovoltaic double curtain wall is tested and the calculated results are compared and analyzed.%分析了太阳能电池的转换效率受工作环境温度的影响变化规律.研究了双层幕墙在强迫通风及温差作用下所引起的热气流流动状态和规律,建立了相关的流场和温度场状态方程组,并计算了双层玻璃幕墙夏季热气流对建筑和太阳能电池组件的降温性能.最后完成了节能型热通道光伏幕墙的一个实体模型试验,并和计算结果加以对比分析.

  20. 新疆恰尔巴哈特桥设计流量的计算%Calculation of the Design Flow of Xinjiang QiaErBaHaTe Bridge

    李杨; 高秋华


    Bridge design flood flow calculation in the design of the bridge site has a very important position, in order to avoid the bridge dam age , bridge design standards to ensure that flood frequency safe operation, the design process must be given to the calculation of adequate knowledge of hydrology. However, because uncertain hydrological system is a complex system of hydrological data informed of relatively limit ed. Especially in the Xinjiang Uyghur Autonomous Region, the land in the small mountain rivers, canals numerous low, and most of the hydrological record is not measured continuously, how to use the existing, adjacent to the hydrological data, inquire design flow of the basin is particularly important. Combining with the design experience of QiaErBaHaTe bridge of Highway 315, the design flow of small watershed bridge and flood design were discussed.%桥梁洪水设计流量的计算在桥位设计中有非常重要的地位,为避免桥梁水毁,保证桥梁在设计标准的洪水频率下安全运营,必须在设计过程中对水文计算给子足够的认识.但由于水文系统是一个复杂不确定的系统,水文资料的获知相对有限.尤其是在新疆维吾尔族自治区,该地中低山区小河流沟渠数不胜数,且多数没有实测连续的水文记录,如何利用现有的、邻近的水文资料,推求该流域的设计流量就尤为重要.结合参加省道315公路的恰尔巴哈特桥设计工作的经验,探讨了新疆小流域桥梁洪水设计流量的确定.

  1. Short-term Wind Speed Forecasting Based on CFD Pre-calculated Flow Fields%基于CFD流场预计算的短期风速预测方法

    李莉; 刘永前; 杨勇平; 韩爽


    Wind power prediction is of great significance for the safe and economic operation when large-scale wind power is connected to the electricity grid. Forecasting the wind speed accurately is essential for wind power prediction. A novel approach for short-term wind speed forecasting was put forward which is based on the computational fluid dynamics (CFD) pre-calculated flow fields (CPFF). Firstly, it discretizes the inflow conditions, and pre-simulates the wind fields affected by wind farm's terrain and roughness using CFD model on various inflow conditions. Then the flow field characteristics are extracted from all the simulated flow fields to compose a database. Finally, by coupling the mesoscale NWP input data with the reference mast, the site-specific wind at the hub height of wind turbines can be predicted using the database. This approach was verified taking a wind farm located in north China for example and the results were compared to the measured wind speed. The annual RMSE of wind velocity at every turbine's hub is less than 2.5m/s and the MAE is less than 2.0m/s, besides, the larger the absolute error of predicted wind velocity, the smaller its appearing probability. It can be concluded that the forecasting approach is not only of high accuracy and stability, but also short time demanding and especially practical for the engineering projects because the complicated CFD calculations were done before forecasting.%风电功率预测有利于减轻风力发电对电网的冲击、提高电网运行的安全性和经济性,准确预测风速是风电功率预测的关键.提出一种基于计算流体力学(computational fluid dynamics,CFD)流场预计算(CFD pre-calculated flow fields,CPFF)的短期风速预测方法:首先,对可能出现的风电场来流条件离散化,并利用CFD模型对不同来流条件下的流场进行预计算;其次,提取各来流条件下流场特定位置的风速和风向分布,组成流场特性数据库;最后,以中尺

  2. Maximum entropy production in daisyworld

    Maunu, Haley A.; Knuth, Kevin H.


    Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.

  3. Maximum stellar iron core mass

    F W Giacobbe


    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly different from a more typical Chandrasekhar mass limit approach. This technique produced a maximum stellar iron core mass value of 2.69 × 1030 kg (1.35 solar masses). This mass value is very near to the typical mass values found for neutron stars in a recent survey of actual neutron star masses. Although slightly lower and higher neutron star masses may also be found, lower mass neutron stars are believed to be formed as a result of enhanced iron core compression due to the weight of non-ferrous matter overlying the iron cores within large stars. And, higher mass neutron stars are likely to be formed as a result of fallback or accretion of additional matter after an initial collapse event involving an iron core having a mass no greater than 2.69 × 1030 kg.

  4. Maximum Matchings via Glauber Dynamics

    Jindal, Anant; Pal, Manjish


    In this paper we study the classic problem of computing a maximum cardinality matching in general graphs $G = (V, E)$. The best known algorithm for this problem till date runs in $O(m \\sqrt{n})$ time due to Micali and Vazirani \\cite{MV80}. Even for general bipartite graphs this is the best known running time (the algorithm of Karp and Hopcroft \\cite{HK73} also achieves this bound). For regular bipartite graphs one can achieve an $O(m)$ time algorithm which, following a series of papers, has been recently improved to $O(n \\log n)$ by Goel, Kapralov and Khanna (STOC 2010) \\cite{GKK10}. In this paper we present a randomized algorithm based on the Markov Chain Monte Carlo paradigm which runs in $O(m \\log^2 n)$ time, thereby obtaining a significant improvement over \\cite{MV80}. We use a Markov chain similar to the \\emph{hard-core model} for Glauber Dynamics with \\emph{fugacity} parameter $\\lambda$, which is used to sample independent sets in a graph from the Gibbs Distribution \\cite{V99}, to design a faster algori...

