Sample records for maximum faulting orientation

  1. Object-oriented fault tree evaluation program for quantitative analyses

    Patterson-Hine, F. A.; Koen, B. V.


    Object-oriented programming can be combined with fault free techniques to give a significantly improved environment for evaluating the safety and reliability of large complex systems for space missions. Deep knowledge about system components and interactions, available from reliability studies and other sources, can be described using objects that make up a knowledge base. This knowledge base can be interrogated throughout the design process, during system testing, and during operation, and can be easily modified to reflect design changes in order to maintain a consistent information source. An object-oriented environment for reliability assessment has been developed on a Texas Instrument (TI) Explorer LISP workstation. The program, which directly evaluates system fault trees, utilizes the object-oriented extension to LISP called Flavors that is available on the Explorer. The object representation of a fault tree facilitates the storage and retrieval of information associated with each event in the tree, including tree structural information and intermediate results obtained during the tree reduction process. Reliability data associated with each basic event are stored in the fault tree objects. The object-oriented environment on the Explorer also includes a graphical tree editor which was modified to display and edit the fault trees.

  2. Slicken 1.0: Program for calculating the orientation of shear on reactivated faults

    Xu, Hong; Xu, Shunshan; Nieto-Samaniego, Ángel F.; Alaniz-Álvarez, Susana A.


    The slip vector on a fault is an important parameter in the study of the movement history of a fault and its faulting mechanism. Although there exist many graphical programs to represent the shear stress (or slickenline) orientations on faults, programs to quantitatively calculate the orientation of fault slip based on a given stress field are scarce. In consequence, we develop Slicken 1.0, a software to rapidly calculate the orientation of maximum shear stress on any fault plane. For this direct method of calculating the resolved shear stress on a planar surface, the input data are the unit vector normal to the involved plane, the unit vectors of the three principal stress axes, and the stress ratio. The advantage of this program is that the vertical or horizontal principal stresses are not necessarily required. Due to its nimble design using Java SE 8.0, it runs on most operating systems with the corresponding Java VM. The software program will be practical for geoscience students, geologists and engineers and will help resolve a deficiency in field geology, and structural and engineering geology.

  3. Automated Fault Localization for Service-Oriented Software Systems

    Chen, C.


    In this thesis, we have focused on applying Spectrum-based Fault Localization (SFL) to diagnose Service-Oriented Systems at runtime. We reused a framework-based online monitoring technique to obtain the service transaction information. We devised a three-phased oracle and combined this with monitori

  4. High-frequency maximum observable shaking map of Italy from fault sources

    Zonno, Gaetano


    We present a strategy for obtaining fault-based maximum observable shaking (MOS) maps, which represent an innovative concept for assessing deterministic seismic ground motion at a regional scale. Our approach uses the fault sources supplied for Italy by the Database of Individual Seismogenic Sources, and particularly by its composite seismogenic sources (CSS), a spatially continuous simplified 3-D representation of a fault system. For each CSS, we consider the associated Typical Fault, i. e., the portion of the corresponding CSS that can generate the maximum credible earthquake. We then compute the high-frequency (1-50 Hz) ground shaking for a rupture model derived from its associated maximum credible earthquake. As the Typical Fault floats within its CSS to occupy all possible positions of the rupture, the high-frequency shaking is updated in the area surrounding the fault, and the maximum from that scenario is extracted and displayed on a map. The final high-frequency MOS map of Italy is then obtained by merging 8,859 individual scenario-simulations, from which the ground shaking parameters have been extracted. To explore the internal consistency of our calculations and validate the results of the procedure we compare our results (1) with predictions based on the Next Generation Attenuation ground-motion equations for an earthquake of M w 7.1, (2) with the predictions of the official Italian seismic hazard map, and (3) with macroseismic intensities included in the DBMI04 Italian database. We then examine the uncertainties and analyse the variability of ground motion for different fault geometries and slip distributions. © 2012 Springer Science+Business Media B.V.

  5. Dominant fault plane orientations of intermediate-depth earthquakes beneath South America

    Warren, Linda M.


    The South American subduction zone exhibits considerable variation: the subduction angle alternates between flat and steep; the subducting plate has complex structures; and arc volcanism in the overlying plate has gaps. I investigate the effect of these differences in incoming plate structure and slab geometry on intermediate-depth earthquakes, specifically their fault orientations and rupture characteristics, and find that slab geometry has the largest impact on fault orientation. I use rupture directivity to estimate rupture direction and rupture velocity and to distinguish the fault plane from the auxiliary plane of the focal mechanism. From analysis of 163 large (Mw≥5.7) intermediate-depth (60-360 km depth) earthquakes from along the length of South America, estimated rupture azimuths and plunges show no trends, appearing to be randomly distributed on the determined population of fault plane orientations, and a majority of earthquakes are made up of multiple subevents. As seen in other subduction zones, subduction segments descending at normal angles have predominantly subhorizontal faults. Flat slab segments also have a dominant fault orientation, but those earthquakes slip along the conjugate nodal plane of the focal mechanism. In strongly curved slab segments, such as at the downdip edge of flat segments where the slab resubducts, earthquakes may slip along either nodal plane orientation. While both fault orientations could be consistent with the reactivation of fossil outer rise faults, the fault orientations are also consistent with expectations for newly created faults in agreement with the ambient stress field. Fault reactivation alone does not explain why different fault orientations are active in segments with different geometries, so the preferred explanation for having regionally consistent fault orientations is that they minimize the total work of the system. The previously observed predominance of subhorizontal faults appears to be a consequence

  6. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution

    Jia, Feng; Lei, Yaguo; Shan, Hongkai; Lin, Jing


    The early fault characteristics of rolling element bearings carried by vibration signals are quite weak because the signals are generally masked by heavy background noise. To extract the weak fault characteristics of bearings from the signals, an improved spectral kurtosis (SK) method is proposed based on maximum correlated kurtosis deconvolution (MCKD). The proposed method combines the ability of MCKD in indicating the periodic fault transients and the ability of SK in locating these transients in the frequency domain. A simulation signal overwhelmed by heavy noise is used to demonstrate the effectiveness of the proposed method. The results show that MCKD is beneficial to clarify the periodic impulse components of the bearing signals, and the method is able to detect the resonant frequency band of the signal and extract its fault characteristic frequency. Through analyzing actual vibration signals collected from wind turbines and hot strip rolling mills, we confirm that by using the proposed method, it is possible to extract fault characteristics and diagnose early faults of rolling element bearings. Based on the comparisons with the SK method, it is verified that the proposed method is more suitable to diagnose early faults of rolling element bearings. PMID:26610501

  7. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings

    Miao, Yonghao; Zhao, Ming; Lin, Jing; Lei, Yaguo


    The extraction of periodic impulses, which are the important indicators of rolling bearing faults, from vibration signals is considerably significance for fault diagnosis. Maximum correlated kurtosis deconvolution (MCKD) developed from minimum entropy deconvolution (MED) has been proven as an efficient tool for enhancing the periodic impulses in the diagnosis of rolling element bearings and gearboxes. However, challenges still exist when MCKD is applied to the bearings operating under harsh working conditions. The difficulties mainly come from the rigorous requires for the multi-input parameters and the complicated resampling process. To overcome these limitations, an improved MCKD (IMCKD) is presented in this paper. The new method estimates the iterative period by calculating the autocorrelation of the envelope signal rather than relies on the provided prior period. Moreover, the iterative period will gradually approach to the true fault period through updating the iterative period after every iterative step. Since IMCKD is unaffected by the impulse signals with the high kurtosis value, the new method selects the maximum kurtosis filtered signal as the final choice from all candidates in the assigned iterative counts. Compared with MCKD, IMCKD has three advantages. First, without considering prior period and the choice of the order of shift, IMCKD is more efficient and has higher robustness. Second, the resampling process is not necessary for IMCKD, which is greatly convenient for the subsequent frequency spectrum analysis and envelope spectrum analysis without resetting the sampling rate. Third, IMCKD has a significant performance advantage in diagnosing the bearing compound-fault which expands the application range. Finally, the effectiveness and superiority of IMCKD are validated by a number of simulated bearing fault signals and applying to compound faults and single fault diagnosis of a locomotive bearing.

  8. Thickness and orientational design for a maximum stiff membrane

    Pedersen, Pauli


    Recent results from sensitivity analysis for strain energy with anisotropic elasticity are applied to thickness and orientational design of laminated membranes. Primarily, the first order gradients of the total elastic energy are used in an optimality criteria based method. This traditional method is shown to give slow convergence with respect to design parameters, although the convergence of strain energy is very good. To get a deeper insight into this rather general characteristic, second order derivatives are included and it is shown how they can be obtained by first order sensitivity analysis. Examples of only thickness design, only orientational design, and combined thickness--orientational design are presented.

  9. Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection in bearings

    Miao, Yonghao; Zhao, Ming; Lin, Jing; Xu, Xiaoqiang


    De-noising and enhancement of the weak fault signature from the noisy signal are crucial for fault diagnosis, as features are often very weak and masked by the background noise. Deconvolution methods have a significant advantage in counteracting the influence of the transmission path and enhancing the fault impulses. However, the performance of traditional deconvolution methods is greatly affected by some limitations, which restrict the application range. Therefore, this paper proposes a new deconvolution method, named sparse maximum harmonics-noise-ratio deconvolution (SMHD), that employs a novel index, the harmonics-to-noise ratio (HNR), to be the objective function for iteratively choosing the optimum filter coefficients to maximize HNR. SMHD is designed to enhance latent periodic impulse faults from heavy noise signals by calculating the HNR to estimate the period. A sparse factor is utilized to further suppress the noise and improve the signal-to-noise ratio of the filtered signal in every iteration step. In addition, the updating process of the sparse threshold value and the period guarantees the robustness of SMHD. On this basis, the new method not only overcomes the limitations associated with traditional deconvolution methods, minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD), but visual inspection is also better, even if the fault period is not provided in advance. Moreover, the efficiency of the proposed method is verified by simulations and bearing data from different test rigs. The results show that the proposed method is effective in the detection of various bearing faults compared with the original MED and MCKD.

  10. An Aspect-Oriented Approach to Assessing Fault Tolerance


    misconfiguration, and so forth. The Hadoop File System [8] includes a fault injection framework built using AspectJ similar to that which we describe in...this paper. The main differences between our framework and Hadoop fault injectors is that the Hadoop fault injector only supports probabilistic...Transformation and Net-Centric Systems Conference, Orlando, Florida, April 2009. [8] “ Hadoop fault injection,

  11. Fault plane orientations of intermediate-depth earthquakes in the Middle America Trench

    Warren, Linda M.; Langstaff, Meredith A.; Silver, Paul G.


    Intermediate-depth earthquakes are often attributed to dehydration embrittlement reactivating preexisting weak zones. The orientation of presubduction faults is particularly well known offshore of Middle America, where seismic reflection profiles show outer rise faults dipping toward the trench and extending >20 km into the lithosphere. If water is transported along these faults and incorporated into hydrous minerals, the faults may be reactivated later when the minerals dehydrate. In this case, the fault plane orientations should be the same in the outer rise and at depth, after accounting for the angle of subduction. To test this hypothesis, we analyze the directivity of 54 large (MW ≥ 5.7) earthquakes between 35 and 220 km depth in the Middle America Trench. For 12 of these earthquakes, the directivity vector allows us to identify the fault plane of the focal mechanism. Between 35 and 85 km depth, we observe both subhorizontal and subvertical fault planes. The subvertical fault planes are consistent with the reactivation of outer rise faults, whereas the subhorizontal fault planes suggest the formation of new faults. Deeper than 85 km, we only observe subhorizontal faults, indicating that the outer rise faults are no longer being reactivated. The similarity with previous results from the colder Tonga-Kermadec subduction zone suggests that the mechanism generating these earthquakes, and controlling fault plane orientations, depends on pressure rather than temperature or other tectonic parameters and that the observed rupture characteristics constitute a basic feature of intermediate-depth seismicity. Exclusively subhorizontal faults may result from isobaric rupture propagation or the hindrance of seismic slip on preexisting weak subvertical planes.

  12. Fuzzy Concurrent Object Oriented Expert System for Fault Diagnosis in 8085 Microprocessor Based System Board

    Mr.D. V. Kodavade


    Full Text Available With the acceptance of artificial intelligence paradigm, a number of successful artificial intelligence systems were created. Fault diagnosis in microprocessor based boards needs lot of empirical knowledge and expertise and is a true artificial intelligence problem. Research on fault diagnosis in microprocessor based system boards using new fuzzy-object oriented approach is presented in this paper. There are many uncertain situations observed during fault diagnosis. These uncertain situations were handled using fuzzy mathematics properties. Fuzzy inference mechanism is demonstrated using one case study. Some typical faults in 8085 microprocessor board and diagnostic procedures used is presented in this paper.

  13. Fault Plane Orientations of Intermediate-Depth Earthquakes in South America

    Warren, L. M.


    Extending from Colombia in the north to Chile and Argentina in the south, the South American subduction zone exhibits considerable variation: the subduction angle alternates between flat and steep; the subducting plate has complex structures such as ridges, plateaus, and fracture zones; and late Cenozoic volcanism in the overlying plate has gaps. I investigate the effect of these differences in incoming plate structure and subduction geometry on intermediate-depth earthquakes and use the results to test hypotheses for why intermediate-depth earthquakes occur. For all large (Mw ≥5.7) intermediate-depth earthquakes (60-360 km depth) in South America since 1990, I analyze rupture directivity to try to distinguish which of the two possible fault planes of the focal mechanism slipped in the earthquake. Of the 163 earthquakes that met the selection criteria, half were recorded with a sufficient distribution of stations to determine if there was directivity to the rupture and fault planes were identified for 31 events. Fault plane orientations are spatially coherent. In regions with "normal" subduction angles, such as the Central Volcanic Zone (southern Peru to central Chile), results are consistent with previous studies in Central America and the western Pacific subduction zones: most earthquakes rupture along subhorizontal faults and rupture azimuths are randomly distributed. In the Peruvian Flat Slab, identified fault planes dip eastward. After taking into account the angle of subduction, these faults are perpendicular to the faults that rupture in regions with normal subduction angles. Within sharply curved slab segments, such as the rebending of the plate at the eastern edge of the Peruvian flat slab, both orientations of faults slip. The observed flip in dominant fault plane orientation on either side of sharply curved slab segments suggests that bending and unbending stresses have an important role in controlling fault orientations. Pre-existing weak zones may

  14. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei


    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  15. A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks

    Cai, Baoping; Liu, Hanlin; Xie, Min


    Bayesian network (BN) is a commonly used tool in probabilistic reasoning of uncertainty in industrial processes, but it requires modeling of large and complex systems, in situations such as fault diagnosis and reliability evaluation. Motivated by reduction of the overall complexities of BNs for fault diagnosis, and the reporting of faults that immediately occur, a real-time fault diagnosis methodology of complex systems with repetitive structures is proposed using object-oriented Bayesian networks (OOBNs). The modeling methodology consists of two main phases: an off-line OOBN construction phase and an on-line fault diagnosis phase. In the off-line phase, sensor historical data and expert knowledge are collected and processed to determine the faults and symptoms, and OOBN-based fault diagnosis models are developed subsequently. In the on-line phase, operator experience and sensor real-time data are placed in the OOBNs to perform the fault diagnosis. According to engineering experience, the judgment rules are defined to obtain the fault diagnosis results.

  16. Deep Earthquake Mechanics Inferred From Fault-Plane Orientations in Central South America

    Warren, L. M.; Biryol, C. B.; Beck, S. L.


    To place constraints on the physical mechanisms of deep earthquakes, we analyze the rupture properties of >30 intraslab earthquakes with MW >5.7 in central South America (15°--25°S). For all earthquakes, we perform a directivity analysis to estimate the rupture vector and identify the fault plane. After comparing the results with synthetics, we can distinguish the fault plane of the focal mechanism for ~1/3 of these earthquakes. For the largest earthquakes, we also invert for the slip distribution on the fault plane. At intermediate depths, we test whether earthquakes result from dehydration embrittlement reactivating the steep, trenchward-dipping faults of the outer rise. After accounting for the angle of subduction, these faults would be approximately vertical. This prediction contrasts with the orientation of faults identified between 100--300 km depth, which are all subhorizontal and instead suggest the creation of a new system of faults. The exclusive occurrence of subhorizontal faults agrees with previous studies in the Tonga-Kermadec and Middle America subduction zones. The similarity in results between the three subduction zones despite large differences in temperature, subduction velocity, and subduction angle suggests that the earthquake-generating mechanism is controlled by pressure rather than tectonic parameters. Deeper than 300 km, earthquakes occur along both subhorizontal and subvertical fault planes.

  17. Are quartz LPOs predictably oriented with respect to the shear zone boundary?: A test from the Alpine Fault mylonites, New Zealand

    Little, Timothy A.; Prior, David J.; Toy, Virginia G.


    The Alpine fault self-exhumes its own ductile shear zone roots and has a known slip kinematics. Within ˜1 km of the fault, the mylonitic foliation is subparallel to the boundary of the amphibolite-facies ductile shear zone in which it formed. Using EBSD, we analyzed quartz Lattice Preferred Orientations [LPOs) of mylonites along a central part of the Alpine Fault. All LPOs feature a strongest girdle of [c]-axes that is forward-inclined ˜28 ± 4° away from the pole to the fault. A maximum of axes is inclined at the same angle relative the fault. The [c]-axis girdle is perpendicular to extensional (C') shear bands and the maximum is parallel to their slip direction. [c]-axis girdles do not form perpendicular to the SZB. Schmid factor analysis suggests that σ1 was arranged at 60-80° to the Alpine Fault. These observations indicate ductile transpression in the shear zone. The inclined arrangement of [c]-axis girdles, axes, and C' planes relative to the fault can be explained by their alignment relative to planes of maximum shear-strain-rate in a general shear zone, a significant new insight regarding shear zones and how LPO fabrics may generally develop within them. For the Alpine mylonite zone, our data imply a kinematic vorticity number (Wk) of ˜0.7 to ˜0.85. Inversions of seismic focal mechanisms in the brittle crust of the Southern Alps indicate that σ1 is oriented ˜60° to the Alpine Fault; that shear bands form at ˜30° to this direction, and that σ2 and σ3 flip positions between the brittle and ductile parts of the crust.

  18. Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive

    Li, Zipeng; Chen, Jinglong; Zi, Yanyang; Pan, Jun


    As one of most critical component of high-speed locomotive, wheel set bearing fault identification has attracted an increasing attention in recent years. However, non-stationary vibration signal with modulation phenomenon and heavy background noise make it difficult to excavate the hidden weak fault feature. Variational Mode Decomposition (VMD), which can decompose the non-stationary signal into couple Intrinsic Mode Functions adaptively and non-recursively, brings a feasible tool. However, heavy background noise seriously affects setting of mode number, which may lead to information loss or over decomposition problem. In this paper, an independence-oriented VMD method via correlation analysis is proposed to adaptively extract weak and compound fault feature of wheel set bearing. To overcome the information loss problem, the appropriate mode number is determined by the criterion of approximate complete reconstruction. Then the similar modes are combined according to the similarity of their envelopes to solve the over decomposition problem. Finally, three applications to wheel set bearing fault of high speed locomotive verify the effectiveness of the proposed method compared with original VMD, EMD and EEMD methods.

  19. Growth Normal Faulting at the Western Edge of the Metropolitan Taipei Basin since the Last Glacial Maximum, Northern Taiwan

    Chih-Tung Chen


    Full Text Available Growth strata analysis is an useful tool in understanding kinematics and the evolution of active faults as well as the close relationship between sedimentation and tectonics. Here we present the Shanchiao Fault as a case study which is an active normal fault responsible for the formation of the 700-m-thick late Quaternary deposits in Taipei Basin at the northern tip of the Taiwan mountain belt. We compiled a sedimentary record, particularly the depositional facies and their dated ages, at three boreholes (SCF-1, SCF-2 and WK-1, from west to east along the Wuku Profile that traverses the Shanchiao Fault at its central segment. By incorporating the global sea level change curve, we find that thickness changes of sediments and changes of depositional environments in the Wuku area are in a good agreement with a rapid sea level rise since the Last Glacial Maximum (LGM of about 23 ka. Combining depositional facies changes and their ages with their thickness, we are able to introduce a simple back-stripping method to reconstruct the evolution of growing strata across the Shanchiao Fault since the LGM. We then estimate the vertical tectonic slip rate since 23 ka, which exhibits 2.2 mm yr-1 between SCF-2 and WK-1 and 1.1 mm yr-1 between SCF-1 and SCF-2. We also obtain the Holocene tectonic subsidence rate of 2.3 mm yr-1 at WK-1 and 0.9 mm yr-1 at SCF-2 since 8.4 ka. We thus conclude that the fault zone consists of a high-angle main fault to the east between SCF-2 and WK-1 and a western lower-angle branch fault between SCF-1 and SCF-2, resembling a tulip structure developed under sinistral transtensional tectonism. We find that a short period of 600-yr time span in 9 - 8.4 ka shows important tectonic subsidence of 7.4 and 3.3 m for the main and branch fault, respectively, consistent with possible earthquake events proposed by previous studies during that time. A correlation between geomorphology and subsurface geology in the Shanchiao Fault zone shows

  20. Reliability database development for use with an object-oriented fault tree evaluation program

    Heger, A. Sharif; Harringtton, Robert J.; Koen, Billy V.; Patterson-Hine, F. Ann


    A description is given of the development of a fault-tree analysis method using object-oriented programming. In addition, the authors discuss the programs that have been developed or are under development to connect a fault-tree analysis routine to a reliability database. To assess the performance of the routines, a relational database simulating one of the nuclear power industry databases has been constructed. For a realistic assessment of the results of this project, the use of one of existing nuclear power reliability databases is planned.

  1. Modelling of Seismic Ground Motion in Santiago de Cuba City from Earthquakes in Oriente Fault Seismic Zone

    Alvarez, L.; Panza, G. F.; Vaccari, F.; González, B. E.

    We present the results of complete P-SV and SH waves modelling, up to a maximum frequency of 1Hz, along two profiles in Santiago de Cuba city. The seismic sources are located in the depth range from 10 to 40km on the Oriente fault zone at distances of several tens of kilometres from the city. The calculation has been made by a hybrid method: Modal summation in the regional anelastic model (one-dimensional) where the source is buried, and finite differences in the local sedimentary anelastic models (two-dimensional). The analysis of the influence of the depth and of the distance of the source on the site effects shows that standard traditional methods, based on the deconvolution analysis of the rock outcrop motion, can lead to erroneous results.

  2. Direct evaluation of fault trees using object-oriented programming techniques

    Patterson-Hine, F. A.; Koen, B. V.


    Object-oriented programming techniques are used in an algorithm for the direct evaluation of fault trees. The algorithm combines a simple bottom-up procedure for trees without repeated events with a top-down recursive procedure for trees with repeated events. The object-oriented approach results in a dynamic modularization of the tree at each step in the reduction process. The algorithm reduces the number of recursive calls required to solve trees with repeated events and calculates intermediate results as well as the solution of the top event. The intermediate results can be reused if part of the tree is modified. An example is presented in which the results of the algorithm implemented with conventional techniques are compared to those of the object-oriented approach.

  3. Faults

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  4. Checkpoint and Replication Oriented Fault Tolerant Mechanism for MapReduce Framework

    Yang Liu


    Full Text Available MapReduce is an emerging programming paradigm and an associated implementation for processing and generating big data which has been widely applied in data-intensive systems. In cloud environment, node and task failure is no longer accidental but a common feature of large-scale systems. In MapReduce framework, although the rescheduling based fault-tolerant method is simple to implement, it failed to fully consider the location of distributed data, the computation and storage overhead. Thus, a single node failure will increase the completion time dramatically. In this paper, a Checkpoint and Replication Oriented Fault Tolerant scheduling algorithm (CROFT is proposed, which takes both task and node failure into consideration. Preliminary experiments show that with less storage and network overhead. CROFT will significantly reduce the completion time at failure time, and the overall performance of MapReduce can be improved at least over 30% than original mechanism in Hadoop.  

  5. Maximum collision probability considering variable size, shape, and orientation of covariance ellipse

    Bai, Xian-Zong; Ma, Chao-Wei; Chen, Lei; Tang, Guo-Jin


    When engaging in the maximum collision probability (Pcmax) analysis for short-term conjunctions between two orbiting objects, it is important to clarify and understand the assumptions for obtaining Pcmax. Based on Chan's analytical formulae and analysis of covariance ellipse's variation of orientation, shape, and size in the two-dimensional conjunction plane, this paper proposes a clear and comprehensive analysis of maximum collision probability when considering these variables. Eight situations will be considered when calculating Pcmax according to the varied orientation, shape, and size of the covariance ellipse. Three of the situations are not practical or meaningful; the remaining ones were completely or partially discussed in some of the previous works. These situations are discussed with uniform definitions and symbols and they are derived independently in this paper. The consequences are compared and validated by the results from previous works. Finally, a practical conjunction event is presented as a test case to demonstrate the effectiveness of methodology. Comparison of the Pcmax presented in this paper with the empirical results from the curve or surface calculated by numerical method indicates that the relative error of Pcmax is less than 0.0039%.

  6. Fault ride-through enhancement using an enhanced field oriented control technique for converters of grid connected DFIG and STATCOM for different types of faults.

    Ananth, D V N; Nagesh Kumar, G V


    With increase in electric power demand, transmission lines were forced to operate close to its full load and due to the drastic change in weather conditions, thermal limit is increasing and the system is operating with less security margin. To meet the increased power demand, a doubly fed induction generator (DFIG) based wind generation system is a better alternative. For improving power flow capability and increasing security STATCOM can be adopted. As per modern grid rules, DFIG needs to operate without losing synchronism called low voltage ride through (LVRT) during severe grid faults. Hence, an enhanced field oriented control technique (EFOC) was adopted in Rotor Side Converter of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. A STATCOM is coordinated to the system for obtaining much better stability and enhanced operation during grid fault. For the EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during symmetric and asymmetric faults. The offset decomposition of flux will be oscillatory in a conventional field oriented control, whereas in EFOC it was aimed to damp quickly. This paper mitigates voltage and limits surge currents to enhance the operation of DFIG during symmetrical and asymmetrical faults. The system performance with different types of faults like single line to ground, double line to ground and triple line to ground was applied and compared without and with a STATCOM occurring at the point of common coupling with fault resistance of a very small value at 0.001Ω.

  7. Should ground-motion records be rotated to fault-normal/parallel or maximum direction for response history analysis of buildings?

    Reyes, Juan C.; Kalkan, Erol


    In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide

  8. A Method to Estimate Friction Coefficient from Orientation Distribution of Meso-scale Faults: Applications to Faults in Forearc Sediment and Underplated Tectonic Mélange

    Sato, K.


    Friction coefficients along faults control the brittle strength of the earth's upper crust, although it is difficult to estimate them especially of ancient geological faults. Several previous studies tried to determine the friction coefficient of meso-scale faults from their orientation distribution as follows. Fault-slip analysis through stress tensor inversion techniques gives principal stress axes and a stress ratio, which allows us to draw a normalized Mohr's circle. Assuming that a faulting occurs when the ratio of shear stress to normal stress on it, i.e., the slip tendency, exceeds the friction coefficient, one can find a linear boundary of distribution of points corresponding to faults on Mohr diagram. The slope of the boundary (friction envelope) provides the friction coefficient. This method has a difficulty in graphically and manually recognizing the linear boundary of distribution on the Mohr diagram. This study automated the determination of friction coefficient by considering the fluctuations of fluid pressure and differential stress. These unknown factors are expected to make difference in density of points representing faults on the Mohr diagram. Since the density is controlled by the friction coefficient, we can optimize the friction coefficient so as to explain the density distribution. The method was applied to two examples of natural meso-scale faults. The first example is from the Pleistocene Kazusa Group, central Japan, which filled a forearc basin of the Sagami Trough. Stress inversion analysis showed WNW-ENE trending tensional stress with a low stress ratio. The friction coefficient was determined to be around 0.66, which is typical value for sandstone. The Second example is from an underplated tectonic mélange in the Cretaceous to Paleogene Shimanto accretionary complex in southwest Japan along the Nankai Trough. The stress condition was determined to be an axial compression perpendicular to the foliation of shale matrix. The friction

  9. Noise reduction method for nonlinear signal based on maximum variance unfolding and its application to fault diagnosis


    A new noise reduction method for nonlinear signal based on maximum variance unfolding(MVU)is proposed.The noisy sig- nal is firstly embedded into a high-dimensional phase space based on phase space reconstruction theory,and then the manifold learning algorithm MVU is used to perform nonlinear dimensionality reduction on the data of phase space in order to separate low-dimensional manifold representing the attractor from noise subspace.Finally,the noise-reduced signal is obtained through reconstructing the low-dimensional manifold.The simulation results of Lorenz system show that the proposed MVU-based noise reduction method outperforms the KPCA-based method and has the advantages of simple parameter estimation and low parameter sensitivity.The proposed method is applied to fault detection of a vibration signal from rotor-stator of aero engine with slight rubbing fault.The denoised results show that the slight rubbing features overwhelmed by noise can be effectively extracted by the proposed noise reduction method.

  10. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed


    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes.

  11. Earthquake mechanics and deformation in the Tonga-Kermadec subduction zone from fault plane orientations of intermediate- and deep-focus earthquakes

    Warren, Linda M.; Hughes, Amanda N.; Silver, Paul G.


    We make use of rupture directivity to analyze 82 deep earthquakes (≥100 km depth) in the Tonga-Kermadec subduction zone. Identifying the fault planes for 25 of them, we are able to place new constraints on both the physical mechanism of intermediate- and deep-focus earthquakes and deformation within the subducting slab. We find that half of deep earthquakes with MW ≥ 6 have detectable directivity. We compare the obtained fault orientations with those expected for the reactivation of outer-rise normal faults and with those expected for the creation of new faults in response to the ambient stress field. Earthquakes >300 km depth match the patterns expected for the creation of a new system of faults: we observe both subhorizontal and subvertical fault planes consistent with a downdip-compressional stress field. Slip along these faults causes the slab to thicken. Rupture propagation shows no systematic directional pattern. In contrast, at intermediate depths (100-300 km), all ruptures propagate subhorizontally and all identified fault planes, whether in the upper or lower region of the double seismic zone, are subhorizontal. Rupture propagation tends to be directed away from the top surface of the slab. After accounting for the angle of subduction, the subhorizontal fault plane orientation is inconsistent with the orientation of outer-rise normal faults, allowing us to rule out mechanisms that require the reactivation of these large surface faults. Subhorizontal faults are consistent with only one of the two failure planes expected from the slab stress field, suggesting that isobaric rupture processes or preexisting slab structures may also influence the fault plane orientation. If all deformation takes place on these subhorizontal faults, it would cause the slab to thin. Assuming the slab is incompressible, this implies that the slab is also lengthening and suggests that slab pull rather than unbending is the primary force controlling slab seismicity at

  12. Fault Prediction in Object Oriented System Using the Coupling and Cohesion of Classes

    Mr. Amol S. Dange


    Full Text Available Building efficient systems is one of the main challenges for softwaredevelopers, who have been concerned with dependability-related issues asthey built and deployed. Lots of changes often needs including the nature offaults and failures and the complexity of systems. Sometimes acceptingminor errors always need efforts to eliminate faults that might cause them isin the core of dependability. To this end various fault tolerance mechanismshave been investigated by researchers and used in industry. Unfortunately,more often than not these solutions exclusively focus on the implementation,ignoring other development phases, most importantly the earlier ones. Thiscreates a dangerous gap between the requirement to build dependable (andfault prediction systems and the fact that it is not dealt with until theimplementation step.A current software engineering gives attention towards only normal behaviorwith assumption that all faults can be removed during development. In factevery phase SDLC needs to be focused with phase-specific fault detectionmeans.We mean to conclude that SDLC requires: Integration of fault detection starting from requirement andarchitecture. Making fault detection-related decisions at each phase by explicitmodeling of faults. Developing dedicated tools for fault detection modeling; providingdomain-specific application-level fault prediction mechanisms.Part I: Fault Prediction engineering: from requirements to codePart II: Languages and Tools for engineering fault prediction systems

  13. Fault Orientation Determination for the 4 March 2008 Taoyuan Earthquake from Dense Near-Source Seismic Observations

    Min-Hung Shih


    Full Text Available On 4 March 2008, a moderate earthquake (ML = 5.2 occurred in southern Taiwan and named as the Taoyuan earthquake, preceded by foreshocks and followed by numerous aftershocks. This earthquake sequence occurred during the TAIGER (TAiwan Integrated GEodynamics Research controlled-source seismic experiment. Consequently, several seismic networks were deployed in the Taiwan area at this time and many stations recorded this earthquake sequence in the near-source region. We archived and processed near-source observations to determine the fault orientation. To locate the events more accurately, station corrections, waveform cross-correlation to pick seismic phases, and a double-difference earthquake location algorithm were used to compute earthquake hypocenters. Over a 50-hour recording period, beginning half an hour before the start of the main shock, 2340 events were identified within the earthquake sequence. The identified aftershocks reveal a clear fault plane with a strike of N37°EN37°E and a dip of 45°SE.45°SE. This plane corresponds to one of the focal mechanism nodal planes determined by the Broadband Array in Taiwan for Seismology (BATS (strike = 37°,37°, dip = 48°,48°, and rake = 96°.96°. Based on the main shock focal mechanism, the aftershock distribution, and the regional geological reports, we suggest that faulting on the northern extension of the major regional active fault, the Chishan Fault, caused the Taoyuan earthquake sequence.

  14. Orientation of three-component geophones in the San Andreas Fault observatory at depth Pilot Hole, Parkfield, California

    Oye, V.; Ellsworth, W.L.


    To identify and constrain the target zone for the planned SAFOD Main Hole through the San Andreas Fault (SAF) near Parkfield, California, a 32-level three-component (3C) geophone string was installed in the Pilot Hole (PH) to monitor and improve the locations of nearby earthquakes. The orientation of the 3C geophones is essential for this purpose, because ray directions from sources may be determined directly from the 3D particle motion for both P and S waves. Due to the complex local velocity structure, rays traced from explosions and earthquakes to the PH show strong ray bending. Observed azimuths are obtained from P-wave polarization analysis, and ray tracing provides theoretical estimates of the incoming wave field. The differences between the theoretical and the observed angles define the calibration azimuths. To investigate the process of orientation with respect to the assumed velocity model, we compare calibration azimuths derived from both a homogeneous and 3D velocity model. Uncertainties in the relative orientation between the geophone levels were also estimated for a cluster of 36 earthquakes that was not used in the orientation process. The comparison between the homogeneous and the 3D velocity model shows that there are only minor changes in these relative orientations. In contrast, the absolute orientations, with respect to global North, were significantly improved by application of the 3D model. The average data residual decreased from 13?? to 7??, supporting the importance of an accurate velocity model. We explain the remaining residuals by methodological uncertainties and noise and with errors in the velocity model.

  15. Spectrum-based Fault Diagnosis for Service-Oriented Software Systems

    Chen, C.; Gross, H.G.; Zaidman, A.E.


    Preprint of paper published in: 5th IEEE International Conference on Service-Oriented Computing and Applications (SOCA), 17-19 December 2012; doi:10.1109/SOCA.2012.6449440 Due to the loosely coupled and highly dynamic nature of service-oriented systems, the actual configuration of such system only

  16. Prediction of the optimum surface orientation angles to achieve maximum solar radiation using Particle Swarm Optimization in Sabha City Libya

    Mansour, F. A.; Nizam, M.; Anwar, M.


    This research aims to predict the optimum surface orientation angles in solar panel installation to achieve maximum solar radiation. Incident solar radiation is calculated using koronakis mathematical model. Particle Swarm Optimization (PSO) is used as computational method to find optimum angle orientation for solar panel installation in order to get maximum solar radiation. A series of simulation has been carried out to calculate solar radiation based on monthly, seasonally, semi-yearly and yearly period. South-facing was calculated also as comparison of proposed method. South-facing considers azimuth of 0°. Proposed method attains higher incident predictions than South-facing that recorded 2511.03 kWh/m2for monthly. It were about 2486.49 kWh/m2, 2482.13 kWh/m2and 2367.68 kWh/m2 for seasonally, semi-yearly and yearly. South-facing predicted approximately 2496.89 kWh/m2, 2472.40 kWh/m2, 2468.96 kWh/m2, 2356.09 kWh/m2for monthly, seasonally, semi-yearly and yearly periods respectively. Semi-yearly is the best choice because it needs twice adjustments of solar panel in a year. Yet it considers inefficient to adjust solar panel position in every season or monthly with no significant solar radiation increase than semi-yearly and solar tracking device still considers costly in solar energy system. PSO was able to predict accurately with simple concept, easy and computationally efficient. It has been proven by finding the best fitness faster.

  17. Research on Lifecycle-Oriented Open Framework of Fault Diagnosis for Equipment System

    WANG Zi-ling; XU Ai-qinng; WANG Wen-shuang


    Based on the analysis of the whole lifecycle of equipment, we, in this paper, propose the lifecycle-oriented diagnosis and maintenance philosophy, and expound its connotation and characteristics. Then, we present its open framework of the lifecycle-oriented diagnosis view in detail, which consists of three levels: information model, net model and open space. The open space level indicates the alternation of the information, the integration of the structure and the modeling of the knowledge.These three levels reveal the synthesis of the diagnosis process effectively in length and breadth. Finally, the main work of the paper and the future work on this problem are discussed.

  18. Outer rise seismicity of the subducting Nazca Plate: Plate stress distribution, fault orientation and plate hydration

    Barama, Louisa

    Subduction of the Nazca plate beneath the South American plate drives frequent and sometimes large magnitude earthquakes. During the past 40 years, significant numbers of outer rise earthquakes have occurred in the offshore regions of Colombia and Chile. In this study, we investigate the distribution of stress due to lithospheric bending and the extent of faults within the subducting plate. To calculate more accurate epicenters and to constrain which earthquakes occurred within the outer rise, we use hypocentroidal decomposition to relocate earthquakes with Global Centroid Moment Tensor (GCMT) solutions occurring after 1976 offshore Colombia and Chile. We determine centroid depths of outer rise earthquakes by inverting teleseismic P-, SH-, and SV- waveforms for earthquakes occurring from 1993 to 2014 with Mw ≥ 5.5. In order to further constrain the results of the waveform inversion, we estimate depths by comparing earthquake duration, amplitude, and arrival times for select stations with waveforms with good signal to noise ratios. Our results indicate that tensional earthquakes occur at depths down to 13 km and 24 km depth beneath the surface in the Colombia and Chile regions, respectively. Since faulting within the outer rise can make the plate susceptible to hydration and mantle serpentinization, we therefore infer the extent of possible hydration of the Nazca plate to extend no deeper than the extent of tensional outer rise earthquakes.

  19. Online testing of service-oriented architectures to detect state-based faults

    Greiler, M.S.


    Service-oriented architectures have found their way into industry to enable better business-to-business cooperations. With this software architecture new challenges for software development and testing appeared. In this proposal we discuss the problem of testing these complex, and distributed

  20. Stress orientation and anisotropy based on shear-wave splitting observations in the Cerro Prieto fault area, Baja California, Mexico

    Zúñiga, F. R.; Castro, R. R.; Domínguez, T.


    Digital seismograms continuously recorded from 1988 to 1992 by two stations of the RESNOM seismic network in northern Baja California, Mexico, were used to search for probable shear-wave anisotropic characteristics in the region of the Cerro Prieto fault. Shear-wave splitting was identified in many of the three-component records analyzed. We measured the polarization direction of the leading S wave inside the S-wave window as well as the delay times between fast and slow phases on those records displaying shear-wave splitting. For station CPX, which is nearest the Imperial Valley region to the north, the preferred polarization direction found in this study (azimuth 180°±10°) coincides with the direction of the regional maximum compressive stress determined for the region. This polarization direction can be interpreted in terms of the “Extensive Dilatancy Anisotropy” model as the effect of vertical parallel aligned cracks. The preferred polarization direction measured at LMX, however, gives an azimuth of 45°±5°. Thus, it appears that faults and fractures aligned oblique to the main tectonic trend have a greater influence on the anisotropic characteristics of the crust south of Cerro Prieto volcano than that of the regional stress field. Time delays between slow and fast S waves observed at CPX appear constant from 1988 to 1992 while delays measured at LMX for the same interval indicate a small increase with time which cannot be attributed to azimuthal variations of paths.

  1. Reliability Evaluation of Service-Oriented Architecture Systems Considering Fault-Tolerance Designs

    Kuan-Li Peng


    strategies. Sensitivity analysis of SOA at both coarse and fine grain levels is also studied, which can be used to efficiently identify the critical parts within the system. Two SOA system scenarios based on real industrial practices are studied. Experimental results show that the proposed SOA model can be used to accurately depict the behavior of SOA systems. Additionally, a sensitivity analysis that quantizes the effects of system structure as well as fault tolerance on the overall reliability is also studied. On the whole, the proposed reliability modeling and analysis framework may help the SOA system service provider to evaluate the overall system reliability effectively and also make smarter improvement plans by focusing resources on enhancing reliability-sensitive parts within the system.

  2. An Empirical Validation of Object-Oriented Design Metrics for Fault Prediction

    Jie Xu


    Full Text Available Problem Statement: Object-oriented design has become a dominant method in software industry and many design metrics of object-oriented programs have been proposed for quality prediction, but there is no well-accepted statement on how significant those metrics are. In this study, empirical analysis is carried out to validate object-oriented design metrics for defects estimation. Approach: The Chidamber and Kemerer metrics suite is adopted to estimate the number of defects in the programs, which are extracted from a public NASA data set. The techniques involved are statistical analysis and neuro-fuzzy approach. Results: The results indicate that SLOC, WMC, CBO and RFC are reliable metrics for defect estimation. Overall, SLOC imposes most significant impact on the number of defects. Conclusions/Recommendations: The design metrics are closely related to the number of defects in OO classes, but we can not jump to a conclusion by using one analysis technique. We recommend using neuro-fuzzy approach together with statistical techniques to reveal the relationship between metrics and dependent variables, and the correlations among those metrics also have to be considered.

  3. Performance Analysis of Field Orientation of Induction Motor Drive Under Open Gate of IGBT Fault

    Zakaria Mohamed Salem


    Full Text Available This paper  presents a performance analysis of three phase induction motor drive system when fed from three-phase inverter with one IGBT open gate. The drive system is based on indirect rotor field oriented. The performance characteristics of the drive are investigated at healthy operating condition and at faulty condition with IGBT of upper phase leg is opened. The Total Harmonic Distortion of phases current in case opened IGBT are derived. The Simulation of the case study is carried out by using the Matlab/Simulink package on 1.1 kW, 220/380V, 50 Hz three phase induction motor.

  4. Natural Examples of Olivine Lattice Preferred Orientation Patterns With a Flow-Normal a-Axis Maximum

    Mizukami, T.; Wallis, S.; Yamamoto, J.


    Olivine lattice preferred orientation (LPO) due to ductile deformation is one of the main causes of mechanical anisotropy in the upper mantle and the patterns are useful to infer the direction of mantle flow from the seismic anisotropy in various settings. In subduction zones the mantle anisotropy near subduction boundaries suggests that olivine a-axes are arranged roughly perpendicular to plate motion. This anisotropy has been attributed to localized subduction-normal flow, applying a common type of olivine LPO with a `flow-parallel' a-axis maximum to the mantle. However, a recent deformational experiment provides an alternative interpretation that the B-type LPO with a `flow-normal' a-axis maximum can be developed in water-rich mantle above subducting slab. We document the widespread occurrence of B-type LPO in the Higashi-akaishi peridotite body, SW Japan, and examine the physical conditions in which it was formed. Our structural studies define four deformational phases in the Higashi-akaishi body (D1-D4) that are related to the tectonic evolution in the Cretaceous subduction zone at the Eurasian margin. The main deformational stage, D2, is associated with dynamic recrystallization of olivine to form porphyroclastic microstructure consisting of clear olivine neoblasts and porphyroclasts with abundant micro-inclusions. Parallel alginment of olivine neoblasts defines a stretching lineation (L2) and tectonic foliation (S2) and the D2 olivine LPO is identified as the B-type fabric with a-axes normal to L2, b-axes normal to S2 and c-axes parallel to L2. Micro-Raman spectroscopic analyses reveal that the syn-D2 micro-inclusions include hydrous minerals such as serpentine, indicating water-rich conditions for the D2 deformation. Garnet-orthopyroxene geothermobarometry applied to the D2 garnet peridotite reveals that the D2 stage was associated with the almost isothermal burial (700-800C, 2-3GPa). These D2 physical conditions in which the B-type LPO was formed are

  5. Aftershock Triggering and Estimation of the Coulomb Stress Changes with Approach of Optimally Oriented Fault Planes: Examples of Some Contemporary Earthquakes in Turkey

    Demirci, Alper


    The Coulomb Stress changes due to the some moderate and large earthquakes are shaped according to the orientations of reciever faults or weakness zones along the corresponding seismogenic zones. In some cases, the determination of the fault plane parameters (e.g. length, width, strike, dip) of the receiver faults are more difficult due to the tectonical complexity of the region. Therefore, in order to understand the aftershock distrubition in such areas Coulomb stress changes can be calculated under the assumption of optimally oriented fault planes which increases the spatial correlation between stress changes and aftershock distribution. In the scope of the present sutdy, aftershock distrubiton of some contemporary earthquakes in Turkey (Simav (Mw 5.8), May 2011; Van (Mw 7.0), Oct 2011 and Gulf of Fethiye (Mw 6.1), June 2012) and their coulomb stress changes were correlated. Fault plane parameters of these earthquakes which suggest three different types of focal mechanism were calculated using moment tensor inversion technique and aftershock location data in a period of 30 days for each corresponding events were taken from Kandilli Observatory and Earthquake Research Institute (KOERI) catalog. The focal mechanisms of the selected earthquakes represent normal, strike slip and thrust faulting for the earthquakes of Simav, Gulf of Fethite and Van, respectively. Coulomb Stress Changes were calculated using the open source Matlab based (Coulomb 3.3) codes. The calculations were performed by assuming Poisson's ratio and apparent friction coefficient to be 0.25 and 0.4, respectively. The coulomb stress variations were calculated at fixed depths for each event and aftershocks were selected as ±4 km for corresponding depths. Keeping in mind that the increase of static stress more than 0.5 bar can cause the triggered events in an area, the accordance rates of Coulomb stress changes and aftershock distribution under different tectonic regimes were disscussed. The accordance

  6. Characterization of slow slip rate faults in humid areas: Cimandiri fault zone, Indonesia

    Marliyani, G. I.; Arrowsmith, J. R.; Whipple, K. X.


    In areas where regional tectonic strain is accommodated by broad zones of short and low slip rate faults, geomorphic and paleoseismic characterization of faults is difficult because of poor surface expression and long earthquake recurrence intervals. In humid areas, faults can be buried by thick sediments or soils; their geomorphic expression subdued and sometimes undetectable until the next earthquake. In Java, active faults are diffused, and their characterization is challenging. Among them is the ENE striking Cimandiri fault zone. Cumulative displacement produces prominent ENE oriented ranges with the southeast side moving relatively upward and to the northeast. The fault zone is expressed in the bedrock by numerous NE, west, and NW trending thrust- and strike-slip faults and folds. However, it is unclear which of these structures are active. We performed a morphometric analysis of the fault zone using 30 m resolution Shuttle Radar Topography Mission digital elevation model. We constructed longitudinal profiles of 601 bedrock rivers along the upthrown ranges along the fault zone, calculated the normalized channel steepness index, identified knickpoints and use their distribution to infer relative magnitudes of rock uplift and locate boundaries that may indicate active fault traces. We compare the rock uplift distribution to surface displacement predicted by elastic dislocation model to determine the plausible fault kinematics. The active Cimandiri fault zone consists of six segments with predominant sense of reverse motion. Our analysis reveals considerable geometric complexity, strongly suggesting segmentation of the fault, and thus smaller maximum earthquakes, consistent with the limited historical record of upper plate earthquakes in Java.

  7. Relationship Between Faults Oriented Parallel and Oblique to Bedding in Neogene Massive Siliceous Mudstones at The Horonobe Underground Research Laboratory, Japan

    Hayano, Akira; Ishii, Eiichi


    This study investigates the mechanical relationship between bedding-parallel and bedding-oblique faults in a Neogene massive siliceous mudstone at the site of the Horonobe Underground Research Laboratory (URL) in Hokkaido, Japan, on the basis of observations of drill-core recovered from pilot boreholes and fracture mapping on shaft and gallery walls. Four bedding-parallel faults with visible fault gouge, named respectively the MM Fault, the Last MM Fault, the S1 Fault, and the S2 Fault (stratigraphically, from the highest to the lowest), were observed in two pilot boreholes (PB-V01 and SAB-1). The distribution of the bedding-parallel faults at 350 m depth in the Horonobe URL indicates that these faults are spread over at least several tens of meters in parallel along a bedding plane. The observation that the bedding-oblique fault displaces the Last MM fault is consistent with the previous interpretation that the bedding- oblique faults formed after the bedding-parallel faults. In addition, the bedding-parallel faults terminate near the MM and S1 faults, indicating that the bedding-parallel faults with visible fault gouge act to terminate the propagation of younger bedding-oblique faults. In particular, the MM and S1 faults, which have a relatively thick fault gouge, appear to have had a stronger control on the propagation of bedding-oblique faults than did the Last MM fault, which has a relatively thin fault gouge.

  8. Application of three fault growth criteria to the Puente Hills thrust system, Los Angeles, California, USA

    Olson, Erik L.; Cooke, Michele L.


    Three-dimensional mechanical models are used to evaluate the performance of different fault growth criteria in predicting successive growth of three échelon thrust faults similar to the segments of the Puente Hills thrust system of the Los Angeles basin, California. Four sequential Boundary Element Method models explore the growth of successive échelon faults within the system by simulating snapshots of deformation at different stages of development. These models use three criteria, (1) energy release rate, (2) strain energy density, and (3) Navier-Coulomb stress, to characterize the lateral growth of the fault system. We simulate the growth of an échelon thrust fault system to evaluate the suitability of each of these criteria for assessing fault growth. Each of these three factors predicts a portion of the incipient fault geometry (i.e. location or orientation); however, each provides different information. In each model, energy release rate along the westernmost (leading) tip of the Puente Hills thrust drops with growth of the next neighboring fault; this result supports the overall lateral development of successive échelon segments. Within each model, regions of high strain energy density and Navier-Coulomb stress envelope at least a portion of the next fault to develop, although the strain energy density has stronger correlation than Navier-Coulomb stress to the location of incipient faulting. In each model, one of the two predicted planes of maximum Navier-Coulomb stress ahead of the leading fault tip matches the strike but not the dip of the incipient fault plane recreating part of the fault orientation. The incipient fault dip is best predicted by the orientation of the strain energy density envelopes around the leading fault tip. Furthermore, the energy release rate and pattern of strain energy density can be used to characterize potential soft linkage (overlap) or hard linkage (connection) of échelon faults within the system.

  9. Block rotations, fault domains and crustal deformation in the western US

    Nur, Amos


    The aim of the project was to develop a 3D model of crustal deformation by distributed fault sets and to test the model results in the field. In the first part of the project, Nur's 2D model (1986) was generalized to 3D. In Nur's model the frictional strength of rocks and faults of a domain provides a tight constraint on the amount of rotation that a fault set can undergo during block rotation. Domains of fault sets are commonly found in regions where the deformation is distributed across a region. The interaction of each fault set causes the fault bounded blocks to rotate. The work that has been done towards quantifying the rotation of fault sets in a 3D stress field is briefly summarized. In the second part of the project, field studies were carried out in Israel, Nevada and China. These studies combined both paleomagnetic and structural information necessary to test the block rotation model results. In accordance with the model, field studies demonstrate that faults and attending fault bounded blocks slip and rotate away from the direction of maximum compression when deformation is distributed across fault sets. Slip and rotation of fault sets may continue as long as the earth's crustal strength is not exceeded. More optimally oriented faults must form, for subsequent deformation to occur. Eventually the block rotation mechanism may create a complex pattern of intersecting generations of faults.

  10. Trajectory-Oriented and Fault-Tolerant-Based Intelligent Process Control for Flexible CIGS PV Module Manufacturing; Final Technical Report, 13 May 2002--30 May 2005

    Simpson, L.; Britt, J.; Birkmire, R.; Vincent, T.


    ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.

  11. 断裂长度与最大位移的关系及其影响因素%Relationship between fault length and maximum displacement and influenced factors

    XU Shun-shan; A. F.NIETO-SAMANIEGO; LI Dong-xu


    断裂最大位移与断裂迹长遵循幂律关系:D=cLn, 但幂指数n的大小有很大的变化范围.为探索幂指数n的大小和断裂机制,从已发表的文献中收集了18组数据,这些数据的断裂长度具有8个数量级的跨度.经相关分析,我们得到n值的大小变化于0.55和1.65 之间,平均值为1.083 9.由于走滑断裂的最大长度在其倾向方向,不宜与倾滑断裂一起统计,我们去掉一组走向滑动断裂的数据,幂指数平均值为1.106 6.用双回归方法得到的幂指数峰值(nd)是1.0~1.1.这些结果表明断裂最大位移与断裂迹长应该是非常接近线性关系.这种线性关系可以用Dugdale 模型加以解释.该模型认为弹塑性物质拉张裂缝端点的变形是非弹性变形.模型的适用范围是单一岩性,一次构造力作用.我们认为n值的大小之所以有很大的变化范围,有可能受到断裂迹线长度偏差的影响,造成长度偏差的因素包括:不同的观察平面,断裂端点的分辨率,断裂连接作用,岩石力学性质变化,断裂多期活动等.%The relationship between maximum displacement and fault trace length obeys the power-law equation: D = cLn. Data including 18 datasets and spanning more than 8 orders of fault length magnitudes is collected from the published literature for determining the exponent value (n). The range of the calculated values of nd is from 0.55 to 1.65. The average value of nd is 1.083 9. If one dataset from strike-slip faults is precluded, the average value of nd is 1.106 6. The peak value of nd (double regression) is 1.0~1.1. These results imply that the relationship between the maximum displacement and fault trace length is approximately linear. The relationship can be explained by Dugdales model. This model explains the development of faults in a single tectonics event with homogeneous host-rock. The power-law exponent (n) for maximum displacement-trace length would be affected by the deviations of

  12. A cosmogenic 10Be chronology for the local last glacial maximum and termination in the Cordillera Oriental, southern Peruvian Andes: Implications for the tropical role in global climate

    Bromley, Gordon R. M.; Schaefer, Joerg M.; Hall, Brenda L.; Rademaker, Kurt M.; Putnam, Aaron E.; Todd, Claire E.; Hegland, Matthew; Winckler, Gisela; Jackson, Margaret S.; Strand, Peter D.


    Resolving patterns of tropical climate variability during and since the last glacial maximum (LGM) is fundamental to assessing the role of the tropics in global change, both on ice-age and sub-millennial timescales. Here, we present a10Be moraine chronology from the Cordillera Carabaya (14.3°S), a sub-range of the Cordillera Oriental in southern Peru, covering the LGM and the first half of the last glacial termination. Additionally, we recalculate existing 10Be ages using a new tropical high-altitude production rate in order to put our record into broader spatial context. Our results indicate that glaciers deposited a series of moraines during marine isotope stage 2, broadly synchronous with global glacier maxima, but that maximum glacier extent may have occurred prior to stage 2. Thereafter, atmospheric warming drove widespread deglaciation of the Cordillera Carabaya. A subsequent glacier resurgence culminated at ∼16,100 yrs, followed by a second period of glacier recession. Together, the observed deglaciation corresponds to Heinrich Stadial 1 (HS1: ∼18,000-14,600 yrs), during which pluvial lakes on the adjacent Peruvian-Bolivian altiplano rose to their highest levels of the late Pleistocene as a consequence of southward displacement of the inter-tropical convergence zone and intensification of the South American summer monsoon. Deglaciation in the Cordillera Carabaya also coincided with the retreat of higher-latitude mountain glaciers in the Southern Hemisphere. Our findings suggest that HS1 was characterised by atmospheric warming and indicate that deglaciation of the southern Peruvian Andes was driven by rising temperatures, despite increased precipitation. Recalculated 10Be data from other tropical Andean sites support this model. Finally, we suggest that the broadly uniform response during the LGM and termination of the glaciers examined here involved equatorial Pacific sea-surface temperature anomalies and propose a framework for testing the viability

  13. Armenia-To Trans-Boundary Fault: AN Example of International Cooperation in the Caucasus

    Karakhanyan, A.; Avagyan, A.; Avanesyan, M.; Elashvili, M.; Godoladze, T.; Javakishvili, Z.; Korzhenkov, A.; Philip, S.; Vergino, E. S.


