WorldWideScience

Sample records for maximum expected earthquake

  1. Probable Maximum Earthquake Magnitudes for the Cascadia Subduction

    Science.gov (United States)

    Rong, Y.; Jackson, D. D.; Magistrale, H.; Goldfinger, C.

    2013-12-01

    The concept of maximum earthquake magnitude (mx) is widely used in seismic hazard and risk analysis. However, absolute mx lacks a precise definition and cannot be determined from a finite earthquake history. The surprising magnitudes of the 2004 Sumatra and the 2011 Tohoku earthquakes showed that most methods for estimating mx underestimate the true maximum if it exists. Thus, we introduced the alternate concept of mp(T), probable maximum magnitude within a time interval T. The mp(T) can be solved using theoretical magnitude-frequency distributions such as Tapered Gutenberg-Richter (TGR) distribution. The two TGR parameters, β-value (which equals 2/3 b-value in the GR distribution) and corner magnitude (mc), can be obtained by applying maximum likelihood method to earthquake catalogs with additional constraint from tectonic moment rate. Here, we integrate the paleoseismic data in the Cascadia subduction zone to estimate mp. The Cascadia subduction zone has been seismically quiescent since at least 1900. Fortunately, turbidite studies have unearthed a 10,000 year record of great earthquakes along the subduction zone. We thoroughly investigate the earthquake magnitude-frequency distribution of the region by combining instrumental and paleoseismic data, and using the tectonic moment rate information. To use the paleoseismic data, we first estimate event magnitudes, which we achieve by using the time interval between events, rupture extent of the events, and turbidite thickness. We estimate three sets of TGR parameters: for the first two sets, we consider a geographically large Cascadia region that includes the subduction zone, and the Explorer, Juan de Fuca, and Gorda plates; for the third set, we consider a narrow geographic region straddling the subduction zone. In the first set, the β-value is derived using the GCMT catalog. In the second and third sets, the β-value is derived using both the GCMT and paleoseismic data. Next, we calculate the corresponding mc

  2. What controls the maximum magnitude of injection-induced earthquakes?

    Science.gov (United States)

    Eaton, D. W. S.

    2017-12-01

    Three different approaches for estimation of maximum magnitude are considered here, along with their implications for managing risk. The first approach is based on a deterministic limit for seismic moment proposed by McGarr (1976), which was originally designed for application to mining-induced seismicity. This approach has since been reformulated for earthquakes induced by fluid injection (McGarr, 2014). In essence, this method assumes that the upper limit for seismic moment release is constrained by the pressure-induced stress change. A deterministic limit is given by the product of shear modulus and the net injected fluid volume. This method is based on the assumptions that the medium is fully saturated and in a state of incipient failure. An alternative geometrical approach was proposed by Shapiro et al. (2011), who postulated that the rupture area for an induced earthquake falls entirely within the stimulated volume. This assumption reduces the maximum-magnitude problem to one of estimating the largest potential slip surface area within a given stimulated volume. Finally, van der Elst et al. (2016) proposed that the maximum observed magnitude, statistically speaking, is the expected maximum value for a finite sample drawn from an unbounded Gutenberg-Richter distribution. These three models imply different approaches for risk management. The deterministic method proposed by McGarr (2014) implies that a ceiling on the maximum magnitude can be imposed by limiting the net injected volume, whereas the approach developed by Shapiro et al. (2011) implies that the time-dependent maximum magnitude is governed by the spatial size of the microseismic event cloud. Finally, the sample-size hypothesis of Van der Elst et al. (2016) implies that the best available estimate of the maximum magnitude is based upon observed seismicity rate. The latter two approaches suggest that real-time monitoring is essential for effective management of risk. A reliable estimate of maximum

  3. Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults

    Science.gov (United States)

    Norbeck, Jack H.; Horne, Roland N.

    2018-05-01

    The maximum expected earthquake magnitude is an important parameter in seismic hazard and risk analysis because of its strong influence on ground motion. In the context of injection-induced seismicity, the processes that control how large an earthquake will grow may be influenced by operational factors under engineering control as well as natural tectonic factors. Determining the relative influence of these effects on maximum magnitude will impact the design and implementation of induced seismicity management strategies. In this work, we apply a numerical model that considers the coupled interactions of fluid flow in faulted porous media and quasidynamic elasticity to investigate the earthquake nucleation, rupture, and arrest processes for cases of induced seismicity. We find that under certain conditions, earthquake ruptures are confined to a pressurized region along the fault with a length-scale that is set by injection operations. However, earthquakes are sometimes able to propagate as sustained ruptures outside of the zone that experienced a pressure perturbation. We propose a faulting criterion that depends primarily on the state of stress and the earthquake stress drop to characterize the transition between pressure-constrained and runaway rupture behavior.

  4. Expectable Earthquakes and their ground motions in the Van Norman Reservoirs Area

    Science.gov (United States)

    Wesson, R.L.; Page, R.A.; Boore, D.M.; Yerkes, R.F.

    1974-01-01

    The upper and lower Van Norman dams, in northwesternmost San Fernando Valley about 20 mi (32 km) northwest of downtown Los Angeles, were severely damaged during the 1971 San Fernando earthquake. An investigation of the geologic-seismologic setting of the Van Norman area indicates that an earthquake of at least M 7.7 may be expected in the Van Norman area. The expectable transitory effects in the Van Norman area of such an earthquake are as follows: peak horizontal acceleration of at least 1.15 g, peak velocity of displacement of 4.43 ft/sec (135 cm/sec), peak displacement of 2.3 ft (70 cm), and duration of shaking at accelerations greater than 0.05 g, 40 sec. A great earthquake (M 8+) on the San Andreas fault, 25 mi distant, also is expectable. Transitory effects in the Van Norman area from such an earthquake are estimated as follows: peak horizontal acceleration of 0.5 g, peak velocity of 1.97 ft/sec (60 cm/sec), displacement of 1.31 ft (40 cm), and duration of shaking at accelerations greater than 0.05 g, 80 sec. The permanent effects of the expectable local earthquake could include simultaneous fault movement at the lower damsite, the upper damsite, and the site proposed for a replacement dam halfway between the upper and lower dams. The maximum differential displacements due to such movements are estimated at 16.4 ft (5 m) at the lower damsite and about 9.6 ft (2.93 m) at the upper and proposed damsites. The 1971 San Fernando earthquake (M 6?) was accompanied by the most intense ground motions ever recorded instrumentally for a natural earthquake. At the lower Van Norman dam, horizontal accelerations exceeded 0.6 g, and shaking greater than 0.25 g lasted for about 13 see; at Pacoima dam, 6 mi (10 km) northeast of the lower dam, high-frequency peak horizontal accelerations of 1.25 g were recorded in two directions, and shaking greater than 0.25 g lasted for about 7 sec. Permanent effects of the earthquake include slope failures in the embankments of the upper

  5. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    Science.gov (United States)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  6. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries.

    Science.gov (United States)

    Last, Mark; Rabinowitz, Nitzan; Leonard, Gideon

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006-2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year.

  7. Can diligent and extensive mapping of faults provide reliable estimates of the expected maximum earthquakes at these faults? No. (Invited)

    Science.gov (United States)

    Bird, P.

    2010-12-01

    The hope expressed in the title question above can be contradicted in 5 ways, listed below. To summarize, an earthquake rupture can be larger than anticipated either because the fault system has not been fully mapped, or because the rupture is not limited to the pre-existing fault network. 1. Geologic mapping of faults is always incomplete due to four limitations: (a) Map-scale limitation: Faults below a certain (scale-dependent) apparent offset are omitted; (b) Field-time limitation: The most obvious fault(s) get(s) the most attention; (c) Outcrop limitation: You can't map what you can't see; and (d) Lithologic-contrast limitation: Intra-formation faults can be tough to map, so they are often assumed to be minor and omitted. If mapping is incomplete, fault traces may be longer and/or better-connected than we realize. 2. Fault trace “lengths” are unreliable guides to maximum magnitude. Fault networks have multiply-branching, quasi-fractal shapes, so fault “length” may be meaningless. Naming conventions for main strands are unclear, and rarely reviewed. Gaps due to Quaternary alluvial cover may not reflect deeper seismogenic structure. Mapped kinks and other “segment boundary asperities” may be only shallow structures. Also, some recent earthquakes have jumped and linked “separate” faults (Landers, California 1992; Denali, Alaska, 2002) [Wesnousky, 2006; Black, 2008]. 3. Distributed faulting (“eventually occurring everywhere”) is predicted by several simple theories: (a) Viscoelastic stress redistribution in plate/microplate interiors concentrates deviatoric stress upward until they fail by faulting; (b) Unstable triple-junctions (e.g., between 3 strike-slip faults) in 2-D plate theory require new faults to form; and (c) Faults which appear to end (on a geologic map) imply distributed permanent deformation. This means that all fault networks evolve and that even a perfect fault map would be incomplete for future ruptures. 4. A recent attempt

  8. Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.

    2013-01-01

    The maximum earthquake magnitude recorded for subduction zone plate boundaries varies considerably on Earth, with some subduction zone segments producing giant subduction zone thrust earthquakes (e.g. Chile, Alaska, Sumatra-Andaman, Japan) and others producing relatively small earthquakes (e.g.

  9. The MCE (Maximum Credible Earthquake) - an approach to reduction of seismic risk

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchison, R.J.

    1979-01-01

    It is the responsibility of the Regulatory Body (in Canada, the AECB) to ensure that radiological risks resulting from the effects of earthquakes on nuclear facilities, do not exceed acceptable levels. In simplified numerical terms this means that the frequency of an unacceptable radiation dose must be kept below 10 -6 per annum. Unfortunately, seismic events fall into the class of external events which are not well defined at these low frequency levels. Thus, design earthquakes have been chosen, at the 10 -3 - 10 -4 frequency level, a level commensurate with the limits of statistical data. There exists, therefore, a need to define an additional level of earthquake. A seismic design explicitly and implicitly recognizes three levels of earthquake loading; one comfortably below yield, one at or about yield, and one at ultimate. The ultimate level earthquake, contrary to the first two, has been implicitly addressed by conscientious designers by choosing systems, materials and details compatible with postulated dynamic forces. It is the purpose of this paper to discuss the regulatory specifications required to quantify this third level, or Maximum Credible Earthquake (MCE). (orig.)

  10. Maximum credible earthquake (MCE) magnitude of structures affecting the Ujung Lemahabang site

    International Nuclear Information System (INIS)

    Soerjodibroto, M.

    1997-01-01

    This report analyse the geological structures in/around Muria Peninsula that might originating potential earthquake hazard toward the selected site for NPP, Ujung Lemahabang (ULA). Analysis was focused on the Lasem fault and AF-1/AF-4 offshore faults that are considered as the determinant structures affecting the seismicity of ULA (Nira, 1979, Newjec, 1994). Methods for estimating the MCE of the structures include maximum historical earthquake, and relationship between the length of the fault and the magnitude of earthquake originating from the known structure (Tocher, Iida, Matsuda, Wells and Coopersmith). The MCE magnitude estimating by these method for earthquake originating along the Lasem and AF-1/AF-4 faults vary from 2,1M to 7,0M. Comparison between the result of historical data and fault-magnitude relationship, however, suggest a MCE magnitude of Ms=7,0M for both fault zones. (author)

  11. Maximum credible earthquake (MCE) magnitude of structures affecting the Ujung Lemahabang site

    Energy Technology Data Exchange (ETDEWEB)

    Soerjodibroto, M [National Atomic Energy Agency, Jakarta (Indonesia)

    1997-03-01

    This report analyse the geological structures in/around Muria Peninsula that might originating potential earthquake hazard toward the selected site for NPP, Ujung Lemahabang (ULA). Analysis was focused on the Lasem fault and AF-1/AF-4 offshore faults that are considered as the determinant structures affecting the seismicity of ULA (Nira, 1979, Newjec, 1994). Methods for estimating the MCE of the structures include maximum historical earthquake, and relationship between the length of the fault and the magnitude of earthquake originating from the known structure (Tocher, Iida, Matsuda, Wells and Coopersmith). The MCE magnitude estimating by these method for earthquake originating along the Lasem and AF-1/AF-4 faults vary from 2,1M to 7,0M. Comparison between the result of historical data and fault-magnitude relationship, however, suggest a MCE magnitude of Ms=7,0M for both fault zones. (author)

  12. Localization of b-values and maximum earthquakes; B chi to saidai jishin no chiikisei

    Energy Technology Data Exchange (ETDEWEB)

    Kurimoto, H

    1996-05-01

    There is a thought that hourly and spacial blanks in earthquake activity contribute to earthquake occurrence probability. Based on an idea that if so, this tendency may appear also in statistical parameters of earthquake, earthquake activities in every ten years were investigated in the relation between locational distribution of inclined b values of a line relating to the number of earthquake and the magnitude, and the center focus of earthquakes which are M{ge}7.0. The field surveyed is the Japanese Islands and the peripheral ocean, and the area inside the circle with a radius of 100km with a lattice-like point divided in 1{degree} in every direction of latitude and longitude as center was made a unit region. The depth is divided by above 60km or below 60km. As a result, the following were found out: as to epicenters of earthquakes with M{ge}7.0 during the survey period of 100 years, many are in a range of b(b value){le}0.75, and sometimes they may be in a range of b{ge}0.75 in the area from the ocean near Izu peninsula to the ocean off the west Hokkaido; the position of epicenters in a range of b{le}0.75 seems not to come close to the center of contour which indicates the maximum b value. 7 refs., 2 figs.

  13. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    Science.gov (United States)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  14. How long do centenarians survive? Life expectancy and maximum lifespan.

    Science.gov (United States)

    Modig, K; Andersson, T; Vaupel, J; Rau, R; Ahlbom, A

    2017-08-01

    The purpose of this study was to explore the pattern of mortality above the age of 100 years. In particular, we aimed to examine whether Scandinavian data support the theory that mortality reaches a plateau at particularly old ages. Whether the maximum length of life increases with time was also investigated. The analyses were based on individual level data on all Swedish and Danish centenarians born from 1870 to 1901; in total 3006 men and 10 963 women were included. Birth cohort-specific probabilities of dying were calculated. Exact ages were used for calculations of maximum length of life. Whether maximum age changed over time was analysed taking into account increases in cohort size. The results confirm that there has not been any improvement in mortality amongst centenarians in the past 30 years and that the current rise in life expectancy is driven by reductions in mortality below the age of 100 years. The death risks seem to reach a plateau of around 50% at the age 103 years for men and 107 years for women. Despite the rising life expectancy, the maximum age does not appear to increase, in particular after accounting for the increasing number of individuals of advanced age. Mortality amongst centenarians is not changing despite improvements at younger ages. An extension of the maximum lifespan and a sizeable extension of life expectancy both require reductions in mortality above the age of 100 years. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  15. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos

    2017-04-01

    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  16. The maximum earthquake in future T years: Checking by a real catalog

    International Nuclear Information System (INIS)

    Pisarenko, V.F.; Rodkin, M.V.

    2015-01-01

    The studies of disaster statistics are being largely carried out in recent decades. Some recent achievements in the field can be found in Pisarenko and Rodkin (2010). An important aspect in the seismic risk assessment is the using historical earthquake catalogs and the combining historical data with instrumental ones since historical catalogs cover very long time periods and can improve seismic statistics in the higher magnitude domain considerably. We suggest the new statistical technique for this purpose and apply it to two historical Japan catalogs and the instrumental JMA catalog. The main focus of these approaches is on the occurrence of disasters of extreme sizes as the most important ones from practical point of view. Our method of statistical analysis of the size distribution in the uppermost range of extremely rare events was suggested, based on maximum size M max (τ) (e.g. earthquake energy, ground acceleration caused by earthquake, victims and economic losses from natural catastrophes, etc.) that will occur in a prescribed time interval τ. A new approach to the problem discrete data that we called “the magnitude spreading” is suggested. This method reduces discrete random value to continuous ones by addition a small uniformly distributed random components. We analyze this method in details and apply it to verification of parameters derived from two historical catalogs: the Usami earthquake catalog (599–1884) and the Utsu catalog (1885–1925). We compare their parameters with ones derived from the instrumental JMA catalog (1926–2014). The results of this verification are following: The Usami catalog is incompatible with the instrumental one, whereas parameters estimated from the Utsu catalog are statistically compatible in the higher magnitude domain with sample of M max (τ) derived from the JMA catalog

  17. Prediction of maximum earthquake intensities for the San Francisco Bay region

    Science.gov (United States)

    Borcherdt, Roger D.; Gibbs, James F.

    1975-01-01

    The intensity data for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan Formation is: Intensity = 2.69 - 1.90 log (Distance) (km). For sites on other geologic units intensity increments, derived with respect to this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is: Intensity Increment = 0.27 +2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan Formation, 0.64 for the Great Valley Sequence, 0.82 for Santa Clara Formation, 1.34 for alluvium, 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hazard fault.

  18. Prediction of maximum earthquake intensities for the San Francisco Bay region

    Energy Technology Data Exchange (ETDEWEB)

    Borcherdt, R.D.; Gibbs, J.F.

    1975-01-01

    The intensity data for the California earthquake of Apr 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan formation is intensity = 2.69 - 1.90 log (distance) (km). For sites on other geologic units, intensity increments, derived with respect to this empirical relation, correlate strongly with the average horizontal spectral amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is intensity increment = 0.27 + 2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan formation, 0.64 for the Great Valley sequence, 0.82 for Santa Clara formation, 1.34 for alluvium, and 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hayward fault.

  19. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-01-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  20. Crustal seismicity and the earthquake catalog maximum moment magnitude (Mcmax) in stable continental regions (SCRs): Correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-12-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  1. Earthquake Early Warning in Japan - Result of recent two years -

    Science.gov (United States)

    Shimoyama, T.; Doi, K.; Kiyomoto, M.; Hoshiba, M.

    2009-12-01

    Japan Meteorological Agency(JMA) started to provide Earthquake Early Warning(EEW) to the general public in October 2007. It was followed by provision of EEW to a limited number of users who understand the technical limit of EEW and can utilize it for automatic control from August 2006. Earthquake Early Warning in Japan definitely means information of estimated amplitude and arrival time of a strong ground motion after fault rupture occurred. In other words, the EEW provided by JMA is defined as a forecast of a strong ground motion before the strong motion arrival. EEW of JMA is to enable advance countermeasures to disasters caused by strong ground motions with providing a warning message of anticipating strong ground motion before the S wave arrival. However, due to its very short available time period, there should need some measures and ideas to provide rapidly EEW and utilize it properly. - EEW is issued to general public when the maximum seismic intensity 5 lower (JMA scale) or greater is expected. - EEW message contains origin time, epicentral region name, and names of areas (unit is about 1/3 to 1/4 of one prefecture) where seismic intensity 4 or greater is expected. Expected arrival time is not included because it differs substantially even in one unit area. - EEW is to be broadcast through the broadcasting media(TV, radio and City Administrative Disaster Management Radio), and is delivered to cellular phones through cell broadcast system. For those who would like to know the more precise estimation and smaller earthquake information at their point of their properties, JMA allows designated private companies to provide forecast of strong ground motion, in which the estimation of a seismic intensity as well as arrival time of S-wave are contained, at arbitrary places under the JMA’s technical assurance. From October, 2007 to August, 2009, JMA issued 11 warnings to general public expecting seismic intensity “5 lower” or greater, including M=7.2 inland

  2. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  3. Characteristic behavior of underground and semi-underground structure at earthquake

    International Nuclear Information System (INIS)

    Sawada, Yoshihiro; Komada, Hiroya

    1985-01-01

    An appropriate earthquake-resistant repository design is required to ensure the safety of the radioactive wastes (shallow or deep ground disposal of low- and high-level wastes, respectively). It is particularly important to understand the propagation characteristics of seismic waves and the behaviors of underground hollow structures at the time of an earthquake. This report deals with seismologic observations of rock beds and undergound structures. The maximum acceleration deep under the ground is found to be about 1/2 - 1/3 of that at the ground surface or along the rock bed in the horizontal direction and about 1/1 - 1/2 in the longitudinal direction. A large attenuation cannot be expected in shallow ground. The decrease in displacement amplitude is small compared to that in acceleration. The attenuation effect is larger for a small earthquake and at a short hypocentral distance. The attenuation factor reaches a maximum at a depth of several tens of meters. The seismic spectrum under the ground is flatter than that at the surface. The maximum acceleration along the side wall of a cavity is almost the same as that in the surrounding rock bed. An underground cavity shows complicated phase characteristics at the time of a small earthquake at a short hypocentral distance. (Nogami, K.)

  4. Real Time Earthquake Information System in Japan

    Science.gov (United States)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  5. A three-step Maximum-A-Posterior probability method for InSAR data inversion of coseismic rupture with application to four recent large earthquakes in Asia

    Science.gov (United States)

    Sun, J.; Shen, Z.; Burgmann, R.; Liang, F.

    2012-12-01

    We develop a three-step Maximum-A-Posterior probability (MAP) method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic solutions of earthquake rupture. The method originates from the Fully Bayesian Inversion (FBI) and the Mixed linear-nonlinear Bayesian inversion (MBI) methods , shares the same a posterior PDF with them and keeps most of their merits, while overcoming its convergence difficulty when large numbers of low quality data are used and improving the convergence rate greatly using optimization procedures. A highly efficient global optimization algorithm, Adaptive Simulated Annealing (ASA), is used to search for the maximum posterior probability in the first step. The non-slip parameters are determined by the global optimization method, and the slip parameters are inverted for using the least squares method without positivity constraint initially, and then damped to physically reasonable range. This step MAP inversion brings the inversion close to 'true' solution quickly and jumps over local maximum regions in high-dimensional parameter space. The second step inversion approaches the 'true' solution further with positivity constraints subsequently applied on slip parameters using the Monte Carlo Inversion (MCI) technique, with all parameters obtained from step one as the initial solution. Then the slip artifacts are eliminated from slip models in the third step MAP inversion with fault geometry parameters fixed. We first used a designed model with 45 degree dipping angle and oblique slip, and corresponding synthetic InSAR data sets to validate the efficiency and accuracy of method. We then applied the method on four recent large earthquakes in Asia, namely the 2010 Yushu, China earthquake, the 2011 Burma earthquake, the 2011 New Zealand earthquake and the 2008 Qinghai, China earthquake, and compared our results with those results from other groups. Our results show the effectiveness of

  6. People's perspectives and expectations on preparedness against earthquakes: Tehran case study.

    Science.gov (United States)

    Jahangiri, Katayoun; Izadkhah, Yasamin Ostovar; Montazeri, Ali; Hosseinip, Mahmood

    2010-06-01

    Public education is one of the most important elements of earthquake preparedness. The present study identifies methods and appropriate strategies for public awareness and education on preparedness for earthquakes based on people's opinions in the city of Tehran. This was a cross-sectional study and a door-to-door survey of residents from 22 municipal districts in Tehran, the capital city of Iran. It involved a total of 1 211 individuals aged 15 and above. People were asked about different methods of public information and education, as well as the type of information needed for earthquake preparedness. "Enforcing the building contractors' compliance with the construction codes and regulations" was ranked as the first priority by 33.4% of the respondents. Over 70% of the participants (71.7%) regarded TV as the most appropriate means of media communication to prepare people for an earthquake. This was followed by "radio" which was selected by 51.6% of respondents. Slightly over 95% of the respondents believed that there would soon be an earthquake in the country, and 80% reported that they obtained this information from "the general public". Seventy percent of the study population felt that news of an earthquake should be communicated through the media. However, over fifty (58%) of the participants believed that governmental officials and agencies are best qualified to disseminate information about the risk of an imminent earthquake. Just over half (50.8%) of the respondents argued that the authorities do not usually provide enough information to people about earthquakes and the probability of their occurrence. Besides seismologists, respondents thought astronauts (32%), fortunetellers (32.3%), religious figures (34%), meteorologists (23%), and paleontologists (2%) can correctly predict the occurrence of an earthquake. Furthermore, 88.6% listed aid centers, mosques, newspapers and TV as the most important sources of information during the aftermath of an earthquake

  7. Possible multihazard events (tsunamis, earthquakes, landslides) expected on the North Bulgarian Black sea coast

    Science.gov (United States)

    Ranguelov, B.; Gospodinopv, D.

    2009-04-01

    Earthquakes The area is famous with its seismic regime. The region usually shows non regular behavior of the strong events occurrence. There are episodes of activation and between them long periods of seismic quiescence. The most important one is at the I-st century BC when according to the chronicler Strabo, the ancient Greek colony "Bisone sank in the waters of the sea". The seismic source is known as Shabla-Kaliakra zone with the best documented seismic event of 31st March 1901. This event had a magnitude of 7.2 (estimated by the macroseismic transformation formula) with a source depth of about 10-20 km. The epicenter was located in the aquatory of the sea. The observed macroseismic intensity on the land reached the maximum value of X degree MSK. This event produced a number of secondary effects - landslides, rockfalls, subsidence, extensive destruction of the houses located around and tsunami (up to 3 meters height observed at Balchik port. This event is selected as referent one. Tsunamis Such earthquakes (magnitude greater then 7.0) almost always trigger tsunamis. They could be generated by the earthquake rupture process, or more frequently by the secondary triggered phenomena - landslides (submarine or surface) and/or other geodynamic phenomena - rock falls, degradation of gas hydrates, etc. the most famous water level change is described by Strabo - related to the great catastrophe. The area shows also some other expressions about tsunamis - the last one - a non seismic tsunami at 7th May, 2007 with maximum observed amplitudes of about 3 meters water level changes. Landslides The area on the north Bulgarian Black Sea coast is covered by many active landslides. They have different size, depth and activation time. Most of them are located near the coast line thus presenting huge danger about the beaches, tourist infrastructure, population and historical heritage. The most famous landslide (subsidence) is related with the I-st century BC seismic event, when a

  8. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  9. Earthquake Scenario-Based Tsunami Wave Heights in the Eastern Mediterranean and Connected Seas

    Science.gov (United States)

    Necmioglu, Ocal; Özel, Nurcan Meral

    2015-12-01

    We identified a set of tsunami scenario input parameters in a 0.5° × 0.5° uniformly gridded area in the Eastern Mediterranean, Aegean (both for shallow- and intermediate-depth earthquakes) and Black Seas (only shallow earthquakes) and calculated tsunami scenarios using the SWAN-Joint Research Centre (SWAN-JRC) code ( Mader 2004; Annunziato 2007) with 2-arcmin resolution bathymetry data for the range of 6.5—Mwmax with an Mw increment of 0.1 at each grid in order to realize a comprehensive analysis of tsunami wave heights from earthquakes originating in the region. We defined characteristic earthquake source parameters from a compiled set of sources such as existing moment tensor catalogues and various reference studies, together with the Mwmax assigned in the literature, where possible. Results from 2,415 scenarios show that in the Eastern Mediterranean and its connected seas (Aegean and Black Sea), shallow earthquakes with Mw ≥ 6.5 may result in coastal wave heights of 0.5 m, whereas the same wave height would be expected only from intermediate-depth earthquakes with Mw ≥ 7.0 . The distribution of maximum wave heights calculated indicate that tsunami wave heights up to 1 m could be expected in the northern Aegean, whereas in the Black Sea, Cyprus, Levantine coasts, northern Libya, eastern Sicily, southern Italy, and western Greece, up to 3-m wave height could be possible. Crete, the southern Aegean, and the area between northeast Libya and Alexandria (Egypt) is prone to maximum tsunami wave heights of >3 m. Considering that calculations are performed at a minimum bathymetry depth of 20 m, these wave heights may, according to Green's Law, be amplified by a factor of 2 at the coastline. The study can provide a basis for detailed tsunami hazard studies in the region.

  10. Data base and seismicity studies for Fagaras, Romania crustal earthquakes

    International Nuclear Information System (INIS)

    Moldovan, I.-A.; Enescu, B. D.; Pantea, A.; Constantin, A.; Bazacliu, O.; Malita, Z.; Moldoveanu, T.

    2002-01-01

    Besides the major impact of the Vrancea seismic region, one of the most important intermediate earthquake sources of Europe, the Romanian crustal earthquake sources, from Fagaras, Banat, Crisana, Bucovina or Dobrogea regions, have to be taken into consideration for seismicity studies or seismic hazard assessment. To determine the characteristics of the seismicity for Fagaras seismogenic region, a revised and updated catalogue of the Romanian earthquakes, recently compiled by Oncescu et al. (1999) is used. The catalogue contains 471 tectonic earthquakes and 338 induced earthquakes and is homogenous starting with 1471 for I>VIII and for I>VII starting with 1801. The catalogue is complete for magnitudes larger than 3 starting with 1982. In the studied zone only normal earthquakes occur, related to intracrustal fractures situated from 5 to 30 km depth. Most of them are of low energy, but once in a century a large destructive event occurs with epicentral intensity larger than VIII. The maximum expected magnitude is M GR = 6.5 and the epicenter distribution outlines significant clustering in the zones and on the lines mentioned in the tectonic studies. Taking into account the date of the last major earthquake (1916) and the return periods of severe damaging shocks of over 85 years it is to be expected very soon a large shock in the area. That's why a seismicity and hazard study for this zone is necessary. In the paper there are studied the b parameter variation (the mean value is 0.69), the activity value, the return periods, and seismicity maps and different histograms are plotted. At the same time there are excluded from the catalogue the explosions due to Campulung quarry. Because the catalogue contains the aftershocks for the 1916 earthquake for the seismicity studies we have excluded these shocks. (authors)

  11. On the principles of the determination of the safe shut-down earthquake for nuclear power plants in Austria

    International Nuclear Information System (INIS)

    Drimmel, J.