  5. Turbulent flow as a cause for underestimating coronary flow reserve measured by Doppler guide wire

    Richartz Barbara M


    Full Text Available Abstract Background Doppler-tipped coronary guide-wires (FW are well-established tools in interventional cardiology to quantitatively analyze coronary blood flow. Doppler wires are used to measure the coronary flow velocity reserve (CFVR. The CFVR remains reduced in some patients despite anatomically successful coronary angioplasty. It was the aim of our study to test the influence of changes in flow profile on the validity of intra-coronary Doppler flow velocity measurements in vitro. It is still unclear whether turbulent flow in coronary arteries is of importance for physiologic studies in vivo. Methods We perfused glass pipes of defined inner diameters (1.5 – 5.5 mm with heparinized blood in a pulsatile flow model. Laminar and turbulent flow profiles were achieved by varying the flow velocity. The average peak velocity (APV was recorded using 0.014 inch FW. Flow velocity measurements were also performed in 75 patients during coronary angiography. Coronary hyperemia was induced by intra-coronary injection of adenosine. The APV maximum was taken for further analysis. The mean luminal diameter of the coronary artery at the region of flow velocity measurement was calculated by quantitative angiography in two orthogonal planes. Results In vitro, the measured APV multiplied with the luminal area revealed a significant correlation to the given perfusion volumes in all diameters under laminar flow conditions (r2 > 0.85. Above a critical Reynolds number of 500 – indicating turbulent flow – the volume calculation derived by FW velocity measurement underestimated the actual rate of perfusion by up to 22.5 % (13 ± 4.6 %. In vivo, the hyperemic APV was measured irrespectively of the inherent deviation towards lower velocities. In 15 of 75 patients (20% the maximum APV exceeded the velocity of the critical Reynolds number determined by the in vitro experiments. Conclusion Doppler guide wires are a valid tool for exact measurement of coronary flow

  6. On the maximum backscattering cross section of passive linear arrays

    Solymar, L.; Appel-Hansen, Jørgen


    The maximum backscattering cross section of an equispaced linear array connected to a reactive network and consisting of isotropic radiators is calculated forn = 2, 3, and 4 elements as a function of the incident angle and of the distance between the elements. On the basis of the results obtained...

  7. On the query complexity of finding a local maximum point

    Rastsvelaev, A.L.; Beklemishev, L.D.


    We calculate the minimal number of queries sufficient to find a local maximum point of a functiun on a discrete interval for a model with M parallel queries, M≥1. Matching upper and lower bounds are obtained. The bounds are formulated in terms of certain Fibonacci type sequences of numbers.

  8. Resource-constrained maximum network throughput on space networks

    Yanling Xing; Ning Ge; Youzheng Wang


    This paper investigates the maximum network through-put for resource-constrained space networks based on the delay and disruption-tolerant networking (DTN) architecture. Specifical y, this paper proposes a methodology for calculating the maximum network throughput of multiple transmission tasks under storage and delay constraints over a space network. A mixed-integer linear programming (MILP) is formulated to solve this problem. Simula-tions results show that the proposed methodology can successful y calculate the optimal throughput of a space network under storage and delay constraints, as wel as a clear, monotonic relationship between end-to-end delay and the maximum network throughput under storage constraints. At the same time, the optimization re-sults shine light on the routing and transport protocol design in space communication, which can be used to obtain the optimal network throughput.

  9. Comparison of the performance of three maximum Doppler frequency estimators coupled with different spectral estimation methods.

    Marasek, K; Nowicki, A


    The performance of three spectral techniques (FFT, AR Burg and ARMA) for maximum frequency estimation of the Doppler spectra is described. Different definitions of fmax were used: frequency at which spectral power decreases down to 0.1 of its maximum value, modified threshold crossing method (MTCM) and novel geometrical method. "Goodness" and efficiency of estimators were determined by calculating the bias and the standard deviation of the estimated maximum frequency of the simulated Doppler spectra with known statistics. The power of analysed signals was assumed to have the exponential distribution function. The SNR ratios were changed over the range from 0 to 20 dB. Different spectrum envelopes were generated. A Gaussian envelope approximated narrow band spectral processes (P. W. Doppler) and rectangular spectra were used to simulate a parabolic flow insonified with C. W. Doppler. The simulated signals were generated out of 3072-point records with sampling frequency of 20 kHz. The AR and ARMA models order selections were done independently according to Akaike Information Criterion (AIC) and Singular Value Decomposition (SVD). It was found that the ARMA model, computed according to SVD criterion, had the best overall performance and produced results with the smallest bias and standard deviation. In general AR(SVD) was better than AR(AIC). The geometrical method of fmax estimation was found to be more accurate than other tested methods, especially for narrow band signals.