    Studies of a trans-boundary active fault that cuts through the border of Armenia to Georgia in the area of the Javakheti volcanic highland have been conducted since 2007. The studies have been implemented based on the ISTC 1418 and NATO SfP 983284 Projects. The Javakheti Fault is oriented to the north-northwest and consists of individual segments displaying clear left-stepping trend. Fault mechanism is represented by right-lateral strike-slip with normal-fault component. The fault formed distinct scarps, deforming young volcanic and glacial sediments. The maximum-size displacements are recorded in the central part of the fault and range up to 150-200 m by normal fault and 700-900 m by right-lateral strike-slip fault. On both flanks, fault scarps have younger appearance, and displacement size there decreases to tens of meters. Fault length is 80 km, suggesting that maximum fault magnitude is estimated at 7.3 according to the Wells and Coppersmith (1994) relation. Many minor earthquakes and a few stronger events (1088, Mw=6.4, 1899 Mw=6.4, 1912, Mw=6.4 and 1925, Mw=5.6) are associated with the fault. In 2011/2012, we conducted paleoseismological and archeoseismological studies of the fault. By two paleoseismological trenches were excavated in the central part of the fault, and on its northern and southern flanks. The trenches enabled recording at least three strong ancient earthquakes. Presently, results of radiocarbon age estimations of those events are expected. The Javakheti Fault may pose considerable seismic hazard for trans-boundary areas of Armenia and Georgia as its northern flank is located at the distance of 15 km from the Baku-Ceyhan pipeline.

  14. Reservoir leakage along concentric faults in the Southern North Sea: Implications for the deployment of CCS and EOR techniques

    Ward, Nicholas I. P.; Alves, Tiago M.; Blenkinsop, Tom G.


    High-quality 3D seismic and borehole data in the Broad Fourteens Basin, Southern North Sea, is used to investigate newly recognised concentric faults formed in salt-withdrawal basins flanking reactivated salt structures. Throw-depth and throw-distance plots were used to understand the growth histories of individual faults. As a result, three families of concentric faults are identified: a) intra-seal faults within a salt-withdrawal basin, b) faults connecting the seal and the reservoir on the crest of an inverted anticline, c) raft-bounding faults propagating into reservoir units. They have moved obliquely and show normal throws, even though they formed during a period of regional compression. Faults in the salt-withdrawal basin and on the inverted anticline are highly segmented, increasing the chances of compartmentalisation or localised fluid flow through fault linkages. Slip tendency analysis was carried out on the distinct fault families to compare the likelihood of slip along a fault at different pore fluid pressures and within different lithologies. Our results show that sections of the faults are optimally oriented with regards to maximum horizontal stresses (σHmax), increasing the slip tendency. The identified faults cut through a variety of lithologies, allowing different values of pore fluid pressures to build up before faults reactivate. Within the Vlieland Sandstones, pore fluid pressures of 30 MPa are not sufficient to reactivate pre-existing faults, whereas in the deeper Posidonia Shales faults might reactivate at pore fluid pressures of 25 MPa. Fluid flow features preferentially occur near fault segments close to failure. Heterogeneity in slip tendency along concentric faults, and high degrees of fault segmentation, present serious hazards when injecting CO2 into the subsurface. This study stresses the importance of high-quality 3D seismic data and the need to evaluate individual fault systems when investigating potential reservoirs for carbon

  15. Numerical modelling of the mechanical and fluid flow properties of fault zones - Implications for fault seal analysis

    Heege, J.H. ter; Wassing, B.B.T.; Giger, S.B.; Clennell, M.B.


    Existing fault seal algorithms are based on fault zone composition and fault slip (e.g., shale gouge ratio), or on fault orientations within the contemporary stress field (e.g., slip tendency). In this study, we aim to develop improved fault seal algorithms that account for differences in fault zone


    李晶; 朱敏


    The flexibility and dynamic property of service-oriented architecture (SOA) make services behaviours at runtime of monitoring and managing critical to the performance assurance. This paper proposes an event-driven based fault suspected-set selection (FSS) algorithm of SOA according to Bayesian fault diagnosis network. The algorithm integrates the sensitivity analysis technology in Bayesian Network theory and the k-median model, then adds the fault identifying set, selects the corresponding fault suspected-set according to the specific fault event.Simulation results show that the algorithm has higher fault suspected-set search completeness rate. The added fault identifying set is also conductive to the future predictive analysis.%面向服务体系架构(SOA)的灵活性和动态性,使得监测和管理运行时服务行为成为性能保证的关键所在.依据贝叶斯故障诊断网络提出了一种基于事件驱动的SOA故障疑似集选择FSS(Fault Suspected-set Selection)算法,该算法综合贝叶斯敏感性分析技术以及k-median模型,并加入故障标识集,根据具体的故障事件选择对应的故障疑似集合.仿真实验表明,该算法具有较高的故障疑似集查找完整率.增加的故障标识集也有利于以后的预测性分析.

  17. Modelling earthquake ruptures with dynamic off-fault damage

    Okubo, Kurama; Bhat, Harsha S.; Klinger, Yann; Rougier, Esteban


    modelling earthquake ruptures. We then modelled earthquake ruptures allowing for coseismic off-fault damage with appropriate fracture nucleation and growth criteria. We studied the effect of different conditions such as rupture speed (sub-Rayleigh or supershear), the orientation of the initial maximum principal stress with respect to the fault and the magnitude of the initial stress (to mimic depth). The comparison between the sub-Rayleigh and supershear case shows that the coseismic off-fault damage is enhanced in the supershear case when compared with the sub-Rayleigh case. The orientation of the maximum principal stress also has significant difference such that the dynamic off-fault cracking is more likely to occur on the extensional side of the fault for high principal stress orientation. It is found that the coseismic off-fault damage reduces the rupture speed due to the dissipation of the energy by dynamic off-fault cracking generated in the vicinity of the rupture front. In terms of the ground motion amplitude spectra it is shown that the high-frequency radiation is enhanced by the coseismic off-fault damage though it is quickly attenuated. This is caused by the intricate superposition of the radiation generated by the off-fault damage and the perturbation of the rupture speed on the main fault.

  18. Integrating geologic fault data into tsunami hazard studies

    R. Basili


    Full Text Available We present the realization of a fault-source data set designed to become the starting point in regional-scale tsunami hazard studies. Our approach focuses on the parametric fault characterization in terms of geometry, kinematics, and assessment of activity rates, and includes a systematic classification in six justification levels of epistemic uncertainty related with the existence and behaviour of fault sources. We set up a case study in the central Mediterranean Sea, an area at the intersection of the European, African, and Aegean plates, characterized by a complex and debated tectonic structure and where several tsunamis occurred in the past. Using tsunami scenarios of maximum wave height due to crustal earthquakes (Mw=7 and subduction earthquakes (Mw=7 and Mw=8, we illustrate first-order consequences of critical choices in addressing the seismogenic and tsunamigenic potentials of fault sources. Although tsunamis generated by Mw=8 earthquakes predictably affect the entire basin, the impact of tsunamis generated by Mw=7 earthquakes on either crustal or subduction fault sources can still be strong at many locales. Such scenarios show how the relative location/orientation of faults with respect to target coastlines coupled with bathymetric features suggest avoiding the preselection of fault sources without addressing their possible impact onto hazard analysis results.

  19. The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault

    Avouac, Jean-Philippe; Ayoub, Francois; Wei, Shengji; Ampuero, Jean-Paul; Meng, Lingsen; Leprince, Sebastien; Jolivet, Romain; Duputel, Zacharie; Helmberger, Don


    We analyse the Mw 7.7 Balochistan earthquake of 09/24/2013 based on ground surface deformation measured from sub-pixel correlation of Landsat-8 images, combined with back-projection and finite source modeling of teleseismic waveforms. The earthquake nucleated south of the Chaman strike-slip fault and propagated southwestward along the Hoshab fault at the front of the Kech Band. The rupture was mostly unilateral, propagated at 3 km/s on average and produced a 200 km surface fault trace with purely strike-slip displacement peaking to 10 m and averaging around 6 m. The finite source model shows that slip was maximum near the surface. Although the Hoshab fault is dipping by 45° to the North, in accordance with its origin as a thrust fault within the Makran accretionary prism, slip was nearly purely strike-slip during that earthquake. Large seismic slip on such a non-optimally oriented fault was enhanced possibly due to the influence of the free surface on dynamic stresses or to particular properties of the fault zone allowing for strong dynamic weakening. Strike-slip faulting on thrust fault within the eastern Makran is interpreted as due to eastward extrusion of the accretionary prism as it bulges out over the Indian plate. Portions of the Makran megathrust, some thrust faults in the Kirthar range and strike-slip faults within the Chaman fault system have been brought closer to failure by this earthquake. Aftershocks cluster within the Chaman fault system north of the epicenter, opposite to the direction of rupture propagation. By contrast, few aftershocks were detected in the area of maximum moment release. In this example, aftershocks cannot be used to infer earthquake characteristics.

  20. Systematic assessment of fault stability in the Northern Niger Delta Basin, Nigeria: Implication for hydrocarbon prospects and increased seismicities

    Adewole, E. O.; Healy, D.


    Accurate information on fault networks, the full stress tensor, and pore fluid pressures are required for quantifying the stability of structure-bound hydrocarbon prospects, carbon dioxide sequestration, and drilling prolific and safe wells, particularly fluid injections wells. Such information also provides essential data for a proper understanding of superinduced seismicities associated with areas of intensive hydrocarbon exploration and solid minerals mining activities. Pressure and stress data constrained from wells and seismic data in the Northern Niger Delta Basin (NNDB), Nigeria, have been analysed in the framework of fault stability indices by varying the maximum horizontal stress direction from 0° to 90°, evaluated at depths of 2 km, 3.5 km and 4 km. We have used fault dips and azimuths interpreted from high resolution 3D seismic data to calculate the predisposition of faults to failures in three faulting regimes (normal, pseudo-strike-slip and pseudo-thrust). The weighty decrease in the fault stability at 3.5 km depth from 1.2 MPa to 0.55 MPa demonstrates a reduction of the fault strength by high magnitude overpressures. Pore fluid pressures > 50 MPa have tendencies to increase the risk of faults to failure in the study area. Statistical analysis of stability indices (SI) indicates faults dipping 50°-60°, 80°-90°, and azimuths ranging 100°-110° are most favourably oriented for failure to take place, and thus likely to favour migrations of fluids given appropriate pressure and stress conditions in the dominant normal faulting regime of the NNDB. A few of the locally assessed stability of faults show varying results across faulting regimes. However, the near similarities of some model-based results in the faulting regimes explain the stability of subsurface structures are greatly influenced by the maximum horizontal stress (SHmax) direction and magnitude of pore fluid pressures.

  1. Architecture of small-scale fault zones in the context of the Leinetalgraben Fault System

    Reyer, Dorothea; Philipp, Sonja L.


    Understanding fault zone properties in different geological settings is important to better assess the development and propagation of faults. In addition this allows better evaluation and permeability estimates of potential fault-related geothermal reservoirs. The Leinetalgraben fault system provides an outcrop analogue for many fault zones in the subsurface of the North German Basin. The Leinetalgraben is a N-S-trending graben structure, initiated in the Jurassic, in the south of Lower Saxony and as such part of the North German Basin. The fault system was reactivated and inverted during Alpine compression in the Tertiary. This complex geological situation was further affected by halotectonics. Therefore we can find different types of fault zones, that is normal, reverse, strike-slip an oblique-slip faults, surrounding the major Leinetalgraben boundary faults. Here we present first results of structural geological field studies on the geometry and architecture of fault zones in the Leinetalgraben Fault System in outcrop-scale. We measured the orientations and displacements of 17 m-scale fault zones in limestone (Muschelkalk) outcrops, the thicknesses of their fault cores and damage zones, as well as the fracture densities and geometric parameters of the fracture systems therein. We also analysed the effects of rock heterogeneities, particularly stiffness variations between layers (mechanical layering) on the propagation of natural fractures and fault zones. The analysed fault zones predominantly show similar orientations as the major fault zones they surround. Other faults are conjugate or perpendicular to the major fault zones. The direction of predominant joint strike corresponds to the orientation of the fault zones in the majority of cases. The mechanical layering of the limestone and marlstone stratification obviously has great effects on fracture propagation. Already thin layers (mm- to cm-scale) of low stiffness - here marl - seem to suffice to change the

  2. Fault Estimation

    Stoustrup, Jakob; Niemann, H.


    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...... problems can be solved by standard optimization tech-niques. The proposed methods include: (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; (2) FE for systems with parametric faults, and (3) FE for a class of nonlinear systems.......This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...

  3. 最大概率方法在伺服系统故障诊断上的应用%Application of Maximum Probability Approach to the Fault Diagnosis of a Servo System

    马东升; 胡佑德; 戴凤智


    In an actual control system, it is often difficult to find out where the faults are if only based on the outside fault phenomena, acquired frequently from a fault system. So the fault diagnosis by outside fault phenomena is considered. Based on the theory of fuzzy recognition and fault diagnosis, this method only depends on experience and statistical data to set up fuzzy query relationship between the outside phenomena (fault characters) and the fault sources (fault patterns). From this relationship the most probable fault sources can be obtained, to attain the goal of quick diagnosis. Based on the above approach, the standard fuzzy relationship matrix is stored in the computer as a system database. And experiment data are given to show the fault diagnosis results. The important parameters can be on-line sampled and analyzed, and when faults occur, faults can be found, the alarm is given and the controller output is regulated.%为了解决实际控制系统中仅通过系统的故障现象难以确定系统故障元的难题,采用基于模糊识别和故障诊断理论的最大概率法,该方法仅仅依靠经验和统计数据,在外部故障现象和系统故障元之间建立模糊查询关系,从这一关系中可以获得最大故障概率点.将一个标准模糊关系矩阵作为数据库存储在计算机中,并给出了一个系统故障诊断的实验结果.通过以上方法,只要对系统的重要参数进行在线采集和分析,当发生故障时,就可以给出可能的故障元的故障概率,并发出警报.

  4. Refolding of thin-skinned thrust sheets by active basement-involved thrust faults in the Eastern Precordillera of western Argentina Replegamiento de láminas de corrimiento epidérmicas mediante fallas inversas de basamento activas en la Precordillera Oriental del oeste de Argentina

    A. Meigs


    Full Text Available Devastating earthquakes like the 1944 San Juan earthquake reflect active deformation in western Argentina. Although the earthquake caused considerable damage to San Juan, the source of the earthquake remains uncertain. Potential source faults occur in the thin-skinned fold-and-thrust belt Precordillera province and in the thick-skinned Sierras Pampeanas province, to the west and east, respectively of Sierra de Villicum, a thrust sheet in the eastern Precordillera northwest of San Juan. Sierra de Villicum is a west-vergent thrust sheet bound on the northwest by the Villicum thrust, which juxtaposes a southeast dipping panel of Cambro-Ordovician and Neogene strata in the hanging wall with Neogene red beds in the footwall. A series of Late Pleistocene fluvial terraces developed across the Villicum thrust show no evidence of active fold or fault deformation. Terraces are deformed by active folds and faults in the middle of the southeastern flank of the Sierra de Villicum thrust sheet. A southeast-facing, southwest-plunging monocline characterizes the Neogene red beds in the region of active folding. Co- and post-seismic surface rupture along roughly 6 km of the La Laja fault in 1944 occurred in the limb of the monocline. Evidence that surface deformation in the 1944 earthquake was dominated by folding includes terrace´s fold geometry, which is consistent with kink-band models for fold growth, and bedding-fault relationships that indicate that the La Laja fault is a flexural slip fault. A blind basement reverse fault model for the earthquake source and for active deformation reconciles the zone of terrace deformation, coseismic surface rupture on the La Laja fault, refolding of the Villicum thrust sheet, a basement arch between the Precordillera and eastern Precordillera, and microseismicity that extends northwestward from a depth of ~5 km beneath Sierra de Villicum to ~35 km depth. Maximum horizontal shortening rate is estimated to be ~3.0 mmyr-1

  5. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.


    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  6. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    Reches, Z.; Dieterich, J.H.


    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults. ?? 1983.

  7. Recognition of Active Faults and Stress Field

    Azuma, T.


    Around the plate-boundary region, the directions of maximum and minimum stress related to the plate motion is one of the key for the recognition of active faults. For example, it is typical idea that there are many N-S trading reverse faults, NE-SW and NW-SE trending strike slip faults and less normal faults (only near volcanoes) in Japan, where the compressional stress with E-W direction is dominant caused by the motion of the subduction of the Pacific Plate beneath the North American Plate. After the 2011 Tohoku earthquake (Mj 9.0), however, many earthquakes with the mechanism of the normal fault type occurred in the coastal region of the northern-east Japan. On 11th April 2011, the Fukushima Hamadori Earthquake (Mj 7.0) occurred accompanying surface faults along two faults, the Idosawa fault and the Yunotake fault, that recognized as active faults by the Research Group for Active Fault of Japan (1980, 1991). It impacted on active fault study by the reason of not only the appearance of two traces of significant surface faults with maximum displacement up to 2.1 m, but also the reactivation of the normal faults under the E-W compressional stress field. When we identify the active faults, it is one of the key whether the direction of slip on the fault consists with the stress field in that area or not. And there is a technique to recognized whether the fault is active or not by using the data of the direction of stress in the field and the geometry of the fault plane. Though it is useful for the fault in the rock without overlain Quaternary deposits, we should care that the active faults may react caused by the temporal stress condition after the generation of large earthquakes.

  8. Evidence of sub Kilometer-scale Variability in Stress Directions near Active Faults: An Example from the Newport-Inglewood Fault, Southern California

    Persaud, P.; Stock, J. M.; Smith, D.


    The active Newport-Inglewood Fault (NIF) zone is a series of right-lateral, left-stepping en echelon segments and associated anticlines that produced the 1933 Long Beach Mw 6.4 earthquake. Seismic hazard estimates, dynamic earthquake rupture models, and earthquake simulations for Southern California rely on information on the stress field obtained from the Community Stress Model (CSM), though the latter still lacks observational constraints. This study provides much needed observational constraints on in-situ stress, which are useful for validating the CSM. Our results highlight the possibility of variations in stress directions near active faults at length-scales less than 1 km. We determined the orientation of stress-induced compressive failures or borehole breakouts, which are reliable indicators of the orientation of the maximum horizontal stress (SH) in over 40 wellbores in the Los Angeles basin near the NIF. The compressional jogs along the fault have long been drilled for oil in this major metropolitan area, and so provide the dataset of oriented caliper logs. This allowed us to investigate the variation of SH direction in three oil fields. In the Inglewood oil field, a dense dataset of 24 wells in ~2 km2, SH varies from N9°E to N32°E over a depth range of 1-3 km and within 400 m of the fault in the western fault block, with more variability occurring in wells father away. At depths below 2 km, SH takes on a more northerly orientation. In contrast, SH is oriented E-W in the eastern fault block, based on constraints from two wells. In the Wilmington oil field located between the Thums-Huntington Beach Fault and the NIF, data from 11 deviated wells yields a pattern of elongation directions, which differs from the more complex pattern obtained for the Huntington Beach wells located ~12 km to the southeast. The short-length-scale variations in SH direction are attributed to the proximity to faults or fault segmentation, and indicate the likely complexity that

  9. 面向服务的装备远程测试与故障诊断系统的设计%Design of Remote Test and Fault Diagnosis System for Service-Oriented Equipment

    汤宫民; 刘福军; 尹晓虎; 汤潇奕; 梁清果


    In view of the requirements of the new equipment maintenance support tecnoiogy,and combining with the characteristics of campaign-level equipment maintenance support organization, the article relies on the resourses of the existing test and fault diagnosis system for campaign-level equipment maintenance support organization. On the basis of demand analysis of equipment remote test and fault diagnosis system, and using the service-oriented architecture thought, the article designs the software architecture and hardware structure of service-oriented remote testing and fault diagnosis system, and analyzes the all business flow layer functions, field test side, communication network and remote technical support center side. The scalability & extensibility of equipment performance test and maintenance fault diagnosis system for campaign-level maintenance support organization are increased, and the real-time performances of remote control and data analysis are improved. And the system can realize the remote control, resourses sharing and information fusion in the true sense, and benefits to respond flexibly the maintenance demand changes for campaign-level equipment maintenance support organization.%针对新型装备维修技术保障需求,本文结合战役级装备维修保障机构特点,依托战役级装备维修机构现有测试和故障诊断系统资源,在对装备远程测试与故障诊断系统需求分析的基础上,利用面向服务的体系架构思想,设计了面向服务的广域分布式远程测试与故障诊断系统软件架构和硬件结构,并对其各业务流层功能和现场测试端、通信网络、远程技术支援中心端进行了分析。对于提高战役级装备性能测试和维修故障诊断系统的伸缩性和扩展性,提高远程控制、数据分析的实时性能,实现真正意义上的远程控制、资源共享和信息融合,有利于修理机构灵活地应对维修需求的变化。

  10. Maine Pseudotachylyte Localities and the Role of Host Rock Anisotropy in Fault Zone Development and Frictional Melting

    Swanson, M. T.


    Three brittle strike-slip fault localities in coastal Maine have developed pseudotachylyte fault veins, injection veins and other reservoir structures in a variety of host rocks where the pre-existing layering can serve as a controlling fabric for brittle strike-slip reactivation. Host rocks with a poorly-oriented planar anisotropy at high angles to the shear direction will favor the development of R-shears in initial en echelon arrays as seen in the Two Lights and Richmond Island Fault Zones of Cape Elizabeth that cut gently-dipping phyllitic quartzites. These en echelon R-shears grow to through-going faults with the development of P-shear linkages across the dominantly contractional stepovers in the initial arrays. Pseudotachylyte on these faults is very localized, typically up to 1-2 mm in thickness and is restricted to through-going fault segments, P-shear linkages and some sidewall ripouts. Overall melt production is limited by the complex geometry of the multi-fault array. Host rocks with a favorably-oriented planar anisotropy for reactivation in brittle shear, however, preferentially develop a multitude of longer, non-coplanar layer-parallel fault segments. Pseudotachylyte in the newly-discovered Harbor Island Fault Zone in Muscongus Bay is developed within vertical bedding on regional upright folds with over 50 individual layer-parallel single-slip fault veins, some of which can be traced for over 40 meters along strike. Many faults show clear crosscuts of pre-existing quartz veins that indicate a range of coseismic displacements of 0.23-0.53 meters yielding fault vein widths of a few mm and dilatant reservoirs up to 2 cm thick. Both vertical and rare horizontal lateral injection veins can be found in the adjoining wall rock up to 0.7 cm thick and 80 cm in length. The structure of these faults is simple with minor development of splay faults, sidewall ripouts and strike-slip duplexes. The prominent vertical flow layering within the mylonite gneisses of

  11. Analysis of transpression within contractional fault steps using finite-element method

    Nabavi, Seyed Tohid; Alavi, Seyed Ahmad; Mohammadi, Soheil; Ghassemi, Mohammad Reza; Frehner, Marcel


    Two-dimensional finite-element modelling of elastic Newtonian rheology is used to compute stress distribution and strain localization patterns in a transpression zone between two pre-existing right-stepping, left-lateral strike-slip fault segments. Three representative fault segment interactions are modelled: underlapping, neutral, and overlapping. The numerical results indicate that at the onset of deformation, displacement vectors are oblique to the regional compression direction (20-90°). The orientations of the local σ1 (the maximum compressive stress) and σ3 (the minimum compressive stress) directions strongly depend on the structural position within the transpression zone. For neutral and overlapping fault steps, there is a contractional linking damage zone between the fault segments. For overlapping faults, the σ1 trajectories within the transpression zone deflects significantly forming a sigmoidal pattern, which is created by two rotational flow patterns close to the fault tips. These flow patterns are related to friction effects and different shear deformation, from pure shear outside of the fault steps toward simple shear along the fault segments. Interaction between the two fault segments perturbs the stress field and reflects the heterogeneous nature of deformation. A lozenge- (for underlapping steps), rhomboidal- (for neutral steps), and sigmoidal-shaped (for overlapping steps) transpression zone developed between the two segments. The modelled mean stress pattern shows a similar pattern to that of the contractional steps, and decrease and increase in underlapping and overlapping fault steps, respectively. Comparison of the Kuh-e-Hori transpression zone, between the Esmail-abad and West Neh left-stepping right-lateral strike-slip fault segments in SE Iran, with the modelling results shows strong similarities with the neutral step configuration.

  12. Maximum Fidelity

    Kinkhabwala, Ali


    The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...

  13. There Transformer Fault-oriented Security Research Technology Transfer Capacity Load%有载调容变压器故障导向安全技术研究

    罗伟彬; 范伟波


    In view of the current load capacity of transformer operation tone lack of adequate security measures, will users of electrical equipment and electrical safety threat, and product applications, adversely affect the promotion of practical problems were the fault-oriented security technology research, specifically from security, advanced, practical point of view are discussed.%针对目前有载调容变压器运行中缺乏足够的安全保护措施,会对用户用电设备和用电安全造成威胁,并对产品的应用、推广产生不良影响的现实问题,进行了故障导向安全技术的研究,具体从安全性、先进性、实用性角度进行了探讨。

  14. Estimating Stresses, Fault Friction and Fluid Pressure from Topography and Coseismic Slip Models

    Styron, R. H.; Hetland, E. A.


    Stress is a first-order control on the deformation state of the earth. However, stress is notoriously hard to measure, and researchers typically only estimate the directions and relative magnitudes of principal stresses, with little quantification of the uncertainties or absolute magnitude. To improve upon this, we have developed methods to constrain the full stress tensor field in a region surrounding a fault, including tectonic, topographic, and lithostatic components, as well as static friction and pore fluid pressure on the fault. Our methods are based on elastic halfspace techniques for estimating topographic stresses from a DEM, and we use a Bayesian approach to estimate accumulated tectonic stress, fluid pressure, and friction from fault geometry and slip rake, assuming Mohr-Coulomb fault mechanics. The nature of the tectonic stress inversion is such that either the stress maximum or minimum is better constrained, depending on the topography and fault deformation style. Our results from the 2008 Wenchuan event yield shear stresses from topography up to 20 MPa (normal-sinistral shear sense) and topographic normal stresses up to 80 MPa on the faults; tectonic stress had to be large enough to overcome topography to produce the observed reverse-dextral slip. Maximum tectonic stress is constrained to be >0.3 * lithostatic stress (depth-increasing), with a most likely value around 0.8, trending 90-110°E. Minimum tectonic stress is about half of maximum. Static fault friction is constrained at 0.1-0.4, and fluid pressure at 0-0.6 * total pressure on the fault. Additionally, the patterns of topographic stress and slip suggest that topographic normal stress may limit fault slip once failure has occurred. Preliminary results from the 2013 Balochistan earthquake are similar, but yield stronger constraints on the upper limits of maximum tectonic stress, as well as tight constraints on the magnitude of minimum tectonic stress and stress orientation. Work in progress on

  15. Maximum entropy analysis of NMR data of flexible multirotor molecules partially oriented in nematic solution: 2,2':5',2″-terthiophene, 2,2'- and 3,3'-dithiophene

    Caldarelli, Stefano; Catalano, Donata; Di Bari, Lorenzo; Lumetti, Marco; Ciofalo, Maurizio; Alberto Veracini, Carlo


    The dipolar couplings observed by NMR spectroscopy of solutes in nematic solvents (LX-NMR) are used to build up the maximum entropy (ME) probability distribution function of the variables describing the orientational and internal motion of the molecule. The ME conformational distributions of 2,2'- and 3,3'-dithiophene and 2,2':5',2″-terthiophene (α-terthienyl)thus obtained are compared with the results of previous studies. The 2,2'- and 3,3'-dithiophene molecules exhibit equilibria among cisoid and transoid forms; the probability maxima correspond to planar and twisted conformers for 2,2'- or 3,3'-dithiophene, respectively, 2,2':5',2″-Terthiophene has two internal degrees of freedom; the ME approach indicates that the trans, trans and cis, trans planar conformations are the most probable. The correlation between the two intramolecular rotations is also discussed.

  16. Identifying fault segments from 3D fault drag analysis (Vienna Basin, Austria)

    Spahić, Darko; Grasemann, Bernhard; Exner, Ulrike


    The segmented growth of the Markgrafneusiedl normal fault in the late Miocene clastic sediments of the central Vienna Basin (Austria) was investigated by construction of a detailed three-dimensional (3D) structural model. Using high resolution 3D seismic data, the fault surface and marker horizons in the hanging wall and the footwall of the Markgrafneusiedl Fault were mapped and orientation, displacement and morphology of the fault surface were quantified. Individual, fault segments were identified by direct mapping of the deflection of the marker horizons close to the fault surface. Correlating the size of the identified segments with the magnitude of fault drag and displacement distribution showed that fault evolution progressed in several stages. The proposed method allows the detection of segments that are not recorded by the magnitude of displacement or fault morphology. Most importantly, detailed mapping of marker deflections in the hanging wall could help to constrain equivalent structures in the footwall, which may represent potential hydrocarbon traps.

  17. Tectonic role of margin-parallel and margin-transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling

    Stanton-Yonge, A.; Griffith, W. A.; Cembrano, J.; St. Julien, R.; Iturrieta, P.


    Obliquely convergent subduction margins develop trench-parallel faults shaping the regional architecture of orogenic belts and partitioning intraplate deformation. However, transverse faults also are common along most orogenic belts and have been largely neglected in slip partitioning analysis. Here we constrain the sense of slip and slip rates of differently oriented faults to assess whether and how transverse faults accommodate plate-margin slip arising from oblique subduction. We implement a forward 3-D boundary element method model of subduction at the Chilean margin evaluating the elastic response of intra-arc faults during different stages of the Andean subduction seismic cycle (SSC). Our model results show that the margin-parallel, NNE striking Liquiñe-Ofqui Fault System accommodates dextral-reverse slip during the interseismic period of the SSC, with oblique slip rates ranging between 1 and 7 mm/yr. NW striking faults exhibit sinistral-reverse slip during the interseismic phase of the SSC, displaying a maximum oblique slip of 1.4 mm/yr. ENE striking faults display dextral strike slip, with a slip rate of 0.85 mm/yr. During the SSC coseismic phase, all modeled faults switch their kinematics: NE striking fault become sinistral, whereas NW striking faults are normal dextral. Because coseismic tensile stress changes on NW faults reach 0.6 MPa at 10-15 km depth, it is likely that they can serve as transient magma pathways during this phase of the SSC. Our model challenges the existing paradigm wherein only margin-parallel faults account for slip partitioning: transverse faults are also capable of accommodating a significant amount of plate-boundary slip arising from oblique convergence.

  18. The effects of pre-existing discontinuities on the surface expression of normal faults: Insights from wet-clay analog modeling

    Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Burrato, Pierfrancesco; Seno, Silvio; Valensise, Gianluca


    We use wet-clay analog models to investigate how pre-existing discontinuities (i.e. structures inherited from previous tectonic phases) affect the evolution of a normal fault at the Earth's surface. To this end we first perform a series of three reference experiments driven by a 45° dipping master fault unaffected by pre-existing discontinuities to generate a mechanically isotropic learning set of models. We then replicate the experiment six times introducing a 60°-dipping precut in the clay cake, each time with a different attitude and orientation with respect to an initially-blind, 45°-dipping, master normal fault. In all experiments the precut intersects the vertical projection of the master fault halfway between the center and the right-hand lateral tip. All other conditions are identical for all seven models. By comparing the results obtained from the mechanically isotropic experiments with results from experiments with precuts we find that the surface evolution of the normal fault varies depending on the precut orientation. In most cases the parameters of newly-forming faults are strongly influenced. The largest influence is exerted by synthetic and antithetic discontinuities trending respectively at 30° and 45° from the strike of the master fault, whereas a synthetic discontinuity at 60° and an antithetic discontinuity at 30° show moderate influence. Little influence is exerted by a synthetic discontinuity at 45° and an antithetic discontinuity at 60° from the strike of the master fault. We provide a ranking chart to assess fault-to-discontinuity interactions with respect to essential surface fault descriptors, such as segmentation, vertical-displacement profile, maximum displacement, and length, often used as proxies to infer fault properties at depth. Considering a single descriptor, the amount of deviation induced by different precuts varies from case to case in a rather unpredictable fashion. Multiple observables should be taken into

  19. Effect of water on long-term weakening preceding rupture of crustal faults

    Masuda, K.; Arai, T.; Fujimoto, K.; Takahashi, M.; Shigematsu, N.


    Fault strength is a critical parameter in studies of crustal mechanics and for the prediction of earthquake hazards. The strengths of crustal faults inferred from borehole heat flow measurements and maximum stress orientations in the crust are less than those determined from laboratory measurements. Suggested causes of the weakening of faults include high fluid pressures, dynamic processes, or the presence of weak fault gouge. However, long-term changes of fault strength cannot be directly monitored using geophysical techniques, so an explanation for fault weakening remains an unsolved problem. We provide laboratory evidence that long-term weakening of the frictional strength of faults is caused by micro-fracturing at asperity contacts, which is a result of crack growth at subcritical stress levels. Our model suggests that long-term reductions of fault strength are related to chemical reactions that take place in the presence of water. For our measurements of friction on rupture surfaces in the presence of water, we increased temperatures to accelerate reaction processes so that they were observable at laboratory time-scales. In the presence of water, frictional strength decreased as temperature increased, whereas it changed little in the absence of water. The observed decreases in frictional strength were facilitated by chemical processes, rather than by physical processes governed by the effective pressure law. These observations suggest that chemical processes such as stress corrosion play an important role in long-term fault weakening. In addition to long-term monitoring of fault zones, we need to investigate long-term processes that cannot be observed during a human lifetime if we are to understand earthquake occurrences in the deep crust.

  20. Distinctive diamagnetic fabrics in dolostones evolved at fault cores, the Dead Sea Transform

    Braun, D.; Weinberger, R.; Eyal, Y.; Feinstein, S.; Harlavan, Y.; Levi, T.


    We resolve the anisotropy of magnetic susceptibility (AMS) axes along fault planes, cores and damage zones in rocks that crop out next to the Dead Sea Transform (DST) plate boundary. We measured 261 samples of mainly diamagnetic dolostones that were collected from 15 stations. To test the possible effect of the iron content on the AMS we analyzed the Fe concentrations of the samples in different rock phases. Dolostones with mean magnetic susceptibility value lower than -4 × 10-6 SI and iron content less than ∼1000 ppm are suitable for diamagnetic AMS-based strain analysis. The dolostones along fault planes display AMS fabrics that significantly deviate from the primary "sedimentary fabric". The characteristics of these fabrics include well-grouped, sub-horizontal, minimum principal AMS axes (k3) and sub-vertical magnetic foliations commonly defined by maximum and intermediate principal AMS axes (k1 and k2 axes, respectively). These fabrics are distinctive along fault planes located tens of kilometers apart, with strikes ranging between NNW-SSE and NNE-SSW and different senses of motion. The obtained magnetic foliations (k1-k2) are sub-parallel (within ∼20°) to the fault planes. Based on rock magnetic and geochemical analyses, we interpret the AMS fabrics as the product of both shape and crystallographic anisotropy of the dolostones. Preferred shape alignment evolves due to mechanical rotation of subordinate particles and rock fragments at the fault core. Preferred crystallographic orientation results from elevated frictional heating (>300 °C) during faulting, which enhances c-axes alignment in the cement-supported dolomite breccia due to crystal-plastic processes. The penetrative deformation within fault zones resulted from the local, fault-related strain field and does not reflect the regional strain field. The analyzed AMS fabrics together with fault-plane kinematics provide valuable information on faulting characteristics in the uppermost crust.

  1. A Maximum-error Specification Oriented Gross Error Identification Method%一种面向最大值指标的粗大误差处理方法

    普仕凡; 韩旭; 李智生; 李钊


    A maximum-error specification oriented gross error identification method based on general Paǔta criterion is proposed, which provides a reference for gross error identification in maximum-error specification. It is assumed that the target stochastic observa-tion sequence is subject to IID normal distribution. Then, through a risk analysis on mistaking the maximum observation value as the gross error data, some modifications are made to the classic Paǔta criterion, and the general Paǔta criterion is introduced. The gross error identification threshold calculation method is also given. Practical application test results show that the method is feasible.%提出了一种面向最大值指标的广义拉依达准则粗差处理方法,为最大值指标下粗大误差的有效鉴别提供了参考依据。该方法假设观测序列服从独立同分布的正态分布,从最大观测值被误作为粗差数据的风险分析入手,对拉依达准则的判定标准进行了改进,推导并给出了广义拉依达准则的粗差判决条件。实践应用的结果表明,该方法是可行的。

  2. Study on Knowledge -based Intelligent Fault Diagnosis of Hydraulic System

    Xuexia Liu


    Full Text Available A general framework of hydraulic fault diagnosis system was studied. It consisted of equipment knowledge bases, real-time databases, fusion reasoning module, knowledge acquisition module and so on. A tree-structure model of fault knowledge was established. Fault nodes knowledge was encapsulated by object-oriented technique. Complete knowledge bases were made including fault bases and diagnosis bases. It could describe the fault positions, the structure of fault, cause-symptom relationships, diagnosis principles and other knowledge. Taking the fault of left and right lifting oil cylinder out of sync for example, the diagnostic results show that the methods were effective.

  3. Hard Fault Analysis of Trivium

    Yupu, Hu; Yiwei, Zhang


    Fault analysis is a powerful attack to stream ciphers. Up to now, the major idea of fault analysis is to simplify the cipher system by injecting some soft faults. We call it soft fault analysis. As a hardware-oriented stream cipher, Trivium is weak under soft fault analysis. In this paper we consider another type of fault analysis of stream cipher, which is to simplify the cipher system by injecting some hard faults. We call it hard fault analysis. We present the following results about such attack to Trivium. In Case 1 with the probability not smaller than 0.2396, the attacker can obtain 69 bits of 80-bits-key. In Case 2 with the probability not smaller than 0.2291, the attacker can obtain all of 80-bits-key. In Case 3 with the probability not smaller than 0.2291, the attacker can partially solve the key. In Case 4 with non-neglectable probability, the attacker can obtain a simplified cipher, with smaller number of state bits and slower non-linearization procedure. In Case 5 with non-neglectable probability,...

  4. Fault diagnosis

    Abbott, Kathy


    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  5. Geophysical evidence of crustal-heterogeneity control of fault growth in the Neocomian Iguatu basin, NE Brazil

    de Castro, David L.; Bezerra, Francisco H. R.; Castelo Branco, Raimundo M. G.


    -filling deposits, indicates that this possible intrusion forms a horst oriented roughly parallel to the basement fabric. The relationship between maximum displacement and fault length indicates that the fault segments formed independently during the initiation of the half-graben. But the fault segments, linked by relay ramps, influence the development of one another. We interpret the segments to represent a pre-linkage, multisegmented stage of an aborted rift system. This pattern of fault growth may have also influenced the rift stage of other sedimentary basins in the region.

  6. Fault kinematics and depocenter evolution of oil-bearing, continental successions of the Mina del Carmen Formation (Albian) in the Golfo San Jorge basin, Argentina

    Paredes, José Matildo; Plazibat, Silvana; Crovetto, Carolina; Stein, Julián; Cayo, Eric; Schiuma, Ariel


    Up to 10% of the liquid hydrocarbons of the Golfo San Jorge basin come from the Mina del Carmen Formation (Albian), an ash-dominated fluvial succession preserved in a variably integrated channel network that evolved coeval to an extensional tectonic event, poorly analyzed up to date. Fault orientation, throw distribution and kinematics of fault populations affecting the Mina del Carmen Formation were investigated using a 3D seismic dataset in the Cerro Dragón field (Eastern Sector of the Golfo San Jorge basin). Thickness maps of the seismic sub-units that integrate the Mina del Carmen Formation, named MEC-A-MEC-C in ascending order, and mapping of fluvial channels performed applying geophysical tools of visualization were integrated to the kinematical analysis of 20 main normal faults of the field. The study provides examples of changes in fault throw patterns with time, associated with faults of different orientations. The "main synrift phase" is characterized by NE-SW striking (mean Az = 49°), basement-involved normal faults that attains its maximum throw on top of the volcanic basement; this set of faults was active during deposition of the Las Heras Group and Pozo D-129 formation. A "second synrift phase" is recognized by E-W striking normal faults (mean Az = 91°) that nucleated and propagated from the Albian Mina del Carmen Formation. Fault activity was localized during deposition of the MEC-A sub-unit, but generalized during deposition of MEC-B sub-unit, producing centripetal and partially isolated depocenters. Upward decreasing in fault activity is inferred by more gradual thickness variation of MEC-C and the overlying Lower Member of Bajo Barreal Formation, evidencing passive infilling of relief associated to fault boundaries, and conformation of wider depocenters with well integrated networks of channels of larger dimensions but random orientation. Lately, the Mina del Carmen Formation was affected by the downward propagation of E-W to ESE-WNW striking

  7. Identification of recently active faults and folds in Java, Indonesia

    Marliyani, G. I.; Arrowsmith, R.; Helmi, H.


    W directions while small numbers of volcanoes show N40°W elongation. The volcanoes are interpreted to be fed by dikes parallel to the maximum horizontal stress and perpendicular to the minimum stress. From analyzing the volcano morphology, we identified spatial changes of principal stress orientation in Central Java; the maximum horizontal stress changes from NE-SW to NW-SE as it moving west to east at around 7° 13' S, 109° 47' E. Research at a relatively simple subduction system such as in Java provides an opportunity to examine upper plate deformation with the potential to apply the understanding to other subduction systems. In Java, the segmentation of the deformation pattern is most likely related to the subduction of high bathymetric features south of the island. In addition, reactivation of pre-existing faults highlights the importance of the inherited upper plate features. In the regions of low strain rates expressed through slow slip rate active faults, paleoseismology and tectonic geomorphology analyses are important to quantify the slip rates over long time intervals; it will provide important constraints on the physical mechanisms controlling the strain accumulation and release in the region.

  8. New insights on stress rotations from a forward regional model of the San Andreas fault system near its Big Bend in southern California

    Fitzenz, D.D.; Miller, S.A.


    Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.

  9. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    Yin, A [Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA 90025-1567 (United States); Taylor, M H [Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Lawrence, KS 66044 (United States)], E-mail:


    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of {approx}30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  10. Microstructural features of fault gouges from Tianjingshan-Xiangshan fault zone and their geological implications


    Detailed observation of the microstructural features of 11 fault gouge and 3 fault breccia samples collected from Tianjingshan-Xiangshan fault zone has revealed that fault gouge can be classified into 3 types: flow banded granular gouge, foliated gouge and massive gouge. The determination of the shape preferred orientation (SPO) of survivor grains in fault gouges indicates that the foliated gouge displays a profound SPO inclined to the shear zone boundary, similar to the P-foliation; flow banded granular gouge displays a SPO parallel to the shear zone boundary, while massive fault gouge and fault breccia display a random SPO. All these fault gouges fall in different fields of shear rate ternary diagram.

  11. Intermediate Depth Earthquakes in Middle America: Fault Reactivation or Formation?

    Langstaff, M. A.; Warren, L. M.; Silver, P. G.


    Intermediate-depth earthquakes are often attributed to dehydration embrittlement reactivating pre-existing weak zones. The orientations of pre-subduction faults are particularly well known offshore of Middle America, where seismic reflection profiles show outer-rise faults dipping towards the trench and extending >20~km into the lithosphere. If water is transported along these faults and incorporated into hydrous minerals, the faults may be reactivated later when the minerals dehydrate. In this case, the fault orientations should be the same in the outer rise and at depth, after accounting for the angle of subduction. To test this hypothesis, we analyze the directivity of 54 large (M_W > 5.7) earthquakes between 40--220~km depth in the Middle America Trench. For 15 of these earthquakes, the directivity vector allows us to confidently distinguish the fault plane of the earthquake. Between 40--85~km depth, we observe both subhorizontal and subvertical fault planes. The subvertical fault planes are consistent with the reactivation of outer rise faults, whereas the subhorizontal fault planes suggest the formation of new faults. Deeper than 85~km, we only observe subhorizontal faults, indicating that the outer rise faults are no longer reactivated. The occurrence of only subhorizontal faults may be due to unbending stresses preferentially creating horizontal faults, or an isobaric rupture process.

  12. Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault

    Andrews, D.J.; Ma, Shuo


    Large dynamic stress off the fault incurs an inelastic response and energy loss, which contributes to the fracture energy, limiting the rupture and slip velocity. Using an explicit finite element method, we model three-dimensional dynamic ruptures on a vertical strike-slip fault in a homogeneous half-space. The material is subjected to a pressure-dependent Drucker-Prager yield criterion. Initial stresses in the medium increase linearly with depth. Our simulations show that the inelastic response is confined narrowly to the fault at depth. There the inelastic strain is induced by large dynamic stresses associated with the rupture front that overcome the effect of the high confining pressure. The inelastic zone increases in size as it nears the surface. For material with low cohesion (~5 MPa) the inelastic zone broadens dramatically near the surface, forming a "flowerlike" structure. The near-surface inelastic strain occurs in both the extensional and the compressional regimes of the fault, induced by seismic waves ahead of the rupture front under a low confining pressure. When cohesion is large (~10 MPa), the inelastic strain is significantly reduced near the surface and confined mostly to depth. Cohesion, however, affects the inelastic zone at depth less significantly. The induced shear microcracks show diverse orientations near the surface, owing to the low confining pressure, but exhibit mostly horizontal slip at depth. The inferred rupture-induced anisotropy at depth has the fast wave direction along the direction of the maximum compressive stress.

  13. Seismic Fault Preserving Diffusion

    Lavialle, Olivier; Germain, Christian; Donias, Marc; Guillon, Sebastien; Keskes, Naamen; Berthoumieu, Yannick


    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults. The non linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.

  14. Seismic fault preserving diffusion

    Lavialle, Olivier; Pop, Sorin; Germain, Christian; Donias, Marc; Guillon, Sebastien; Keskes, Naamen; Berthoumieu, Yannick


    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non-linear diffusion filtering leading to a better detection of seismic faults. The non-linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.

  15. Regional Fault Systems of Qaidam Basin and Adjacent Orogenic Belts


    The purpose of this paper is to analyze the regional fault systems of Qaidam basin and adjacent orogenic belts. Field investigation and seismic interpretation indicate that five regional fault systems occurred in the Qaidam and adjacent mountain belts, controlling the development and evolution of the Qaidam basin. These fault systems are: (1)north Qaidam-Qilian Mountain fault system; (2) south Qaidam-East Kunlun Mountain fault system; (3)Altun strike-slip fault system; (4)Elashan strike-slip fault system, and (5) Gansen-Xiaochaidan fault system. It is indicated that the fault systems controlled the orientation of the Qaidam basin, the formation and distribution of secondary faults within the basin,the migration of depocenters and the distribution of hydrocarbon accumulation belt.

  16. The role of a keystone fault in triggering the complex El Mayor-Cucapah earthquake rupture

    Fletcher, John M.; Oskin, Michael E.; Teran, Orlando J.


    The 2010 Mw 7.2 El Mayor-Cucapah earthquake in Baja California, Mexico activated slip on multiple faults of diverse orientations, which is commonly the case for large earthquakes. The critical stress level for fault failure depends on fault orientation and is lowest for optimally oriented faults positioned approximately 30° to the greatest principal compressive stress. Yet, misoriented faults whose positioning is not conducive to rupture are also common. Here we use stress inversions of surface displacement and seismic data to show that the El Mayor-Cucapah earthquake initiated on a fault that, owing to its orientation, was among those that required the greatest stress for failure. Although other optimally oriented faults must have reached critical stress earlier in the interseismic period, Coulomb stress modelling shows that slip on these faults was initially muted because they were pinned, held in place by misoriented faults that helped regulate their slip. In this way, faults of diverse orientations could be maintained at critical stress without destabilizing the network. We propose that regional stress build-up continues until a misoriented keystone fault reaches its threshold and its failure then spreads spontaneously across the network in a large earthquake. Our keystone fault hypothesis explains seismogenic failure of severely misoriented faults such as the San Andreas fault and the entire class of low-angle normal faults.

  17. Fault reactivation and seismicity risk from CO2 sequestration in the Chinshui gas field, NW Taiwan

    Sung, Chia-Yu; Hung, Jih-Hao


    The Chinshui gas field located in the fold-thrust belt of western Taiwan was a depleted reservoir. Recently, CO2 sequestration has been planned at shallower depths of this structure. CO2 injection into reservoir will generate high fluid pressure and trigger slip on reservoir-bounding faults. We present detailed in-situ stresses from deep wells in the Chinshui gas field and evaluated the risk of fault reactivation for underground CO2 injection. The magnitudes of vertical stress (Sv), formation pore pressure (Pf) and minimum horizontal stress (Shmin) were obtained from formation density logs, repeat formation tests, sonic logs, mud weight, and hydraulic fracturing including leak-off tests and hydraulic fracturing. The magnitude of maximum horizontal stress (SHmax) was constrained by frictional limit of critically stressed faults. Results show that vertical stress gradient is about 23.02 MPa/km (1.02 psi/ft), and minimum horizontal stress gradient is 18.05 MPa/km (0.80 psi/ft). Formation pore pressures were hydrostatic at depths 2 km, and increase with a gradient of 16.62 MPa/km (0.73 psi/ft). The ratio of fluid pressure and overburden pressure (λp) is 0.65. The upper bound of maximum horizontal stress constrained by strike-slip fault stress regime (SHmax>Sv>Shmin) and coefficient of friction (μ=0.6) is about 18.55 MPa/km (0.82 psi/ft). The orientation of maximum horizontal stresses was calculated from four-arm caliper tools through the methodology suggested by World Stress Map (WMS). The mean azimuth of preferred orientation of borehole breakouts are in ~65。N. Consequently, the maximum horizontal stress axis trends in 155。N and sub-parallel to the far-field plate-convergence direction. Geomechanical analyses of the reactivation of pre-existing faults was assessed using 3DStress and Traptester software. Under current in-situ stress, the middle block fault has higher slip tendency, but still less than frictional coefficient of 0.6 a common threshold value for

  18. Growth of faults in crystalline rock

    Martel, S. J.


    predict earthquakes, fluid flow and mineralization along faults, and fault sealing. Particularly promising avenues of research include: (a) collecting high-resolution slip distribution data over fault surfaces (rather than just the maximum slip); (b) refining the locations of microseismic events; (c) conducting large-scale controlled experiments on in-situ faults; (d) characterizing the spatial distribution of fractures along faults (e.g., by back-mining); (e) performing dynamic experiments to evaluate the formation and strength of fault gouge and pseudotachylyte; (f) characterizing the shape of fault surfaces at different scales using laser scanning and differential geometry; and (g) modeling faults mechanically as part of an interacting system rather than as isolated structures.

  19. 3D simulation of near-fault strong ground motion:comparison between surface rupture fault and buried fault

    Liu Qifang; Yuan Yifan; Jin Xing


    In this paper,near-fault strong ground motions caused by a surface rupture fault(SRF)and a buried fault(BF) are numerically simulated and compared by using a time-space-decoupled,explicit finite element method combined with a multi-transmitting formula(MTF) of an artificial boundary.Prior to the comparison,verification of the explicit element method and the MTF is conducted.The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane.The maximum final dislocation occurs on the fault upper line for the SRF;however,for the BF,the maximum final dislocation is located on the fault central part.Meanwhile,the PGA,PGV and PGD of long period ground motions(≤1 Hz)generated by the SRF are much higher than those of the BF in the near-fault region.The peak value of the velocity pulse generated by the SRF is also higher than the BF.Furthermore,it is found that in a very narrow region along the fault trace,ground motions caused by the SRF are much higher than by the BF.These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults.

  20. Deriving earthquake history of the Knidos Fault Zone, SW Turkey, using cosmogenic 36Cl surface exposure dating of the fault scarp.

    Yildirim, Cengiz; Ersen Aksoy, Murat; Akif Sarikaya, Mehmet; Tuysuz, Okan; Genc, S. Can; Ertekin Doksanalti, Mustafa; Sahin, Sefa; Benedetti, Lucilla; Tesson, Jim; Aster Team


    Formation of bedrock fault scarps in extensional provinces is a result of large and successive earthquakes that ruptured the surface several times. Extraction of seismic history of such faults is critical to understand the recurrence intervals and the magnitude of paleo-earthquakes and to better constrain the regional seismic hazard. Knidos on the Datca Peninsula (SW Turkey) is one of the largest cities of the antique times and sits on a terraced hill slope formed by en-echelon W-SW oriented normal faults. The Datça Peninsula constitutes the southern boundary of the Gulf of Gökova, one of the largest grabens developed on the southernmost part of the Western Anatolian Extensional Province. Our investigation relies on cosmogenic 36Cl surface exposure dating of limestone faults scarps. This method is a powerful tool to reconstruct the seismic history of normal faults (e.g. Schlagenhauf et al 2010, Benedetti et al. 2013). We focus on one of the most prominent fault scarp (hereinafter Mezarlık Fault) of the Knidos fault zone cutting through the antique Knidos city. We collected 128 pieces of tablet size (10x20cm) 3-cm thick samples along the fault dip and opened 4 conventional paleoseismic trenches at the base of the fault scarp. Our 36Cl concentration profile indicates that 3 to 4 seismic events ruptured the Mezarlık Fault since Last Glacial Maximum (LGM). The results from the paleoseismic trenching are also compatible with 36Cl results, indicating 3 or 4 seismic events that disturbed the colluvium deposited at the base of the scarp. Here we will present implications for the seismic history and the derived slip-rate of the Mezarlık Fault based on those results. This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Grant number: 113Y436) and it was conducted with the Decision of the Council of Ministers with No. 2013/5387 on the date 30.09.2013 and was done with the permission of Knidos Presidency of excavation in

  1. Proper orientation of cacti

    Araujo, Julio; Havet, Frédéric; Linhares Sales, Claudia; Silva, Ana


    International audience; An orientation of a graph G is proper if two adjacent vertices have different in-degrees. The proper-orientation number − → χ (G) of a graph G is the minimum maximum in-degree of a proper orientation of G. In [1], the authors ask whether the proper orientation number of a planar graph is bounded. We prove that every cactus admits a proper orientation with maximum in-degree at most 7. We also prove that the bound 7 is tight by showing a cactus having no proper orientati...

  2. Estimating the detectability of faults in 3D-seismic data - A valuable input to Induced Seismic Hazard Assessment (ISHA)

    Goertz, A.; Kraft, T.; Wiemer, S.; Spada, M.


    In the past several years, some geotechnical operations that inject fluid into the deep subsurface, such as oil and gas development, waste disposal, and geothermal energy development, have been found or suspected to cause small to moderate sized earthquakes. In several cases the largest events occurred on previously unmapped faults, within or in close vicinity to the operated reservoirs. The obvious conclusion drawn from this finding, also expressed in most recently published best practice guidelines and recommendations, is to avoid injecting into faults. Yet, how certain can we be that all faults relevant to induced seismic hazard have been identified, even around well studied sites? Here we present a probabilistic approach to assess the capability of detecting faults by means of 3D seismic imaging. First, we populate a model reservoir with seed faults of random orientation and slip direction. Drawing random samples from a Gutenberg-Richter distribution, each seed fault is assigned a magnitude and corresponding size using standard scaling relations based on a circular rupture model. We then compute the minimum resolution of a 3D seismic survey for given acquisition parameters and frequency bandwidth. Assuming a random distribution of medium properties and distribution of image frequencies, we obtain a probability that a fault of a given size is detected, or respectively overlooked, by the 3D seismic. Weighting the initial Gutenberg-Richter fault size distribution with the probability of imaging a fault, we obtain a modified fault size distribution in the imaged volume from which we can constrain the maximum magnitude to be considered in the seismic hazard assessment of the operation. We can further quantify the value of information associated with the seismic image by comparing the expected insured value loss between the image-weighted and the unweighted hazard estimates.