    1976-01-01

    At present no legal guide lines exist in Austria for the determination of the Safe Shut-Down Earthquake. According to experience, the present requirements for a nuclear power plant site are the following: It must be free of marked tectonic faults and it must never have been situated within the epicentral region of a strong earthquake. The maximum expected earthquake and the Safe Shut-Down Earthquake respectively, are fixed by the aid of a frequency map of strong earthquakes and a map of extreme earthquake intensities in Austria based on macroseismic data since 1201 A.D. The corresponding values of acceleration will be prescribed according to the state of science, but must at least be 0.10 g for the horizontal and 0.05 g for the vertical component of acceleration at the basement

  12. Probabilistic Seismic Hazard Assessment for Himalayan-Tibetan Region from Historical and Instrumental Earthquake Catalogs

    Science.gov (United States)

    Rahman, M. Moklesur; Bai, Ling; Khan, Nangyal Ghani; Li, Guohui

    2018-02-01

    The Himalayan-Tibetan region has a long history of devastating earthquakes with wide-spread casualties and socio-economic damages. Here, we conduct the probabilistic seismic hazard analysis by incorporating the incomplete historical earthquake records along with the instrumental earthquake catalogs for the Himalayan-Tibetan region. Historical earthquake records back to more than 1000 years ago and an updated, homogenized and declustered instrumental earthquake catalog since 1906 are utilized. The essential seismicity parameters, namely, the mean seismicity rate γ, the Gutenberg-Richter b value, and the maximum expected magnitude M max are estimated using the maximum likelihood algorithm assuming the incompleteness of the catalog. To compute the hazard value, three seismogenic source models (smoothed gridded, linear, and areal sources) and two sets of ground motion prediction equations are combined by means of a logic tree on accounting the epistemic uncertainties. The peak ground acceleration (PGA) and spectral acceleration (SA) at 0.2 and 1.0 s are predicted for 2 and 10% probabilities of exceedance over 50 years assuming bedrock condition. The resulting PGA and SA maps show a significant spatio-temporal variation in the hazard values. In general, hazard value is found to be much higher than the previous studies for regions, where great earthquakes have actually occurred. The use of the historical and instrumental earthquake catalogs in combination of multiple seismogenic source models provides better seismic hazard constraints for the Himalayan-Tibetan region.

  13. Design and implementation of a voluntary collective earthquake insurance policy to cover low-income homeowners in a developing country

    OpenAIRE

    Marulanda, M.; Cardona, O.; Mora, Miguel; Barbat, Alex

    2018-01-01

    Understanding and evaluating disaster risk due to natural hazard events such as earthquakes creates powerful incentives for countries to develop planning options and tools to reduce potential damages. The use of models for earthquake risk evaluation allows obtaining outputs such as the loss exceedance curve, the expected annual loss and the probable maximum loss, which are probabilistic metrics useful for risk analyses, for designing strategies for risk reduction and mitigation, for emergency...

  14. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  15. Scientists Examine Challenges and Lessons From Japan's Earthquake and Tsunami

    Science.gov (United States)

    Showstack, Randy

    2011-03-01

    A week after the magnitude 9.0 great Tohoku earthquake and the resulting tragic and damaging tsunami of 11 March struck Japan, the ramifications continued, with a series of major aftershocks (as Eos went to press, there had been about 4 dozen with magnitudes greater than 6); the grim search for missing people—the death toll was expected to approximate 10,000; the urgent assistance needed for the more than 400,000 homeless and the 1 million people without water; and the frantic efforts to avert an environmental catastrophe at Japan's damaged Fukushima Daiichi Nuclear Power Station, about 225 kilometers northeast of Tokyo, where radiation was leaking. The earthquake offshore of Honshu in northeastern Japan (see Figure 1) was a plate boundary rupture along the Japan Trench subduction zone, with the source area of the earthquake estimated at 400-500 kilometers long with a maximum slip of 20 meters, determined through various means including Global Positioning System (GPS) and seismographic data, according to Kenji Satake, professor at the Earthquake Research Institute of the University of Tokyo. In some places the tsunami may have topped 7 meters—the maximum instrumental measurement at many coastal tide gauges—and some parts of the coastline may have been inundated more than 5 kilometers inland, Satake indicated. The International Tsunami Information Center (ITIC) noted that eyewitnesses reported that the highest tsunami waves were 13 meters high. Satake also noted that continuous GPS stations indicate that the coast near Sendai—which is 130 kilometers west of the earthquake and is the largest city in the Tohoku region of Honshu—moved more than 4 meters horizontally and subsided about 0.8 meter.

  16. The limits of earthquake early warning: Timeliness of ground motion estimates

    OpenAIRE

    Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions aroun...

  17. Earthquake accelerations estimation for construction calculating with different responsibility degrees

    International Nuclear Information System (INIS)

    Dolgaya, A.A.; Uzdin, A.M.; Indeykin, A.V.

    1993-01-01

    The investigation object is the design amplitude of accelerograms, which are used in the evaluation of seismic stability of responsible structures, first and foremost, NPS. The amplitude level is established depending on the degree of responsibility of the structure and on the prevailing period of earthquake action on the construction site. The investigation procedure is based on statistical analysis of 310 earthquakes. At the first stage of statistical data-processing we established the correlation dependence of both the mathematical expectation and root-mean-square deviation of peak acceleration of the earthquake on its prevailing period. At the second stage the most suitable law of acceleration distribution about the mean was chosen. To determine of this distribution parameters, we specified the maximum conceivable acceleration, the excess of which is not allowed. Other parameters of distribution are determined according to statistical data. At the third stage the dependencies of design amplitude on the prevailing period of seismic effect for different structures and equipment were established. The obtained data made it possible to recommend to fix the level of safe-shutdown (SSB) and operating basis earthquakes (OBE) for objects of various responsibility categories when designing NPS. (author)

  18. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  19. Induced seismicity provides insight into why earthquake ruptures stop

    KAUST Repository

    Galis, Martin

    2017-12-21

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  20. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  1. Coulomb Failure Stress Accumulation in Nepal After the 2015 Mw 7.8 Gorkha Earthquake: Testing Earthquake Triggering Hypothesis and Evaluating Seismic Hazards

    Science.gov (United States)

    Xiong, N.; Niu, F.

    2017-12-01

    A Mw 7.8 earthquake struck Gorkha, Nepal, on April 5, 2015, resulting in more than 8000 deaths and 3.5 million homeless. The earthquake initiated 70km west of Kathmandu and propagated eastward, rupturing an area of approximately 150km by 60km in size. However, the earthquake failed to fully rupture the locked fault beneath the Himalaya, suggesting that the region south of Kathmandu and west of the current rupture are still locked and a much more powerful earthquake might occur in future. Therefore, the seismic hazard of the unruptured region is of great concern. In this study, we investigated the Coulomb failure stress (CFS) accumulation on the unruptured fault transferred by the Gorkha earthquake and some nearby historical great earthquakes. First, we calculated the co-seismic CFS changes of the Gorkha earthquake on the nodal planes of 16 large aftershocks to quantitatively examine whether they were brought closer to failure by the mainshock. It is shown that at least 12 of the 16 aftershocks were encouraged by an increase of CFS of 0.1-3 MPa. The correspondence between the distribution of off-fault aftershocks and the increased CFS pattern also validates the applicability of the earthquake triggering hypothesis in the thrust regime of Nepal. With the validation as confidence, we calculated the co-seismic CFS change on the locked region imparted by the Gorkha earthquake and historical great earthquakes. A newly proposed ramp-flat-ramp-flat fault geometry model was employed, and the source parameters of historical earthquakes were computed with the empirical scaling relationship. A broad region south of the Kathmandu and west of the current rupture were shown to be positively stressed with CFS change roughly ranging between 0.01 and 0.5 MPa. The maximum of CFS increase (>1MPa) was found in the updip segment south of the current rupture, implying a high seismic hazard. Since the locked region may be additionally stressed by the post-seismic relaxation of the lower

  2. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1993-01-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p number-sign 1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p number-sign 1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells

  3. Dynamic evaluation of seismic hazard and risks based on the Unified Scaling Law for Earthquakes

    Science.gov (United States)

    Kossobokov, V. G.; Nekrasova, A.

    2016-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A + B•(6 - M) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L, A characterizes the average annual rate of strong (M = 6) earthquakes, B determines the balance between magnitude ranges, and C estimates the fractal dimension of seismic locus in projection to the Earth surface. The parameters A, B, and C of USLE are used to assess, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity or paleo data), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures. The hazard maps for a given territory change dramatically, when the methodology is applied to a certain size moving time window, e.g. about a decade long for an intermediate-term regional assessment or exponentially increasing intervals for a daily local strong aftershock forecasting. The of dynamical seismic hazard and risks assessment is illustrated by applications to the territory of Greater Caucasus and Crimea and the two-year series of aftershocks of the 11 October 2008 Kurchaloy, Chechnya earthquake which case-history appears to be encouraging for further systematic testing as potential short-term forecasting tool.

  4. Deterministic Earthquake Hazard Assessment by Public Agencies in California

    Science.gov (United States)

    Mualchin, L.

    2005-12-01

    Even in its short recorded history, California has experienced a number of damaging earthquakes that have resulted in new codes and other legislation for public safety. In particular, the 1971 San Fernando earthquake produced some of the most lasting results such as the Hospital Safety Act, the Strong Motion Instrumentation Program, the Alquist-Priolo Special Studies Zone Act, and the California Department of Transportation (Caltrans') fault-based deterministic seismic hazard (DSH) map. The latter product provides values for earthquake ground motions based on Maximum Credible Earthquakes (MCEs), defined as the largest earthquakes that can reasonably be expected on faults in the current tectonic regime. For surface fault rupture displacement hazards, detailed study of the same faults apply. Originally, hospital, dam, and other critical facilities used seismic design criteria based on deterministic seismic hazard analyses (DSHA). However, probabilistic methods grew and took hold by introducing earthquake design criteria based on time factors and quantifying "uncertainties", by procedures such as logic trees. These probabilistic seismic hazard analyses (PSHA) ignored the DSH approach. Some agencies were influenced to adopt only the PSHA method. However, deficiencies in the PSHA method are becoming recognized, and the use of the method is now becoming a focus of strong debate. Caltrans is in the process of producing the fourth edition of its DSH map. The reason for preferring the DSH method is that Caltrans believes it is more realistic than the probabilistic method for assessing earthquake hazards that may affect critical facilities, and is the best available method for insuring public safety. Its time-invariant values help to produce robust design criteria that are soundly based on physical evidence. And it is the method for which there is the least opportunity for unwelcome surprises.

  5. Wobbling and LSF-based maximum likelihood expectation maximization reconstruction for wobbling PET

    International Nuclear Information System (INIS)

    Kim, Hang-Keun; Son, Young-Don; Kwon, Dae-Hyuk; Joo, Yohan; Cho, Zang-Hee

    2016-01-01

    Positron emission tomography (PET) is a widely used imaging modality; however, the PET spatial resolution is not yet satisfactory for precise anatomical localization of molecular activities. Detector size is the most important factor because it determines the intrinsic resolution, which is approximately half of the detector size and determines the ultimate PET resolution. Detector size, however, cannot be made too small because both the decreased detection efficiency and the increased septal penetration effect degrade the image quality. A wobbling and line spread function (LSF)-based maximum likelihood expectation maximization (WL-MLEM) algorithm, which combined the MLEM iterative reconstruction algorithm with wobbled sampling and LSF-based deconvolution using the system matrix, was proposed for improving the spatial resolution of PET without reducing the scintillator or detector size. The new algorithm was evaluated using a simulation, and its performance was compared with that of the existing algorithms, such as conventional MLEM and LSF-based MLEM. Simulations demonstrated that the WL-MLEM algorithm yielded higher spatial resolution and image quality than the existing algorithms. The WL-MLEM algorithm with wobbling PET yielded substantially improved resolution compared with conventional algorithms with stationary PET. The algorithm can be easily extended to other iterative reconstruction algorithms, such as maximum a priori (MAP) and ordered subset expectation maximization (OSEM). The WL-MLEM algorithm with wobbling PET may offer improvements in both sensitivity and resolution, the two most sought-after features in PET design. - Highlights: • This paper proposed WL-MLEM algorithm for PET and demonstrated its performance. • WL-MLEM algorithm effectively combined wobbling and line spread function based MLEM. • WL-MLEM provided improvements in the spatial resolution and the PET image quality. • WL-MLEM can be easily extended to the other iterative

  6. LASSCI2009.2: layered earthquake rupture forecast model for central Italy, submitted to the CSEP project

    Directory of Open Access Journals (Sweden)

    Francesco Visini

    2010-11-01

    Full Text Available The Collaboratory for the Study of Earthquake Predictability (CSEP selected Italy as a testing region for probabilistic earthquake forecast models in October, 2008. The model we have submitted for the two medium-term forecast periods of 5 and 10 years (from 2009 is a time-dependent, geologically based earthquake rupture forecast that is defined for central Italy only (11-15˚ E; 41-45˚ N. The model took into account three separate layers of seismogenic sources: background seismicity; seismotectonic provinces; and individual faults that can produce major earthquakes (seismogenic boxes. For CSEP testing purposes, the background seismicity layer covered a range of magnitudes from 5.0 to 5.3 and the seismicity rates were obtained by truncated Gutenberg-Richter relationships for cells centered on the CSEP grid. Then the seismotectonic provinces layer returned the expected rates of medium-to-large earthquakes following a traditional Cornell-type approach. Finally, for the seismogenic boxes layer, the rates were based on the geometry and kinematics of the faults that different earthquake recurrence models have been assigned to, ranging from pure Gutenberg-Richter behavior to characteristic events, with the intermediate behavior named as the hybrid model. The results for different magnitude ranges highlight the contribution of each of the three layers to the total computation. The expected rates for M >6.0 on April 1, 2009 (thus computed before the L'Aquila, 2009, MW= 6.3 earthquake are of particular interest. They showed local maxima in the two seismogenic-box sources of Paganica and Sulmona, one of which was activated by the L'Aquila earthquake of April 6, 2009. Earthquake rates as of August 1, 2009, (now under test also showed a maximum close to the Sulmona source for MW ~6.5; significant seismicity rates (10-4 to 10-3 in 5 years for destructive events (magnitude up to 7.0 were located in other individual sources identified as being capable of such

  7. Estimation of Surface Deformation due to Pasni Earthquake Using SAR Interferometry

    Science.gov (United States)

    Ali, M.; Shahzad, M. I.; Nazeer, M.; Kazmi, J. H.

    2018-04-01

    Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.

  8. Space-borne Observations of Atmospheric Pre-Earthquake Signals in Seismically Active Areas: Case Study for Greece 2008-2009

    Science.gov (United States)

    Ouzounov, D. P.; Pulinets, S. A.; Davidenko, D. A.; Kafatos, M.; Taylor, P. T.

    2013-01-01

    We are conducting theoretical studies and practical validation of atm osphere/ionosphere phenomena preceding major earthquakes. Our approach is based on monitoring of two physical parameters from space: outgoi ng long-wavelength radiation (OLR) on the top of the atmosphere and e lectron and electron density variations in the ionosphere via GPS Tot al Electron Content (GPS/TEC). We retrospectively analyzed the temporal and spatial variations of OLR an GPS/TEC parameters characterizing the state of the atmosphere and ionosphere several days before four m ajor earthquakes (M>6) in Greece for 2008-2009: M6.9 of 02.12.08, M6. 2 02.20.08; M6.4 of 06.08.08 and M6.4 of 07.01.09.We found anomalous behavior before all of these events (over land and sea) over regions o f maximum stress. We expect that our analysis reveal the underlying p hysics of pre-earthquake signals associated with some of the largest earthquakes in Greece.

  9. Consideration for standard earthquake vibration (1). The Niigataken Chuetsu-oki Earthquake in 2007

    International Nuclear Information System (INIS)

    Ishibashi, Katsuhiko

    2007-01-01

    Outline of new guideline of quakeproof design standard of nuclear power plant and the standard earthquake vibration are explained. The improvement points of new guideline are discussed on the basis of Kashiwazaki-Kariwa Nuclear Power Plant incidents. The fundamental limits of new guideline are pointed. Placement of the quakeproof design standard of nuclear power plant, JEAG4601 of Japan Electric Association, new guideline, standard earthquake vibration of new guideline, the Niigataken Chuetsu-oki Earthquake in 2007 and damage of Kashiwazaki-Kariwa Nuclear Power Plant are discussed. The safety criteria of safety review system, organization, standard and guideline should be improved on the basis of this earthquake and nuclear plant accident. The general knowledge, 'a nuclear power plant is not constructed in the area expected large earthquake', has to be realized. Preconditions of all nuclear power plants should not cause damage to anything. (S.Y.)

  10. Crowdsourcing Rapid Assessment of Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of Yushu Earthquake

    Directory of Open Access Journals (Sweden)

    Shuai Xie

    2016-09-01

    Full Text Available Remote sensing (RS images play a significant role in disaster emergency response. Web2.0 changes the way data are created, making it possible for the public to participate in scientific issues. In this paper, an experiment is designed to evaluate the reliability of crowdsourcing buildings collapse assessment in the early time after an earthquake based on aerial remote sensing image. The procedure of RS data pre-processing and crowdsourcing data collection is presented. A probabilistic model including maximum likelihood estimation (MLE, Bayes’ theorem and expectation-maximization (EM algorithm are applied to quantitatively estimate the individual error-rate and “ground truth” according to multiple participants’ assessment results. An experimental area of Yushu earthquake is provided to present the results contributed by participants. Following the results, some discussion is provided regarding accuracy and variation among participants. The features of buildings labeled as the same damage type are found highly consistent. This suggests that the building damage assessment contributed by crowdsourcing can be treated as reliable samples. This study shows potential for a rapid building collapse assessment through crowdsourcing and quantitatively inferring “ground truth” according to crowdsourcing data in the early time after the earthquake based on aerial remote sensing image.

  11. Stress-based aftershock forecasts made within 24h post mainshock: Expected north San Francisco Bay area seismicity changes after the 2014M=6.0 West Napa earthquake

    Science.gov (United States)

    Parsons, Thomas E.; Segou, Margaret; Sevilgen, Volkan; Milner, Kevin; Field, Edward; Toda, Shinji; Stein, Ross S.

    2014-01-01

    We calculate stress changes resulting from the M= 6.0 West Napa earthquake on north San Francisco Bay area faults. The earthquake ruptured within a series of long faults that pose significant hazard to the Bay area, and we are thus concerned with potential increases in the probability of a large earthquake through stress transfer. We conduct this exercise as a prospective test because the skill of stress-based aftershock forecasting methodology is inconclusive. We apply three methods: (1) generalized mapping of regional Coulomb stress change, (2) stress changes resolved on Uniform California Earthquake Rupture Forecast faults, and (3) a mapped rate/state aftershock forecast. All calculations were completed within 24 h after the main shock and were made without benefit of known aftershocks, which will be used to evaluative the prospective forecast. All methods suggest that we should expect heightened seismicity on parts of the southern Rodgers Creek, northern Hayward, and Green Valley faults.

  12. Maximum spectral demands in the near-fault region

    Science.gov (United States)

    Huang, Yin-Nan; Whittaker, Andrew S.; Luco, Nicolas

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed.

  13. Quantitative prediction of strong motion for a potential earthquake fault

    Directory of Open Access Journals (Sweden)

    Shamita Das

    2010-02-01

    Full Text Available This paper describes a new method for calculating strong motion records for a given seismic region on the basis of the laws of physics using information on the tectonics and physical properties of the earthquake fault. Our method is based on a earthquake model, called a «barrier model», which is characterized by five source parameters: fault length, width, maximum slip, rupture velocity, and barrier interval. The first three parameters may be constrained from plate tectonics, and the fourth parameter is roughly a constant. The most important parameter controlling the earthquake strong motion is the last parameter, «barrier interval». There are three methods to estimate the barrier interval for a given seismic region: 1 surface measurement of slip across fault breaks, 2 model fitting with observed near and far-field seismograms, and 3 scaling law data for small earthquakes in the region. The barrier intervals were estimated for a dozen earthquakes and four seismic regions by the above three methods. Our preliminary results for California suggest that the barrier interval may be determined if the maximum slip is given. The relation between the barrier interval and maximum slip varies from one seismic region to another. For example, the interval appears to be unusually long for Kilauea, Hawaii, which may explain why only scattered evidence of strong ground shaking was observed in the epicentral area of the Island of Hawaii earthquake of November 29, 1975. The stress drop associated with an individual fault segment estimated from the barrier interval and maximum slip lies between 100 and 1000 bars. These values are about one order of magnitude greater than those estimated earlier by the use of crack models without barriers. Thus, the barrier model can resolve, at least partially, the well known discrepancy between the stress-drops measured in the laboratory and those estimated for earthquakes.

  14. Performance of JMA Earthquake Early Warning for the 2011 off the Pacific coast of Tohoku Earthquake (Mw9.0)

    Science.gov (United States)

    Hoshiba, M.; Wakayama, A.; Ishigaki, Y.; Doi, K.

    2011-12-01

    This presentation outlines the Earthquake Early Warning of the Japan Meteorological Agency (JMA) for the 2011 off the Pacific coast of Tohoku Earthquake (Mw9.0). EEW has been operational nationwide in Japan by JMA since October, 2007. For JMA EEW, the hypocenter is determined by a combination of several techniques, using approximately 1,100 stations from the JMA network and the Hi-net network of NIED; magnitude is mainly from maximum displacement amplitudes. JMA EEWs are updated as available data increases with elapsed time. Accordingly EEWs are issued repeatedly with improving accuracy for a single earthquake. JMA EEWs are divided into two grades depending on the expected intensities. The JMA intensity scale is based on instrumental measurements in which not only the amplitude but also the frequency and duration of the shaking are considered. The 10-degree JMA intensity scale rounds off the instrumental intensity value to the integer. Intensities of 5 and 6 are divided into two degrees, namely 5-lower, 5-upper, 6-lower and 6-upper, respectively. Intensity 1 corresponds to ground motion that people can barely detect, and 7 is the upper limit. JMA EEWs are announced to general public when intensity 5-lower (or greater) is expected. The JMA EEW system was triggered for the Mw 9.0 earthquake when station OURI (138km from the epicenter) detected the initial P wave at 14:46:40.2 (Japan Standard Time). The first EEW, the first of 15 announcements, was issued 5.4 s later. The waveform started with small amplitude, which was comparable to noise level for displacement. The small amplitude does not indicate that the initial rupture of the Mw 9.0 event is large, and does not suggest a large magnitude event. By the fourth EEW, 8.6 s after the first trigger, the expected intensity exceeded the criteria of the warning to the general public. JMA issued the fourth EEW announcements to the general public of the Tohoku district, and then the warning was automatically broadcast

  15. Antioptimization of earthquake exitation and response

    Directory of Open Access Journals (Sweden)

    G. Zuccaro

    1998-01-01

    Full Text Available The paper presents a novel approach to predict the response of earthquake-excited structures. The earthquake excitation is expanded in terms of series of deterministic functions. The coefficients of the series are represented as a point in N-dimensional space. Each available ccelerogram at a certain site is then represented as a point in the above space, modeling the available fragmentary historical data. The minimum volume ellipsoid, containing all points, is constructed. The ellipsoidal models of uncertainty, pertinent to earthquake excitation, are developed. The maximum response of a structure, subjected to the earthquake excitation, within ellipsoidal modeling of the latter, is determined. This procedure of determining least favorable response was termed in the literature (Elishakoff, 1991 as an antioptimization. It appears that under inherent uncertainty of earthquake excitation, antioptimization analysis is a viable alternative to stochastic approach.

  16. Earthquake focal mechanism forecasting in Italy for PSHA purposes

    Science.gov (United States)

    Roselli, Pamela; Marzocchi, Warner; Mariucci, Maria Teresa; Montone, Paola

    2018-01-01

    In this paper, we put forward a procedure that aims to forecast focal mechanism of future earthquakes. One of the primary uses of such forecasts is in probabilistic seismic hazard analysis (PSHA); in fact, aiming at reducing the epistemic uncertainty, most of the newer ground motion prediction equations consider, besides the seismicity rates, the forecast of the focal mechanism of the next large earthquakes as input data. The data set used to this purpose is relative to focal mechanisms taken from the latest stress map release for Italy containing 392 well-constrained solutions of events, from 1908 to 2015, with Mw ≥ 4 and depths from 0 down to 40 km. The data set considers polarity focal mechanism solutions until to 1975 (23 events), whereas for 1976-2015, it takes into account only the Centroid Moment Tensor (CMT)-like earthquake focal solutions for data homogeneity. The forecasting model is rooted in the Total Weighted Moment Tensor concept that weighs information of past focal mechanisms evenly distributed in space, according to their distance from the spatial cells and magnitude. Specifically, for each cell of a regular 0.1° × 0.1° spatial grid, the model estimates the probability to observe a normal, reverse, or strike-slip fault plane solution for the next large earthquakes, the expected moment tensor and the related maximum horizontal stress orientation. These results will be available for the new PSHA model for Italy under development. Finally, to evaluate the reliability of the forecasts, we test them with an independent data set that consists of some of the strongest earthquakes with Mw ≥ 3.9 occurred during 2016 in different Italian tectonic provinces.

  17. Earthquake Signal Visible in GRACE Data

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure1 This figure shows the effect of the December 2004 great Sumatra earthquake on the Earth's gravity field as observed by GRACE. The signal is expressed in terms of the relative acceleration of the two GRACE satellites, in this case a few nanometers per second squared, or about 1 billionth of the acceleration we experience everyday at the Earth's surface.GRACE observations show comparable signals in the region of the earthquake. Other natural variations are also apparent in the expected places, whereas no other significant change would be expected in the region of the earthquake GRACE, twin satellites launched in March 2002, are making detailed measurements of Earth's gravity field which will lead to discoveries about gravity and Earth's natural systems. These discoveries could have far-reaching benefits to society and the world's population.

  18. Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes

    Science.gov (United States)

    Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.

    2018-03-01

    The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.

  19. Historical earthquake research in Austria

    Science.gov (United States)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  20. Instruction system upon occurrence of earthquakes

    International Nuclear Information System (INIS)

    Inagaki, Masakatsu; Morikawa, Matsuo; Suzuki, Satoshi; Fukushi, Naomi.

    1987-01-01

    Purpose: To enable rapid re-starting of a nuclear reactor after earthquakes by informing various properties of encountered earthquake to operators and properly displaying the state of damages in comparison with designed standard values of facilities. Constitution: Even in a case where the maximum accelerations due to the movements of earthquakes encountered exceed designed standard values, it may be considered such a case that equipments still remain intact depending on the wave components of the seismic movements and the vibration properties inherent to the equipments. Taking notice of the fact, the instruction device comprises a system that indicates the relationship between the seismic waveforms of earthquakes being encountered and the scram setting values, a system for indicating the comparison between the floor response spectrum of the seismic waveforms of the encountered earthquakes and the designed floor response spectrum used for the design of the equipments and a system for indicating those equipments requiring inspection after the earthquakes. Accordingly, it is possible to improve the operationability upon scram of a nuclear power plant undergoing earthquakes and improve the power saving and safety by clearly defining the inspection portion after the earthquakes. (Kawakami, Y.)

  1. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    Directory of Open Access Journals (Sweden)

    W. F. Peng

    2012-03-01

    Full Text Available The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC from the global ionosphere map (GIM. We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0–2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time. Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  2. New approach of determinations of earthquake moment magnitude using near earthquake source duration and maximum displacement amplitude of high frequency energy radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, H.; Puspito, N. T.; Ibrahim, G.; Harjadi, P. J. P. [ITB, Faculty of Earth Sciences and Tecnology (Indonesia); BMKG (Indonesia)

    2012-06-20

    The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance ({Delta}) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determination of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log {Delta}+ 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.

  3. New approach of determinations of earthquake moment magnitude using near earthquake source duration and maximum displacement amplitude of high frequency energy radiation

    Science.gov (United States)

    Gunawan, H.; Puspito, N. T.; Ibrahim, G.; Harjadi, P. J. P.

    2012-06-01

    The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance (Δ) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determination of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log Δ + 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.

  4. New approach of determinations of earthquake moment magnitude using near earthquake source duration and maximum displacement amplitude of high frequency energy radiation

    International Nuclear Information System (INIS)

    Gunawan, H.; Puspito, N. T.; Ibrahim, G.; Harjadi, P. J. P.

    2012-01-01

    The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance (Δ) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determination of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log Δ+ 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.

  5. Earthquake risk assessment of Alexandria, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Gaber, Hanan; Ibrahim, Hamza

    2015-01-01

    Throughout historical and recent times, Alexandria has suffered great damage due to earthquakes from both near- and far-field sources. Sometimes, the sources of such damages are not well known. During the twentieth century, the city was shaken by several earthquakes generated from inland dislocations (e.g., 29 Apr. 1974, 12 Oct. 1992, and 28 Dec. 1999) and the African continental margin (e.g., 12 Sept. 1955 and 28 May 1998). Therefore, this study estimates the earthquake ground shaking and the consequent impacts in Alexandria on the basis of two earthquake scenarios. The simulation results show that Alexandria affected by both earthquakes scenarios relatively in the same manner despite the number of casualties during the first scenario (inland dislocation) is twice larger than the second one (African continental margin). An expected percentage of 2.27 from Alexandria's total constructions (12.9 millions, 2006 Census) will be affected, 0.19 % injuries and 0.01 % deaths of the total population (4.1 millions, 2006 Census) estimated by running the first scenario. The earthquake risk profile reveals that three districts (Al-Montazah, Al-Amriya, and Shark) lie in high seismic risks, two districts (Gharb and Wasat) are in moderate, and two districts (Al-Gomrok and Burg El-Arab) are in low seismic risk level. Moreover, the building damage estimations reflect that Al-Montazah is the highest vulnerable district whereas 73 % of expected damages were reported there. The undertaken analysis shows that the Alexandria urban area faces high risk. Informal areas and deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated earthquake risks (buildings damages) are concentrated at the most densely populated (Al-Montazah, Al-Amriya, and Shark) districts. Moreover, about 75 % of casualties are in the same districts.

  6. Safety and survival in an earthquake

    Science.gov (United States)

    ,

    1969-01-01

    Many earth scientists in this country and abroad are focusing their studies on the search for means of predicting impending earthquakes, but, as yet, an accurate prediction of the time and place of such an event cannot be made. From past experience, however, one can assume that earthquakes will continue to harass mankind and that they will occur most frequently in the areas where they have been relatively common in the past. In the United States, earthquakes can be expected to occur most frequently in the western states, particularly in Alaska, California, Washington, Oregon, Nevada, Utah, and Montana. The danger, however, is not confined to any one part of the country; major earthquakes have occurred at widely scattered locations.