  10. Vestige: Maximum likelihood phylogenetic footprinting

    Maxwell Peter


    Full Text Available Abstract Background Phylogenetic footprinting is the identification of functional regions of DNA by their evolutionary conservation. This is achieved by comparing orthologous regions from multiple species and identifying the DNA regions that have diverged less than neutral DNA. Vestige is a phylogenetic footprinting package built on the PyEvolve toolkit that uses probabilistic molecular evolutionary modelling to represent aspects of sequence evolution, including the conventional divergence measure employed by other footprinting approaches. In addition to measuring the divergence, Vestige allows the expansion of the definition of a phylogenetic footprint to include variation in the distribution of any molecular evolutionary processes. This is achieved by displaying the distribution of model parameters that represent partitions of molecular evolutionary substitutions. Examination of the spatial incidence of these effects across regions of the genome can identify DNA segments that differ in the nature of the evolutionary process. Results Vestige was applied to a reference dataset of the SCL locus from four species and provided clear identification of the known conserved regions in this dataset. To demonstrate the flexibility to use diverse models of molecular evolution and dissect the nature of the evolutionary process Vestige was used to footprint the Ka/Ks ratio in primate BRCA1 with a codon model of evolution. Two regions of putative adaptive evolution were identified illustrating the ability of Vestige to represent the spatial distribution of distinct molecular evolutionary processes. Conclusion Vestige provides a flexible, open platform for phylogenetic footprinting. Underpinned by the PyEvolve toolkit, Vestige provides a framework for visualising the signatures of evolutionary processes across the genome of numerous organisms simultaneously. By exploiting the maximum-likelihood statistical framework, the complex interplay between mutational

  11. A maximum in the strength of nanocrystalline copper

    Schiøtz, Jakob; Jacobsen, Karsten Wedel


    We used molecular dynamics simulations with system sizes up to 100 million atoms to simulate plastic deformation of nanocrystalline copper. By varying the grain size between 5 and 50 nanometers, we show that the flow stress and thus the strength exhibit a maximum at a grain size of 10 to 15...... nanometers. This maximum is because of a shift in the microscopic deformation mechanism from dislocation-mediated plasticity in the coarse-grained material to grain boundary sliding in the nanocrystalline region. The simulations allow us to observe the mechanisms behind the grain-size dependence...

  12. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    Ungar, Eugene K.; Richards, W. Lance


    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact

  13. Design and Implementation of a Practical Distributed Power Flow Calculation System%实用化分布式动态潮流计算系统的设计与实现

    张海波; 蒋良敏; 陶文伟; 郭子健; 张鹏飞


    Distributed dynamic power flow can well solve the integrated power flow calculation problems of a power system with excessively large scale and wide area distributed data.Proceeding from the practical need and with common object request breaker architecture(CORBA) technologies,a distributed power flow calculation system based on CORBA and asynchronous iterative techniques is designed and implemented,to solve the integrated modeling problems of distributed computation with large overlapping areas on the edge of the real networks.The conflict resolution problems caused by multi-subsystem simultaneously starting calculation are solved by employing managing mechanisms such as registering,activating,starting,etc.On the makeshift test platform of the analog wide area network,the speed,robustness and effectiveness of asynchronous iteration are tested in the IEEE 118-node power system.By interfacing with the Open3000 energy management system(EMS),further practical tests are performed in Shenzhen power grid.The test results verify the applicability and the effectiveness of asynchronous iteration of the proposed system.%分布式动态潮流可以很好地解决电网规模过大和数据广域分布的一体化潮流计算问题。从实用化角度出发,结合公共对象请求代理结构(CORBA)技术优势,设计并实现了一种基于CORBA和异步迭代模式的分布式动态潮流实用化计算系统,解决了实际电网在边界存在较大重叠区域时的分布式计算一体化建模问题。通过引入注册、激活、启动的分布式管理机制,解决了多子系统同时发起计算时的冲突消解等关键问题。在搭建的模拟广域网测试平台上,以IEEE 118节点系统为例,对该系统的快速性、鲁棒性和异步迭代效果等进行了测试;以深圳地调电网为例,通过与OPEN-3000能量管理系统(EMS)接口,完成了实用化测试。测试结果证明了所设计系统的实用性和异步迭代潮流算法的有效性。

  14. Calculation of gas turbine characteristic

    Mamaev, B. I.; Murashko, V. L.


    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  15. Single Temperature Sensor Superheat Control Using a Novel Maximum Slope-seeking Method

    Vinther, Kasper; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh;


    Superheating of refrigerant in the evaporator is an important aspect of safe operation of refrigeration systems. The level of superheat is typically controlled by adjusting the flow of refrigerant using an electronic expansion valve, where the superheat is calculated using measurements from...... a pressure and a temperature sensor. In this paper we show, through extensive testing, that the superheat or filling of the evaporator can actually be controlled using only a single temperature sensor. This can either reduce commissioning costs by lowering the necessary amount of sensors or add fault...... tolerance in existing systems if a sensor fails (e.g. pressure sensor). The solution is based on a novel maximum slope-seeking control method, where a perturbation signal is added to the valve opening degree, which gives additional information about the system for control purposes. Furthermore, the method...

  16. Numerical calculation and measuring of transport phenomena as integral parameters in cross-flowed finned tube heat exchangers; Numerische Berechnung und Messung der Transportvorgaenge sowie integraler Kenngroessen in quer angestroemten Rippenrohrwaermeuebertragern

    Geiser, P.