  3. Active Faulting and Quaternary Landforms Deformation Related to the Nain Fault

    Abolghasem Gourabi


    Full Text Available Problem statement: Landforms developed across terrain defining boundary the Nain fault have imprints of recent tectonic activity in the west region of Central Iran. Depositional landforms such as alluvial fans bear signatures of later phases of tectonic activity in the form of faulting of alluvial fan deposits and development of fault traces and scarps within 100 km long and a NW-SE-trending zone, 1000-2000 m wide. Approach: We are addressing the neotectonic landforms based on detailed field work carried out in the Nain exposed active fault segments which brought forward some outstanding morphtectonic evidence of quaternary tectonically activities. Tectonic geomorphology applied to the Nain fault suggests recent subsurface activity along the Nain fault and an interconnecting faulting network of roughly NW-SE-trending, right-lateral, strike-slip segments and mostly NW-SE-oriented, transtensional to normal faults. Results: Evidence for recent activity is provided by faulted Pleistocene-Holocene deposits, fresh scarps in Late Quaternary deposits, 8-15 m lateral offsets locally affecting the drainage pattern of the area, ground creeping, aligning of series of spring faults, deflected streams and fault trace over recent alluvial fans. The existences of strike-slip faults system in the Nain area can be implications for seismic hazard. Conclusion: Motion along these structures suggests, in fact, that cumulative displacements include normal, transtensional and strike-slip components. Based on all evidence of active tectonics, earthquake risk and occurrence area is significant.

  4. RETRACTED: Rift-related active fault-system and a direction of maximum horizontal stress in the Cairo-Suez district, northeastern Egypt: A new approach from EMR-Technique and Cerescope data

    Hagag, Wael; Obermeyer, Hennes


    This article has been retracted: please see Elsevier Policy on Article Withdrawal ( This article has been retracted at the request of Editor-in-Chief Read Mapeo in agreement with Editor-in-Chief Damien Delvaux. The authors have plagiarized part of the following papers. The introduction and methodology sections of the paper are similar and in places slightly modified versions of the abstract, introduction and sections and of the PhD Thesis of Michael Krumbholz (2010) Text from the sections of introduction, methodology and "EMR-measurements in the Cairo-Suez district" is found also in the paper "Detection of active faults using EMR-Technique and Cerescope at Landau area in central Upper Rhine Graben, SW Germany" that was published by the authors in the Journal of Applied Geophysics 124 (2016) 117-129 One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  5. Contemporary fault mechanics in southern Alaska

    Kalbas, James L.; Freed, Andrew M.; Ridgway, Kenneth D.

    Thin-shell finite-element models, constrained by a limited set of geologic slip rates, provide a tool for evaluating the organization of contemporary faulting in southeastern Alaska. The primary structural features considered in our analysis are the Denali, Duke River, Totschunda, Fairweather, Queen Charlotte, and Transition faults. The combination of fault configurations and rheological properties that best explains observed geologic slip rates predicts that the Fairweather and Totschunda faults are joined by an inferred southeast-trending strike-slip fault that crosses the St. Elias Mountains. From a regional perspective, this structure, which our models suggest slips at a rate of ˜8 mm/a, transfers shear from the Queen Charlotte fault in southeastern Alaska and British Columbia northward to the Denali fault in central Alaska. This result supports previous hypotheses that the Fairweather-Totschunda connecting fault constitutes a newly established northward extension of the Queen Charlotte-Fairweather transform system and helps accommodate right-lateral motion (˜49 mm/a) of the Pacific plate and Yakutat microplate relative to stable North America. Model results also imply that the Transition fault separating the Yakutat microplate from the Pacific plate is favorably oriented to accommodate significant thrusting (23 mm/a). Rapid dip-slip displacement on the Transition fault does not, however, draw shear off of the Queen Charlotte-Fairweather transform fault system. Our new modeling results suggest that the Totschunda fault, the proposed Fairweather-Totschunda connecting fault, and the Fairweather fault may represent the youngest stage of southwestward migration of the active strike-slip deformation front in the long-term evolution of this convergent margin.

  6. Facies composition and scaling relationships of extensional faults in carbonates

    Bastesen, Eivind; Braathen, Alvar


    Fault seal evaluations in carbonates are challenged by limited input data. Our analysis of 100 extensional faults in shallow-buried layered carbonate rocks aims to improve forecasting of fault core characteristics in these rocks. We have analyzed the spatial distribution of fault core elements described using a Fault Facies classification scheme; a method specifically developed for 3D fault description and quantification, with application in reservoir modelling. In modelling, the fault envelope is populated with fault facies originating from the host rock, the properties of which (e.g. dimensions, geometry, internal structure, petrophysical properties, and spatial distribution of structural elements) are defined by outcrop data. Empirical data sets were collected from outcrops of extensional faults in fine grained, micro-porosity carbonates from western Sinai (Egypt), Central Spitsbergen (Arctic Norway), and Central Oman (Adam Foothills) which all have experienced maximum burial of 2-3 kilometres and exhibit displacements ranging from 4 centimetres to 400 meters. Key observations include fault core thickness, intrinsic composition and geometry. The studied fault cores display several distinct fault facies and facies associations. Based on geometry, fault cores can be categorised as distributed or localized. Each can be further sub-divided according to the presence of shale smear, carbonate fault rocks and cement/secondary calcite layers. Fault core thickness in carbonate rocks may be controlled by several mechanisms: (1) Mechanical breakdown: Irregularities such as breached relays and asperities are broken down by progressive faulting and fracturing to eventually form a thicker fault rock layer. (2) Layer shearing: Accumulations of shale smear along the fault core. (3) Diagenesis; pressure solution, karstification and precipitation of secondary calcite in the core. Observed fault core thicknesses scatter over three orders of magnitude, with a D/T range of 1:1 to 1

  7. Normal fault earthquakes or graviquakes

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.


    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  8. Paleoseismicity of two historically quiescent faults in Australia: Implications for fault behavior in stable continental regions

    Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.


    Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.

  9. Investigating the Influence of Regional Stress on Fault and Fracture Permeability at Pahute Mesa, Nevada National Security Site

    Reeves, Donald M. [Desert Research Inst. (DRI), Reno, NV (United States); Smith, Kenneth D. [Univ. of Nevada, Reno, NV (United States); Parashar, Rishi [Desert Research Inst. (DRI), Reno, NV (United States); Collins, Cheryl [Desert Research Inst. (DRI), Las Vegas, NV (United States); Heintz, Kevin M. [Desert Research Inst. (DRI), Las Vegas, NV (United States)


    Regional stress may exert considerable control on the permeability and hydraulic function (i.e., barrier to and/or conduit for fluid flow) of faults and fractures at Pahute Mesa, Nevada National Security Site (NNSS). In-situ measurements of the stress field are sparse in this area, and short period earthquake focal mechanisms are used to delineate principal horizontal stress orientations. Stress field inversion solutions to earthquake focal mechanisms indicate that Pahute Mesa is located within a transtensional faulting regime, represented by oblique slip on steeply dipping normal fault structures, with maximum horizontal stress ranging from N29°E to N63°E and average of N42°E. Average horizontal stress directions are in general agreement with large diameter borehole breakouts from Pahute Mesa analyzed in this study and with stress measurements from other locations on the NNSS.

  10. Characterizing the potential for fault reactivation related to CO2 injection through subsurface structural mapping and stress field analysis, Wellington Field, Sumner County, KS

    Schwab, D.; Bidgoli, T.; Taylor, M. H.


    South-central Kansas has experienced an unprecedented increase in seismic activity since 2013. The spatial and temporal relationship of the seismicity with brine disposal operations has renewed interest in the role of fluids in fault reactivation. This study focuses on determining the suitability of CO2 injection into a Cambro-Ordovician reservoir for long-term storage and a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. Our approach for determining the potential for induced seismicity has been to (1) map subsurface faults and estimate in-situ stresses, (2) perform slip and dilation tendency analysis to identify optimally-oriented faults relative to the estimated stress field, and (3) monitor surface deformation through cGPS data and InSAR imaging. Through the use of 3D seismic reflection data, 60 near vertical, NNE-striking faults have been identified. The faults range in length from 140-410 m and have vertical separations of 3-32m. A number of faults appear to be restricted to shallow intervals, while others clearly cut the top basement reflector. Drilling-induced tensile fractures (N=78) identified from image logs and inversion of earthquake focal mechanism solutions (N=54) are consistent with the maximum horizontal stress (SHmax) oriented ~E-W. Both strike-slip and normal-slip fault plane solutions for earthquakes near the study area suggest that SHmax and Sv may be similar in magnitude. Estimates of stress magnitudes using step rate tests (Shmin = 2666 psi), density logs (Sv = 5308 psi), and calculations from wells with drilling induced tensile fractures (SHmax = 4547-6655 psi) are determined at the gauge depth of 4869ft. Preliminary slip and dilation tendency analysis indicates that faults striking 0°-20° are stable, whereas faults striking 26°-44° may have a moderate risk for reactivation with increasing pore-fluid pressure.

  11. Machine Fault Signature Analysis

    Pratesh Jayaswal


    Full Text Available The objective of this paper is to present recent developments in the field of machine fault signature analysis with particular regard to vibration analysis. The different types of faults that can be identified from the vibration signature analysis are, for example, gear fault, rolling contact bearing fault, journal bearing fault, flexible coupling faults, and electrical machine fault. It is not the intention of the authors to attempt to provide a detailed coverage of all the faults while detailed consideration is given to the subject of the rolling element bearing fault signature analysis.

  12. Fault location in underground cables using ANFIS nets and discrete wavelet transform

    Shimaa Barakat


    Full Text Available This paper presents an accurate algorithm for locating faults in a medium voltage underground power cable using a combination of Adaptive Network-Based Fuzzy Inference System (ANFIS and discrete wavelet transform (DWT. The proposed method uses five ANFIS networks and consists of 2 stages, including fault type classification and exact fault location. In the first part, an ANFIS is used to determine the fault type, applying four inputs, i.e., the maximum detailed energy of three phase and zero sequence currents. Other four ANFIS networks are utilized to pinpoint the faults (one for each fault type. Four inputs, i.e., the maximum detailed energy of three phase and zero sequence currents, are used to train the neuro-fuzzy inference systems in order to accurately locate the faults on the cable. The proposed method is evaluated under different fault conditions such as different fault locations, different fault inception angles and different fault resistances.

  13. East-west faults due to planetary contraction

    Beuthe, Mikael


    Contraction, expansion and despinning have been common in the past evolution of Solar System bodies. These processes deform the lithosphere until it breaks along faults. The type and orientation of faults are usually determined under the assumption of a constant lithospheric thickness, but lithospheric thinning can occur at the equator or at the poles due either to latitudinal variation in solar insolation or to localized tidal dissipation. Using thin elastic shells with variable thickness, I show that the equatorial thinning of the lithosphere transforms the homogeneous and isotropic fault pattern caused by contraction/expansion into a pattern of faults striking east-west, preferably formed in the equatorial region. By contrast, lithospheric thickness variations only weakly affect the despinning faulting pattern consisting of equatorial strike-slip faults and polar normal faults. If contraction is added to despinning, the despinning pattern first shifts to thrust faults striking north-south and then to thrus...

  14. Large seismic faults in the Hellenic arc

    B. S. Papazachos


    Full Text Available Using information concerning reliable fault plane solutions, spatial distribution of strong earthquakes (Ms³ 6.0 as well as sea bottom and coastal topography, properties of the seismic faults (orientation, dimension, type of faulting were determined in seven shallow (h < 40 km seismogenic regions along the convex part of thc Hellenic arc (Hellenic trench and in four seismogenic regions of intermediate depth earthquakes (h = 40-100 km along the concave part of this arc. Except for the northwesternmost part of the Hellenic trench, where the strike-slip Cephalonia transform fault dominates, all other faults along this trench are low angle thrust faults. III thc western part of the trench (Zante-west Crete faults strike NW-SE and dip NE, while in its eastern part (east Crete-Rhodos faults strike WNW-ESE and dip NNE. Such system of faulting can be attributed to an overthrust of the Aegean lithosphere on the eastern Mediterranean lithosphere. The longest of these faults (L = 300 km is that which produced the largest known shallow earthquake in the Mediterranean area (21 July 365, Ms = 8.3 which is located near the southwestern coast of Crete. The second longest such fault (L = l 70 km is that which produced a large earthquake (December 1303, Ms = 8.0 in the easternmost part of the trench (east of Rhodos island. Both earthquakes were associated with gigantic tsunamis which caused extensive damage in the coast of many Eastern Mediterranean countries. Seismic faults of the intermediate depth earthquakes in the shallow part of the Benioff zone (h = 40- 100 km are of strike-slip type, with a thrust component. The orientations of these faults vary along the concave part of the arc in accordance with a subduction of remnants of all old lithospheric slab from the convex side (Mediterranean to the concave side (Aegean of thc Hellenic arc. The longest of these faults (L = 220 km is that which produced the largest known intermediate depth earthquake in the

  15. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    Sharp, R.V.


    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  16. Fault tolerant operation of switched reluctance machine

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  17. Stacking faults and microstrains in strain-hardened surface of nitrogen-alloyed austenitic steel

    Narkevich, N.; Syrtanov, M.; Mironov, Yu.; Surikova, N.


    X-ray diffractometry has been applied to examine the effect of ultrasonic forging and frictional treatment on structural parameters and oriented microstrains responsible for the generation of residual microstresses in austenitic steel Fe-17Cr-19Mn-0.52N. The maximum stacking fault density α = 0.067 is observed in the steel surface layer of thickness 5 µm after frictional treatment. A decrease in the austenite lattice parameter after deformation treatment is associated with the change in the sign (direction) of residual stresses. Surface deformation treatment induces compression of the austenite lattice along the normal to the surface.

  18. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.


    dies out northward where we propose that its slip transfers to active structures in the Piedras Blancas fold belt. Given the continuity of the Hosgri Fault Zone through our study area, earthquake hazard assessments should incorporate a minimum rupture length of 110 km. Our data do not constrain lateral slip rates on the Hosgri, which probably vary along the fault (both to the north and south) as different structures converge and diverge but are likely in the geodetically estimated range of 2 to 4 mm/yr. More focused mapping of lowstand geomorphic features (e.g., channels, paleoshorelines) has the potential to provide better constraints. The post-Last-Glacial Maximum unconformity is an important surface for constraining vertical deformation, yielding local fault offset rates that may be as high as 1.4 mm/yr and off-fault deformation rates as high as 0.5 mm/yr. These vertical rates are short-term and not sustainable over longer geologic time, emphasizing the complex evolution and dynamics of strike-slip zones.

  19. Do faults stay cool under stress?

    Savage, H. M.; Polissar, P. J.; Sheppard, R. E.; Brodsky, E. E.; Rowe, C. D.


    Determining the absolute stress on faults during slip is one of the major goals of earthquake physics as this information is necessary for full mechanical modeling of the rupture process. One indicator of absolute stress is the total energy dissipated as heat through frictional resistance. The heat results in a temperature rise on the fault that is potentially measurable and interpretable as an indicator of the absolute stress. We present a new paleothermometer for fault zones that utilizes the thermal maturity of extractable organic material to determine the maximum frictional heating experienced by the fault. Because there are no retrograde reactions in these organic systems, maximum heating is preserved. We investigate four different faults: 1) the Punchbowl Fault, a strike-slip fault that is part of the ancient San Andreas system in southern California, 2) the Muddy Mountain Thrust, a continental thrust sheet in Nevada, 3) large shear zones of Sitkanik Island, AK, part of the proto-megathrust of the Kodiak Accretionary Complex and 4) the Pasagshak Point Megathrust, Kodiak Accretionary Complex, AK. According to a variety of organic thermal maturity indices, the thermal maturity of the rocks falls within the range of heating expected from the bounds on burial depth and time, indicating that the method is robust and in some cases improving our knowledge of burial depth. Only the Pasagshak Point Thrust, which is also pseudotachylyte-bearing, shows differential heating between the fault and off-fault samples. This implies that most of the faults did not get hotter than the surrounding rock during slip. Simple temperature models coupled to the kinetic reactions for organic maturity let us constrain certain aspects of the fault during slip such as fault friction, maximum slip in a single earthquake, the thickness of the active slipping zone and the effective normal stress. Because of the significant length of these faults, we find it unlikely that they never sustained

  20. Towards understanding earthquake nucleation on a severely misoriented plate boundary fault, Alpine Fault, New Zealand

    Boulton, C. J.; Faulkner, D. R.; Allen, M. J.; Coussens, J.; Menzies, C. D.; Mariani, E.


    New Zealand's Alpine Fault has accommodated relative motion between the Australian and Pacific plates for over 23 million years: first as strike-slip fault and then as an oblique transpressional fault. Despite being driven by principal stresses whose orientations have undoubtedly changed with time, the Alpine Fault continues to accommodate 70% of the relative plate boundary motion. Fault outcrop data and seismic reflection data indicate that the central Alpine Fault is consistently oriented 055/45°SE at depths up to 15 km (i.e., throughout the seismogenic zone); focal mechanisms indicate that the stress tensor is oriented σ1=σHmax=0/117°, σ2=σv, and σ3=0/207° (Boese et al. 2013, doi: 10.1016/j.epsl.2013.06.030). At depth, the central Alpine Fault lies at an angle of 51° to σ1. The Mohr-Coulomb failure criterion stipulates that, for incohesive rocks, reactivation of a fault requires sufficient driving stress to overcome frictional resistance to slip. Using a coefficient of friction (μ) of 0.6, as measured for representative Alpine Fault rocks under in situ conditions (Neimeijer et al. 2016, doi:10.1002/2015JB012593), and an estimated stress shape ratio (Φ=(σ2 - σ3)/(σ1 - σ3)=0.5), a 3-D reactivation analysis was performed (Leclère and Fabbri 2013, doi:10.1016/j.jsg.2012.11.004). Results show that the Alpine Fault is severely misoriented for failure, requiring pore fluid pressures greater than the least principal stress to initiate frictional sliding. However, microstructural evidence, including pseudotachylytes and fault gouge injection structures, suggests that earthquakes nucleate and propagate along this major plate boundary fault. By assuming an increase in differential stress of 15 MPa/km, our analysis shows that reactivation may occur with suprahydrostatic pore fluid pressures given a ≥10° counterclockwise rotation of σHmax. Using measured hydraulic data, we estimate the potential for pore fluid overpressure development within the Alpine

  1. Fault reactivation: The Picuris-Pecos fault system of north-central New Mexico

    McDonald, David Wilson

    The PPFS is a N-trending fault system extending over 80 km in the Sangre de Cristo Mountains of northern New Mexico. Precambrian basement rocks are offset 37 km in a right-lateral sense; however, this offset includes dextral strike-slip (Precambrian), mostly normal dip-slip (Pennsylvanian), mostly reverse dip-slip (Early Laramide), limited strike-slip (Late Laramide) and mostly normal dip-slip (Cenozoic). The PPFS is broken into at least 3 segments by the NE-trending Embudo fault and by several Laramide age NW-trending tear faults. These segments are (from N to S): the Taos, the Picuris, and the Pecos segments. On the east side of the Picuris segment in the Picuris Mountains, the Oligocene-Miocene age Miranda graben developed and represents a complex extension zone south of the Embudo fault. Regional analysis of remotely sensed data and geologic maps indicate that lineaments subparallel to the trace of the PPFS are longer and less frequent than lineaments that trend orthogonal to the PPFS. Significant cross cutting faults and subtle changes in fault trends in each segment are clear in the lineament data. Detailed mapping in the eastern Picuris Mountains showed that the favorably oriented Picuris segment was not reactivated in the Tertiary development of the Rio Grande rift. Segmentation of the PPFS and post-Laramide annealing of the Picuris segment are interpreted to have resulted in the development of the subparallel La Serna fault. The Picuris segment of the PPFS is offset by several E-ESE trending faults. These faults are Late Cenozoic in age and interpreted to be related to the uplift of the Picuris Mountains and the continuing sinistral motion on the Embudo fault. Differential subsidence within the Miranda graben caused the development of several synthetic and orthogonal faults between the bounding La Serna and Miranda faults. Analysis of over 10,000 outcrop scale brittle structures reveals a strong correlation between faults and fracture systems. The dominant

  2. Adaptive Modeling for Security Infrastructure Fault Response

    CUI Zhong-jie; YAO Shu-ping; HU Chang-zhen


    Based on the analysis of inherent limitations in existing security response decision-making systems, a dynamic adaptive model of fault response is presented. Several security fault levels were founded, which comprise the basic level, equipment level and mechanism level. Fault damage cost is calculated using the analytic hierarchy process. Meanwhile, the model evaluates the impact of different responses upon fault repair and normal operation. Response operation cost and response negative cost are introduced through quantitative calculation. This model adopts a comprehensive response decision of security fault in three principles-the maximum and minimum principle, timeliness principle, acquiescence principle, which assure optimal response countermeasure is selected for different situations. Experimental results show that the proposed model has good self-adaptation ability, timeliness and cost-sensitiveness.

  3. Evidence for Triassic sinistral shear along the Altyn Tagh fault, northern Tibet (China)

    Li, H.; Yang, J.; Wu, C.; Xu, Z.; Tapponnier, P.; Arnaud, N.


    The strike-slip faults of north Tibet accommodate part of the Cenozoic convergence between India and Asia. Along the Xorkol basin west-north of Qaidam, the active traces of the Altyn Tagh fault follow narrow belts of granitic and amphibolitic mylonites. The deformation recorded in those mylonites is sinistral strike-slip. Three types of zircon may be sorted out from the mylonites: anatectic (magmatic), long columnar zircons, magmatic columnar zircons, and residual, metamorphic, sub-rounded zircon. Three groups of U-Pb ages measured by ion microprobe (SHRIMP) on single zircon were obtained: 530-550Ma for the columnar, magmatic zircon, 460-510Ma for the sub-rounded, residual metamorphic zircon, and 235-245Ma for the long-columnar anatectic (magmatic) zircon. The latter type of zircon is well oriented with the crystal long axis parallel to the stretching lineation. Mineral inclusions in the oriented zircons are also parallel to the stretching lineation, which coincides with the direction of maximum tectonic stress in the process of the strike-slip. Raman spectrum study indicates that the inclusion minerals show the melting phase feature, and cathodoluminescence images show that this type of zircon has a relatively homogeneous internal structure. Therefore, the long columnar zircons resulted from rapid oriented growth in a partial melting regime in the ductile shear process. It not only denotes the direction of shear strain in the strike-slip shear, but the growth age (crystallization age) of this type of zircon denotes the age of strike-slip shear. 40Ar/39Ar ages of directionaly grown hornblendes and biotite in the same samples are 220-230Ma and 190-200Ma, respectively. This suggest syntectonic anatexis and cooling occurred during strike-slip shear along the Altyn Tagh fault in Triassic time (to Early Jurassic). The Triassic shear may be related to oblique collision between the Bayan Har and the Kunlun- Qaidam blocks. 120Ma (Arnaud, et al., 2003) and 90Ma (Liu, et al

  4. A Flexible Fault Management Architecture for Cluster Flight Project

    National Aeronautics and Space Administration — Emergent Space Technologies proposes to develop a flexible, service-oriented Fault Management (FM) architecture for cluster fight missions. This FM architecture will...


    M. Ahmed; V. Laxmi; M. S. Gaur


    Occurrence of faults in Network on Chip (NoC) is inevitable as the feature size is continuously decreasing and processing elements are increasing in numbers.Faults can be revocable if it is transient.Transient fault may occur inside router,or in the core or in communication wires.Examples of transient faults are overflow of buffers in router,clock skew,cross talk,etc..Revocation of transient faults can be done by retransmission of faulty packets using oblivious or adaptive routing algorithms.Irrevocable faults causes non-functionality of segment and mainly occurs during fabrication process.NoC reliability increases with the efficient routing algorithms,which can handle the maximum faults without deadlock in network.As transient faults are temporary and can be easily revoked using retransmission of packet,permanent faults require efficient routing to route the packet by bypassing the nonfunctional segments.Thus,our focus is on the analysis of adaptive minimal path fault tolerant routing to handle the permanent faults.Comparative analysis between partial adaptive fault tolerance routing West-First,North-Last,Negative-First,Odd Even,and Minimal path Fault Tolerant routing (MinFT) algorithms with the nodes and links failure is performed using NoC Interconnect RoutinG and Application Modeling simulator (NIRGAM) for the 2D Mesh topology.Result suggests that MinFT ensures data transmission under worst conditions as compared to other adaptive routing algorithms.

  6. Geodetic measurement of deformation east of the San Andreas fault in central California

    Sauber, Jeanne; Lisowski, Michael; Solomon, Sean C.

    Triangulation and trilateration data from two geodetic networks located between the San Andreas fault and the Great Valley have been used to calculate shear strain rates in the Diablo Range and to estimate the slip rate along the Calaveras and Paicines faults in central California. The shear strain rates, γ1 and γ2, were estimated independently from angle changes using Prescott's method and from the simultaneous reduction for station position and strain parameters using the DYNAP method with corrections to reduce the triangulation and trilateration data to a common reference surface. On the basis of Prescott's method, the average shear strain rate across the Diablo Range for the time period between 1962 and 1982 is 0.15±0.08 μrad/yr, with the orientation of the most compressive strain (β) at N16°E±14°. Utilizing corrections for the deflection of the vertical and the geoid reference ellipsoid separation computed on the basis of local gravity observations, γ = 0.19±0.09 μrad/yr and β = N16°E±13°. Although γ is not significantly greater than zero, at the 95% confidence level the orientation of β is similar to the direction of maximum compressive strain indicated by the orientation of major fold structures in the region (N25°E). We infer that the measured strain is due to compression across the folds of this area; the average shear straining corresponds to a relative shortening rate of 5.7±2.7 mm/yr. In contrast to the situation throughout most of the Coast Ranges where fold axes have orientations approximately parallel to the San Andreas fault, within the Diablo Range between Hollister and Coalinga the trends of the fold axes are different and are thought to be controlled by reactivation of older structures. From trilateration measurements made between 1972 and 1987 on lines that are within 10 km of the San Andreas fault, a slip rate of 10-12 mm/yr was calculated for the Calaveras-Paicines fault south of Hollister. The slip rate on the Paicines

  7. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Faqi Diao


    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  8. The Testability of Maximum Magnitude

    Clements, R.; Schorlemmer, D.; Gonzalez, A.; Zoeller, G.; Schneider, M.


    Recent disasters caused by earthquakes of unexpectedly large magnitude (such as Tohoku) illustrate the need for reliable assessments of the seismic hazard. Estimates of the maximum possible magnitude M at a given fault or in a particular zone are essential parameters in probabilistic seismic hazard assessment (PSHA), but their accuracy remains untested. In this study, we discuss the testability of long-term and short-term M estimates and the limitations that arise from testing such rare events. Of considerable importance is whether or not those limitations imply a lack of testability of a useful maximum magnitude estimate, and whether this should have any influence on current PSHA methodology. We use a simple extreme value theory approach to derive a probability distribution for the expected maximum magnitude in a future time interval, and we perform a sensitivity analysis on this distribution to determine if there is a reasonable avenue available for testing M estimates as they are commonly reported today: devoid of an appropriate probability distribution of their own and estimated only for infinite time (or relatively large untestable periods). Our results imply that any attempt at testing such estimates is futile, and that the distribution is highly sensitive to M estimates only under certain optimal conditions that are rarely observed in practice. In the future we suggest that PSHA modelers be brutally honest about the uncertainty of M estimates, or must find a way to decrease its influence on the estimated hazard.

  9. Fault geometry and earthquake mechanics

    D. J. Andrews


    volume increment for a given slip increment becomes larger. A juction with past accumulated slip ??0 is a strong barrier to earthquakes with maximum slip um < 2 (P/µ u0 = u0/50. As slip continues to occur elsewhere in the fault system, a stress concentration will grow at the old junction. A fresh fracture may occur in the stress concentration, establishing a new triple junction, and allowing continuity of slip in the fault system. The fresh fracture could provide the instability needed to explain earthquakes. Perhaps a small fraction (on the order of P/µ of the surface that slips in any earthquake is fresh fracture. Stress drop occurs only on this small fraction of the rupture surface, the asperities. Strain change in the asperities is on the order of P/µ. Therefore this model predicts average strais change in an earthquake to be on the order of (P/µ2 = 0.0001, as is observed.

  10. Morphometric analysis of El Salvador Fault Zone. Implications to the tectonic evolution. Central America.

    Alonso-Henar, Jorge; Jesús Martínez-Díaz, José; Álvarez-Gómez, José Antonio


    It is considered that the study of the recent topography development, and the use of geomorphological indexes are good tools for the quantification of the active tectonics. We have used quantitative geomorphology in order to improve our understanding of the recent activity and tectonic evolution of the El Salvador Fault Zone (ESFZ); an E-W oriented strike-slip fault zone that extends 150 km through El Salvador (Martínez-Díaz et al. 2004). Previous studies propose a transtensive tectonic regime at the Central America Volcanic Arc in El Salvador, which induces relative vertical motions on the faults within El Salvador Fault Zone (i.e. Álvarez-Gómez et al., 2008, Cáceres et al. 2005,). This relative vertical displacement can be quantified with the use of hypsometry as a geomorphological character. The morphometric analysis done contributes to a better understanding of the ESFZ. We have defined km scale tectonic block relative displacements that may be useful to constrain the strain distribution along the ESFZ, length of segments with homogeneous vertical movements and lateral relay of active structures. This study supports the hypothesis of a recent migration in the maximum shortening direction, and the accomodation of the current deformation through the reactivation of pre-existing structures inherited from a previous tectonic frame. A similar tectonic evolution as described Weinberg (1992) in Nicaragua, is interpreted from the results of this study.

  11. Identification of Lembang fault, West-Java Indonesia by using controlled source audio-magnetotelluric (CSAMT)

    Sanny, Teuku A.


    The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as

  12. Seismicity and Tectonics of the West Kaibab Fault Zone, AZ

    Wilgus, J. T.; Brumbaugh, D. S.


    The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of the WKFZ and the NASB as well.

  13. New Cretaceous and Tertiary Paleomagnetic Results from the Central Tibet Conjugate Fault Zone

    Foster, S.; Finn, D.; Zhao, X.; Coe, R. S.; Spinardi, F.; Lippert, P. C.; Yin, A.; Wang, C.; Meng, J.; Zhang, S.; Li, H.


    Cretaceous Langshan Formation and Duoni Formation from the southern region of the conjugate fault zone suggest that faults have not rotated since initiation. These paleomagnetic results show clean demagnetization behavior in Zjiderveld diagrams and pass fold tests. The Asian shortening estimate predicted by this study (~700 km) is similar to those suggested by other recent paleomagnetic studies and agrees well with the shortening accounted for in the geologic record. This past Spring of 2012 we collected 175 additional samples from both the northern and southern Conjugate strike-slip faults are widespread features throughout the Alpine-Himalayan collision zone. They often exhibit V-shapes in map view and trend 60-75° from the maximum compressive-stress (σ1). Andersonian fault mechanics predicts that X-shaped faults form at ~30° from σ1. Consequently, V-shaped conjugate faults have been thought to initiate at ~30° to σ1, and subsequently rotate into their current orientation through continued shortening. A new Paired General Shear Zone (Yin and Taylor, 2011) model may explain development of faults in their modern orientations, predicting no rotation. Strike-slip faulting produces rigid-body motion and internal deformation quantifiable by paleomagnetism when integrated with structural information. We wonder if paleomagnetic studies of the fault-bounded blocks in central Tibet would allow us to differentiate the competing models for the formation of V-shaped conjugate faults. Our existing results from the early-mid regions of the conjugate fault zone. Thermal and alternating field demagnetization techniques will be used to remove overprints and isolate the characteristic remanent directions. Rock magnetic measurements will be conducted to determine what minerals carry the primary magnetization and what their magnetic domain states are. We will use the elongation/inclination correction to account for inclination shallowing effects in sediments. Also, we will

  14. Fault segmentation and fluid flow in the Geneva Basin (France & Switzerland)

    Cardello, Giovanni Luca; Lupi, Matteo; Makhloufi, Yasin; Do Couto, Damien; Clerc, Nicolas; Sartori, Mario; Samankassou, Elias; Moscariello, Andrea; Gorin, Georges; Meyer, Michel


    The Geneva Basin (GB) is an Oligo-Miocene siliciclastic basin tightened between the Alps and the southern Jura fold-and-thrust belt, whose carbonate reservoir is crossed by faults of uncertain continuity. In the frame of the geothermal exploration of the GB, the associated side risks, i.e., maximum expected earthquake magnitude, and the best suitable geothermal structures need to be determined. The outcropping relieves represent good field analogues of buried structures identified after seismo-stratigraphic analysis. In this frame, we review the regional tectonics to define the i) present-day setting, ii) fault properties and; iii) preferential paths for fluid flow. Field and geophysical data confirmed that during the late Oligocene-early Miocene the Molasse siliciclastic deposits progressively sealed the growing anticlines consisting of Mesozoic carbonates. Those are shaped by a series of fore- and back-thrusts, which we have identified also within the Molasse. As shortening is accommodated by bed-to-bed flexural-slip within shale-rich interlayers, usually having scarce hydraulic inter-connectivity, syn-kinematic mineralization massively concentrates instead within two strike-slip sets. The "wet" faults can be distinguished on the base of: orientation, amount of displacement and fabric. The first set (1) is constituted by left-lateral NNW-striking faults. The most remarkable of those, the Vuache Fault, is about 20 km long, determining a pop-up structure plunging to the SE. Minor structures, up to 5 km long, are the tear-faults dissecting the Salève antiform. In places, those are associated with brittle-ductile transition textures and crack-and-seal mineralization. Set (1) later evolved into discrete and still segmented faulting as it is traced by earthquakes nucleated at less than 5 km of depth (ML 5.3, Epagny 1996). The second set (2) is constituted by W/NW-striking right-lateral faults, up to 10 km long, associated in places with thick polyphase breccia

  15. Fault Tolerant Feedback Control

    Stoustrup, Jakob; Niemann, H.


    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  16. Maximum permissible voltage of YBCO coated conductors

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)


    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  17. Core Description and Characteristics of Fault Zones from Hole-A of the Taiwan Chelungpu-Fault Drilling Project

    En-Chao Yeh


    Full Text Available Taiwan Chelungpu-fault Drilling Project was conducted in drill site Dakeng, Taichung City of central western Taiwan during 2004 - 2005 principally to investigate the rupture mechanism in the northern segment of the Chi-Chi earthquake of 21 September 1999, and also to examine regional stratigraphy and tectonics. Core examination (500 - 1800 m of Hole-A gave profound results aiding in illustrating the lithologic column, deformation structure, and architectural pattern of fault zones along the borehole. Lithology column of Hole-A was identified downward as the Cholan Formation (500 - 1027 m, Chinshui Shale (1027 - 1268 m, Kueichulin Formation (1268 - 1712 m, and back to the Cholan Formation (1712 - 2003 m again. A dramatic change is observed regarding sedimentation age and deformation structure around 1712 m. Along the core, most bedding dips _ _ Around 1785 m, bedding dip jumps up to _ the bottom of borehole. Five structure groups of different orientations (dip direction/dip are observed throughout the core. Based on the orientation and sense of shear, they are categorized as thrust (105/30, left-lateral fault (015/30 - 80, right-lateral fault (195/30 - 80, normal fault (105/5 - 10, and backthrust (285/40 - 50. Ten fault zones have been recognized between 500 and 2003 m. We interpret the fault zone located at around 1111 m as being the most likely candidate for rupture deformation during Chi-Chi earthquake. The fault zone seated around 1712 m is recognized as the Sanyi fault zone which is 600 m beneath the Chelungpu fault zone. Ten fault zones including thrust faults, strike-slip faults and backthrust are classified as the Chelungpu Fault System (1500 m. According to the deformation textures within fault zones, the fault zones can be categorized as three types of deformation: distinct fracture deformation, clayey-gouge deformation, and soft-rock deformation. Fracture deformation is dominant within the Chelungpu Fault System and abother two

  18. Measurement of Creep on the Calaveras Fault at Coyote Dam using Terrestrial Radar Interferometry (TRI).

    Baker, B.; Cassotto, R.; Fahnestock, M. A.; Werner, C. L.; Boettcher, M. S.


    The Calaveras fault in central California is part of the San Andreas fault system. Coyote Dam, an earthen dam that straddles the fault ~13km northeast of Gilroy, experiences creep style deformation that ranges from 10 to 15 mm/yr. Uncertainty in the location of the fault, coupled with the historic rate of deformation, affect the dam's safety factor. Assessing the impact of fault creep on the dam's stability is paramount to its safety evaluation, but is difficult to resolve due to limited spatial and temporal sampling of conventional methods. Terrestrial radar interferometry (TRI), like satellite-based observations, produces high spatial resolution maps of ground deformation. Unlike space-based sensors, TRI can be readily deployed and the observation geometry selected to get the maximum line of sight (LOS) signal. TRI also benefits from high temporal sampling which can be used to reduce errors related to atmospheric phase delays and high temporal sampling also facilitates tracking rapidly moving features such as landslides and glaciers. GAMMA Portable Radar Interferometer (GPRI) measurements of Coyote Dam rock faces were made from concrete piers built upstream and downstream of the dam. The GPRI operates at a radar frequency of 17.2 GHz with a spatial resolution at the dam of approximately 0.9 m x 2.0 m. Changes in LOS path length smaller than 0.1mm can be measured. Data were acquired approximately every 2 to 3 weeks over a 7-month period to map the fault trace through the dam faces. Our study exploits the dense record of observations obtained, and the relatively short distance of the radar to the dam to minimize atmospheric affects. We investigate how the deformation evolves in time and the orientation of fault through the dam, including the strike and dip as measured along the dam surface. Our results show rates consistent with GPS data and regional satellite observations, but produce a much more detailed map of the fault on the dam than possible with GPS or

  19. Modeling of Stress Triggered Faulting at Agenor Linea, Europa

    Nahm, A. L.; Cameron, M. E.; Smith-Konter, B. R.; Pappalardo, R. T.


    To better understand the role of tidal stress sources and implications for faulting on Europa, we investigate the relationship between shear and normal stresses at Agenor Linea (AL), a ~1500 km long, E-W trending, 20-30 km wide zone of geologically young deformation located in the southern hemisphere of Europa which forks into two branches at its eastern end. The orientation of AL is consistent with tensile stresses resulting from long-term decoupled ice shell rotation (non-synchronous rotation [NSR]) as well as dextral shear stresses due to diurnal flexure of the ice shell. Its brightness and lack of cross-cutting features make AL a candidate for recent or current activity. Several observations indicate that right-lateral strike-slip faulting has occurred, such as left-stepping en echelon fractures in the northern portion of AL and the presence of an imbricate fan or horsetail complex at AL's western end. To calculate tidal stresses on Europa, we utilize SatStress, a numerical code that calculates tidal stresses at any point on the surface of a satellite for both diurnal and NSR stresses. We adopt SatStress model parameters appropriate to a spherically symmetric ice shell of thickness 20 km, underlain by a global subsurface ocean: shear modulus G = 3.5 GPa, Poisson ratio ν = 0.33, gravity g= 1.32 m/s2, ice density ρ = 920 kg/m3, satellite radius R= 1.56 x 103 km, satellite mass M= 4.8 x 1022 kg, semimajor axis a= 6.71 x 105 km, and eccentricity e= 0.0094. In this study we assume a coefficient of friction μ = 0.6 and consider a range of vertical fault depths zto 6 km. To assess shear failure at AL, we adopt a model based on the Coulomb failure criterion. This model balances stresses that promote and resist the motion of a fault, simultaneously accounting for both normal and shear tidal and NSR stresses, the coefficient of friction of ice, and additional stress at depth due to the overburden pressure. In this model, tidal shear stresses drive strike-slip motions

  20. Selected fault testing of electronic isolation devices used in nuclear power plant operation

    Villaran, M.; Hillman, K.; Taylor, J.; Lara, J.; Wilhelm, W. [Brookhaven National Lab., Upton, NY (United States)


    Electronic isolation devices are used in nuclear power plants to provide electrical separation between safety and non-safety circuits and systems. Major fault testing in an earlier program indicated that some energy may pass through an isolation device when a fault at the maximum credible potential is applied in the transverse mode to its output terminals. During subsequent field qualification testing of isolators, concerns were raised that the worst case fault, that is, the maximum credible fault (MCF), may not occur with a fault at the maximum credible potential, but rather at some lower potential. The present test program investigates whether problems can arise when fault levels up to the MCF potential are applied to the output terminals of an isolator. The fault energy passed through an isolated device during a fault was measured to determine whether the levels are great enough to potentially damage or degrade performance of equipment on the input (Class 1E) side of the isolator.

  1. Spectral Analysis of Localized Stress Variations, the Spatial Distribution of Faults, and the Scaling of Physical Properties near the San Andreas Fault

    Day-Lewis, A.; Zoback, M. D.; Hickman, S. H.


    Statistical characterization of stress-induced wellbore failures and rock property heterogeneity from well logs offers potential insight into the scaling properties and mechanisms of stress heterogeneity. Wellbore breakouts identified in acoustic wellbore image data obtained adjacent to the San Andreas Fault, from both the San Andreas Fault Observatory at Depth (SAFOD) and the Cajon Pass Scientific Borehole, reveal multi-scale rotations in the direction of maximum horizontal compressive stress (SHmax) as a function of depth. Similar breakout rotations are frequently observed in other deep wellbores and, in most cases, reflect small variations in the directions and/or magnitudes of the in situ principal stresses superimposed on a relatively uniform regional stress state. To determine possible physical causes for these rotations, we employ spectral and statistical methods to investigate the relationships between the breakout rotations observed in our study wells and stress drops associated with slip on faults in highly fractured crust adjacent to a major fault zone. We also address the possible role of rock property variability as a controlling mechanism, taking into account drilling and data acquisition artifacts. We find that physical property heterogeneity in the SAFOD Pilot Hole behaves as self-similar, flicker noise (i.e., 1/f) over wavelengths from one meter to one kilometer, a result that agrees with similar investigations at Cajon Pass and a variety of other locations throughout the world. The stress orientations in both wells, however, exhibit behavior between that of flicker noise and Brownian motion over wavelengths from one decimeter to several kilometers, which is similar to how earthquake frequency has been shown to scale with fault size. The fractal scaling of observed stress heterogeneity appears to be more closely related to the distribution of faults in the crust adjacent to the study wells than to heterogeneity of elastic or other in-situ physical

  2. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...

  3. Methodology for locating faults in the Eastern distribution system PDVSA, Punta de Mata and Furrial Divisions; Metodologia para la localizacion de fallas en el sistema de distribucion de PDVSA Oriente, Divisiones Punta de Mata y Furrial

    Martinez, F [Universidad Nacional Experimental Politecnica, Antonio Jose de Sucre, Guayana, Bolivar (Venezuela)]. E-mail:; Vasquez, C [Petroleos de Venezuela S.A., Maturin, Monagas (Venezuela)]. E-mail:


    Fault location in distribution systems has received a lot of attention in recent years in order to increase the availability of electricity supply. Due to the characteristics of distribution networks, fault location is a complicated task, so methods have been developed based on the variation of current and voltage values measured at the source substation, in normal operating condition and under the occurrence of short circuits. This article presents the implementation in MATLAB of a fault location algorithm applied to distribution systems, based on graphical analysis of the fault reactance which is determined by the minimum value of the reactance, using serial impedance matrix and fault/prefault voltage and current metering. Developed Tool Accuracy was verified by comparing the results obtained through it with actual recorded event data (Multilin SR 760) and distance to a known failure point. Additionally the method was applied to an experimental case that was compared with network fault simulation using ETAP Software. For both evaluated cases, the absolute error did not exceed 7%. [Spanish] La localizacion de fallas en sistemas de distribucion ha recibido atencion en los ultimos anos con el fin de aumentar la disponibilidad del suministro de energia electrica. Debido a las caracteristicas propias de las redes de distribucion, la ubicacion de fallas resulta una tarea complicada, por lo que se han desarrollado metodos basados en la variacion de los valores de corriente y voltaje medidos en la subestacion fuente, en condicion normal de operacion y ante la ocurrencia de cortocircuitos. Este articulo presenta la implementacion en MATLAB de un algoritmo de localizacion de fallas en sistemas de distribucion que se fundamenta en el analisis grafico de la reactancia de falla, mediante el cual se determina el minimo valor de la reactancia, utilizando la matriz de impedancia serie y la medicion de los voltajes y corrientes de prefalla y falla. Se verifico la precision de la

  4. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene


    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  5. InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan

    Fattahi, Heresh; Amelung, Falk


    We use 2004-2011 Envisat synthetic aperture radar imagery and InSAR time series methods to estimate the contemporary rates of strain accumulation in the Chaman Fault system in Pakistan and Afghanistan. At 29 N we find long-term slip rates of 16 ± 2.3 mm/yr for the Ghazaband Fault and of 8 ± 3.1 mm/yr for the Chaman Fault. This makes the Ghazaband Fault one of the most hazardous faults of the plate boundary zone. We further identify a 340 km long segment displaying aseismic surface creep along the Chaman Fault, with maximum surface creep rate of 8.1 ± 2 mm/yr. The observation that the Chaman Fault accommodates only 30% of the relative plate motion between India and Eurasia implies that the remainder is accommodated south and east of the Katawaz block microplate.

  6. Fault detection and isolation in systems with parametric faults

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  7. Iowa Bedrock Faults

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  8. null Faults, null Images

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  9. 基于动态可靠度的在役桥梁维修决策经济优化分析%Maximum Expected Benefit-Oriented Optimal Maintenance Decision for Existing Bridges

    孙晓燕; 黄承逵; 孙保沭


    An optimal maintenance program is the key to making appropriate decisions to minimize cost and maintain an appropriate level of safety. In this paper, the strategy on repairing and strengthening of existing bridges based on time-dependent reliability was analyzed with the maximum expected benefit as the objective function. Risk ranking and lifecycle cost analysis were considered in the reliability-based bridge assessment. A practical application of risk-ranking decision was illustrated herein based on updated inspection informarion with the bridge at survival age 35. The effects of improvement of live load and difference of repair methods on time-dependent reliability of existing bridges were studied. The decision method can be used in real projects, with the cost of failure consequence and the risk of failure considered.

  10. Performance based fault diagnosis

    Niemann, Hans Henrik


    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  11. Fault tolerant computing systems

    Randell, B


    Fault tolerance involves the provision of strategies for error detection, damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (15 refs).

  12. Fault Tolerant Control Systems

    Bøgh, S. A.

    was to avoid a total close-down in case of the most likely faults. The second was a fault tolerant attitude control system for a micro satellite where the operation of the system is mission critical. The purpose was to avoid hazardous effects from faults and maintain operation if possible. A method...

  13. Danish orientalism

    Zerlang, Martin


    Orientalism became an important current in nineteenth-century Danish culture, but although it was contemporaneous with the orientalism of the leading European nations - Great Britain, France, Germany...

  14. Summarize of Electric Vehicle Electric System Fault and Fault-tolerant Technology

    Zhang Liwei


    Full Text Available Electric vehicle drive system is a multi-variable function, running environment complexed and changeable system, so it’s failure form is complicated. In this paper, according to the fault happens in different position, establish vehicle fault table, analyze the consequences of failure may cause and the causes of failure. Combined with hardware limitations, and the maximum guarantee system performance requirements, passive software redundancy fault-tolerant strategy is put forward, give an example to analysis the pros and cons of this method.

  15. Nucleation and growth of strike slip faults in granite.

    Segall, P.; Pollard, D.P.


    Fractures within granodiorite of the central Sierra Nevada, California, were studied to elucidate the mechanics of faulting in crystalline rocks, with emphasis on the nucleation of new fault surfaces and their subsequent propagation and growth. Within the study area the fractures form a single, subparallel array which strikes N50o-70oE and dips steeply to the S. Some of these fractures are identified as joints because displacements across the fracture surfaces exhibit dilation but no slip. The joints are filled with undeformed minerals, including epidote and chlorite. Other fractures are identified as small faults because they display left-lateral strike slip separations of up to 2m. Slickensides, developed on fault surfaces, plunge 0o-20o to the E. The faults occur parallel to, and in the same outcrop with, the joints. The faults are filled with epidote, chlorite, and quartz, which exhibit textural evidence of shear deformation. These observations indicate that the strike slip faults nucleated on earlier formed, mineral filled joints. Secondary, dilational fractures propagated from near the ends of some small faults contemporaneously with the left-lateral slip on the faults. These fractures trend 25o+ or -10o from the fault planes, parallel to the direction of inferred local maximum compressive stress. The faults did not propagate into intact rock in their own planes as shear fractures. -from Authors

  16. Information Based Fault Diagnosis

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  17. Fault-Tree Compiler

    Butler, Ricky W.; Boerschlein, David P.


    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  18. Brittle fault analysis from the immediate southern side of the Insubric fault

    Pleuger, Jan; Mancktelow, Neil


    The Insubric segment of the Periadriatic fault is characterised in its central part between Lago Maggiore and Valle d'Ossola by two greenschist-facies mylonitic belts which together are about 1 km thick. The northern, external belt has a north-side-up kinematics generally with a minor dextral component and the southern internal belt is dextral, locally with a considerable south-side-up component. Overprinting relations locally show that the internal belt is younger than the external one (e.g. Schmid et al., 1987). The absolute age of dextral shearing is probably given by K-Ar white mica ages ranging mostly between from c. 27 to 23 Ma (Zingg and Hunziker, 1990). We analysed fault-slip data from various locations in the Southern Alps immediately south of the Insubric Fault. From the results, two different patterns of orientations of contraction (P-axes) and extension (T-axes) axes can be distinguished. One group (group 1) of analyses is compatible with dextral transpression (i.e. both P- and T-axes are subhorizontal) and the other (group 2) with roughly orogen-perpendicular extension (i.e. subvertical P-axes and subhorizontal T-axes). The orientations of subhorizontal axes (P- and T-axes in group 1, T-axes in group 2) show a tendency to follow the curved shape of the Insubric fault, i.e. P-axes of group 1 and T-axes of group 2 change from NNW-SSE in the east where the Insubric fault trends east-west to WNW-ESE in the west where the Insubric fault trends northeast-southwest. We speculate that group 1 formed at the same time as dextral shearing on in the internal mylonite belt while none of our fault analyses reflects the north-side-up reverse faulting that is observed in the external mylonite belt. The northwest-southeast extension documented in the analyses of group 2 is not associated with a continuous mylonitic belt or brittle fault plane along the Insubric fault. Instead, an uplift of the Southern Alps with respect to the northern block was accommodated by

  19. Evidence for active faults in Küçükçekmece Lagoon (Marmara Sea, Turkey), inferred from high-resolution seismic data

    Alp, Hakan


    A total of 42 km of high-resolution seismic reflection and bathymetric data were collected for the first time to document stratigraphic and structural features of the uppermost 5 m of the Holocene sedimentary infill of Küçükçekmece Lagoon along the Marmara Sea coast of Turkey. The lagoon gradually deepens from 1 m off the northern coast to a maximum of 20 m in the southern basin. Stratigraphically, the uppermost seismic unit is characterized by a generally parallel reflection configuration, indicating deposition under low-energy conditions. In the southern basin of the lagoon, the sub-bottom is locally characterized by frequency attenuated and chaotic reflections interpreted as gas-charged sediments. Structurally, the soft sediment of the first 5 m below the lagoon floor is locally deformed by active strike-slip fault zones, here named FZ1, FZ2, and FZ3. These fault zones are NW-SE oriented and follow the long axis of the lagoon, compatible with the geographic alignment of the lagoon, the onland drainage pattern, and the scarps of the surrounding terrain. Moreover, the fault zones in Küçükçekmece Lagoon are well correlated with active offshore faults mapped during previous studies. This suggests that the FZ1, FZ2, and FZ3 fault zones are not merely local fault systems deforming the Küçükçekmece Lagoon bottom, but that they may be part of a regional fault zone extending both north and southward to merge with the northern branch of the North Anatolian Fault Zone (NAFZ) in the Çınarcık Basin. This, however, needs to be confirmed by further structural and seismological studies around Küçükçekmece Lagoon in order to more firmly establish its link with the NAFZ in the Marmara Sea, and to highlight potential seismic risks for the densely populated Istanbul metropolitan area.

  20. Source parameters of the 2013, Ms 7.0, Lushan earthquake and the characteristics of the near-fault strong ground motion

    Zhao, Fengfan; Meng, Lingyuan


    The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).

  1. Fault zone architecture within Miocene–Pliocene syn-rift sediments, Northwestern Red Sea, Egypt

    Khairy S Zaky


    The present study focusses on field description of small normal fault zones in Upper Miocene–Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW–SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE–SW. The minimum (σ3) and intermediate (σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis (σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ∼0.5 to ∼8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement <1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of >2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses’ structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.

  2. Strong paleoearthquakes along the Talas-Fergana Fault, Kyrgyzstan

    A.M. Korzhenkov


    Full Text Available The Talas-Fergana Fault, the largest strike-slip structure in Centred. Asia, forms an obliquely oriented boundary between the northeastern and southwestern parts of the Tianshan mountain belt. The fault underwent active right-lateral strike-slip during the Paleozoic, with right-lateral movements being rejuvenated in the Late Cenozoic. Tectonic movements along the intracontinental strike-slip faults contribute to absorb part of the regional crustal shortening linked to the India-Eurasia collision; knowledge of strike-slip motions along the Talas-Fergana Fault are necessary for a complete assessment of the active deformation of the Tianshan orogen. To improve our understanding of the intracontinental deformation of the Tianshan mountain belt and the occurrence of strong earthquakes along the whole length of the Talas-Fergana Fault, we identify features of relief arising during strong paleoearthquakes along the Talas-Fergana Fault, fault segmentation, the length of seismogenic ruptures, and the energy and age of ancient catastrophes. We show that during neotectonic time the fault developed as a dextral strike-slip fault, with possible dextral displacements spreading to secondary fault planes north of the main fault trace. We determine rates of Holocene and Late Pleistocene dextral movements, and our radiocarbon dating indicates tens of strong earthquakes occurring along the fault zone during arid interval of 15800 years. The reoccurrence of strong earthquakes along the Talas-Fergana Fault zone during the second half of the Holocene is about 300 years. The next strong earthquake along the fault will most probably occur along its southeastern chain during the next several decades. Seismotectonic deformation parameters indicate that M > 7 earthquakes with oscillation intensity I > IX have occurred.

  3. Earthquake fault superhighways

    Robinson, D. P.; Das, S.; Searle, M. P.


    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  4. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    Janssen, C.; Wirth, R.; Wenk, H. -R.; Morales, L.; Naumann, R.; Kienast, M.; Song, S. -R.; Dresen, G. [UCB; (GFZ); (NTU)


    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has been observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.

  5. Analysis of the growth of strike-slip faults using effective medium theory

    Aydin, A.; Berryman, J.G.


    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  6. Extremely Shallow Extensional Faulting Near Geothermal Fields

    Hudnut, K. W.; Wei, S.; Donnellan, A.; Fielding, E. J.; Graves, R. W.; Helmberger, D. V.; Liu, Z.; Parker, J. W.; Treiman, J. A.