  7. Spatial Distribution of earthquakes off the coast of Fukushima Two Years after the M9 Earthquake: the Southern Area of the 2011 Tohoku Earthquake Rupture Zone

    Science.gov (United States)

    Yamada, T.; Nakahigashi, K.; Shinohara, M.; Mochizuki, K.; Shiobara, H.

    2014-12-01

    Huge earthquakes cause vastly stress field change around the rupture zones, and many aftershocks and other related geophysical phenomenon such as geodetic movements have been observed. It is important to figure out the time-spacious distribution during the relaxation process for understanding the giant earthquake cycle. In this study, we pick up the southern rupture area of the 2011 Tohoku earthquake (M9.0). The seismicity rate keeps still high compared with that before the 2011 earthquake. Many studies using ocean bottom seismometers (OBSs) have been doing since soon after the 2011 Tohoku earthquake in order to obtain aftershock activity precisely. Here we show one of the studies at off the coast of Fukushima which is located on the southern part of the rupture area caused by the 2011 Tohoku earthquake. We deployed 4 broadband type OBSs (BBOBSs) and 12 short-period type OBSs (SOBS) in August 2012. Other 4 BBOBSs attached with absolute pressure gauges and 20 SOBSs were added in November 2012. We recovered 36 OBSs including 8 BBOBSs in November 2013. We selected 1,000 events in the vicinity of the OBS network based on a hypocenter catalog published by the Japan Meteorological Agency, and extracted the data after time corrections caused by each internal clock. Each P and S wave arrival times, P wave polarity and maximum amplitude were picked manually on a computer display. We assumed one dimensional velocity structure based on the result from an active source experiment across our network, and applied time corrections every station for removing ambiguity of the assumed structure. Then we adopted a maximum-likelihood estimation technique and calculated the hypocenters. The results show that intensive activity near the Japan Trench can be seen, while there was a quiet seismic zone between the trench zone and landward high activity zone.

  8. A new Bayesian Inference-based Phase Associator for Earthquake Early Warning

    Science.gov (United States)

    Meier, Men-Andrin; Heaton, Thomas; Clinton, John; Wiemer, Stefan

    2013-04-01

    whether the incoming waveforms are consistent with amplitude and frequency patterns of local earthquakes by means of a maximum likelihood approach. If such a single-station event likelihood is larger than a predefined threshold value we check whether there are neighboring stations that also have single-station event likelihoods above the threshold. If this is the case for at least one other station, we evaluate whether the respective relative arrival times are in agreement with a common earthquake origin (assuming a simple velocity model and using an Equal Differential Time location scheme). Additionally we check if there are stations where, given the preliminary location, observations would be expected but were not reported ("not-yet-arrived data"). Together, the single-station event likelihood functions and the location likelihood function constitute the multi-station event likelihood function. This function can then be combined with various types of prior information (such as station noise levels, preceding seismicity, fault proximity, etc.) to obtain a Bayesian posterior distribution, representing the degree of belief that the ensemble of the current real-time observations correspond to a local earthquake, rather than to some other signal source irrelevant for EEW. Additional to the reduction of the blind zone size, this approach facilitates the eventual development of an end-to-end probabilistic framework for an EEW system that provides systematic real-time assessment of the risk of false alerts, which enables end users of EEW to implement damage mitigation strategies only above a specified certainty level.

  9. Earthquake Strong Ground Motion Scenario at the 2008 Olympic Games Sites, Beijing, China

    Science.gov (United States)

    Liu, L.; Rohrbach, E. A.; Chen, Q.; Chen, Y.

    2006-12-01

    Historic earthquake record indicates mediate to strong earthquakes have been frequently hit greater Beijing metropolitan area where is going to host the 2008 summer Olympic Games. For the readiness preparation of emergency response to the earthquake shaking for a mega event in a mega city like Beijing in summer 2008, this paper tries to construct the strong ground motion scenario at a number of gymnasium sites for the 2008 Olympic Games. During the last 500 years (the Ming and Qing Dynasties) in which the historic earthquake record are thorough and complete, there are at least 12 earthquake events with the maximum intensity of VI or greater occurred within 100 km radius centered at the Tiananmen Square, the center of Beijing City. Numerical simulation of the seismic wave propagation and surface strong ground motion is carried out by the pseudospectral time domain methods with viscoelastic material properties. To improve the modeling efficiency and accuracy, a multi-scale approach is adapted: the seismic wave propagation originated from an earthquake rupture source is first simulated by a model with larger physical domain with coarser grids. Then the wavefield at a given plane is taken as the source input for the small-scale, fine grid model for the strong ground motion study at the sites. The earthquake source rupture scenario is based on two particular historic earthquake events: One is the Great 1679 Sanhe-Pinggu Earthquake (M~8, Maximum Intensity XI at the epicenter and Intensity VIII in city center)) whose epicenter is about 60 km ENE of the city center. The other one is the 1730 Haidian Earthquake (M~6, Maximum Intensity IX at the epicenter and Intensity VIII in city center) with the epicentral distance less than 20 km away from the city center in the NW Haidian District. The exist of the thick Tertiary-Quaternary sediments (maximum thickness ~ 2 km) in Beijing area plays a critical role on estimating the surface ground motion at the Olympic Games sites, which

  10. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  11. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    Science.gov (United States)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  12. Design basis earthquakes for critical industrial facilities and their characteristics, and the Southern Hyogo prefecture earthquake, 17 January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Heki

    1998-12-01

    This paper deals with how to establish the concept of the design basis earthquake (DBE) for critical industrial facilities such as nuclear power plants in consideration of disasters such as the Southern Hyogo prefecture earthquake, the so-called Kobe earthquake in 1995. The author once discussed various DBEs at the 7th World Conference on Earthquake Engineering. At that time, the author assumed that the strongest effective PGA would be 0.7 G, and compared the values of accelerations of a structure obtained by various codes in Japan and other countries. The maximum PGA observed by an instrument at the Southern Hyogo prefecture earthquake in 1995 exceeded the previous assumption of the author, even though the results of the previous paper had been pessimistic. According to the experience of the Kobe event, the author will point out the necessity of the third earthquake S{sub s} adding to S{sub 1} and S{sub 2} of previous DBEs.

  13. Numerical simulation of faulting in the Sunda Trench shows that seamounts may generate megathrust earthquakes

    Science.gov (United States)

    Jiao, L.; Chan, C. H.; Tapponnier, P.

    2017-12-01

    The role of seamounts in generating earthquakes has been debated, with some studies suggesting that seamounts could be truncated to generate megathrust events, while other studies indicate that the maximum size of megathrust earthquakes could be reduced as subducting seamounts could lead to segmentation. The debate is highly relevant for the seamounts discovered along the Mentawai patch of the Sunda Trench, where previous studies have suggested that a megathrust earthquake will likely occur within decades. In order to model the dynamic behavior of the Mentawai patch, we simulated forearc faulting caused by seamount subducting using the Discrete Element Method. Our models show that rupture behavior in the subduction system is dominated by stiffness of the overriding plate. When stiffness is low, a seamount can be a barrier to rupture propagation, resulting in several smaller (M≤8.0) events. If, however, stiffness is high, a seamount can cause a megathrust earthquake (M8 class). In addition, we show that a splay fault in the subduction environment could only develop when a seamount is present, and a larger offset along a splay fault is expected when stiffness of the overriding plate is higher. Our dynamic models are not only consistent with previous findings from seismic profiles and earthquake activities, but the models also better constrain the rupture behavior of the Mentawai patch, thus contributing to subsequent seismic hazard assessment.

  14. Earthquake response observation of isolated buildings

    International Nuclear Information System (INIS)

    Harada, O.; Kawai, N.; Ishii, T.; Sawada, Y.; Shiojiri, H.; Mazda, T.

    1989-01-01

    Base isolation system is expected to be a technology for a rational design of FBR plant. In order to apply this system to important structures, accumulation of verification data is necessary. From this point of view, the vibration test and the earthquake response observation of the actual isolated building using laminated rubber bearings and elasto-plastic steel dampers were conducted for the purpose of investigating its dynamic behavior and of proving the reliability of the base isolation system. Since September in 1986, more than thirty earthquakes have been observed. This paper presents the results of the earthquake response observation

  15. Rapid modeling of complex multi-fault ruptures with simplistic models from real-time GPS: Perspectives from the 2016 Mw 7.8 Kaikoura earthquake

    Science.gov (United States)

    Crowell, B.; Melgar, D.

    2017-12-01

    The 2016 Mw 7.8 Kaikoura earthquake is one of the most complex earthquakes in recent history, rupturing across at least 10 disparate faults with varying faulting styles, and exhibiting intricate surface deformation patterns. The complexity of this event has motivated the need for multidisciplinary geophysical studies to get at the underlying source physics to better inform earthquake hazards models in the future. However, events like Kaikoura beg the question of how well (or how poorly) such earthquakes can be modeled automatically in real-time and still satisfy the general public and emergency managers. To investigate this question, we perform a retrospective real-time GPS analysis of the Kaikoura earthquake with the G-FAST early warning module. We first perform simple point source models of the earthquake using peak ground displacement scaling and a coseismic offset based centroid moment tensor (CMT) inversion. We predict ground motions based on these point sources as well as simple finite faults determined from source scaling studies, and validate against true recordings of peak ground acceleration and velocity. Secondly, we perform a slip inversion based upon the CMT fault orientations and forward model near-field tsunami maximum expected wave heights to compare against available tide gauge records. We find remarkably good agreement between recorded and predicted ground motions when using a simple fault plane, with the majority of disagreement in ground motions being attributable to local site effects, not earthquake source complexity. Similarly, the near-field tsunami maximum amplitude predictions match tide gauge records well. We conclude that even though our models for the Kaikoura earthquake are devoid of rich source complexities, the CMT driven finite fault is a good enough "average" source and provides useful constraints for rapid forecasting of ground motion and near-field tsunami amplitudes.

  16. Non extensivity and frequency magnitude distribution of earthquakes

    International Nuclear Information System (INIS)

    Sotolongo-Costa, Oscar; Posadas, Antonio

    2003-01-01

    Starting from first principles (in this case a non-extensive formulation of the maximum entropy principle) and a phenomenological approach, an explicit formula for the magnitude distribution of earthquakes is derived, which describes earthquakes in the whole range of magnitudes. The Gutenberg-Richter law appears as a particular case of the obtained formula. Comparison with geophysical data gives a very good agreement

  17. Calculate the maximum expected dose for technical radio physicists a cobalt machine

    International Nuclear Information System (INIS)

    Avila Avila, Rafael; Perez Velasquez, Reytel; Gonzalez Lapez, Nadia

    2009-01-01

    Considering the daily operations carried out by technicians Radiophysics Medical Service Department of Radiation Oncology Hospital V. General Teaching I. Lenin in the city of Holguin, during a working week (Between Monday and Friday) as an important element in calculating the maximum expected dose (MDE). From the exponential decay law which is subject the source activity, we propose corrections to the cumulative doses in the weekly period, leading to obtaining a formula which takes into a cumulative dose during working days and sees no dose accumulation of rest days (Saturday and Sunday). The estimate factor correction is made from a power series expansion convergent is truncated at the n-th term coincides with the week period for which you want to calculate the dose. As initial condition is adopted ambient dose equivalent rate as a given, which allows estimate MDE in the moments after or before this. Calculations were proposed use of an Excel spreadsheet that allows simple and accessible processing the formula obtained. (author)

  18. Surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    S. Dey

    2003-01-01

    Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.

  19. Relating stick-slip friction experiments to earthquake source parameters

    Science.gov (United States)

    McGarr, Arthur F.

    2012-01-01

    Analytical results for parameters, such as static stress drop, for stick-slip friction experiments, with arbitrary input parameters, can be determined by solving an energy-balance equation. These results can then be related to a given earthquake based on its seismic moment and the maximum slip within its rupture zone, assuming that the rupture process entails the same physics as stick-slip friction. This analysis yields overshoots and ratios of apparent stress to static stress drop of about 0.25. The inferred earthquake source parameters static stress drop, apparent stress, slip rate, and radiated energy are robust inasmuch as they are largely independent of the experimental parameters used in their estimation. Instead, these earthquake parameters depend on C, the ratio of maximum slip to the cube root of the seismic moment. C is controlled by the normal stress applied to the rupture plane and the difference between the static and dynamic coefficients of friction. Estimating yield stress and seismic efficiency using the same procedure is only possible when the actual static and dynamic coefficients of friction are known within the earthquake rupture zone.

  20. Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios

    Directory of Open Access Journals (Sweden)

    A. Muhammad

    2017-12-01

    Full Text Available This study develops tsunami evacuation plans in Padang, Indonesia, using a stochastic tsunami simulation method. The stochastic results are based on multiple earthquake scenarios for different magnitudes (Mw 8.5, 8.75, and 9.0 that reflect asperity characteristics of the 1797 historical event in the same region. The generation of the earthquake scenarios involves probabilistic models of earthquake source parameters and stochastic synthesis of earthquake slip distributions. In total, 300 source models are generated to produce comprehensive tsunami evacuation plans in Padang. The tsunami hazard assessment results show that Padang may face significant tsunamis causing the maximum tsunami inundation height and depth of 15 and 10 m, respectively. A comprehensive tsunami evacuation plan – including horizontal evacuation area maps, assessment of temporary shelters considering the impact due to ground shaking and tsunami, and integrated horizontal–vertical evacuation time maps – has been developed based on the stochastic tsunami simulation results. The developed evacuation plans highlight that comprehensive mitigation policies can be produced from the stochastic tsunami simulation for future tsunamigenic events.

  1. Mining-induced earthquakes monitored during pit closure in the Midlothian Coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, D.W.; Richards, J.A.; Wild, P.W. [British Geological Survey, Edinburgh (United Kingdom). Global Seismology and Geomagnetism Group

    1998-06-01

    The British Geological Survey installed a seismometer network to monitor earthquakes around Rosslyn Chapel in the Midlothian Coalfield from November 1987 until January 1990. Accurate locations were obtained for 247 events and a close spatial and temporal association with concurrent coal mining, with a rapid decay of earthquake activity following pit closure, was demonstrated, indicating a mining-induced cause. Residual stress from past mining appears to have been an important factor in generating seismicity, and observations indicate that limiting the width of the workings or rate of extraction may significantly reduce or eliminate mining-induced earthquake activity. A frequency-magnitude analysis indicates a relatively high abundance of small events in this coalfield area. The maximum magnitude of a mining-induced earthquake likely to have been experienced during the life of the coalfield (maximum credible magnitude) was 3.0 M-L, although an extreme event (maximum possible magnitude) as large as 3.4 M-L was remotely possible. Significant seismic amplification was observed at Rosslyn Chapel, which is founded on sand and gravel, compared with a nearby bedrock site. As a consequence, relatively small magnitude events caused high, and occasionally damaging, seismic intensities at the chapel.

  2. 1/f and the Earthquake Problem: Scaling constraints that facilitate operational earthquake forecasting

    Science.gov (United States)

    yoder, M. R.; Rundle, J. B.; Turcotte, D. L.

    2012-12-01

    The difficulty of forecasting earthquakes can fundamentally be attributed to the self-similar, or "1/f", nature of seismic sequences. Specifically, the rate of occurrence of earthquakes is inversely proportional to their magnitude m, or more accurately to their scalar moment M. With respect to this "1/f problem," it can be argued that catalog selection (or equivalently, determining catalog constraints) constitutes the most significant challenge to seismicity based earthquake forecasting. Here, we address and introduce a potential solution to this most daunting problem. Specifically, we introduce a framework to constrain, or partition, an earthquake catalog (a study region) in order to resolve local seismicity. In particular, we combine Gutenberg-Richter (GR), rupture length, and Omori scaling with various empirical measurements to relate the size (spatial and temporal extents) of a study area (or bins within a study area) to the local earthquake magnitude potential - the magnitude of earthquake the region is expected to experience. From this, we introduce a new type of time dependent hazard map for which the tuning parameter space is nearly fully constrained. In a similar fashion, by combining various scaling relations and also by incorporating finite extents (rupture length, area, and duration) as constraints, we develop a method to estimate the Omori (temporal) and spatial aftershock decay parameters as a function of the parent earthquake's magnitude m. From this formulation, we develop an ETAS type model that overcomes many point-source limitations of contemporary ETAS. These models demonstrate promise with respect to earthquake forecasting applications. Moreover, the methods employed suggest a general framework whereby earthquake and other complex-system, 1/f type, problems can be constrained from scaling relations and finite extents.; Record-breaking hazard map of southern California, 2012-08-06. "Warm" colors indicate local acceleration (elevated hazard

  3. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran Kumar; Mai, Paul Martin

    2016-01-01

    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  4. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran K. S.

    2016-07-13

    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  5. Repetition of large stress drop earthquakes on Wairarapa fault, New Zealand, revealed by LiDAR data

    Science.gov (United States)

    Delor, E.; Manighetti, I.; Garambois, S.; Beaupretre, S.; Vitard, C.

    2013-12-01

    We have acquired high-resolution LiDAR topographic data over most of the onland trace of the 120 km-long Wairarapa strike-slip fault, New Zealand. The Wairarapa fault broke in a large earthquake in 1855, and this historical earthquake is suggested to have produced up to 18 m of lateral slip at the ground surface. This would make this earthquake a remarkable event having produced a stress drop much higher than commonly observed on other earthquakes worldwide. The LiDAR data allowed us examining the ground surface morphology along the fault at statistical analysis of the cumulative offsets per segment reveals that the alluvial morphology has well recorded, at every step along the fault, no more than a few (3-6), well distinct cumulative slips, all lower than 80 m. Plotted along the entire fault, the statistically defined cumulative slip values document four, fairly continuous slip profiles that we attribute to the four most recent large earthquakes on the Wairarapa fault. The four slip profiles have a roughly triangular and asymmetric envelope shape that is similar to the coseismic slip distributions described for most large earthquakes worldwide. The four slip profiles have their maximum slip at the same place, in the northeastern third of the fault trace. The maximum slips vary from one event to another in the range 7-15 m; the most recent 1855 earthquake produced a maximum coseismic slip of 15 × 2 m at the ground surface. Our results thus confirm that the Wairarapa fault breaks in remarkably large stress drop earthquakes. Those repeating large earthquakes share both similar (rupture length, slip-length distribution, location of maximum slip) and distinct (maximum slip amplitudes) characteristics. Furthermore, the seismic behavior of the Wairarapa fault is markedly different from that of nearby large strike-slip faults (Wellington, Hope). The reasons for those differences in rupture behavior might reside in the intrinsic properties of the broken faults, especially

  6. Broadband records of earthquakes in deep gold mines and a comparison with results from SAFOD, California

    Science.gov (United States)

    McGarr, Arthur F.; Boettcher, M.; Fletcher, Jon Peter B.; Sell, Russell; Johnston, Malcolm J.; Durrheim, R.; Spottiswoode, S.; Milev, A.

    2009-01-01

    For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter , where  is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6.3 m/sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4.0 m/sec.

  7. Earthquake Hazard Analysis Methods: A Review

    Science.gov (United States)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  8. Seismic hazard assessment based on the Unified Scaling Law for Earthquakes: the Greater Caucasus

    Science.gov (United States)

    Nekrasova, A.; Kossobokov, V. G.

    2015-12-01

    Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and public, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. In fact, Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such knowledge in advance catastrophic events. We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A - B•(M-6) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The parameters A, B, and C of USLE are used to estimate, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters including macro-seismic intensity. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks (e.g., those based on the density of exposed population). The methodology of seismic hazard and risks assessment based on USLE is illustrated by application to the seismic region of Greater Caucasus.

  9. The CATDAT damaging earthquakes database

    Science.gov (United States)

    Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.

    2011-08-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.

  10. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  11. Forecasting of future earthquakes in the northeast region of India considering energy released concept

    Science.gov (United States)

    Zarola, Amit; Sil, Arjun

    2018-04-01

    This study presents the forecasting of time and magnitude size of the next earthquake in the northeast India, using four probability distribution models (Gamma, Lognormal, Weibull and Log-logistic) considering updated earthquake catalog of magnitude Mw ≥ 6.0 that occurred from year 1737-2015 in the study area. On the basis of past seismicity of the region, two types of conditional probabilities have been estimated using their best fit model and respective model parameters. The first conditional probability is the probability of seismic energy (e × 1020 ergs), which is expected to release in the future earthquake, exceeding a certain level of seismic energy (E × 1020 ergs). And the second conditional probability is the probability of seismic energy (a × 1020 ergs/year), which is expected to release per year, exceeding a certain level of seismic energy per year (A × 1020 ergs/year). The logarithm likelihood functions (ln L) were also estimated for all four probability distribution models. A higher value of ln L suggests a better model and a lower value shows a worse model. The time of the future earthquake is forecasted by dividing the total seismic energy expected to release in the future earthquake with the total seismic energy expected to release per year. The epicentre of recently occurred 4 January 2016 Manipur earthquake (M 6.7), 13 April 2016 Myanmar earthquake (M 6.9) and the 24 August 2016 Myanmar earthquake (M 6.8) are located in zone Z.12, zone Z.16 and zone Z.15, respectively and that are the identified seismic source zones in the study area which show that the proposed techniques and models yield good forecasting accuracy.

  12. Comparison of the inelastic response of steel building frames to strong earthquake and underground nuclear explosion ground motion

    International Nuclear Information System (INIS)

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures

  13. A review on earthquake and tsunami hazards of the Sumatran plate boundary: Observing expected and unexpected events after the Aceh-Andaman Mw 9.15 event

    Science.gov (United States)

    Natawidjaja, D.

    2013-12-01

    The 600-km Mentawai megathrust had produced two giant historical earthquakes generating big tsunamies in 1797 and 1833. The SuGAr (Sumatran GPS continuous Array) network, first deployed in 2002, shows that the subduction interface underlying Mentawai Islands and the neighboring Nias section in the north are fully locked, thus confirming their potential hazards. Outreach activities to warn people about earthquake and tsunamies had been started since 4 months prior to the 26 December 2004 in Aceh-Andaman earthquake (Mw 9.15). Later in March 2005, the expected megathrust earthquake (Mw 8.7) hit Nias-Simelue area and killed about 2000 people, releasing the accumulated strain since the previous 1861 event (~Mw 8.5). After then many Mw 7s and smaller events occured in Sumatra, filling areas between and around two giant ruptures and heighten seismicities in neighboring areas. In March 2007, the twin earthquake disaster (Mw 6.3 and Mw 6.4) broke two consecutive segments of the transcurrent Sumatran fault in the Singkarak lake area. Only six month later, in September 2007, the rapid-fire-failures of three consecutive megathrust patches (Mw 8.5, Mw 7.9 and Mw 7.0) ruptured a 250-km-section of the southern part of the Mentawai. It was a big surprise since this particular section is predicted as a very-low coupled section from modelling the SuGAr data, and hence, bypassing the more potential fully coupled section of the Mentawai in between the 2005 and 2007 ruptures. In September 2009, a rare unexpected event (Mw 7.6) suddenly ruptured an intracrustal fault in the subducted slab down under Padang City and killed about 500 people. Padang had been in preparation for the next tsunami but not for strong shakes from near by major earthquake. This event seems to have remotely triggered another Mw 6.7 on the Sumatran fault near kerinci Lake, a few hundred kilometers south of Padang, in less than a day. Just a year later, in November 2010, again an unexpected large slow-slip event of

  14. Long-term predictability of regions and dates of strong earthquakes

    Science.gov (United States)

    Kubyshen, Alexander; Doda, Leonid; Shopin, Sergey

    2016-04-01

    Results on the long-term predictability of strong earthquakes are discussed. It is shown that dates of earthquakes with M>5.5 could be determined in advance of several months before the event. The magnitude and the region of approaching earthquake could be specified in the time-frame of a month before the event. Determination of number of M6+ earthquakes, which are expected to occur during the analyzed year, is performed using the special sequence diagram of seismic activity for the century time frame. Date analysis could be performed with advance of 15-20 years. Data is verified by a monthly sequence diagram of seismic activity. The number of strong earthquakes expected to occur in the analyzed month is determined by several methods having a different prediction horizon. Determination of days of potential earthquakes with M5.5+ is performed using astronomical data. Earthquakes occur on days of oppositions of Solar System planets (arranged in a single line). At that, the strongest earthquakes occur under the location of vector "Sun-Solar System barycenter" in the ecliptic plane. Details of this astronomical multivariate indicator still require further research, but it's practical significant is confirmed by practice. Another one empirical indicator of approaching earthquake M6+ is a synchronous variation of meteorological parameters: abrupt decreasing of minimal daily temperature, increasing of relative humidity, abrupt change of atmospheric pressure (RAMES method). Time difference of predicted and actual date is no more than one day. This indicator is registered 104 days before the earthquake, so it was called as Harmonic 104 or H-104. This fact looks paradoxical, but the works of A. Sytinskiy and V. Bokov on the correlation of global atmospheric circulation and seismic events give a physical basis for this empirical fact. Also, 104 days is a quarter of a Chandler period so this fact gives insight on the correlation between the anomalies of Earth orientation

  15. It's "Your" Fault!: An Investigation into Earthquakes, Plate Tectonics, and Geologic Time

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2011-01-01

    Earthquakes "have" been in the news of late--from the disastrous 2010 Haitian temblor that killed more than 300,000 people to the March 2011 earthquake and devastating tsunami in Honshu, Japan, to the unexpected August 2011 earthquake in Mineral, Virginia, felt from Alabama to Maine and as far west as Illinois. As expected, these events…

  16. Earthquake Loss Scenarios: Warnings about the Extent of Disasters

    Science.gov (United States)

    Wyss, M.; Tolis, S.; Rosset, P.

    2016-12-01

    It is imperative that losses expected due to future earthquakes be estimated. Officials and the public need to be aware of what disaster is likely in store for them in order to reduce the fatalities and efficiently help the injured. Scenarios for earthquake parameters can be constructed to a reasonable accuracy in highly active earthquake belts, based on knowledge of seismotectonics and history. Because of the inherent uncertainties of loss estimates however, it would be desirable that more than one group calculate an estimate for the same area. By discussing these estimates, one may find a consensus of the range of the potential disasters and persuade officials and residents of the reality of the earthquake threat. To model a scenario and estimate earthquake losses requires data sets that are sufficiently accurate of the number of people present, the built environment, and if possible the transmission of seismic waves. As examples we use loss estimates for possible repeats of historic earthquakes in Greece that occurred between -464 and 700. We model future large Greek earthquakes as having M6.8 and rupture lengths of 60 km. In four locations where historic earthquakes with serious losses have occurred, we estimate that 1,000 to 1,500 people might perish, with an additional factor of four people injured. Defining the area of influence of these earthquakes as that with shaking intensities larger and equal to V, we estimate that 1.0 to 2.2 million people in about 2,000 settlements may be affected. We calibrate the QLARM tool for calculating intensities and losses in Greece, using the M6, 1999 Athens earthquake and matching the isoseismal information for six earthquakes, which occurred in Greece during the last 140 years. Comparing fatality numbers that would occur theoretically today with the numbers reported, and correcting for the increase in population, we estimate that the improvement of the building stock has reduced the mortality and injury rate in Greek

  17. Earthquake Early Warning: User Education and Designing Effective Messages

    Science.gov (United States)

    Burkett, E. R.; Sellnow, D. D.; Jones, L.; Sellnow, T. L.

    2014-12-01

    The U.S. Geological Survey (USGS) and partners are transitioning from test-user trials of a demonstration earthquake early warning system (ShakeAlert) to deciding and preparing how to implement the release of earthquake early warning information, alert messages, and products to the public and other stakeholders. An earthquake early warning system uses seismic station networks to rapidly gather information about an occurring earthquake and send notifications to user devices ahead of the arrival of potentially damaging ground shaking at their locations. Earthquake early warning alerts can thereby allow time for actions to protect lives and property before arrival of damaging shaking, if users are properly educated on how to use and react to such notifications. A collaboration team of risk communications researchers and earth scientists is researching the effectiveness of a chosen subset of potential earthquake early warning interface designs and messages, which could be displayed on a device such as a smartphone. Preliminary results indicate, for instance, that users prefer alerts that include 1) a map to relate their location to the earthquake and 2) instructions for what to do in response to the expected level of shaking. A number of important factors must be considered to design a message that will promote appropriate self-protective behavior. While users prefer to see a map, how much information can be processed in limited time? Are graphical representations of wavefronts helpful or confusing? The most important factor to promote a helpful response is the predicted earthquake intensity, or how strong the expected shaking will be at the user's location. Unlike Japanese users of early warning, few Californians are familiar with the earthquake intensity scale, so we are exploring how differentiating instructions between intensity levels (e.g., "Be aware" for lower shaking levels and "Drop, cover, hold on" at high levels) can be paired with self-directed supplemental

  18. Threat of an earthquake right under the capital in Japan

    Science.gov (United States)

    Rikitake, T.

    1990-01-01

    Tokyo, Japan's capital, has been enjoying a seismically quiet period following the 1923 Kanto earthquake of magnitude 7.9 that killed more than 140,000 people. Such a quiet period seems likely to be a repetition of the 80-year quiescence after the great 1703 Genroku earthquake of magntidue 8.2 that occurred in an epicentral area adjacent to that of the 1923 Kanto earthquake. In 1784, seismic activity immediately under the capital area revived with occasional occurrence of magnitude 6 to 7 shocks. Earthquakes of this class tended to occur more frequently as time went on and they eventually culminated in the 1923 Kanto earthquake. As more than 60 years have passed since the Kanto earthquake, we may well expect another revival of activity immediately under the capital area. 