    For the first row of extended finned tubes in cross flow, both the heat and mass transport and the integral pressure loss are determined. The tube shape, the dimensions of fin and tube, the positioning of tube and fin, the fin spacing, the thermal conductivity and the flow velocity are varied. For numerical simulation of the three-dimensional local transport phenomena, the balance equations for mass, momentum and energy are solved with the help of the commercial software FIDAP, taking account of the temperature-dependence of the material properties. From the resulting velocity, pressure and temperature fields in the configurations of the finned tube, derived characteristic parameters such as friction factor, integral fluid and fin temperature, fin efficiency, heat transfer coefficient, heat flux and fin-performance factor are determined with the help of self-developed evaluation programs. The numerical calculations of heat transfer and pressure loss show that a good correspondence with measured values in normal industrial applications for Re{<=}2000 is achieved. Local mass and heat transport in the fin duct is made visible via methods of convective mass transfer and is quantified for individual cases. For measurement purposes, enlarged models of the finned tubes are made of easily workable materials and set up in modular fashion so that tube shapes of very varied kinds can be investigated. Tube contours used in industrial applications are compared with a large number of new developments from the point of view of fluid dynamics and thermal properties. Local transport processes in the fin duct such as horseshoe vortices or separation areas which are of decisive significance for thermal performance can be made visible by means of the convective mass transfer method employed. The investigations have shown that finned tubes with large-radius of leading tube-profiles and large distances between the leading edge of the fin and the tube itself, as well as large fin

  17. How long do centenarians survive? Life expectancy and maximum lifespan.

    Modig, K; Andersson, T; Vaupel, J; Rau, R; Ahlbom, A


    The purpose of this study was to explore the pattern of mortality above the age of 100 years. In particular, we aimed to examine whether Scandinavian data support the theory that mortality reaches a plateau at particularly old ages. Whether the maximum length of life increases with time was also investigated. The analyses were based on individual level data on all Swedish and Danish centenarians born from 1870 to 1901; in total 3006 men and 10 963 women were included. Birth cohort-specific probabilities of dying were calculated. Exact ages were used for calculations of maximum length of life. Whether maximum age changed over time was analysed taking into account increases in cohort size. The results confirm that there has not been any improvement in mortality amongst centenarians in the past 30 years and that the current rise in life expectancy is driven by reductions in mortality below the age of 100 years. The death risks seem to reach a plateau of around 50% at the age 103 years for men and 107 years for women. Despite the rising life expectancy, the maximum age does not appear to increase, in particular after accounting for the increasing number of individuals of advanced age. Mortality amongst centenarians is not changing despite improvements at younger ages. An extension of the maximum lifespan and a sizeable extension of life expectancy both require reductions in mortality above the age of 100 years. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  18. Optimal disturbances in shearing and swirling flows

    Daly, Conor


    Over the past twenty years transient energy density growth of linearly stable disturbances has shown to be the likely instigator for transition to turbulence in parallel shear flows. In this vein, optimal linear perturbations are calculated for two flows which have a mixture of forces acting on the fluid body. These are; rotating plane Couette flow (RPCF), which combines pressure-driven shear and swirl, and cylindrical Couette-Poiseuille flow (CCPF), which combines pressure-driven and Couette shear. Contours are presented of the maximum achievable linear transient growth, G, over the full range of wavenumbers within the linearly stable parameter regimes. Reference is made to experimental works on each flow and we examine the role that optimal disturbances have in the different transition phenomena that are observed. It is found that the contours of G fall qualitatively alongside the points of transition in the two flows, in support of the notion that large linear transient growth can act a precursor to transition. Despite the combination of effects acting on each fluid, transition in both flows falls in the range 102 flows the same mechanism may be at work. This work is funded by EPSRC.

  19. Evaluating Maximum Wind Energy Exploitation in Active Distribution Networks

    Siano, Pierluigi; Chen, Peiyuan; Chen, Zhe;


    The increased spreading of distributed and renewable generation requires moving towards active management of distribution networks. In this paper, in order to evaluate maximum wind energy exploitation in active distribution networks, a method based on a multi-period optimal power flow (OPF) analy...... distribution system, confirmed the effectiveness of the proposed method in evaluating the optimal applications of active management schemes to increase wind energy harvesting without costly network reinforcement for the connection of wind generation.......The increased spreading of distributed and renewable generation requires moving towards active management of distribution networks. In this paper, in order to evaluate maximum wind energy exploitation in active distribution networks, a method based on a multi-period optimal power flow (OPF...

  20. Ajuste de las simulaciones de flujos continuados para el cálculo del Límite de Potencia Eólica; Calculation of Wind Power Limit adjusting the Continuation Power Flow

    Ariel Santos Fuentefria


    Full Text Available La integración de la energía eólica en los sistemas eléctricos puede provocar problemas de estabilidad ligados fundamentalmente a la variación aleatoria del viento y que se reflejan en la tensión y la frecuencia del sistema. Por lo que conocer el Límite de Potencia Eólica (LPE que puede insertarse en la red sin que esta pierda la estabilidad es un aspecto de extrema importancia, en el cual se han realizando métodos de cálculo para encontrar dicho límite. Estos métodos se desarrollan teniendo en cuenta las restricciones del sistema en estado estacionario, en estado dinámico o ambos. En el siguiente trabajo se desarrolla un método para el cálculo de LPE teniendo en cuenta las restricciones en estado estacionario del sistema. El método propuesto se basa en un análisis de flujo continuado, complementado con el método de Producción Mínima de Potencia Activa, desarrollado en la bibliografía. Se prueba en el sistema eléctrico de la Isla de la Juventud, Cuba y se usa elsoftware libre PSAT para la realización de estos estudios.  The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very importantmatter. Existing In bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT.