    Surface faulting has been discovered in association with a shallow extensional M 4.9 earthquake, the source properties of which have also been studied by modeling of broadband seismic data and geodetic imagery. This M 4.9 and also a M 4.6 shallow normal event occurred late in the Brawley Swarm of August 2012, a dominantly strike-slip sequence with events up to M 5.5 (Hauksson et al., SRL 2013 and Wei et al., GRL 2013). The point source waveform inversions reveal normal mechanisms and centroid depths of ~2.5 km for both events, while the modeling of the geodetic data indicates a compatible depth of ~2.0 km. The M 4.9 event had unusually large (~40 cm) and sudden (~1.0 - 1.5 km/sec) slip, considering its extremely shallow depth. The earlier and larger strike-slip events during the Aug. 2012 swarm were on a left-lateral SW-NE oriented vertical planar cross-fault, whereas the M 4.6 and M 4.9 occurred on a SSW-NNE oriented, west-dipping plane. Airborne imagery obtained using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) revealed a surface fault rupture that was subsequently confirmed and documented in the field in May 2013. A pre-existing but previously un-mapped fault sustained west-down surface slip of up to 18 × 2 cm along breaks extending ~3.5 km along a NNE orientation, and ruptured beneath and under a railroad track and pipeline (without breaking them). UAVSAR and seismological data were used jointly to image the source properties of the M 4.9 earthquake in detail. Typically, the uppermost few kms of right-lateral faults in the Salton Trough exhibit creep, especially after larger earthquakes, as in 1979 and 1987. On this basis, general models of stable sliding within the uppermost few kms have been developed. In this case, however, the joint inversion indicates that seismic energy was radiated by slip of up to 40 cm on a fault plane extending from the surface to a depth of only ~3 km, extending ~4 km along-strike, and dipping ~45° west, with west

  7. Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran

    Landgraf, A.


    The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a “simple” to a “composite” state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.

  8. Fault kinematic and Mesozoic paleo-stress evolution of the Hoop fault complex, Barents Sea

    Etchebes, Marie; Athmer, Wiebke; Stueland, Eirik; Robertson, Sarah C.; Bounaim, Aicha; Steckhan, Dirk; Hellem Boe, Trond; Brenna, Trond; Sonneland, Lars; Reidar Granli, John


    The Hoop fault complex is an extensional fault system characterized by a series of multiscale half- and full-grabens trending NNE-SSW, NE-SW and E-W, and transfer zones striking ENE-WSW. In a joint collaboration between OMV Norge and Schlumberger Stavanger Research, the tectonic history of the Hoop area was assessed. A dense fault network was extracted from 3D seismic data using a novel workflow for mapping large and complex fault systems. The characterization of the fault systems was performed by integrating observations from (1) fault plane analysis, (2) geometrical shapes and crosscutting relationships of the different fault sets, (3) time-thickness maps, and (4) by establishing the relative timing of the tectonic events on key seismic lines orthogonal to the main fault strike azimuths. At least four successive extensional tectonic events affecting the Hoop fault complex have been identified in the Mesozoic. The first tectonic event is characterized by an Upper Triassic extensional event with an E-W trending maximum horizontal paleo-stress direction (Phase 1). This event led to new accommodation space established as a set of full-grabens. The grabens were orthogonally crosscut during the Middle Jurassic by a set of NNE-SSW striking grabens and half-grabens (Phase 2). Phase 3 was inferred from a set of E-W striking reactivated normal faults sealed by the Upper Jurassic-Lower Cretaceous sequence. In the Lower Cretaceous, the general trend of the maximum horizontal paleo-stress axis of Phase 2 rotates clockwise from NNE-SSW to NE-SW (Phase 4). This stress rotation induced the reactivation of Phase 2 and Phase 3 normal fault sets, producing west-dipping half-grabens/tilt-block systems and transtensional fault zones. A comparison between our results and the Mesozoic regional-scale tectonic events published for the Atlantic-Arctic region agrees with our reconstructed paleo-stress history. This implies that the Hoop fault complex is the result of far-field forces

  9. Slip distributions on active normal faults measured from LiDAR and field mapping of geomorphic offsets: an example from L'Aquila, Italy, and implications for modelling seismic moment release

    Wilkinson, Maxwell; Roberts, Gerald P.; McCaffrey, Ken; Cowie, Patience A.; Faure Walker, Joanna P.; Papanikolaou, Ioannis; Phillips, Richard J.; Michetti, Alessandro Maria; Vittori, Eutizio; Gregory, Laura; Wedmore, Luke; Watson, Zoë K.


    Surface slip distributions for an active normal fault in central Italy have been measured using terrestrial laser scanning (TLS), in order to assess the impact of changes in fault orientation and kinematics when modelling subsurface slip distributions that control seismic moment release. The southeastern segment of the surface trace of the Campo Felice active normal fault near the city of L'Aquila was mapped and surveyed using techniques from structural geology and using TLS to define the vertical and horizontal offsets of geomorphic slopes since the last glacial maximum (15 ± 3 ka). The fault geometry and kinematics measured from 43 sites and throw/heave measurements from geomorphic offsets seen on 250 scarp profiles were analysed using a modification of the Kostrov equations to calculate the magnitudes and directions of horizontal principal strain-rates. The map trace of the studied fault is linear, except where a prominent bend has formed to link across a former left-stepping relay-zone. The dip of the fault and slip direction are constant across the bend. Throw-rates since 15 ± 3 ka decrease linearly from the fault centre to the tip, except in the location of the prominent bend where higher throw rates are recorded. Vertical coseismic offsets for two palaeo earthquake ruptures seen as fresh strips of rock at the base of the bedrock scarp also increase within the prominent bend. The principal strain-rate, calculated by combining strike, dip, slip-direction and post 15 ± 3 ka throw rate, decreases linearly from the fault centre towards the tip; the strain-rate does not increase across the prominent fault bend. The above shows that changes in fault strike, whilst having no effect on the principal horizontal strain-rate, can produce local maxima in throw-rates during single earthquakes that persist over the timescale of multiple earthquakes (15 ± 3 ka). Detailed geomorphological and structural characterisation of active faults is therefore a critical

  10. Active faulting in the Birjand region of NE Iran

    Walker, R. T.; Khatib, M. M.


    We use satellite imagery and field observations to investigate the distribution of active faults around Birjand in eastern Iran to determine how the transition between conjugate zones of faulting can be accommodated by diffuse active faulting. In the south of the study area, right-lateral strike-slip faults of the Sistan Suture Zone end in thrusts which die away westward from the strike-slip faults. These thrust terminations appear to allow a northward change to E-W thrusting in central parts of the study area. The introduction of E-W thrusting is, in turn, likely to facilitate a change to E-W left-lateral faulting north of the study region. The relatively diffuse pattern of active faulting at Birjand relates to the regional transition between N-S and E-W strike-slip faulting in northeast Iran, which involves a change from nonrotational to rotational deformation. The change from N-S to E-W faulting is likely to result from the orientation of preexisting structures in Iran and western Afghanistan, which are roughly parallel to the active fault zones. The features described at Birjand also show the influence of preexisting structure on the location and style of active faulting at a local scale, with the position of individual faults apparently controlled by inherited geological weaknesses. Very few modern earthquakes have occurred in the region of Birjand and yet destructive events are known from the historical record. The large number of active faults mapped in this study pose a substantial seismic hazard to Birjand and surrounding regions.

  11. Statistical fault detection in photovoltaic systems

    Garoudja, Elyes


    Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array\\'s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.

  12. Chordal Graphs are Fully Orientable

    Lai, Hsin-Hao


    Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let m and M denote the minimum and the maximum of the number of dependent arcs over all acyclic orientations of G. We call G fully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying m <= d <= M. A graph G is called chordal if every cycle in G of length at least four has a chord. We show that all chordal graphs are fully orientable.

  13. Orienteering club

    Club d'orientation


    Course d'orientation Finale de la coupe genevoise Rapide et méthodique, voilà les qualités dont il fallait faire preuve pour remporter la dernière étape de la coupe organisée par le club du CERN dans les bois de Monteret. Il s’agissait d’une course au score où chaque concurrent disposait d’un temps imparti pour poinçonner le maximum de balises. Le parcours technique a été remporté par Tomas Shellman et le parcours facile par Victor Dannecker. Cette dernière étape était aussi décisive pour la désignation des lauréats de la coupe genevoise de printemps. Les résultats officiels étaient donnés par le président du club, L. Jirden : Circuit Technique Long : Berni Wehrle, Bruno Barge, Edvins Reisons Circuit Technique Moyen : J.-Bernard Zosso, ...

  14. Orienteering Club

    Club d'orientation


    Finale de la coupe d’automne La dernière épreuve de la coupe d’automne organisée par le club d’orientation du CERN s’est déroulée ce samedi 2 novembre avec une course au score dans le bois Tollot (GE). Les concurrents disposaient d’un temps imparti pour poinçonner le maximum de balises différemment placées selon le circuit choisi. Juerg Niggli (club O’Jura) a remporté le parcours technique long. A l’issue de cette course, le classement général de la coupe d’automne, basé sur les 6 meilleurs résultats de la saison, est le suivant : Circuit technique long : 1er Juerg Niggli (O’Jura), 2e Bruno Barge, 3e Beat Mueller. Circuit technique moyen : 1er Laurent Merat (O’Jura), 2e Jirden Lennart, 3e Daria Niggli. Circuit technique court : 1er Victor Kuznetsov (COLJ), 2e N...

  15. Stress evolution and fault stability during the Weichselian glacial cycle

    Lund, Bjoern; Schmidt, Peter; Hieronymus, Christoph (Dept. of Earth Sciences, Uppsala Univ., Uppsala (Sweden))


    glaciation while in a reverse faulting background stress field our models show unstable conditions at the end of the glaciation, in general agreement with the observations. The assumed background stress field, with the direction of maximum horizontal stress in the direction of local plate motion, predicts a fault orientation in general agreement with the overall strike of the Paervie fault. Our simulations of fault stability show a very strong dependence of fault stability on the glacially induced excess pore pressure. Increasing the pressure head to 90% of the local ice weight will cause wide-spread instability during ice covered conditions in a strike-slip background field, while in a reverse field instability is promoted earlier in the glacial cycle. Our approach to estimating the induced pore pressure in this study has been one of very simple static conditions and high permeability, implying an immediate propagation of pressures at the base of the ice sheet to the studied depth.

  16. Comparison between open phase fault of arc suppression coil and single phase to earth fault in coal mine distribution network

    LI Xiao-bo; WANG Chong-lin


    When, in a coal mine distribution network whose neutral point is grounded by an arc suppression coil (ASC), a fault occurs in the ASC, compensation cannot be properly realized. Furthermore, it can damage the safe and reliable run of the network.We first introduce a three-phase five-column arc suppression coil (TPFCASC) and discuss its autotracking compensation theory.Then we compare the single phase to ground fault of the coal mine distribution network with an open phase fault at the TPFCASC using the Thévenin theory, the symmetrical-component method and the complex sequence network respectively. The results show that, in both types of faults, zero-sequence voltage of the network will appear and the maximum magnitude of this zero-sequence voltage is different in both faults. Based on this situation, a protection for the open phase fault at the TPFCASC should be estab-lished.

  17. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...

  18. Rendimiento de materia seca y calidad nutritiva del pasto Panicum maximum vc. Likoni en un suelo fluvisol de la región oriental de Cuba - Yield of dry matter and nutritious quality of the grass Panicum maximum vc. Likoni in a soil of region east of Cuba

    Ramírez, J. L.


    Full Text Available ResumenEn un diseño de bloques al azar con 4 réplicas se evaluó la influencia de la edad de rebrote (30 a 105 días y los factores del clima en el rendimiento de materia y calidad nutritiva del pasto Panicum maximum vc. Likoni. El experimento se desarrolló en un suelo fluvisol en secano y sin fertilización. El rendimiento de MS se incrementó significativamente con la edad (P<0,001 y se ajustaron ecuaciones cuadráticas entre este y la edad, para ambos períodos, con valores superiores a los 90 días (7.23 lluvioso y 2,16 t/ha/corte poco lluvioso. Las variables climáticas mostraron altascorrelaciones (positivas y negativas con el rendimiento y la composición química, más acentuadas en el período poco lluvioso. La proteína bruta, digestibilidad de la MS y MO disminuyeron con la edad (P<0,001 y se ajustaron ecuaciones de regresión cuadrática entre estas variables y la edad, los mayores porcentajes se mostraron a la edad de 30 días en ambos períodos. La FND, FAD, lignina y la Celulosa se incrementaron con la edad (P<0,001, mostrando sus mayores valores a los 105 días de rebrote en ambos períodos y se ajustaron ecuaciones de regresión cuadrática de estas variables respecto a la edad. Se concluye que la edad y las condiciones climáticas tuvieron un marcado efecto en el comportamiento de los indicadores evaluados, más acentuado en el período lluvioso al disminuir la calidad nutritiva.SummaryIn a design of blocks the influence of the days of regrowth was evaluated at random (30 to 105 days and the factors of the climate in the matter yield and nutritious quality of the grass Panicum aximum vc. Likoni. No fertilization or irrigation was practiced. The yield of DM was increased significantly with the age (P <0,001 and quadratic equations were adjusted between this and the age, for both periods, with values superiors to the 90 days (7.23 rainy season and 2,16 dry season t/ha/cut. The climatic variables showed discharges correlations

  19. Chaos Synchronization Based Novel Real-Time Intelligent Fault Diagnosis for Photovoltaic Systems

    Chin-Tsung Hsieh


    Full Text Available The traditional solar photovoltaic fault diagnosis system needs two to three sets of sensing elements to capture fault signals as fault features and many fault diagnosis methods cannot be applied with real time. The fault diagnosis method proposed in this study needs only one set of sensing elements to intercept the fault features of the system, which can be real-time-diagnosed by creating the fault data of only one set of sensors. The aforesaid two points reduce the cost and fault diagnosis time. It can improve the construction of the huge database. This study used Matlab to simulate the faults in the solar photovoltaic system. The maximum power point tracker (MPPT is used to keep a stable power supply to the system when the system has faults. The characteristic signal of system fault voltage is captured and recorded, and the dynamic error of the fault voltage signal is extracted by chaos synchronization. Then, the extension engineering is used to implement the fault diagnosis. Finally, the overall fault diagnosis system only needs to capture the voltage signal of the solar photovoltaic system, and the fault type can be diagnosed instantly.

  20. Geomechanical Modeling of Fault Responses and the Potential for Notable Seismic Events during Underground CO2 Injection

    Rutqvist, J.; Cappa, F.; Mazzoldi, A.; Rinaldi, A.


    The importance of geomechanics associated with large-scale geologic carbon storage (GCS) operations is now widely recognized. There are concerns related to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). In this context, we review a number of modeling studies and field observations related to the potential for injection-induced fault reactivations and seismic events. We present recent model simulations of CO2 injection and fault reactivation, including both aseismic and seismic fault responses. The model simulations were conducted using a slip weakening fault model enabling sudden (seismic) fault rupture, and some of the numerical analyses were extended to fully dynamic modeling of seismic source, wave propagation, and ground motion. The model simulations illustrated what it will take to create a magnitude 3 or 4 earthquake that would not result in any significant damage at the groundsurface, but could raise concerns in the local community and could also affect the deep containment of the stored CO2. The analyses show that the local in situ stress field, fault orientation, fault strength, and injection induced overpressure are critical factors in determining the likelihood and magnitude of such an event. We like to clarify though that in our modeling we had to apply very high injection pressure to be able to intentionally induce any fault reactivation. Consequently, our model simulations represent extreme cases, which in a real GCS operation could be avoided by estimating maximum sustainable injection pressure and carefully controlling the injection pressure. In fact, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. On the other hand, potential future commercial GCS operations from large power plants

  1. Active Fault Diagnosis for Hybrid Systems Based on Sensitivity Analysis and EKF

    Gholami, Mehdi; Schiøler, Henrik; Bak, Thomas


    An active fault diagnosis approach for different kinds of faults is proposed. The input of the approach is designed off-line based on sensitivity analysis such that the maximum sensitivity for each individual system parameter is obtained. Using maximum sensitivity, results in a better precision i...

  2. Fault zone architecture within Miocene-Pliocene syn-rift sediments, Northwestern Red Sea, Egypt

    Zaky, Khairy S.


    The present study focusses on field description of small normal fault zones in Upper Miocene-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.

  3. Analysis of fault using microcomputer protection by symmetrical component method

    Ashish Choubey


    Full Text Available To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. In order to understand microcomputer protection based on the symmetrical component principle, we obtained the sequence current and sequence voltage according to the concept of symmetrical component. Distribution line directly to user-oriented power supply, the reliability of its operation determines the quality and level of electricity supply. In recent decades, because of the general power of the tireless efforts of scientists and technicians, relay protection technology and equipment application level has been greatly improved, but the current domestic production of computer hardware, protection devices are still outdated systems. Software development has maintenance difficulties and short survival time. With the factory automation system interface functions weak points, the network communication cannot meet the actual requirements. Protection principle configuration and device manufacturing process to be improved and so on.

  4. Horizontal principal stress orientation in the Costa Rica Seismogenesis Project (CRISP) transect from borehole breakouts

    Malinverno, A.; Saito, S.; Vannucchi, P.


    The Costa Rica Seismogenesis Project (CRISP) drilled the Pacific margin of the Middle America Trench just north of where the Cocos Ridge enters the subduction zone, resulting in basal erosion of the upper plate. Here we report the orientations of the maximum horizontal principal stress (SHmax) from borehole breakouts detected by logging-while-drilling and wireline downhole measurements. All SHmax directions were estimated in the sediment cover of the margin, above the deeper rocks of the deformed margin wedge. We observe three overall SHmax orientations: NNE-SSW (25° azimuth) in the deepest interval drilled at the upper slope Site U1379; ENE-WSW (82°) in the rest of Site U1379 and in Site U1413, also drilled in the upper slope; and NNW-SSE (157°) in the mid-slope Site U1378. Our preferred interpretation is that the deepest interval of Site U1379 records the stress conditions in the underlying margin wedge, as SHmax is parallel to the direction of the Cocos-Caribbean plate convergence and of the compressional axes of plate boundary fault earthquakes. The variable SHmax directions observed elsewhere are likely due to the effect of a network of normal faults that subdivide the sediment cover into a number of independently deforming blocks. In addition, the observed SHmax directions may be influenced by the subducting Cocos Ridge, which acts as an indenter causing oblique deformation, and by the transition to seismogenic subduction along the plate boundary fault.

  5. The origin of oriented lakes in the Andean foreland, Parque Nacional Torres del Paine (Chilean Patagonia)

    Gonzales, Joseph; Aydin, Atilla


    The Parque Nacional Torres Del Paine and surrounding area in the Magallanes foreland basin in Chilean Patagonia is the site for numerous lakes fed by glaciers and rivers in the Andean highlands to the west. The lakes are elongate and have conspicuously systematic orientations. We hypothesize that the origin of the oriented lakes lies in the fault system, composed of a right-lateral strike-slip fault set oriented 58° from north, a left-lateral strike-slip set oriented 87°, and a thrust fault set oriented 167°, that exists within the underlying rocks. To test this hypothesis quantitatively, we determined the shape and orientation of the lakes by fitting each lake with an ellipse of appropriate aspect ratio, and later with multiple ellipses consistent with the composite geometry of some lakes. We then examined the faults in the area in terms of their kinematics, orientation and distribution. The distribution of lake orientations showed three distinct groups which appear to correspond to the three main fault groups. For lakes fitted with multiple ellipses, the difference in means between the right-lateral, left-lateral, and thrust faults and their corresponding groups of lakes are 3.05°, 1.57°, and 5.17°. Using a Kolmogorov-Smirnov (K-S) statistical test to compare the orientations of faults with respect to the lakes suggests that there is not a strongly significant difference between the fault orientations and the corresponding lake groups. These results indicate that the faults have a profound control on the orientation, shape, and distribution of the lakes. We attribute this to faults and their damage zones being weaker and therefore prone to a faster rate of erosion, and to stress perturbations associated with discontinuous faults resulting in localized high density fracturing and surface subsidence. These results have implications for lake and drainage system morphologies in other foreland basins along the Andes and other similar settings.

  6. Stochastic finite-fault modelling of strong earthquakes in Narmada South Fault, Indian Shield

    P Sengupta


    The Narmada South Fault in the Indian peninsular shield region is associated with moderate-to-strong earthquakes. The prevailing hazard evidenced by the earthquake-related fatalities in the region imparts significance to the investigations of the seismogenic environment. In the present study, the prevailing seismotectonic conditions specified by parameters associated with source, path and site conditions are appraised. Stochastic finite-fault models are formulated for each scenario earthquake. The simulated peak ground accelerations for the rock sites from the possible mean maximum earthquake of magnitude 6.8 goes as high as 0.24 g while fault-rupture of magnitude 7.1 exhibits a maximum peak ground acceleration of 0.36 g. The results suggest that present hazard specification of Bureau of Indian Standards as inadequate. The present study is expected to facilitate development of ground motion models for deterministic and probabilistic seismic hazard analysis of the region.

  7. Reconnaissance study of late quaternary faulting along cerro GoDen fault zone, western Puerto Rico

    Mann, P.; Prentice, C.S.; Hippolyte, J.-C.; Grindlay, N.R.; Abrams, L.J.; Lao-Davila, D.


    The Cerro GoDen fault zone is associated with a curvilinear, continuous, and prominent topographic lineament in western Puerto Rico. The fault varies in strike from northwest to west. In its westernmost section, the fault is ???500 m south of an abrupt, curvilinear mountain front separating the 270- to 361-m-high La CaDena De San Francisco range from the Rio A??asco alluvial valley. The Quaternary fault of the A??asco Valley is in alignment with the bedrock fault mapped by D. McIntyre (1971) in the Central La Plata quadrangle sheet east of A??asco Valley. Previous workers have postulated that the Cerro GoDen fault zone continues southeast from the A??asco Valley and merges with the Great Southern Puerto Rico fault zone of south-central Puerto Rico. West of the A??asco Valley, the fault continues offshore into the Mona Passage (Caribbean Sea) where it is characterized by offsets of seafloor sediments estimated to be of late Quaternary age. Using both 1:18,500 scale air photographs taken in 1936 and 1:40,000 scale photographs taken by the U.S. Department of Agriculture in 1986, we iDentified geomorphic features suggestive of Quaternary fault movement in the A??asco Valley, including aligned and Deflected drainages, apparently offset terrace risers, and mountain-facing scarps. Many of these features suggest right-lateral displacement. Mapping of Paleogene bedrock units in the uplifted La CaDena range adjacent to the Cerro GoDen fault zone reveals the main tectonic events that have culminated in late Quaternary normal-oblique displacement across the Cerro GoDen fault. Cretaceous to Eocene rocks of the La CaDena range exhibit large folds with wavelengths of several kms. The orientation of folds and analysis of fault striations within the folds indicate that the folds formed by northeast-southwest shorTening in present-day geographic coordinates. The age of Deformation is well constrained as late Eocene-early Oligocene by an angular unconformity separating folDed, Deep

  8. Geology and seismotectonics of the North-Anatolian Fault in the Sea of Marmara: implications for seismic hazards

    Gasperini, Luca; Cedro, Vincenzo; Polonia, Alina; Cruise Party, Marmara


    Based on high-resolution multibeam and seismic reflection data recently collected and analysed in the frame of Marsite (New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite) EC FP7 Project, in conjunction with a large set of geophysical and geological data collected starting from 1999, we compiled a new morphotectonic map of the submerged part of the North-Anatolian Fault system (NAF) in the Sea of Marmara. Data analysis allowed us to recognize active fault segments and their activity at the scale of 10 ka, taking as stratigraphic reference the base of the latest marine ingression, which constitutes a clear marker in the sedimentary sequence of the Sea of Marmara. This is mainly due to the fact the Sea of Marmara was a fresh water lake during the Last Glacial Maximum, and switched to a marine environment when the global sea level reached to the -85 m relative to present day and crossed the Dardanelles sill during the transgression. The passage from lacustrine to marine environment is marked by a typical unconformity in high-resolution seismic profiles, which can be correlated over the entire Marmara basin. According to the average recurrence time for major earthquake along the NAF, the time interval of 10 ka should include several earthquake cycle and is representative of the seismotectonic behavior of the fault at geological time scales. Given the relatively high deformation rates relative to in relative to sediment supply, most active tectonic structures have a morphological expression at the seafloor. This allowed us to correlate deformations from a seismic section to the adjacent. Fault strands not affecting the Holocene sequence were considered inactive. Three types of deformation patterns were observed and classified: almost purely E-W oriented strike-slip segments; NE-SW oriented trans-pressional structures; NW-SE trending trans-tensional features. Segmentation of the so-called Main Marmara Fault in the Sea

  9. Runtime prediction and fault-aware oriented grid resource allocation%面向运行时间预测和容错感知的网格资源分配

    赵胜; 王媛媛


    A scheduling policy in which can estimate job runtimes and predict resource availability to efficiently distribute workloads for grid resource is presented and described. Instead of just tolerating failures like fault-tolerant scheduling,the technique will actively try to prevent failures from occurring. It is based on the availability of job nmtime predictions and resource availability estimates,thus the high usage rate of resource can be obtained. By distributing jobs only to resources available for the full executing time of the job,no CPU cycles are wasted on jobs that will be unable to complete. Fur the implementation and testing,the CoBRA grid system is used and several software modules are discussed. Experiments are done for a set of sleep jobs, compared to the FCFS scheduling technique,the results show that large reductions in total runtime can be achieved in situations with variable resource availability.%提出与描述了一种面向任务运行时间预测和容错感知(Fault-Aware)的网格资源分配策略,采用主动容错的方式,在资源出错之前尽量提前避免它出错或异常的情况发生.该策略把网格中任务的运行时间(runtime)预测和资源的在线时间(uptime)预测结合起来,相对于普通的调度策略具有比较高的资源利用率.在具体的CoBRA网格中间件中实现了该容错感知调度,描述了实现该容错感知调度策略模块的功能.测试过程中选择了睡眠任务技术,划分四种不同的场景进行实验,把该容错感知资源分配与普通的FCFS调度策略进行比较,结果证明在可变化的资源可用性的情况下系统可以加快应用的整体执行时间,具有很小的偏差.

  10. Maximum permissible voltage of YBCO coated conductors

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z.; Hong, Z.; Wang, D.; Zhou, H.; Shen, X.; Shen, C.


    Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (Ic) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the Ic degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  11. The Tectonics and the Strength of the San Andreas Fault

    Lavier, L. L.; Bennett, R.


    Contrary to what is inferred from laboratory experiments, the average shear stress supported by the San Andreas fault is likely much less than 100 MPa. Heat flow measurements, stress orientation and shear stress magnitude measurements mostly argue for a very weak fault with an average shear stress lower than 20 MPa or an apparent coefficient of friction less than 0.1. It has been proposed that most of this difference can be explained by heat dissipation by fluid circulation around the fault. However, some workers have shown that with reasonable parameters for fluid flow in and around the fault the strength of the fault remains very weak. We evaluate 2.5 D numerical models of the formation and evolution of the San Andreas Fault zone. We explore a wide range of possible bottom and side boundary conditions to understand their potential effects on the apparent strength of a strike slip-fault. In particular, we consider the effects of a small amount of localized basal traction on one side of the fault. We use the numerical models to simulate partitioning of deformation between thrust and strike-slip faulting constrained by geodetic measurement of fault perpendicular convergence. The strength of the model San Andreas fault is chosen to be consistent with a Mohr-Coulomb failure mechanism for a strong fault consistent with Byerlee's rule. Wrench dominated deformation is driven from the Pacific plate side of the San Andreas fault, and convergence is driven by localized basal traction on the North America side. The rheology assumed in the experiments allows for the spontaneous formation of faults with a Mohr-coulomb plastic formulation in the upper crust, as well as viscous flow in the lower crust. The numerical calculations are performed with an extended version of the numerical code PARAVOZ. We find that a combination of loading from the side and the bottom as well as decoupling between the upper crustal and lower crustal deformation can decrease the shear stresses on the

  12. Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation - An experimental study

    Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John


    We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional

  13. Minerals Anomalies and Their Significances in Fault Rocks along the Front Longmenshan Fault

    Si, J.; Li, H.; Song, S.; Kuo, L.; Pei, J.; Chen, P.; Hsiao, H.; Wang, H.


    Anxian-Guanxian fault is the front fault of the Longmenshan fault system. In the Wenchuan earthquake (Ms8.0) of 12 May 2008, the surface rupture zone developed along the Anxian-Guanxian fault was also named as Hanwang rupture zone, which was approximately pure thrust, about 80km long accompanied with the vertical displacement of 0.5~4m averaged about 2m, and the maximum 4.2m occurred in the fifth villager group of Shaba village belonging to the Jiulong Town of Mianzhu City. We made several trenches cutting through the Anxian-Guanxian rupture zone. In the trenches near the Qingquan village of Jiulong town, three different colored strata including black, gray green and red layers developed from west to east. The black segment is carbonaceous mudstone and fault gouge, the gray green part is fault gouge, cataclasite and siltstone, and the purple red section is mainly mudstone with a few thin gouge layers at the top. Two continuous U-channel samples collected from the trench have been prepared for the synchrotron X-ray diffraction measurements. Viewing from the data, clay minerals including illite, mica, kaolinite and chlorite are more abundant in fine and black gouge than the coarse rocks and purple red mudstone. Moreover, there are significant graphite occur at and near the slip plane. Considering the low friction coefficient and the distinct different features different from the Yingxiu-Beichuan fault, the carbon matter might have acted as lubrication and played certain significant role in the faulting process of the slow angle Anxian-Guanxian fault.

  14. Analysis on Faults of Running Principle of Colleges of“Application-oriented University”%关于“应用型本科”办学定位失误的探析



    The paper was discussed that running principle of college (the applied undergraduate Orientation that comes from this) according to setup subject as standard of dividing into two categories (5A1 and 5A2) was wrong. Then, the paper was expounded some colleges took “application-oriented university” as running principle of college, which not only reduced the quality of their undergraduate training, but also caused serious confusion in running principle of college in China. Finally, the paper was suggested that the relevant administrative departments of the applied timely took measures in order to reversed and correct running principle of college of “application-oriented university”.%  论述了用分设专业时的依据作为标准将本科院校划分成的两个类别(即5A1和5A2)作为本科院校的办学定位(“应用型本科”的办学定位即来源于此)是错误的,并阐述了一些学校以“应用型本科”作为办学定位,不仅会降低其本科生的培养质量,而且会给我国高等院校的办学定位工作造成严重的混乱。最后建议我国有关管理部门对“应用型本科”办学定位及时采取措施,加以扭转和矫正。

  15. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  16. Global Correlation between the Size of Subduction Earthquakes and the Magnitude of Crustal Normal Fault Aftershocks in the Forearc

    Aron, F.; Allmendinger, R. W.; Jensen Siles, E.


    Large, shallow reactivations of forearc normal faults, reaching Mw up to 7.0, were some of the notable effects of the 2010, Mw 8.8 Maule and 2011, Mw 9.0 Tohoku earthquakes. But how likely are large, upper-plate normal fault aftershocks after a great megathrust event? We use data from the Global CMT catalog to analyze globally the seismicity in forearc regions following all the great subduction ruptures > Mw 7.7, since 1976 (44 events). The intraplate aftershocks selected have hypocentral locations inside the 3D wedge defined by the seismogenic zone of the slab, the rupture extension and the forearc topography. Our search spans the 3 years following the main rupture, to include both the coseismic and post-seismic deformation periods. Within the detection limits of the catalog and with just a few exceptions, most of the megathrust events (~77%) triggered upper-plate normal faulting. More importantly, for any given megathrust the summation of the Mw accounted by the all the forearc events has a positive correlation with the Mw of the subduction earthquake; the larger the megathrust the larger the energy released by forearc earthquakes. Great megathrust events, such as the Maule and Tohoku earthquakes, not only shake the ground and deform elastically the crust; they also leave a permanent deformation mark in the geological record of the upper plate, especially on the forearc above the seismogenic zone. Because the continent is mostly stretched in the direction of the coseismic rebound, this permanent signature is expressed as extensional features, including surface tension cracks and shallow, intraplate normal fault reactivations. Those reactivations tend to occur in structures which strike sub-perpendicular to the maximum coseismic stretching orientation, but the observations show that only some particular faults produced significant aftershocks - not all the properly oriented forearc structures above the megathrust rupture slipped seismically after a single

  17. Distribution Grid Fault Location Applying Transient Zero-mode Current

    Yunchuan Zhang


    Full Text Available To aim at the puzzles on faults location in distribution grids, the paper analyzed the distributing characteristics of transient zero-mode currents as the faults occurred, with the aid of correlation theory, a new fault circuit-selection and fault-location method was proposed based on transient zero model current for power distribution grid faults. The method is based on such a fact that the RMS was maximum of fault line transient zero-mode current, and the inner products between it and other line transient zero-mode current were less than zero, in addition, the transient zero-model currents at two sides of the fault point possessed opposite polarity and diverse waveform, and as well as small correlation coefficient closer to zero. In the end, the simulation results show that the proposed method on circuit-selection and fault-location for power distribution grids fault based on transient zero- mode current is correct and effective, and not affected by voltage epoch angle, and grounding resistance, and as well as neutral-point grounding modes.


    ShenChongyang; WuYun; WangQi; YouXinzhao; QiaoXuejun


    On the basis of GPS observations in Yunnan from 1999 to 2001, we adopt the robust Bayesian least square estimation and multi-fault dislocation model to analyze the quantitative kinematics models of the main faults in Yunnan. The geodetic inversion suggests that, (1) The horizontal movement of crust in Yunnan is affected distinctly by fault activity whose characters are consistent with geological results; (2) The activity of the north segment of the Red River fault zone is maximum, in the middle segment is moderate, and in the south segment is minimum; (3)Among others, the Xiaojiang fault zone has the strongest activity, the secondary are the Lancang fault zone and the north segment of Nujiang fault zone, the Qujiang fault zone shows the characteristic of hinge fault; (4)Each fault could produce an earthquake of Ms=6 more or less per year; (5) The larger value of maximum shear strain are mostly located along the main active fault zones and their intersections; earthquakes did not occur at the place of maximum shear strain, and mostly take place at the higher gradient zones, especially at its corner.


    Shen Chongyang; Wu Yun; Wang Qi; You Xinzhao; Qiao Xuejun


    On the basis of GPS observations in Yunnan from 1999 to 2001, we adopt the robust Bayesian least square estimation and multi-fault dislocation model to analyze the quantitative kinematics models of the main faults in Yunnan. The geodetic inversion suggests that: (1) The horizontal movement of crust in Yunnan is affected distinctly by fault activity whose characters are consistent with geological results; (2) The activity of the north segment of the Red River fault zone is maximum, in the middle segment is moderate, and in the south segment is minimum; (3)Among others, the Xiaojiang fault zone has the strongest activity, the secondary are the Lancang fault zone and the north segment of Nujiang fault zone, the Qujiang fault zone shows the characteristic of hinge fault; (4)Each fault could produce an earthquake of Ms=6 more or less per year; (5) The larger value of maximum shear strain are mostly located along the main active fault zones and their intersections; earthquakes did not occur at the place of maximum shear strain, and mostly take place at the higher gradient zones, especially at its corner.

  20. Latest extension of the Laujar fault in a convergence setting (Sierra Nevada, Betic Cordillera)

    Martínez-Martos, Manuel; Galindo-Zaldívar, Jesus; Sanz de Galdeano, Carlos; García-Tortosa, Francisco Juan; Martínez-Moreno, Francisco José; Ruano, Patricia; González-Castillo, Lourdes; Azañón, José Miguel


    The present-day relief of the Betic Cordillera formed since the Late Miocene through the regional N-S to NW-SE Africa-Eurasia convergence that developed large folds. The Laujar Fault Zone is a south-dipping E-W oriented structure located at the northern boundary of the Alpujarran Corridor Neogene intramontane basin, which separates Sierra Nevada and Sierra de Gador antiforms, in the Internal Zones of the Betic Cordillera. The fault zone acted in a first stage as a dextral strike-slip fault. Currently it moves as a normal fault evidenced by striated calcretes, also in agreement with regional continuous GPS (CGPS) data that support the hypothesis of an active N-S extension in the fault area. In order to analyse the deep geometry of the Laujar Fault Zone, we combined several geophysical techniques (gravity, magnetic, electric resistivity tomography and audio-magnetotelluric data) with field geological observations. Fault surfaces seem to join at a southward-dipping shallow detachment level, including faults covered by the sedimentary infill. The fault zone was developed in a previously weakened area by wrench faults parallel to the Alpujarran Corridor. The recent normal activity of this fault zone may be a consequence of a change in the Africa-Eurasia convergence orientation, which implies a decrease in the N-S compression component. This structure along the southern limb of Sierra Nevada antiform evidences the gravitational collapse of previously thickened crust in a regional compressional context simultaneous to metamorphic core uplift.

  1. Fault-tolerant design

    Dubrova, Elena


    This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field.  Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety.  They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems.  Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy.  The content is designed to be highly accessible, including numerous examples and exercises.  Solutions and powerpoint slides are available for instructors.   ·         Provides textbook coverage of the fundamental concepts of fault-tolerance; ·         Describes a variety of basic techniques for achieving fault-toleran...

  2. Maximum information photoelectron metrology

    Hockett, P; Wollenhaupt, M; Baumert, T


    Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...

  3. Fault Monitoring and Fault Recovery Control for Position Moored Tanker

    Fang, Shaoji; Blanke, Mogens


    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to mooring line....... Properties of detection and fault-tolerant control are demonstrated by high fidelity simulations....

  4. Fault tolerant control for uncertain systems with parametric faults

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...

  5. Fault isolability conditions for linear systems with additive faults

    Niemann, Hans Henrik; Stoustrup, Jakob


    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  6. Simulating Earthquake Rupture and Off-Fault Fracture Response: Application to the Safety Assessment of the Swedish Nuclear Waste Repository

    Falth, B.


    To assess the long-term safety of a deep repository of spent nuclear fuel, upper bound estimates of seismically induced secondary fracture shear displacements are needed. For this purpose, we analyze a model including an earthquake fault, which is surrounded by a number of smaller discontinuities representing fractures on which secondary displacements may be induced. Initial stresses are applied and a rupture is initiated at a predefined hypocenter and propagated at a specified rupture speed. During rupture we monitor shear displacements taking place on the nearby fracture planes in response to static as well as dynamic effects. As a numerical tool, we use the 3Dimensional Distinct Element Code (3DEC) because it has the capability to handle numerous discontinuities with different orientations and at different locations simultaneously. In tests performed to benchmark the capability of our method to generate and propagate seismic waves, 3DEC generates results in good agreement with results from both Stokes solution and the Compsyn code package. In a preliminary application of our method to the nuclear waste repository site at Forsmark, southern Sweden, we assume end-glacial stress conditions and rupture on a shallow, gently dipping, highly prestressed fault with low residual strength. The rupture generates nearly complete stress drop and an M-w 5.6 event on the 12 km(2) rupture area. Of the 1584 secondary fractures (150 m radius), with a wide range of orientations and locations relative to the fault, a majority move less than 5 mm. The maximum shear displacement is some tens of millimeters at 200 m fault-fracture distance.

  7. Fault Analysis in Cryptography

    Joye, Marc


    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  8. Three-dimensional analysis of a faulted CO2 reservoir using an Eshelby-Mori-Tanaka approach to rock elastic properties and fault permeability

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Last, George V.; Bacon, Diana H.


    This work develops a three-dimensional multiscale model to analyze a complex CO2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults southwest of the Kimberlina site. The model uses the STOMP-CO2 code for flow modeling that is coupled to the ABAQUS® finite element package for geomechanical analysis. A 3D ABAQUS® finite element model is developed that contains a large number of 3D solid elements with two nearly parallel faults whose damage zones and cores are discretized using the same continuum elements. Five zones with different mineral compositions are considered: shale, sandstone, fault damaged sandstone, fault damaged shale, and fault core. Rocks’ elastic properties that govern their poroelastic behavior are modeled by an Eshelby-Mori-Tanka approach (EMTA). EMTA can account for up to 15 mineral phases. The permeability of fault damage zones affected by crack density and orientations is also predicted by an EMTA formulation. A STOMP-CO2 grid that exactly maps the ABAQUS® finite element model is built for coupled hydro-mechanical analyses. Simulations of the reservoir assuming three different crack pattern situations (including crack volume fraction and orientation) for the fault damage zones are performed to predict the potential leakage of CO2 due to cracks that enhance the permeability of the fault damage zones. The results illustrate the important effect of the crack orientation on fault permeability that can lead to substantial leakage along the fault attained by the expansion of the CO2 plume. Potential hydraulic fracture and the tendency for the faults to slip are also examined and discussed in terms of stress distributions and geomechanical properties.

  9. The Morelia-Acambay Fault System

    Velázquez Bucio, M.; Soria-Caballero, D.; Garduño-Monroy, V.; Mennella, L.


    The Trans-Mexican Volcanic Belt (TMVB) is one of the most actives and representative zones of Mexico geologically speaking. Research carried out in this area gives stratigraphic, seismologic and historical evidence of its recent activity during the quaternary (Martinez and Nieto, 1990). Specifically the Morelia-Acambay faults system (MAFS) consist in a series of normal faults of dominant direction E - W, ENE - WSW y NE - SW which is cut in center west of the Trans-Mexican Volcanic Belt. This fault system appeared during the early Miocene although the north-south oriented structures are older and have been related to the activity of the tectonism inherited from the "Basin and Range" system, but that were reactivated by the east- west faults. It is believed that the activity of these faults has contributed to the creation and evolution of the longed lacustrine depressions such as: Chapala, Zacapu, Cuitzeo, Maravatio y Acambay also the location of monogenetic volcanoes that conformed the Michoacan-Guanajuato volcanic field (MGVF) and tend to align in the direction of the SFMA dominant effort. In a historical time different segments of the MAFS have been the epicenter of earthquakes from moderated to strong magnitude like the events of 1858 in Patzcuaro, Acambay in 1912, 1979 in Maravatio and 2007 in Morelia, among others. Several detailed analysis and semi-detailed analysis through a GIS platform based in the vectorial archives and thematic charts 1:50 000 scaled from the data base of the INEGI which has allowed to remark the influence of the MAFS segments about the morphology of the landscape and the identification of other structures related to the movement of the existent faults like fractures, alignments, collapses and others from the zone comprehended by the northwest of Morelia in Michoacán to the East of Acambay, Estado de México. Such analysis suggests that the fault segments possess a normal displacement plus a left component. In addition it can be

  10. Chronology of Deformation Near the Iditarod-Nixon Fork Fault, West-Central Alaska

    Perttu, B. K.; Wallace, W. K.; Newberry, R. J.; Layer, P. W.


    The Nixon Fork Mine is a Cu-Au deposit located 7 km south of the Iditarod-Nixon Fork (I-NF) fault. This fault strikes at ~060°, and can be traced for ~400 km, with a minimum dextral displacement of ~90 km. Proximity to the I-NF fault suggests it would be a dominant influence on deformation of the deposit, but the extent and timing of disruption are unknown. In order to reconstruct strain history and eventually understand structural evolution, we analyzed the orientations of geologic structures and dated representative K-bearing minerals and rocks. Felsic dikes, with 40Ar/39Ar ages of 69.6 ± 0.5 Ma and arc-type signatures, are cut by faults apparently related to the I-NF fault, but do not obviously cut such faults. Since no dikes are seen to cut faults, we know of no local fault motion prior to their intrusion. The northeast strike of the felsic dikes (n = 102; mean = 034° ± 10° ) requires σ3 oriented ~124°, at odds with the ~0° orientation inferred from the strike of the I-NF fault (~60°). The Nixon Fork pluton has approximately the same age and an overall elongation compatible with the felsic dikes. Mafic dikes, with 40Ar/39Ar ages of 62.8 ± 0.6 Ma, have within-plate signatures (average TiO2 = 2.48 wt%, Zr = 172 ppm, Nb = 58 ppm, Y = 25 ppm) and require a change in overall tectonic regime. Additionally, their north strike (n = 44; mean = 013° ± 10°) requires σ3 oriented ~103°, which is not compatible with σ3 (~0°) inferred from the right-lateral I-NF fault, and requires a different extension direction from the felsic dikes. We observed mafic dikes cut by faults with orientations compatible with right-lateral motion on the I-NF fault, and we propose that right-lateral motion on the I-NF fault began after mafic dike emplacement. Outcrop-scale fold axes trend north (n = 136; mean = 355° ± 10°). They are preferentially aligned perpendicular to the σ1 inferred for right-lateral motion on the I-NF fault and so are plausibly related to the I-NF fault

  11. Neotectonics around Fairbanks, Alaska: Where are the active faults?

    Frohman, R. A.; Wallace, W. K.; Koehler, R. D.


    The neotectonic framework of interior Alaska is defined by a series of linear, northeast-trending seismic zones including the Rampart, Minto Flats, Fairbanks, and Salcha seismic zones. These zones are characterized by diffuse seismicity and multiple moderate magnitude historic earthquakes. Seismic focal mechanisms indicate dominantly left-lateral strike-slip motion within these zones. Despite the abundant seismicity, the seismogenic faults have not previously been located and characterized in detail, mostly because of the lack of bedrock exposures and the apparent absence of surface ruptures. We used crustal earthquake hypocenters, DEM's, and geological and geophysical maps to better constrain the traces and dips of these faults. This revealed that the previously identified Fairbanks seismic zone actually consists of several linear seismic zones that correspond closely with mapped faults or topographic lows. We investigated several quarries that expose mapped faults to gain a better understanding of fault orientation, slip direction and sense, and paleostress orientation in the Fairbanks seismic zone. Faults are mostly near-vertical, but may dip steeply in either direction and locally define flower-like structures. Slickenlines and slip-sense indicators show that left-lateral strike-slip dominates, but commonly with a significant dip-slip component that may be either down to northwest or southeast. The faults are mostly normal-left-lateral, locally nearly pure normal, and rarely reverse-left-lateral. Geospatial analyses of DEM's combined with evaluation of Quaternary geologic and topographic maps are currently in progress and will be used to analyze geomorphic anomalies that may reflect young deformation, including wind gaps, barbed drainages, and asymmetrical stream valleys. Results so far show that surface evidence exists to characterize active faults despite poor exposure and subdued topography, and that the faults have a dip-slip component, probably dominantly

  12. Orienteering injuries

    Folan, Jean M.


    At the Irish National Orienteering Championships in 1981 a survey of the injuries occurring over the two days of competition was carried out. Of 285 individual competitors there was a percentage injury rate of 5.26%. The article discusses the injuries and aspects of safety in orienteering.

  13. Quaternary Fault Lines

    Department of Homeland Security — This data set contains locations and information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the...

  14. Can cosmic ray exposure dating reveal the normal faulting activity of the Cordillera Blanca Fault, Peru?

    L.L. Siame


    Full Text Available The build-up of in situ-produced cosmogenic 10Be within bedrock scarps and escarpments associated to the Cordillera Blanca Normal Fault, Peru, was measured to evaluate, through Cosmic Ray Exposure dating, its normal faulting activity. The highest mountain peaks in Peru belong to the 210 km-long, NW- striking, Cordillera Blanca. Along its western border, the Cordillera Blanca Normal Fault is responsible for a vertical relief over 4.4 km, whose prominent 2 km high escarpment is characterized by ~1 km-high triangular facets corresponding to vertical displacements cumulated during the last 1-2 million years. At a more detailed scale, this fault system exhibits continuous geomorphic evidence of repeated displacements, underlined by 2 to 70 m-high scarps, corresponding to vertical displacements cumulated since Late Pleistocene and Holocene periods. Although microseismicity occurs along the Cordillera Blanca Normal Fault, no major historical or instrumental earthquake has been recorded since the beginning of the Spanish settlement in the 16th century. To evaluate the vertical slip rate along the major 90 km-long central segment of the Cordillera Blanca Normal Fault, the Quaternary fault escarpment (i.e., triangular facet, as well as the bedrock fault scarp, have been sampled for 10Be Cosmic Ray Exposure dating. Even if the uppermost part of the triangular facets have been resurfaced by the Last Glacial Maximum glaciers, our results allow to estimate a vertical slip-rate of 3±1 mm/yr, and suggest at least 2 seismic events during the last 3000 years.

  15. Maximum credible earthquake (MCE) magnitude of structures affecting the Ujung Lemahabang site

    Soerjodibroto, M. [National Atomic Energy Agency, Jakarta (Indonesia)


    This report analyse the geological structures in/around Muria Peninsula that might originating potential earthquake hazard toward the selected site for NPP, Ujung Lemahabang (ULA). Analysis was focused on the Lasem fault and AF-1/AF-4 offshore faults that are considered as the determinant structures affecting the seismicity of ULA (Nira, 1979, Newjec, 1994). Methods for estimating the MCE of the structures include maximum historical earthquake, and relationship between the length of the fault and the magnitude of earthquake originating from the known structure (Tocher, Iida, Matsuda, Wells and Coopersmith). The MCE magnitude estimating by these method for earthquake originating along the Lasem and AF-1/AF-4 faults vary from 2,1M to 7,0M. Comparison between the result of historical data and fault-magnitude relationship, however, suggest a MCE magnitude of Ms=7,0M for both fault zones. (author)

  16. Maximum Likelihood Associative Memories

    Gripon, Vincent; Rabbat, Michael


    Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...

  17. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....

  18. Mnin restraining stepover - evidence of significant Cretaceous-Cenozoic dextral strike-slip faulting along the Teisseyre-Tornquist Zone?

    Konon, Andrzej; Ostrowski, Szymon; Rybak-Ostrowska, Barbara; Ludwiniak, Mirosław; Śmigielski, Michał; Wyglądała, Michał; Uroda, Joanna; Kowalczyk, Sebastian; Mieszkowski, Radosław; Kłopotowska, Agnieszka


    A newly recognized Mnin restraining stepover is identified in the Permo-Mesozoic cover of the western part of the Late Palaeozoic Holy Cross Mountains Fold Belt (Poland), within a fault pattern consisting of dextral strike-slip faults. The formation of a large contractional structure at the Late Cretaceous - Cenozoic transition displays the significant role of strike-slip faulting along the western border of the Teisseyre-Tornquist Zone, in the foreland of the Polish part of the Carpathian Orogen. Theoretical relationships between the maximum fault offsets/ mean step length, as well as between the maximum fault offsets/mean step width allowed the estimation of the values of possible offsets along the Snochowice and Mieczyn faults forming the Mnin stepover. The estimated values suggest displacements of as much as several tens of kilometres. The observed offset along the Tokarnia Fault and theoretical calculations suggest that the strike-slip faults west of the Late Palaeozoic Holy Cross Mountains Fold Belt belong to a large strike-slip fault system. We postulate that the observed significant refraction of the faults forming the anastomosing fault pattern is related also to the interaction of the NW-SE-striking faults formed along the western border of the Teisseyre- Tornquist Zone and the reactivated WNW-ESE-striking faults belonging to the fault systems of the northern margin of the Tethys Ocean.

  19. The effect of mechanical discontinuities on the growth of faults

    Bonini, Lorenzo; Basili, Roberto; Bonanno, Emanuele; Toscani, Giovanni; Burrato, Pierfrancesco; Seno, Silvio; Valensise, Gianluca


    , which may either accelerate or decelerate depending on the orientation of the discontinuity and the distance with respect to the newly developed faults; 2) the shape of fault-related folds, which changes according to the propagation rate; 3) the partial reactivation of the discontinuity, which affects both the shape of related folds and the development of secondary fractures or faults. In summary, our results suggest that thin, mechanical discontinuities exert a strong influence in the growth pattern of both extensional and contractional systems.

  20. Internal Leakage Fault Detection and Tolerant Control of Single-Rod Hydraulic Actuators

    Jianyong Yao


    Full Text Available The integration of internal leakage fault detection and tolerant control for single-rod hydraulic actuators is present in this paper. Fault detection is a potential technique to provide efficient condition monitoring and/or preventive maintenance, and fault tolerant control is a critical method to improve the safety and reliability of hydraulic servo systems. Based on quadratic Lyapunov functions, a performance-oriented fault detection method is proposed, which has a simple structure and is prone to implement in practice. The main feature is that, when a prescribed performance index is satisfied (even a slight fault has occurred, there is no fault alarmed; otherwise (i.e., a severe fault has occurred, the fault is detected and then a fault tolerant controller is activated. The proposed tolerant controller, which is based on the parameter adaptive methodology, is also prone to realize, and the learning mechanism is simple since only the internal leakage is considered in parameter adaptation and thus the persistent exciting (PE condition is easily satisfied. After the activation of the fault tolerant controller, the control performance is gradually recovered. Simulation results on a hydraulic servo system with both abrupt and incipient internal leakage fault demonstrate the effectiveness of the proposed fault detection and tolerant control method.

  1. Maximum Entropy Fundamentals

    F. Topsøe


    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  2. Applying geophysical techniques to investigate a segment of a creeping fault in the urban area of San Gregorio di Catania, southern flank of Mt. Etna (Sicily - Italy)

    Imposa, S.; De Guidi, G.; Grassi, S.; Scudero, S.; Barreca, G.; Patti, G.; Boso, D.


    In an especially built-up area, such as the lower slopes of Etna volcano, the effects of surface faulting, caused by coseismic ruptures and aseismic creep, contribute significantly to increase the risk to towns and villages and their related infrastructure. This study aims to couple the geophysical and structural characteristics of an active fault zone, joining surficial and deep information, in the area of San Gregorio di Catania (Sicily - Italy). The occurrence of this structure and its associated fracture field were related to variations in the physical and mechanical properties of the hosting rocks. Surface structural survey detected a fracture zone with maximum width of 40 m, characterized with fractures oriented consistently with the kinematics of the fault. The geophysical surveys (ground penetrating radar, seismic tomography, and refraction microtremor), enabled to detect highly fractured rock volumes at variable depth whose occurrence has been linked to the presence of the fault at surface. The integration of various techniques, with different spatial resolution and depth range, allowed to fully reconstruct the 3D geological structure of the site down to about 15 m.

  3. Active Fault Isolation in MIMO Systems

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault iso...

  4. Orientation and the Young Orienteer

    Walsh, S. E.; Martland, J. R.

    Orientation within orienteering is dependent on the use of two basic strategies; that is, either a compass or Magnetic-North-based strategy, which relies on the use of one set of information; or the use of a map and landmark-based strategy which relies on the use of at least two sets of information. Walsh and found that, when given the choice, young children use the compass-based strategy when following complex potentially disorientating routes.The efficacy of these two basic orientation strategies was investigated within three different orienteering environments: (1) a familiar known environment; (2) a familiar unknown environment and (3) an unfamiliar unknown environment.Subjects, age range from 9 to 10think aloud particularly the introduction of basic skills to young performers. They support the argument that is essential to introduce the map and compass simultaneously and that relocation and orientation skills should be coached concurrently.

  5. Rough Faults, Distributed Weakening, and Off-Fault Deformation

    Griffith, W. A.; Nielsen, S. B.; di Toro, G.; Smith, S. A.; Niemeijer, A. R.


    We report systematic spatial variations of fault rocks along non-planar strike-slip faults cross-cutting the Lake Edison Granodiorite, Sierra Nevada, California (Sierran Wavy Fault) and the Lobbia outcrops of the Adamello Batholith in the Italian Alps (Lobbia Wavy Fault). In the case of the Sierran fault, pseudotachylyte formed at contractional fault bends, where it is found as thin (1-2 mm) fault-parallel veins. Epidote and chlorite developed in the same seismic context as the pseudotachylyte and are especially abundant in extensional fault bends. We argue that the presence of fluids, as illustrated by this example, does not necessarily preclude the development of frictional melt. In the case of the Lobbia fault, pseudotachylyte is present in variable thickness along the length of the fault, but the pseudotachylyte veins thicken and pool in extensional bends. The Lobbia fault surface is self-affine, and we conduct a quantitative analysis of microcrack distribution, stress, and friction along the fault. Numerical modeling results show that opening in extensional bends and localized thermal weakening in contractional bends counteract resistance encountered by fault waviness, resulting in an overall weaker fault than suggested by the corresponding static friction coefficient. Models also predict stress redistribution around bends in the faults which mirror microcrack distributions, indicating significant elastic and anelastic strain energy is dissipated into the wall rocks due to non-planar fault geometry. Together these observations suggest that, along non-planar faults, damage and energy dissipation occurs along the entire fault during slip, rather than being confined to the region close to the crack tip as predicted by classical fracture mechanics.