  19. Multi-Sensors Observations of Pre-Earthquake Signals. What We Learned from the Great Tohoku Earthquake?

    Science.gov (United States)

    Ouzonounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons learned from the Great Tohoku EQ (Japan, 2011) will affect our future observations and an analysis is the main focus of this presentation. Multi-sensors observations and multidisciplinary research is presented in our study of the phenomena preceding major earthquakes Our approach is based on a systematic analysis of several physical and environmental parameters, which been reported by others in connections with earthquake processes: thermal infrared radiation; temperature; concentration of electrons in the ionosphere; radon/ion activities; and atmospheric temperature/humidity [Ouzounov et al, 2011]. We used the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model, one of several possible paradigms [Pulinets and Ouzounov, 2011] to interpret our observations. We retrospectively analyzed the temporal and spatial variations of three different physical parameters characterizing the state of the atmosphere, ionosphere the ground surface several days before the March 11, 2011 M9 Tohoku earthquake Namely: (i) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; (ii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations; and (iii) The change in the foreshock sequence (rate, space and time); Our results show that on March 8th, 2011 a rapid increase of emitted infrared radiation was observed and an anomaly developed near the epicenter with largest value occurring on March 11 at 07.30 LT. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere there was also observed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. We use the Japanese GPS network stations and method of Radio Tomography to study the spatiotemporal structure of ionospheric

  20. Tidal controls on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tanaka, Y.

    2016-12-01

    The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.

  1. Strong motion duration and earthquake magnitude relationships

    International Nuclear Information System (INIS)

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ''strong motion duration'' has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions

  2. Earthquake responses of a beam supported by a mechanical snubber

    International Nuclear Information System (INIS)

    Ohmata, Kenichiro; Ishizu, Seiji.

    1989-01-01

    The mechanical snubber is an earthquakeproof device for piping systems under particular circumstances such as high temperature and radioactivity. It has nonlinearities in both load and frequency response. In this report, the resisting force characteristics of the snubber and earthquake responses of piping (a simply supported beam) which is supported by the snubber are simulated using Continuous System Simulation Language (CSSL). Digital simulations are carried out for various kinds of physical properties of the snubber. The restraint effect and the maximum resisting force of the snubber during earthquakes are discussed and compared with the case of an oil damper. The earthquake waves used here are E1 Centro N-S and Akita Harbour N-S (Nihonkai-Chubu earthquake). (author)

  3. Inter-Disciplinary Validation of Pre Earthquake Signals. Case Study for Major Earthquakes in Asia (2004-2010) and for 2011 Tohoku Earthquake

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Hattori, K.; Liu, J.-Y.; Yang. T. Y.; Parrot, M.; Kafatos, M.; Taylor, P.

    2012-01-01

    We carried out multi-sensors observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several physical and environmental parameters, which we found, associated with the earthquake processes: thermal infrared radiation, temperature and concentration of electrons in the ionosphere, radon/ion activities, and air temperature/humidity in the atmosphere. We used satellite and ground observations and interpreted them with the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model, one of possible paradigms we study and support. We made two independent continues hind-cast investigations in Taiwan and Japan for total of 102 earthquakes (M>6) occurring from 2004-2011. We analyzed: (1) ionospheric electromagnetic radiation, plasma and energetic electron measurements from DEMETER (2) emitted long-wavelength radiation (OLR) from NOAA/AVHRR and NASA/EOS; (3) radon/ion variations (in situ data); and 4) GPS Total Electron Content (TEC) measurements collected from space and ground based observations. This joint analysis of ground and satellite data has shown that one to six (or more) days prior to the largest earthquakes there were anomalies in all of the analyzed physical observations. For the latest March 11 , 2011 Tohoku earthquake, our analysis shows again the same relationship between several independent observations characterizing the lithosphere /atmosphere coupling. On March 7th we found a rapid increase of emitted infrared radiation observed from satellite data and subsequently an anomaly developed near the epicenter. The GPS/TEC data indicated an increase and variation in electron density reaching a maximum value on March 8. Beginning from this day we confirmed an abnormal TEC variation over the epicenter in the lower ionosphere. These findings revealed the existence of atmospheric and ionospheric phenomena occurring prior to the 2011 Tohoku earthquake, which indicated new evidence of a distinct

  4. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  5. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  6. Near-real-time and scenario earthquake loss estimates for Mexico

    Science.gov (United States)

    Wyss, M.; Zuñiga, R.

    2017-12-01

    The large earthquakes of 8 September 2017, M8.1, and 19 September 2017, M7.1 have focused attention on the dangers of Mexican seismicity. The near-real-time alerts by QLARM estimated 10 to 300 fatalities and 0 to 200 fatalities, respectively. At the time of this submission the reported death tolls are 96 and 226, respectively. These alerts were issued within 96 and 57 minutes of the occurrence times. For the M8.1 earthquake the losses due to a line model could be calculated. The line with length L=110 km extended from the initial epicenter to the NE, where the USGS had reported aftershocks. On September 19, no aftershocks were available in near-real-time, so a point source had to be used for the quick calculation of likely casualties. In both cases, the casualties were at least an order of magnitude smaller than what they could have been because on 8 September the source was relatively far offshore and on 19 September the hypocenter was relatively deep. The largest historic earthquake in Mexico occurred on 28 March 1787 and likely had a rupture length of 450 km and M8.6. Based on this event, and after verifying our tool for Mexico, we estimated the order of magnitude of a disaster, given the current population, in a maximum credible earthquake along the Pacific coast. In the countryside along the coast we expect approximately 27,000 fatalities and 480,000 injured. In the special case of Mexico City the casualties in a worst possible earthquake along the Pacific plate boundary would likely be counted as five digit numbers. The large agglomerate of the capital with its lake bed soil attracts most attention. Nevertheless, one should pay attention to the fact that the poor, rural segment of society, living in buildings of weak resistance to shaking, are likely to sustain a mortality rate about 20% larger than the population in cities on average soil.

  7. Radon, gas geochemistry, groundwater, and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    King, Chi-Yu [Power Reactor and Nuclear Fuel Development Corp., Tono Geoscience Center, Toki, Gifu (Japan)

    1998-12-31

    Radon monitoring in groundwater, soil air, and atmosphere has been continued in many seismic areas of the world for earthquake-prediction and active-fault studies. Some recent measurements of radon and other geochemical and hydrological parameters have been made for sufficiently long periods, with reliable instruments, and together with measurements of meteorological variables and solid-earth tides. The resultant data are useful in better distinguishing earthquake-related changes from various background noises. Some measurements have been carried out in areas where other geophysical measurements are being made also. Comparative studies of various kinds of geophysical data are helpful in ascertaining the reality of the earthquake-related and fault-related anomalies and in understanding the underlying mechanisms. Spatial anomalies of radon and other terrestrial gasses have been observed for many active faults. Such observations indicate that gas concentrations are very much site dependent, particularly on fault zones where terrestrial fluids may move vertically. Temporal anomalies have been reliably observed before and after some recent earthquakes, including the 1995 Kobe earthquake, and the general pattern of anomaly occurrence remains the same as observed before: They are recorded at only relatively few sensitive sites, which can be at much larger distances than expected from existing earthquake-source models. The sensitivity of a sensitive site is also found to be changeable with time. These results clearly show the inadequacy of the existing dilatancy-fluid diffusion and elastic-dislocation models for earthquake sources to explain earthquake-related geochemical and geophysical changes recorded at large distances. (J.P.N.)

  8. Fault parameters and macroseismic observations of the May 10, 1997 Ardekul-Ghaen earthquake

    Science.gov (United States)

    Amini, H.; Zare, M.; Ansari, A.

    2018-01-01

    The Ardekul (Zirkuh) earthquake (May 10, 1997) is the largest recent earthquake that occurred in the Ardekul-Ghaen region of Eastern Iran. The greatest destruction was concentrated around Ardekul, Haji-Abad, Esfargh, Pishbar, Bashiran, Abiz-Qadim, and Fakhr-Abad (completely destroyed). The total surface fault rupture was about 125 km with the longest un-interrupted segment in the south of the region. The maximum horizontal and vertical displacements were reported in Korizan and Bohn-Abad with about 210 and 70 cm, respectively; moreover, other building damages and environmental effects were also reported for this earthquake. In this study, the intensity value XI on the European Macroseismic Scale (EMS) and Environmental Seismic Intensity (ESI) scale was selected for this earthquake according to the maximum effects on macroseismic data points affected by this earthquake. Then, according to its macroseismic data points of this earthquake and Boxer code, some macroseismic parameters including magnitude, location, source dimension, and orientation of this earthquake were also estimated at 7.3, 33.52° N-59.99° E, 75 km long and 21 km wide, and 152°, respectively. As the estimated macroseismic parameters are consistent with the instrumental ones (Global Centroid Moment Tensor (GCMT) location and magnitude equal 33.58° N-60.02° E, and 7.2, respectively), this method and dataset are suggested not only for other instrumental earthquakes, but also for historical events.

  9. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  10. Accounting for orphaned aftershocks in the earthquake background rate

    Science.gov (United States)

    Van Der Elst, Nicholas

    2017-01-01

    Aftershocks often occur within cascades of triggered seismicity in which each generation of aftershocks triggers an additional generation, and so on. The rate of earthquakes in any particular generation follows Omori's law, going approximately as 1/t. This function decays rapidly, but is heavy-tailed, and aftershock sequences may persist for long times at a rate that is difficult to discriminate from background. It is likely that some apparently spontaneous earthquakes in the observational catalogue are orphaned aftershocks of long-past main shocks. To assess the relative proportion of orphaned aftershocks in the apparent background rate, I develop an extension of the ETAS model that explicitly includes the expected contribution of orphaned aftershocks to the apparent background rate. Applying this model to California, I find that the apparent background rate can be almost entirely attributed to orphaned aftershocks, depending on the assumed duration of an aftershock sequence. This implies an earthquake cascade with a branching ratio (the average number of directly triggered aftershocks per main shock) of nearly unity. In physical terms, this implies that very few earthquakes are completely isolated from the perturbing effects of other earthquakes within the fault system. Accounting for orphaned aftershocks in the ETAS model gives more accurate estimates of the true background rate, and more realistic expectations for long-term seismicity patterns.

  11. Distribution of incremental static stress caused by earthquakes

    Directory of Open Access Journals (Sweden)

    Y. Y. Kagan

    1994-01-01

    Full Text Available Theoretical calculations, simulations and measurements of rotation of earthquake focal mechanisms suggest that the stress in earthquake focal zones follows the Cauchy distribution which is one of the stable probability distributions (with the value of the exponent α equal to 1. We review the properties of the stable distributions and show that the Cauchy distribution is expected to approximate the stress caused by earthquakes occurring over geologically long intervals of a fault zone development. However, the stress caused by recent earthquakes recorded in instrumental catalogues, should follow symmetric stable distributions with the value of α significantly less than one. This is explained by a fractal distribution of earthquake hypocentres: the dimension of a hypocentre set, ��, is close to zero for short-term earthquake catalogues and asymptotically approaches 2¼ for long-time intervals. We use the Harvard catalogue of seismic moment tensor solutions to investigate the distribution of incremental static stress caused by earthquakes. The stress measured in the focal zone of each event is approximated by stable distributions. In agreement with theoretical considerations, the exponent value of the distribution approaches zero as the time span of an earthquake catalogue (ΔT decreases. For large stress values α increases. We surmise that it is caused by the δ increase for small inter-earthquake distances due to location errors.

  12. Trading Time with Space - Development of subduction zone parameter database for a maximum magnitude correlation assessment

    Science.gov (United States)

    Schaefer, Andreas; Wenzel, Friedemann

    2017-04-01

    Subduction zones are generally the sources of the earthquakes with the highest magnitudes. Not only in Japan or Chile, but also in Pakistan, the Solomon Islands or for the Lesser Antilles, subduction zones pose a significant hazard for the people. To understand the behavior of subduction zones, especially to identify their capabilities to produce maximum magnitude earthquakes, various physical models have been developed leading to a large number of various datasets, e.g. from geodesy, geomagnetics, structural geology, etc. There have been various studies to utilize this data for the compilation of a subduction zone parameters database, but mostly concentrating on only the major zones. Here, we compile the largest dataset of subduction zone parameters both in parameter diversity but also in the number of considered subduction zones. In total, more than 70 individual sources have been assessed and the aforementioned parametric data have been combined with seismological data and many more sources have been compiled leading to more than 60 individual parameters. Not all parameters have been resolved for each zone, since the data completeness depends on the data availability and quality for each source. In addition, the 3D down-dip geometry of a majority of the subduction zones has been resolved using historical earthquake hypocenter data and centroid moment tensors where available and additionally compared and verified with results from previous studies. With such a database, a statistical study has been undertaken to identify not only correlations between those parameters to estimate a parametric driven way to identify potentials for maximum possible magnitudes, but also to identify similarities between the sources themselves. This identification of similarities leads to a classification system for subduction zones. Here, it could be expected if two sources share enough common characteristics, other characteristics of interest may be similar as well. This concept

  13. Large magnitude earthquakes on the Awatere Fault, Marlborough

    International Nuclear Information System (INIS)

    Mason, D.P.M.; Little, T.A.; Van Dissen, R.J.

    2006-01-01

    The Awatere Fault is a principal active strike-slip fault within the Marlborough fault system, and last ruptured in October 1848, in the M w ∼7.5 Marlborough earthquake. The coseismic slip distribution and maximum traceable length of this rupture are calculated from the magnitude and distribution of small, metre-scale geomorphic displacements attributable to this earthquake. These data suggest this event ruptured ∼110 km of the fault, with mean horizontal surface displacement of 5.3 ± 1.6m. Based on these parameters, the moment magnitude of this earthquake would be M w ∼7.4-7.7. Paeloseismic trenching investigations along the eastern section reveal evidence for at least eight, and possibly ten, surface-rupturing paleoearthquakes in the last 8600 years, including the 1848 rupture. The coseismic slip distribution and rupture length of the 1848 earthquake, in combination with the paleoearthquake age data, suggest the eastern section of the Awatere Fault ruptures in M w ∼7.5 earthquakes, with over 5 m of surface displacement, every 860-1080 years. (author). 21 refs., 10 figs., 7 tabs

  14. Effects of the northern Ohio earthquake on the Perry nuclear power plant

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1987-01-01

    On January 31, 1986 at 11:47 A.M. EST, a brief strong motion duration and shallow (10 km focal depth) earthquake with a 5.0 Richter magnitude occurred. Its epicenter was located near Leroy, Ohio which is south of Lake Erie, at a distance of approximately ten (10) miles from the Perry Nuclear Power Plant site at Perry, Ohio. The potential safety significance of the Leroy 1986 earthquake is that it produced a recorded component of earthquake motion zero period acceleration approximately equal to the 0.15g zero period ground acceleration defined as the Safe Shutdown Earthquake for the site. The Leroy 1986 earthquake is the first recorded instance in the U.S. of a nuclear power plant being subjected to some level of OBE exceedance. In general, the short duration and high frequency non-damaging character of the Leroy 1986 earthquake cannot be equated directly on the basis of peak ground acceleration alone with the longer duration, lower frequency content of earthquakes which are expected to do structural damage. However, all the available evidence suggests that the Leroy 1986 is not atypical of what might be expected earthquake activity in the area of the eastern U.S. with 1-10 year return periods. On this basis, it is essential that new methods be developed which properly characterized the damage potential of these types of earthquakes and not simply process the raw data associated with recorded peak acceleration as the basis of nuclear plant shutdown and potentially lengthly examination

  15. The role of post-earthquake structural safety in pre-earthquake retrof in decision: guidelines and applications

    International Nuclear Information System (INIS)

    Bazzurro, P.; Telleen, K.; Maffei, J.; Yin, J.; Cornell, C.A.

    2009-01-01

    Critical structures such as hospitals, police stations, local administrative office buildings, and critical lifeline facilities, are expected to be operational immediately after earthquakes. Any rational decision about whether these structures are strong enough to meet this goal or whether pre-empitive retrofitting is needed cannot be made without an explicit consideration of post-earthquake safety and functionality with respect to aftershocks. Advanced Seismic Assessment Guidelines offer improvement over previous methods for seismic evaluation of buildings where post-earthquake safety and usability is a concern. This new method allows engineers to evaluate the like hood that a structure may have restricted access or no access after an earthquake. The building performance is measured in terms of the post-earthquake occupancy classifications Green Tag, Yellow Tag, and Red Tag, defining these performance levels quantitatively, based on the structure's remaining capacity to withstand aftershocks. These color-coded placards that constitute an established practice in US could be replaced by the standard results of inspections (A to E) performed by the Italian Dept. of Civil Protection after an event. The article also shows some applications of these Guidelines to buildings of the largest utility company in California, Pacific Gas and Electric Company (PGE). [it

  16. Playing against nature: improving earthquake hazard mitigation

    Science.gov (United States)

    Stein, S. A.; Stein, J.

    2012-12-01

    The great 2011 Tohoku earthquake dramatically demonstrated the need to improve earthquake and tsunami hazard assessment and mitigation policies. The earthquake was much larger than predicted by hazard models, and the resulting tsunami overtopped coastal defenses, causing more than 15,000 deaths and $210 billion damage. Hence if and how such defenses should be rebuilt is a challenging question, because the defences fared poorly and building ones to withstand tsunamis as large as March's is too expensive,. A similar issue arises along the Nankai Trough to the south, where new estimates warning of tsunamis 2-5 times higher than in previous models raise the question of what to do, given that the timescale on which such events may occur is unknown. Thus in the words of economist H. Hori, "What should we do in face of uncertainty? Some say we should spend our resources on present problems instead of wasting them on things whose results are uncertain. Others say we should prepare for future unknown disasters precisely because they are uncertain". Thus society needs strategies to mitigate earthquake and tsunami hazards that make economic and societal sense, given that our ability to assess these hazards is poor, as illustrated by highly destructive earthquakes that often occur in areas predicted by hazard maps to be relatively safe. Conceptually, we are playing a game against nature "of which we still don't know all the rules" (Lomnitz, 1989). Nature chooses tsunami heights or ground shaking, and society selects the strategy to minimize the total costs of damage plus mitigation costs. As in any game of chance, we maximize our expectation value by selecting the best strategy, given our limited ability to estimate the occurrence and effects of future events. We thus outline a framework to find the optimal level of mitigation by balancing its cost against the expected damages, recognizing the uncertainties in the hazard estimates. This framework illustrates the role of the

  17. Evaluation of steam generator tube integrity during earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Kusakabe, Takaya; Kodama, Toshio [Mitsubishi Heavy Industries Ltd., Kobe (Japan). Kobe Shipyard and Machinery Works; Takamatsu, Hiroshi; Matsunaga, Tomoya

    1999-07-01

    This report shows an experimental study on the strength of PWR steam generator (SG) tubes with various defects under cyclic loads which simulate earthquakes. The tests were done using same SG tubing as actual plants with axial and circumferential defects with various length and depth. In the tests, straight tubes were loaded with cyclic bending moments to simulate earthquake waves and number of load cycles at which tube leak started or tube burst was counted. The test results showed that even tubes with very long crack made by EDM more than 80% depth could stand the maximum earthquake, and tubes with corrosion crack were far stronger than those. Thus the integrity of SG tubes with minute potential defects was demonstrated. (author)

  18. Best Practice Life Expectancy

    DEFF Research Database (Denmark)

    Medford, Anthony

    2017-01-01

    been reported previously by various authors. Though remarkable, this is simply an empirical observation. Objective: We examine best-practice life expectancy more formally by using extreme value theory. Methods: Extreme value distributions are fit to the time series (1900 to 2012) of maximum life......Background: Whereas the rise in human life expectancy has been extensively studied, the evolution of maximum life expectancies, i.e., the rise in best-practice life expectancy in a group of populations, has not been examined to the same extent. The linear rise in best-practice life expectancy has...... expectancies at birth and age 65, for both sexes, using data from the Human Mortality Database and the United Nations. Conclusions: Generalized extreme value distributions offer a theoretically justified way to model best-practice life expectancies. Using this framework one can straightforwardly obtain...

  19. Tokyo Metropolitan Earthquake Preparedness Project - A Progress Report

    Science.gov (United States)

    Hayashi, H.

    2010-12-01

    Munich Re once ranked that Tokyo metropolitan region, the capital of Japan, is the most vulnerable area for earthquake disasters, followed by San Francisco Bay Area, US and Osaka, Japan. Seismologists also predict that Tokyo metropolitan region may have at least one near-field earthquake with a probability of 70% for the next 30 years. Given this prediction, Japanese Government took it seriously to conduct damage estimations and revealed that, as the worst case scenario, if a7.3 magnitude earthquake under heavy winds as shown in the fig. 1, it would kill a total of 11,000 people and a total of direct and indirect losses would amount to 112,000,000,000,000 yen(1,300,000,000,000, 1=85yen) . In addition to mortality and financial losses, a total of 25 million people would be severely impacted by this earthquake in four prefectures. If this earthquake occurs, 300,000 elevators will be stopped suddenly, and 12,500 persons would be confined in them for a long time. Seven million people will come to use over 20,000 public shelters spread over the impacted area. Over one millions temporary housing units should be built to accommodate 4.6 million people who lost their dwellings. 2.5 million people will relocate to outside of the damaged area. In short, an unprecedented scale of earthquake disaster is expected and we must prepare for it. Even though disaster mitigation is undoubtedly the best solution, it is more realistic that the expected earthquake would hit before we complete this business. In other words, we must take into account another solution to make the people and the assets in this region more resilient for the Tokyo metropolitan earthquake. This is the question we have been tackling with for the last four years. To increase societal resilience for Tokyo metropolitan earthquake, we adopted a holistic approach to integrate both emergency response and long-term recovery. There are three goals for long-term recovery, which consists of Physical recovery, Economic

  20. Geological and historical evidence of irregular recurrent earthquakes in Japan.

    Science.gov (United States)

    Satake, Kenji

    2015-10-28

    Great (M∼8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M∼9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. © 2015 The Author(s).

  1. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  2. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    Science.gov (United States)

    Serata, S.

    2006-12-01

    The Serata Stressmeter has been developed to measure and monitor earthquake shear stress build-up along shallow active faults. The development work made in the past 25 years has established the Stressmeter as an automatic stress measurement system to study timing of forthcoming major earthquakes in support of the current earthquake prediction studies based on statistical analysis of seismological observations. In early 1982, a series of major Man-made earthquakes (magnitude 4.5-5.0) suddenly occurred in an area over deep underground potash mine in Saskatchewan, Canada. By measuring underground stress condition of the mine, the direct cause of the earthquake was disclosed. The cause was successfully eliminated by controlling the stress condition of the mine. The Japanese government was interested in this development and the Stressmeter was introduced to the Japanese government research program for earthquake stress studies. In Japan the Stressmeter was first utilized for direct measurement of the intrinsic lateral tectonic stress gradient G. The measurement, conducted at the Mt. Fuji Underground Research Center of the Japanese government, disclosed the constant natural gradients of maximum and minimum lateral stresses in an excellent agreement with the theoretical value, i.e., G = 0.25. All the conventional methods of overcoring, hydrofracturing and deformation, which were introduced to compete with the Serata method, failed demonstrating the fundamental difficulties of the conventional methods. The intrinsic lateral stress gradient determined by the Stressmeter for the Japanese government was found to be the same with all the other measurements made by the Stressmeter in Japan. The stress measurement results obtained by the major international stress measurement work in the Hot Dry Rock Projects conducted in USA, England and Germany are found to be in good agreement with the Stressmeter results obtained in Japan. Based on this broad agreement, a solid geomechanical

  3. VLF radio wave anomalies associated with the 2010 Ms 7.1 Yushu earthquake

    Science.gov (United States)

    Shen, Xuhui; Zhima, Zeren; Zhao, Shufan; Qian, Geng; Ye, Qing; Ruzhin, Yuri

    2017-05-01

    The VLF radio signals recorded both from the ground based VLF radio wave monitoring network and the DEMETER satellite are investigated during the 2010 Ms 7.1 Yushu earthquake. The ground-based observations show that the disturbance intensity of VLF wave's amplitude relative to the background gets an enhancement over 22% at 11.9 kHz, 27% at 12.6 kHz and 62% at 14.9 kHz VLF radio wave along the path from Novosibirsk - TH one day before the main shock, as compared to the maximum 20% observed during non-earthquake time. The space based observations indicate that there is a decrease of the signal to noise ratio (SNR) for the power spectral density data of 14.9 kHz VLF radio signal at electric field four days before the main shock, with disturbance intensity exceeding the background by over 5% as compared to the maximum 3% observed during non-earthquake time. The geoelectric field observations in the epicenter region also show that a sharp enhancement from ∼340 to 430 mV/km simultaneously appeared at two monitors 14 days before main shock. The comparative analysis from the ground and space based observations during the earthquake and non-earthquake time provides us convincible evidence that there exits seismic anomalies from the VLF radio wave propagation before the 2010 Ms 7.1 Yushu earthquake. The possible mechanism for VLF radio signal propagation anomaly during 2010 Yushu earthquake maybe related to the change of the geoelectric field nearby the earthquake zone.

  4. A three-step maximum a posteriori probability method for InSAR data inversion of coseismic rupture with application to the 14 April 2010 Mw 6.9 Yushu, China, earthquake

    Science.gov (United States)

    Sun, Jianbao; Shen, Zheng-Kang; Bürgmann, Roland; Wang, Min; Chen, Lichun; Xu, Xiwei

    2013-08-01

    develop a three-step maximum a posteriori probability method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic deformation solutions of earthquake rupture. The method originates from the fully Bayesian inversion and mixed linear-nonlinear Bayesian inversion methods and shares the same posterior PDF with them, while overcoming difficulties with convergence when large numbers of low-quality data are used and greatly improving the convergence rate using optimization procedures. A highly efficient global optimization algorithm, adaptive simulated annealing, is used to search for the maximum of a posterior PDF ("mode" in statistics) in the first step. The second step inversion approaches the "true" solution further using the Monte Carlo inversion technique with positivity constraints, with all parameters obtained from the first step as the initial solution. Then slip artifacts are eliminated from slip models in the third step using the same procedure of the second step, with fixed fault geometry parameters. We first design a fault model with 45° dip angle and oblique slip, and produce corresponding synthetic interferometric synthetic aperture radar (InSAR) data sets to validate the reliability and efficiency of the new method. We then apply this method to InSAR data inversion for the coseismic slip distribution of the 14 April 2010 Mw 6.9 Yushu, China earthquake. Our preferred slip model is composed of three segments with most of the slip occurring within 15 km depth and the maximum slip reaches 1.38 m at the surface. The seismic moment released is estimated to be 2.32e+19 Nm, consistent with the seismic estimate of 2.50e+19 Nm.

  5. Harnessing the Collective Power of Eyewitnesses for Improved Earthquake Information

    Science.gov (United States)

    Bossu, R.; Lefebvre, S.; Mazet-Roux, G.; Steed, R.

    2013-12-01

    The Euro-Med Seismological Centre (EMSC) operates the second global earthquake information website (www.emsc-csem.org) which attracts 2 million visits a month from about 200 different countries. We collect information about earthquakes' effects from eyewitnesses such as online questionnaires, geolocated pics to rapidly constrain impact scenario. At the beginning, the collection was purely intended to address a scientific issue: the rapid evaluation of earthquake's impact. However, it rapidly appears that the understanding of eyewitnesses' expectations and motivations in the immediate aftermath of an earthquake was essential to optimise this data collection. Crowdsourcing information on earthquake's effects does not apply to a pre-existing community. By definition, eyewitnesses only exist once the earthquake has struck. We developed a strategy on social networks (Facebook, Google+, Twitter...) to interface with spontaneously emerging online communities of eyewitnesses. The basic idea is to create a positive feedback loop: attract eyewitnesses and engage with them by providing expected earthquake information and services, collect their observations, collate them for improved earthquake information services to attract more witnesses. We will present recent examples to illustrate how important the use of social networks is to engage with eyewitnesses especially in regions of low seismic activity where people are unaware of existing Internet resources dealing with earthquakes. A second type of information collated in our information services is derived from the real time analysis of the traffic on our website in the first minutes following an earthquake occurrence, an approach named flashsourcing. We show, using the example of the Mineral, Virginia earthquake that the arrival times of eyewitnesses of our website follows the propagation of the generated seismic waves and then, that eyewitnesses can be considered as ground motion sensors. Flashsourcing discriminates felt

  6. The effect of vertical earthquake component on the uplift of the nuclear reactor building

    International Nuclear Information System (INIS)

    Kobayashi, Toshio

    1986-01-01

    During a strong earthquake, the base mat of a nuclear reactor building may be lifted partially by the response overturning moment. And it causes geometrical nonlinear interaction between the base mat and rock foundation beneath it. In order to avoid this uplift phenomena, the base mat and/or plan of the building is enlarged in some cases. These special design need more cost and/or time in construction. In the evaluation of the uplift phenomena, a parameter ''η'' named ''contact ratio'' is used defined as the ratio of compression stress zone area of base mat for total area of base mat. Usually this contact ratio is calculated under the combination of the maximum overturning moment obtained by the linear earthquake response analysis and the normal force by the gravity considering the effect of the vertical earthquake component. In this report, the effect of vertical earthquake component for the uplift phenomena is studied and it concludes that the vertical earthquake component gives little influence on the contact ratio. In order to obtain more reasonable contact retio, the nonlinear rocking analysis subjected to horizontal and vertical earthquake motions simultaneously is proposed in this report. As the second best method, the combination of the maximum overturning moment obtained by linear analysis and the normal force by only the gravity without the vertical earthquake effect is proposed. (author)

  7. Earthquake response of heavily damaged historical masonry mosques after restoration

    Science.gov (United States)

    Altunışık, Ahmet Can; Fuat Genç, Ali

    2017-10-01

    Restoration works have been accelerated substantially in Turkey in the last decade. Many historical buildings, mosques, minaret, bridges, towers and structures have been restored. With these restorations an important issue arises, namely how restoration work affects the structure. For this reason, we aimed to investigate the restoration effect on the earthquake response of a historical masonry mosque considering the openings on the masonry dome. For this purpose, we used the Hüsrev Pasha Mosque, which is located in the Ortakapı district in the old city of Van, Turkey. The region of Van is in an active seismic zone; therefore, earthquake analyses were performed in this study. Firstly a finite element model of the mosque was constructed considering the restoration drawings and 16 window openings on the dome. Then model was constructed with eight window openings. Structural analyses were performed under dead load and earthquake load, and the mode superposition method was used in analyses. Maximum displacements, maximum-minimum principal stresses and shear stresses are given with contours diagrams. The results are analyzed according to Turkish Earthquake Code (TEC, 2007) and compared between 8 and 16 window openings cases. The results show that reduction of the window openings affected the structural behavior of the mosque positively.