  1. Modified maximum likelihood registration based on information fusion

    Yongqing Qi; Zhongliang Jing; Shiqiang Hu


    The bias estimation of passive sensors is considered based on information fusion in multi-platform multisensor tracking system. The unobservable problem of bearing-only tracking in blind spot is analyzed. A modified maximum likelihood method, which uses the redundant information of multi-sensor system to calculate the target position, is investigated to estimate the biases. Monte Carlo simulation results show that the modified method eliminates the effect of unobservable problem in the blind spot and can estimate the biases more rapidly and accurately than maximum likelihood method. It is statistically efficient since the standard deviation of bias estimation errors meets the theoretical lower bounds.

  2. Maximum-entropy distributions of correlated variables with prespecified marginals.

    Larralde, Hernán


    The problem of determining the joint probability distributions for correlated random variables with prespecified marginals is considered. When the joint distribution satisfying all the required conditions is not unique, the "most unbiased" choice corresponds to the distribution of maximum entropy. The calculation of the maximum-entropy distribution requires the solution of rather complicated nonlinear coupled integral equations, exact solutions to which are obtained for the case of Gaussian marginals; otherwise, the solution can be expressed as a perturbation around the product of the marginals if the marginal moments exist.

  3. Parameter estimation in X-ray astronomy using maximum likelihood

    Wachter, K.; Leach, R.; Kellogg, E.


    Methods of estimation of parameter values and confidence regions by maximum likelihood and Fisher efficient scores starting from Poisson probabilities are developed for the nonlinear spectral functions commonly encountered in X-ray astronomy. It is argued that these methods offer significant advantages over the commonly used alternatives called minimum chi-squared because they rely on less pervasive statistical approximations and so may be expected to remain valid for data of poorer quality. Extensive numerical simulations of the maximum likelihood method are reported which verify that the best-fit parameter value and confidence region calculations are correct over a wide range of input spectra.

  4. 40 CFR 1065.650 - Emission calculations.


    ... into the system boundary, this work flow rate signal becomes negative; in this case, include these negative work rate values in the integration to calculate total work from that work path. Some work paths... interval. When power flows into the system boundary, the power/work flow rate signal becomes negative;...

  5. A Novel Method for Calculating Demand Not Served for Transmission Expansion Planning

    Gupta, Neeraj; Kalra, Prem Kumar


    Restructuring of the power market introduced demand uncertainty in transmission expansion planning (TEP), which in turn also requires an accurate estimation of demand not served (DNS). Unfortunately, the graph theory based minimum-cut maximum-flow (MCMF) approach does not ensure that electrical laws are followed. Nor can it be used for calculating DNS at individual buses. In this letter, we propose a generalized load flow based methodology for calculating DNS. This procedure is able to calculate simultaneously generation not served (GNS) and wheeling loss (WL). Importantly, the procedure is able to incorporate the effect of I2R losses, excluded in MCMF approach. Case study on a 5-bus IEEE system shows the effectiveness of the proposed approach over existing method.

  6. 考虑风速相关性的概率潮流计算及影响分析%Calculation of Probabilistic Load Flow Considering Wind Speed Correlation and Analysis on Influence of Wind Speed Correlation

    邓威; 李欣然; 徐振华; 宋军英; 陈德生; 陈冬林


    Correlation of wind speed among different find farms affects the calculation results ofprobabilistic load flows. By means of performing linear transform of independent multidimensional random samples the multi-dimensional random samples with arbitrary correlation are obtained, thus the probabilistic load flow in which the Correlation of wind speed is taken into account can be calculated. In view of the feature of asynchronous wind power generator that it absorbs reactive power, to describe such a feature a variable coefficient quadratic polynomial model is proposed. At the same time that the random disturbance of load is considered, the influencing variation law of wind speed correlation on nodal probabilistic density of nodal voltage and probabilistic distribution of branch load flow as well as the configuration of reactive power compensation capacity at grid-connecting point of wind farms under the consideration of wind speed correlation are researched and analyzed. Simulation results of IEEE 30-bus system to which four wind farms are added show that the proposed method is effective and feasible; considering wind speed correlation the analysis and evaluation of the influences of wind farms on system static voltage and transmission of branch transmission power can be more reasonable, thus it is possible to offer more accurate reference information to system planning and determination of operation modes.%不同风电场之间风速的相关性会影响概率潮流计算的结果。通过对多维独立随机样本进行线性变换,得到具有任意相关性的多维随机样本,从而可计算考虑风速相关性的概率潮流;针对风电场异步发电机吸收无功的特性,提出了一种描述该特性的变系数二次多项式模型。在计及负荷随机扰动的同时,研究并分析了风速相关性的变化对节点电压概率密度和支路潮流概率分布的影响规律,以及考虑相关性后对风电场并网点无功补偿容

  7. Approximate maximum-entropy moment closures for gas dynamics

    McDonald, James G.