  6. Regularized maximum correntropy machine

    Wang, Jim Jing-Yan


    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  7. Quaternary Faults and Stress Regime of Venezuela Fallas y campo de esfuerzos cuaternarios de Venezuela

    F.A. Audemard M.


    Full Text Available Spatial configuration of Quaternary active tectonic features along the southern Caribbean plate boundary suggests that the region is subject to a compressive strike-slip (transpressional senso lato regime, characterized by a NNW-SSE maximum horizontal stress (sH=s1 and/or an ENE-WSW minimum (s h=s3 or s2 horizontal stress. Stress inversion applied to fault-plane kinematic indicators measured essentially in Plio-Quaternary sedimentary rocks confirms this tectonic regime. Accordingly, this stress regime is responsible for the Quaternary activity and kinematics of six sets of brittle features along northern Venezuela (from Colombia in the west to Trinidad in the east: (1 east-west rightlateral faults, (2 NW right-lateral faults -acting as synthetic Riedel shears-, (3 ENE to east-west dextral faults -P shears-, (4 NNW normal faults, (5 almost north-south left-lateral faults -antithetic Riedel shears- and (6 mostly subsurface ENE reverse faults associated with folding of the same orientation. Brittle deformation conforms to the simple shear model, although not all the deformation can be accounted for it since strain partitioning is also taking place because regional folding and thrusting are due to the normal-to-structure component of the relative slip vector between the Caribbean and South America plates. On the other hand, the maximum horizontal stress in western Venezuela, particularly in the Maracaibo block and south of the Oca-Ancón fault, progressively turns counter-clockwise to become more east-west oriented, producing left- and right-lateral slip along the north-south striking and NE-SW striking faults, respectively. The orientation and spatial variation of this regional stress field in western Venezuela results from the superposition of the two major neighboring interplate maximum horizontal stress orientations (sH: roughly east-west trending stress across the Nazca-South America type-B subduction along the pacific coast of Colombia and NNW

  8. Seismotectonic context and coseismic surface faulting of the 24th August 2016 Amatrice (central Italy) earthquake.

    Boncio, P.; Brozzetti, F.; Lavecchia, G.; De Nardis, R.; Cirillo, D.; Ferrarini, F.; Liberi, F.; Auciello, E.


    The 24th August 2016 earthquake (Mw6.2) occurred within the Apennine extensional fault system of central Italy, causing severe destruction and about 300 fatalities. At today (October 18th), 16 aftershocks of Mw≥4.0 occurred within an area extending for 18 km NW and 12 km SE of the main shock, including a strong aftershock (Mw5.5) occurred 12.5 km NW of the main shock. The focal mechanisms of the two largest shocks indicate nearly dip-slip motion on normal faults striking 135-to-155° and dipping 45-50° to the SW (, The focal depths are within the top 13 km of the crust ( Overall, focal depths and fault kinematics agree with previous knowledge on the seismotectonics of central Italy, but the relation between the mapped faults and the subsurface rupture is less straightforward. This might have important implications on the segmentation of major active faults.The aftershock sequence locates in the hanging wall of two adjacent active faults: the M. Vettore and M. Gorzano normal faults, with the main shock close to the stepover zone between them. The M. Vettore fault is part of a system extending 35-40 km NW of the stepover (M. Bove-M. Vettore system), with an average strike of 155° and maximum throw of 1.3-1.4 km. The M. Gorzano fault is a large isolated fault extending 28-30 km SE of the stepover, with an average strike of 150° and maximum throw of 2.3 km. There is no evidence of historical earthquakes for the M. Vettore fault, while the northern half of the M. Gorzano fault appears to have ruptured in 1639 (M 6.2).Coseismic surface faulting was mapped for 6 km along the M. Vettore fault, at the base of a Holocene fault scarp. The maximum measured coseismic throw is 27 cm. Along the M. Gorzano fault zone, we mapped only short, discontinuous open fractures. The longest fracture (200 m long, 1-to-2 cm throw) was mapped along the main fault, close to the southern termination of the

  9. Analyzing Orientations

    Ruggles, Clive L. N.

    Archaeoastronomical field survey typically involves the measurement of structural orientations (i.e., orientations along and between built structures) in relation to the visible landscape and particularly the surrounding horizon. This chapter focuses on the process of analyzing the astronomical potential of oriented structures, whether in the field or as a desktop appraisal, with the aim of establishing the archaeoastronomical "facts". It does not address questions of data selection (see instead Chap. 25, "Best Practice for Evaluating the Astronomical Significance of Archaeological Sites", 10.1007/978-1-4614-6141-8_25) or interpretation (see Chap. 24, "Nature and Analysis of Material Evidence Relevant to Archaeoastronomy", 10.1007/978-1-4614-6141-8_22). The main necessity is to determine the azimuth, horizon altitude, and declination in the direction "indicated" by any structural orientation. Normally, there are a range of possibilities, reflecting the various errors and uncertainties in estimating the intended (or, at least, the constructed) orientation, and in more formal approaches an attempt is made to assign a probability distribution extending over a spread of declinations. These probability distributions can then be cumulated in order to visualize and analyze the combined data from several orientations, so as to identify any consistent astronomical associations that can then be correlated with the declinations of particular astronomical objects or phenomena at any era in the past. The whole process raises various procedural and methodological issues and does not proceed in isolation from the consideration of corroborative data, which is essential in order to develop viable cultural interpretations.

  10. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault

    Shelly, David R.; Hardebeck, Jeanne L.


    We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.

  11. Variability of fault slip behavior along the San Andreas Fault in the San Juan Bautista Region

    Taira, Taka'aki; Bürgmann, Roland; Nadeau, Robert M.; Dreger, Douglas S.


    An improved understanding of the time history of fault slip at depth is an essential step toward understanding the underlying mechanics of the faulting process. Using a waveform cross-correlation approach, we document spatially and temporally varying fault slip along the northernmost creeping section of the San Andreas Fault near San Juan Bautista (SJB), California, by systematically examining spatiotemporal behaviors of characteristically repeating earthquakes (CREs). The spatial distribution of pre-1998 SJB earthquake (1984-1998) fault slip rate inferred from the CREs reveals a ~15 km long low creep or partially locked section located near the 1998 Mw 5.1 SJB earthquake rupture. A finite-fault slip inversion reveals that the rupture of the 1998 SJB earthquake is characterized by the failure of a compact ~4 km2 asperity with a maximum slip of about 90 cm and corresponding peak stress drop of up to 50 MPa, whereas the mean stress drop is about 15 MPa. Following the 1998 earthquake, the CRE activity was significantly increased in a 5-10 km deep zone extending 2-7 km northwest of the main shock, which indicates triggering of substantial aseismic slip. The postseismic slip inferred from the CRE activity primarily propagated to the northwest and released a maximum slip of 9 cm. In this 5-10 km depth range, the estimated postseismic moment release is 8.6 × 1016 N m, which is equivalent to Mw 5.22. The aseismic slip distribution following the 1998 earthquake is not consistent with coseismic stress-driven afterslip but represents a triggered, long-lasting slow earthquake.

  12. Equalized near maximum likelihood detector


    This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.

  13. Generalized Maximum Entropy

    Cheeseman, Peter; Stutz, John


    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  14. Tectonic origin for polygonal normal faults in pelagic limestones of the Cingoli anticline hinge (Italy)

    Petracchini, Lorenzo; Antonellini, Marco; Billi, Andrea; Scrocca, Davide


    Polygonal faults are a relatively-recent new class of normal faults which are thought to be formed during early burial and diagenesis as a consequence of heterogeneous lateral volume changes. Polygonal faults are non-systematically oriented and, in map view, they form rhombus-, pentagon-, or hexagon-like pattern, suggesting a non-tectonic origin. Furthermore, polygonal faults are layer bound and they are restricted to particular stratigraphic level. Predicting the pattern of polygonal normal fault results crucial for geofluid exploration and exploitation, but, despite the large number of studies, the origin of these faults remains still largely controversial. One of the main reason for this uncertainty is that they are poorly known in outcrops. Polygonal faults have been identified in few localities within Mesozoic chalk (United Kingdom, France, and Egypt), in Paleogene claystone (Belgium), and in the Cretaceous Khoman Formation (Egypt) where polygonal faults have been observed in an extensive exposure of chalk. In this study, we describe an outcrop in the Cingoli anticline hinge, which is located at external front of the northern Apennines fold-thrust belt (Italy), showing normal faults that we interpreted as syn-tectonically (syn-thrusting) polygonal faults. The outcrop shows three vertical exposures of sub-horizontal fine-grained marly limestones with chert interlayers of Albian-Turonian age. Intraformational short normal faults affect the carbonate and chert beds. These faults are poorly-systematic and they cut through the carbonate beds whereas usually stop against the chert layers. The fault surfaces are often characterized by slickolites, clayey residue, and micro-breccias including clasts of chert and carbonate. Fault displacement is partly or largely accommodated by pressure solution. At the fault tips, the displacement is generally transferred, via a lateral step, to an adjacent similar fault segment. The aim of our study is to understand the nucleation

  15. Mechanical anisotropy and the common occurrence of misoriented faults

    Bistacchi, A.; Massironi, M.; Menegon, L.; Bolognesi, F.; Donghi, V.


    Brittle fault zones can be considered weak either in an absolute or relative sense. In the second case, weakness is detected since the fault is active under unfavourable tensional conditions, which means that it is unfavourably oriented with respect to the regional stress field. Three classes of mechanisms have been proposed to explain the "anomalous" (but not so uncommon) weakness of faults, which may be related to the presence of weak minerals, high pore fluid pressure, and stress rotation. However, no one of these mechanisms explains why some faults tend to nucleate (particularly in certain tectonic environments) with an unfavourable orientation. In this contribution we discuss how the mechanical anisotropy (or anisotropic weakness) of foliated phyllosilicate-rich rocks provides both a weakening mechanism, and a mechanism that is likely to guide the nucleation of large scale brittle faults in a misoriented attitude. Experiments and microphysical models indicate that mechanical anisotropy exerts a substantial influence on shear failure and subsequent frictional sliding. Intermediate-grade metamorphic rocks composed of > 30% phyllosilicates show an anisotropic internal friction coefficient which varies from ca. 0.6, at high angle to foliation, to ca. 0.3 for shear initiation along an inherited foliation. This may result in the nucleation of misoriented faults/fractures (fractures or faults oriented unfavourably with respect to classic Mohr-Coulomb fracture criterion) and inhibit the development of classical "well-oriented" Andersonian conjugate sets. To test the relevance of this mechanism at the regional scale, we have developed a Slip Tendency analysis, which has been modified to account for anisotropy in friction coefficients, thus named Anisotropic Slip Tendency analysis. The analysis has been applied to different large-scale, mature fault zones in the Alps, showing different kinematics and relationships with respect to the regional-scale stress field, but all


    Duan Chendong; He Zhengjia; Jiang Hongkai


    A new time-domain analysis method that uses second generation wavelet transform (SGWT) for weak fault feature extraction is proposed. To extract incipient fault feature, a biorthogonal wavelet with the characteristics of impact is constructed by using SGWT. Processing detail signal of SGWT with a sliding window devised on the basis of rotating operation cycle, and extracting modulus maximum from each window, fault features in time-domain are highlighted. To make further analysis on the reason of the fault, wavelet package transform based on SGWT is used to process vibration data again. Calculating the energy of each frequency-band, the energy distribution features of the signal are attained. Then taking account of the fault features and the energy distribution, the reason of the fault is worked out. An early impact-rub fault caused by axis misalignment and rotor imbalance is successfully detected by using this method in an oil refinery.

  17. Fault Monitooring and Fault Recovery Control for Position Moored Tanker

    Fang, Shaoji; Blanke, Mogens


    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to line breakage...... algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Detection properties and fault-tolerant control are demonstrated by high delity simulations...

  18. Discriminating Fault Rate and Persistency to Improve Fault Treatment

    Bondavalli, Andrea; Chiaradonna, Silvano; Di Giandomenico,Felicita; Grandoni, Fabrizio


    In this paper the consolidate identification of faults, distinguished as transient or permanent/intermittent, is approached, through the definition of a fault identification mechanism, called a-count. The goal is to allow continued use of parts being hit by transient faults, which may lead to better overall system performance if proper handling is provided. Transient faults discrimination is especially important in all those dependability-qualified applications where replacing and repairing f...

  19. Study on Fault Current of DFIG during Slight Fault Condition

    Xiangping Kong; Zhe Zhang; Xianggen Yin; Zhenxing Li


    In order to ensure the safety of DFIG when severe fault happens, crowbar protection is adopted. But during slight fault condition, the crowbar protection will not trip, and the DFIG is still excited by AC-DC-AC converter. In this condition, operation characteristics of the converter have large influence on the fault current characteristics of DFIG. By theoretical analysis and digital simulation, the fault current characteristics of DFIG during slight voltage dips are studied. And the influenc...

  20. Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements

    Giuseppe Solaro


    Full Text Available On 16 September 2015, a Mw 8.3 interplate thrust earthquake ruptured offshore the Illapel region (Chile. Here, we perform coseismic slip fault modeling based on multi-orbit Sentinel 1-A (S1A data. To do this, we generate ascending and descending S1A interferograms, whose combination allows us to retrieve the EW and vertical components of deformation. In particular, the EW displacement map highlights a westward displacement of about 210 cm, while the vertical map shows an uplift of about 25 cm along the coast, surrounded by a subsidence of about 20 cm. Following this analysis, we jointly invert the multi-orbit S1A interferograms by using an analytical approach to search for the coseismic fault parameters and related slip values. Most of the slip occurs northwest of the epicenter, with a maximum located in the shallowest 20 km. Finally, we refine our modeling approach by exploiting the Finite Element method, which allows us to take geological and structural complexities into account to simulate the slip along the slab curvature, the von Mises stress distribution, and the principal stress axes orientation. The von Mises stress distribution shows a close similarity to the depth distribution of the aftershock hypocenters. Likewise, the maximum principal stress orientation highlights a compressive regime in correspondence of the deeper portion of the slab and an extensional regime at its shallower segment; these findings are supported by seismological data.

  1. Active fault and other geological studies for seismic assessment: present state and problems

    Kakimi, Toshihiro [Nuclear Power Engineering Corp., Tokyo (Japan)


    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the `cautiousness` of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the `precaution faults` having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a `precaution fault`. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  2. Computer hardware fault administration

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.


    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  3. Fault Tolerant Computer Architecture

    Sorin, Daniel


    For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes

  4. Fault tolerant linear actuator

    Tesar, Delbert


    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  5. Fault Tolerant Magnetic Bearing for Turbomachinery

    Choi, Benjamin; Provenza, Andrew


    NASA Glenn Research Center (GRC) has developed a Fault-Tolerant Magnetic Bearing Suspension rig to enhance the bearing system safety. It successfully demonstrated that using only two active poles out of eight redundant poles from each radial bearing (that is, simply 12 out of 16 poles dead) levitated the rotor and spun it without losing stability and desired position up to the maximum allowable speed of 20,000 rpm. In this paper, it is demonstrated that as far as the summation of force vectors of the attracting poles and rotor weight is zero, a fault-tolerant magnetic bearing system maintained the rotor at the desired position without losing stability even at the maximum rotor speed. A proportional-integral-derivative (PID) controller generated autonomous corrective actions with no operator's input for the fault situations without losing load capacity in terms of rotor position. This paper also deals with a centralized modal controller to better control the dynamic behavior over system modes.

  6. Fault tolerant control based on active fault diagnosis

    Niemann, Hans Henrik


    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR...

  7. Wind turbine fault detection and fault tolerant control

    Odgaard, Peter Fogh; Johnson, Kathryn


    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes the challe...

  8. 3D Dynamic Rupture Simulations Across Interacting Faults: the Mw7.0, 2010, Haiti Earthquake

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.; Aagaard, B.


    The mechanisms controlling rupture propagation between fault segments during an earthquake are key to the hazard posed by fault systems. Rupture initiation on a fault segment sometimes transfers to a larger fault, resulting in a significant event (e.g.i, 2002 M7.9Denali and 2010 M7.1 Darfield earthquakes). In other cases rupture is constrained to the initial segment and does not transfer to nearby faults, resulting in events of moderate magnitude. This is the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigatethe rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacenent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a Finite Element Model to simulate the nucleation and propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence. The best-fit simulation is in remarkable agreement with several finite fault inversions and predicts ground displacement in very good agreement with geodetic and geological observations. The two slip patches inferred from finite-fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure. Although our simulation results replicate well the ground deformation consistent with the geodetic surface observation but convolving the ground motion with the soil amplification from the microzonation study will correctly account for the heterogeneity of the PGA throughout the rupture area.

  9. Preliminary Results of In-situ Stress Measurements along the Longmenshan Fault Zone after the Wenchuan Ms 8.0 Earthquake

    WU Manlu; ZHANG Yueqiao; LIAO Chunting; CHEN Qunce; MA Yinsheng; WU Jinsheng; YAN Junfeng; OU Mingyi


    Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (~20 m) is about 4.3 MPa, oriented NI9°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.

  10. Improving Multiple Fault Diagnosability using Possible Conflicts

    National Aeronautics and Space Administration — Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can...

  11. Fault Management Assistant (FMA) Project

    National Aeronautics and Space Administration — S&K Aerospace (SKA) proposes to develop the Fault Management Assistant (FMA) to aid project managers and fault management engineers in developing better and more...

  12. ESR dating of fault rocks

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)


    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  13. Seismic fault zone trapped noise

    Hillers, G; Campillo, M; Ben‐Zion, Y; Roux, P


    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics...

  14. Do fault-related folds follow the same scaling law as their associated faults? A study using 3D seismic reflection data

    Pitcher, Eleanor; Imber, Jonathan


    Fractal distributions are largely agreed to follow a power-law distribution. Power-law scaling relationships describe the size distribution of fault lengths or displacements. Being able to identify these scaling properties provides a powerful tool for predicting the numbers of geological structures, such as small-scale faults in sedimentary basins that are below the resolution of seismic reflection data. The aim of this study is to determine whether fault-related folds follow the same power law scaling properties, or if they follow a different scaling law. We use TrapTester to interpret a 3D seismic volume from the Gulf of Mexico to construct fault planes and cut-off lines along selected horizons in the vicinity of fault upper tip lines. Fault-related folds are particularly well developed above steeply plunging tip lines, but are discontinuous along the strike of the fault plane. Folding is less well developed on horizons that intersect, or lie close to, the locus of maximum throw (bullseye) of the fault plane. We then measured fold amplitudes and fault throws across these same horizons using a one-dimensional multi-line sampling approach. Graphs of fault throw and fold amplitude vs. distance parallel to fault strike show that folds occur where there is no resolvable fault throw, and that fault throw and fold amplitudes show an approximately inverse relationship. Close to the locus of maximum throw, there is largely just faulting, whilst at the upper tip line folding predominates. By plotting cumulative frequency against throw for the fault and fold data we can investigate whether the data follow a power law, log normal or exponential distribution. Plotting the data on log vs. log (power law), linear vs. log (log normal) and log vs. linear (exponential) axes allow us to establish which displays the best "straight-line fit". We observed that the fault throw data satisfied a straight-line on a log vs. log graph - implying a power law distribution - and also returned

  15. Faulting at Thebes Gap, Mo. -Ill. : Implications for New Madrid tectonism

    Harrison, R.W.; Schultz, A.P. (Geological Survey, Reston, VA (United States))


    Recent geologic mapping in the Thebes Gap area has identified numerous NNE- and NE-striking faults having a long-lived and complex structural history. The faults are located in an area of moderate recent seismicity at the northern margin of the Mississippi embayment, approximately 45 km north of the New Madrid seismic zone. Earliest deformation occurred along dextral strike-slip faults constrained as post-Devonian and pre-Cretaceous. Uplift and erosion of all Carboniferous strata suggest that this faulting is related to development of the Pascola arch (Ouachita orogeny). This early deformation is characterized by strongly faulted and folded Ordovician through Devonian rocks overlain in places with angular unconformity by undeformed Cretaceous strata. Elsewhere, younger deformation involves Paleozoic, Cretaceous, Paleocene, and Eocene formations. These units have experienced both minor high-angle normal faulting and major, dextral strike-slip faulting. Quaternary-Tertiary Mounds Gravel is also involved in the latest episode of strike-slip deformation. Enechelon north-south folds, antithetic R[prime] shears, and drag folds indicate right-lateral motion. Characteristic positive and negative flower structures are commonly revealed in cross section. Right-stepping fault strands have produced pull-apart basins where Ordovician, Silurian, Devonian, Cretaceous, and Tertiary units are downdropped several hundreds of meters and occur in chaotic orientations. Similar fault orientations and kinematics, as well as recent seismicity and close proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.

  16. Unraveling the deformational history of faults from AMS

    Calvín, Pablo; Casas-Sainz, Antonio; Román-Berdiel, Teresa; Oliva-Urcía, Belén; García-Lasanta, Cristina; Pocoví, Andrés; Gil-Imaz, Andrés; Pueyo-Anchuela, Oscar; Izquierdo-Llavall, Esther; Osácar, Cinta; José Villalaín, Juan; Corrado, Sveva; Invernizzi, Chiara; Aldega, Luca; Caricchi, Chiara; Antolín-Tomás, Borja


    The faults chosen for this study belong to the Iberian Chain (Northeastern Iberian Plate) and include two kinematically different kinds of structures (thrusts and strike-slip), with well-developed fault gouges several tens or hundreds of meters thick (Datos Fault System and Daroca Fault) and thinner clayey layers linked to thrust surfaces (Cameros-Demanda Thrust). The Cameros-Demanda Thrust has a relatively simple history of Mesozoic extension and Tertiary inversion. Along the thrust several areas with fault rocks include weakly oriented breccias, deformed conglomerates and clayey fault gouge with S/C structures. The Datos and Daroca faults show a more complex history of movement and are of key importance in the Variscan and Alpine evolution of the Iberian microplate. They show fault rocks with thickness of up to hundreds of meters, consisting of fault gouges, microbreccias and fault breccias with large blocks of stratified Paleozoic and Mesozoic blocks. Anisotropy of Magnetic Susceptibility (AMS) can be an useful tool in order to discriminate the tectonic evolution of such faults, remembering the different behaviors as part of different stages in northern Gondwana (Variscan cycle) and the Iberian microplate (Alpine cycle). Samples for the AMS study were collected from 56 sites, 29 (434 specimens) belonging to three areas of the Cameros-Demanda Thrust, 17 (196 specimens) in the Datos Fault System, and 10 (114 specimens) at the Daroca Fault. AMS results at the Cameros-Demanda Thrust show a main NW-SE magnetic lineation (Matute and Prejano areas), a secondary NE-SW magnetic lineation (Matute area) and a girdle distribution from NE to SW in the Panzares area. These results suggest a main NW movement for the Cameros-Demanda Thrust, consistent with kinematic indicators, but also evidence a NE-directed minor contribution, especially in the easternmost outcrops. Daroca and Datos Faults show a grater variability, both in plunge and azimuth, and magnetic lineation can be

  17. Investigating fault coupling: Creep and microseismicity on the Hayward fault

    Evans, E. L.; Loveless, J. P.; Meade, B. J.; Burgmann, R.


    We seek to quantify the relationship between interseismic slip activity and microseismicity along the Hayward fault in the eastern San Francisco Bay Area. During the interseismic regime the Hayward fault is known to exhibit variable degrees of locking both along strike and down-dip. Background microseismicity on and near the fault has been suggested to provide independent information about the rates of interseismic creep and the boundaries of creeping regions. In particular, repeating earthquakes within the fault zone have been suggested as a proxy for fault creep rates. To investigate this relationship, we invert GPS data for microplate rotations, fault slip rates, and fault coupling using a block model that spans western United States and includes the San Andreas, Hayward, Calaveras, Rogers Creek, and Green Valley faults in the greater Bay area. The tectonic context provided by the regional scale model ensures that the slip budget across Bay Area faults is consistent with large scale tectonic motions and kinematically connected to the central San Andreas fault. We image the spatial distribution of interseismic slip on a triangulated mesh of the Hayward fault and compare the distribution of interseismic fault coupling with the number of earthquakes and the moment rate of all on-fault seismicity. We quantitatively test the hypothesis that microseismicity might define the transitions between locked and creeping regions. The calculated correlations are tested against a null hypothesis that microseismicity is randomly distributed. We further extend this investigation to the step over region between the Hayward and Calaveras faults to illuminate the interactions between linking faults.

  18. Analog fault diagnosis by inverse problem technique

    Ahmed, Rania F.


    A novel algorithm for detecting soft faults in linear analog circuits based on the inverse problem concept is proposed. The proposed approach utilizes optimization techniques with the aid of sensitivity analysis. The main contribution of this work is to apply the inverse problem technique to estimate the actual parameter values of the tested circuit and so, to detect and diagnose single fault in analog circuits. The validation of the algorithm is illustrated through applying it to Sallen-Key second order band pass filter and the results show that the detecting percentage efficiency was 100% and also, the maximum error percentage of estimating the parameter values is 0.7%. This technique can be applied to any other linear circuit and it also can be extended to be applied to non-linear circuits. © 2011 IEEE.

  19. Map pattern and paleostress analysis of extensional faults deforming the Quaternary coral-reef deposits of the southeastern Dominican Republic: Implications for earthquake hazard

    Garcia-Senz, J.; Escuder-Viruete, J.; Perez-Estaun, A.


    In this study, we document a fault system in southeastern Dominican Republic that constitutes the onland continuation of the Mona Passage fault array. Fault-slip analysis has been carried out on 60 stations and paleostress ellipsoids were computed from striae orientations on faults using inverse methods. The CMT-catalog was also consulted to compare the moment tensor solution of earthquakes with the obtained results. Faults cut the 65-90 m raised coral-reef platform (Pliocene?-Pleistocene) that form the bulk of the Caribbean coastal plain, the 27-30 m reef terrace (247.2+26.3-20.05 ka, Middle Pleistocene), and the 6-7 m reef terrace (~125ka, Middle-Late Pleistocene boundary). Cumulative fault activity in the 65-90 m reef produced half-grabens with north polarity that controls the tributary water drainage. Their bounding faults attain 10-20 km wide and are segmented with transverse ramps developed at relay areas. The maximum throw calculated from fault scarps is about 75m. When represented in a length vs strike diagram, line scarps oriented in a prominent WNW set and a subordinate ENE set, in good agreement with field measurements of 540 fractures, that group into WNW, NNE and ENE sets. Paleostress analyses in tensional and hybrid fractures that affect the lower reef terraces indicate a SW-NE trend of subhorizontal extension. In the 65-90 m reef platform, the fault analysis establishes a stress ellipsoid characterized by a near-subvertical σ1 axis and a near-subhorizontal SSW to SW-trending σ3 axis. Therefore, the resulting type of brittle deformation in the Pleistocene ranges from (near) pure normal to normal strike-slip. In contrast, focal mechanisms solutions of generally deep (>65 km) earthquakes are characteristic of reverse, reverse oblique and strike-slip faulting, though shallow normal mechanisms also occur. The main stress axes determined by right-dihedra diagrams reveal a dominant N-trending subhorizontal compression and a subvertical extension. Assuming

  20. Fault-Mechanism Simulator

    Guyton, J. W.


    An inexpensive, simple mechanical model of a fault can be produced to simulate the effects leading to an earthquake. This model has been used successfully with students from elementary to college levels and can be demonstrated to classes as large as thirty students. (DF)

  1. Heat reveals faults

    Weinreich, Bernhard [Solarschmiede GmbH, Muenchen (Germany). Engineering Dept.


    Gremlins cannot hide from the all-revealing view of a thermographic camera, whereby it makes no difference whether it is a roof-mounted system or a megawatt-sized farm. Just as diverse are the range of faults that, with the growing level of expertise, can now be detected and differentiated with even greater detail. (orig.)

  2. Row fault detection system

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward


    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  3. Adaptive Fault Tolerance


    center ( MOCl ) and one workstation processor (WS1) in the Adaptive Fault Tolerance 22 command center (CCE). The remaining data processing routines (GDI...78243-7063 NRAIR232 ATTN: DANIEL W. ATKINSON 9800 SAVAGE RD FT MEADE MD 20755-6000 TRUSTED INFORMATION SYSTEMS, INC. ATTN: WILLIAM C. BARKER 3060

  4. Fault-Mechanism Simulator

    Guyton, J. W.


    An inexpensive, simple mechanical model of a fault can be produced to simulate the effects leading to an earthquake. This model has been used successfully with students from elementary to college levels and can be demonstrated to classes as large as thirty students. (DF)

  5. The sun and heliosphere at solar maximum.

    Smith, E J; Marsden, R G; Balogh, A; Gloeckler, G; Geiss, J; McComas, D J; McKibben, R B; MacDowall, R J; Lanzerotti, L J; Krupp, N; Krueger, H; Landgraf, M


    Recent Ulysses observations from the Sun's equator to the poles reveal fundamental properties of the three-dimensional heliosphere at the maximum in solar activity. The heliospheric magnetic field originates from a magnetic dipole oriented nearly perpendicular to, instead of nearly parallel to, the Sun's rotation axis. Magnetic fields, solar wind, and energetic charged particles from low-latitude sources reach all latitudes, including the polar caps. The very fast high-latitude wind and polar coronal holes disappear and reappear together. Solar wind speed continues to be inversely correlated with coronal temperature. The cosmic ray flux is reduced symmetrically at all latitudes.

  6. Field study and three-dimensional reconstruction of thrusts and strike-slip faults in the Central Andes: implications for deep-seated geothermal circulation and ore deposits exploration

    Norini, Gianluca; Groppelli, Gianluca; Giordano, Guido; Baez, Walter; Becchio, Raul; Viramonte, Jose; Arnosio, Marcelo


    , with the latter developed as transfer zones among the main thrusts. Both reverse and transcurrent displacements resulted from the interplay between the compressive regime of the plateau, with horizontal maximum principal stress, and the vertical thickening of the upper crust. The study suggests that the tectonic control on the magma and fluid circulation in the crust is mainly related to the geometry of the fault planes and the orientation of the stress field, with an important role played by the orogen-parallel thrust faults and horizontal maximum principal stress in determining the secondary permeability, the arrangement at depth of potential cap rocks and reservoir units, the structure and location of monogenetic and polygenetic volcanoes and the geometry of mineral veins.

  7. Fault-Related Sanctuaries

    Piccardi, L.


    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  8. Thruster fault identification method for autonomous underwater vehicle using peak region energy and least square grey relational grade

    Mingjun Zhang


    Full Text Available A novel thruster fault identification method for autonomous underwater vehicle is presented in this article. It uses the proposed peak region energy method to extract fault feature and uses the proposed least square grey relational grade method to estimate fault degree. The peak region energy method is developed from fusion feature modulus maximum method. It applies the fusion feature modulus maximum method to get fusion feature and then regards the maximum of peak region energy in the convolution operation results of fusion feature as fault feature. The least square grey relational grade method is developed from grey relational analysis algorithm. It determines the fault degree interval by the grey relational analysis algorithm and then estimates fault degree in the interval by least square algorithm. Pool experiments of the experimental prototype are conducted to verify the effectiveness of the proposed methods. The experimental results show that the fault feature extracted by the peak region energy method is monotonic to fault degree while the one extracted by the fusion feature modulus maximum method is not. The least square grey relational grade method can further get an estimation result between adjacent standard fault degrees while the estimation result of the grey relational analysis algorithm is just one of the standard fault degrees.

  9. Lateral propagation of active normal faults throughout pre-existing fault zones: an example from the Southern Apennines, Italy

    Agosta, Fabrizio; Prosser, Giacomo; Ivo Giano, Salvatore


    top, unconformably covered by Miocene clastic deposits. The lower thrust sheet is made up of deep-sea deposits of late Triassic to Eocene age, which include pelagic limestones, radiolarites, marls and turbiditic calcarenites. The relay ramp area is comprised of two main fault sets, which are NW-trending (N120-140E) and NE-trending (N60-70E). Minor E-trending (N90-100E) and NNW-trending (N160-170E) faults are also present. Maximum throws of the most developed faults, which are also characterized by the longest traces, are in the order of 300-400 m. Crosscutting relationships and morphotectonic analyses generally show that the NW-trending faults are the most recent, as also shown by the involvement of Quaternary breccias and near surface fault rocks. Our data indicate that propagation of NW-trending normal faults in the relay ramp area took place thanks to the breaking of a pre-existing structural grain made up, mainly, of NE-trending normal faults. This process determined the different multi-scale properties to the two fault sets, and somehow inhibited the lateral growth of the NW-trending normal faults.

  10. Orienteering club

    Club d'orientation


    Course d'orientation La reprise des courses d’orientation était attendue dans la région puisque près de 150 coureurs ont participé à la première épreuve automnale organisée par le club d’orientation du CERN sur le site de La Faucille. Les circuits ont été remportés par Yann Locatelli du club d’Orientation Coeur de Savoie avec 56 secondes d’avance sur Damien Berguerre du club SOS Sallanches pour le parcours technique long, Marie Vuitton du club CO CERN (membre également de l’Equipe de France Jeune) pour le parcours technique moyen avec presque 4 minutes d’avance sur Jeremy Wichoud du club Lausanne-Jorat, Victor Dannecker pour le circuit technique court devant Alina Niggli, Elliot Dannecker pour le facile moyen et Alice Merat sur le facile court, tous membres du club O’Jura. Les résultats comp...


    Amjan.Shaik; Dr.C.R.K.Reddy; Dr.A.Damodaran


    In the last decade, empirical studies on object-oriented design metrics have shown some of them to be useful for predicting the fault-proneness of classes in object-oriented software systems. In the era of Computerization Object Oriented Paradigm is becoming more and more pronounced. This has provoked the need of high quality object oriented software, as the traditional metrics cannot be applied on the object-oriented systems. This paper gives the evaluation of CK suit of metrics. There are q...

  12. Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach

    Geist, E. L.; Parsons, T.


    Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.

  13. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    Ryan, H. F.; Parsons, T.; Sliter, R. W.


    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3 mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15 cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6 cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5 km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  14. Network Fault Diagnosis Using DSM

    Jiang Hao; Yan Pu-liu; Chen Xiao; Wu Jing


    Difference similitude matrix (DSM) is effective in reducing information system with its higher reduction rate and higher validity. We use DSM method to analyze the fault data of computer networks and obtain the fault diagnosis rules. Through discretizing the relative value of fault data, we get the information system of the fault data. DSM method reduces the information system and gets the diagnosis rules. The simulation with the actual scenario shows that the fault diagnosis based on DSM can obtain few and effective rules.

  15. Sexual Orientation (For Parents)

    ... Teaching Kids to Be Smart About Social Media Sexual Orientation KidsHealth > For Parents > Sexual Orientation Print A ... orientation is part of that process. What Is Sexual Orientation? The term sexual orientation refers to the ...

  16. Analysis of Photovoltaic Maximum Power Point Trackers

    Veerachary, Mummadi

    The photovoltaic generator exhibits a non-linear i-v characteristic and its maximum power point (MPP) varies with solar insolation. An intermediate switch-mode dc-dc converter is required to extract maximum power from the photovoltaic array. In this paper buck, boost and buck-boost topologies are considered and a detailed mathematical analysis, both for continuous and discontinuous inductor current operation, is given for MPP operation. The conditions on the connected load values and duty ratio are derived for achieving the satisfactory maximum power point operation. Further, it is shown that certain load values, falling out of the optimal range, will drive the operating point away from the true maximum power point. Detailed comparison of various topologies for MPPT is given. Selection of the converter topology for a given loading is discussed. Detailed discussion on circuit-oriented model development is given and then MPPT effectiveness of various converter systems is verified through simulations. Proposed theory and analysis is validated through experimental investigations.

  17. Fault-based analysis of flexible ciphers



    Full Text Available We consider security of some flexible ciphers against differential fault analysis (DFA. We present a description of the fault-based attack on two kinds of the flexible ciphers. The first kind is represented by the fast software-oriented cipher based on data-dependent subkey selection (DDSS, in which flexibility corresponds to the use of key-dependent operations. The second kind is represented by a DES-like cryptosystem GOST with secrete S-boxes. In general, the use of some secrete operations and procedures contributes to the security of the cryptosystem, however degree of this contribution depends significantly on the structure of the encryption mechanism. It is shown how to attack the DDSS-based flexible cipher using DFA though this cipher is secure against standard variants of the differential and linear cryptanalysis. We also give an outline of ciphers RC5 and GOST showing that they are also insecure against DFA-based attack. We suggest also a modification of the DDSS mechanism and a variant of the advanced DDSS-based flexible cipher that is secure against attacks based on random hardware faults.

  18. Fault-tolerant for Electric Vehicles Drive System Sensor Failure

    Zhang Liwei


    Full Text Available When EV failure happens, it needs to take some fault-tolerant method to ensure people’s safety. When the current sensor and speed sensor are out of work, the software fault-tolerant control algorithm switching strategy can be used. This paper has done theoretical analysis of the rotor field-oriented vectoe control algorithm into the open loop constant V/F control algorithm, and the phase angle compensation method is used to reduce the shock of current and torque, and simulation is done in MATLAB/Simulink.    

  19. Estimation of slip rates and seismic hazard parameters using conventional techniques of structural geology in a slow-moving fault: Alhama de Murcia - Alcantarilla segment of the Alhama de Murcia Fault (Murcia, SE Spain)

    Herrero-Barbero, Paula; Álvarez-Gómez, José Antonio; Jesús Martínez-Díaz, Jose


    The convergence between Nubian and Eurasian plates in the Western Mediterranean is being accommodated by the Eastern Betic Shear Zone, located in Southeastern Iberia. This is a low strain region whose faults show low slip rates and long recurrence periods of their maximum earthquakes, so they do not provide clear evidence of their seismogenic activity. The Alhama de Murcia - Alcantarilla segment, defined as the NE end of the Alhama de Murcia Fault, is one of the structures of the Eastern Betic Shear Zone and there are few in-depth studies about its seismic potential. In order to assess the seismogenic potential and slip-rate of this segment we have carried out a structural analysis. We have built a 3D geological model of the area where the fault is currently bounding the Neogene Fortuna basin. The structural model is based on seismic reflection profiles which have been later input in MOVE, structural modelling and analysis software. The analysis of the model has revealed several structural features related to positive inversion tectonics in Fortuna basin, specifically a typical "harpoon" structure whose deformation is estimated to have begun since Upper Miocene (Messinian). Geometric models and area balance methods (e.g. depth-to-detachment method) applied to the previously mentioned structure have allowed to estimate the heave of the fault, representing the amount of shortening observed in the fault section during its recent activity. The horizontal shortening rate estimated is between 0.09 and 0.26 mm/yr during the last 5.3 - 2.6 Ma. Projecting the obtained shortening onto the fault plane and considering the present regional tectonic shortening it has been possible to obtain a net slip rate between 0.13 and 0.37 mm/yr. Such parameters suggest that the Alhama de Murcia - Alcantarilla segment has less activity than other segments of the fault. The result obtained is consistent with the fact that the Carrascoy Fault, oriented parallel and located to the south of the

  20. The characteristics of Quaternary activity of faults in the sea area near the Yangtze River mouth

    章振铨; 火恩杰; 刘昌森; 王锋


    By shallow seismic prospecting, it is showed that the faults in the sea area near the Yangtze River mouth are mainly the NE and NW-trending faults. The main activity time of fault is Pliocene to Early Pleistocene, and the latest activity is up to Middle Pleistocene. The maximum of fault is generally several tens meters with the throw decreased upward. The dislocation near the bottom of Middle Pleistocene is 12~13 m. The average vertical displacement rate is on a level of 10-3 mm/a.

  1. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet

    Zuza, Andrew V.; Yin, An


    Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~rigid-body motion and flow-like distributed deformation end-member models for continental tectonics. Here we propose a non-rigid bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east-west direction. Thus, any single north-south cross section and its kinematic reconstruction through the region do not properly quantify the complex deformational processes of plateau formation.

  2. Orienteering Club

    Club d'orientation


    Courses d’orientation Une bonne dizaine de clubs étaient représentés samedi dernier à La Faucille pour participer à la  2e manche de la coupe genevoise organisée par le club du CERN. Les 120 coureurs ont pu découvrir des parcours classés "technique". Ceux du Haut-Jura familiarisés à ce type de terrain ont pu sortir leur épingle du jeu et se sont octroyé la victoire sur 4 des 5 circuits. Samedi 21 septembre, la montagne du Haut-Jura était encore plébiscitée puisque les coureurs étaient attendus à Saint Cergue sur la carte des Pralies. Pour les résultats complets de La Faucille et les informations sur la prochaine étape, consultez le site du club

  3. Horizontally oriented plates in clouds

    Bréon, François-Marie


    Horizontally oriented plates in clouds generate a sharp specular reflectance signal in the glint direction, often referred to as "subsun". This signal (amplitude and width) may be used to analyze the relative area fraction of oriented plates in the cloud top layer and their characteristic tilt angle to the horizontal. We make use of spaceborne measurements from the POLDER instrument to provide a statistical analysis of these parameters. More than half of the clouds show a detectable maximum reflectance in the glint direction, although this maximum may be rather faint. The typical effective fraction (area weighted) of oriented plates in clouds lies between 10-3 and 10-2. For those oriented plates, the characteristic tilt angle is less than 1 degree in most cases. These low fractions imply that the impact of oriented plates on the cloud albedo is insignificant. The largest proportion of clouds with horizontally oriented plates is found in the range 500-700 hPa, in agreement with typical in situ observation of p...

  4. Orientation Club

    Club d'orientation


    COURSE ORIENTATION Résultats de samedi 10 mai    C’est sur une carte entièrement réactualisée dans les bois de Versoix, que plus de 100 coureurs sont venus participer à la course d’orientation, type longue distance, préparée par des membres du club du CERN. Le terrain plutôt plat nécessitait une orientation à grande vitesse, ce qui a donné les podiums suivants :  Technique long avec 17 postes : 1er Jurg Niggli, O’Jura en 52:48, 2e Beat Muller, COLJ Lausanne-Jorat en 58:02, 3e Christophe Vuitton, CO CERN en 58:19 Technique moyen avec 13 postes : 1er Jean-Bernard Zosso, CO CERN, en 46:05 ; 2e Yves Rousselot, Balise 25 Besançon, en 55:11 ; 3e Laurent Merat, O'Jura, en 55:13 Technique court avec 13 postes : 1er Julien Vuitton, CO CERN en 40:59, 2e Marc Baumgartner, CO CERN en 43:18, 3e Yaelle Mathieu en 51:42 Su...

  5. Orienteering Club

    Club d'orientation


    Courses d’orientation ce printemps Le Club d’orientation du CERN vous invite à venir découvrir la course d’orientation et vous propose, en partenariat avec d’autres clubs de la région, une dizaine de courses populaires. Celles-ci ont lieu les samedis après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Si vous êtes débutant vous pouvez profiter d’une petite initiation offerte par l’organisateur avant de vous lancer sur un parcours. Divers types de parcours sont à votre choix lors de chaque épreuve : facile court (2-3 km), facile moyen (3-5 km), technique court (3-4 km), technique moyen (4-5 km) et technique long (5-7 km). Les dates à retenir sont les suivantes : Samedi 23 mars: Pully (Vd) Samedi 13 avril: Pougny...

  6. Managing Fault Management Development

    McDougal, John M.


    As the complexity of space missions grows, development of Fault Management (FM) capabilities is an increasingly common driver for significant cost overruns late in the development cycle. FM issues and the resulting cost overruns are rarely caused by a lack of technology, but rather by a lack of planning and emphasis by project management. A recent NASA FM Workshop brought together FM practitioners from a broad spectrum of institutions, mission types, and functional roles to identify the drivers underlying FM overruns and recommend solutions. They identified a number of areas in which increased program and project management focus can be used to control FM development cost growth. These include up-front planning for FM as a distinct engineering discipline; managing different, conflicting, and changing institutional goals and risk postures; ensuring the necessary resources for a disciplined, coordinated approach to end-to-end fault management engineering; and monitoring FM coordination across all mission systems.

  7. Structural conditions within Sava Fault zone in the Western Karavanke mountains, NW Slovenia

    Vanja Kastelic


    Full Text Available The investigated area of Western Karavanke lies in the zone of Sava Fault – the southern most part of the Periadriatic Fault zone. The work is based on detail structural mapping of the fault zones combined with measurements of microtectonic data used for paleostress tensor inversion. The prevailing orientation of fault zones in the studied area is generally E–W oriented with steep dips towards N with strike-slip kinematics as the main slip sense recorded on them. Alongside horizontal deformation, records of vertical movements on these faults are also to be seen in the field and the inversion data confirm such kinematic style with compressional stress regime. Two systems of connecting faults that lie between two strands of E–W oriented faults are also present in the studied area. Along both of them blocks of more deformable rocks were extruded on more rigid rock units. I connect the age of this style of deformation to post-collisional processes connected to Alpine orogenesis, and recent earthquakes in the area prove the ongoing active deformation of the area.

  8. Fault Tree Handbook


    to be Evaluated Manufacturer Location Seismic Susceptibility Flood Susceptibility Temperature Humidity Radiation Wear-out Susceptibility Test...For the category " Seismic Susceptibility," we might define several sensitivity levels ranging from no sensitivity to extreme sensitivity, and for more... Hanford Company, Richland, Wash- ington, ARH-ST-l 12, July 1975. 40. W.E. Vesely, "Analysis of Fault Trees by Kinetic Tree Theory," Idaho Nuclear

  9. Faults in Linux

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman


    In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... of development and research efforts on improving the reliability of driver code. Today Linux is used in a much wider range of environments, provides a much wider range of services, and has adopted a new development and release model. What has been the impact of these changes on code quality? Are drivers still...... a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been...

  10. Volcano instability induced by strike-slip faulting

    Lagmay, A. M. F.; van Wyk de Vries, B.; Kerle, N.; Pyle, D. M.


    Analogue sand cone experiments were conducted to study instability generated on volcanic cones by basal strike-slip movement. The results of the analogue models demonstrate that edifice instability may be generated when strike-slip faults underlying a volcano move as a result of tectonic adjustment. This instability occurs on flanks of the volcano above the strike-slip shear. On the surface of the volcano this appears as a pair of sigmoids composed of one reverse and one normal fault. In the interior of the cone the faults form a flower structure. Two destabilised regions are created on the cone flanks between the traces of the sigmoidal faults. Bulging, intense fracturing and landsliding characterise these unstable flanks. Additional analogue experiments conducted to model magmatic intrusion show that fractures and faults developed within the volcanic cone due to basal strike-slip motions strongly control the path of the intruding magma. Intrusion is diverted towards the areas where previous development of reverse and normal faults have occurred, thus causing further instability. We compare our model results to two examples of volcanoes on strike-slip faults: Iriga volcano (Philippines), which underwent non-magmatic collapse, and Mount St. Helens (USA), where a cryptodome was emplaced prior to failure. In the analogue and natural examples, the direction of collapse takes place roughly parallel to the orientation of the underlying shear. The model presented proposes one mechanism for strike-parallel breaching of volcanoes, recently recognised as a common failure direction of volcanoes found in regions with transcurrent and transtensional deformation. The recognition of the effect of basal shearing on volcano stability enables prediction of the likely direction of eventual flank failure in volcanoes overlying strike-slip faults.

  11. Thermal instability and current-voltage scaling in superconducting fault current limiters

    Zeimetz, B [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Tadinada, K [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Eves, D E [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Coombs, T A [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Evetts, J E [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Campbell, A M [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom)


    We have developed a computer model for the simulation of resistive superconducting fault current limiters in three dimensions. The program calculates the electromagnetic and thermal response of a superconductor to a time-dependent overload voltage, with different possible cooling conditions for the surfaces, and locally variable superconducting and thermal properties. We find that the cryogen boil-off parameters critically influence the stability of a limiter. The recovery time after a fault increases strongly with thickness. Above a critical thickness, the temperature is unstable even for a small applied AC voltage. The maximum voltage and maximum current during a short fault are correlated by a simple exponential law.

  12. Diagnosis Method for Analog Circuit Hard fault and Soft Fault

    Baoru Han


    Full Text Available Because the traditional BP neural network slow convergence speed, easily falling in local minimum and the learning process will appear oscillation phenomena. This paper introduces a tolerance analog circuit hard fault and soft fault diagnosis method based on adaptive learning rate and the additional momentum algorithm BP neural network. Firstly, tolerance analog circuit is simulated by OrCAD / Pspice circuit simulation software, accurately extracts fault waveform data by matlab program automatically. Secondly, using the adaptive learning rate and momentum BP algorithm to train neural network, and then applies it to analog circuit hard fault and soft fault diagnosis. With shorter training time, high precision and global convergence effectively reduces the misjudgment, missing, it can improve the accuracy of fault diagnosis and fast.  

  13. ESR dating of fault rocks

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)


    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  14. Large earthquakes and creeping faults

    Harris, Ruth A.


    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  15. Along-Fault Deformation Partitioning of NW Haiti:Implication on Fluid Transfer

    Ellouz, N.; Hamon, Y.; Deschamps, R.; Schmitz, J.; Battani, A.; Leroy, S. D.; Monplaisir, R.; Ruffine, L.


    The area of Western Haiti located in between two major fault systems, the Enriquillo-Plantain Garden Fault (EPGF) and Ciabao-Oriente Septentrional fault system has been surveyed during the 2012 and 2013 Haiti-SIS cruises. From seismic interpretation and mapping the two bordering transform faults systems, EPGF (to the South) and Oriente-Septentrional (to the North), we document the deformation partitioning and the fault segmentation at different scales. A common tectonic evolution has been registered in S. Eastern Cuba and Western Hispaniola (Haiti area), up to early Miocene times. From the effective Hispaniola-Cuba separation at Oligocene/Miocene transition times, left lateral strike-slip motion was registered along large crustal faults cross-cutting different domains versus time. Rooted on these crustal/lithospheric discontinuties tectonic stress is also released on secondary fault systems where both deep and basin, even meteoric fluids may migrate. Sedimentation processes and sequence deposition have been also analyzed both offshore and onshore in the same area showing the strong tectonic-sedimentation processes interaction. A tentative calendar of this deformation, coupled with Present-Day evaluation of the draining areas along Septentrional fault, Transhaitian Ranges and Gonave Bay will be presented on regional seismic profiles and cross-sections.

  16. Landscape response to normal fault growth and linkage in the Southern Apennines, Italy.

    Roda-Boluda, Duna; Whittaker, Alex


    It is now well-established that landscape can record spatial and temporal variations in tectonic rates. However, decoding this information to extract detailed histories of fault growth is often a complex problem that requires careful integration of tectonic and geomorphic data sets. Here, we present new data addressing both normal fault evolution and coupled landscape response for two normal faults in the Southern Apennines: the Vallo di Diano and East Agri faults. By integrating published constraints with new data, we show that these faults have total throws of up to 2100 m, and Holocene throw rates of up to 1 mm/yr at their maximum. We demonstrate that geomorphology is effectively recording tectonics, with relief, channel and catchment slopes varying along fault strike as normal fault activity does. Therefore, valuable information about fault growth and interaction can be extracted from their geomorphic expression. We use the spatial distribution of knickpoints on the footwall channels to infer two episodes of base level change, which can be associated with distinct fault interaction events. From our detailed fault throw profiles, we reconstruct the amount of throw accumulated after each of these events, and the segments involved in each, and we use slip rate enhancement factors derived from fault interaction theory to estimate the magnitude of the tectonic perturbation in each case. From this approach, we are able to reconstruct pre-linkage throw rates, and we estimate that fault linkage events likely took place 0.7 ± 0.2 Ma and 1.9 ± 0.6 Ma in the Vallo di Diano fault, and 1.1 ± 0.1 and 2.3 ± 0.9 Ma in the East Agri fault. Our study suggests that both faults started their activity at 3.6 ± 0.5 Ma. These fault linkage scenarios are consistent with the knickpoint heights, and may relate to soft-linkage interaction with the Southern Apennines normal fault array, the existence of which has been the subject of considerable debate. Our combined geomorphic and

  17. Mechanism of water-inrush from fault induced by mining near the working face

    WANG Lian-guo; WU Yu; MIAO Xie-xing; DONG Xu


    Adopted the fractal tree-like failure model, and established the renormalization group transform function of fractured fault, and investigated the mechanism of water-inrush from fault, and found out the critical probability of water-inrush from fault caused by fault fracture. The results indicate: when the failure rate P is less than the critical failure rate Pc=0.206 3, the failure of the system is just partial. When P is more than the critical failure rate Pc=0.206 3, the random distributed crannies concentrate to certain domain of attraction (such as the maximum shear stress face in the fault) gradually. The process will continue until the crannies run-through, forming conductivity channel, and cause water-inrush from fault.

  18. Imaging of subsurface faults using refraction migration with fault flooding

    Metwally, Ahmed; Hanafy, Sherif; Guo, Bowen; Kosmicki, Maximillian


    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except that it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  19. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    Metwally, Ahmed


    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  20. In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales

    Guglielmi, Yves; Elsworth, Derek; Cappa, Frédéric; Henry, Pierre; Gout, Claude; Dick, Pierre; Durand, Jérémie


    Key questions in fault reactivation in shales relate to the potential for enhanced fluid transport through previously low-permeability aseismic formations. Here we explore the behavior of a 20 m long N0-to-170°, 75-to-80°W fault in shales that is critically stressed under a strike-slip regime (σ1 = 4 ± 2 MPa, horizontal and N162° ± 15°E, σ2 = 3.8 ± 0.4 MPa and σ3 = 2.1 ± 1 MPa, respectively 7-8° inclined from vertical and horizontal and N72°). The fault was reactivated by fluid pressurization in a borehole using a straddle packer system isolating a 2.4 m long injection chamber oriented-subnormal to the fault surface at a depth of 250 m. A three-dimensional displacement sensor attached across the fault allowed monitoring fault movements, injection pressure and flow rate. Pressurization induced a hydraulic diffusivity increase from ~2 × 10-9 to ~103 m2 s-1 associated with a complex three-dimensional fault movement. The shear (x-, z-) and fault-normal (y-) components (Ux, Uy, and Uz) = (44.0 × 10-6 m, 10.5 × 10-6 m, and 20.0 × 10-6 m) are characterized by much larger shear displacements than the normal opening. Numerical analyses of the experiment show that the fault permeability evolution is controlled by the fault reactivation in shear related to Coulomb failure. The large additional fault hydraulic aperture for fluid flow is not reflected in the total normal displacement that showed a small partly contractile component. This suggests that complex dilatant effects estimated to occur in a plurimeter radius around the injection source affect the flow and slipping patch geometries during fault rupture, controlling the initial slow slip and the strong back slip of the fault following depressurization.

  1. What do we know about the initiation and early stages of brittle faulting in crystalline rocks?

    Crider, J. G.


    The styles of initiation and subsequent growth of faults control fault length-slip scaling, the internal structure of fault zones, and fault-rock properties, influencing seismogenic behavior and fluid flow along the faults. Observations by many researchers over the last several decades have illustrated that faults in the upper crust initiate on pre-existing (inherited) or precursory (early-formed) structures and grow by the mechanical interaction and linkage of these structures. These pre-existing and precursory structures are typically mode I fractures (joints, veins, dikes) but may also be semi-brittle shear zones (such as deformation bands in porous sandstone). Research in the granitic outcrops of the central Sierra Nevada (California) has provided significant insight into the geometry and fundamental mechanics of the early stages of fault development. This work has shown that faults in plutonic rocks initiate on pre-existing or precursory joints or dikes and that the discontinuous nature of early mode I fractures has a strong influence on the subsequent development of the fault zone. In basalt, we have similarly observed the important influence of preexisting joints, and, at a broader scale, precursory, semi-brittle shear zones in the form of fault-tip monoclines. In metamorphic rocks, foliation appears to control the initial development of faults, influencing fault orientation, or enabling precursory structures such as kink bands. Kink bands, like deformation bands in porous sandstone, accommodate only small strains before locking, but then become strong inclusions in the material, serving to localize brittle fractures. The quasi-static mechanics of isotropic, isothermal linear-elastic materials in two and three dimensions provides first order understanding of controls on interaction and linkage of early structures, including the concentration of stresses and local stress reorientation. Fruitful research directions important to faulting in crystalline rock

  2. Leveraged fault identification method for receiver autonomous integrity monitoring

    Sun Yuan


    Full Text Available Receiver autonomous integrity monitoring (RAIM provides integrity monitoring of global positioning system (GPS for safety-of-life applications. In the process of RAIM, fault identification (FI enables navigation to continue in the presence of fault measurement. Affected by satellite geometry, the leverage of each measurement in position solution may differ greatly. However, the conventional RAIM FI methods are generally based on maximum likelihood of ranging error for different measurements, thereby causing a major decrease in the probability of correct identification for the fault measurement with high leverage. In this paper, the impact of leverage on the fault identification is analyzed. The leveraged RAIM fault identification (L-RAIM FI method is proposed with consideration of the difference in leverage for each satellite in view. Furthermore, the theoretical probability of correct identification is derived to evaluate the performance of L-RAIM FI method. The experiments in various typical scenarios demonstrate the effectiveness of L-RAIM FI method over conventional FI methods in the probability of correct identification for the fault with high leverage.