  8. High-frequency maximum observable shaking map of Italy from fault sources

    KAUST Repository

    Zonno, Gaetano

    2012-03-17

    We present a strategy for obtaining fault-based maximum observable shaking (MOS) maps, which represent an innovative concept for assessing deterministic seismic ground motion at a regional scale. Our approach uses the fault sources supplied for Italy by the Database of Individual Seismogenic Sources, and particularly by its composite seismogenic sources (CSS), a spatially continuous simplified 3-D representation of a fault system. For each CSS, we consider the associated Typical Fault, i. e., the portion of the corresponding CSS that can generate the maximum credible earthquake. We then compute the high-frequency (1-50 Hz) ground shaking for a rupture model derived from its associated maximum credible earthquake. As the Typical Fault floats within its CSS to occupy all possible positions of the rupture, the high-frequency shaking is updated in the area surrounding the fault, and the maximum from that scenario is extracted and displayed on a map. The final high-frequency MOS map of Italy is then obtained by merging 8,859 individual scenario-simulations, from which the ground shaking parameters have been extracted. To explore the internal consistency of our calculations and validate the results of the procedure we compare our results (1) with predictions based on the Next Generation Attenuation ground-motion equations for an earthquake of M w 7.1, (2) with the predictions of the official Italian seismic hazard map, and (3) with macroseismic intensities included in the DBMI04 Italian database. We then examine the uncertainties and analyse the variability of ground motion for different fault geometries and slip distributions. © 2012 Springer Science+Business Media B.V.

  9. High-frequency maximum observable shaking map of Italy from fault sources

    KAUST Repository

    Zonno, Gaetano; Basili, Roberto; Meroni, Fabrizio; Musacchio, Gemma; Mai, Paul Martin; Valensise, Gianluca

    2012-01-01

    We present a strategy for obtaining fault-based maximum observable shaking (MOS) maps, which represent an innovative concept for assessing deterministic seismic ground motion at a regional scale. Our approach uses the fault sources supplied for Italy by the Database of Individual Seismogenic Sources, and particularly by its composite seismogenic sources (CSS), a spatially continuous simplified 3-D representation of a fault system. For each CSS, we consider the associated Typical Fault, i. e., the portion of the corresponding CSS that can generate the maximum credible earthquake. We then compute the high-frequency (1-50 Hz) ground shaking for a rupture model derived from its associated maximum credible earthquake. As the Typical Fault floats within its CSS to occupy all possible positions of the rupture, the high-frequency shaking is updated in the area surrounding the fault, and the maximum from that scenario is extracted and displayed on a map. The final high-frequency MOS map of Italy is then obtained by merging 8,859 individual scenario-simulations, from which the ground shaking parameters have been extracted. To explore the internal consistency of our calculations and validate the results of the procedure we compare our results (1) with predictions based on the Next Generation Attenuation ground-motion equations for an earthquake of M w 7.1, (2) with the predictions of the official Italian seismic hazard map, and (3) with macroseismic intensities included in the DBMI04 Italian database. We then examine the uncertainties and analyse the variability of ground motion for different fault geometries and slip distributions. © 2012 Springer Science+Business Media B.V.

  10. Vrancea slab earthquakes triggered by static stress transfer

    Directory of Open Access Journals (Sweden)

    A. Ganas

    2010-12-01

    Full Text Available The purpose of this paper is to study the interaction of the Vrancea seismic activity (Romania in space as result of Coulomb, static stress transfer during M=7+ events. In this area, three large events occurred in 1977, 1986 and 1990 at mid-lower, lithospheric depths and with similar focal mechanisms. Assuming elastic rheology for the deforming rocks it is suggested that frictional sliding on pre-existing fault produced the 1986 M=7.1 event (depth 131 km, that was possibly triggered by the 1977 M=7.4 event (depth 94 km. We calculated a static stress transfer of 0.52–0.78 bar to the hypocentre of the 1986 event. On the contrary, the occurrence of the 1990 event is uncertain: it is located inside the relaxed (shadow zone of the combined 1977 and 1986 static stress field considering an azimuth for maximum compression of N307° E. It follows that, the 1990 earthquake most likely represents an unbroken patch (asperity of the 1977 rupture plane that failed due to loading. However, if a different compression azimuth is assumed (N323° E then the 1990 event was also possibly triggered by static stress transfer of the 1977 and 1986 events (combined. Our modeling is a first-order approximation of the kind of earthquake interaction we might expect at intermediate lithospheric depths (80–90 to 130–140 km. It is also suggested that static stress transfer may explain the clustering of Vrancea earthquakes in space by the rupturing of two (possibly three NW-dipping major zones of weakness (faults which accommodate the extension (vertical elongation of the slab.

  11. Isolating social influences on vulnerability to earthquake shaking: identifying cost-effective mitigation strategies.

    Science.gov (United States)

    Bhloscaidh, Mairead Nic; McCloskey, John; Pelling, Mark; Naylor, Mark

    2013-04-01

    Until expensive engineering solutions become more universally available, the objective targeting of resources at demonstrably effective, low-cost interventions might help reverse the trend of increasing mortality in earthquakes. Death tolls in earthquakes are the result of complex interactions between physical effects, such as the exposure of the population to strong shaking, and the resilience of the exposed population along with supporting critical infrastructures and institutions. The identification of socio-economic factors that contribute to earthquake mortality is crucial to identifying and developing successful risk management strategies. Here we develop a quantitative methodology more objectively to assess the ability of communities to withstand earthquake shaking, focusing on, in particular, those cases where risk management performance appears to exceed or fall below expectations based on economic status. Using only published estimates of the shaking intensity and population exposure for each earthquake, data that is available for earthquakes in countries irrespective of their level of economic development, we develop a model for mortality based on the contribution of population exposure to shaking only. This represents an attempt to remove, as far as possible, the physical causes of mortality from our analysis (where we consider earthquake engineering to reduce building collapse among the socio-economic influences). The systematic part of the variance with respect to this model can therefore be expected to be dominated by socio-economic factors. We find, as expected, that this purely physical analysis partitions countries in terms of basic socio-economic measures, for example GDP, focusing analytical attention on the power of economic measures to explain variance in observed distributions of earthquake risk. The model allows the definition of a vulnerability index which, although broadly it demonstrates the expected income-dependence of vulnerability to

  12. The limits of earthquake early warning: Timeliness of ground motion estimates

    Science.gov (United States)

    Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information.

  13. Maximum Simulated Likelihood and Expectation-Maximization Methods to Estimate Random Coefficients Logit with Panel Data

    DEFF Research Database (Denmark)

    Cherchi, Elisabetta; Guevara, Cristian

    2012-01-01

    with cross-sectional or with panel data, and (d) EM systematically attained more efficient estimators than the MSL method. The results imply that if the purpose of the estimation is only to determine the ratios of the model parameters (e.g., the value of time), the EM method should be preferred. For all......The random coefficients logit model allows a more realistic representation of agents' behavior. However, the estimation of that model may involve simulation, which may become impractical with many random coefficients because of the curse of dimensionality. In this paper, the traditional maximum...... simulated likelihood (MSL) method is compared with the alternative expectation- maximization (EM) method, which does not require simulation. Previous literature had shown that for cross-sectional data, MSL outperforms the EM method in the ability to recover the true parameters and estimation time...

  14. Fundamental principles of earthquake resistance calculation to be reflected in the next generation regulations

    OpenAIRE

    Mkrtychev Oleg; Dzhinchvelashvili Guram

    2016-01-01

    The article scrutinizes the pressing issues of regulation in the domain of seismic construction. The existing code of rules SNIP II-7-81* “Construction in seismic areas” provides that earthquake resistance calculation be performed on two levels of impact: basic safety earthquake (BSE) and maximum considered earthquake (MCE). However, the very nature of such calculation cannot be deemed well-founded and contradicts the fundamental standards of foreign countries. The authors of the article have...

  15. An Earthquake Source Sensitivity Analysis for Tsunami Propagation in the Eastern Mediterranean

    Science.gov (United States)

    Necmioglu, Ocal; Meral Ozel, Nurcan

    2013-04-01

    An earthquake source parameter sensitivity analysis for tsunami propagation in the Eastern Mediterranean has been performed based on 8 August 1303 Crete and Dodecanese Islands earthquake resulting in destructive inundation in the Eastern Mediterranean. The analysis involves 23 cases describing different sets of strike, dip, rake and focal depth, while keeping the fault area and displacement, thus the magnitude, same. The main conclusions of the evaluation are drawn from the investigation of the wave height distributions at Tsunami Forecast Points (TFP). The earthquake vs. initial tsunami source parameters comparison indicated that the maximum initial wave height values correspond in general to the changes in rake angle. No clear depth dependency is observed within the depth range considered and no strike angle dependency is observed in terms of amplitude change. Directivity sensitivity analysis indicated that for the same strike and dip, 180° shift in rake may lead to 20% change in the calculated tsunami wave height. Moreover, an approximately 10 min difference in the arrival time of the initial wave has been observed. These differences are, however, greatly reduced in the far field. The dip sensitivity analysis, performed separately for thrust and normal faulting, has both indicated that an increase in the dip angle results in the decrease of the tsunami wave amplitude in the near field approximately 40%. While a positive phase shift is observed, the period and the shape of the initial wave stays nearly the same for all dip angles at respective TFPs. These affects are, however, not observed at the far field. The resolution of the bathymetry, on the other hand, is a limiting factor for further evaluation. Four different cases were considered for the depth sensitivity indicating that within the depth ranges considered (15-60 km), the increase of the depth has only a smoothing effect on the synthetic tsunami wave height measurements at the selected TFPs. The strike

  16. From Multi-Sensors Observations Towards Cross-Disciplinary Study of Pre-Earthquake Signals. What have We Learned from the Tohoku Earthquake?

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hayakawa, M.; Mogi, K.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events

  17. Earthquake behavior at deep underground observed by three-dimensional array

    International Nuclear Information System (INIS)

    Komada, Hiroya; Sawada, Yoshihiro; Aoyama, Shigeo.

    1989-01-01

    The earthquake observation has been carried out using an eight point three-dimensional array between on-ground and the depth of about 400 m at Hosokura Mine in Miyagi prefecture, for the purpose of obtaining the basic datum on the characteristics of the seismic waves for the earthquake resistance design of the deep underground disposal facility of high level waste. The following results ware obtained. (1) The maximum accelerations at the underground are damped to about 60 % of those at on-ground horizontal and to about 70 % vertical. (2) Although the frequency characteristics of the seismic waves varies for each earthquake, the transfer characteristics of seismic waves from deep underground to on-ground is the same for each earthquake. (3) The horizontal dirrections of seismic wave incidence are similar to the directions from epicenters of each earthquake. The vertical directions of seismic wave incidence are in the range of about 3deg to 35deg from vertical line. (author)

  18. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    Science.gov (United States)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    very low rupture velocity. The low rupture velocity can mean slow-faulting, which brings to slow release of accumulated seismic energy. The slow release energy does principally little to moderate damages. Additionally wave form of the earthquake shows low frequency content of P-waves (the maximum P-wave is at 1.19 Hz) and the specific P- wave displacement spectral is characterise with not expressed spectrum plateau and corner frequency. These and other signs suggest us to the conclusion, that the 2012 Mw5.6 earthquake can be considered as types of slow earthquake, like a low frequency quake. The study is based on data from Bulgarian seismological network (NOTSSI), the local network (LSN) deployed around Kozloduy NPP and System of Accelerographs for Seismic Monitoring of Equipment and Structures (SASMES) installed in the Kozloduy NPP. NOTSSI jointly with LSN and SASMES provide reliable information for multiple studies on seismicity in regional scale.

  19. Preliminary quantitative assessment of earthquake casualties and damages

    DEFF Research Database (Denmark)

    Badal, J.; Vázquez-Prada, M.; González, Á.

    2005-01-01

    Prognostic estimations of the expected number of killed or injured people and about the approximate cost associated with the damages caused by earthquakes are made following a suitable methodology of wide-ranging application. For the preliminary assessment of human life losses due to the occurrence...... of a relatively strong earthquake we use a quantitative model consisting of a correlation between the number of casualties and the earthquake magnitude as a function of population density. The macroseismic intensity field is determined in accordance with an updated anelastic attenuation law, and the number...... the local social wealth as a function of the gross domestic product of the country. This last step is performed on the basis of the relationship of the macroseismic intensity to the earthquake economic loss in percentage of the wealth. Such an approach to the human casualty and damage levels is carried out...

  20. Effect of slip-area scaling on the earthquake frequency-magnitude relationship

    Science.gov (United States)

    Senatorski, Piotr

    2017-06-01

    The earthquake frequency-magnitude relationship is considered in the maximum entropy principle (MEP) perspective. The MEP suggests sampling with constraints as a simple stochastic model of seismicity. The model is based on the von Neumann's acceptance-rejection method, with b-value as the parameter that breaks symmetry between small and large earthquakes. The Gutenberg-Richter law's b-value forms a link between earthquake statistics and physics. Dependence between b-value and the rupture area vs. slip scaling exponent is derived. The relationship enables us to explain observed ranges of b-values for different types of earthquakes. Specifically, different b-value ranges for tectonic and induced, hydraulic fracturing seismicity is explained in terms of their different triggering mechanisms: by the applied stress increase and fault strength reduction, respectively.

  1. Stress triggering and the Canterbury earthquake sequence

    Science.gov (United States)

    Steacy, Sandy; Jiménez, Abigail; Holden, Caroline

    2014-01-01

    The Canterbury earthquake sequence, which includes the devastating Christchurch event of 2011 February, has to date led to losses of around 40 billion NZ dollars. The location and severity of the earthquakes was a surprise to most inhabitants as the seismic hazard model was dominated by an expected Mw > 8 earthquake on the Alpine fault and an Mw 7.5 earthquake on the Porters Pass fault, 150 and 80 km to the west of Christchurch. The sequence to date has included an Mw = 7.1 earthquake and 3 Mw ≥ 5.9 events which migrated from west to east. Here we investigate whether the later events are consistent with stress triggering and whether a simple stress map produced shortly after the first earthquake would have accurately indicated the regions where the subsequent activity occurred. We find that 100 per cent of M > 5.5 earthquakes occurred in positive stress areas computed using a slip model for the first event that was available within 10 d of its occurrence. We further find that the stress changes at the starting points of major slip patches of post-Darfield main events are consistent with triggering although this is not always true at the hypocentral locations. Our results suggest that Coulomb stress changes contributed to the evolution of the Canterbury sequence and we note additional areas of increased stress in the Christchurch region and on the Porters Pass fault.

  2. Induced seismicity provides insight into why earthquake ruptures stop

    KAUST Repository

    Galis, Martin; Ampuero, Jean Paul; Mai, Paul Martin; Cappa, Fré dé ric

    2017-01-01

    the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes

  3. An Overview of Soil Models for Earthquake Response Analysis

    Directory of Open Access Journals (Sweden)

    Halida Yunita

    2015-01-01

    Full Text Available Earthquakes can damage thousands of buildings and infrastructure as well as cause the loss of thousands of lives. During an earthquake, the damage to buildings is mostly caused by the effect of local soil conditions. Depending on the soil type, the earthquake waves propagating from the epicenter to the ground surface will result in various behaviors of the soil. Several studies have been conducted to accurately obtain the soil response during an earthquake. The soil model used must be able to characterize the stress-strain behavior of the soil during the earthquake. This paper compares equivalent linear and nonlinear soil model responses. Analysis was performed on two soil types, Site Class D and Site Class E. An equivalent linear soil model leads to a constant value of shear modulus, while in a nonlinear soil model, the shear modulus changes constantly,depending on the stress level, and shows inelastic behavior. The results from a comparison of both soil models are displayed in the form of maximum acceleration profiles and stress-strain curves.

  4. Statistical aspects and risks of human-caused earthquakes

    Science.gov (United States)

    Klose, C. D.

    2013-12-01

    The seismological community invests ample human capital and financial resources to research and predict risks associated with earthquakes. Industries such as the insurance and re-insurance sector are equally interested in using probabilistic risk models developed by the scientific community to transfer risks. These models are used to predict expected losses due to naturally occurring earthquakes. But what about the risks associated with human-caused earthquakes? Such risk models are largely absent from both industry and academic discourse. In countries around the world, informed citizens are becoming increasingly aware and concerned that this economic bias is not sustainable for long-term economic growth, environmental and human security. Ultimately, citizens look to their government officials to hold industry accountable. In the Netherlands, for example, the hydrocarbon industry is held accountable for causing earthquakes near Groningen. In Switzerland, geothermal power plants were shut down or suspended because they caused earthquakes in canton Basel and St. Gallen. The public and the private non-extractive industry needs access to information about earthquake risks in connection with sub/urban geoengineeing activities, including natural gas production through fracking, geothermal energy production, carbon sequestration, mining and water irrigation. This presentation illuminates statistical aspects of human-caused earthquakes with respect to different geologic environments. Statistical findings are based on the first catalog of human-caused earthquakes (in Klose 2013). Findings are discussed which include the odds to die during a medium-size earthquake that is set off by geomechanical pollution. Any kind of geoengineering activity causes this type of pollution and increases the likelihood of triggering nearby faults to rupture.

  5. A smartphone application for earthquakes that matter!

    Science.gov (United States)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected

  6. It is time to abandon "expected bladder capacity." Systematic review and new models for children's normal maximum voided volumes.

    Science.gov (United States)

    Martínez-García, Roberto; Ubeda-Sansano, Maria Isabel; Díez-Domingo, Javier; Pérez-Hoyos, Santiago; Gil-Salom, Manuel

    2014-09-01

    There is an agreement to use simple formulae (expected bladder capacity and other age based linear formulae) as bladder capacity benchmark. But real normal child's bladder capacity is unknown. To offer a systematic review of children's normal bladder capacity, to measure children's normal maximum voided volumes (MVVs), to construct models of MVVs and to compare them with the usual formulae. Computerized, manual and grey literature were reviewed until February 2013. Epidemiological, observational, transversal, multicenter study. A consecutive sample of healthy children aged 5-14 years, attending Primary Care centres with no urologic abnormality were selected. Participants filled-in a 3-day frequency-volume chart. Variables were MVVs: maximum of 24 hr, nocturnal, and daytime maximum voided volumes. diuresis and its daytime and nighttime fractions; body-measure data; and gender. The consecutive steps method was used in a multivariate regression model. Twelve articles accomplished systematic review's criteria. Five hundred and fourteen cases were analysed. Three models, one for each of the MVVs, were built. All of them were better adjusted to exponential equations. Diuresis (not age) was the most significant factor. There was poor agreement between MVVs and usual formulae. Nocturnal and daytime maximum voided volumes depend on several factors and are different. Nocturnal and daytime maximum voided volumes should be used with different meanings in clinical setting. Diuresis is the main factor for bladder capacity. This is the first model for benchmarking normal MVVs with diuresis as its main factor. Current formulae are not suitable for clinical use. © 2013 Wiley Periodicals, Inc.

  7. Modified mercalli intensities for nine earthquakes in central and western Washington between 1989 and 1999

    Science.gov (United States)

    Brocher, Thomas M.; Dewey, James W.; Cassidy, John F.

    2017-08-15

    We determine Modified Mercalli (Seismic) Intensities (MMI) for nine onshore earthquakes of magnitude 4.5 and larger that occurred in central and western Washington between 1989 and 1999, on the basis of effects reported in postal questionnaires, the press, and professional collaborators. The earthquakes studied include four earthquakes of M5 and larger: the M5.0 Deming earthquake of April 13, 1990, the M5.0 Point Robinson earthquake of January 29, 1995, the M5.4 Duvall earthquake of May 3, 1996, and the M5.8 Satsop earthquake of July 3, 1999. The MMI are assigned using data and procedures that evolved at the U.S. Geological Survey (USGS) and its Department of Commerce predecessors and that were used to assign MMI to felt earthquakes occurring in the United States between 1931 and 1986. We refer to the MMI assigned in this report as traditional MMI, because they are based on responses to postal questionnaires and on newspaper reports, and to distinguish them from MMI calculated from data contributed by the public by way of the internet. Maximum traditional MMI documented for the M5 and larger earthquakes are VII for the 1990 Deming earthquake, V for the 1995 Point Robinson earthquake, VI for the 1996 Duvall earthquake, and VII for the 1999 Satsop earthquake; the five other earthquakes were variously assigned maximum intensities of IV, V, or VI. Starting in 1995, the Pacific Northwest Seismic Network (PNSN) published MMI maps for four of the studied earthquakes, based on macroseismic observations submitted by the public by way of the internet. With the availability now of the traditional USGS MMI interpreted for all the sites from which USGS postal questionnaires were returned, the four Washington earthquakes join a rather small group of earthquakes for which both traditional USGS MMI and some type of internet-based MMI have been assigned. The values and distributions of the traditional MMI are broadly similar to the internet-based PNSN intensities; we discuss some

  8. Deeper penetration of large earthquakes on seismically quiescent faults.

    Science.gov (United States)

    Jiang, Junle; Lapusta, Nadia

    2016-06-10

    Why many major strike-slip faults known to have had large earthquakes are silent in the interseismic period is a long-standing enigma. One would expect small earthquakes to occur at least at the bottom of the seismogenic zone, where deeper aseismic deformation concentrates loading. We suggest that the absence of such concentrated microseismicity indicates deep rupture past the seismogenic zone in previous large earthquakes. We support this conclusion with numerical simulations of fault behavior and observations of recent major events. Our modeling implies that the 1857 Fort Tejon earthquake on the San Andreas Fault in Southern California penetrated below the seismogenic zone by at least 3 to 5 kilometers. Our findings suggest that such deeper ruptures may occur on other major fault segments, potentially increasing the associated seismic hazard. Copyright © 2016, American Association for the Advancement of Science.

  9. Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes

    Science.gov (United States)

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M. A.; Johnson, Neil F.

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow. PMID:24406467

  10. Using Earthquake Location and Coda Attenuation Analysis to Explore Shallow Structures Above the Socorro Magma Body, New Mexico

    Science.gov (United States)

    Schmidt, J. P.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.

    2017-12-01

    The Socorro Magma Body (SMB) is a thin, sill-like intrusion with a top at 19 km depth covering approximately 3400 km2 within the Rio Grande Rift. InSAR studies show crustal uplift patterns linked to SMB inflation with deformation rates of 2.5 mm/yr in the area of maximum uplift with some peripheral subsidence. Our understanding of the emplacement history and shallow structure above the SMB is limited. We use a large seismic deployment to explore seismicity and crustal attenuation in the SMB region, focusing on the area of highest observed uplift to investigate the possible existence of fluid/magma in the upper crust. We would expect to see shallower earthquakes and/or higher attenuation if high heat flow, fluid or magma is present in the upper crust. Over 800 short period vertical component geophones situated above the northern portion of the SMB were deployed for two weeks in 2015. This data is combined with other broadband and short period seismic stations to detect and locate earthquakes as well as to estimate seismic attenuation. We use phase arrivals from the full dataset to relocate a set of 33 local/regional earthquakes recorded during the deployment. We also measure amplitude decay after the S-wave arrival to estimate coda attenuation caused by scattering of seismic waves and anelastic processes. Coda attenuation is estimated using the single backscatter method described by Aki and Chouet (1975), filtering the seismograms at 6, 9 and 12 Hz center frequencies. Earthquakes occurred at 2-13 km depth during the deployment, but no spatial patterns linked with the high uplift region were observed over this short duration. Attenuation results for this deployment suggest Q ranging in values of 130 to 2000, averaging around Q of 290, comparable to Q estimates of other studies of the western US. With our dense station coverage, we explore attenuation over smaller scales, and find higher attenuation for stations in the area of maximum uplift relative to stations

  11. Best-practice life expectancy: An extreme value approach

    Directory of Open Access Journals (Sweden)

    Anthony Medford

    2017-03-01

    Full Text Available Background: Whereas the rise in human life expectancy has been extensively studied, the evolution of maximum life expectancies, i.e., the rise in best-practice life expectancy in a group of populations, has not been examined to the same extent. The linear rise in best-practice life expectancy has been reported previously by various authors. Though remarkable, this is simply an empirical observation. Objective: We examine best-practice life expectancy more formally by using extreme value theory. Methods: Extreme value distributions are fit to the time series (1900 to 2012 of maximum life expectancies at birth and age 65, for both sexes, using data from the Human Mortality Database and the United Nations. Conclusions: Generalized extreme value distributions offer a theoretically justified way to model best-practice life expectancies. Using this framework one can straightforwardly obtain probability estimates of best-practice life expectancy levels or make projections about future maximum life expectancy. Comments: Our findings may be useful for policymakers and insurance/pension analysts who would like to obtain estimates and probabilities of future maximum life expectancies.

  12. Self-exciting point process in modeling earthquake occurrences

    International Nuclear Information System (INIS)

    Pratiwi, H.; Slamet, I.; Respatiwulan; Saputro, D. R. S.

    2017-01-01

    In this paper, we present a procedure for modeling earthquake based on spatial-temporal point process. The magnitude distribution is expressed as truncated exponential and the event frequency is modeled with a spatial-temporal point process that is characterized uniquely by its associated conditional intensity process. The earthquakes can be regarded as point patterns that have a temporal clustering feature so we use self-exciting point process for modeling the conditional intensity function. The choice of main shocks is conducted via window algorithm by Gardner and Knopoff and the model can be fitted by maximum likelihood method for three random variables. (paper)

  13. Experimental evidence that thrust earthquake ruptures might open faults.

    Science.gov (United States)

    Gabuchian, Vahe; Rosakis, Ares J; Bhat, Harsha S; Madariaga, Raúl; Kanamori, Hiroo

    2017-05-18

    Many of Earth's great earthquakes occur on thrust faults. These earthquakes predominantly occur within subduction zones, such as the 2011 moment magnitude 9.0 eathquake in Tohoku-Oki, Japan, or along large collision zones, such as the 1999 moment magnitude 7.7 earthquake in Chi-Chi, Taiwan. Notably, these two earthquakes had a maximum slip that was very close to the surface. This contributed to the destructive tsunami that occurred during the Tohoku-Oki event and to the large amount of structural damage caused by the Chi-Chi event. The mechanism that results in such large slip near the surface is poorly understood as shallow parts of thrust faults are considered to be frictionally stable. Here we use earthquake rupture experiments to reveal the existence of a torquing mechanism of thrust fault ruptures near the free surface that causes them to unclamp and slip large distances. Complementary numerical modelling of the experiments confirms that the hanging-wall wedge undergoes pronounced rotation in one direction as the earthquake rupture approaches the free surface, and this torque is released as soon as the rupture breaks the free surface, resulting in the unclamping and violent 'flapping' of the hanging-wall wedge. Our results imply that the shallow extent of the seismogenic zone of a subducting interface is not fixed and can extend up to the trench during great earthquakes through a torquing mechanism.

  14. Is earthquake rate in south Iceland modified by seasonal loading?

    Science.gov (United States)

    Jonsson, S.; Aoki, Y.; Drouin, V.

    2017-12-01

    Several temporarily varying processes have the potential of modifying the rate of earthquakes in the south Iceland seismic zone, one of the two most active seismic zones in Iceland. These include solid earth tides, seasonal meteorological effects and influence from passing weather systems, and variations in snow and glacier loads. In this study we investigate the influence these processes may have on crustal stresses and stressing rates in the seismic zone and assess whether they appear to be influencing the earthquake rate. While historical earthquakes in the south Iceland have preferentially occurred in early summer, this tendency is less clear for small earthquakes. The local earthquake catalogue (going back to 1991, magnitude of completeness M6+ earthquakes, which occurred in June 2000 and May 2008. Standard Reasenberg earthquake declustering or more involved model independent stochastic declustering algorithms are not capable of fully eliminating the aftershocks from the catalogue. We therefore inspected the catalogue for the time period before 2000 and it shows limited seasonal tendency in earthquake occurrence. Our preliminary results show no clear correlation between earthquake rates and short-term stressing variations induced from solid earth tides or passing storms. Seasonal meteorological effects also appear to be too small to influence the earthquake activity. Snow and glacier load variations induce significant vertical motions in the area with peak loading occurring in Spring (April-May) and maximum unloading in Fall (Sept.-Oct.). Early summer occurrence of historical earthquakes therefore correlates with early unloading rather than with the peak unloading or unloading rate, which appears to indicate limited influence of this seasonal process on the earthquake activity.

  15. On the reliability of the geomagnetic quake as a short time earthquake's precursor for the Sofia region

    Directory of Open Access Journals (Sweden)

    S. Cht. Mavrodiev

    2004-01-01

    Full Text Available The local 'when' for earthquake prediction is based on the connection between geomagnetic 'quakes' and the next incoming minimum or maximum of tidal gravitational potential. The probability time window for the predicted earthquake is for the tidal minimum approximately ±1 day and for the maximum ±2 days. The preliminary statistic estimation on the basis of distribution of the time difference between occurred and predicted earthquakes for the period 2002-2003 for the Sofia region is given. The possibility for creating a local 'when, where' earthquake research and prediction NETWORK is based on the accurate monitoring of the electromagnetic field with special space and time scales under, on and over the Earth's surface. The periodically upgraded information from seismic hazard maps and other standard geodetic information, as well as other precursory information, is essential.

  16. Evidences of landslide earthquake triggering due to self-excitation process

    Science.gov (United States)

    Bozzano, F.; Lenti, L.; Martino, Salvatore; Paciello, A.; Scarascia Mugnozza, G.