    Accurate prediction of flows that exist between the traditional continuum regime and the free-molecular regime have proven difficult to obtain. Current methods are either inaccurate in this regime or prohibitively expensive for practical problems. Moment closures have long held the promise of providing new, affordable, accurate methods in this regime. The maximum-entropy hierarchy of closures seems to offer particularly attractive physical and mathematical properties. Unfortunately, several difficulties render the practical implementation of maximum-entropy closures very difficult. This work examines the use of simple approximations to these maximum-entropy closures and shows that physical accuracy that is vastly improved over continuum methods can be obtained without a significant increase in computational cost. Initially the technique is demonstrated for a simple one-dimensional gas. It is then extended to the full three-dimensional setting. The resulting moment equations are used for the numerical solution of shock-wave profiles with promising results.

  8. Maximum efficiency of low-dissipation heat engines at arbitrary power

    Holubec, Viktor; Ryabov, Artem


    We investigate maximum efficiency at a given power for low-dissipation heat engines. Close to maximum power, the maximum gain in efficiency scales as a square root of relative loss in power and this scaling is universal for a broad class of systems. For low-dissipation engines, we calculate the maximum gain in efficiency for an arbitrary fixed power. We show that engines working close to maximum power can operate at considerably larger efficiency compared to the efficiency at maximum power. Furthermore, we introduce universal bounds on maximum efficiency at a given power for low-dissipation heat engines. These bounds represent direct generalization of the bounds on efficiency at maximum power obtained by Esposito et al (2010 Phys. Rev. Lett. 105 150603). We derive the bounds analytically in the regime close to maximum power and for small power values. For the intermediate regime we present strong numerical evidence for the validity of the bounds.

  9. Oil Flow Visualization and Numerical Calculation on End-Wall of Aspirated Compressor Cascade%吸附式压气机叶栅端壁流场油流实验研究及数值分析

    史磊; 刘波; 那振喆; 张国臣; 李俊


    设计加工了压气机叶栅端壁试验件,安置在吸附式叶栅中间通道50%叶展处,用来研究无马蹄涡影响的端壁流场。通过油流显示方法得到了其在设计点4种抽吸流量下的近壁面流线分布。在抽吸缝所在相对弦长处,沿节距方向等距测取了8个试验件壁面静压值。应用Fine/Turbo软件包,采用全通道网格在设计点进行了数值计算,对试验件端壁流场进行补充分析,较好地解释了实验现象。研究发现,吸附式压气机原始叶栅端壁处的马蹄涡压力面分支未与叶型吸力面交汇,因此消除马蹄涡影响的近端壁油流试验件叶型表面负荷水平的提升主要来自于前段弦长范围内,在前40%轴向范围内叶型负荷平均提高了15.5%,并且叶型负荷随着抽吸流量的增加而增加,抽吸效率随着抽吸流量的增加而降低。在数值计算中,通过前缘处近壁面熵分布等值线最小值连线证实了油流实验中测得的角度θ客观上反映了前缘扰动区的作用范围。%A compressor cascade end-wall was set in middle span of the middle passage to study the end-wall flow field without horseshoe vortex effect. Structures of end-wall flow field with 4 kinds of suction rate at de⁃sign point were displayed by oil flow visualization method. Eight equidistant static pressure holes along the pitch⁃wise at the suction hole chordwise were tested. Fine/Turbo software was used in the full-passage numerical simu⁃lation in supplementary analysis. Investigations show that in original cascade end-wall,the pressure branch of horseshoe vortex passes through the passage having no effect on suction surface. So, the removal of horseshoe vor⁃tex on end-wall mainly improves the blade loading near leading edge. There is an improvement of 15.5%on blade loading in the first 40%axial position near the end-wall. As the suction flow increasing,the blade loading im⁃proves and efficiency of

  10. The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator

    Chen, Jincan; Yan, Zijun; Wu, Liqing


    Considering a thermoelectric generator as a heat engine cycle, the general differential equations of the temperature field inside thermoelectric elements are established by means of nonequilibrium thermodynamics. These equations are used to study the influence of heat leak, Joule's heat, and Thomson heat on the performance of the thermoelectric generator. New expressions are derived for the power output and the efficiency of the thermoelectric generator. The maximum power output is calculated and the optimal matching condition of load is determined. The maximum efficiency is discussed by a representative numerical example. The aim of this research is to provide some novel conclusions and redress some errors existing in a related investigation.

  11. Development of quantitative Doppler indices for uteroplacental and fetal blood flow during the third trimester.

    Joern, H; Funk, A; Goetz, M; Kuehlwein, H; Klein, A; Fendel, H


    The aim of our study was to describe the development of uteroplacental and fetal blood flow during the third trimester. Doppler examination was carried out on 393 uncomplicated pregnancies with uncomplicated term delivery. Using a pulsed color Doppler, we calculated the maximum systolic, mean and maximum end-diastolic velocity after correcting the angle of insonation. Patients under tocolysis or other medication influencing blood flow parameters were excluded from this cross-sectional study. Summarizing the results gained by Doppler ultrasound investigation of the uteroplacental and fetal blood vessels, we created quantiles as quantitative Doppler indices for the maximum systolic, mean (TAMX = time averaged maximum velocity) and maximum end-diastolic velocity. The following conclusions could be drawn: (1) resistance to the blood flow in the maternal portion of the placenta does not change during the third trimester; (2) resistance to the blood flow on the fetal side of the placenta decreases up to week 42 of gestation; (3) cerebral vascular resistance decreases constantly up to gestational week 42; and (4) vascular resistance to the blood flow of the kidney decreases only slightly during the third trimester. This study offers clinically important values for quantitative Doppler flow velocimetry for the first time. We hope that our findings improve the usefulness of Doppler ultrasound as a diagnostic tool in obstetrical management.