  3. In-situ Stresses, Pore-fluid Pressures and Uplift Erosion in Relation to Active Thrust Faulting in western Taiwan

    Hung, J.; Yen, P.; Wang, L.


    We have studied the in-situ stresses, pore-fluid pressures and amounts of uplift erosion (UE) from petroleum wells drilled in the Hsinchu-Taichung area of western Taiwan Fold-thrust Belt. The average gradient of regional vertical stress (Sv) calculated from formation density logs is about 23 MPa/km. The magnitude of pore pressure (Pp) is estimated from mud pressure, gas cut and repeat formation test (RFT) in reservoir sandstone, and sonic logs. P-wave travel time in shale (STT) is used to determine the fluid-retention depth (ZFRD) which defines current fully compacted sediments with hydrostatic pressures above and undercompacted, overpressured zones below. Regional ZFRD is ~ 3 km except in the Chuhuangkeng anticline, where ZFRD is at shallower depth (~ 2.2 km) and extremely high pore pressure (λ=0.8) is also observed.. Calculated amounts of UE increase from 0.6 to 4.6 km eastward from outer to inner Foothills belt and correspond to stratigraphy downward and depth upward migration of the ZFRD. Along-strike variation of UE is insignificant. Hydraulic fracturing data including leak-off tests (LOTs) and mini-fracs, as well as qualitative data such as mud loss, are used to constrain the minimum horizontal stress (Shmin). The linear gradient of Shmin is about 17~19 MPa/km, relatively less than that of Sv (~23.60 MPa/km). This implies the in-situ stresses are at strike-slip (SHmax>SV>Shmin) to reverse fault considering focal mechanisms of seismicity are dominant by these two stress regimes in the study area. An upper-bound value of the maximum horizontal stress (SHmax) constrained by frictional limits and the coefficient of friction (μ=0.6) can be estimated from Anderson (1951) faulting criterion. Caliper logs from 8 wells are used to calculate the orientations of the maximum horizontal stresses following the definitions of borehole breakout in World Stress Map. The maximum horizontal stress axis is oriented in NW-SE but local variations occur when passing through

  4. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.


    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed

  5. Changes in Late Cretaceous-Quaternary Caribbean plate motion directions inferred from paleostress measurements from striated fault planes

    Batbayar, K.; Mann, P.; Hippolyte, J.


    We compiled paleostress analyses from previous research works collected at 591 localities of striated fault planes in rocks ranging in age from Late Cretaceous to Quaternary in the circum-Caribbean and Mexico. The purpose of the study is to quantify a progressive clockwise rotation of the Caribbean plate during its Late Cretaceous to recent subduction of the Proto-Caribbean seaway. Paleostress analysis is based on the assumption that slickenside lineations indicate both the direction and sense of maximum resolved shear stress on that fault plane. We have plotted directions of maximum horizontal stress onto plate tectonic reconstructions of the circum-Caribbean plate boundaries and infer that these directions are proxies for paleo-plate motion directions of the Caribbean plate. Plotting these stress directions onto reconstructions provided a better visualization of the relation of stress directions to blocks at their time of Late Cretaceous to recent deformation. Older, more deformed rocks of Late Cretaceous to Eocene ages yield a greater scatter in derived paleostress directions as these rocks have steeper dips, more pervasive faulting, and were likely affected by large rotations as known from previous paleomagnetic studies of Caribbean plate margins. Despite more scatter in measurements from older rock units, four major events that affected the Caribbean plate and the Great Arc of the Caribbean (GAC) are recognizable from changing orientations of stress directions: 1) Late Cretaceous collision of the GAC with southern Mexico and Colombia is consistent with NE directions of maximum compression in rocks of this age range in southern Mexico and EW directions in Colombia as the GAC approached the Proto-Caribbean seaway; 2) Paleocene-Eocene collision of the GAC with the Bahamas platform in Cuba and Hispaniola and with the South American plate in Venezuela is consistent with CW rotations of stress directions in rocks of these ages in the northern Caribbean and CCW

  6. Mechanical stratigraphy and normal faulting

    Ferrill, David A.; Morris, Alan P.; McGinnis, Ronald N.; Smart, Kevin J.; Wigginton, Sarah S.; Hill, Nicola J.


    Mechanical stratigraphy encompasses the mechanical properties, thicknesses, and interface properties of rock units. Although mechanical stratigraphy often relates directly to lithostratigraphy, lithologic description alone does not adequately describe mechanical behavior. Analyses of normal faults with displacements of millimeters to 10's of kilometers in mechanically layered rocks reveal that mechanical stratigraphy influences nucleation, failure mode, fault geometry, displacement gradient, displacement distribution, fault core and damage zone characteristics, and fault zone deformation processes. The relationship between normal faulting and mechanical stratigraphy can be used either to predict structural style using knowledge of mechanical stratigraphy, or conversely to interpret mechanical stratigraphy based on characterization of the structural style. This review paper explores a range of mechanical stratigraphic controls on normal faulting illustrated by natural and modeled examples.

  7. Fault Tolerant Wind Farm Control

    Odgaard, Peter Fogh; Stoustrup, Jakob


    with best at a wind turbine control level. However, some faults are better dealt with at the wind farm control level, if the wind turbine is located in a wind farm. In this paper a benchmark model for fault detection and isolation, and fault tolerant control of wind turbines implemented at the wind farm...... control level is presented. The benchmark model includes a small wind farm of nine wind turbines, based on simple models of the wind turbines as well as the wind and interactions between wind turbines in the wind farm. The model includes wind and power references scenarios as well as three relevant fault...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  8. Handling Software Faults with Redundancy

    Carzaniga, Antonio; Gorla, Alessandra; Pezzè, Mauro

    Software engineering methods can increase the dependability of software systems, and yet some faults escape even the most rigorous and methodical development process. Therefore, to guarantee high levels of reliability in the presence of faults, software systems must be designed to reduce the impact of the failures caused by such faults, for example by deploying techniques to detect and compensate for erroneous runtime conditions. In this chapter, we focus on software techniques to handle software faults, and we survey several such techniques developed in the area of fault tolerance and more recently in the area of autonomic computing. Since practically all techniques exploit some form of redundancy, we consider the impact of redundancy on the software architecture, and we propose a taxonomy centered on the nature and use of redundancy in software systems. The primary utility of this taxonomy is to classify and compare techniques to handle software faults.


    Chenglong Sun


    Full Text Available Fault localization is time-consuming and difficult, which makes it the bottleneck of the debugging progress. To help facilitate this task, there exist many fault localization techniques that help narrow down the region of the suspicious code in a program. Better accuracy in fault localization is achieved from heavy computation cost. Fault localization techniques that can effectively locate faults also manifest slow response rate. In this paper, we promote the use of pre-computing to distribute the time-intensive computations to the idle period of coding phase, in order to speed up such techniques and achieve both low-cost and high accuracy. We raise the research problems of finding suitable techniques that can be pre-computed and adapt it to the pre-computing paradigm in a continuous integration environment. Further, we use an existing fault localization technique to demonstrate our research exploration, and shows visions and challenges of the related methodologies.

  10. Assessing sensitivity of Probabilistic Seismic Hazard Analysis (PSHA) to fault parameters: Sumatra case study

    Omang, A.; Cummins, P. R.; Horspool, N.; Hidayati, S.


    Slip rate data and fault geometry are two important inputs in determining seismic hazard, because they are used to estimate earthquake recurrence intervals which strongly influence the hazard level in an area. However, the uncertainty of slip-rates and geometry of the fault are rarely considered in any probabilistic seismic hazard analysis (PSHA), which is surprising given the estimates of slip-rates can vary significantly from different data sources (e.g. geological vs. Geodetic). We use the PSHA method to assess the sensitivity of seismic hazard to fault slip-rates along the Great Sumatran Fault in Sumatra, Indonesia. We will consider the epistemic uncertainty of fault slip rate by employing logic trees to include alternative slip rate models. The weighting of the logic tree is determined by the probability density function of the slip rate estimates using the approach of Zechar and Frankel (2009). We consider how the PSHA result accounting for slip rate uncertainty differs from that for a specific slip rate by examining hazard values as a function of return period and distance from the fault. We also consider the geometry of the fault, especially the top and the bottom of the rupture area within a fault, to study the effect from different depths. Based on the results of this study, in some cases the uncertainty in fault slip-rates, fault geometry and maximum magnitude have a significant effect on hazard level and area impacted by earthquakes and should be considered in PSHA studies.

  11. A Unified Maximum Likelihood Approach to Document Retrieval.

    Bodoff, David; Enache, Daniel; Kambil, Ajit; Simon, Gary; Yukhimets, Alex


    Addresses the query- versus document-oriented dichotomy in information retrieval. Introduces a maximum likelihood approach to utilizing feedback data that can be used to construct a concrete object function that estimates both document and query parameters in accordance with all available feedback data. (AEF)

  12. Club Orientation

    Club d'orientation


      COURSE ORIENTATION   Pas moins de 100 concurrents sont venus s’affronter sur les parcours proposés par le club d’orientation du CERN ce samedi 26 avril lors de la 4e étape de la coupe genevoise de printemps. Les podiums ont été attribués à :  Technique long avec 19 postes : 1er Yvan Balliot, ASO Annecy en 1:01:39 ; 2e Dominique Fleurent, ASO Annecy, en 1:05:12 ; 3e Rémi Fournier, SOS Sallanches, en 1:05:40. Technique moyen avec 14 postes : 1er Jean-Bernard Zosso, CO CERN, en 46:42 ; 2e Céline Zosso, CO CERN, en 50:51 ; 3e Clément Poncet, O’Jura Prémanon, en 51:27. Technique court avec 13 postes : 1er Jaakko Murtomaki, YKV Seinaejoki, en 36:04 ; 2e Marc Baumgartner en 41:27 ; 3e Natalia Niggli, O’Jura Prémanon, en 52:43. Sur les parcours facile moyen et facile court, victoire respectivement de Stéphanie...

  13. Orienteering Club

    Club d'Orientation


     Course d’orientation C’est sous un magnifique soleil que s’est tenue la 7e épreuve de la coupe genevoise organisée par le club d’orientation du CERN. Les organisateurs avaient concocté des parcours assez techniques sur le site de La Faucille. Sur le parcours technique long, beau podium avec la victoire de Domenico Lepori (double médaillés aux championnats du monde en 2010 en vétéran) du club Care Vevey en 1:00:23, juste devant Jürg Niggli du club O’Jura en 1:00:56 puis Beat Mueller du club Lausanne-Jorat en 1:04:28. Sur le parcours technique moyen, Franck Longchampt s’est octroyé la première place, sur le parcours technique court, le jeune Julien Vuitton, qui n’a pas tout à fait 11 ans, a remporté son circuit. Coté parcours facile moyen, Victor Kuznetsov a une fois de plus gagn&eacut...

  14. Orienteering Club

    Club d'Orientation


    Course d’orientation Face aux Championnats de France des Clubs à Poitiers, et à une météo hivernale (vent glaciale et pluie), il ne restait qu’une cinquantaine d’orienteurs pour participer à l’épreuve organisée le samedi 25 mai à Grange-Malval. Les participants ont tout de même bien apprécié les 5 circuits proposés par le Satus Genève. Les résultats sont disponibles sur notre site En plus des résultats, vous pourrez noter des informations sur la nouvelle école de CO encadrée par B. Barge, Prof. EPS à Ferney-Voltaire pour les jeunes à partir de 6 ans. La prochaine étape de la coupe genevoise se déroulera samedi 1er juin à Morez (39). Epreuve organisée par le club O’Jura&nb...

  15. Orienteering club

    Club d'orientation


    Course d’orientation : Coupe Genevoise de printemps 2010 Et c’est reparti pour une nouvelle saison! Pour cette coupe de printemps 2010, le Club d’Orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose le calendrier suivant: – samedi 20 mars : Cossonay (Vd) – samedi 10 avril : Echallens (Vd) – samedi 17 avril : Trélex (Vd) – samedi 24 avril : Genolier (Vd) – samedi 1 mai : Vulbens/Valleiry (74) – samedi 8 mai : Bois de la Rippe (Vd) – samedi 29 mai : Sauvabellin (Vd) : relais – samedi 5 juin: St Cergue (Vd) : grande finale Les courses populaires ont lieu en général le samedi après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Pour cela, divers types de parcours sont &agr...

  16. Orienteering club

    Club d’Orientation du CERN


    Courses d’orientation Nouvelle saison nouveau programme Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une dizaine de courses populaires comptant pour la coupe Genevoise de printemps: samedi 28 mars: Vernand Dessus samedi 18 avril: Pougny/Challex samedi 25 avril: Chancy/Valleiry samedi 2 mai: Mauvernay samedi 9 mai: Longchaumois samedi 16 mai: Genolier samedi 30 mai: Prevondavaux samedi 6 juin: Biere-Ballens samedi 13 juin: Haut-Jura samedi 20 juin: Bonmont - Finale Ces courses sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Les inscriptions se font sur place le jour de l’épreuve. Si vous êtes débutant, vous pouvez profiter d’une initiation offerte par l’organisateur avant de vous lancer sur un parcours. Le club propose aussi...

  17. Orienteering club

    Orienteering Club


    Course d'orientation Calendrier des courses d’orientation Coupe genevoise d’automne 2016 Samedi 3 septembre : La Faucille (01) Samedi 10 septembre : Prémanon (39) Samedi 17 septembre : Saint-Cergue (VD) Samedi 24 septembre : Jorat / Corcelles (VD) Samedi 1 octobre: Bière - Ballens (VD) -relais Vendredi 14 octobre : Parc Mon Repos (GE) - nocturne Samedi 15 octobre : Terrasse de Genève (74) Samedi 29 octobre : Bonmont (VD) Samedi 5 novembre : Pomier (74) – one-man-relay - Finale   Courses ouvertes à toutes et à tous, sportifs, familles, débutants ou confirmés, du CERN ou d’ailleurs. Cinq circuits disponibles, ceci va du facile court (2 km) adapté aux débutants et aux enfants jusqu’au parcours technique long de 6 km pour les chevronnés en passant par les parcours facile moyen (4&am...


    Club d'orientation du CERN


      Les coureurs d’orientation de la région se sont donné rendez-vous samedi dernier dans les bois de Pougny/Challex lors de l’épreuve organisée par le club d’orientation du CERN. La carte proposée pour les 5 circuits offrait aussi bien un coté très technique avec un relief pentu qu’un coté avec de grandes zones plates à forêt claire. Le parcours technique long comportant 20 postes a été remporté par Beat Muller du COLJ Lausanne en 56:26 devançant Denis Komarov, CO CERN en 57:30 et Yvan Balliot, ASO Annecy en 57:46. Pour les autres circuits les résultats sont les suivants: Technique moyen (13 postes): 1er Joël Mathieu en 52:32 à une seconde du 2e Vladimir Kuznetsov, COLJ Lausanne-Jorat, 3e Jean-Bernard Zosso, CO CERN, en 54:01 Technique court (12 postes): 1er Lennart Jirden, ...

  19. Orienteering Club

    Club d'Orientation


    Calendrier des courses de la Coupe Genevoise – printemps 2017 Club d'orientation - Julien,  jeune membre du club. Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une série de courses populaires, qui se dérouleront des deux côtés de la frontière franco-suisse, à savoir : Samedi 1 avril : Pougny/Challex (01) Samedi 8 avril: Ballens (VD) Samedi 22 avril: Apples (VD) Samedi 29 avril: Mont Mussy (01) Samedi 6 mai: Prémanon (39) Samedi 13 mai: Mont Mourex (01) Samedi 20 mai: Prévondavaux (VD) Samedi 10 juin: Chancy/Valleiry (74) Samedi 17 juin: Trélex - Finale (VD) Ces courses sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel. Les inscriptions sur un des 5 parcours proposés se font sur place le jour de...

  20. Orienteering Club

    Club d'orientation


    COURSE D’ORIENTATION La finale de la coupe de printemps Après avoir remporté le challenge club, samedi 29 juin lors du relais inter-club à Lausanne, le Club d’orientation du CERN organisait la dernière étape de la coupe genevoise de printemps samedi 5 juin à Saint-Cergue dans les bois de Monteret (Canton de Vaud). Plus de 100 participants se sont déplacés pour venir participer à la finale et découvrir une toute nouvelle carte dans une forêt vallonnée. Les résultats pour chaque circuit de cette étape sont : Technique long : 1. Jurg Niggli du club O’Jura, 2. Clément Poncet, 3. Oystein Midttun. Technique moyen : 1. Zoltan Trocsanyi CO CERN, 2. Christophe Ingold, 3. Christina Falga. Technique court : 1. Pierre-Andre Baum, CARE Vevey, 2. Emese Szunyog, 3. Solène Balay. Facile moyen : 1. Elisa P...

  1. Orienteering Club

    Le Club d’orientation du CERN


    Course orientation Les courses d’orientation comptant pour la coupe genevoise de printemps s’enchainent dans la région franco-suisse. Samedi dernier, une bonne centaine de coureurs se sont retrouvés au Mont Mourex où le club du CERN avait préparé la sixième épreuve. A l’issue de la course, les participants confirmaient l’exigence des circuits, à savoir la condition physique et le côté technique du traçage. Le parcours technique long comportant 20 postes a été remporté par Darrell High du Care Vevey en 1:22:38 devançant Beat Muller du COLJ Lausanne-Jorat en 1:25:25 et Alison High également du Care Vevey en 1:28:51. Le circuit technique moyen a été remporté par Christophe Vuitton du CO CERN et le circuit technique court par Claire-Lise Rouiller, CO CERN. Les trois pr...

  2. Orienteering Club

    Club d'Orientation


    Course orientation C’est au pied du Salève, proche du Golf de Bosset, que le club d’orientation du CERN (CO CERN) a organisé samedi 19 septembre une nouvelle épreuve comptant pour la Coupe Genevoise d’automne. La zone « des Terrasses de Genève » avait été cartographiée et mise en service l’année dernière. Les participants ont pu apprécier un terrain ludique avec beaucoup de microreliefs, de points d’eau et de gros rochers, le tout au milieu d’une forêt assez claire et agréable à courir. Sur le parcours technique long, le résultat a été très serré puisque Pierrick Merino du club d’Annecy a gagné avec seulement 9 secondes d’avance sur Gaëtan Vuitton (CO CERN) qui confiait avoir perdu beaucoup du te...

  3. A three-dimensional study of fault zone architecture: Results from the SEMP fault system, Austria.

    Frost, E. K.; Dolan, J. F.; Sammis, C. G.; Hacker, B.; Cole, J.; Ratschbacher, L.


    orientation (LPO) of calcite grains throughout the outcrop. Deformation in the Greywacke Zone, however, contains a significant component of solution mass transfer, and we therefore estimate the strain in these rocks by calculating the change in bulk volume. These analyses do not find significant levels of strain distributed within the Klammkalk or Greywacke Zone, again revealing a highly localized fault zone. Our investigation of the downward continuation of the SEMP into the Tauern Window indicates that the fault remains discrete at mid-crustal levels, with the majority of strain occurring in a 100-m-wide ductile shear zone (Cole et al., 2007). Combined with the recent work of Rosenberg et al. (2007), who have studied the deepest exposures of the SEMP in the western Tauern Window, these data allow us to present a three-dimensional picture of fault zone architecture and mechanics from the top of the seismogenic zone all the way into the ductile lower crust.

  4. Final Technical Report: PV Fault Detection Tool.

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  5. LiDAR Analysis of Hector Mine Fault Scarp Degradation

    Zhang, X.; Hudnut, K. W.; Glennie, C. L.; Sousa, F.; Stock, J. M.; Akciz, S. O.


    The Mw 7.1 right-lateral strike-slip Hector Mine earthquake occurred on 10/16/1999 and generated an approximately 48 km long surface rupture. The Lavic Lake fault and the central section of the Bullion fault and several lesser faults ruptured, characterized by maximum strike slip of 5.25 ±0.85 m [Treiman, 2002]. As a very remote and un-populated area of the Mojave Desert, southern California, the study area is highly favorable for fault degradation studies with essentially no influence from vegetation or human activity. Airborne LiDAR (light detection and ranging) data and terrestrial laser scanning (TLS) are used to evaluate the form and rate of degradation of scarps along the Hector Mine fault rupture, California, USA. Airborne LiDAR data were acquired in 2000 and 2012 and these data were differenced using a newly developed algorithm for point cloud matching, which is improved over prior methods by accounting for scan geometry error sources. Using the bi-temporal data (scrutinizing profiles from 2000 & 2012), parameters for a fault scarp diffusion model are estimated and then a simulation result is generated to predict the evolved landform shape at the time of the 2014 TLS data set. Results are checked against TLS 2014 data collected at five key sites within the maximum slip field study area. In the past, scarp degradation has been mostly investigated using traditional survey methods (e.g., measuring elevations of points in a line perpendicular to the scarp) that require time-consuming field work and tend to introduce bias and variance due to data limitations. Airborne, mobile and terrestrial LiDAR data offer great potential to precisely document and rigorously determine morphologic degradation of fault scarps [Hilley et al., 2010]. In the present study, a unique set of data have been acquired at three points in time across several classic types of fault scarps and offset fault zone features. This allows progress in assessing the fitting of functions and

  6. Seismological Studies for Tensile Faults

    Gwo-Bin Ou


    Full Text Available A shear slip fault, an equivalence of a double couple source, has often been assumed to be a kinematic source model in ground motion simulation. Estimation of seismic moment based on the shear slip model indicates the size of an earthquake. However, if the dislocation of the hanging wall relative to the footwall includes not only a shear slip tangent to the fault plane but also expansion and compression normal to the fault plane, the radiating seismic waves will feature differences from those out of the shear slip fault. Taking account of the effects resulting from expansion and compression to a fault plane, we can resolve the tension and pressure axes as well as the fault plane solution more exactly from ground motions than previously, and can evaluate how far a fault zone opens or contracts during a developing rupture. In addition to a tensile angle and Poisson¡¦s ratio for the medium, a tensile fault with five degrees of freedom has been extended from the shear slip fault with only three degrees of freedom, strike, dip, and slip.

  7. Fault-Tree Compiler Program

    Butler, Ricky W.; Martensen, Anna L.


    FTC, Fault-Tree Compiler program, is reliability-analysis software tool used to calculate probability of top event of fault tree. Five different types of gates allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language of FTC easy to understand and use. Program supports hierarchical fault-tree-definition feature simplifying process of description of tree and reduces execution time. Solution technique implemented in FORTRAN, and user interface in Pascal. Written to run on DEC VAX computer operating under VMS operating system.

  8. Causes of automotive turbocharger faults



    Full Text Available This paper presents the results of examinations of turbocharger damages. The analysis of the causes of faults in 100 engines with turbochargers of cars, buses and trucks has been carried out. The incidence and structure of turbocharged engine faults has been compared to the causes of faults of naturally aspirated engines. The cause of damage, the possibility of early detection, the time between overhaul and the impact on engine operation for each case of fault was carried out as well. The results of examinations allowed to determine the most common causes of damages and how to prevent them.

  9. An Overview of Transmission Line Protection by Artificial Neural Network: Fault Detection, Fault Classification, Fault Location, and Fault Direction Discrimination

    Anamika Yadav


    Full Text Available Contemporary power systems are associated with serious issues of faults on high voltage transmission lines. Instant isolation of fault is necessary to maintain the system stability. Protective relay utilizes current and voltage signals to detect, classify, and locate the fault in transmission line. A trip signal will be sent by the relay to a circuit breaker with the purpose of disconnecting the faulted line from the rest of the system in case of a disturbance for maintaining the stability of the remaining healthy system. This paper focuses on the studies of fault detection, fault classification, fault location, fault phase selection, and fault direction discrimination by using artificial neural networks approach. Artificial neural networks are valuable for power system applications as they can be trained with offline data. Efforts have been made in this study to incorporate and review approximately all important techniques and philosophies of transmission line protection reported in the literature till June 2014. This comprehensive and exhaustive survey will reduce the difficulty of new researchers to evaluate different ANN based techniques with a set of references of all concerned contributions.

  10. Quaternary strike-slip crustal deformation around an active fault based on paleomagnetic analysis: a case study of the Enako fault in central Japan

    Kimura, Haruo; Itoh, Yasuto; Tsutsumi, Hiroyuki


    To evaluate cumulative strike-slip deformation around an active fault, we carried out tectonic geomorphic investigations of the active right-lateral strike-slip Enako fault in central Japan and paleomagnetic investigations of the Kamitakara pyroclastic flow deposit (KPFD; 0.6 Ma welded tuff) distributed around the fault. Tectonic geomorphic study revealed that the strike-slip displacement on the fault is ca. 150 m during the past 600 ka. We carried out measurements of paleomagnetic directions and anisotropy of magnetic susceptibility (AMS) within the pyroclastic flow deposit. Stable primary magnetic directions at each sampling site are well clustered and the AMS fabric is very oblate. We then applied tilt correction of paleomagnetic directions at 15 sites using tilting data obtained by the AMS property and orientations of eutaxitic structures. Within a distance of about 500 m from the fault trace, differential clockwise rotations were detected; the rotation angle is larger for zones closer to the fault. Because of this relation and absence of block boundary faults, a continuous deformation model explains the crustal deformation in the study area. The calculated minimum value of strike-slip displacement associated with this deformation detected within the shear zone is 210 m. The sum of this and offset on the Enako fault is 360 m and the slip rate is estimated at 0.6 mm/year.

  11. Integrated design of fault reconstruction and fault-tolerant control against actuator faults using learning observers

    Jia, Qingxian; Chen, Wen; Zhang, Yingchun; Li, Huayi


    This paper addresses the problem of integrated fault reconstruction and fault-tolerant control in linear systems subject to actuator faults via learning observers (LOs). A reconfigurable fault-tolerant controller is designed based on the constructed LO to compensate for the influence of actuator faults by stabilising the closed-loop system. An integrated design of the proposed LO and the fault-tolerant controller is explored such that their performance can be simultaneously considered and their coupling problem can be effectively solved. In addition, such an integrated design is formulated in terms of linear matrix inequalities (LMIs) that can be conveniently solved in a unified framework using LMI optimisation technique. At last, simulation studies on a micro-satellite attitude control system are provided to verify the effectiveness of the proposed approach.

  12. Object Oriented Mutation Applied in Java Application programming Interface and C++ Classes

    Titu Singh Arora; Prof. Ravindra Gupta


    Mutation analysis is a powerful and computationally expensive technique that measures the effectiveness of test cases for revealing faults. The principal expense of mutation analysis is that many faulty versions of the program under test, culled mutants, must be repeatedly executed. We survey several aspects of reconstruction of complex object-oriented faults on the java API. Application of object-oriented mutation operators in java programs using a parser-based tool can be precise but requir...

  13. Late Pliocene To Pleistocene Tectonic Activity In SW Portugal: The S.Teotónio-Aljezur- Sinceira Fault System And Evidence For Coastal Uplift

    Figueiredo, P.; Cabral, J.; Rockwell, T.


    Southwestern Portugal is located close to the Eurasia-Nubia plate boundary. East of the Gloria transform fault, this boundary becomes complex, particularly as it approaches the Gorringe Bank, the Horseshoe Plain, and the Gulf of Cadiz, where deformation related to the NW-SE convergence of Iberia and Nubia, at a rate of ~4-5 mm/ year, becomes distributed across a few hundred kilometer-wide zone. This area corresponds to the inferred seismogenic source zone for the 1755 earthquake and tsunami (estimated ≥ Mw 8), and also for the Mw 7.9 1969 event. During the past decade, several off-shore active folds and faults have been recognized in this region however, in spite of increased knowledge, none of the recognized active structures are clearly associated with the 1755 earthquake. Major likely sources are the Marquês de Pombal and Horseshoe faults. The Marquês de Pombal fault is a major NNE-SSW trending thrust located ~100 km SW of Cape S.Vicente that exhibits a ~1 km-high, 60 km-long scarp. Assuming rupture of this entire structure suggests earthquake magnitudes in the Mw 7.8 range. The Horseshoe fault, which is oriented NE- SW along a 175 km-long trend parallel to Säo Vicente canyon, a major morphological feature in the off- shore that has been interpreted as a possible extend for the Alentejo-Plasencia fault. Rupture of this entire fault could yield moment magnitude events up to Mw 8, assuming 10 m of average displacement. Neither of these potential sources can likely produce, by themselves, an earthquake that matches the upper estimates for the 1755 earthquake (Mw 8.7). Along the southwestern Portuguese coast, mainly at the western coastline, cliffs in Palaeozoic schist reach more than 100m in altitude, with evidence of uplift in the form of raised beach deposits, paleo-sea cliffs and multiple eolianite units. Several abrasion platforms with regional expression may have formed during multiple marine occupations. In contrast, the southern coast is underlain

  14. Smart phone orientation estimation comparisons using three axis gimbal

    Gaquin, Kevin G.; Fields, MaryAnne


    Smartphones have put powerful sensor arrays in nearly everyone's pockets. Fusing the data from these sensors it is possible to estimate the phone's current orientation. In this study we utilize a 3 axis gimbal to compare the performance of multiple orientation estimation algorithms. Controlling the position of the gimbal allows us to compare the known device orientation to the estimated orientation. Using this same method we determine where each algorithm's faults lie, and where they begin to break down. Then repeating these movements we are able to compare each algorithm to each other.

  15. Timing of Surface-Rupturing Earthquakes on the Philippine Fault Zone in Central Luzon Island, Philippines

    Tsutsumi, H.; Daligdig, J. A.; Goto, H.; Tungol, N. M.; Kondo, H.; Nakata, T.; Okuno, M.; Sugito, N.


    The Philippine fault zone is an arc-parallel left-lateral strike-slip fault zone related to oblique subduction of the Philippine Sea plate beneath the Philippine island arc. The fault zone extends for about 1300 km from the Luzon Island southward to the Mindanao Island. This fault zone has been seismically active with more than 10 earthquakes greater than M7 in the last century. The July 16, 1990, Luzon earthquake was the largest event that produced 120-km-long surface rupture along the Digdig fault. The coseismic displacement was predominantly left-lateral strike-slip with maximum slip of about 6 m. The Philippine fault zone in the Luzon Island consists of four left-stepping en echelon faults: the San Manuel, San Jose, Digdig, and Gabaldon faults from north to south. Historical documents and geomorphic data suggest that the San Manuel and Gabaldon faults ruptured most recently during historical earthquakes in 1796 and 1645, respectively. However, paleoseismic activities and slip rates for these faults were poorly constrained. In order to reconstruct chronology of surface-rupturing earthquakes, we excavated multiple trenches across these faults in the past three years. We have excavated two sites, San Gregorio and Puncan sites, across the Digdig fault. At the both sites, we identified near vertical fault zones that contain evidence for four surface-rupturing earthquakes during the past 2000 years, including the 1990 rupture. The timing of the penultimate earthquake is constrained to prior to 1400 AD, suggesting that the Digdig fault did not rupture during the 1645 earthquake. The average recurrence interval of the Digdig fault is about 600 years. A left-lateral slip rate of 8-13 mm/yr was obtained for the Digdig fault based on stream offsets and age of alluvial fan at San Juan in the central portion of the fault. For the San Jose fault, we excavated two trenches north of downtown San Jose. The sediments exposed on the trench walls were warped into a monocline by

  16. Evolution of the Rodgers Creek–Maacama right-lateral fault system and associated basins east of the northward-migrating Mendocino Triple Junction, northern California

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Wagner, David L.; Fleck, Robert J.; Langenheim, V.E.; Jachens, Robert C.; Clahan, Kevin; Allen, James R.


    The Rodgers Creek–Maacama fault system in the northern California Coast Ranges (United States) takes up substantial right-lateral motion within the wide transform boundary between the Pacific and North American plates, over a slab window that has opened northward beneath the Coast Ranges. The fault system evolved in several right steps and splays preceded and accompanied by extension, volcanism, and strike-slip basin development. Fault and basin geometries have changed with time, in places with younger basins and faults overprinting older structures. Along-strike and successional changes in fault and basin geometry at the southern end of the fault system probably are adjustments to frequent fault zone reorganizations in response to Mendocino Triple Junction migration and northward transit of a major releasing bend in the northern San Andreas fault. The earliest Rodgers Creek fault zone displacement is interpreted to have occurred ca. 7 Ma along extensional basin-forming faults that splayed northwest from a west-northwest proto-Hayward fault zone, opening a transtensional basin west of Santa Rosa. After ca. 5 Ma, the early transtensional basin was compressed and extensional faults were reactivated as thrusts that uplifted the northeast side of the basin. After ca. 2.78 Ma, the Rodgers Creek fault zone again splayed from the earlier extensional and thrust faults to steeper dipping faults with more north-northwest orientations. In conjunction with the changes in orientation and slip mode, the Rodgers Creek fault zone dextral slip rate increased from ∼2–4 mm/yr 7–3 Ma, to 5–8 mm/yr after 3 Ma. The Maacama fault zone is shown from several data sets to have initiated ca. 3.2 Ma and has slipped right-laterally at ∼5–8 mm/yr since its initiation. The initial Maacama fault zone splayed northeastward from the south end of the Rodgers Creek fault zone, accompanied by the opening of several strike-slip basins, some of which were later uplifted and compressed

  17. Fault rock texture and porosity type in Triassic dolostones

    Agosta, Fabrizio; Grieco, Donato; Bardi, Alessandro; Prosser, Giacomo


    Preliminary results of an ongoing project aimed at deciphering the micromechanics and porosity evolution associated to brittle deformation of Triassic dolostones are presented. Samples collected from high-angle, oblique-slip, 10's to 100's m-throw normal faults crosscutting Mesozoic carbonates of the Neo Tethys (Campanian-Lucanian Platform) are investigated by mean of field geological mapping, optical microscopy, SEM and image analyses. The goal is to characterize in detail composition, texture and porosity of cataclastic rocks in order to assess the structural architecture of dolomitic fault cores. Moreover, the present study addresses the time-space control exerted by several micro-mechanisms such as intragranular extensional fracturing, chipping and shear fracturing, which took place during grain rolling and crushing within the evolving faults, on type, amount, dimensions and distribution of micropores present within the cataclastic fault cores. Study samples are representative of well-exposed dolomitic fault cores of oblique-slip normal faults trending either NW-SE or NE-SW. The high-angle normal faults crosscut the Mesozoic carbonates of the Campanian-Lucanian Platform, which overrode the Lagonegro succession by mean of low-angle thrust faults. Fault throws are measured by considering the displaced thrust faults as key markers after large scale field mapping (1:10,000 scale) of the study areas. In the field, hand samples were selected according to their distance from main slip surfaces and, in some case, along secondary slip surfaces. Microscopy analysis of about 100 oriented fault rock samples shows that, mostly, the study cataclastic rocks are made up of dolomite and sparse, minute survivor silicate grains deriving from the Lagonegro succession. In order to quantitatively assess the main textural classes, a great attention is paid to the grain-matrix ratio, grain sphericity, grain roundness, and grain sorting. By employing an automatic box-counting technique

  18. Orienteering club

    Club d'orientation


    Reprise fin août Le Club d’orientation, en partenariat avec d’autres clubs de la région, vous propose une nouvelle série de courses pour cet automne. Le calendrier à retenir est le suivant : Samedi 27 août : Granges Malval (GE) – type classique Samedi 10 septembre : Lamoura (39) – type classique Samedi 17 septembre : La Dôle (F/VD) – type classique Samedi 24 septembre : Monteret (VD) – relais Samedi 8 octobre : Saint Cergue (VD) – type classique Vendredi 14 octobre : Les Evaux (GE) – nocturne Samedi 15 octobre : Grand Jorat (VD) – type classique Samedi 22 octobre : Pomier (74) – type classique Samedi 5 novembre : Echallens (VD) – type classique Samedi 12 novembre : CERN (GE) - sprint - Finale Généralement cinq circuits sont disponibles : ceci va du facile court (2 km) adapt&eacu...

  19. Orienting hypnosis.

    Hope, Anna E; Sugarman, Laurence I


    This article presents a new frame for understanding hypnosis and its clinical applications. Despite great potential to transform health and care, hypnosis research and clinical integration is impaired in part by centuries of misrepresentation and ignorance about its demonstrated efficacy. The authors contend that advances in the field are primarily encumbered by the lack of distinct boundaries and definitions. Here, hypnosis, trance, and mind are all redefined and grounded in biological, neurological, and psychological phenomena. Solutions are proposed for boundary and language problems associated with hypnosis. The biological role of novelty stimulating an orienting response that, in turn, potentiates systemic plasticity forms the basis for trance. Hypnosis is merely the skill set that perpetuates and influences trance. This formulation meshes with many aspects of Milton Erickson's legacy and Ernest Rossi's recent theory of mind and health. Implications of this hypothesis for clinical skills, professional training, and research are discussed.

  20. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: Faults and fractures in central West Greenland: onshore expression of continental break-up and sea-floor spreading in the Labrador – Baffin Bay Sea

    Chalmers, James A.


    Full Text Available The complex Ungava fault zone lies in the Davis Strait and separates failed spreading centres in the Labrador Sea and Baffin Bay. This study focuses on coastal exposures east of the fault-bound Sisimiut basin, where the onshore expressions of these fault systems and the influence of pre-existing basement are examined. Regional lineament studies identify five main systems: N–S, NNE–SSW, ENE–WSW, ESE–WNW and NNW–SSE. Field studies reveal that strike-slip movements predominate, and are consistent with a ~NNE–SSW-oriented sinistral wrench system. Extensional faults trending N–S and ENE–WSW (basement-parallel, and compressional faults trending E–W, were also identified. The relative ages of these fault systems have been interpreted using cross-cutting relationships and by correlation with previously identified structures. A two-phase model for fault development fits the development of both the onshore fault systems observed in this study and regional tectonic structures offshore. The conclusions from this study show that the fault patterns and sense of movement on faults onshore reflect the stress fields that govern the opening of the Labrador Sea – Davis Strait – Baffin Bay seaway, and that the wrench couple on the Ungava transform system played a dominant role in the development of the onshore fault patterns

  1. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    Hansen, Søren

    Unmanned Aerial vehicles (UAVs) or drones are used increasingly for missions where piloted aircraft are unsuitable. The unmanned aircraft has a number of advantages with respect to size, weight and manoeuvrability that makes it possible for them to solve tasks that an aircraft previously has been...... that the fault is discovered in time such that appropriate actions can be taken. That could either be the aircraft controlling computer taking the fault into account or a human operator that intervenes. Detection of faults that occur during flight is exactly the subject of this thesis. Safety towards faults...... to another type of aircraft with different parameters. Amongst the main findings of this research project is a method to handle faults on the UAV’s pitot tube, which measures the aircraft speed. A set of software redundancies based on GPS velocity information and engine thrust are used to detect abnormal...

  2. Study on Fault Current of DFIG during Slight Fault Condition

    Xiangping Kong


    Full Text Available In order to ensure the safety of DFIG when severe fault happens, crowbar protection is adopted. But during slight fault condition, the crowbar protection will not trip, and the DFIG is still excited by AC-DC-AC converter. In this condition, operation characteristics of the converter have large influence on the fault current characteristics of DFIG. By theoretical analysis and digital simulation, the fault current characteristics of DFIG during slight voltage dips are studied. And the influence of controller parameters of converter on the fault current characteristics is analyzed emphatically. It builds a basis for the construction of relay protection which is suitable for the power gird with accession of DFIG.

  3. Homogeneous Earthquake Faulting, Stress and Fault Strength on Kilometer Scales

    Hardebeck, J. L.


    I investigate small-scale fault structure using three new high-quality focal mechanism datasets of small (MLoma Prieta earthquake. I quantify the degree of mechanism variability on a range of length scales, by comparing the hypocentral distance between every pair of events and the angular difference between their focal mechanisms. I explore the implications of focal mechanism variability for the heterogeneity or homogeneity of stress and fault strength on various length scales. Focal mechanisms are very similar, often identical to within the 1σ uncertainty of ~25°, on small length scales of effect of uncertainty in earthquake locations and focal mechanisms on the apparent mechanism variability. The result that fault geometry, stress and fault strength are generally homogeneous on ~10 km length scales is encouraging for understanding earthquake physics. It may be possible to measure these parameters with enough precision to be useful in studying and modeling large earthquakes and the behavior of major faults.

  4. Effects of Pre-Stress State and Rupture Velocity on Dynamic Fault Branching

    Kame, N.; Rice, J. R.; Dmowska, R.


    We consider a mode II rupture which propagates along a planar main fault and encounters an intersection with a branching fault that makes an angle with the main fault. Within a formulation that allows the failure path to be dynamically self-chosen, we study the following questions: Does the rupture start along the branch? Does it continue? Which side is most favored for branching, the extensional or compressional? Does rupture continue on the main fault too? What path is finally self-chosen? Failure in the modeling is described by a slip-weakening law for which the peak and residual strength, and strength at any particular amount of slip, is proportional to normal stress. We use the elastodynamic boundary integral equation method to allow simulations of rupture along the branched fault system. Our results show that dynamic stresses around the rupturing fault tip, which increase with rupture velocity at locations off the main fault plane, relative to those on it, could initiate rupture on a branching fault. As suggested by prior work [Poliakov, Dmowska and Rice, 2002,], whether a branching rupture, once begun, can be continued to a larger scale depends on principal stress directions in the pre-stress state and on rupture velocity. The most favored side for rupture transferring on a branching fault switches from the extensional side to the compressive side as we consider progressively shallower angles of the direction of maximum pre-compression with the main fault. Simultaneous rupturing on both faults is usually difficult for a narrow branching angle due to strong stress interaction between faults, which discourages rupture continuation on the other side. However, it can be activated by enhanced dynamic stressing when the rupture velocity is very near the limiting velocity (Rayleigh wave velocity for mode II). It can also be activated when the branching angle is wide because of decreasing stress interaction between faults

  5. Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system

    Haeussler, Peter J.; Matmon, Ari; Schwartz, David P.; Seitz, Gordon G.


    The neotectonics of southern Alaska (USA) are characterized by a several hundred kilometers–wide zone of dextral transpressional that spans the Alaska Range. The Denali fault system is the largest active strike-slip fault system in interior Alaska, and it produced a Mw 7.9 earthquake in 2002. To evaluate the late Quaternary slip rate on the Denali fault system, we collected samples for cosmogenic surface exposure dating from surfaces offset by the fault system. This study includes data from 107 samples at 19 sites, including 7 sites we previously reported, as well as an estimated slip rate at another site. We utilize the interpreted surface ages to provide estimated slip rates. These new slip rate data confirm that the highest late Quaternary slip rate is ∼13 mm/yr on the central Denali fault near its intersection with the eastern Denali and the Totschunda faults, with decreasing slip rate both to the east and west. The slip rate decreases westward along the central and western parts of the Denali fault system to 5 mm/yr over a length of ∼575 km. An additional site on the eastern Denali fault near Kluane Lake, Yukon, implies a slip rate of ∼2 mm/yr, based on geological considerations. The Totschunda fault has a maximum slip rate of ∼9 mm/yr. The Denali fault system is transpressional and there are active thrust faults on both the north and south sides of it. We explore four geometric models for southern Alaska tectonics to explain the slip rates along the Denali fault system and the active fault geometries: rotation, indentation, extrusion, and a combination of the three. We conclude that all three end-member models have strengths and shortcomings, and a combination of rotation, indentation, and extrusion best explains the slip rate observations.

  6. Splay-fault rupture during the 2014 Mw7.1 Molucca Sea, Indonesia, earthquake determined from GPS measurements

    Gunawan, Endra; Kholil, Munawar; Meilano, Irwan


    The coseismic slip of the 2014 Molucca Sea, Indonesia, earthquake (MOSEQ) is investigated using GPS data from continuously monitoring stations. Coseismic fault models are compared between the main fault, with a 25° west-dipping plane, and the 65° west-dipping splay-fault plane. In analyzing this earthquake with fine faults sized resolution and homogenous fault models, we find that a splay fault ruptured during the mainshock. Our finding suggests that the 2014 MOSEQ occurred on an unmapped fault. Although we have limited GPS data available in the region, our results for coseismic slip are sufficient to explain the available GPS data. Our estimation suggesting that a maximum coseismic slip of around 36 cm occurred near the hypocenter, with cumulative seismic moment of 4.70 × 1019 N·m (Mw 7.1).

  7. Analysis of fault using microcomputer protection by symmetrical component method

    Mr. Ashish Choubey


    Full Text Available To enhance power supply reliability for the userterminals in the case of the distribution system toavoid interference by the fault again, rapidlycomplete the automatic identification, positioning,automatic fault isolation, network reconfigurationuntil the resumption of supply of non-fault section,a microprocessor-based relay protection device hasdeveloped. As the fault component theory is widelyused in microcomputer protection, and faultcomponent exists in the network of faultcomponent, it is necessary to build up the faultcomponent network when short circuit faultemerging and to draw the current and voltagecomponent phasor diagram at fault point. In orderto understand microcomputer protection based onthe symmetrical component principle, we obtainedthe sequence current and sequence voltageaccording to the concept of symmetrical component.Distribution line directly to user-oriented powersupply, the reliability of its operation determines thequality and level of electricity supply. In recentdecades, because of the general power of the tirelessefforts of scientists and technicians, relay protectiontechnology and equipment application level hasbeen greatly improved, but the current domesticproduction of computer hardware, protectiondevices are still outdated systems. Softwaredevelopment has maintenance difficulties and shortsurvival time. With the factory automation systeminterface functions weak points, the networkcommunication cannot meet the actualrequirements. Protection principle configurationand device manufacturing process to be improvedand so on.

  8. Fault Management Design Strategies

    Day, John C.; Johnson, Stephen B.


    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  9. Fault Management Design Strategies

    Day, John C.; Johnson, Stephen B.


    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  10. EDITORIAL: Optical orientation Optical orientation

    SAME ADDRESS *, Yuri; Landwehr, Gottfried


    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  11. Improved Approximation for Orienting Mixed Graphs

    Gamzu, Iftah


    An instance of the maximum mixed graph orientation problem consists of a mixed graph and a collection of source-target vertex pairs. The objective is to orient the undirected edges of the graph so as to maximize the number of pairs that admit a directed source-target path. This problem has recently arisen in the study of biological networks, and it also has applications in communication networks. In this paper, we identify an interesting local-to-global orientation property. This property enables us to modify the best known algorithms for maximum mixed graph orientation and some of its special structured instances, due to Elberfeld et al. (CPM '11), and obtain improved approximation ratios. We further proceed by developing an algorithm that achieves an even better approximation guarantee for the general setting of the problem. Finally, we study several well-motivated variants of this orientation problem.

  12. Strain rate orientations near the Coso Geothermal Field

    Ogasa, N. T.; Kaven, J. O.; Barbour, A. J.; von Huene, R.


    Many geothermal reservoirs derive their sustained capacity for heat exchange in large part due to continuous deformation of preexisting faults and fractures that permit permeability to be maintained. Similarly, enhanced geothermal systems rely on the creation of suitable permeability from fracture and faults networks to be viable. Stress measurements from boreholes or earthquake source mechanisms are commonly used to infer the tectonic conditions that drive deformation, but here we show that geodetic data can also be used. Specifically, we quantify variations in the horizontal strain rate tensor in the area surrounding the Coso Geothermal Field (CGF) by analyzing more than two decades of high accuracy differential GPS data from a network of 14 stations from the University of Nevada Reno Geodetic Laboratory. To handle offsets in the data, from equipment changes and coseismic deformation, we segment the data, perform a piecewise linear fit and take the average of each segment's strain rate to determine secular velocities at each station. With respect to North America, all stations tend to travel northwest at velocities ranging from 1 to 10 mm/yr. The nearest station to CGF shows anomalous motion compared to regional stations, which otherwise show a coherent increase in network velocity from the northeast to the southwest. We determine strain rates via linear approximation using GPS velocities in Cartesian reference frame due to the small area of our network. Principal strain rate components derived from this inversion show maximum extensional strain rates of 30 nanostrain/a occur at N87W with compressional strain rates of 37nanostrain/a at N3E. These results generally align with previous stress measurements from borehole breakouts, which indicate the least compressive horizontal principal stress is east-west oriented, and indicative of the basin and range tectonic setting. Our results suggest that the CGF represents an anomaly in the crustal deformation field, which

  13. Maximum entropy principle and texture formation

    Arminjon, M; Arminjon, Mayeul; Imbault, Didier


    The macro-to-micro transition in a heterogeneous material is envisaged as the selection of a probability distribution by the Principle of Maximum Entropy (MAXENT). The material is made of constituents, e.g. given crystal orientations. Each constituent is itself made of a large number of elementary constituents. The relevant probability is the volume fraction of the elementary constituents that belong to a given constituent and undergo a given stimulus. Assuming only obvious constraints in MAXENT means describing a maximally disordered material. This is proved to have the same average stimulus in each constituent. By adding a constraint in MAXENT, a new model, potentially interesting e.g. for texture prediction, is obtained.

  14. Fault Slip Model of 2013 Lushan Earthquake Retrieved Based on GPS Coseismic Displacements

    Mengkui Li; Shuangxi Zhang; Chaoyu Zhang; Yu Zhang


    Lushan Earthquake (~Mw 6.6) occurred in Sichuan Province of China on 20 April 2013, was the largest earthquake in Longmenshan fault belt since 2008 Wenchuan Earthquake. To better understand its rupture pattern, we focused on the influences of fault parameters on fault slips and performed fault slip inversion using Akaike’s Bayesian Information Criterion (ABIC) method. Based on GPS coseismic data, our inverted results showed that the fault slip was mainly confined at depths. The maximum slip amplitude is about 0.7 m, and the scalar seismic moment is about 9.47×1018 N·m. Slip pattern reveals that the earthquake occurred on the thrust fault with large dip-slip and small strike-slip, such a simple fault slip represents no second sub-event occurred. The Coulomb stress changes (DCFF) matched the most aftershocks with negative anomalies. The in-verted results demonstrated that the source parameters have significant impacts on fault slip distri-bution, especially on the slip direction and maximum displacement.

  15. Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy

    di Giulio, G.; Cara, F.; Rovelli, A.; Lombardo, G.; Rigano, R.


    In this paper we investigate ground motion properties in the western part of the Pernicana fault. This is the major fault of Mount Etna and drives the dynamic evolution of the area. In a previous work, Rigano et al. (2008) showed that a significant horizontal polarization characterizes ground motion in fault zones of Mount Etna, both during earthquakes and ambient vibrations. We have performed denser microtremor measurements in the NE rift segment and in intensely deformed zones of the Pernicana fault at Piano Pernicana. This study includes mapping of azimuth-dependent horizontal-to-vertical spectral ratios along and across the fault, frequency-wave number techniques applied to array data to investigate the nature of ambient vibrations, and polarization analysis through the conventional covariance matrix method. Our results indicate that microtremors are likely composed of volcanic tremor. Spectral ratios show strong directional resonances of horizontal components around 1 Hz when measurements enter the most damaged part of the fault zone. Their polarization directions show an abrupt change, by 20° to 40°, at close measurements between the northern and southern part of the fault zone. Recordings of local earthquakes at one site in the fault zone confirm the occurrence of polarization with the same angle found using volcanic tremor. We have also found that the directional effect is not time-dependent, at least at a seasonal scale. This observation and the similar behavior of volcanic tremors and earthquake-induced ground motions suggest that horizontal polarization is the effect of local fault properties. However, the 1-Hz resonant frequency cannot be reproduced using the 1-D vertically varying model inferred from the array data analysis, suggesting a role of lateral variations of the fault zone. Although the actual cause of polarization is unknown, a role of stress-induced anisotropy and microfracture orientation in the near-surface lavas of the Pernicana fault

  16. OECD Maximum Residue Limit Calculator

    With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.

  17. Investigating fault propagation and segment linkage using throw distribution analysis within the Agbada formation of Ewan and Oloye fields, northwestern Niger delta

    Durogbitan, Abimbola Adewole


    Throw distribution analysis of the key stratigraphic surfaces (sequence boundaries and maximum flooding surfaces) across faults has allowed detailed investigation of the tectonic history within the Ewan and Oloye fields, northwestern Niger delta. The structure in the studied area is dominated by growth fault systems which are listric in cross section and concave to the basin in plan-view. Generally, the faults are active down to 2000 m depth before they die out or sole into the underlying shale. The hanging-wall blocks of growth faults are deformed into broad rollover anticlines, with some synthetic and antithetic faults initiated from the anticline crests, and fault splays off major faults, further complicating these structures. Stratigraphic key surfaces within the syn-faulting succession range in age from 16.7 to 10.35 Ma. Periods of maximum and minimum throw are established from 2-Dimensional throw distribution on the growth fault plane. Throw distribution allows analysis of growth fault nucleation, propagation and linkage. Each fault nucleated at different and a distinct interval within the stratigraphic section, as a result of the paleo-stress distribution between the interacting faults. Nucleation and linkage positions can be identified at points of maximum and minimum throw respectively. Following nucleation, faults propagated radially and linked to form the present geometry. Within the study area, fault propagation and segment linkage (lateral and vertical) are important features of the fault system. Understanding of growth fault evolution and linkage has greatly improved prediction of seal potential, trap geometry and migration. The accurate timing of the segment linkage has helped to evaluate the seal risk.

  18. Blade Fault Diagnosis in Small Wind Power Systems Using MPPT with Optimized Control Parameters

    Jui-Ho Chen


    Full Text Available A systematic experiment verification of Chaos Embedded Sliding Mode Extremum Seeking Control for maximum power point tracking and a method for detecting possible faults in small wind turbine systems in advance are proposed in this paper. The chaotic logistic map is used to replace the random function in the particle swarm optimization algorithm for faster searching the optimal control parameter . From the experimental results, it is verified that the Chaos Embedded Sliding Mode Extremum Seeking Control scheme has a better dynamic response than traditional Extremum Seeking Control scheme and Hill-Climbing Search scheme for maximum power point tracking. In the proposed scheme for fault detection, a chaotic synchronization method is used to transform the maximum power point tracking signal into a chaos synchronization error distribution diagram. It is then taken as the characteristic for fault diagnosis purposes. Finally, an extension theory pattern recognition technique is applied to diagnose the fault. Notably, the use of the chaotic dynamic errors as the fault diagnosis characteristic reduces the number of extracted features required, and therefore greatly reduces both the computation time and the hardware implementation cost. From the experimental results, it is shown that the fault diagnosis rate of the proposed method exceeds 98% not only in non-real-time but also in real-time of faults detection of the blades.

  19. Accelerometer having integral fault null

    Bozeman, Richard J., Jr. (Inventor)


    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  20. Three-dimensional dynamic rupture simulations across interacting faults: The Mw7.0, 2010, Haiti earthquake

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.


    The mechanisms controlling rupture propagation between fault segments during a large earthquake are key to the hazard posed by fault systems. Rupture initiation on a smaller fault sometimes transfers to a larger fault, resulting in a significant event (e.g., 2002 M7.9 Denali USA and 2010 M7.1 Darfield New Zealand earthquakes). In other cases rupture is constrained to the initial fault and does not transfer to nearby faults, resulting in events of more moderate magnitude. This was the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigate the rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a finite element model to simulate propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence, in particular, the ground displacement. The two slip patches inferred from finite fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure.