    2011-06-01

    The basin-like setting of stiff bedrock combined with pre-existing landslide masses can contribute to seismic amplifications in a wide frequency range (0-10 Hz) and induce a self-excitation process responsible for earthquake-triggered landsliding. Here, the self-excitation process is proposed to justify the far-field seismic trigger of the Cerda landslide (Sicily, Italy) which was reactivated by the 6th September 2002 Palermo earthquake ( M s = 5.4), about 50 km far from the epicentre. The landslide caused damage to farm houses, roads and aqueducts, close to the village of Cerda, and involved about 40 × 106 m3 of clay shales; the first ground cracks due to the landslide movement formed about 30 min after the main shock. A stress-strain dynamic numerical modelling, performed by FDM code FLAC 5.0, supports the notion that the combination of local geological setting and earthquake frequency content played a fundamental role in the landslide reactivation. Since accelerometric records of the triggering event are not available, dynamic equivalent inputs have been used for the numerical modelling. These inputs can be regarded as representative for the local ground shaking, having a PGA value up to 0.2 m/s2, which is the maximum expected in 475 years, according to the Italian seismic hazard maps. A 2D numerical modelling of the seismic wave propagation in the Cerda landslide area was also performed; it pointed out amplification effects due to both the structural setting of the stiff bedrock (at about 1 Hz) and the pre-existing landslide mass (in the range 3-6 Hz). The frequency peaks of the resulting amplification functions ( A( f)) fit well the H/ V spectral ratios from ambient noise and the H/ H spectral ratios to a reference station from earthquake records, obtained by in situ velocimetric measurements. Moreover, the Fourier spectra of earthquake accelerometric records, whose source and magnitude are consistent with the triggering event, show a main peak at about 1 Hz

  17. A prospective earthquake forecast experiment in the western Pacific

    Science.gov (United States)

    Eberhard, David A. J.; Zechar, J. Douglas; Wiemer, Stefan

    2012-09-01

    Since the beginning of 2009, the Collaboratory for the Study of Earthquake Predictability (CSEP) has been conducting an earthquake forecast experiment in the western Pacific. This experiment is an extension of the Kagan-Jackson experiments begun 15 years earlier and is a prototype for future global earthquake predictability experiments. At the beginning of each year, seismicity models make a spatially gridded forecast of the number of Mw≥ 5.8 earthquakes expected in the next year. For the three participating statistical models, we analyse the first two years of this experiment. We use likelihood-based metrics to evaluate the consistency of the forecasts with the observed target earthquakes and we apply measures based on Student's t-test and the Wilcoxon signed-rank test to compare the forecasts. Overall, a simple smoothed seismicity model (TripleS) performs the best, but there are some exceptions that indicate continued experiments are vital to fully understand the stability of these models, the robustness of model selection and, more generally, earthquake predictability in this region. We also estimate uncertainties in our results that are caused by uncertainties in earthquake location and seismic moment. Our uncertainty estimates are relatively small and suggest that the evaluation metrics are relatively robust. Finally, we consider the implications of our results for a global earthquake forecast experiment.

  18. Earthquake early warning using P-waves that appear after initial S-waves

    Science.gov (United States)

    Kodera, Y.

    2017-12-01

    As measures for underprediction for large earthquakes with finite faults and overprediction for multiple simultaneous earthquakes, Hoshiba (2013), Hoshiba and Aoki (2015), and Kodera et al. (2016) proposed earthquake early warning (EEW) methods that directly predict ground motion by computing the wave propagation of observed ground motion. These methods are expected to predict ground motion with a high accuracy even for complicated scenarios because these methods do not need source parameter estimation. On the other hand, there is room for improvement in their rapidity because they predict strong motion prediction mainly based on the observation of S-waves and do not explicitly use P-wave information available before the S-waves. In this research, we propose a real-time P-wave detector to incorporate P-wave information into these wavefield-estimation approaches. P-waves within a few seconds from the P-onsets are commonly used in many existing EEW methods. In addition, we focus on P-waves that may appear in the later part of seismic waves. Kurahashi and Irikura (2013) mentioned that P-waves radiated from strong motion generation areas (SMGAs) were recognizable after S-waves of the initial rupture point in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) (the Tohoku-oki earthquake). Detecting these P-waves would enhance the rapidity of prediction for the peak ground motion generated by SMGAs. We constructed a real-time P-wave detector that uses a polarity analysis. Using acceleration records in boreholes of KiK-net (band-pass filtered around 0.5-10 Hz with site amplification correction), the P-wave detector performed the principal component analysis with a sliding window of 4 s and calculated P-filter values (e.g. Ross and Ben-Zion, 2014). The application to the Tohoku-oki earthquake (Mw 9.0) showed that (1) peaks of P-filter that corresponded to SMGAs appeared in several stations located near SMGAs and (2) real-time seismic intensities (Kunugi et al

  19. One feature of the activated southern Ordos block: the Ziwuling small earthquake cluster

    Directory of Open Access Journals (Sweden)

    Li Yuhang

    2014-08-01

    Full Text Available Small earthquakes (Ms > 2.0 have been recorded from 1970 to the present day and reveal a significant difference in seismicity between the stable Ordos block and its active surrounding area. The southern Ordos block is a conspicuous small earthquake belt clustered and isolated along the NNW direction and extends to the inner stable Ordos block; no active fault can match this small earthquake cluster. In this paper, we analyze the dynamic mechanism of this small earthquake cluster based on the GPS velocity field (from 1999 to 2007, which are mainly from Crustal Movement Observation Network of China (CMONOC with respect to the north and south China blocks. The principal direction of strain rate field, the expansion ratefield, the maximum shear strain rate, and the rotation rate were constrained using the GPS velocity field. The results show that the velocity field, which is bounded by the small earthquake cluster from Tongchuan to Weinan, differs from the strain rate field, and the crustal deformation is left-lateral shear. This left-lateral shear belt not only spatially coincides with the Neo-tectonic belt in the Weihe Basin but also with the NNW small earthquake cluster (the Ziwuling small earthquake cluster. Based on these studies, we speculate that the NNW small earthquake cluster is caused by left-lateral shear slip, which is prone to strain accumulation. When the strain releases along the weak zone of structure, small earthquakes diffuse within its upper crust. The maximum principal compression strees direction changed from NE-SW to NEE-SWW, and the former reverse faults in the southwestern margin of the Ordos block became a left-lateral strike slip due to readjustment of the tectonic strees field after the middle Pleistocene. The NNW Neo-tectonic belt in the Weihe Basin, the different movement character of the inner Weihe Basin (which was demonstrated through GPS measurements and the small earthquake cluster belt reflect the activated

  20. The earthquakes of stable continental regions. Volume 2: Appendices A to E. Final report

    International Nuclear Information System (INIS)

    Johnston, A.C.; Kanter, L.R.; Coppersmith, K.J.; Cornell, C.A.

    1994-12-01

    The objectives of the study were to develop a comprehensive database of earthquakes in stable continental regions (SCRs) and to statistically examine use of the database for the assessment of large earthquake potential. We identified nine major and several minor SCRs worldwide and compiled a database of geologic characteristics of tectonic domains within each SCR. We examined all available earthquake data from SCRs, from historical accounts of events with no instrumental ground-motion data to present-day instrumentally recorded events. In all, 1,385 events were analyzed. Using moment magnitude 4.5 as the lower bound threshold for inclusion in the database, 870 were assigned to an SCR, 124 were found to be transitional to an SCR, and 391 were examined, but rejected. We then performed a seismotectonic analysis to determine what distinguishes seismic activity in SCRs from other types of crust, such as active plate margins or active continental regions. General observations are: (1) SCRs comprise nearly two-thirds of all continental crust of which 25% is considered to be extended (i.e., rifted); (2) the majority of seismic energy release and the largest earthquakes in SCRs have occurred in extended crust; and (3) active plate margins release seismic energy at a rate per unit area approximately 7,000 times the average for non-extended SCRs. Finally, results of a statistical examination of distributions of historical maximum earthquakes between different crustal domain types indicated that additional information is needed in order to adequately constrain estimates of maximum earthquakes for any given region. Thus, a Bayesian approach was developed in which statistical constraints from the database were used to develop a prior distribution, which may then be combined with source-specific information to constrain maximum magnitude assessments for use in probabilistic seismic hazard analyses

  1. Observing earthquakes triggered in the near field by dynamic deformations

    Science.gov (United States)

    Gomberg, J.; Bodin, P.; Reasenberg, P.A.

    2003-01-01

    We examine the hypothesis that dynamic deformations associated with seismic waves trigger earthquakes in many tectonic environments. Our analysis focuses on seismicity at close range (within the aftershock zone), complementing published studies of long-range triggering. Our results suggest that dynamic triggering is not confined to remote distances or to geothermal and volcanic regions. Long unilaterally propagating ruptures may focus radiated dynamic deformations in the propagation direction. Therefore, we expect seismicity triggered dynamically by a directive rupture to occur asymmetrically, with a majority of triggered earthquakes in the direction of rupture propagation. Bilaterally propagating ruptures also may be directive, and we propose simple criteria for assessing their directivity. We compare the inferred rupture direction and observed seismicity rate change following 15 earthquakes (M 5.7 to M 8.1) that occured in California and Idaho in the United States, the Gulf of Aqaba, Syria, Guatemala, China, New Guinea, Turkey, Japan, Mexico, and Antarctica. Nine of these mainshocks had clearly directive, unilateral ruptures. Of these nine, seven apparently induced an asymmetric increase in seismicity rate that correlates with the rupture direction. The two exceptions include an earthquake preceded by a comparable-magnitude event on a conjugate fault and another for which data limitations prohibited conclusive results. Similar (but weaker) correlations were found for the bilaterally rupturing earthquakes we studied. Although the static stress change also may trigger seismicity, it and the seismicity it triggers are expected to be similarly asymmetric only if the final slip is skewed toward the rupture terminus. For several of the directive earthquakes, we suggest that the seismicity rate change correlates better with the dynamic stress field than the static stress change.

  2. Facts learnt from the Hanshin-Awaji disaster and consideration on design basis earthquake

    International Nuclear Information System (INIS)

    Shibata, Heki

    1997-01-01

    This paper will deal with how to establish the concept of the design basis earthquake for critical industrial facilities such as nuclear power plants in consideration of disasters induced by the 1995 Hyogoken-Nanbu Earthquake (Southern Hyogo-prefecture Earthquake-1995), so-called Kobe earthquake. The author once discussed various DBEs at 7 WCEE. At that time, the author assumed that the strongest effective PGA would be 0.7 G, and compared to the values of accelerations to a structure obtained by various codes in Japan and other countries. The maximum PGA observed by an instrument at the Southern Hyogo-pref. Earthquake-1995 exceeded the previous assumption of the author, even though the evaluation results of the previous paper had been pessimistic. According to the experience of Kobe event, the author will point out the necessity of the third earthquake S s adding to S 1 and S 2 , previous DBEs. (author)

  3. Variations of Background Seismic Noise Before Strong Earthquakes, Kamchatka.

    Science.gov (United States)

    Kasimova, V.; Kopylova, G.; Lyubushin, A.

    2017-12-01

    The network of broadband seismic stations of Geophysical Service (Russian Academy of Science) works on the territory of Kamchatka peninsula in the Far East of Russia. We used continuous records on Z-channels at 21 stations for creation of background seismic noise time series in 2011-2017. Average daily parameters of multi-fractal spectra of singularity have been calculated at each station using 1-minute records. Maps and graphs of their spatial distribution and temporal changes were constructed at time scales from days to several years. The analysis of the coherent behavior of the time series of the statistics was considered. The technique included the splitting of seismic network into groups of stations, taking into account the coastal effect, the network configuration and the main tectonic elements of Kamchatka. Then the time series of median values of noise parameters from each group of stations were made and the frequency-time diagrams of the evolution of the spectral measure of the coherent behavior of four time series were analyzed. The time intervals and frequency bands of the maximum values showing the increase of coherence in the changes of all statistics were evaluated. The strong earthquakes with magnitudes M=6.9-8.3 occurred near the Kamchatka peninsula during the observations. The synchronous variations of the background noise parameters and increase in the coherent behavior of the median values of statistical parameters was shown before two earthquakes 2013 (February 28, Mw=6.9; May 24, Mw=8.3) within 3-9 months and before earthquake of January 30, 2016, Mw=7.2 within 3-6 months. The maximum effect of increased coherence in the range of periods 4-5.5 days corresponds to the time of preparation of two strong earthquakes in 2013 and their aftershock processes. Peculiarities in changes of statistical parameters at stages of preparation of strong earthquakes indicate the attenuation in high-amplitude outliers and the loss of multi-fractal properties in

  4. On a method of evaluation of failure rate of equipment and pipings under excess-earthquake loadings

    International Nuclear Information System (INIS)

    Shibata, H.; Okamura, H.

    1979-01-01

    This paper deals with a method of evaluation of the failure rate of equipment and pipings in nuclear power plants under an earthquake which is exceeding the design basis earthquake. If we put the ratio of the maximum ground acceleration of an earthquake to that of the design basis earthquake as n, then the failure rate or the probability of failure is the function of n as p(n). The purpose of this study is establishing the procedure of evaluation of the relation n vs. p(n). (orig.)

  5. Radon anomaly in soil gas as an earthquake precursor

    International Nuclear Information System (INIS)

    Miklavcic, I.; Radolic, V.; Vukovic, B.; Poje, M.; Varga, M.; Stanic, D.; Planinic, J.

    2008-01-01

    The mechanical processes of earthquake preparation are always accompanied by deformations; afterwards, the complex short- or long-term precursory phenomena can appear. Anomalies of radon concentrations in soil gas are registered a few weeks or months before many earthquakes. Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors at site A (Osijek) during a 4-year period, as well as by the Barasol semiconductor detector at site B (Kasina) during 2 years. We investigated the influence of the meteorological parameters on the temporal radon variations, and we determined the equation of the multiple regression that enabled the reduction (deconvolution) of the radon variation caused by the barometric pressure, rainfall and temperature. The pre-earthquake radon anomalies at site A indicated 46% of the seismic events, on criterion M≥3, R<200 km, and 21% at site B. Empirical equations between earthquake magnitude, epicenter distance and precursor time enabled estimation or prediction of an earthquake that will rise at the epicenter distance R from the monitoring site in expecting precursor time T

  6. Radon anomaly in soil gas as an earthquake precursor

    Energy Technology Data Exchange (ETDEWEB)

    Miklavcic, I.; Radolic, V.; Vukovic, B.; Poje, M.; Varga, M.; Stanic, D. [Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, POB 125, 31000 Osijek (Croatia); Planinic, J. [Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, POB 125, 31000 Osijek (Croatia)], E-mail: planinic@ffos.hr

    2008-10-15

    The mechanical processes of earthquake preparation are always accompanied by deformations; afterwards, the complex short- or long-term precursory phenomena can appear. Anomalies of radon concentrations in soil gas are registered a few weeks or months before many earthquakes. Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors at site A (Osijek) during a 4-year period, as well as by the Barasol semiconductor detector at site B (Kasina) during 2 years. We investigated the influence of the meteorological parameters on the temporal radon variations, and we determined the equation of the multiple regression that enabled the reduction (deconvolution) of the radon variation caused by the barometric pressure, rainfall and temperature. The pre-earthquake radon anomalies at site A indicated 46% of the seismic events, on criterion M{>=}3, R<200 km, and 21% at site B. Empirical equations between earthquake magnitude, epicenter distance and precursor time enabled estimation or prediction of an earthquake that will rise at the epicenter distance R from the monitoring site in expecting precursor time T.

  7. Characteristics of global strong earthquakes and their implications ...

    Indian Academy of Sciences (India)

    11

    as important sources for describing the present-day stress field and regime. ..... happened there will indicate relative movements between Pacific plate and Australia ... time, and (b) earthquake slip occurs in the direction of maximum shear stress .... circum-pacific seismic belt and the Himalaya collision boundary as shown in ...

  8. Estimation of Slip Distribution of the 2007 Bengkulu Earthquake from GPS Observation Using Least Squares Inversion Method

    Directory of Open Access Journals (Sweden)

    Moehammad Awaluddin

    2012-07-01

    Full Text Available Continuous Global Positioning System (GPS observations showed significant crustal displacements as a result of the Bengkulu earthquake occurring on September 12, 2007. A maximum horizontal displacement of 2.11 m was observed at PRKB station, while the vertical component at BSAT station was uplifted with a maximum of 0.73 m, and the vertical component at LAIS station was subsided by -0.97 m. The method of adding more constraint on the inversion for the Bengkulu earthquake slip distribution from GPS observations can help solve a least squares inversion with an under-determined condition. Checkerboard tests were performed to help conduct the weighting for constraining the inversion. The inversion calculation of the Bengkulu earthquake slip distribution yielded in an optimum value of slip distribution by giving a weight of smoothing constraint of 0.001 and a weight of slip value constraint = 0 at the edge of the earthquake rupture area. A maximum coseismic slip of the optimal inversion calculation was 5.12 m at the lower area of PRKB and BSAT stations. The seismic moment calculated from the optimal slip distribution was 7.14 x 1021 Nm, which is equivalent to a magnitude of 8.5.

  9. Real-Time Earthquake Monitoring with Spatio-Temporal Fields

    Science.gov (United States)

    Whittier, J. C.; Nittel, S.; Subasinghe, I.

    2017-10-01

    With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

  10. Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    Science.gov (United States)

    Peng, Zhigang; Aiken, Chastity; Kilb, Debi; Shelly, David R.; Enescu, Bogdan

    2012-01-01

    The magnitude 9.0 Tohoku-Oki, Japan, earthquake on 11 March 2011 is the largest earthquake to date in Japan’s modern history and is ranked as the fourth largest earthquake in the world since 1900. This earthquake occurred within the northeast Japan subduction zone (Figure 1), where the Pacific plate is subducting beneath the Okhotsk plate at rate of ∼8–9 cm/yr (DeMets et al. 2010). This type of extremely large earthquake within a subduction zone is generally termed a “megathrust” earthquake. Strong shaking from this magnitude 9 earthquake engulfed the entire Japanese Islands, reaching a maximum acceleration ∼3 times that of gravity (3 g). Two days prior to the main event, a foreshock sequence occurred, including one earthquake of magnitude 7.2. Following the main event, numerous aftershocks occurred around the main slip region; the largest of these was magnitude 7.9. The entire foreshocks-mainshock-aftershocks sequence was well recorded by thousands of sensitive seismometers and geodetic instruments across Japan, resulting in the best-recorded megathrust earthquake in history. This devastating earthquake resulted in significant damage and high death tolls caused primarily by the associated large tsunami. This tsunami reached heights of more than 30 m, and inundation propagated inland more than 5 km from the Pacific coast, which also caused a nuclear crisis that is still affecting people’s lives in certain regions of Japan.

  11. Interactions between strike-slip earthquakes and the subduction interface near the Mendocino Triple Junction

    Science.gov (United States)

    Gong, Jianhua; McGuire, Jeffrey J.

    2018-01-01

    The interactions between the North American, Pacific, and Gorda plates at the Mendocino Triple Junction (MTJ) create one of the most seismically active regions in North America. The earthquakes rupture all three plate boundaries but also include considerable intraplate seismicity reflecting the strong internal deformation of the Gorda plate. Understanding the stress levels that drive these ruptures and estimating the locking state of the subduction interface are especially important topics for regional earthquake hazard assessment. However owing to the lack of offshore seismic and geodetic instruments, the rupture process of only a few large earthquakes near the MTJ have been studied in detail and the locking state of the subduction interface is not well constrained. In this paper, first, we use the second moments inversion method to study the rupture process of the January 28, 2015 Mw 5.7 earthquake on the Mendocino transform fault that was unusually well recorded by both onshore and offshore strong motion instruments. We estimate the rupture dimension to be approximately 6 km by 3 km corresponding to a stress drop of ∼4 MPa for a crack model. Next we investigate the frictional state of the subduction interface by simulating the afterslip that would be expected there as a result of the stress changes from the 2015 earthquake and a 2010 Mw 6.5 intraplate earthquake within the subducted Gorda plate. We simulate afterslip scenarios for a range of depths of the downdip end of the locked zone defined as the transition to velocity strengthening friction and calculate the corresponding surface deformation expected at onshore GPS monuments. We can rule out a very shallow downdip limit owing to the lack of a detectable signal at onshore GPS stations following the 2010 earthquake. Our simulations indicate that the locking depth on the slab surface is at least 14 km, which suggests that the next M8 earthquake rupture will likely reach the coastline and strong shaking

  12. Present coupling along the Peruvian subduction asperity that devastated Lima while breaking during the 1746 earthquake

    Science.gov (United States)

    Cavalié, O.; Chlieh, M.; Villegas Lanza, J. C.

    2017-12-01

    Subduction zone are particularly prone to generating large earthquakes due to its wide lateral extension. In order to understand where, and possibly when, large earthquakes will occur, interseismic deformation observation is a key information because it allows to map asperities that accumulate stress on the plate interface. South American subduction is one of the longest worldwide, running all along the west coast of the continent. Combined with the relatively fast convergence rate between the Nazca plate and the South American continent, Chile and Peru experience regularly M>7.5 earthquakes. In this study, we focused on the Peruvian subduction margin and more precisely on the Central segment containing Lima where the seismic risk is the highest in the country due the large population that lives in the Peruvian capital. On the Central segment (10°S and 15°S), we used over 50 GPS interseismic measurements from campaign and continuous sites, as well as InSAR data to map coupling along the subduction interface. GPS data come from the Peruvian GPS network and InSAR data are from the Envisat satellite. We selected two tracks covering the central segment (including Lima) and with enough SAR image acquisitions between 2003 and 2010 to get a robust deformation estimation. GPS and InSAR data show a consistent tectonic signal with a maximum of surface displacement by the coast: the maximum horizontal velocities from GPS is about 20 mm and InSAR finds 12-13 mm in the LOS component. In addition, InSAR reveals lateral variations along the coast: the maximum motion is measured around Lima (11°S) and fades on either side. By inverting the geodetic data, we were able to map the coupling along the segment. It results in a main asperity where interseismic stress is loading. However, compared the previous published models based on GPS only, the coupling in the central segment seems more heterogeneous. Finally, we compared the deficit of seismic moment accumulating in the

  13. Pattern of ground deformation in Kathmandu valley during 2015 Gorkha Earthquake, central Nepal

    Science.gov (United States)

    Ghimire, S.; Dwivedi, S. K.; Acharya, K. K.

    2016-12-01

    The 25th April 2015 Gorkha Earthquake (Mw=7.8) epicentered at Barpak along with thousands of aftershocks released seismic moment nearly equivalent to an 8.0 Magnitude earthquake rupturing a 150km long fault segment. Although Kathmandu valley was supposed to be severely devastated by such major earthquake, post earthquake scenario is completely different. The observed destruction is far less than anticipated as well as the spatial pattern is different than expected. This work focuses on the behavior of Kathmandu valley sediments during the strong shaking by the 2015 Gorkha Earthquake. For this purpose spatial pattern of destruction is analyzed at heavily destructed sites. To understand characteristics of subsurface soil 2D-MASW survey was carried out using a 24-channel seismograph system. An accellerogram recorded by Nepal Seismological Center was analyzed to characterize the strong ground motion. The Kathmandu valley comprises fluvio-lacustrine deposit with gravel, sand, silt and clay along with few exposures of basement rocks within the sediments. The observations show systematic repetition of destruction at an average interval of 2.5km mostly in sand, silt and clay dominated formations. Results of 2D-MASW show the sites of destruction are characterized by static deformation of soil (liquefaction and southerly dipping cracks). Spectral analysis of the accelerogram indicates maximum power associated with frequency of 1.0Hz. The result of this study explains the observed spatial pattern of destruction in Kathmandu valley. This is correlated with the seismic energy associated with the frequency of 1Hz, which generates an average wavelength of 2.5km with an average S-wave velocity of 2.5km/s. The cumulative effect of dominant frequency and associated wavelength resulted in static deformation of surface soil layers at an average interval of 2.5km. This phenomenon clearly describes the reason for different scenario than that was anticipated in Kathmandu valley.

  14. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    volume increment for a given slip increment becomes larger. A juction with past accumulated slip ??0 is a strong barrier to earthquakes with maximum slip um < 2 (P/µ u0 = u0/50. As slip continues to occur elsewhere in the fault system, a stress concentration will grow at the old junction. A fresh fracture may occur in the stress concentration, establishing a new triple junction, and allowing continuity of slip in the fault system. The fresh fracture could provide the instability needed to explain earthquakes. Perhaps a small fraction (on the order of P/µ of the surface that slips in any earthquake is fresh fracture. Stress drop occurs only on this small fraction of the rupture surface, the asperities. Strain change in the asperities is on the order of P/µ. Therefore this model predicts average strais change in an earthquake to be on the order of (P/µ2 = 0.0001, as is observed.

  15. Time history nonlinear earthquake response analysis considering materials and geometrical nonlinearity

    International Nuclear Information System (INIS)

    Kobayashi, T.; Yoshikawa, K.; Takaoka, E.; Nakazawa, M.; Shikama, Y.

    2002-01-01

    A time history nonlinear earthquake response analysis method was proposed and applied to earthquake response prediction analysis for a Large Scale Seismic Test (LSST) Program in Hualien, Taiwan, in which a 1/4 scale model of a nuclear reactor containment structure was constructed on sandy gravel layer. In the analysis both of strain-dependent material nonlinearity, and geometrical nonlinearity by base mat uplift, were considered. The 'Lattice Model' for the soil-structure interaction model was employed. An earthquake record on soil surface at the site was used as control motion, and deconvoluted to the input motion of the analysis model at GL-52 m with 300 Gal of maximum acceleration. The following two analyses were considered: (A) time history nonlinear, (B) equivalent linear, and the advantage of time history nonlinear earthquake response analysis method is discussed

  16. Turning the rumor of May 11, 2011 earthquake prediction In Rome, Italy, into an information day on earthquake hazard

    Science.gov (United States)

    Amato, A.; Cultrera, G.; Margheriti, L.; Nostro, C.; Selvaggi, G.; INGVterremoti Team

    2011-12-01

    A devastating earthquake had been predicted for May 11, 2011 in Rome. This prediction was never released officially by anyone, but it grew up in the Internet and was amplified by media. It was erroneously ascribed to Raffaele Bendandi, an Italian self-taught natural scientist who studied planetary motions. Indeed, around May 11, 2011, a planetary alignment was really expected and this contributed to give credibility to the earthquake prediction among people. During the previous months, INGV was overwhelmed with requests for information about this supposed prediction by Roman inhabitants and tourists. Given the considerable mediatic impact of this expected earthquake, INGV decided to organize an Open Day in its headquarter in Rome for people who wanted to learn more about the Italian seismicity and the earthquake as natural phenomenon. The Open Day was preceded by a press conference two days before, in which we talked about this prediction, we presented the Open Day, and we had a scientific discussion with journalists about the earthquake prediction and more in general on the real problem of seismic risk in Italy. About 40 journalists from newspapers, local and national tv's, press agencies and web news attended the Press Conference and hundreds of articles appeared in the following days, advertising the 11 May Open Day. The INGV opened to the public all day long (9am - 9pm) with the following program: i) meetings with INGV researchers to discuss scientific issues; ii) visits to the seismic monitoring room, open 24h/7 all year; iii) guided tours through interactive exhibitions on earthquakes and Earth's deep structure; iv) lectures on general topics from the social impact of rumors to seismic risk reduction; v) 13 new videos on channel YouTube.com/INGVterremoti to explain the earthquake process and give updates on various aspects of seismic monitoring in Italy; vi) distribution of books and brochures. Surprisingly, more than 3000 visitors came to visit INGV

  17. Large earthquake rates from geologic, geodetic, and seismological perspectives

    Science.gov (United States)

    Jackson, D. D.

    2017-12-01

    up to about magnitude 7. Regional forecasts for a few decades, like those in UCERF3, could be improved by calibrating tectonic moment rate to past seismicity rates. Century-long forecasts must be speculative. Estimates of maximum magnitude and rate of giant earthquakes over geologic time scales require more than science.

  18. 4D stress evolution models of the San Andreas Fault System: Investigating time- and depth-dependent stress thresholds over multiple earthquake cycles

    Science.gov (United States)

    Burkhard, L. M.; Smith-Konter, B. R.

    2017-12-01

    4D simulations of stress evolution provide a rare insight into earthquake cycle crustal stress variations at seismogenic depths where earthquake ruptures nucleate. Paleoseismic estimates of earthquake offset and chronology, spanning multiple earthquakes cycles, are available for many well-studied segments of the San Andreas Fault System (SAFS). Here we construct new 4D earthquake cycle time-series simulations to further study the temporally and spatially varying stress threshold conditions of the SAFS throughout the paleoseismic record. Interseismic strain accumulation, co-seismic stress drop, and postseismic viscoelastic relaxation processes are evaluated as a function of variable slip and locking depths along 42 major fault segments. Paleoseismic earthquake rupture histories provide a slip chronology dating back over 1000 years. Using GAGE Facility GPS and new Sentinel-1A InSAR data, we tune model locking depths and slip rates to compute the 4D stress accumulation within the seismogenic crust. Revised estimates of stress accumulation rate are most significant along the Imperial (2.8 MPa/100yr) and Coachella (1.2 MPa/100yr) faults, with a maximum change in stress rate along some segments of 11-17% in comparison with our previous estimates. Revised estimates of earthquake cycle stress accumulation are most significant along the Imperial (2.25 MPa), Coachella (2.9 MPa), and Carrizo (3.2 MPa) segments, with a 15-29% decrease in stress due to locking depth and slip rate updates, and also postseismic relaxation from the El Mayor-Cucapah earthquake. Because stress drops of major strike-slip earthquakes rarely exceed 10 MPa, these models may provide a lower bound on estimates of stress evolution throughout the historical era, and perhaps an upper bound on the expected recurrence interval of a particular fault segment. Furthermore, time-series stress models reveal temporally varying stress concentrations at 5-10 km depths, due to the interaction of neighboring fault

  19. Facts learnt from the Hanshin-Awaji disaster and consideration on design basis earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Heki [Yokohama National Univ. (Japan). Faculty of Engineering

    1997-03-01

    This paper will deal with how to establish the concept of the design basis earthquake for critical industrial facilities such as nuclear power plants in consideration of disasters induced by the 1995 Hyogoken-Nanbu Earthquake (Southern Hyogo-prefecture Earthquake-1995), so-called Kobe earthquake. The author once discussed various DBEs at 7 WCEE. At that time, the author assumed that the strongest effective PGA would be 0.7 G, and compared to the values of accelerations to a structure obtained by various codes in Japan and other countries. The maximum PGA observed by an instrument at the Southern Hyogo-pref. Earthquake-1995 exceeded the previous assumption of the author, even though the evaluation results of the previous paper had been pessimistic. According to the experience of Kobe event, the author will point out the necessity of the third earthquake S{sub s} adding to S{sub 1} and S{sub 2}, previous DBEs. (author)

  20. Salient Features of the 2015 Gorkha, Nepal Earthquake in Relation to Earthquake Cycle and Dynamic Rupture Models

    Science.gov (United States)

    Ampuero, J. P.; Meng, L.; Hough, S. E.; Martin, S. S.; Asimaki, D.