  12. Coronary ligation reduces maximum sustained swimming speed in Chinook salmon, Oncorhynchus tshawytscha

    Farrell, A P; Steffensen, J F


    The maximum aerobic swimming speed of Chinook salmon (Oncorhynchus tshawytscha) was measured before and after ligation of the coronary artery. Coronary artery ligation prevented blood flow to the compact layer of the ventricular myocardium, which represents 30% of the ventricular mass, and produced...... a statistically significant 35.5% reduction in maximum swimming speed. We conclude that the coronary circulation is important for maximum aerobic swimming and implicit in this conclusion is that maximum cardiac performance is probably necessary for maximum aerobic swimming performance....

  13. Cosmic Flows on 100 Mpc/h scales

    Feldman, Hume A; Watkins, Richard


    To study galactic motions on the largest available scales, we require bulk flow moments whose window functions have as narrow a peak as possible and having as small an amplitude as possible outside the peak. Typically the moments found using the maximum likelihood estimate weights do not meet these criteria. We present a new method for calculating weights for moments that essentially allow us to "design" the moment's window function, subject, of course, to the distribution and uncertainties of the available data.

  14. 制冷剂汽液两相区音速的计算与分析%Calculation and Analysis of Sound Velocity in Vapor-liquid Two-phase Refrigerant Flow

    王艳庭; 张华


    Sound velocity of fluid is important thermodynamic parameter. But viewing from the existing literature, there is a lack of sound velocity data. This paper presents the calculation of sound velocity for the adiabatic two-phase flow of refrigerant through capillary tube based on homogenous equilibrium model. According to the definition of sound velocity a=√δρ/δρ and Martin-Hou equation of state the sound velocity is obtained using the finite difference method. The sound velocities of three refrigerants, R22, R134a, R744, have been calculated in this paper. The calculation results have been validated by published experimental data and showed fair agreement with the experimental data with an error band of 4%. According to the calculated two-phase sound velocity data, the sonic curves were drawn in the pressure-enthalpy diagram. The data and curves show that the sound velocity increases with the entropy at the same pressure. From the triple point pressure sound velocity on the isentropic curve increases firstly and then decreases. Sound velocity on the isenthalpic curve decreases monotonically for R134a and R744. But the sound velocity of R22 increases firstly then decreases.%流体的音速是流体重要的热力学参数,从现有文献看,制冷剂两相区的音速数据缺乏.采用均相流模型,从马丁-侯状态方程出发,根据绝热音速的定义α=√(e)p/(e)pad,利用有限差分方法得到了常用的制冷剂R22、R134a、R744两相区的等熵绝热音速数据,并用文献中的两相区音速实验结果对其进行了验证,表明两者音速误差在4%以内.根据计算出的两相区音速数据,利用相关软件在lgp-h图里面绘制了等音速线,对两相区音速数据进行了分析讨论.数据显示相同压力下,随着熵值的增大,音速值逐渐变大;自三相点压力至饱和压力等熵线上的音速会出现先增大后减小的现象;等焓线上的音速,R134a、R744单调递减,R22先增大后减小.

  15. Probabilistic Load Flow Calculation Method Based on Multiple Integral Method Considering Correlation of Photovoltaic Generation%计及光伏发电相关性的多重积分法概率潮流计算

    吴巍; 汪可友; 李国杰


    光伏发电相关性以及波动性会对系统的运行产生影响,因此需要通过计及光伏出力相关性的概率潮流(probabilistic load flow,PLF)计算来获取系统运行特征量的统计信息。文中提出采用改进Nataf变换处理光伏相关性。  在传统Nataf变换基础上,结合三阶多项式正态变换简化其计算。同时,为解决 PLF 的输入和输出变量之间非线性关系带来的计算复杂性,提出采用多重积分法(multiple integral method,MIM)和Gram-Charlier级数,仅需在少数输入点处进行潮流计算即可得到输出量统计特征的高精度结果。对IEEE 39节点系统进行仿真计算,结果验证了所提算法的有效性、准确性、计算高效性。与半不变量法的对比则验证了半不变量法的局限性以及MIM法的优良性能。%Due to the impact of the correlation and uncertainty of photovoltaic (PV) generation on power system, it is necessary to apply probabilistic load flow (PLF) considering correlation of PV generation to obtain the statistics of system characteristic quantities. A modified Nataf transformation was proposed to handle the correlation of PV generation in this paper. Based on the traditional Nataf transformation, a third-order polynomial normal transformation was adopted to reduce computational effort of traditional Nataf transformation. In order to simplify the computational complexity induced by the nonlinear relationship between input and output variables of PLF, multiple integral method (MIM) and Gram-Charlier expansion were introduced. Based on load flow calculation corresponding to specified input variables, high precision results of output statistics can be estimated. An IEEE 39-bus system was tested in the simulation study. The simulation results verified the effectiveness, accuracy and efficiency of the proposed algorithm. Comparison between cumulant method and MIM confirmed the limitation of cumulant method and well