  1. Faulting and block rotation in the Afar triangle, East Africa: The Danakil "crank-arm" model

    Souriot, T.; Brun, J.-P.


    Several domains of contrasted extensional deformation have been identified in the southern Afar triangle (East Africa) from fault patterns analyzed with panchromatic stereoscopic SPOT (Système Probatoire d'Observation de la Terre) images. Stretching directions and statistical orientation and offset variations of faults fit with the Danakii "crank-arm" model of Sichler: A 10° sinistral rotation of the Danakil block explains the fault geometry and dextral block rotation in the southern part of the Afar triangle, as well as the oblique extension in the Tadjoura Gulf. Analogue modeling supports this interpretation.

  2. Research on Key Techniques of Condition Monitoring and Fault Diagnosing Systems of Machine Groups

    WANG Yan-kai; LIAO Ming-fu; WANG Si-ji


    This paper describes the development of the condition monitoring and fault diagnosing system of a group of rotating machinery. The data management is performed by means of double redundant data bases stored simultaneously in both the analyzing server and monitoring client. In this way, high reliability of the storage of data is guaranteed. Condensation of trend data releases much space resource of the hard disk. Diagnosing strategies orientated to different typical faults of rotating machinery are developed and incorporated into the system. Experimental verification shows that the system is suitable and effective for condition monitoring and fault diagnosing for a rotating machine group.

  3. Model-Based Fault Diagnosis: Performing Root Cause and Impact Analyses in Real Time

    Figueroa, Jorge F.; Walker, Mark G.; Kapadia, Ravi; Morris, Jonathan


    Generic, object-oriented fault models, built according to causal-directed graph theory, have been integrated into an overall software architecture dedicated to monitoring and predicting the health of mission- critical systems. Processing over the generic fault models is triggered by event detection logic that is defined according to the specific functional requirements of the system and its components. Once triggered, the fault models provide an automated way for performing both upstream root cause analysis (RCA), and for predicting downstream effects or impact analysis. The methodology has been applied to integrated system health management (ISHM) implementations at NASA SSC's Rocket Engine Test Stands (RETS).

  4. Abrupt strike-slip fault to subduction transition: The Alpine Fault-Puysegur Trench connection, New Zealand

    Lebrun, Jean-FréDéRic; Lamarche, Geoffroy; Collot, Jean-Yves; Delteil, Jean


    -slip-subduction transitions show that presence of inherited downgoing plate crustal faults, properly oriented with respect to the plate motion, facilitates a sharp strike-slip-subduction transition.

  5. Fuzzy model-based observers for fault detection in CSTR.

    Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan


    Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions.

  6. Coulomb static stress interactions between M>5 earthquakes and major active faults in Northern California

    Segou, M.; Parsons, T.; Kalkan, E.


    We have calculated Coulomb stress changes between 1980-2006 in Northern California from fourteen events as well as from the major historic ruptures of 1865, 1868 and 1906. The seismic and fault geometry parameters are taken from the Working Group on California Earthquake Probabilities report (2008). We assess the static Coulomb stress hypothesis as a triggering mechanism for the aftershock sequences of these events using the high accuracy earthquake catalog of Waldhauser and Schaff (2008), which is based on waveform cross-correlation and double-difference methods. We examined the sensitivity of static Coulomb stress changes due to source parametrization by considering different rupture models and aftershock fault orientations for each event. To quantify the variability due to slip distribution, we used both a uniform and variable slip model. Source fault geometry corresponds to: (1) a fault plane suggested by the Global Centroid Moment Tensor (GCMT) and (2) the related mapped fault. In order to analyze the impact of the receiving fault geometry, we used: (1) geometry similar to the source and (2) optimally oriented fault planes for failure (King et al., 1994), taking into account the regional stress field derived in Hardebeck and Michael (2004) from focal mechanism analysis. The sensitivity of the calculations to different focal depths and apparent coefficients of friction (0.1-0.8) has been also investigated.

  7. Seismic Source Parameters of Normal-Faulting Inslab Earthquakes in Central Mexico

    Rodríguez-Pérez, Quetzalcoatl; Singh, Shri Krishna


    We studied 62 normal-faulting inslab earthquakes in the Mexican subduction zone with magnitudes in the range of 3.6 ≤ M w ≤ 7.3 and hypocentral depths of 30 ≤ Z ≤ 108 km. We used different methods to estimate source parameters to observe differences in stress drop, corner frequencies, source dimensions, source duration, energy-to-moment ratio, radiated efficiency, and radiated seismic energy. The behavior of these parameters is derived. We found that normal-faulting inslab events have higher radiated seismic energy, energy-to-moment ratio, and stress drop than interplate earthquakes as expected. This may be explained by the mechanism dependence of radiated seismic energy and apparent stress reported in previous source parameter studies. The energy-to-moment ratio data showed large scatter and no trend with seismic moment. The stress drop showed no trend with seismic moment, but an increment with depth. The radiated seismic efficiencies showed similar values to those obtained from interplate events, but higher than near-trench events. We found that the source duration is independent of the depth. We also derived source scaling relationships for the mentioned parameters. The low level of uncertainties for the seismic source parameters and scaling relationships showed that the obtained parameters are robust. Therefore, reliable source parameter estimation can be carried out using the obtained scaling relationships. We also studied regional stress field of normal-faulting inslab events. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for two different depth intervals ( Z 40 km, respectively). While the maximum stress axis ( σ 1) appears to be consistent and stable, the orientations of the intermediate and minimum stresses ( σ 2 and σ 3) vary over the depth intervals. The stress inversion results showed that the tensional axes are parallel to the dip direction of the subducted plate. At depths


    Huo Hua; Li Zhuguo; Xia Yanchun


    A method of applying maximum entropy probability density estimation approach to constituting diagnostic criterions of oil monitoring data is presented. The method promotes the precision of diagnostic criterions for evaluating the wear state of mechanical facilities, and judging abnormal data. According to the critical boundary points defined, a new measure on monitoring wear state and identifying probable wear faults can be got. The method can be applied to spectrometric analysis and direct reading ferrographic analysis. On the basis of the analysis and discussion of two examples of 8NVD48A-2U diesel engines, the practicality is proved to be an effective method in oil monitoring.

  9. Fault tolerant control for switched linear systems

    Du, Dongsheng; Shi, Peng


    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  10. Fault isolatability conditions for linear systems

    Stoustrup, Jakob; Niemann, Henrik


    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  11. Origin of the regional stress field along the Liquine-Ofqui Fault Zone (LOFZ), Southern Chilean Andes by means of FE Simulation

    Md. Rafiqul Islam


    The Liquine-Ofqui Fault Zone (LOFZ) of southern Chilean Andes is one of the largest active strike-slip fault zones. There is an ongoing debate regarding the origin of the stress field along the LOFZ due to its complex geometry. This paper represents a study of the origins of the LOFZ regional stress field. Stress fields are calculated by finite element (FE) analysis. The two possible stress origins, i.e., oblique plate convergence and ridge collision/indenter tectonics of Chile ridge against Peru-Chile trench, have been emphasized in the present study. Three types of boundary conditions for the three particular models have been applied to calculate stress fields. Models are assumed to be elastic and plane stress condition. Modeling results are presented in terms of four parameters, i. e., orientation of maximum horizontal stress (σHmax), displacement vector, strain distribution, and maximum shear stress (τmax) contour line within the model. The results of the first model with oblique plate convergence show inconsistency between the geometric shape of the LOFZ and the distribution of the four parameters. Although more realistic results are obtained from the second model with normal ridge collision, there are few coincident in the LOFZ geometry and regional stress field. The third model with normal and oblique ridge collision is reasonable in understanding the origin of stress field and geometrical condition in the lithosphere of the LOFZ.


    Yu. N. Shumilov


    Full Text Available The paper shows that, in 6-35 kV mains, application of a non-linear surge arrester (SA with the maximum continuous admissible operating voltage which is 10% higher than the mains’ maximum operating voltage results in the SA protection from overheating and subsequent breakdown at nonnormable lifetime of single-phase arc faults.

  13. Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions

    Fan Xiao


    Full Text Available During non-severe fault conditions, crowbar protection is not activated and the rotor windings of a doubly-fed induction generator (DFIG are excited by the AC/DC/AC converter. Meanwhile, under asymmetrical fault conditions, the electrical variables oscillate at twice the grid frequency in synchronous dq frame. In the engineering practice, notch filters are usually used to extract the positive and negative sequence components. In these cases, the dynamic response of a rotor-side converter (RSC and the notch filters have a large influence on the fault current characteristics of the DFIG. In this paper, the influence of the notch filters on the proportional integral (PI parameters is discussed and the simplified calculation models of the rotor current are established. Then, the dynamic performance of the stator flux linkage under asymmetrical fault conditions is also analyzed. Based on this, the fault characteristics of the stator current under asymmetrical fault conditions are studied and the corresponding analytical expressions of the stator fault current are obtained. Finally, digital simulation results validate the analytical results. The research results are helpful to meet the requirements of a practical short-circuit calculation and the construction of a relaying protection system for the power grid with penetration of DFIGs.

  14. Orienteering Club

    Club d'orientation


    Coupe genevoise, suite Résultats de la course de Saint-Cergue, sur la carte Les Pralies, samedi 17 septembre. Nouvelle victoire du finlandais Ville Keskisaari, du club COLJ sur le parcours technique long avec une belle avance sur le deuxième concurrent Christophe Vuitton du CO CERN. David Cuenin a remporté le parcours technique moyen, Franck Lonchampt du club O’Jura a, lui aussi, remporté à nouveau le parcours technique court, tout comme Julien Vuitton du club CO CERN sur le facile moyen. Pour finir, Stéphane Clément devance Victor Dannecker sur le parcours facile court. Les résultats complets sont disponibles sur le site du club du CERN Un abonnement est pris sur le secteur de Saint-Cergue, puisque le club organise les deux prochaines étapes de la coupe genevoise dans le Haut-Jura suisse. Tout d’abord le samedi 24 septembre, un relais inter-club se courr...

  15. Orienteering club

    Club d'orientation


    COURSE D’ORIENTATION  De La Rippe à Sauvabellin, la coupe genevoise continue ! Le rendez-vous était donné samedi 8 mai aux amateurs de course d’orientation dans les bois de La Rippe (Canton de Vaud). Cette 6e épreuve était organisée par le Club Satus Grutli de Genève. Il est dommage que les participants n’aient pas été aussi nombreux que lors des dernières courses, les Championnats de France des clubs à Dijon ayant certainement retenus plus d’un compétiteur. La première place est revenue à : – Technique long : Berni Wehrle – Technique moyen : Jean-Bernard Zosso – Technique court : Berni Wehrle – Facile moyen : Peter Troscanyi – Facile court : Claire Droz. Il ne restera plus que deux épreuves ...

  16. Orienteering Club

    Club d'Orientation


    Course d'orientation Ces deux dernières semaines, le club a organisé la troisième puis la quatrième étape de la coupe de printemps, une dans la forêt de Collogny/Moissey près de Vulbens, l’autre vers le parcours vita de Trélex. Les résultats sont: Facile court Vulbens : 1er Léo Lonchampt, O’Jura (16:04), 2e Timothée Bazin (23:07), 3e Francesco Pieri (26:57) Trélex : 1er Noora Maurent (23:11), 2e Sarah Stuber, COLJ (26:51), 3e T. Bazin (28:17) Facile moyen Vulbens : 1er Victor Kuznetsov, CO CERN (25:36), 2e Didier Descourvières (28:03), 3e Konstantinos Haider, CO CERN (36:53) Trélex : 1er V. Kuznetsov, COLJ (38:01), 2e K. Haider, CO CERN (43:15), 3e ex aequo Olivia Nguyen et Sven Vietmeier (58:11) Technique court Vulbens : 1er Benoit Bazin (41:21), 2e Colas Gintzburger (55:12), 3e Nathan Freydoz (55:48) Trélex : 1...

  17. Orienteering Club

    Club d'Orientation


    Course d'orientation Avec la CO en nocturne organisée par le club du CERN vendredi 14 octobre au stade des Eveaux (Ge), et la CO à Savigny (Vd) proposée par le club de Lausanne-Jorat le lendemain, les étapes de la coupe genevoise d’automne s’enchainent rapidement. Il ne reste plus que 3 rendez-vous pour boucler la saison. Les premières places devraient certainement se jouer entre des membres du club du CERN, du O’Jura ou de Lausanne-Jorat. La prochaine course du club est programmée pour samedi 22 octobre à Pomier, près de Cruseilles. L’accueil se fera à partir de 12h30 et les départs s’échelonneront de 13h à 15h. * * * * * * * Nouvelle belle victoire samedi 8 octobre à Saint Cergue du jeune finlandais Ville Keskisaari (COLJ) en 50:56 devant Jürg Niggli (O’Jura) en 1:03:32, et Alexandre...

  18. Orienteering Club

    Club d'orientation


    De jour comme de nuit Les amateurs de course d’orientation ont pu s’en donner à cœur joie ce week-end puisqu’ils avaient la possibilité de courir sur deux épreuves en moins de 24 heures. En effet, le club du CERN organisait une course de nuit aux Evaux et la 7e étape de la coupe genevoise se tenait samedi après-midi dans les bois du Grand Jorat à Savigny. Les vainqueurs pour chaque course sont : Technique long CO de nuit: Julien Charlemagne, SOS Sallanches CO samedi: Philipp Khlebnikov, ANCO   Technique moyen CO de nuit: Céline Zosso, CO CERN CO samedi: Pavel Khlebnikov, ANCO Technique court CO de nuit: Colas Ginztburger, SOS Sallanches CO samedi: Victor Kuznetsov, COLJ Lausannne Facile moyen CO de nuit: Gaëtan Rickenbacher, CO CERN CO samedi: Tamas Szoke   Facile court CO de nuit:Oriane Rickenbacher, CO CERN CO samedi: Katya Kuznetsov...

  19. Orienteering club

    Club d'orientation


    Course d'orientation Finale de la coupe d’automne La dernière épreuve de la coupe d’automne organisée par le club s’est déroulée ce samedi 1er novembre avec une course type «one-man-relay» dans la forêt de Trelex (Vd). Les concurrents des circuits techniques devaient parcourir trois boucles et ceux des circuits «faciles» deux boucles, avec changements de carte. Le parcours technique long a été remporté par un membre du club, Berni Wehrle. A l’issue de cette course, le Président du club, L. Jirden annonçait le classement général de la coupe d’automne, basé sur les 6 meilleurs résultats de la saison : Circuit technique long : 1er Juerg Niggli (O’Jura), 2e Berni Wehrle, 3e Beat Mueller. Circuit technique moyen : 1er Laurent Merat (O&r...

  20. Orienteering Club

    Club d'orientation


    Finale de la coupe d’automne   La coupe d’automne organisée par le club d’orientation du CERN s’est terminée ce samedi 10 novembre avec une course sprint à Prévessins. C’était la 12e épreuve de la saison. En stage dans la région, Tanya Ryabkina, championne d’Europe en titre et médaillée de bronze en moyenne distance lors des championnats du monde à La Givrine cet été, a fait l’honneur de sa présence et termine 2e à 8 secondes de Trygve Buanes, norvégien du club de Bergen. A l’issue de cette dernière épreuve, le classement général de la coupe d’automne, basé sur les 8 meilleurs résultats de la saison, est ainsi le suivant : Circuit technique long : 1er Jurg Niggli (O&rsqu...

  1. Orienteering club

    Club d'orientation


    Course d'orientation Vers les dernières courses de printemps Une centaine de coureurs se sont déplacés sur le site de la Roche Fendue prés de Morez pour gouter à un des 5 parcours proposés par le club du O’Jura. Le terrain était gras mais que peut-on trouver d’autre avec cette météo! Les vainqueurs de chaque circuit sont : Alina Niggli (O’Jura) facile court, Natalja Niggli (O’Jura) facile moyen, Victor Kuznetsov (COLJ) technique court, Yves Rousselot (Balise 25) technique moyen et pour finir François Gonon (O’Jura) avec une victoire haut la main sur le technique long. Il ne reste plus que deux épreuves pour la coupe genevoise de printemps : à savoir samedi 8 juin, course de type longue distance organisée par le club de Lausanne Jorat (COLJ) dans le bois de Seyte sur Mutrux/Concise, inscription de 12h &...

  2. Orienteering Club

    Club d'orientation


    Course d'orientation Le coup d’envoi de la coupe genevoise a été donné samedi 31 août dans les bois de Combe Froide à Prémanon. Plus de 150 coureurs avaient fait le déplacement. Les parcours facile court, facile moyen et technique court ont été remportés par des coureurs du club O’Jura - Ulysse Dannecker, Léo Lonchampt, Franck Lonchampt, le technique moyen par Pekka Marti du club Ol Biel Seeland et le technique long par Térence Risse du CA Rosé – également membre de l’équipe nationale suisse des moins de 20 ans. Pour le club du CERN, les meilleures résultats ont été obtenus pas Emese Szunyog sur technique court et Marie Vuitton sur technique moyen avec une 4e place. La prochaine course aura lieu samedi 14 septembre à La Faucille. Le club propose aussi...

  3. Orienteering Club



    Calendrier de la coupe d’automne Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose, pour cette nouvelle coupe d’automne genevoise, une série de 10 courses. Le club du O’Jura donnera le coup d’envoi le samedi 31 août. Les courses s’enchaîneront selon le calendrier suivant : Samedi 31 août : Prémanon (39) - longue distance Samedi 14 septembre : La Faucille (01) - longue distance Samedi 21 septembre : Saint Cergue (VD) - longue distance Samedi 28 septembre : Ballens (VD) - relais Samedi 5 octobre : La Pile (VD) - longue distance Vendredi 11 octobre : Les Evaux (GE) - nocturne Samedi 12 octobre : Grand Jorat, Savigny (VD) - longue distance Samedi 19 octobre : Terrasses de Genève (74) - longue distance Samedi 26 octobre : Prémanon (39) - longue distance Samedi 2 novembre : Bois Tollot (GE) - score - Finale Les &a...

  4. Orienteering Club

    Club d'Orientation


    Relais inter-club/Challenge Carlo Milan Samedi dernier, lors de l’épreuve de course d’orientation organisée par le club du O’Jura, le moteur de la discipline était l’esprit d’équipe, puisqu’il était question d’un relais inter-club avec le Challenge Carlo Milan. Les clubs avaient aligné leurs coureurs soit sur le relais technique (trois participants) soit sur le relais facile (deux participants). Côté O’Jura, il fallait noter la participation de François Gonon, champion du monde 2011, côté club du CERN, Marie et Gaëtan Vuitton, jeunes espoirs du club, devaient préparer la piste pour lancer le dernier relayeur. Côté Lausanne-Jorat, il fallait compter sur le très jeune Viktor Kuznetsov. Les 31 équipes engagées n’ont pas m&ea...

  5. Orienteering Club

    Club d'Orientation


     Finale de la coupe de printemps   La dernière course d’orientation comptant pour la Coupe de printemps a eu lieu samedi dernier dans le village des Rousses et vers le Fort. Il s’agissait d’un sprint organisé par le club O’Jura. Les temps de course ont avoisiné les 20 minutes que ce soit pour le parcours technique moyen ou technique long. Tous les habitués étaient au rendez-vous pour venir consolider ou améliorer leur place au classement. A l’issue de cette course, le classement général de la Coupe de printemps prenant en compte les 6 meilleurs résultats des 9 courses était établi et les lauréats de chaque catégorie sont les suivants: Circuit technique long : 1er Berni Wehrle, 2e Bruno Barge, 3e Edvins Reisons. Circuit technique moyen : 1er Jean-Bernard Zosso, 2e Cédric Wehrl&...

  6. Orienteering Club

    Club d'Orientation


    Course orientation Finale de la coupe genevoise La série des courses de printemps s’est achevée samedi dernier dans les bois de Bonmont (Vaud) avec une épreuve «one-man-relay» organisée par le club. Le vainqueur du parcours technique  long, Yann Locatelli (Club de Chambéry Savoie) a réalisé les deux boucles comportant 24 balises avec presque 6 minutes d’avance sur le second concurrent Domenico Lepori (Club CARE Vevey). Cette dernière étape était aussi décisive pour la désignation des lauréats de la coupe genevoise de printemps, en comptabilisant les 6 meilleurs résultats sur les 10 épreuves. Le podium officiel était donné par le président du club, L. Jirden, qui profitait de l’occasion pour remercier tous les participants et également tous les...

  7. Orienteering club

    Club d'orientation


    Courses d’orientation Samedi 20 avril, les organisateurs du Club de CO du CERN ont accueilli au Mont Mourex 70 participants qui n’ont pas hésité à venir malgré la forte bise. Berni Wehrle du CO CERN s’est octroyé la première place en 1:04:49 sur le parcours technique long devant Pyry Kettunen du Saynso Juankoski en 1:06:52, la 3e place revenant à Bruno Barge, CO CERN, à 7 secondes. Les autres parcours ont été remportés par : Technique moyen : 1er Jacques Moisset, Chamonix (47:44), 2e Yves Rousselot, Balise 25 Besançon (57:16), 3e Jean-Bernard Zosso, CO CERN (59:28). Technique court : 1er Victor Kuznetsov, COLJ (51:53), 2e Pierrick Collet, CO CERN (1:12:52), 3e Dominique Balay, CO CERN (1:16:04). Pour les parcours facile moyen et facile court, Ralf Nardini et Léa Nicolas, tous deux du CO CERN, terminaient respectivement premier. Voi...

  8. Orienteering club

    Club d'orientation


    Course d'orientation C’est sous un beau soleil samedi 4 octobre que s’est déroulée la 6e étape de la Coupe genevoise d’automne organisée par le club. Plus d’une centaine de concurrents provenant de 7 clubs de CO avaient fait le déplacement pour courir sur un des cinq parcours proposés dans les bois de Trélex-Génolier (VD). Le podium est le suivant : Technique long (5,9 km, 19 postes) : 1er Jurg Niggli, O’Jura (1:00:02); 2e Berni Wehrle, CO CERN (1:06:44); 3e Konrad Ehrbar, COLJ (1:07:08) Technique moyen (4,8 km, 18 postes) : 1er Christophe Vuitton, CO CERN (54:25); 2e J.B. Zosso, CO CERN (1:01:19); 3e Jeremy Wichoud, COLJ (1:06:21) Technique court (3,8 km, 14 postes) : 1er Julien Vuitton, CO CERN (36:19); 2e Vladimir Kuznetsov, COLJ (48:47); 3e Natalia Niggli, O’Jura (50:38) Facile moyen (3,2 km, 11 postes) : 1ère Alina Niggli, O&...

  9. Fault Detection and Isolation of Wind Energy Conversion Systems using Recurrent Neural Networks

    N. Talebi


    Full Text Available Reliability of Wind Energy Conversion Systems (WECSs is greatly important regarding to extract the maximum amount of available wind energy. In order to accurately study WECSs during occurrence of faults and to explore the impact of faults on each component of WECSs, a detailed model is required in which mechanical and electrical parts of WECSs are properly involved. In addition, a Fault Detection and Isolation System (FDIS is required by which occurred faults can be diagnosed at the appropriate time in order to ensure safe system operation and avoid heavy economic losses. This can be performed by subsequent actions through fast and accurate detection and isolation of faults. In this paper, by utilizing a comprehensive dynamic model of the WECS, an FDIS is presented using dynamic recurrent neural networks. In industrial processes, dynamic neural networks are known as a good mathematical tool for fault detection. Simulation results show that the proposed FDIS detects faults of the generator's angular velocity sensor, pitch angle sensors and pitch actuators appropriately. The suggested FDIS is capable to detect and isolate the faults shortly while owing very low false alarms rate. The presented FDIS scheme can be used to identify faults in other parts of the WECS.

  10. Optimal fault-tolerant control strategy of a solid oxide fuel cell system

    Wu, Xiaojuan; Gao, Danhui


    For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.

  11. Breddin's Graph For Fault and Slip Data

    Célérier, B.

    A simple plot of rake versus strike of fault and slip or earthquake focal mechanism data provides insight into the stress regime that caused slippage on these faults provided one of the principal stress direction is near vertical. By overlaying an abacus on this plot, one can evaluate both the orientation of the horizontal principal stress directions and the stress tensor aspect ratio, (s1-s2)/(s1-s3), where s1, s2, s3 are the principal stress magnitudes ranked in decreasing order. The underlying geometrical properties are that the slip data that are near strike-slip, and that are mainly found on steeply dipping planes, constrain the horizontal principal stress directions whereas the slip data that are near dip-slip and that occur on shallow dipping planes striking away from the principal stress directions constrain the stress tensor aspect ratio. This abacus is an extension of the Breddin's abacus used to analyze two dimensional deformation in structural geology and it is used in a similar fashion. Its application to synthetic and natural monophase data show both its usefulness and limitation. It is not intended to replace stress inversion techniques because of limiting assumptions, but it is expected to provide insight into the complexity of natural data set from a simple viewpoint.

  12. Structural controls on Eocene to Pliocene tectonic and metallogenic evolution of the southernmost Lesser Caucasus, Armenia: paleostress field reconstruction and fault-slip analysis

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik


    The Cenozoic evolution of the central segment of the Tethyan belt is dominated by oblique convergence and final collision of Gondwana-derived terranes and the Arabian plate with Eurasia, which created a favorable setting for the formation of the highly mineralized Meghri-Ordubad pluton in the southernmost Lesser Caucasus. Regional strike-slip faults played an important role in the control of the porphyry Cu-Mo and epithermal systems hosted by the Meghri-Ordubad pluton. In this contribution we discuss the paleostress and the kinematic environment of the major strike-slip and oblique-slip ore-controlling faults throughout the Eocene subduction to Mio-Pliocene post-collisional tectonic evolution of the Meghri-Ordubad pluton based on detailed structural field mapping of the ore districts, stereonet compilation of ore-bearing fractures and vein orientations in the major porphyry and epithermal deposits, and the paleostress reconstructions. Paleostress reconstructions indicate that during the Eocene and Early Oligocene, the main paleostress axe orientations reveal a dominant NE-SW-oriented compression, which is compatible with the subduction geometry of the Neotethys along Eurasia. This tectonic setting was favorable for dextral displacements along the two major, regional NNW-oriented Khustup-Giratakh and Salvard-Ordubad strike-slip faults. This resulted in the formation of a NS-oriented transrotational basin, known as the Central magma and ore- controlling zone (Tayan, 1998). It caused a horizontal clockwise rotation of blocks. The EW-oriented faults separating the blocks formed as en-échelon antithetic faults (Voghji, Meghrasar, Bughakyar and Meghriget-Cav faults). The Central zone consists of a network of EW-oriented sinistral and NS-oriented subparallel strike-slip faults (Tashtun, Spetry, Tey, Meghriget and Terterasar faults). They are active since the Eocene and were reactivated during the entire tectonic evolution of the pluton, but with different behaviors

  13. Maximum margin Bayesian network classifiers.

    Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian


    We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

  14. Maximum Entropy in Drug Discovery

    Chih-Yuan Tseng


    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  15. Physics-based estimates of maximum magnitude of induced earthquakes

    Ampuero, Jean-Paul; Galis, Martin; Mai, P. Martin


    In this study, we present new findings when integrating earthquake physics and rupture dynamics into estimates of maximum magnitude of induced seismicity (Mmax). Existing empirical relations for Mmax lack a physics-based relation between earthquake size and the characteristics of the triggering stress perturbation. To fill this gap, we extend our recent work on the nucleation and arrest of dynamic ruptures derived from fracture mechanics theory. There, we derived theoretical relations between the area and overstress of overstressed asperity and the ability of ruptures to either stop spontaneously (sub-critical ruptures) or runaway (super-critical ruptures). These relations were verified by comparison with simulation and laboratory results, namely 3D dynamic rupture simulations on faults governed by slip-weakening friction, and laboratory experiments of frictional sliding nucleated by localized stresses. Here, we apply and extend these results to situations that are representative for the induced seismicity environment. We present physics-based predictions of Mmax on a fault intersecting cylindrical reservoir. We investigate Mmax dependence on pore-pressure variations (by varying reservoir parameters), frictional parameters and stress conditions of the fault. We also derive Mmax as a function of injected volume. Our approach provides results that are consistent with observations but suggests different scaling with injected volume than that of empirical relation by McGarr, 2014.

  16. Absolute age determination of quaternary faults

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik [Korea Basic Science Institute, Seoul (Korea, Republic of)] (and others)


    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results.

  17. Constitutive models of faults in the viscoelastic lithosphere

    Moresi, Louis; Muhlhaus, Hans; Mansour, John; Miller, Meghan


    Moresi and Muhlhaus (2006) presented an algorithm for describing shear band formation and evolution as a coallescence of small, planar, fricition-failure surfaces. This algorithm assumed that sliding initially occurs at the angle to the maximum compressive stress dictated by Anderson faulting theory and demonstrated that shear bands form with the same angle as the microscopic angle of initial failure. Here we utilize the same microscopic model to generate frictional slip on prescribed surfaces which represent faults of arbitrary geometry in the viscoelastic lithosphere. The faults are actually represented by anisotropic weak zones of finite width, but they are instantiated from a 2D manifold represented by a cloud of points with associated normals and mechanical/history properties. Within the hybrid particle / finite-element code, Underworld, this approach gives a very flexible mechanism for describing complex 3D geometrical patterns of faults with no need to mirror this complexity in the thermal/mechanical solver. We explore a number of examples to demonstrate the strengths and weaknesses of this particular approach including a 3D model of the deformation of Southern California which accounts for the major fault systems. L. Moresi and H.-B. Mühlhaus, Anisotropic viscous models of large-deformation Mohr-Coulomb failure. Philosophical Magazine, 86:3287-3305, 2006.

  18. The evolution of fault geometry and lithosphere mechanical response to faulting during lithosphere hyper-extension at magma-poor rifted margins

    Gómez Romeu, Júlia; Kusznir, Nick; Manatschal, Gianreto; Roberts, Alan


    ), similar to that observed for continental rift faulting. The heaves of the main modelled faults are typically between 2 and 15 km with a maximum of 25 km. In contrast to extensional fault geometries at continental rifting, slow spreading ocean ridges show a concave down fault geometry at shallower depth (between 0 and 2 km depth) and an emergence angle of exhumed fault footwall between 15° and 20°. This rolling-hinge response to extensional faulting (Buck 1988) requires a low effective elastic thickness for the flexural isostatic response, typically ranging between 0.25 and 1 km. Some ambiguity exists when modelling bathymetry at slow spreading ridges; in some cases the same bathymetric profile can be modelled with low effective elastic thickness and high fault extension, or with higher effective elastic thickness and lower extension. This ambiguity arises because of the difficulty in distinguishing an extensional break-away for a large fault from a simple footwall uplift of a smaller fault. Future work will focus on developing and applying a unified model of extensional fault geometry and lithosphere mechanical response to the development of hyper-extended domains at magma-poor rifted continental margins.

  19. The Architecture and Frictional Properties of Faults in Shale

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.


    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence

  20. Identification of Necessary Conditions for Super-shear Wave Rupture Speeds: The San Andreas Fault

    Das, S.


    The 2001 Kunlun, Tibet earthquake taught us that the portion of a strike-slip fault most likely to propagate at super-shear speeds are the long straight portions. This is only a necessary (but not sufficient) condition. That is, once a fault accelerates to the maximum permissible speed, it can continue at this speed provided it is straight and there are no obstacles along the way, and provided the fault friction is low. For the Tibet earthquake, the 100 km region of highest rupture speed also had the highest slip rate, the highest slip and the highest stress drop (Robinson et al., JGR, 2006). Off-fault cracks due to the passage of the Mach cone exists in only that portion of the fault identified as travelling at super-shear speed and not in other places along the fault (Bhat et al., JGR, 2007). Re-examination of earlier reports of super-shear rupture speeds on the North Anatolian fault and the Denali fault show that such speeds did occur on the straight section of these faults. Of course all straight portions of faults will not reach super-shear speeds. So what can the Tibet earthquake teach us about the San Andreas fault? Both the 1906 and the 1857 have long, straight portions, the former having been identified by Song et al. (EOS, 2005) as having reached super-shear speeds to the north of San Francisco, the region of highest slip. If the repeat of the 1857 starts in the central valley, as it is believed to have done in 1857, it has the potential to propagate at super-shear speeds through the long, straight portion of the San Andread fault in the Carrizo Plain, the region believed to have had the largest displacement in 1857 based on paleoseismic studies. The resulting shock waves would strike the highly populated regions of Santa Barbara and the Los Angeles Basin (Das, Science, 2007).

  1. Segmentation Along the Newport-Inglewood Rose Canyon Fault Zone: Implications for Rupture Propagation

    Sahakian, V. J.; Bormann, J. M.; Driscoll, N. W.; Harding, A. J.; Kent, G. M.; Wesnousky, S. G.


    The Newport-Inglewood/Rose Canyon fault zone (NIRC) is an active component of the southern California strike-slip fault system in the Pacific-North American plate boundary. Despite its close proximity to densely populated coastal regions of Southern California, the NIRC fault geometry and expected earthquake behavior are poorly constrained. As a result of these uncertainties, current hazard models lack critical information regarding potential earthquake magnitudes and ground shaking caused by rupture on the offshore portion of the fault. Here, we present an improved characterization of the NIRC fault zone's architecture and segmentation. We employ nested marine seismic reflection data of varying vertical resolutions to map the NIRC location, strike, dip, and stepovers based on subsurface observations. These reflection data were collected in 1979, 2006, 2008, 2009 and 2013. We identify four main geometrical fault segments separated along strike by three stepovers between 0.5 and 3 km in width, whereby width is measured as the horizontal distance between fault strands or termini. Empirical studies of rupture propagation show that past earthquake ruptures in other regions have propagated across discontinuities of this width. We additionally employ a quantitative approach to constrain the potential earthquake magnitude for the NIRC fault zone by modeling the coulomb stress changes that result from possible rupture initiation scenarios. Earthquakes initiated on the central fault strand by Carlsbad Canyon favor through-going rupture across the entire length of the NIRC fault zone. Additionally, the modeling results suggest that the southernmost stepover by La Jolla may act as an inhibitor to through-going rupture due to the strike and dip of the adjacent fault despite the stepover's short width. Finally, our stress modeling results suggest that the maximum potential magnitude of an earthquake rupturing all of the mapped offshore segments of the NIRC fault zone is Mw 7.5.

  2. Structural character of the northern segment of the Paintbrush Canyon fault, Yucca Mountain, Nevada

    Dickerson, R.P. [Science Applications International Corp., Golden, CO (United States); Spengler, R.W. [Geological Survey, Denver, CO (United States)


    Detailed mapping of exposed features along the northern part of the Paintbrush Canyon fault was initiated to aid in construction of the computer-assisted three-dimensional lithostratigraphic model of Yucca Mountain, to contribute to kinematic reconstruction of the tectonic history of the Paintbrush Canyon fault, and to assist in the interpretation of geophysical data from Midway Valley. Yucca Mountain is segmented into relatively intact blocks of east-dipping Miocene volcanic strata, bounded by north-striking, west-dipping high-angle normal faults. The Paintbrush Canyon fault, representing the easternmost block-bounding normal fault, separates Fran Ridge from Midway Valley and continues northward across Yucca Wash to at least the southern margin of the Timber Mountain Caldera complex. South of Yucca Wash, the Paintbrush Canyon Fault is largely concealed beneath thick Quaternary deposits. Bedrock exposures to the north reveal a complex fault, zone, displaying local north- and west-trending grabens, and rhombic pull-apart features. The fault scarp, discontinuously exposed along a mapped length of 8 km north of Yucca Wash, dips westward by 41{degrees} to 74{degrees}. Maximum vertical offset of the Rhyolite of Comb Peak along the fault measures about 210 m in Paintbrush Canyon and, on the basis of drill hole information, vertical offset of the Topopoah Spring Tuff is about 360 m near the northern part of Fran Ridge. Observed displacement along the fault in Paintbrush Canyon is down to the west with a component of left-lateral oblique slip. Unlike previously proposed tectonic models, strata adjacent to the fault dip to the east. Quaternary deposits do not appear displaced along the fault scarp north of Yucca Wash, but are displaced in trenches south of Yucca Wash.

  3. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier

    Nantian Huang


    Full Text Available Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD and multi-layer classifier (MLC is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs. The IMF matrix is divided into submatrices to compute the local singular values (LSV. The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs and a support vector machine (SVM is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF6 HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods.

  4. Analysis of the impact of fault mechanism radiation patterns on macroseismic fields in the epicentral area of 1998 and 2004 Krn Mountains earthquakes (NW Slovenia).

    Gosar, Andrej


    Two moderate magnitude (Mw = 5.6 and 5.2) earthquakes in Krn Mountains occurred in 1998 and 2004 which had maximum intensity VII-VIII and VI-VII EMS-98, respectively. Comparison of both macroseismic fields showed unexpected differences in the epicentral area which cannot be explained by site effects. Considerably, different distribution of the highest intensities can be noticed with respect to the strike of the seismogenic fault and in some localities even higher intensities have been estimated for the smaller earthquake. Although hypocentres of both earthquakes were only 2 km apart and were located on the same seismogenic Ravne fault, their focal mechanisms showed a slight difference: almost pure dextral strike-slip for the first event and a strike-slip with small reverse component on a steep fault plane for the second one. Seismotectonically the difference is explained as an active growth of the Ravne fault at its NW end. The radiation patterns of both events were studied to explain their possible impact on the observed variations in macroseismic fields and damage distribution. Radiation amplitude lobes were computed for three orthogonal directions: radial P, SV, and SH. The highest intensities of both earthquakes were systematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH component (which corresponds mainly to Love waves), which have significantly different orientation for both events. On the other hand, radial P direction, which is almost purely symmetrical for the strike-slip mechanism of 1998 event, showed for the 2004 event that its small reverse component of movement has resulted in a very pronounced amplitude lobe in SW direction where two settlements are located which expressed higher intensities in the case of the 2004 event with respect to the 1998 one. Although both macroseismic fields are very complex due to influences of multiple earthquakes, retrofitting activity after 1998, site effects, and sparse

  5. Syn-Extensional Constrictional Folding of the Gwoira Rider Block, a Large Fault-Bounded Slice Atop the Mai'iu Low-Angle Normal Fault, Woodlark Rift.

    Little, T. A.; Webber, S. M.; Norton, K. P.; Mizera, M.; Oesterle, J.; Ellis, S. M.


    The Mai'iu Fault is an active and corrugated low-angle normal fault (LANF) in Woodlark Rift, Eastern Papua New Guinea, which dips 21° NNE, accommodating rapid N-S extension. The Gwoira rider block is a large fault-bounded sedimentary slice comprising the Gwoira Conglomerate, located within a large synformal megamullion in the Mai'iu Fault surface. The Gwoira Conglomerate was originally deposited on the Mai'iu Fault hanging wall concurrent with extension, and has since been buried to a maximum depth of 1600-2100 m (evidenced by vitrinite reflectance data), back-tilted, and synformally folded. Both the Gwoira Conglomerate (former hanging wall) and mylonitic foliation (footwall) of the Mai'iu Fault have been shortened E-W, perpendicular to the extension direction. We show that E-W synformal folding of the Gwoira Conglomerate was concurrent with ongoing sedimentation and extension on the Mai'iu Fault. Structurally shallower Gwoira Conglomerate strata are folded less than deeper strata, indicating that folding was progressively accrued concurrent with N-S extension. We also show that abandonment of the inactive strand of the Mai'iu Fault in favor of the Gwoira Fault, which resulted in formation of the Gwoira rider block, occurred in response to progressive megamullion amplification and resultant misorientation of the inactive strand of the Mai'iu Fault. We attribute E-W folding to extension-perpendicular constriction. This is consistent with observations of outcrop-scale conjugate strike-slip faults that deform the footwall and hanging wall of the Mai'iu Fault, and accommodate E-W shortening. Constrictional folding remains active in the near-surface as evidenced by synformal tilting of inferred Late Quaternary fluvial terraces atop the Gwoira rider block. This sequence of progressive constrictional folding is dated using 26Al/10Be terrestrial cosmogenic nuclide burial dating of the Gwoira Conglomerate. Finally, because rider block formation records abandonment of the

  6. Deep Fault Drilling Project—Alpine Fault, New Zealand

    Rupert Sutherland


    Full Text Available The Alpine Fault, South Island, New Zealand, constitutes a globally significant natural laboratory for research into how active plate-bounding continental faults work and, in particular, how rocks exposed at the surface today relate to deep-seated processes of tectonic deformation, seismogenesis, and mineralization. The along-strike homogeneity of the hanging wall, rapid rate of dextral-reverse slip on an inclined fault plane, and relatively shallow depths to mechanical and chemical transitions make the Alpine Fault and the broader South Island plate boundary an important international site for multi-disciplinary research and a realistic target for an ambitious long-term program of scientific drilling investigations.

  7. Reduction of Faults in Software Testing by Fault Domination"

    XU Shiyi


    Although mutation testing is one of the practical ways of enhancing test effectiveness in software testing, it could be sometimes infeasible in practical work for a large scale software so that the mutation testing becomes time-consuming and even in prohibited time. Therefore, the number of faults assumed to exist in the software under test should be reduced so as to be able to confine the time complexity of test within a reasonable period of time. This paper utilizes the concept of fault dominance and equivalence, which has long been employed in hardware testing, for revealing a novel way of reducing the number of faults assumed to hide in software systems. Once the number of faults assumed in software is decreased sharply, the effectiveness of mutation testing will be greatly enhanced and become a feasible way of software testing. Examples and experimental results are presented to illustrate the effectiveness and the helpfulness of the technology proposed in the paper.

  8. Two-Dimensional Boundary Element Method Application for Surface Deformation Modeling around Lembang and Cimandiri Fault, West Java

    Mahya, M. J.; Sanny, T. A.


    Lembang and Cimandiri fault are active faults in West Java that thread people near the faults with earthquake and surface deformation risk. To determine the deformation, GPS measurements around Lembang and Cimandiri fault was conducted then the data was processed to get the horizontal velocity at each GPS stations by Graduate Research of Earthquake and Active Tectonics (GREAT) Department of Geodesy and Geomatics Engineering Study Program, ITB. The purpose of this study is to model the displacement distribution as deformation parameter in the area along Lembang and Cimandiri fault using 2-dimensional boundary element method (BEM) using the horizontal velocity that has been corrected by the effect of Sunda plate horizontal movement as the input. The assumptions that used at the modeling stage are the deformation occurs in homogeneous and isotropic medium, and the stresses that acted on faults are in elastostatic condition. The results of modeling show that Lembang fault had left-lateral slip component and divided into two segments. A lineament oriented in southwest-northeast direction is observed near Tangkuban Perahu Mountain separating the eastern and the western segments of Lembang fault. The displacement pattern of Cimandiri fault shows that Cimandiri fault is divided into the eastern segment with right-lateral slip component and the western segment with left-lateral slip component separated by a northwest-southeast oriented lineament at the western part of Gede Pangrango Mountain. The displacement value between Lembang and Cimandiri fault is nearly zero indicating that Lembang and Cimandiri fault are not connected each other and this area is relatively safe for infrastructure development.

  9. Design of passive fault-tolerant flight controller against actuator failures

    Xiang Yu


    Full Text Available The problem of designing passive fault-tolerant flight controller is addressed when the normal and faulty cases are prescribed. First of all, the considered fault and fault-free cases are formed by polytopes. As considering that the safety of a post-fault system is directly related to the maximum values of physical variables in the system, peak-to-peak gain is selected to represent the relationships among the amplitudes of actuator outputs, system outputs, and reference commands. Based on the parameter dependent Lyapunov and slack methods, the passive fault-tolerant flight controllers in the absence/presence of system uncertainty for actuator failure cases are designed, respectively. Case studies of an airplane under actuator failures are carried out to validate the effectiveness of the proposed approach.

  10. Design of passive fault-tolerant flight controller against actuator failures

    Yu Xiang; Zhang Youmin


    The problem of designing passive fault-tolerant flight controller is addressed when the normal and faulty cases are prescribed. First of all, the considered fault and fault-free cases are formed by polytopes. As considering that the safety of a post-fault system is directly related to the maximum values of physical variables in the system, peak-to-peak gain is selected to represent the relationships among the amplitudes of actuator outputs, system outputs, and reference com-mands. Based on the parameter dependent Lyapunov and slack methods, the passive fault-tolerant flight controllers in the absence/presence of system uncertainty for actuator failure cases are designed, respectively. Case studies of an airplane under actuator failures are carried out to validate the effectiveness of the proposed approach.

  11. Chaotic Extension Neural Network-Based Fault Diagnosis Method for Solar Photovoltaic Systems

    Kuo-Nan Yu


    Full Text Available At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the maximum power point tracking (MPPT for chaotic extraction of eigenvalue. The range of extension field was determined by neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis. Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances or the temperatures are changed.

  12. Analysis and optimization of fault-tolerant embedded systems with hardened processors

    Izosimov, Viacheslav; Polian, Ilia; Pop, Paul


    In this paper we propose an approach to the design optimization of fault-tolerant hard real-time embedded systems, which combines hardware and software fault tolerance techniques. We trade-off between selective hardening in hardware and process reexecution in software to provide the required levels...... of fault tolerance against transient faults with the lowest-possible system costs. We propose a system failure probability (SFP) analysis that connects the hardening level with the maximum number of reexecutions in software. We present design optimization heuristics, to select the fault......-tolerant architecture and decide process mapping such that the system cost is minimized, deadlines are satisfied, and the reliability requirements are fulfilled....

  13. Study of Stand-Alone Microgrid under Condition of Faults on Distribution Line

    Malla, S. G.; Bhende, C. N.


    The behavior of stand-alone microgrid is analyzed under the condition of faults on distribution feeders. During fault since battery is not able to maintain dc-link voltage within limit, the resistive dump load control is presented to do so. An inverter control is proposed to maintain balanced voltages at PCC under the unbalanced load condition and to reduce voltage unbalance factor (VUF) at load points. The proposed inverter control also has facility to protect itself from high fault current. Existing maximum power point tracker (MPPT) algorithm is modified to limit the speed of generator during fault. Extensive simulation results using MATLAB/SIMULINK established that the performance of the controllers is quite satisfactory under different fault conditions as well as unbalanced load conditions.

  14. Deformation microstructure and orientation of F.C.C. crystals

    Liu, Q.; Hansen, N.


    The effect of crystallographic orientation on the microstructural evolution in f.c.c. metals with medium to high stacking fault energy is analyzed. This analysis is based on a literature review of the behaviour of single crystals and polycrystals supplemented with an experimental study of cold...

  15. Strike-slip faulting at Thebes Gap, Missouri and Illinois: Implications for New Madrid tectonism

    Harrison, Richard W.; Schultz, Art


    Numerous NNE and NE striking strike-slip faults and associated normal faults, folds, and transtensional grabens occur in the Thebes Gap area of Missouri and Illinois. These structures developed along the northwestern margin of the buried Reelfoot rift of Precambrian-Cambrian age at the northern edge of the Mississippi embayment. They have had a long-lived and complex structural history. This is an area of recent moderate seismicity, approximately 45 km north of the New Madrid seismic zone. Stratigraphic evidence suggests that these faults were active during the Middle Ordovician. They were subsequently reactivated between the Early Devonian and Late Cretaceous, probably in response to both the Acadian and Ouachita orogenies. Deformation during this period was characterized by strongly faulted and folded Ordovician through Devonian rocks. In places, these deformed rocks are overlain with angular unconformity by undeformed Cretaceous strata. Fault motion is interpreted as dominantly strike slip. A still younger period of reactivation involved Late Cretaceous and Cenozoic formations as young as the Miocene or Pliocene Mounds Gravel. These formations have experienced both minor high-angle normal faulting and subsequent major, right-lateral strike-slip faulting. En echelon north-south folds, ENE striking normal faults, regional fracture patterns, and drag folds indicate the right-lateral motion for this major episode of faulting which predates deposition of Quaternary loess. Several nondefinitive lines of evidence suggest Quaternary faulting. Similar fault orientations and kinematics, as well as recent seismicity and proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.

  16. Combined geophysical surveys and coring data to investigate the pattern of the Watukosek fault system around the Lusi eruption site, Indonesia.

    Husein, Alwi; Mazzini, Adriano; Lupi, Matteo; Mauri, Guillaume; Kemna, Andreas; Hadi, Soffian; Santosa, Bagus


    The Lusi mud eruption is located in the Sidoarjo area, Indonesia and is continuously erupting hot mud since its birth in May 2006. The Watukosek fault system originates from the neighboring Arjuno-Welirang volcanic complex extending towards the NE of Java. After the 27-06-2006 M 6.3 earthquake this fault system was reactivated and hosted numerous hot mud eruptions in the Sidoarjo area. Until now, no targeted investigations have been conducted to understand the geometry of the faults system crossing the Lusi eruption site. A comprehensive combined electrical resistivity and self-potential (SP) survey was performed in the 7 km2 area inside the Lusi embankment that had been built to contain the erupted mud and to prevent flooding of the surrounding roads and settlements. The goal of the geophysical survey is to map the near-surface occurrence of the Watukosek fault system upon which Lusi resides, delineate its spatial pattern, and monitor its development. We completed six lines of resistivity measurements using Wenner configuration and SP measurements using roll-along technique. Three subparallel lines were located to the north and to the south of the main crater. Each line was approximately W-E oriented extending for ~1.26 km. The surveyed regions consist of mud breccia (containing clayey-silty-sandy mixture with clast up to ~10 cm in size). The geophysical data have been complemented with a N-S oriented profile consisting of 6 cores (~30m long) drilled in the dry area inside the Lusi embankment. The resistivity data were inverted into 2-D resistivity images with a maximum penetration depth of almost 200 m. These images consistently reveal a region of about 300 m in width (between 30-90 m depth) characterized by anomalous resistivities, which are lower than the values observed in the surrounding area. The results of the SP data correspond well with the resistivity profiles in the anomalous parts, which suggests that their origin is related to fluid flow paths in the

  17. The Maximum Density of Water.

    Greenslade, Thomas B., Jr.


    Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)

  18. Abolishing the maximum tension principle

    Dabrowski, Mariusz P


    We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^2/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  19. Abolishing the maximum tension principle

    Mariusz P. Da̧browski


    Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  20. Development of kink bands in granodiorite: Effect of mechanical heterogeneities, fault geometry, and friction

    Chheda, T. D.; Nevitt, J. M.; Pollard, D. D.


    The formation of monoclinal right-lateral kink bands in Lake Edison granodiorite (central Sierra Nevada, CA) is investigated through field observations and mechanics based numerical modeling. Vertical faults act as weak surfaces within the granodiorite, and vertical granodiorite slabs bounded by closely-spaced faults curve into a kink. Leucocratic dikes are observed in association with kinking. Measurements were made on maps of Hilgard, Waterfall, Trail Fork, Kip Camp (Pollard and Segall, 1983b) and Bear Creek kink bands (Martel, 1998). Outcrop scale geometric parameters such as fault length andspacing, kink angle, and dike width are used to construct a representative geometry to be used in a finite element model. Three orders of fault were classified, length = 1.8, 7.2 and 28.8 m, and spacing = 0.3, 1.2 and 3.6 m, respectively. The model faults are oriented at 25° to the direction of shortening (horizontal most compressive stress), consistent with measurements of wing crack orientations in the field area. The model also includes a vertical leucocratic dike, oriented perpendicular to the faults and with material properties consistent with aplite. Curvature of the deformed faults across the kink band was used to compare the effects of material properties, strain, and fault and dike geometry. Model results indicate that the presence of the dike, which provides a mechanical heterogeneity, is critical to kinking in these rocks. Keeping properties of the model granodiorite constant, curvature increased with decrease in yield strength and Young's modulus of the dike. Curvature increased significantly as yield strength decreased from 95 to 90 MPa, and below this threshold value, limb rotation for the kink band was restricted to the dike. Changing Poisson's ratio had no significant effect. The addition of small faults between bounding faults, decreasing fault spacing or increasing dike width increases the curvature. Increasing friction along the faults decreases slip, so

  1. Evidence for distributed clockwise rotation of the crust in the northwestern United States from fault geometries and focal mechanisms

    Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.


    Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.

  2. Expert System Detects Power-Distribution Faults

    Walters, Jerry L.; Quinn, Todd M.


    Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.

  3. Fault Detection for Diesel Engine Actuator

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.


    Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur.......Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur....

  4. Active fault diagnosis by temporary destabilization

    Niemann, Hans Henrik; Stoustrup, Jakob


    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  5. From fault classification to fault tolerance for multi-agent systems

    Potiron, Katia; Taillibert, Patrick


    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  6. Quantitative prediction of strong motion for a potential earthquake fault

    Shamita Das


    Full Text Available This paper describes a new method for calculating strong motion records for a given seismic region on the basis of the laws of physics using information on the tectonics and physical properties of the earthquake fault. Our method is based on a earthquake model, called a «barrier model», which is characterized by five source parameters: fault length, width, maximum slip, rupture velocity, and barrier interval. The first three parameters may be constrained from plate tectonics, and the fourth parameter is roughly a constant. The most important parameter controlling the earthquake strong motion is the last parameter, «barrier interval». There are three methods to estimate the barrier interval for a given seismic region: 1 surface measurement of slip across fault breaks, 2 model fitting with observed near and far-field seismograms, and 3 scaling law data for small earthquakes in the region. The barrier intervals were estimated for a dozen earthquakes and four seismic regions by the above three methods. Our preliminary results for California suggest that the barrier interval may be determined if the maximum slip is given. The relation between the barrier interval and maximum slip varies from one seismic region to another. For example, the interval appears to be unusually long for Kilauea, Hawaii, which may explain why only scattered evidence of strong ground shaking was observed in the epicentral area of the Island of Hawaii earthquake of November 29, 1975. The stress drop associated with an individual fault segment estimated from the barrier interval and maximum slip lies between 100 and 1000 bars. These values are about one order of magnitude greater than those estimated earlier by the use of crack models without barriers. Thus, the barrier model can resolve, at least partially, the well known discrepancy between the stress-drops measured in the laboratory and those estimated for earthquakes.

  7. Determining the orientation of quasiprincipal stresses by borehole electrometry: theory of the method, I

    Oparin, V.N.


    The authors propose a method for determination of the orientation of quasiprincipal stresses in rock beds based on data from borehole electrometry. Knowing the orientation of maximum stresses in rock strata and how they are changed by mining operations is important for various geomechanical and engineering problems. The theory of electrometric determination of the orientational maximum stresses presented in this paper proceeds from an a priori assumption of a direct correlation between the orientation of the maximum conductivity axis of rocks and the orientation of the axis of maximum mechanical stress.

  8. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,


    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  9. Peripheral Faulting of Eden Patera: Potential Evidence in Support of a New Volcanic Construct on Mars

    Harlow, J.


    Arabia Terra's (AT) pock-marked topography in the expansive upland region of Mars Northern Hemisphere has been assumed to be the result of impact crater bombardment. However, examination of several craters by researchers revealed morphologies inconsistent with neighboring craters of similar size and age. These 'craters' share features with terrestrial super-eruption calderas, and are considered a new volcanic construct on Mars called `plains-style' caldera complexes. Eden Patera (EP), located on the northern boundary of AT is a reference type for these calderas. EP lacks well-preserved impact crater morphologies, including a decreasing depth to diameter ratio. Conversely, Eden shares geomorphological attributes with terrestrial caldera complexes such as Valles Caldera (New Mexico): arcuate caldera walls, concentric fracturing/faulting, flat-topped benches, irregular geometric circumferences, etc. This study focuses on peripheral fractures surrounding EP to provide further evidence of calderas within the AT region. Scaled balloon experiments mimicking terrestrial caldera analogs have showcased fracturing/faulting patterns and relationships of caldera systems. These experiments show: 1) radial fracturing (perpendicular to caldera rim) upon inflation, 2) concentric faulting (parallel to sub-parallel to caldera rim) during evacuation, and 3) intersecting radial and concentric peripheral faulting from resurgence. Utilizing Mars Reconnaissance Orbiter Context Camera (CTX) imagery, peripheral fracturing is analyzed using GIS to study variations in peripheral fracture geometries relative to the caldera rim. Visually, concentric fractures dominate within 20 km, radial fractures prevail between 20 and 50 km, followed by gradation into randomly oriented and highly angular intersections in the fretted terrain region. Rose diagrams of orientation relative to north expose uniformly oriented mean regional stresses, but do not illuminate localized caldera stresses. Further

  10. Strain Accommodation and its Relationship to Pre-existing Structures along the Karonga Fault, Malawi

    Dawson, S.; Laó-Dávila, D. A.; Atekwana, E. A.; Clappe, B.; Johnson, T.; Hull, C. D.; Nyalugwe, V.; Abdelsalam, M. G.; Chindandali, P. R. N.; Salima, J.