    2015-12-01

    Two salient features of the 2015 Gorkha, Nepal, earthquake provide new opportunities to evaluate models of earthquake cycle and dynamic rupture. The Gorkha earthquake broke only partially across the seismogenic depth of the Main Himalayan Thrust: its slip was confined in a narrow depth range near the bottom of the locked zone. As indicated by the belt of background seismicity and decades of geodetic monitoring, this is an area of stress concentration induced by deep fault creep. Previous conceptual models attribute such intermediate-size events to rheological segmentation along-dip, including a fault segment with intermediate rheology in between the stable and unstable slip segments. We will present results from earthquake cycle models that, in contrast, highlight the role of stress loading concentration, rather than frictional segmentation. These models produce "super-cycles" comprising recurrent characteristic events interspersed by deep, smaller non-characteristic events of overall increasing magnitude. Because the non-characteristic events are an intrinsic component of the earthquake super-cycle, the notion of Coulomb triggering or time-advance of the "big one" is ill-defined. The high-frequency (HF) ground motions produced in Kathmandu by the Gorkha earthquake were weaker than expected for such a magnitude and such close distance to the rupture, as attested by strong motion recordings and by macroseismic data. Static slip reached close to Kathmandu but had a long rise time, consistent with control by the along-dip extent of the rupture. Moreover, the HF (1 Hz) radiation sources, imaged by teleseismic back-projection of multiple dense arrays calibrated by aftershock data, was deep and far from Kathmandu. We argue that HF rupture imaging provided a better predictor of shaking intensity than finite source inversion. The deep location of HF radiation can be attributed to rupture over heterogeneous initial stresses left by the background seismic activity

  1. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  2. Intensity estimation of historical earthquakes through seismic analysis of wooden house

    International Nuclear Information System (INIS)

    Choi, I. K.; Soe, J. M.

    1999-01-01

    The intensity of historical earthquake records related with house collapses are estimated by the seismic analyses of traditional three-bay-straw-roof house. Eighteen artificial time histories for magnitudes 6-8, epicentral distances 5 km - 350 km and hard and soft soil condition were generated for the analyses. Nonlinear dynamic analyses were performed for a traditional three-bay-roof house. Damage level of the wooden house according to the input earthquake motions and the MM intensity were estimated by maximum displacement response at the top of columns. Considering the structural characteristics of the three-bay-straw-roof house, the largest historical earthquake record related to the house collapse is about MMI VIII

  3. Determination of Love- and Rayleigh-Wave Magnitudes for Earthquakes and Explosions and Other Studies

    Science.gov (United States)

    2012-12-30

    09-C-0012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Jessie L. Bonner, Anastasia Stroujkova, Dale Anderson, Jonathan...AND RAYLEIGH-WAVE MAGNITUDES FOR EARTHQUAKES AND EXPLOSIONS Jessie L. Bonner, Anastasia Stroujkova, and Dale Anderson INTRODUCTION Since...MAXIMUM LIKELIHOOD ESTIMATION: APPLICATION TO MIDDLE EAST EARTHQUAKE DATA Anastasia Stroujkova and Jessie Bonner Weston Geophysical Corporation

  4. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  5. Lower bound earthquake magnitude for probabilistic seismic hazard evaluation

    International Nuclear Information System (INIS)

    McCann, M.W. Jr.; Reed, J.W.

    1990-01-01

    This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified. The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed. (orig.)

  6. Geological and seismotectonic characteristics of the broader area of the October 15, 2016, earthquake (Ioannina, Greece)

    Science.gov (United States)

    Pavlides, Spyros; Ganas, Athanasios; Chatzipetros, Alexandros; Sboras, Sotiris; Valkaniotis, Sotiris; Papathanassiou, George; Thomaidou, Efi; Georgiadis, George

    2017-04-01

    This paper examines the seismotectonic setting of the moderate earthquake of October 15, 2016, Μw=5.3 (or 5.5), in the broader area of ​​Ioannina (Epirus, Greece). In this region the problem of reviewing the geological structure with new and modern methods and techniques, in relation to the geological-seismological evidence of the recent seismic sequence, is addressed. The seismic stimulation of landslides and other soil deformations is also examined. The earthquake is interpreted as indicative of a geotectonic environment of lithospheric compression, which comprises the backbone of Pindos mountain range. It starts from southern Albania and traverses western Greece, in an almost N-S direction. This is a seismically active region with a history of strong and moderate earthquakes, such as these of 1969 (Ms=5.8), 1960 (South Albania, M> 6.5, maximum intensity VIII+) and 1967 (Arta-Ioannina, M = 6.4, maximum intensity IX). The recent earthquake is associated with a known fault zone as recorded and identified in the Greek Database of Seismogenic Sources (GreDaSS, www.gredass.unife.it). Focal mechanism data indicate that the seismic fault is reverse or high-angle thrust, striking NNW-SSE and dipping to the E. The upper part of Epirus crust (brittle), which have an estimated maximum thickness of 10 km, do not show any significant seismicity. The deeper seismicity of 10-20 km, such as this of the recent earthquake, is caused by deep crustal processes with reverse - high-angle thrust faults. We suggest that the case of this earthquake is peculiar, complex and requires careful study and attention. The precise determination of the seismogenic fault and its dimensions, although not possible to be identified by direct field observations, can be assessed through the study of seismological and geodetic data (GPS, satellite images, stress transfer), as well as its seismic behavior. Field work in the broader area, in combination with instrumental data, can contribute to

  7. Long-term earthquake forecasts based on the epidemic-type aftershock sequence (ETAS model for short-term clustering

    Directory of Open Access Journals (Sweden)

    Jiancang Zhuang

    2012-07-01

    Full Text Available Based on the ETAS (epidemic-type aftershock sequence model, which is used for describing the features of short-term clustering of earthquake occurrence, this paper presents some theories and techniques related to evaluating the probability distribution of the maximum magnitude in a given space-time window, where the Gutenberg-Richter law for earthquake magnitude distribution cannot be directly applied. It is seen that the distribution of the maximum magnitude in a given space-time volume is determined in the longterm by the background seismicity rate and the magnitude distribution of the largest events in each earthquake cluster. The techniques introduced were applied to the seismicity in the Japan region in the period from 1926 to 2009. It was found that the regions most likely to have big earthquakes are along the Tohoku (northeastern Japan Arc and the Kuril Arc, both with much higher probabilities than the offshore Nankai and Tokai regions.

  8. Preliminary Results on Earthquake Recurrence Intervals, Rupture Segmentation, and Potential Earthquake Moment Magnitudes along the Tahoe-Sierra Frontal Fault Zone, Lake Tahoe, California

    Science.gov (United States)

    Howle, J.; Bawden, G. W.; Schweickert, R. A.; Hunter, L. E.; Rose, R.

    2012-12-01

    Utilizing high-resolution bare-earth LiDAR topography, field observations, and earlier results of Howle et al. (2012), we estimate latest Pleistocene/Holocene earthquake-recurrence intervals, propose scenarios for earthquake-rupture segmentation, and estimate potential earthquake moment magnitudes for the Tahoe-Sierra frontal fault zone (TSFFZ), west of Lake Tahoe, California. We have developed a new technique to estimate the vertical separation for the most recent and the previous ground-rupturing earthquakes at five sites along the Echo Peak and Mt. Tallac segments of the TSFFZ. At these sites are fault scarps with two bevels separated by an inflection point (compound fault scarps), indicating that the cumulative vertical separation (VS) across the scarp resulted from two events. This technique, modified from the modeling methods of Howle et al. (2012), uses the far-field plunge of the best-fit footwall vector and the fault-scarp morphology from high-resolution LiDAR profiles to estimate the per-event VS. From this data, we conclude that the adjacent and overlapping Echo Peak and Mt. Tallac segments have ruptured coseismically twice during the Holocene. The right-stepping, en echelon range-front segments of the TSFFZ show progressively greater VS rates and shorter earthquake-recurrence intervals from southeast to northwest. Our preliminary estimates suggest latest Pleistocene/ Holocene earthquake-recurrence intervals of 4.8±0.9x103 years for a coseismic rupture of the Echo Peak and Mt. Tallac segments, located at the southeastern end of the TSFFZ. For the Rubicon Peak segment, northwest of the Echo Peak and Mt. Tallac segments, our preliminary estimate of the maximum earthquake-recurrence interval is 2.8±1.0x103 years, based on data from two sites. The correspondence between high VS rates and short recurrence intervals suggests that earthquake sequences along the TSFFZ may initiate in the northwest part of the zone and then occur to the southeast with a lower

  9. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  10. Testing for the 'predictability' of dynamically triggered earthquakes in The Geysers geothermal field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne

    2018-03-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is 'predictable' or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily 'predictable' in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock-aftershock sequences. Thus, we may be able to 'predict' what size earthquakes to expect at The Geysers following a large distant earthquake.

  11. Introduction to the focus section on the 2015 Gorkha, Nepal, earthquake

    Science.gov (United States)

    Hough, Susan E.

    2015-01-01

    It has long been recognized that Nepal faces high earthquake hazard, with the most recent large (Mw>7.5) events in 1833 and 1934. When the 25 April 2015Mw 7.8 Gorkha earthquake struck, it appeared initially to be a realization of worst fears. In spite of its large magnitude and proximity to the densely populated Kathmandu valley, however, the level of damage was lower than anticipated, with most vernacular structures within the valley experiencing little or no structural damage. Outside the valley, catastrophic damage did occur in some villages, associated with the high vulnerability of stone masonry construction and, in many cases, landsliding. The unexpected observations from this expected earthquake provide an urgent impetus to understand the event itself and to better characterize hazard from future large Himalayan earthquakes. Toward this end, articles in this special focus section present and describe available data sets and initial results that better illuminate and interpret the earthquake and its effects.

  12. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  13. Long-Delayed Aftershocks in New Zealand and the 2016 M7.8 Kaikoura Earthquake

    Science.gov (United States)

    Shebalin, P.; Baranov, S.

    2017-10-01

    We study aftershock sequences of six major earthquakes in New Zealand, including the 2016 M7.8 Kaikaoura and 2016 M7.1 North Island earthquakes. For Kaikaoura earthquake, we assess the expected number of long-delayed large aftershocks of M5+ and M5.5+ in two periods, 0.5 and 3 years after the main shocks, using 75 days of available data. We compare results with obtained for other sequences using same 75-days period. We estimate the errors by considering a set of magnitude thresholds and corresponding periods of data completeness and consistency. To avoid overestimation of the expected rates of large aftershocks, we presume a break of slope of the magnitude-frequency relation in the aftershock sequences, and compare two models, with and without the break of slope. Comparing estimations to the actual number of long-delayed large aftershocks, we observe, in general, a significant underestimation of their expected number. We can suppose that the long-delayed aftershocks may reflect larger-scale processes, including interaction of faults, that complement an isolated relaxation process. In the spirit of this hypothesis, we search for symptoms of the capacity of the aftershock zone to generate large events months after the major earthquake. We adapt an algorithm EAST, studying statistics of early aftershocks, to the case of secondary aftershocks within aftershock sequences of major earthquakes. In retrospective application to the considered cases, the algorithm demonstrates an ability to detect in advance long-delayed aftershocks both in time and space domains. Application of the EAST algorithm to the 2016 M7.8 Kaikoura earthquake zone indicates that the most likely area for a delayed aftershock of M5.5+ or M6+ is at the northern end of the zone in Cook Strait.

  14. Gravity variation before the Akto Ms6.7 earthquake, Xinjiang

    Directory of Open Access Journals (Sweden)

    Hongtao Hao

    2017-03-01

    Full Text Available The relationship between gravity variation and the Akto Ms6.7 earthquake on November 11, 2016, was studied by use of mobile gravity observation data from the China continental structural environmental monitoring network. The result revealed that before the Akto earthquake, a high positive gravity variation was observed in the Pamir tectonic knots region (within a maximum magnitude of approximately +80 microgal, which was consistent with the existing knowledge of gravity abnormality and the locations of strong earthquakes. In view of the recent strong seismic activities in the Pamir tectonic knots region, as well as the strong upward crust movement and compressive strain, it is believed that gravity change in the Pamir tectonic knots region reflects the recent strong seismic activities and crust movement.

  15. Brief communication "Fast-track earthquake risk assessment for selected urban areas in Turkey"

    Directory of Open Access Journals (Sweden)

    D. Kepekci

    2011-02-01

    Full Text Available This study is presented as a contribution to earthquake disaster mitigation studies for selected cities in Turkey. The risk evaluations must be based on earthquake hazard analysis and city information. To estimate the ground motion level, data for earthquakes with a magnitude greater than 4.5 and an epicenter location within a 100-km radius of each city were used for the period from 1900 to 2006, as recorded at the Kandilli Observatory and Earthquake Research Institute. Probabilistic seismic hazard analysis for each city was carried out using Poisson probabilistic approaches. Ground motion level was estimated as the probability of a given degree of acceleration with a 10% exceedence rate during a 50-year time period for each city. The risk level of each city was evaluated using the number of houses, the per-capita income of city residents, population, and ground motion levels. The maximum risk level obtained for the cities was taken as a reference value for relative risk assessment, and other risk values were estimated relative to the maximum risk level. When the selected cities were classified according to their relative risk levels, the five most risky cities were found to be, in descending order of risk, Istanbul, Izmir, Ankara, Bursa, and Kocaeli.

  16. Toward standardization of slow earthquake catalog -Development of database website-

    Science.gov (United States)

    Kano, M.; Aso, N.; Annoura, S.; Arai, R.; Ito, Y.; Kamaya, N.; Maury, J.; Nakamura, M.; Nishimura, T.; Obana, K.; Sugioka, H.; Takagi, R.; Takahashi, T.; Takeo, A.; Yamashita, Y.; Matsuzawa, T.; Ide, S.; Obara, K.

    2017-12-01

    Slow earthquakes have now been widely discovered in the world based on the recent development of geodetic and seismic observations. Many researchers detect a wide frequency range of slow earthquakes including low frequency tremors, low frequency earthquakes, very low frequency earthquakes and slow slip events by using various methods. Catalogs of the detected slow earthquakes are open to us in different formats by each referring paper or through a website (e.g., Wech 2010; Idehara et al. 2014). However, we need to download catalogs from different sources, to deal with unformatted catalogs and to understand the characteristics of different catalogs, which may be somewhat complex especially for those who are not familiar with slow earthquakes. In order to standardize slow earthquake catalogs and to make such a complicated work easier, Scientific Research on Innovative Areas "Science of Slow Earthquakes" has been developing a slow earthquake catalog website. In the website, we can plot locations of various slow earthquakes via the Google Maps by compiling a variety of slow earthquake catalogs including slow slip events. This enables us to clearly visualize spatial relations among slow earthquakes at a glance and to compare the regional activities of slow earthquakes or the locations of different catalogs. In addition, we can download catalogs in the unified format and refer the information on each catalog on the single website. Such standardization will make it more convenient for users to utilize the previous achievements and to promote research on slow earthquakes, which eventually leads to collaborations with researchers in various fields and further understanding of the mechanisms, environmental conditions, and underlying physics of slow earthquakes. Furthermore, we expect that the website has a leading role in the international standardization of slow earthquake catalogs. We report the overview of the website and the progress of construction. Acknowledgment: This

  17. Fault failure with moderate earthquakes

    Science.gov (United States)

    Johnston, M. J. S.; Linde, A. T.; Gladwin, M. T.; Borcherdt, R. D.

    1987-12-01

    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake ( ML = 6.7, Δ = 51 km), the August 4, 1985, Kettleman Hills earthquake ( ML = 5.5, Δ = 34 km), the April 1984 Morgan Hill earthquake ( ML = 6.1, Δ = 55 km), the November 1984 Round Valley earthquake ( ML = 5.8, Δ = 54 km), the January 14, 1978, Izu, Japan earthquake ( ML = 7.0, Δ = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10 -8), with borehole dilatometers (resolution 10 -10) and a 3-component borehole strainmeter (resolution 10 -9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure.

  18. Revisiting the November 27, 1945 Makran (Mw=8.2) interplate earthquake

    Science.gov (United States)

    Zarifi, Z.; Raeesi, M.

    2012-04-01

    Makran Subduction Zone (MSZ) in southern Iran and southwestern Pakistan is a zone of convergence, where the remnant oceanic crust of Arabian plate is subducting beneath the Eurasian plate with a rate of less than 30 mm/yr. The November 27, 1945 earthquake (Mw=8.2) in eastern section of Makran followed by a tsunami, at some points 15 meters high. More than 4000 victims and widespread devastation along the coastal area of Pakistan, Iran, Oman and India are reported for this earthquake. We have collected the old seismograms of the 1945 earthquake and its largest following earthquake (August 5, 1947, Mw=7.3) from a number of stations around the globe. Using ISS data, we relocated these two events. We used the teleseismic body-waveform inversion code of Kikuchi and Kanamori to determine the slip distribution of these two earthquakes for the first time. The results show that the extent of rupture of the 1945 earthquake is larger than what previously had been approximated in other studies. The slip distribution suggests two distinct sets of asperities with different behavior in the west close to Pasni and in the east close to Ormara. The highest slip was obtained for an area between these two cities which shows geological evidence of rapid uplift. To associate this behavior with the structure of slab interface we studied the TPGA (Trench Parallel Free-air Gravity Anomaly) and TPBA (Trench Parallel Bouguer Anomaly) in MSZ. The results of TPGA does not show the expected phenomenon, which is the correlation of asperities with the area of highly negative TPGA. However, TPBA can make correlation between the observed slip distribution and the structure of slab interface. Using the topography and gravity profiles perpendicular to trench and along the MSZ, we could observe the segmentation in the slab interface. This confirms that we barely expect that the whole interface releases energy in one single megathrust earthquake. Current seismicity in MSZ, although sparse, can fairly

  19. Testing for the ‘predictability’ of dynamically triggered earthquakes in Geysers Geothermal Field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne L.

    2018-01-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is ‘predictable’ or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily ‘predictable’ in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock–aftershock sequences. Thus, we may be able to ‘predict’ what size earthquakes to expect at The Geysers following a large distant earthquake.

  20. Why the 1964 Great Alaska Earthquake matters 50 years later

    Science.gov (United States)

    West, Michael E.; Haeussler, Peter J.; Ruppert, Natalia A.; Freymueller, Jeffrey T.; ,

    2014-01-01

    Spring was returning to Alaska on Friday 27 March 1964. A two‐week cold snap had just ended, and people were getting ready for the Easter weekend. At 5:36 p.m., an earthquake initiated 12 km beneath Prince William Sound, near the eastern end of what is now recognized as the Alaska‐Aleutian subduction zone. No one was expecting this earthquake that would radically alter the coastal landscape, influence the direction of science, and indelibly mark the growth of a burgeoning state.

  1. Vrancea earthquakes. Specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    Earthquakes have been known in Romania since Roman times, when Trajan's legionnaires began the colonization of the rich plains stretching from the Carpathian Mountains to the Danube River. Since readings from seismographic stations became available, after 1940, it has been established that the most frequent largest earthquakes arise from deep Vrancea sources at the bend of the Carpathians Earthquakes in the Carpathian-Pannonian region are confined to the crust, except for the Vrancea zone, where earthquakes with focal depth down to 200 km occur. For example, the ruptured area migrated in depth from 150 km to 180 km (November 10, 1940, M w =7.7), from 90 to 110 km (March 4, 1977, M w =7.4), from 130 to 150 km (August 30, 1986, M w =7.1), and from 70 to 90 km (May 30, 1990, M w =6.9). The depth interval between 110 km and 130 km has remained unruptured since 1802, October 26, when the strongest known earthquake occurred in this part of Central Europe. The magnitude is assumed to have been M w =7.9 - 8.0, and this depth interval is a natural candidate for the next strong Vrancea event. The maximum intensity for strong deep Vrancea earthquakes is quite distant from the actual epicenter and greater than the epicentral intensity. For the 1977 strong earthquake (M w =7.4), the estimated intensity at its Vrancea region epicenter was only VII (MMI scale), while some 170 km away, in the capital city of Bucharest, the estimated maximum intensity was IX1/2 -X (MMI). The intensely deforming Vrancea zone shows a quite enigmatic seismic pattern (peak ground accelerations/intensity one, characteristic response spectra with large periods of 1.5 seconds, no significant attenuations on Romanian territory, large amplifications away, etc.). While no country in the world is entirely safe, the lack of capacity to limit the impact of seismic hazards remains a major burden for all countries and while the world has witnessed an exponential increase in human and material losses due to

  2. Uniform risk spectra of strong earthquake ground motion: NEQRISK

    International Nuclear Information System (INIS)

    Lee, V.W.; Trifunac, M.D.

    1987-01-01

    The concept of uniform risk spectra of Anderson and Trifunac (1977) has been generalized to include (1) more refined description of earthquake source zones, (2) the uncertainties in estimating seismicity parameters a and b in log 10 N = a - bM, (3) to consider uncertainties in estimation of maximum earthquake size in each source zone, and to (4) include the most recent results on empirical scaling of strong motion amplitudes at a site. Examples of using to new NEQRISK program are presented and compared with the corresponding case studies of Anderson and Trifunac (1977). The organization of the computer program NEQRISK is also briefly described

  3. Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault

    Science.gov (United States)

    Scharer, Katherine M.; Biasi, Glenn P.; Weldon, Ray J.; Fumal, Tom E.

    2010-01-01

    It has been 153 yr since the last large earthquake on the southern San Andreas fault (California, United States), but the average interseismic interval is only ~100 yr. If the recurrence of large earthquakes is periodic, rather than random or clustered, the length of this period is notable and would generally increase the risk estimated in probabilistic seismic hazard analyses. Unfortunately, robust characterization of a distribution describing earthquake recurrence on a single fault is limited by the brevity of most earthquake records. Here we use statistical tests on a 3000 yr combined record of 29 ground-rupturing earthquakes from Wrightwood, California. We show that earthquake recurrence there is more regular than expected from a Poisson distribution and is not clustered, leading us to conclude that recurrence is quasi-periodic. The observation of unimodal time dependence is persistent across an observationally based sensitivity analysis that critically examines alternative interpretations of the geologic record. The results support formal forecast efforts that use renewal models to estimate probabilities of future earthquakes on the southern San Andreas fault. Only four intervals (15%) from the record are longer than the present open interval, highlighting the current hazard posed by this fault.

  4. Earthquake related dynamic groundwater pressure changes observed at the Kamaishi Mine

    International Nuclear Information System (INIS)

    Sasaki, Shunji; Yasuike, Shinji; Komada, Hiroya; Kobayashi, Yoshimasa; Kawamura, Makoto; Aoki, Kazuhiro

    1999-01-01

    From 342 seismic records observed at the Kamaishi Mine form 1990 to 1998, a total of 92 data whose acceleration is greater than 1 gal or ground water pressure is greater than 1 kPa were selected and dynamic ground water pressure changes associated with earthquakes were studied. The results obtained are as follows: (1) A total of 27 earthquakes accompanied by static ground water pressure changes were observed. Earthquake-related static ground water pressure changes are smaller than 1/10 of the annual range of ground water pressure changes. There is also a tendency that the ground water pressure changes recovers to its original trend in several weeks after earthquakes. (2) Dynamic ground water pressure changes associated with earthquakes occur when P-waves arrive. However, the largest dynamic ground water pressure changes occur on S-wave part arrivals where the amplitude of seismic wave is the largest. A positive correlation is recognized between the maximum value of velocity wave form and that of dynamic ground water pressure changes. (3) The characteristic of dynamic change in ground water pressure due to earthquakes can be explained qualitatively by mechanism in which the P-wave converted from an incident SV wave propagates along the borehole. (author)

  5. ShakeAlert—An earthquake early warning system for the United States west coast

    Science.gov (United States)

    Burkett, Erin R.; Given, Douglas D.; Jones, Lucile M.

    2014-08-29

    Earthquake early warning systems use earthquake science and the technology of monitoring systems to alert devices and people when shaking waves generated by an earthquake are expected to arrive at their location. The seconds to minutes of advance warning can allow people and systems to take actions to protect life and property from destructive shaking. The U.S. Geological Survey (USGS), in collaboration with several partners, has been working to develop an early warning system for the United States. ShakeAlert, a system currently under development, is designed to cover the West Coast States of California, Oregon, and Washington.

  6. The mechanism of earthquake

    Science.gov (United States)

    Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and with the data of experimental results upon rocks, however, shows a large discrepancy with measurement — a fact that has been dubbed as “the heat flow paradox”. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not reasonable explanation either. This paper will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective system of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerged in the recent years. (1) Stress distribution in earth’s crust: Without taking the tectonic force into account, according to the rheological principle of “everything flows”, the normal stress and transverse stress must be balanced due to the effect of gravitational pressure over a long period of time, thus no differential stress in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rock blocks to squeeze the fault gouge and then exerted upon other rock blocks. The superposition of such additional lateral tectonic force and the original stress gives rise to the real-time stress in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. The elastic moduli of the fault gouges are much less than those of rocks, and they become larger with increasing pressure. This peculiarity of the fault gouge leads to a tectonic force increasing with depth in a nonlinear fashion. The distribution and variation of the tectonic stress in the crust are specified. (2) The

  7. Time-decreasing hazard and increasing time until the next earthquake

    International Nuclear Information System (INIS)

    Corral, Alvaro

    2005-01-01

    The existence of a slowly always decreasing probability density for the recurrence times of earthquakes in the stationary case implies that the occurrence of an event at a given instant becomes more unlikely as time since the previous event increases. Consequently, the expected waiting time to the next earthquake increases with the elapsed time, that is, the event moves away fast to the future. We have found direct empirical evidence of this counterintuitive behavior in two worldwide catalogs as well as in diverse regional catalogs. Universal scaling functions describe the phenomenon well

  8. Earthquake Loss Scenarios in the Himalayas

    Science.gov (United States)

    Wyss, M.; Gupta, S.; Rosset, P.; Chamlagain, D.

    2017-12-01

    We estimate quantitatively that in repeats of the 1555 and 1505 great Himalayan earthquakes the fatalities may range from 51K to 549K, the injured from 157K to 1,700K and the strongly affected population (Intensity≥VI) from 15 to 75 million, depending on the details of the assumed earthquake parameters. For up-dip ruptures in the stressed segments of the M7.8 Gorkha 2015, the M7.9 Subansiri 1947 and the M7.8 Kangra 1905 earthquakes, we estimate 62K, 100K and 200K fatalities, respectively. The numbers of strongly affected people we estimate as 8, 12, 33 million, in these cases respectively. These loss calculations are based on verifications of the QLARM algorithms and data set in the cases of the M7.8 Gorkha 2015, the M7.8 Kashmir 2005, the M6.6 Chamoli 1999, the M6.8 Uttarkashi 1991 and the M7.8 Kangra 1905 earthquakes. The requirement of verification that was fulfilled in these test cases was that the reported intensity field and the fatality count had to match approximately, using the known parameters of the earthquakes. The apparent attenuation factor was a free parameter and ranged within acceptable values. Numbers for population were adjusted for the years in question from the latest census. The hour of day was assumed to be at night with maximum occupation. The assumption that the upper half of the Main Frontal Thrust (MFT) will rupture in companion earthquakes to historic earthquakes in the down-dip half is based on the observations of several meters of displacement in trenches across the MFT outcrop. Among mitigation measures awareness with training and adherence to construction codes rank highest. Retrofitting of schools and hospitals would save lives and prevent injuries. Preparation plans for helping millions of strongly affected people should be put in place. These mitigation efforts should focus on an approximately 7 km wide strip along the MFT on the up-thrown side because the strong motions are likely to be doubled. We emphasize that our estimates

  9. Tsunami simulation of 2011 Tohoku-Oki Earthquake. Evaluation of difference in tsunami wave pressure acting around Fukushima Daiichi Nuclear Power Station and Fukushima Daini Nuclear Power Station among different tsunami source models

    International Nuclear Information System (INIS)

    Fujihara, Satoru; Hashimoto, Norihiko; Korenaga, Mariko; Tamiya, Takahiro

    2016-01-01

    Since the 2011 Tohoku-Oki Earthquake, evaluations based on a tsunami simulation approach have had a very important role in promoting tsunami disaster prevention measures in the case of mega-thrust earthquakes. When considering tsunami disaster prevention measures based on the knowledge obtained from tsunami simulations, it is important to carefully examine the type of tsunami source model. In current tsunami simulations, there are various ways to set the tsunami source model, and a considerable difference in tsunami behavior can be expected among the tsunami source models. In this study, we carry out a tsunami simulation of the 2011 Tohoku-Oki Earthquake around Fukushima Daiichi (I) Nuclear Power Plant and Fukushima Daini (II) Nuclear Power Plant in Fukushima Prefecture, Japan, using several tsunami source models, and evaluate the difference in the tsunami behavior in the tsunami inundation process. The results show that for an incoming tsunami inundating an inland region, there are considerable relative differences in the maximum tsunami height and wave pressure. This suggests that there could be false information used in promoting tsunami disaster prevention measures in the case of mega-thrust earthquakes, depending on the tsunami source model. (author)

  10. Thermal IR satellite data application for earthquake research in Pakistan

    Science.gov (United States)

    Barkat, Adnan; Ali, Aamir; Rehman, Khaista; Awais, Muhammad; Riaz, Muhammad Shahid; Iqbal, Talat

    2018-05-01

    The scientific progress in space research indicates earthquake-related processes of surface temperature growth, gas/aerosol exhalation and electromagnetic disturbances in the ionosphere prior to seismic activity. Among them surface temperature growth calculated using the satellite thermal infrared images carries valuable earthquake precursory information for near/distant earthquakes. Previous studies have concluded that such information can appear few days before the occurrence of an earthquake. The objective of this study is to use MODIS thermal imagery data for precursory analysis of Kashmir (Oct 8, 2005; Mw 7.6; 26 km), Ziarat (Oct 28, 2008; Mw 6.4; 13 km) and Dalbandin (Jan 18, 2011; Mw 7.2; 69 km) earthquakes. Our results suggest that there exists an evident correlation of Land Surface Temperature (thermal; LST) anomalies with seismic activity. In particular, a rise of 3-10 °C in LST is observed 6, 4 and 14 days prior to Kashmir, Ziarat and Dalbandin earthquakes. In order to further elaborate our findings, we have presented a comparative and percentile analysis of daily and five years averaged LST for a selected time window with respect to the month of earthquake occurrence. Our comparative analyses of daily and five years averaged LST show a significant change of 6.5-7.9 °C for Kashmir, 8.0-8.1 °C for Ziarat and 2.7-5.4 °C for Dalbandin earthquakes. This significant change has high percentile values for the selected events i.e. 70-100% for Kashmir, 87-100% for Ziarat and 84-100% for Dalbandin earthquakes. We expect that such consistent results may help in devising an optimal earthquake forecasting strategy and to mitigate the effect of associated seismic hazards.