  16. 竖直小通道内弹状流气弹长度的计算模型%Calculation Model of Slug Length for Slug Flow in Vertical Small Channel

    闫超星; 阎昌琪; 孙立成; 王洋; 张小宁


    针对小通道内弹状流建立了气弹长度计算模型,并结合实验研究,对模型进行验证。可视化实验以空气和水为工质,矩形通道截面尺寸为3.25 mm ×43 mm ,分气、液相 Re范围分别为62~360和1255~3707。结果显示,模型的预测值与实验数据具有较好的一致性,平均绝对误差为26.8%。此外,将Mishima和Cheng等的实验数据与计算模型进行对比,实验段包括矩形通道(40 mm ×1.07 mm ,40 mm ×2.45 mm)和圆形通道(De=4 mm),平均绝对误差为34.9%,说明计算模型具有较好的适用性。%A calculation model of slug length was developed for slug flow in small chan-nels and verified by visualized experiments of air-water slug flow in a vertical rectangular channel with the cross section area of 3.25 mm × 43 mm .Reynolds numbers of air and water were in the ranges of 62-360 and 1 255-3 707 ,respectively .The model predicts the experimental data fairly well with a mean absolute error of 26.8% .Besides ,the model was also evaluated against the experimental data of rectangular channels (40 mm × 1.07 mm ,40 mm × 2.45 mm) and circular channel (De = 4 mm) from Mishima and Cheng ,et al .,respectively ,and has a mean absolute error of 34.9% ,further showing fairly good applicability of the model .

  17. The subsequence weight distribution of summed maximum length digital sequences

    Weathers, G. D.; Graf, E. R.; Wallace, G. R.


    An attempt is made to develop mathematical formulas to provide the basis for the design of pseudorandom signals intended for applications requiring accurate knowledge of the statistics of the signals. The analysis approach involves calculating the first five central moments of the weight distribution of subsequences of hybrid-sum sequences. The hybrid-sum sequence is formed from the modulo-two sum of k maximum length sequences and is an extension of the sum sequences formed from two maximum length sequences that Gilson (1966) evaluated. The weight distribution of the subsequences serves as an approximation to the filtering process. The basic reason for the analysis of hybrid-sum sequences is to establish a large group of sequences with good statistical properties. It is shown that this can be accomplished much more efficiently using the hybrid-sum approach rather than forming the group strictly from maximum length sequences.

  18. MaxOcc: a web portal for maximum occurrence analysis.

    Bertini, Ivano; Ferella, Lucio; Luchinat, Claudio; Parigi, Giacomo; Petoukhov, Maxim V; Ravera, Enrico; Rosato, Antonio; Svergun, Dmitri I


    The MaxOcc web portal is presented for the characterization of the conformational heterogeneity of two-domain proteins, through the calculation of the Maximum Occurrence that each protein conformation can have in agreement with experimental data. Whatever the real ensemble of conformations sampled by a protein, the weight of any conformation cannot exceed the calculated corresponding Maximum Occurrence value. The present portal allows users to compute these values using any combination of restraints like pseudocontact shifts, paramagnetism-based residual dipolar couplings, paramagnetic relaxation enhancements and small angle X-ray scattering profiles, given the 3D structure of the two domains as input. MaxOcc is embedded within the NMR grid services of the WeNMR project and is available via the WeNMR gateway at . It can be used freely upon registration to the grid with a digital certificate.

  19. Pantograph-catenary Surface Heat Flow Analysis and Calculations Based on Mechanical and Electrical Characteristics%计及机械和电气特性的弓网表面热流分析和计算

    王英; 刘志刚; 黄可; 高仕斌


    针对弓网高额取流所产生的高温热侵蚀,提出一种弓网表面热流源计算评估方法。指出弓网表面温升主要由摩擦、接触电阻和电弧的作用而产生;分析和计算3种温升的热侵蚀过程和影响因素,并选取京津城际客运铁路基础参数进行仿真。仿真结果表明,摩擦热、焦耳热和电弧热一般同时存在并相互影响。分析得出弓网接触压力、风速影响、行车速度、电流变化等对接触线和滑板表面热流的影响规律。%Aiming at the thermal erosion problems caused by high temperatures,detailed pantograph-catenary surface heat flow calculation and evaluation were referred to and a computational model of pantograph and con-tact line was established.It was pointed out that the pantograph-catenary surface heat sources involved temper-atures generated under the action of friction,contact resistances and arcing.The thermal erosion processes and influencing factors of the three types of temperature rise were analyzed and calculated.Simulation was made on the basis of selection of fundamental parameters of the Beij ing-Tianj in Intercity Railway.The simulation re-sults show that the friction heat,Joule heat and arc heat generally exist simultaneously and influence one an-other.The law of pantograph-catenary contact pressures,wind speeds,running speeds and current changes af-fecting contact wire and slide surface heat fluxes was found.

  20. The Maximum Patch Method for Directional Dark Matter Detection

    Henderson, Shawn; Fisher, Peter


    Present and planned dark matter detection experiments search for WIMP-induced nuclear recoils in poorly known background conditions. In this environment, the maximum gap statistical method provides a way of setting more sensitive cross section upper limits by incorporating known signal information. We give a recipe for the numerical calculation of upper limits for planned directional dark matter detection experiments, that will measure both recoil energy and angle, based on the gaps between events in two-dimensional phase space.