    The Livingstone border fault, with its 7 km of total displacement, accommodates most of the strain in the northern portion of the Malawi Rift. Its hanging wall is also breaking up, as suggested by the 2009 earthquake sequence in Karonga. This hanging wall block is underlain in part by the NW- and N-striking Mughese Shear Zone. The superposition of new faults on the pre-existing structures makes this area an ideal location to study the effect of the orientation of pre-existing structures on the accommodation of strain in the hanging wall in the western flank of the northern Malawi Rift. We used gravity and aeromagnetic data and remote sensing to map the Precambrian macro-scale structural fabric of the greater Karonga region. Moreover, we mapped mesostructures within the Precambrian and younger rocks. In the northern portion of the Karonga fault, a single east-dipping fault zone with a mean strike of 32° and a 59° dip cuts the Precambrian foliation that has a mean strike of 301° and 79° dip, accommodating the majority of strain in this region. South of the city of Karonga, the Precambrian foliation assumes a NNW average strike that is steeply dipping. Here the Karonga fault disperses from a single fault with a 2 km damage zone to several distinct east- and west-dipping faults over 6 km that strike in the same overall direction as the foliation planes from the Mughese Shear Zone. Karoo rift structures (horsts and grabens) and their associated rock formations could also be reactivated in this area. These relationships suggest that within the Malawi Rift, strain can be accommodated differently based on the nature and orientation of pre-existing structures. The structural fabric surrounding the southern portion of the Karonga fault seems to favor reactivation and strain distribution, whereas strain is localized in the northern portion of the fault zone.

  11. Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps

    Roggon, Lars; Hetzel, Ralf; Hiesinger, Harald; Clark, Jaclyn D.; Hampel, Andrea; van der Bogert, Carolyn H.


    Fault populations on terrestrial planets exhibit a linear relationship between their length, L, and the maximum displacement, D, which implies a constant D/L ratio during fault growth. Although it is known that D/L ratios of faults are typically a few percent on Earth and 0.2-0.8% on Mars and Mercury, the D/L ratios of lunar faults are not well characterized. Quantifying the D/L ratios of faults on the Moon is, however, crucial for a better understanding of lunar tectonics, including for studies of the amount of global lunar contraction. Here, we use high-resolution digital terrain models to perform a topographic analysis of four lunar thrust faults - Simpelius-1, Morozov (S1), Fowler, and Racah X-1 - that range in length from 1.3 km to 15.4 km. First, we determine the along-strike variation of the vertical displacement from ≥ 20 topographic profiles across each fault. For measuring the vertical displacements, we use a method that is commonly applied to fault scarps on Earth and that does not require detrending of the profiles. The resulting profiles show that the displacement changes gradually along these faults' strike, with maximum vertical displacements ranging from 17 ± 2 m for Simpelius-1 to 192 ± 30 m for Racah X-1. Assuming a fault dip of 30° yields maximum total displacements (D) that are twice as large as the vertical displacements. The linear relationship between D and L supports the inference that lunar faults gradually accumulate displacement as they propagate laterally. For the faults we investigated, the D/L ratio is ∼2.3%, an order of magnitude higher than theoretical predictions for the Moon, but a value similar for faults on Earth. We also employ finite-element modeling and a Mohr circle stress analysis to investigate why many lunar thrust faults, including three of those studied here, form uphill-facing scarps. Our analysis shows that fault slip is preferentially initiated on planes that dip in the same direction as the topography, because

  12. Active tectonics on Deception Island (West-Antarctica): A new approach by using the fractal anisotropy of lineaments, fault slip measurements and the caldera collapse shape

    Pérez-López, R.; Giner-Robles, J.L.; Martínez-Díaz, J.J.; Rodríguez-Pascua, M.A.; Bejar, M.; Paredes, C.; González-Casado, J.M.


    The tectonic field on Deception Island (South Shetlands, West Antarctica) is determined from structural and fractal analyses. Three different analyses are applied to the study of the strain and stress fields in the area: (1) field measurements of faults (strain analysis), (2) fractal geometry of the spatial distribution of lineaments and (3) the caldera shape (stress analyses). In this work, the identified strain field is extensional with the maximum horizontal shortening trending NE-SW and NW-SE. The fractal technique applied to the spatial distribution of lineaments indicates a stress field with SHMAX oriented NE-SW. The elliptical caldera of Deception Island, determined from field mapping, satellite imagery, vents and fissure eruptions, has an elongate shape and a stress field with SHMAX trending NE-SW.

  13. The fault-tree compiler

    Martensen, Anna L.; Butler, Ricky W.


    The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.

  14. Cell boundary fault detection system

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward


    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  15. Fault Tolerant External Memory Algorithms

    Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas


    Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...... bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where...

  16. Diagnosis and fault-tolerant control

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel


    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  17. An architecture for fault tolerant controllers

    Niemann, Hans Henrik; Stoustrup, Jakob


    degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including......A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...... for additive faults, parametric faults, and for system structural changes. The modeling for each of these fault classes is described. The method allows to design for passive as well as for active fault handling. Also, the related design method can be fitted either to guarantee stability or to achieve graceful...

  18. Probability of rupture of multiple fault segments

    Andrews, D.J.; Schwerer, E.


    Fault segments identified from geologic and historic evidence have sometimes been adopted as features limiting the likely extends of earthquake ruptures. There is no doubt that individual segments can sometimes join together to produce larger earthquakes. This work is a trial of an objective method to determine the probability of multisegment ruptures. The frequency of occurrence of events on all conjectured combinations of adjacent segments in northern California is found by fitting to both geologic slip rates and to an assumed distribution of event sizes for the region as a whole. Uncertainty in the shape of the distribution near the maximum magnitude has a large effect on the solution. Frequencies of individual events cannot be determined, but it is possible to find a set of frequencies to fit a model closely. A robust conclusion for the San Francisco Bay region is that large multisegment events occur on the San Andreas and San Gregorio faults, but single-segment events predominate on the extended Hayward and Calaveras strands of segments.

  19. Static Decoupling in fault detection

    Niemann, Hans Henrik


    An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index......An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index...

  20. Fault-tolerant rotary actuator

    Tesar, Delbert


    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  1. Normal fault populations across the Costa Rica margin, NW of the Osa Penninsula, and implications for upper plate stress

    Bangs, N. L.; McIntosh, K. D.


    The upper plate of the Costa Rica subduction zone is dissected by hundreds of normal faults that cut through the uppermost 500 - 1000m of slope sediment cover sequences within the upper slope and outer shelf of the Costa Rica margin. These faults are typically spaced 10s to 100s of m apart and have only small offsets of Cocos Ridge (~75 km to the SE) and the Costa Rica margin (La Femina, et al., 2009). The second set of normal faults strikes east with an azimuth of 85°. This set of faults has a consistent orientation across the shelf and upper slope. This orientation is roughly parallel to the orientation of the subducting basement ridges (78°), which form horst and graben structures on the down going plate. These faults may be a result of uplift and extension as subducting ridges pass underneath. However, beneath the upper slope additional fault populations emerge with dominant azimuths primarily oriented at 5° and 65°. These faults appear to mark the localized extension caused by growth and uplift in the underlying margin wedge. Further, recent movement on shallow thrust faults indicates active shortening of the upper plate. We speculate that the contrast in the variability of fault populations beneath the upper slope and shelf is a result of a change in the competence of upper plate that allows more stress localization within the margin wedge beneath the slope than beneath the shelf. LaFemina, et al. (2009), Fore-arc motion and Cocos Ridge collision in Central America, Geochem. Geophys. Geosyst., 10, Q05S14.

  2. The mechanics of gravity-driven faulting

    L. Barrows; V. Barrows


    Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In elastic rebound, locked-in elastic strain energy is transformed into the earthquake (seismic waves plus work done in the fault zone). In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into the earthquake and half goes into an increase in locked-in elastic strain. In elastic reb...

  3. Possible Connections Between the Coronado Bank Fault Zone and the Newport-Inglewood, Rose Canyon, and Palos Verdes Fault Zones Offshore San Diego County, California.

    Sliter, R. W.; Ryan, H. F.


    High-resolution multichannel seismic-reflection and deep-tow Huntec data collected by the USGS were interpreted to map the Coronado Bank fault zone (CBFZ) offshore San Diego County, California. The CBFZ is comprised of several major strands (eastern, central, western) that change in both orientation and degree of deformation along strike. Between Coronado Bank and San Diego, the CBFZ trends N25W and occupies a narrow 7 km zone. Immediately north of La Jolla submarine canyon (LJSC), the easternmost strand changes orientation to almost due north and appears to be offset in a right-lateral sense across the canyon axis. The strand merges with a prominent fault that follows the base of the continental slope in about 600 m water depth. The central portion of the CBFZ is mapped as a negative flower structure and deforms seafloor sediment as far north as 15 km north of LJSC. Farther north, this structure is buried by more than 400 m of basin sediment. Along the eastern edge of the Coronado Bank, the western portion of the CBFZ is characterized by high angle normal faults that dip to the east. North of the Coronado Bank, the western segment follows the western edge of a basement high; it cuts through horizontal basin reflectors and in places deforms the seafloor. We mapped an additional splay of the CBFZ that trends N40W; it is only observed north and west of LJSC. Although the predominant trend of the CBFZ is about N40W, along strike deviations from this orientation of some of the strands indicate that these strands connect with other offshore fault zones in the area. Based on the limited data available, the trend of the CBFZ south of Coronado Bank suggests that it might connect with the Rose Canyon fault zone (RCFZ) that has been mapped in San Diego Bay. North of Coronado Bank, the CBFZ is a much broader fault zone (about 25 km wide) composed of diverging fault strands. The westernmost strand may merge with the western strand of the Palos Verdes fault zone (PVFZ) south of

  4. Do mesoscale faults in a young fold belt indicate regional or local stress?

    Kokado, Akihiro; Yamaji, Atsushi; Sato, Katsushi


    The result of paleostress analyses of mesoscale faults is usually thought of as evidence of a regional stress. On the other hand, the recent advancement of the trishear modeling has enabled us to predict the deformation field around fault-propagation folds without the difficulty of assuming paleo mechanical properties of rocks and sediments. We combined the analysis of observed mesoscale faults and the trishear modeling to understand the significance of regional and local stresses for the formation of mesoscale faults. To this end, we conducted the 2D trishear inverse modeling with a curved thrust fault to predict the subsurface structure and strain field of an anticline, which has a more or less horizontal axis and shows a map-scale plane strain perpendicular to the axis, in the active fold belt of Niigata region, central Japan. The anticline is thought to have been formed by fault-propagation folding under WNW-ESE regional compression. Based on the attitudes of strata and the positions of key tephra beds in Lower Pleistocene soft sediments cropping out at the surface, we obtained (1) a fault-propagation fold with the fault tip at a depth of ca. 4 km as the optimal subsurface structure, and (2) the temporal variation of deformation field during the folding. We assumed that mesoscale faults were activated along the direction of maximum shear strain on the faults to test whether the fault-slip data collected at the surface were consistent with the deformation in some stage(s) of folding. The Wallace-Bott hypothesis was used to estimate the consistence of faults with the regional stress. As a result, the folding and the regional stress explained 27 and 33 of 45 observed faults, respectively, with the 11 faults being consistent with the both. Both the folding and regional one were inconsistent with the remaining 17 faults, which could be explained by transfer faulting and/or the gravitational spreading of the growing anticline. The lesson we learnt from this work was


    Yu. O. Kuzmin


    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A ‘fault

  6. Initiation of Ridges and Transform Faults

    Nyst, M.; Thompson, G. A.; Parsons, T.


    . In a simple 2-D finite-element modeling setup we simulate the initiation of rifting by the dike intrusion and opening of several mis-aligned cracks in a pre-extended elastic basalt-like crust. The design of the model parameterization and the dimensions of the cracks, their mis-alignments and mutual distances resemble beginning rift systems observed in the Gulf of California and the Red Sea. Two major processes are assumed to control the expansion and interaction of the cracks and the subsequent development of transform faults. Tectonic extension and dike inflation widen the cracks and stress concentration causes the tips to propagate. Intruding magma aids the opening by exerting stresses on the crack boundaries. Then stress changes induced by the interacting cracks cause the region between the cracks to break. In our modeling the Coulomb failure criterion controls the development of faults around the cracks. Under plane stress assumptions we study the evolution of the stress regime with time, while varying the spreading rate of the lithosphere, the melt pressure of the intruding magma, the degree of mis-alignment and the distance between the cracks. We propose a process of dike intrusion to explain the orientation of ridges; mis-alignment of dikes propagating from different magma supply centers leads to formation of transforms. The hypothesis is supported by the discovery of magma-poor, ultra-slow spreading ridges that are spreading obliquely and generally lack transforms [Dick, Lin and Schouten, Nature, 426, 2003].

  7. Maximum Genus of Strong Embeddings

    Er-ling Wei; Yan-pei Liu; Han Ren


    The strong embedding conjecture states that any 2-connected graph has a strong embedding on some surface. It implies the circuit double cover conjecture: Any 2-connected graph has a circuit double cover.Conversely, it is not true. But for a 3-regular graph, the two conjectures are equivalent. In this paper, a characterization of graphs having a strong embedding with exactly 3 faces, which is the strong embedding of maximum genus, is given. In addition, some graphs with the property are provided. More generally, an upper bound of the maximum genus of strong embeddings of a graph is presented too. Lastly, it is shown that the interpolation theorem is true to planar Halin graph.

  8. Fault Analysis of DFIG under Grid Disturbances

    Aditya Chaudhary


    Full Text Available Doubly-fed induction generators (DFIG are widely used in variable-speed variable-pitch wind energy generation systems. These machines are controlled with the power converters connected to the rotor, where the controlled power is only a fraction, approximately equal to the slip of the stator power. This characteristics of the DFIG has increased the wind energy penetration, but it is more prone to the electrical grid disturbances. These disturbances are classified as the voltage dips and the line faults. In the first section of this paper, PWM control of the DFIG for maximum power extraction is presented. In the second section, the behaviour of the DFIG under the various grid disturbances are modelled. In this paper, the behaviour of the wind turbines are studied through various simulations done in the LABview environment.

  9. D(Maximum)=P(Argmaximum)

    Remizov, Ivan D


    In this note, we represent a subdifferential of a maximum functional defined on the space of all real-valued continuous functions on a given metric compact set. For a given argument, $f$ it coincides with the set of all probability measures on the set of points maximizing $f$ on the initial compact set. This complete characterization lies in the heart of several important identities in microeconomics, such as Roy's identity, Sheppard's lemma, as well as duality theory in production and linear programming.

  10. Alternative Multiview Maximum Entropy Discrimination.

    Chao, Guoqing; Sun, Shiliang


    Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on maximum entropy and maximum margin principles, and can produce hard-margin support vector machines under some assumptions. Recently, the multiview version of MED multiview MED (MVMED) was proposed. In this paper, we try to explore a more natural MVMED framework by assuming two separate distributions p1( Θ1) over the first-view classifier parameter Θ1 and p2( Θ2) over the second-view classifier parameter Θ2 . We name the new MVMED framework as alternative MVMED (AMVMED), which enforces the posteriors of two view margins to be equal. The proposed AMVMED is more flexible than the existing MVMED, because compared with MVMED, which optimizes one relative entropy, AMVMED assigns one relative entropy term to each of the two views, thus incorporating a tradeoff between the two views. We give the detailed solving procedure, which can be divided into two steps. The first step is solving our optimization problem without considering the equal margin posteriors from two views, and then, in the second step, we consider the equal posteriors. Experimental results on multiple real-world data sets verify the effectiveness of the AMVMED, and comparisons with MVMED are also reported.

  11. Water-rich bending faults at the Middle America Trench

    Naif, Samer; Key, Kerry; Constable, Steven; Evans, Rob L.


    The portion of the Central American margin that encompasses Nicaragua is considered to represent an end-member system where multiple lines of evidence point to a substantial flux of subducted fluids. The seafloor spreading fabric of the incoming Cocos plate is oriented parallel to the trench such that flexural bending at the outer rise optimally reactivates a dense network of normal faults that extend several kilometers into the upper mantle. Bending faults are thought to provide fluid pathways that lead to serpentinization of the upper mantle. While geophysical anomalies detected beneath the outer rise have been interpreted as broad crustal and upper mantle hydration, no observational evidence exists to confirm that bending faults behave as fluid pathways. Here we use seafloor electromagnetic data collected across the Middle America Trench (MAT) offshore of Nicaragua to create a comprehensive electrical resistivity image that illuminates the infiltration of seawater along bending faults. We quantify porosity from the resistivity with Archie's law and find that our estimates for the abyssal plain oceanic crust are in good agreement with independent observations. As the Cocos crust traverses the outer rise, the porosity of the dikes and gabbros progressively increase from 2.7% and 0.7% to 4.8% and 1.7%, peaking within 20 km of the trench axis. We conclude that the intrusive crust subducts twice as much pore water as previously thought, significantly raising the flux of fluid to the seismogenic zone and the mantle wedge.

  12. Active Fault Research (1996); Katsudanso kenkyu (1996)



    This is a general collection of papers dealing with the research of active faults. In Japan, since very heavy damage was produced by the Hyogoken-Nambu earthquake of January, 1955, discussion of active faults has promptly grown very active. In relation to the said earthquake, detailed maps of earthquake faults that emerged in the same, trench investigations of the Awajishima surface fault rupture related to the same, and the circumstances of the southern and northern ends of the Nojima earthquake fault are reported. Discussion is made about the re-examination of precaution faults and the possibility of the presence of C-class active faults, dealing with the entirety of Japan. Itemized discussion covers the fossil liquefaction observed on the campus of Hokkaido University, fault outcrop at the geological boundary west of Hanamaki and at the western edge of the Kitakami lowland, morphology at the Median Tectonic Line active fault system Iyo fault, fault outcrop discovered at the Iwakuni active fault system Otake fault, and the Kokura Higashi fault and the topography surrounding it (northern part of Kyushu) are introduced. Furthermore, there are reports on the F1 fault and neotectonics in the Tan-Lu fracture zone in the Linyi area, Shandong Province, eastern part of China.

  13. Evolving seismogenic plate boundary megathrust and mega-splay faults in subduction zone (Invited)

    Kimura, G.; Hamahashi, M.; Fukuchi, R.; Yamaguchi, A.; Kameda, J.; Kitamura, Y.; Hashimoto, Y.; Hamada, Y.; Saito, S.; Kawasaki, R.


    Understanding the fault mechanism and its relationship to the sesimo-tsunamigenesis is a key of the scientific targets of subduction zone and therefore NantroSEIZE project of IODP and future new drilling project of International Ocean Discovery Program keeps focusing on that. Mega-splay fault branched from plate boundary megathrust in subduction zone is located around the border between outer and inner wedges and is considered to cause great earthquake and tsunami such as 1960 Alaska earthquake, 1944 and 1946 Nankai-Tonankai earthquakes, and 2004 Sumatra earthquakes. Seismic reflection studies for the mega-splay fault in 2D and 3D in the Nankai forearc present the reflector with negative or positive polarities with various amplitudes and suggest complicated petrophysical properties and condition of the fault and its surroundings. The Nankai mega-splay fault at a depth of ~5km is going to be drilled and cored by NantroSEIZE experiments and is expected for great progress of understanding of the fault mechanics. Before drilling the really targeted seismogenic fault, we are conducting many exercises of geophysical and geological observations. The core-log-seismic integrated exercise for the exhumed mega-splay fault by drilling was operated for the Nobeoka thrust in the Shimanto Belt, Kyushu, Japan. The Nobeoka thrust was once buried in the depth >~10km and suffered maximum temperature >~300 dgree C. As the core recovery is ~99%, perfect correlation between the core and logging data is possible. Thickness of the fault zone is >200 m with a ~50 cm thick central fault core dividing the phyllitic hanging wall and the footwall of broken-melange like cataclasite. A-few-meter-thick discrete damage zones with fault cores are recognized by difference in physical properties and visual deformation textures at several horizons in the fault zone. Host rocks for those damaged zones are completely lithified cataclasites with abundant mineral veins, which record the older and deeper

  14. Object Oriented Mutation Applied in Java Application programming Interface and C++ Classes

    Mr. Titu Singh Arora


    Full Text Available Mutation analysis is a powerful and computationally expensive technique that measures the effectiveness of test cases for revealing faults. The principal expense of mutation analysis is that many faulty versions of the program under test, culled mutants, must be repeatedly executed. We survey several aspects of reconstruction of complex object-oriented faults on the java API. Application of object-oriented mutation operators in java programs using a parser-based tool can be precise but requires compilation of mutants. In this paper we approach the mutation on Object Oriented features to test the functionality. For this we consider java and C++ programs.

  15. An Embedded Condition Monitoring and Fault Diagnosis System for Rotary Machines


    An intelligent machine is the earnest aspiration of people. From the point of view to construct an intelligent machine with self-monitoring and self-diagnosis abilities, the technology for realizing an internet oriented embedded intelligent condition monitoring and fault diagnosis system for the rotating machine with remote monitoring, diagnosis, maintenance and upgrading functions is introduced systematically. Based on the DSP ( Digital Signal Processor) and embedded microcomputer, the system can measure and store the machine work status in real time, such as the rotating speed and vibration,etc. In the system, the DSP chip is used to do the fault signal processing and feature extraction, and the embedded microcomputer with a customized Linux operation system is used to realize the internet oriented remote software upgrading and system maintenance. Embedded fault diagnosis software based on mobile agent technology is also designed in the system, which can interconnect with the remote fault diagnosis center to realize the collaborative diagnosis. The embedded condition monitoring and fault diagnosis technology proposed in this paper will effectively improve the intelligence degree of the fault diagnosis system.

  16. Symmetric Euler orientation representations for orientational averaging.

    Mayerhöfer, Thomas G


    A new kind of orientation representation called symmetric Euler orientation representation (SEOR) is presented. It is based on a combination of the conventional Euler orientation representations (Euler angles) and Hamilton's quaternions. The properties of the SEORs concerning orientational averaging are explored and compared to those of averaging schemes that are based on conventional Euler orientation representations. To that aim, the reflectance of a hypothetical polycrystalline material with orthorhombic crystal symmetry was calculated. The calculation was carried out according to the average refractive index theory (ARIT [T.G. Mayerhöfer, Appl. Spectrosc. 56 (2002) 1194]). It is shown that the use of averaging schemes based on conventional Euler orientation representations leads to a dependence of the result from the specific Euler orientation representation that was utilized and from the initial position of the crystal. The latter problem can be overcome partly by the introduction of a weighing factor, but only for two-axes-type Euler orientation representations. In case of a numerical evaluation of the average, a residual difference remains also if a two-axes type Euler orientation representation is used despite of the utilization of a weighing factor. In contrast, this problem does not occur if a symmetric Euler orientation representation is used as a matter of principle, while the result of the averaging for both types of orientation representations converges with increasing number of orientations considered in the numerical evaluation. Additionally, the use of a weighing factor and/or non-equally spaced steps in the numerical evaluation of the average is not necessary. The symmetrical Euler orientation representations are therefore ideally suited for the use in orientational averaging procedures.

  17. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience

    Pantosti, Daniela


    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active

  18. Paleostress Determination Based on Multiple-Inverse Method using Calcite Twins and Fault-Slip Data in the East Walanae Fault Zone South Sulawesi, Indonesia

    Jaya, Asri; Nishikawa, Osamu


    Paleostress reconstructions from calcite twin and fault-slip data were performed to constrain the activity of the East Walanae Fault (EWF) South Sulawesi, Indonesia. The multiple-inverse method, which has been widely used with fault-slip data, was applied to calcite twin data in this study. Both independent data sets yield consistent stress states and provides a reliable stress tensors (maximum and minimum principal stresses: ?1and ?3, and stress ratio: ?), a predominance of NE-SW trending ?1and vertical to moderately-south-plunging ?3 with generally low ?. These stress states could have activated the EWF as a reverse fault with a dextral shear component and account for contractional deformation structures and landform around the trace of the fault. Most of the calcite twins and mesoscale faults were activated during the latest stage of folding or later. Based on the morphology and width of twin lamellae in the carbonate rocks, twinning of calcite in the deformation zone along the EWF may have occurred under the temperature of 200° C or lower. Inferred paleostress states around the EWF were most likely generated under the tectonic conditions influenced by the collision of Sulawesi with the Australian fragments since the Late Miocene. Radiocarbon dating from sheared soil collected from the outcrop along a major fault yielded ages between 3050 cal BP and 3990 cal BP suggesting a present activity of the EWF.

  19. Repetition of large stress drop earthquakes on Wairarapa fault, New Zealand, revealed by LiDAR data

    Delor, E.; Manighetti, I.; Garambois, S.; Beaupretre, S.; Vitard, C.


    We have acquired high-resolution LiDAR topographic data over most of the onland trace of the 120 km-long Wairarapa strike-slip fault, New Zealand. The Wairarapa fault broke in a large earthquake in 1855, and this historical earthquake is suggested to have produced up to 18 m of lateral slip at the ground surface. This would make this earthquake a remarkable event having produced a stress drop much higher than commonly observed on other earthquakes worldwide. The LiDAR data allowed us examining the ground surface morphology along the fault at vegetation. In doing so, we identified more than 900 alluvial features of various natures and sizes that are clearly laterally offset by the fault. We measured the about 670 clearest lateral offsets, along with their uncertainties. Most offsets are lower than 100 m. Each measurement was weighted by a quality factor that quantifies the confidence level in the correlation of the paired markers. Since the slips are expected to vary along the fault, we analyzed the measurements in short, 3-5 km-long fault segments. The PDF statistical analysis of the cumulative offsets per segment reveals that the alluvial morphology has well recorded, at every step along the fault, no more than a few (3-6), well distinct cumulative slips, all lower than 80 m. Plotted along the entire fault, the statistically defined cumulative slip values document four, fairly continuous slip profiles that we attribute to the four most recent large earthquakes on the Wairarapa fault. The four slip profiles have a roughly triangular and asymmetric envelope shape that is similar to the coseismic slip distributions described for most large earthquakes worldwide. The four slip profiles have their maximum slip at the same place, in the northeastern third of the fault trace. The maximum slips vary from one event to another in the range 7-15 m; the most recent 1855 earthquake produced a maximum coseismic slip of 15 × 2 m at the ground surface. Our results thus confirm

  20. Detailed Geophysical Imaging in San Pablo Bay Reveals a New Strand of the Hayward-Rodgers Creek Fault Zone

    Watt, J. T.; Ponce, D. A.; Hart, P. E.; Denton, K. M.; Parsons, T.; Graymer, R. W.


    High-resolution chirp seismic-reflection and marine magnetic data collected in San Pablo Bay reveal a new strand of the Hayward fault that helps constrain the geometry and connectivity of the Hayward-Rodgers Creek fault zone, one of the most hazardous faults in California. Over 1,200 km of marine magnetic data were collected in San Pablo Bay along NE-trending traverses spaced 200-m apart, and approximately 200 km of chirp data were collected along similarly oriented profiles spaced 1-km apart. Data were acquired using a 0.7-12 kHz sweep with a 20 ms length fired at 6 times per second. Due to attenuation of the acoustic signal by bay muds and persistent natural gas layers in San Pablo Bay, chirp data are only able to image the upper 2 to 5 meters of the sub-seafloor. Offset and warping of near-surface reflections delineates a previously unrecognized NW-trending strand of the Hayward fault that extends across San Pablo Bay, from Point Pinole to Lower Tubbs Island. Vertical offset along the fault varies in both direction and magnitude, with some indication of increasing offset with depth. The fault imaged in the chirp data corresponds to gravity, magnetic, and tomographic gradients in the bay. Relocated seismicity is aligned with the surface trace of the fault and repeating earthquakes along this trend suggest this strand of the Hayward fault is creeping. A northwestward onshore projection of this fault is coincident with gravity and topographic gradients that align with a SSE-trending splay of the Rodgers Creek Fault, suggesting the Hayward and Rodgers Creek faults may connect directly rather than through a wide step-over zone. Even if the faults do not directly connect, these new data indicate that the faults are much closer together (2 km vs 4 km) than previously thought, making a through-going rupture more plausible.

  1. Fault Management Guiding Principles

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan


    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  2. Fault Management Guiding Principles

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan


    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  3. Stress, faulting and fluid flow in the Coso Geothermal Field, CA

    Davatzes, N. C.; Hickman, S.


    We integrate new geologic mapping and new in situ measurements of stress orientations and magnitudes from studies of wells within and on the flanks of the geothermal system with existing data sets to refine a geomechanical model for the Coso geothermal field. Stress orientations (averaged from several hundred to thousand meters of vertical borehole data) in wells across the field are fairly uniform and are consistent with focal mechanism inversions of earthquake clusters for stress and incremental strain. Active faults trending NNW-SSE to NNE-SSW are well oriented for normal slip in the current stress field, where the mean least principal horizontal compressive stress, Shmin, orientation is 108° ± 24º in a transitional strike-slip to normal faulting stress regime. These structures bound regions of intense micro-seismicity and are complexly associated with surface hydrothermal activity. WNW-ESE trending faults are also associated with distinct regions of enhanced seismicity but are only associated with surface hydrothermal activity where they intersect more northerly trending normal faults. These faults show no evidence for Quaternary slip at the surface and are poorly oriented in the modern stress field. These results together with stress magnitudes measured in the East Flank of the field suggest that the most productive portions of the Coso geothermal field are in high deviatoric stress environments conducive to normal faulting. Recent earthquake relocations and incremental strain inversions map areas of extensional strain located over the southern part of the Main Field and reaching east and north into the East Flank consistent with our borehole analyses. The resulting relatively low mean stress is conducive to dilation and increased permeability accompanying fault slip and coincides with the hottest areas in the geothermal field. Similar regions of locally reduced mean stress might arise from mechanical interaction during slip on intersecting fault segments

  4. The Padul normal fault activity constrained by GPS data: Brittle extension orthogonal to folding in the central Betic Cordillera

    Gil, Antonio J.; Galindo-Zaldívar, Jesús; Sanz de Galdeano, Carlos; Borque, Maria Jesús; Sánchez-Alzola, Alberto; Martinez-Martos, Manuel; Alfaro, Pedro


    The Padul Fault is located in the Central Betic Cordillera, formed in the framework of the NW-SE Eurasian-African plate convergence. In the Internal Zone, large E-W to NE-SW folds of western Sierra Nevada accommodated the greatest NW-SE shortening and uplift of the cordillera. However, GPS networks reveal a present-day dominant E-W to NE-SW extensional setting at surface. The Padul Fault is the most relevant and best exposed active normal fault that accommodates most of the NE-SW extension of the Central Betics. This WSW-wards dipping fault, formed by several segments of up to 7 km maximum length, favored the uplift of the Sierra Nevada footwall away from the Padul graben hanging wall. A non-permanent GPS network installed in 1999 constrains an average horizontal extensional rate of 0.5 mm/yr in N66°E direction. The fault length suggests that a (maximum) 6 magnitude earthquake may be expected, but the absence of instrumental or historical seismic events would indicate that fault activity occurs at least partially by creep. Striae on fault surfaces evidence normal-sinistral kinematics, suggesting that the Padul Fault may have been a main transfer fault of the westernmost end of the Sierra Nevada antiform. Nevertheless, GPS results evidence: (1) shortening in the Sierra Nevada antiform is in its latest stages, and (2) the present-day fault shows normal with minor oblique dextral displacements. The recent change in Padul fault kinematics will be related to the present-day dominance of the ENE-WSW regional extension versus NNW-SSE shortening that produced the uplift and northwestwards displacement of Sierra Nevada antiform. This region illustrates the importance of heterogeneous brittle extensional tectonics in the latest uplift stages of compressional orogens, as well as the interaction of folding during the development of faults at shallow crustal levels.

  5. Magnitude of fluid movement and rates of cementation associated with reverse faults Examples from the Maracaibo basin, Venezuela

    Perez, R. J.; Boles, J. R.


    Magnitude of vertical fluid movement and rates of quartz cementation were studied in three cored intervals where reverse faults cut the Eocene Misoa Fm in the Maracaibo basin, Venezuela. The faults are flower type structures, with slips up to 500 meters, generated by an Eocene inversion of Cretaceous-Paleocene normal displacements. The fault zones extend 2.5 meters away from the slip surface and are characterized by extensive quartz and chert precipitation associated with microfractures and cataclasis. Kinetic modeling of quartz precipitation suggests that the rates of microfracture annealing may have been initially up to 0.25 moles/C, lasting approximately 1 my after faulting started (37.5 mya) and subsequently decreasing during uplifting to less than 0.05 moles/C. Kinetic modeling suggests that quartz cementation along these reverse faults may have occurred in short periods of time and at approximately the same or lower rates than intervals away from faults. Minimum vertical distance of fluid flow along one fault zone was calculated with two different approaches. The first method divides the thermal gradient present during faulting (obtained through a thermal reconstruction of the area) by a difference between the host rock maximum burial temperature and fault cements temperatures (obtained from fluid inclusions). The second method integrates an average-weight function of the thermal gradient along the unknown depth. Both methods suggest that hot fluids, present during cementation, ascended a minimum of 450 to 800 meter along the fault zone.

  6. Scandinavian postglacial faults and their physical connection to present day seismicity

    Arvidsson, R.


    In Scandinavia large earthquakes up to M~8.2 occurred 9500 yBP due to rapid deglaciation leaving fault scarps with lengths up to 160km and vertical offsets of at least 10 m. Today a lion share of local earthquakes are located to the vicinity of the faults. I show here from Coulomb failure stress modeling a physical connection between clustering of recent earthquakes and high Coulomb failure stresses around the faults. This can be interpreted In such a fashion that the location of the current earthquakes resembles locations of aftershock sequences. The explanation is that when these faults where formed it was due to state of stress in the crust at time of deglaciation, different from today's conditions. The crust was heavily depressed at deglaciation about 250 m in the region and due of the receding icesheet the crust was subjected to high stresses resulting in fault motion. This fault motion occurred in order to minimize state of stress at deglaciation. However, this state of stress has since changed with the regional postglacial uplift and thus today these faults remain as perturbations in the crust with concentrations of high stresses. I elaborate on this mechanism. I also advocate that this correlation between high stressed fault areas and locations of earthquakes indicates that seismicity within stable continental regions like Scandinavia might be caused by previous crustal disturbances that show local perturbations of the stress field. Therefore if faults are favorably oriented in the present stress field they can be released by brittle earthquake faulting . Thus past transient tectonic events can explain part of the stable continental region's seismicity. This may be of large importance to assessment of seismic hazard within stable continental regions particularly for critical structures like e.g., nuclear waste deposits and hydroelectric dams.

  7. Thinking in Orienteering.

    Johansen, Bjorn Tore


    A think-aloud technique, in which 20 orienteers verbalized their exact thoughts during orienteering, was used to examine the phenomenon of cognition during orienteering. Results indicate that orienteering is experienced as a task to be accomplished, a physical movement, and a dynamic process, and that thinking involves attuning perceptions to…

  8. Fault estimation - A standard problem approach

    Stoustrup, J.; Niemann, Hans Henrik


    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...... problems can be solved by standard optimization techniques. The proposed methods include (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; FE for systems with parametric faults, and FE for a class of nonlinear systems. Copyright......This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...

  9. Fault detection and isolation for complex system

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi


    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  10. Cacti with maximum Kirchhoff index

    Wang, Wen-Rui; Pan, Xiang-Feng


    The concept of resistance distance was first proposed by Klein and Randi\\'c. The Kirchhoff index $Kf(G)$ of a graph $G$ is the sum of resistance distance between all pairs of vertices in $G$. A connected graph $G$ is called a cactus if each block of $G$ is either an edge or a cycle. Let $Cat(n;t)$ be the set of connected cacti possessing $n$ vertices and $t$ cycles, where $0\\leq t \\leq \\lfloor\\frac{n-1}{2}\\rfloor$. In this paper, the maximum kirchhoff index of cacti are characterized, as well...

  11. Generic maximum likely scale selection

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo


    The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...... on second order moments of multiple measurements outputs at a fixed location. These measurements, which reflect local image structure, consist in the cases considered here of Gaussian derivatives taken at several scales and/or having different derivative orders....

  12. Stacking fault domains as sources of a-type threading dislocations in III-nitride heterostructures

    Smalc-Koziorowska, J.; Bazioti, C.; Albrecht, M.; Dimitrakopulos, G. P.


    A mechanism for the nucleation of a-type threading dislocation half-loops from basal stacking faults in wurtzite III-nitride heterostructures is presented. Transmission electron microscopy observations, in conjunction with topological and strain analysis, show that there are two possible configurations of closed domains comprising basal stacking faults of I1 type. It is shown that the lattice dislocation may emanate when the sphalerite structural units of the stacking faults in the closed domain are oriented in a parallel manner. The closed domain configurations do not introduce any shift on the basal planes, resulting in zero defect content along the growth direction. The stacking fault domains are hexagonal, with sides along the ⟨ 10 1 ¯ 0 ⟩ directions, and the threading dislocation half loops nucleate at the line nodes. The mechanism was found to be operational in multiple III-nitride systems.

  13. Cyclical Stress Field Switching and (Total?) Relief of Fault Shear Stress Recorded in Quartz Vein Systems Hosted by Proterozoic Strike-Slip Faults, Mt Isa, Australia

    Sibson, R. H.; Begbie, M. J.; Ghisetti, F. C.; Blenkinsop, T. G.


    The Proterozoic Mt Isa inlier ( ˜50,000 km2) in NW Queensland, Australia, underwent a complex tectonothermal history involving multiple episodes of intracontinental rifting, sedimentation, and magmatism that culminated in the Isan Orogeny (1590-1500 Ma) where strong E-W shortening led to compressional inversion of former rift basins. The resulting metamorphic complex of subgreenschist to amphibolite facies assemblages is disrupted by brittle, late-orogenic (1500-1450 Ma?) strike-slip faults. The faults occur in two mutually cross-cutting sets; a set of dextral strike-slip faults striking NE-SW to NNE-SSW with offsets cross-cutting relationships occur between all structural components, indicating broad contemporaneity. Recorded dextral separations along shear fracture components are commonly of the order of 1-10 cm, consistent with small-moderate seismic slip increments. A preliminary interpretation is that the differently oriented systematic vein-sets reflect changing orientations of the local stress field at different stages of the earthquake stress cycle. Minimum compressional stress oblique to the fault through the interseismic interval alternates with minimum compression oriented subperpendicular to the fault immediately postfailure, suggesting that each slip episode was accompanied by near-total relief of shear stress along the fault. The presence of amethystine quartz, open-space filling textures, and calcite-quartz intergrowths in the vein sets are consistent with hydrothermal precipitation occurring within 1-2 km of the former ground surface. Consequently, it is not yet clear whether these extensive vein systems developed under hydrostatic or overpresssured fluid conditions.

  14. Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico

    Avila-Olivera, Jorge A.; Farina, Paolo; Garduño-Monroy, Victor H.


    In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults "Oriente" and "Poniente". At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system "Taxco-San Miguel de Allende". In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the "kriging" method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults "Oriente" and "Universidad Pedagógica" are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year.

  15. Mechanical Modeling of Near-Fault Deformation Within the Dragon's Back Pressure Ridge, San Andreas Fault, Carrizo Plain, California

    Hilley, G. E.; Arrowsmith, R.


    This contribution uses field observations and numerical modeling to understand how slip along the variably oriented fault surfaces in the upper few km of the San Andreas Fault (SAF) zone produces near-fault deformation observed within a 4.5-km-long Dragon's Back Pressure Ridge (DBPR) in the Carrizo Plain, central California. Geologic and geomorphic mapping of this feature indicates that the amplitude of monoclinal warping of Quaternary sediments increases from southeast to northwest along the southwestern third of the DBPR, and remains approximately constant throughout the remaining two thirds of the landform. When viewed with other structural observations and limited near-surface magnetotelluric imaging, these geologic observations are most compatible with a scenario in which shallow offset of the SAF to the northeast creates a structural knuckle that is anchored to the North American plate. Thus, deformation accrues as right-lateral strike-slip motion along the SAF moves this obstruction along the fault plane through the DBPR block. We have used the Gale numerical model to simulate deformation expected for geometries similar to those inferred within the vicinity of the DBPR. This is accomplished by relating stresses and strains in the upper crust according to a Drucker-Prager (plastic yielding) constitutive rule. Deformation in the model is driven by applying 35 mm/yr of right-lateral strike-slip motion to the model boundary; this displacement rate is likewise applied to the base of the model. The model geometry of the SAF at the beginning of the loading was fashioned to produce the discontinuity in the geometry of the fault plane that is inferred from field observations. The friction and cohesion of crust on each side of the fault were changed between models to determine the parameter values that preserve the structural discontinuity along the SAF as finite deformation accrued. The structural discontinuity over the ~4.5 km of model displacement is maintained in

  16. Coseismic conjugate faulting structures produced by the 2016 Mw 7.1 Kumamoto earthquake, Japan

    Lin, Aiming; Chiba, Tatsuro


    Field investigations and analyses of airborne LiDAR data reveal that the 2016 Mw7.1 Kumamoto earthquake produced a ∼40-km-long surface rupture zone with a typical conjugate Riedel shearing fault structure along the pre-existing right-lateral strike-slip Hinagu-Futagawa Fault Zone (HFFZ). The conjugate Riedel shearing structure comprises two sets of coseismic shear fault zones that are oriented to NE-SW to ENE-WSW and WNW-ESE to E-W. The NE-SW to ENE-WSW-trending shear fault zone is characterized by R Riedel shear structures with right-lateral strike-slip displacement of up to 2.5 m, including left-stepping en echelon cracks (T-shear) and mole tracks (P-shear). In contrast, the WNW-ESE to E-W-trending shear fault zone is dominated by R‧ Riedel shear structures with left-lateral displacement of up to 1.3 m, including right-stepping en echelon tension cracks (T) and mole tracks (P), which are concentrated in a zone of <10 m within individual rupture zones. Our findings demonstrate that the coseismic conjugate Riedel shear faulting is mainly controlled by the pre-existing active strike-slip faults of HFFZ under the present E-W compressive stress in the study area, associated with the ongoing penetration of the Philippine Sea Plate into the Eurasian Plate.

  17. Insights into the damage zones in fault-bend folds from geomechanical models and field data

    Ju, Wei; Hou, Guiting; Zhang, Bo


    Understanding the rock mass deformation and stress states, the fracture development and distribution are critical to a range of endeavors including oil and gas exploration and development, and geothermal reservoir characterization and management. Geomechanical modeling can be used to simulate the forming processes of faults and folds, and predict the onset of failure and the type and abundance of deformation features along with the orientations and magnitudes of stresses. This approach enables the development of forward models that incorporate realistic mechanical stratigraphy (e.g., the bed thickness, bedding planes and competence contrasts), include faults and bedding-slip surfaces as frictional sliding interfaces, reproduce the geometry of the fold structures, and allow tracking strain and stress through the whole deformation process. In this present study, we combine field observations and finite element models to calibrate the development and distribution of fractures in the fault-bend folds, and discuss the mechanical controls (e.g., the slip displacement, ramp cutoff angle, frictional coefficient of interlayers and faults) that are able to influence the development and distribution of fractures during fault-bend folding. A linear relationship between the slip displacement and the fracture damage zone, the ramp cutoff angle and the fracture damage zone, and the frictional coefficient of interlayers and faults and the fracture damage zone was established respectively based on the geomechanical modeling results. These mechanical controls mentioned above altogether contribute to influence and control the development and distribution of fractures in the fault-bend folds.

  18. Structural and stress analysis based on fault-slip data in the Amman area, Jordan

    Diabat, Abdullah A.


    This study presents a structural analysis based on hundreds of striated small faults (fault-slip data) in the Amman area east of the Dead Sea Transform System. Stress inversion of the fault-slip data was performed using an improved Right-Dihedral method, followed by rotational optimization (TENSOR Program, Delvaux, 1993). Fault-slip data (totaling 212) include fault planes, striations and sense of movements, are obtained from the Turonian Wadi As Sir Formation, distributed mainly along the southern side of the Amman - Hallabat structure in Jordan the study area. Results show that σ1 (SHmax) and σ3 (SHmin) are generally sub-horizontal and σ2 is sub-vertical in 8 of 11 paleostress tensors, which are belonging to a major strike-slip system with σ1 swinging around N to NW direction. The other three stress tensors show σ2 (SHmax), σ1 vertical and σ3 is NE oriented. This situation explained as permutation of stress axes σ1 and σ2 that occur during tectonic events and partitioned strike slip deformation. NW compressional stresses affected the area and produced the major Amman - Hallabat strike-slip fault and its related structures, e.g., NW trending normal faults and NE trending folds in the study area. The new paleostress results related with the active major stress field of the region the Dead Sea Stress Field (DSS) during the Miocene to Recent.

  19. Satellite geodetic monitoring of the Vladikavkaz active fault zone: First results

    Milyukov, V. K.; Mironov, A. P.; Steblov, G. M.; Ovsyuchenko, A. N.; Rogozhin, E. A.; Drobyshev, V. N.; Kusraev, A. G.; Khubaev, Kh. M.; Torchinov, Kh.-M. Z.


    A geodetic network of Global Satellite Navigation System (GNSS) observation sites was organized in 2014-2015 for studying the contemporary crustal motions in the zone of the Vladikavkaz deep fault (Milyukov et al., 2014; 2015). The measurements were conducted and the first velocity estimates obtained testifying to the consistency of crustal motions in the Vladikavkaz fault zone and the Ossetian region overall in the ITRG2008 system. The first results show that the velocities and directions of horizontal motions do not change upon the transition of the fault zone. In correspondence with the northeastern orientation of the site displacement vectors and sublatitudinal trend of the disjunctive zone, the presence of left-lateral strike-slip displacements along the branches of an active fault should be expected. However, the signs pointing to the activation of motion in the fault zone are absent. Besides, even the manifestation of weak seismicity has not been observed within the high-magnitude seismogenic Vladikavkaz zone associated with this fault for more than 25 years. This suggests the passive present state of this structure, one of the largest disjunctive structures of the Northern Caucasus. In order to verify this conclusion and revealing the kinematic pattern of the displacements associated with the fault structure it is reasonable to continue the measurements.

  20. Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations

    Mai, Paul Martin


    Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.

  1. Economics and Maximum Entropy Production

    Lorenz, R. D.


    Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.

  2. Application of fault current limiters

    Neumann, A.


    This report presents the results of a study commissioned by the Department for Business, Enterprise and Industry (BERR; formerly the Department of Trade and Industry) into the application of fault current limiters in the UK. The study reviewed the current state of fault current limiter (FCL) technology and regulatory position in relation to all types of current limiters. It identified significant research and development work with respect to medium voltage FCLs and a move to high voltage. Appropriate FCL technologies being developed include: solid state breakers; superconducting FCLs (including superconducting transformers); magnetic FCLs; and active network controllers. Commercialisation of these products depends on successful field tests and experience, plus material development in the case of high temperature superconducting FCL technologies. The report describes FCL techniques, the current state of FCL technologies, practical applications and future outlook for FCL technologies, distribution fault level analysis and an outline methodology for assessing the materiality of the fault level problem. A roadmap is presented that provides an 'action agenda' to advance the fault level issues associated with low carbon networks.

  3. Holocene Paleoearthquake Clustering Along a Sierras Pampeanas (argentina) Bounding Fault?

    Costa, C. H.; Ricci, W.; Owen, L. A.; Johnson, W. J.; Halperin, A.; Ahumada, E. A.


    The Sierras Pampeanas (Pampean Ranges) of Argentina are characterized by mountain blocks bounded by reverse faults, whose last stage of uplift has been attributed to the shallowing of the Nazca plate (Merlo village (32°21’30,75”S - 64°58’57,77”W ) have exposed two opposing-verging thrusts at the outcrop scale. These structures exhibit a complex interaction and propagate into the Holocene cover. The eastern branch or main fault emplaces Precambrian basement over proximal scarp-derived deposits, whereas the western thrust results in an east-directed fault-propagation fold that deforms wash-slope and fluvio-aeolian deposits. The ages of the fault-related deposits have been reasonably defined through radiocarbon and optically stimulated luminescence methods which provide ages ranging from 7.1+0.4 ka to 350+40 cal yr BP. Evidences of surface deformation are related to multiple-events with colluvial wedges and filling wedges derived from bending-moment ruptures at the fold hinge zone. It has not been possible to unravel whether these structures slipped in simultaneous or separated events which of course impacts in the discrimination of the number of earthquakes recorded in this sequence record. Accordingly, a minimum of four and a maximum of nine surface ruptures younger than 7.1+0.4 ka can be preliminarily interpreted at this trench site, where the elapsed time since the last rupture event is > 350+40 calibrated years BP. Estimated recurrence intervals vary according to different approaches from 0.8 to 3.0 ka (preferred 1.0-2.5 ka), whereas by retrodeforming the total shortening exposed in the trenches, a maximum slip rate of 1.13 mm/year was obtained. Slip rates estimated for the El Molino fault are almost one order of magnitude higher than those estimated at other master bounding faults along neighboring Pampean blocks and appear to be high for an intraplate region with much lower strain rates than the frontal deformation zone of the Andes. The data

  4. Relative azimuth inversion by way of damped maximum correlation estimates

    Ringler, A.T.; Edwards, J.D.; Hutt, C.R.; Shelly, F.


    Horizontal seismic data are utilized in a large number of Earth studies. Such work depends on the published orientations of the sensitive axes of seismic sensors relative to true North. These orientations can be estimated using a number of different techniques: SensOrLoc (Sensitivity, Orientation and Location), comparison to synthetics (Ekstrom and Busby, 2008), or by way of magnetic compass. Current methods for finding relative station azimuths are unable to do so with arbitrary precision quickly because of limitations in the algorithms (e.g. grid search methods). Furthermore, in order to determine instrument orientations during station visits, it is critical that any analysis software be easily run on a large number of different computer platforms and the results be obtained quickly while on site. We developed a new technique for estimating relative sensor azimuths by inverting for the orientation with the maximum correlation to a reference instrument, using a non-linear parameter estimation routine. By making use of overlapping windows, we are able to make multiple azimuth estimates, which helps to identify the confidence of our azimuth estimate, even when the signal-to-noise ratio (SNR) is low. Finally, our algorithm has been written as a stand-alone, platform independent, Java software package with a graphical user interface for reading and selecting data segments to be analyzed.

  5. Fault Isolation for Shipboard Decision Support

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam


    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation of a containe......Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...

  6. Probabilistic fault localization with sliding windows

    ZHANG Cheng; LIAO JianXin; LI TongHong; ZHU XiaoMin


    Fault localization is a central element in network fault management.This paper takes a weighted bipartite graph as a fault propagation model and presents a heuristic fault localization algorithm based on the idea of incremental coverage,which is resilient to inaccurate fault propagation model and the noisy environment.Furthermore,a sliding window mechanism is proposed to tackle the inaccuracy of this algorithm in the presence of improper time windows.As shown in the simulation study,our scheme achieves higher detection rate and lower false positive rate in the noisy environment as well as in the presence of inaccurate windows,than current fault localization algorithms.

  7. Identification of Transient and Permanent Faults

    李幼仪; 董新洲; 孙元章


    A new algorithm was developed for arcing fault detection based on high-frequency current transients analyzed with wavelet transforms to avoid automatic reclosing on permanent faults. The characteristics of arc currents during transient faults were investigated. The current curves of transient and permanent faults are quite similar since current variation from the fault arc is much less than the voltage variation. However, the fault current details are quite different because of the arc extinguishing and reigniting. Dyadic wavelet transforms were used to identify the current variation since wavelet transform has time-frequency localization ability. Many electric magnetic transient program (EMTP) simulations have verified the feasibility of the algorithm.

  8. Diagnosis and Fault-tolerant Control

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...... that can be used to ensure fault tolerance. Design methods for diagnostic systems and fault-tolerant controllers are presented for processes that are described by analytical models, by discrete-event models or that can be dealt with as quantised systems. Four case studies on pilot processes show......-tolerant control....

  9. Fault estimation - A standard problem approach

    Stoustrup, J.; Niemann, Hans Henrik


    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...... problems can be solved by standard optimization techniques. The proposed methods include (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; FE for systems with parametric faults, and FE for a class of nonlinear systems. Copyright...


    Ravindra Malkar


    Full Text Available This paper describes a Wavelet transform technique to analyze power system disturbance such as transmission line faults with Biorthogonal and Haar wavelets. In this work, wavelet transform based approach,which is used to detect transmission line faults, is proposed. The coefficient of discrete approximation of the dyadic wavelet transform with different wavelets are used to be an index for transmission line fault detection and faulted – phase selection and select which wavelet is suitable for this application. MATLAB/Simulation is used to generate fault signals. Simulation results reveal that the performance of the proposed fault detection indicator is promising and easy to implement for computer relaying application.

  11. Coseismic Faults and Crust Deformation Accompanied the 2008 Wenchuan Earthquake, China by Field Investigation and InSAR Interferogram

    Hao, K.; Si, H.; Fujiwara, H.; Ozawa, T.


    The devastated Mw 7.9 Wenchuan earthquake occurred along the steep eastern margin of the Tibetan plateau in Sichuan, China, on 12 May 2008. Over 86,592 people were dead or missing, 374159 injured, and more than 4.8 million homeless. The ruptures possibly occurred over a length of 285 km along the northeast striking Longmen Shan (LMS) thrust belt. In order to study the oversized fault ruptures, existing active faults related and relationships with the damages caused, we conducted field investigations during 4-15 June and 3-9 October 2008, covered about 140km length of LMS faults, including Beichuan(BC), Anxian(AC), Mianzhu, Shifang, Pengzhou, Dujiangyan, Yingxiu (YX) and Wenchuan. On the field investigation we found coseismic surface faults along several profiles perpendicular to the LMS faults. The coseismic surface faults we discovered were at Leigu(L), Hanwang(H), Yinghua(Y), Bailu(BL), Xiaoyudong(X), and Baiyunding (BYD). Of them the maximum vertical displacement reached 4.6m at L, Beichuan County. The uplifting displacements dominated in the southwestern section of the rupture. Moreover, the northwest-striking left-lateral fault was found with horizontal displacement of 2.8m, and vertical of 1.5m as well, at X, Pengzhou City. The left-lateral fault, inversely under-controlled movement of right- lateral fault in the area, showed the complexity of the fault movements. The field results showed the coseismic surface ruptures locally while the overall faults movements and Crust deformation could be understood by the Interferometric SAR(InSAR) technique (NIED, 2008) using data from the Phased Array L-band SAR sensor (PALSAR) equipped on Advanced Land Observing Satellite (ALOS). The larger deformation zones detected by InSAR interferogram occurred with a width of ~30 km in southwestern section, and of ~10km in northeastern section of LMS faults. In the southwestern section, the deformation zone occurred mostly within the existing active faults zones: Guanxian

  12. Fault-tolerant Supervisory Control

    Izadi-Zamanabadi, Roozbeh

    of this work has been to develop and employ concepts and methods that are suitable for use in different automation processes, with applicability in various industrial fields. The requirements for high productivity and quality has resulted in employing additional instrumentation and use of more sophisticated...... could be increased through enhancing control systems' ability to on-line perform fault detection and reconfiguration when a fault occurs and before a safety system shuts-down the entire process. The main contributions of this research effort are development and experimentation with methodologies......, is extended to cope with the important reconfiguration problem. In order to enable a designer to acquire knowledge about reconfiguration possibilities, the structural analysis method is added as an extension to the existing methodology. This extension builds upon the earlier method where fault propagation...

  13. Transient Faults in Computer Systems

    Masson, Gerald M.


    A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.