  11. Risk assessment study of fire following earthquake: a case study of petrochemical enterprises in China

    Science.gov (United States)

    Li, J.; Wang, Y.; Chen, H.; Lin, L.

    2013-04-01

    After an earthquake, the fire risk of petrochemistry enterprises is higher than that of other enterprises as it involves production processes with inflammable and explosive characteristics. Using Chinese petrochemical enterprises as the research object, this paper uses a literature review and case summaries to study, amongst others, the classification of petrochemical enterprises, the proportion of daily fires, and fire loss ratio. This paper builds a fire following earthquake risk assessment model of petrochemical enterprises based on a previous earthquake fire hazard model, and the earthquake loss prediction assessment method, calculates the expected loss of the fire following earthquake in various counties and draws a risk map. Moreover, this research identifies high-risk areas, concentrating on the Beijing-Tianjin-Tangshan region, and Shandong, Jiangsu, and Zhejiang provinces. Differences in enterprise type produce different levels and distribution of petrochemical enterprises earthquake fire risk. Furthermore, areas at high risk of post-earthquake fires and with low levels of seismic fortification require extra attention to ensure appropriate mechanisms are in place.

  12. Analyses of surface motions caused by the magnitude 9.0 2004 Sumatra earthquake

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Gudmundsson, Ó.

    The Sumatra, Indonesia, earthquake on December 26th was one of the most devastating earthquakes in history. With a magnitude of Mw = 9.0 it is the forth largest earthquake recorded since 1900. It occurred about one hundred kilometers off the west coast of northern Sumatra, where the relatively thin...... of years. The result was a devastating tsunami hitting coastlines across the Indian Ocean killing more than 225,000 people in Sri Lanka, India, Indonesia, Thailand and Malaysia. An earthquake of this magnitude is expected to involve a displacement on the fault on the order of 10 meters. But, what...... was the actual amplitude of the surface motions that triggered the tsunami? This can be constrained using the amplitudes of elastic waves radiated from the earthquake, or by direct measurements of deformation. Here we present estimates of the deformation based on continuous Global Positioning System (GPS...

  13. Deterministic earthquake scenarios for the city of Sofia

    CERN Document Server

    Slavov, S I; Panza, G F; Paskaleva, I; Vaccari, P

    2002-01-01

    The city of Sofia is exposed to a high seismic risk. Macroseismic intensities in the range of VIII-X (MSK) can be expected in the city. The earthquakes, that can influence the hazard at Sofia, originate either beneath the city or are caused by seismic sources located within a radius of 40km. The city of Sofia is also prone to the remote Vrancea seismic zone in Romania, and particularly vulnerable are the long - period elements of the built environment. The high seismic risk and the lack of instrumental recordings of the regional seismicity makes the use of appropriate credible earthquake scenarios and ground motion modelling approaches for defining the seismic input for the city of Sofia necessary. Complete synthetic seismic signals, due to several earthquake scenarios, were computed along chosen geological profiles crossing the city, applying a hybrid technique, based on the modal summation technique and finite differences. The modelling takes into account simultaneously the geotechnical properties of the si...

  14. Direct reconstruction of the source intensity distribution of a clinical linear accelerator using a maximum likelihood expectation maximization algorithm.

    Science.gov (United States)

    Papaconstadopoulos, P; Levesque, I R; Maglieri, R; Seuntjens, J

    2016-02-07

    Direct determination of the source intensity distribution of clinical linear accelerators is still a challenging problem for small field beam modeling. Current techniques most often involve special equipment and are difficult to implement in the clinic. In this work we present a maximum-likelihood expectation-maximization (MLEM) approach to the source reconstruction problem utilizing small fields and a simple experimental set-up. The MLEM algorithm iteratively ray-traces photons from the source plane to the exit plane and extracts corrections based on photon fluence profile measurements. The photon fluence profiles were determined by dose profile film measurements in air using a high density thin foil as build-up material and an appropriate point spread function (PSF). The effect of other beam parameters and scatter sources was minimized by using the smallest field size ([Formula: see text] cm(2)). The source occlusion effect was reproduced by estimating the position of the collimating jaws during this process. The method was first benchmarked against simulations for a range of typical accelerator source sizes. The sources were reconstructed with an accuracy better than 0.12 mm in the full width at half maximum (FWHM) to the respective electron sources incident on the target. The estimated jaw positions agreed within 0.2 mm with the expected values. The reconstruction technique was also tested against measurements on a Varian Novalis Tx linear accelerator and compared to a previously commissioned Monte Carlo model. The reconstructed FWHM of the source agreed within 0.03 mm and 0.11 mm to the commissioned electron source in the crossplane and inplane orientations respectively. The impact of the jaw positioning, experimental and PSF uncertainties on the reconstructed source distribution was evaluated with the former presenting the dominant effect.

  15. Seven years of postseismic deformation following the 2003 Mw = 6.8 Zemmouri earthquake (Algeria) from InSAR time series

    KAUST Repository

    Cetin, Esra

    2012-05-28

    We study the postseismic surface deformation of the Mw 6.8, 2003 Zemmouri earthquake (northern Algeria) using the Multi-Temporal Small Baseline InSAR technique. InSAR time series obtained from 31 Envisat ASAR images from 2003 to 2010 reveal sub-cm coastline ground movements between Cap Matifou and Dellys. Two regions display subsidence at a maximum rate of 2 mm/yr in Cap Djenet and 3.5 mm/yr in Boumerdes. These regions correlate well with areas of maximum coseismic uplifts, and their association with two rupture segments. Inverse modeling suggest that subsidence in the areas of high coseismic uplift can be explained by afterslip on shallow sections (<5 km) of the fault above the areas of coseismic slip, in agreement with previous GPS observations. The earthquake impact on soft sediments and the ground water table southwest of the earthquake area, characterizes ground deformation of non-tectonic origin. The cumulative postseismic moment due to 7 years afterslip is equivalent to an Mw 6.3 earthquake. Therefore, the postseismic deformation and stress buildup has significant implications on the earthquake cycle models and recurrence intervals of large earthquakes in the Algiers area.

  16. Seven years of postseismic deformation following the 2003 Mw = 6.8 Zemmouri earthquake (Algeria) from InSAR time series

    KAUST Repository

    Cetin, Esra; Meghraoui, Mustapha; Cakir, Ziyadin; Akoglu, Ahmet M.; Mimouni, Omar; Chebbah, Mouloud

    2012-01-01

    We study the postseismic surface deformation of the Mw 6.8, 2003 Zemmouri earthquake (northern Algeria) using the Multi-Temporal Small Baseline InSAR technique. InSAR time series obtained from 31 Envisat ASAR images from 2003 to 2010 reveal sub-cm coastline ground movements between Cap Matifou and Dellys. Two regions display subsidence at a maximum rate of 2 mm/yr in Cap Djenet and 3.5 mm/yr in Boumerdes. These regions correlate well with areas of maximum coseismic uplifts, and their association with two rupture segments. Inverse modeling suggest that subsidence in the areas of high coseismic uplift can be explained by afterslip on shallow sections (<5 km) of the fault above the areas of coseismic slip, in agreement with previous GPS observations. The earthquake impact on soft sediments and the ground water table southwest of the earthquake area, characterizes ground deformation of non-tectonic origin. The cumulative postseismic moment due to 7 years afterslip is equivalent to an Mw 6.3 earthquake. Therefore, the postseismic deformation and stress buildup has significant implications on the earthquake cycle models and recurrence intervals of large earthquakes in the Algiers area.

  17. Tsunami hazard assessments with consideration of uncertain earthquakes characteristics

    Science.gov (United States)

    Sepulveda, I.; Liu, P. L. F.; Grigoriu, M. D.; Pritchard, M. E.

    2017-12-01

    The uncertainty quantification of tsunami assessments due to uncertain earthquake characteristics faces important challenges. First, the generated earthquake samples must be consistent with the properties observed in past events. Second, it must adopt an uncertainty propagation method to determine tsunami uncertainties with a feasible computational cost. In this study we propose a new methodology, which improves the existing tsunami uncertainty assessment methods. The methodology considers two uncertain earthquake characteristics, the slip distribution and location. First, the methodology considers the generation of consistent earthquake slip samples by means of a Karhunen Loeve (K-L) expansion and a translation process (Grigoriu, 2012), applicable to any non-rectangular rupture area and marginal probability distribution. The K-L expansion was recently applied by Le Veque et al. (2016). We have extended the methodology by analyzing accuracy criteria in terms of the tsunami initial conditions. Furthermore, and unlike this reference, we preserve the original probability properties of the slip distribution, by avoiding post sampling treatments such as earthquake slip scaling. Our approach is analyzed and justified in the framework of the present study. Second, the methodology uses a Stochastic Reduced Order model (SROM) (Grigoriu, 2009) instead of a classic Monte Carlo simulation, which reduces the computational cost of the uncertainty propagation. The methodology is applied on a real case. We study tsunamis generated at the site of the 2014 Chilean earthquake. We generate earthquake samples with expected magnitude Mw 8. We first demonstrate that the stochastic approach of our study generates consistent earthquake samples with respect to the target probability laws. We also show that the results obtained from SROM are more accurate than classic Monte Carlo simulations. We finally validate the methodology by comparing the simulated tsunamis and the tsunami records for

  18. Characteristics of Gyeongju earthquake, moment magnitude 5.5 and relative relocations of aftershocks

    Science.gov (United States)

    Cho, ChangSoo; Son, Minkyung

    2017-04-01

    There is low seismicity in the korea peninsula. According historical record in the historic book, There were several strong earthquake in the korea peninsula. Especially in Gyeongju of capital city of the Silla dynasty, few strong earthquakes caused the fatalities of several hundreds people 1,300 years ago and damaged the houses and make the wall of castles collapsed. Moderate strong earthquake of moment magnitude 5.5 hit the city in September 12, 2016. Over 1000 aftershocks were detected. The numbers of occurrences of aftershock over time follows omori's law well. The distribution of relative locations of 561 events using clustering aftershocks by cross-correlation between P and S waveform of the events showed the strike NNE 25 30 o and dip 68 74o of fault plane to cause the earthquake matched with the fault plane solution of moment tensor inversion well. The depth of range of the events is from 11km to 16km. The width of distribution of event locations is about 5km length. The direction of maximum horizontal stress by inversion of stress for the moment solutions of main event and large aftershocks is similar to the known maximum horizontal stress direction of the korea peninsula. The relation curves between moment magnitude and local magnitude of aftershocks shows that the moment magnitude increases slightly more for events of size less than 2.0

  19. Earthquake Culture: A Significant Element in Earthquake Disaster Risk Assessment and Earthquake Disaster Risk Management

    OpenAIRE

    Ibrion, Mihaela

    2018-01-01

    This book chapter brings to attention the dramatic impact of large earthquake disasters on local communities and society and highlights the necessity of building and enhancing the earthquake culture. Iran was considered as a research case study and fifteen large earthquake disasters in Iran were investigated and analyzed over more than a century-time period. It was found that the earthquake culture in Iran was and is still conditioned by many factors or parameters which are not integrated and...

  20. Analytical investigations of the earthquake resistance of the support base of an oil-gas platform

    Energy Technology Data Exchange (ETDEWEB)

    Glagovskii, V. B.; Kassirova, N. A.; Turchina, O. A.; Finagenov, O. M.; Tsirukhin, N. A. [JSC ' VNIIG im. B. E. Vedeneeva' (Russian Federation)

    2012-01-15

    In designing stationary oil-gas recovery platforms on the continental shelf, the need arises to compute the estimated strength of their support base during seismic events. This paper is devoted to this estimation. The paper examines a structure consisting of the superstructure of an oil-gas platform and its gravity-type base. It is possible to install earthquake-insulating supports between them. Calculations performed for the design earthquake indicated that the design of the gravity base can resist a seismic effect without special additional measures. During the maximum design earthquake, moreover, significant stresses may develop in the zone of base where the columns are connected to the upper slab of the caisson. In that case, the earthquake insulation considered for the top of the platform becomes critical.

  1. Analytical investigations of the earthquake resistance of the support base of an oil-gas platform

    International Nuclear Information System (INIS)

    Glagovskii, V. B.; Kassirova, N. A.; Turchina, O. A.; Finagenov, O. M.; Tsirukhin, N. A.

    2012-01-01

    In designing stationary oil-gas recovery platforms on the continental shelf, the need arises to compute the estimated strength of their support base during seismic events. This paper is devoted to this estimation. The paper examines a structure consisting of the superstructure of an oil-gas platform and its gravity-type base. It is possible to install earthquake-insulating supports between them. Calculations performed for the design earthquake indicated that the design of the gravity base can resist a seismic effect without special additional measures. During the maximum design earthquake, moreover, significant stresses may develop in the zone of base where the columns are connected to the upper slab of the caisson. In that case, the earthquake insulation considered for the top of the platform becomes critical.

  2. The Hengill geothermal area, Iceland: Variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G. R.

    1995-04-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area S. Iceland, a dominantly basaltic area. The likely strain rate calculated from thermal and tectonic considerations is 10 -15 s -1, and temperature measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up to 150 °C km -1 throughout the upper 2 km. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ± 50 °C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes located highly accurately by performing a simultaneous inversion for three-dimensional structure and hypocentral parameters. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. Beneath the high-temperature part of the geothermal area, the maximum depth of earthquakes may be as shallow as 4 km. The geothermal gradient below drilling depths in various parts of the area ranges from 84 ± 9 °Ckm -1 within the low-temperature geothermal area of the transform zone to 138 ± 15 °Ckm -1 below the centre of the high-temperature geothermal area. Shallow maximum depths of earthquakes and therefore high average geothermal gradients tend to correlate with the intensity of the geothermal area and not with the location of the currently active spreading axis.

  3. Co-seismic deformation and gravity changes of the 2011 India-Nepal and Myanmar earthquakes

    Directory of Open Access Journals (Sweden)

    Liu Chengli

    2012-02-01

    Full Text Available Co-seismic deformation and gravity field changes caused by the 2011 Mw6. 8 Myanmar and Mw6. 9 India-Nepal earthquakes are calculated with a finite-element model and an average-slip model, respectively, based on the multi-layered elastic half-space dislocation theory. The calculated maximum horizontal displacement of the Myanmar earthquake is 36 cm, which is larger than the value of 9. 5 cm for the India-Nepal earthquake. This difference is attributed to their different focal depths and our use of different models. Except certain differences in the near field, both models give similar deformation and gravity results for the Myanmar event.

  4. Precursory earthquakes of the 1943 eruption of Paricutin volcano, Michoacan, Mexico

    Science.gov (United States)

    Yokoyama, I.; de la Cruz-Reyna, S.

    1990-12-01

    Paricutin volcano is a monogenetic volcano whose birth and growth were observed by modern volcanological techniques. At the time of its birth in 1943, the seismic activity in central Mexico was mainly recorded by the Wiechert seismographs at the Tacubaya seismic station in Mexico City about 320 km east of the volcano area. In this paper we aim to find any characteristics of precursory earthquakes of the monogenetic eruption. Though there are limits in the available information, such as imprecise location of hypocenters and lack of earthquake data with magnitudes under 3.0. The available data show that the first precursory earthquake occurred on January 7, 1943, with a magnitude of 4.4. Subsequently, 21 earthquakes ranging from 3.2 to 4.5 in magnitude occurred before the outbreak of the eruption on February 20. The (S - P) durations of the precursory earthquakes do not show any systematic changes within the observational errors. The hypocenters were rather shallow and did not migrate. The precursory earthquakes had a characteristic tectonic signature, which was retained through the whole period of activity. However, the spectra of the P-waves of the Paricutin earthquakes show minor differences from those of tectonic earthquakes. This fact helped in the identification of Paricutin earthquakes. Except for the first shock, the maximum earthquake magnitudes show an increasing tendency with time towards the outbreak. The total seismic energy released by the precursory earthquakes amounted to 2 × 10 19 ergs. Considering that statistically there is a threshold of cumulative seismic energy release (10 17-18ergs) by precursory earthquakes in polygenetic volcanoes erupting after long quiescence, the above cumulative energy is exceptionally large. This suggests that a monogenetic volcano may need much more energy to clear the way of magma passage to the earth surface than a polygenetic one. The magma ascent before the outbreak of Paricutin volcano is interpretable by a model

  5. Inspection and repair in JRR-3 after the 2011 off the Pacific coast of Tohoku Earthquake

    International Nuclear Information System (INIS)

    Hosoya, Toshiaki; Nagadomi, Hideki; Torii, Yoshiya

    2014-01-01

    In the 2011 off the Pacific Coast of Tohoku Earthquake, seismic intensity of 6 lower was observed at Tokai Village. However, the maximum acceleration of ground motion that was observed in the JRR-3 reactor facilities had exceeded the maximum response acceleration at the time of design. Therefore, to confirm whether the predetermined performance of the facility equipment of the reactor facilities had been maintained after the earthquake, soundness confirmation inspection was carried out. In the inspection, the soundness of equipment and facilities was evaluated from the results of the equipment inspection and seismic impact assessment, and the repair work was applied when necessary. As a result, it was confirmed that after the earthquake, the equipment of JRR-3 reactor facilities maintained the predetermined performance, and was possible to resume operation. The following item are reported here: (1) overview of JRR-3, (2) conditions of JRR-3 reactor facilities while earthquake occurrence, (3) basic principle for soundness evaluation of facilities, (4) soundness confirmation of buildings and structures, (5) contents of repair, and (6) soundness verification and comprehensive evaluation of each facility and equipment. (A.O.)

  6. Pareto versus lognormal: a maximum entropy test.

    Science.gov (United States)

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

    2011-08-01

    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

  7. Earthquakes Versus Surface Deformation: Qualitative and Quantitative Relationships From The Aegean

    Science.gov (United States)

    Pavlides, S.; Caputo, R.

    Historical seismicity of the Aegean Region has been revised in order to associate major earthquakes to specific seismogenic structures. Only earthquakes associated to normal faulting have been considered. All available historical and seismotectonic data relative to co-seismic surface faulting have been collected in order to evaluate the surface rup- ture length (SRL) and the maximum displacement (MD). In order to perform Seismic Hazard analyses, empirical relationships between these parameters and the magnitude have been inferred and the best fitting regression functions have been calculated. Both co-seismic fault rupture lengths and maximum displacements show a logarithmic re- lationships, but our data from the Aegean Region have systematically lower values than the same parameters world-wide though they are similar to those of the East- ern Mediterranean-Middle East region. The upper envelopes of our diagrams (SRL vs Mw and MD vs Mw) have been also estimated and discussed, because they give useful information of the wort-case scenarios; these curces will be also discussed. Further- more, geological and morphological criteria have been used to recognise the tectonic structures along which historical earthquakes occurred in order to define the geolog- ical fault length (GFL). Accordingly, the SRL/GFL ratio seems to have a bimodal distribution with a major peak about 0.8-1.0, indicating that several earthquakes break through almost the entire geological fault length, and a second peak around 0.5, re- lated to the possible segmentation of these major neotectonic faults. In contrast, no relationships can be depicted between the SRL/GFL ratio and the magnitude of the corresponding events.

  8. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  9. Spatial Distribution of the Coefficient of Variation for the Paleo-Earthquakes in Japan

    Science.gov (United States)

    Nomura, S.; Ogata, Y.

    2015-12-01

    Renewal processes, point prccesses in which intervals between consecutive events are independently and identically distributed, are frequently used to describe this repeating earthquake mechanism and forecast the next earthquakes. However, one of the difficulties in applying recurrent earthquake models is the scarcity of the historical data. Most studied fault segments have few, or only one observed earthquake that often have poorly constrained historic and/or radiocarbon ages. The maximum likelihood estimate from such a small data set can have a large bias and error, which tends to yield high probability for the next event in a very short time span when the recurrence intervals have similar lengths. On the other hand, recurrence intervals at a fault depend on the long-term slip rate caused by the tectonic motion in average. In addition, recurrence times are also fluctuated by nearby earthquakes or fault activities which encourage or discourage surrounding seismicity. These factors have spatial trends due to the heterogeneity of tectonic motion and seismicity. Thus, this paper introduces a spatial structure on the key parameters of renewal processes for recurrent earthquakes and estimates it by using spatial statistics. Spatial variation of mean and variance parameters of recurrence times are estimated in Bayesian framework and the next earthquakes are forecasted by Bayesian predictive distributions. The proposal model is applied for recurrent earthquake catalog in Japan and its result is compared with the current forecast adopted by the Earthquake Research Committee of Japan.

  10. Temporal distribution of earthquakes using renewal process in the Dasht-e-Bayaz region

    Science.gov (United States)

    Mousavi, Mehdi; Salehi, Masoud

    2018-01-01

    Temporal distribution of earthquakes with M w > 6 in the Dasht-e-Bayaz region, eastern Iran has been investigated using time-dependent models. Based on these types of models, it is assumed that the times between consecutive large earthquakes follow a certain statistical distribution. For this purpose, four time-dependent inter-event distributions including the Weibull, Gamma, Lognormal, and the Brownian Passage Time (BPT) are used in this study and the associated parameters are estimated using the method of maximum likelihood estimation. The suitable distribution is selected based on logarithm likelihood function and Bayesian Information Criterion. The probability of the occurrence of the next large earthquake during a specified interval of time was calculated for each model. Then, the concept of conditional probability has been applied to forecast the next major ( M w > 6) earthquake in the site of our interest. The emphasis is on statistical methods which attempt to quantify the probability of an earthquake occurring within a specified time, space, and magnitude windows. According to obtained results, the probability of occurrence of an earthquake with M w > 6 in the near future is significantly high.

  11. Searching for evidence of a preferred rupture direction in small earthquakes at Parkfield

    Science.gov (United States)

    Kane, D. L.; Shearer, P. M.; Allmann, B.; Vernon, F. L.

    2009-12-01

    Theoretical modeling of strike-slip ruptures along a bimaterial interface suggests that the interface will have a preferred rupture direction and will produce asymmetric ground motion (Shi and Ben-Zion, 2006). This could have widespread implications for earthquake source physics and for hazard analysis on mature faults because larger ground motions would be expected in the direction of rupture propagation. Studies have shown that many large global earthquakes exhibit unilateral rupture, but a consistently preferred rupture direction along faults has not been observed. Some researchers have argued that the bimaterial interface model does not apply to natural faults, noting that the rupture of the M 6 2004 Parkfield earthquake propagated in the opposite direction from previous M 6 earthquakes along that section of the San Andreas Fault (Harris and Day, 2005). We analyze earthquake spectra from the Parkfield area to look for evidence of consistent rupture directivity along the San Andreas Fault. We separate the earthquakes into spatially defined clusters and quantify the differences in high-frequency energy among earthquakes recorded at each station. Propagation path effects are minimized in this analysis because we compare earthquakes located within a small volume and recorded by the same stations. By considering a number of potential end-member models, we seek to determine if a preferred rupture direction is present among small earthquakes at Parkfield.

  12. An ongoing earthquake sequence near Dhaka, Bangladesh, from regional recordings

    Science.gov (United States)

    Howe, M.; Mondal, D. R.; Akhter, S. H.; Kim, W.; Seeber, L.; Steckler, M. S.

    2013-12-01

    Earthquakes in and around the syntaxial region between the continent-continent collision of the Himalayan arc and oceanic subduction of the Sunda arc result primarily from the convergence of India and Eurasia-Sunda plates along two fronts. The northern front, the convergence of the Indian and Eurasian plates, has produced the Himalayas. The eastern front, the convergence of the Indian and Sunda plates, ranges from ocean-continent subduction at the Andaman Arc and Burma Arc, and transitions to continent-continent collision to the north at the Assam Syntaxis in northeast India. The India-Sunda convergence at the Burma Arc is extremely oblique. The boundary-normal convergence rate is ~17 mm/yr while the boundary-parallel rate is ~45 mm/yr including the well-known Sagaing strike-slip fault, which accommodates about half the shear component. This heterogeneous tectonic setting produces multiple earthquake sources that need to be considered when assessing seismic hazard and risk in this region. The largest earthquakes, just as in other subduction systems, are expected to be interplate events that occur on the low-angle megathrusts, such as the Mw 9.2 2004 Sumatra-Andaman earthquake and the 1762 earthquake along the Arakan margin. These earthquakes are known to produce large damage over vast areas, but since they account for large fault motions they are relatively rare. The majority of current seismicity in the study area is intraplate. Most of the seismicity associated with the Burma Arc subduction system is in the down-going slab, including the shallow-dipping part below the megathrust flooring the accretionary wedge. The strike of the wedge is ~N-S and Dhaka lies at its outer limit. One particular source relevant to seismic risk in Dhaka is illuminated by a multi-year sequence of earthquakes in Bangladesh less than 100 km southeast of Dhaka. The population in Dhaka (now at least 15 million) has been increasing dramatically due to rapid urbanization. The vulnerability

  13. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  14. Future Developments for the Earthquake Early Warning System following the 2011 off the Pacific Coast of Tohoku Earthquake

    Science.gov (United States)

    Yamada, M.; Mori, J. J.

    2011-12-01

    earthquake is to take into account the duration of waveforms and continuously update the magnitude estimate over at least 100 s One method, shown in Figure 1, uses the integral of the squared velocity over some duration of the S-wave arrival (Festa et al., 2008; Lancieri et al., 2011). The magnitude is estimated as greater than M8 30 seconds after the S-wave arrival, and close to M9 90 seconds later. Technical improvements of the current earthquake early warning system need to be made in anticipation of the next great earthquake, such as the expected Nankai earthquake.

  15. Shortcomings of InSAR for studying megathrust earthquakes: The case of the M w 9.0 Tohoku-Oki earthquake

    KAUST Repository

    Feng, Guangcai

    2012-05-28

    Interferometric Synthetic Aperture Radar (InSAR) observations are sometimes the only geodetic data of large subduction-zone earthquakes. However, these data usually suffer from spatially long-wavelength orbital and atmospheric errors that can be difficult to distinguish from the coseismic deformation and may therefore result in biased fault-slip inversions. To study how well InSAR constrains fault-slip of large subduction zone earthquakes, we use data of the 11 March 2011 Tohoku-Oki earthquake (Mw9.0) and test InSAR-derived fault-slip models against models constrained by GPS data from the extensive nationwide network in Japan. The coseismic deformation field was mapped using InSAR data acquired from multiple ascending and descending passes of the ALOS and Envisat satellites. We then estimated several fault-slip distribution models that were constrained using the InSAR data alone, onland and seafloor GPS/acoustic data, or combinations of the different data sets. Based on comparisons of the slip models, we find that there is no real gain by including InSAR observations for determining the fault slip distribution of this earthquake. That said, however, some of the main fault-slip patterns can be retrieved using the InSAR data alone when estimating long wavelength orbital/atmospheric ramps as a part of the modeling. Our final preferred fault-slip solution of the Tohoku-Oki earthquake is based only on the GPS data and has maximum reverse- and strike-slip of 36.0 m and 6.0 m, respectively, located northeast of the epicenter at a depth of 6 km, and has a total geodetic moment is 3.6 × 1022 Nm (Mw 9.01), similar to seismological estimates.

  16. Outline of geophysical investigations on the great earthquake in the south-west Japan on Dec. 21, 1946

    Science.gov (United States)

    Nagata, Takeshi

    1947-01-01

    In in the early morning of Dec. 21, 1946, a great destructive earthquake occurred in southern-western Japan. According to the seismogram obtained in our university, the earthquake motion began at Tokyo from 4 h 20 m 10.4 s on Dec. 21, 1946. The maximum amplitude of NS, EW, and up-down components of the earthquake motion at Tokyo was 12.0 mm, 14.0 mm and 3.0 mm respectively, while the initial motion was composed of 80 μ south, 67 μ west and 20 μ down movements.

  17. FEATURES AND PROBLEMS WITH HISTORICAL GREAT EARTHQUAKES AND TSUNAMIS IN THE MEDITERRANEAN SEA

    Directory of Open Access Journals (Sweden)

    Lobkovsky L.

    2016-11-01

    Full Text Available The present study examines the historical earthquakes and tsunamis of 21 July 365 and of 9 February 1948 in the Eastern Mediterranean Sea. Numerical simulations were performed for the tsunamis generated by underwater seismic sources in frames of the keyboard model, as well as for their propagation in the Mediterranean Sea basin. Similarly examined were three different types of seismic sources at the same localization near the Island of Crete for the earthquake of 21 July 365, and of two different types of seismic sources for the earthquake of 9 February 1948 near the Island of Karpathos. For each scenario, the tsunami wave field characteristics from the earthquake source to coastal zones in Mediterranean Sea’s basin were obtained and histograms were constructed showing the distribution of maximum tsunami wave heights, along a 5-m isobath. Comparison of tsunami wave characteristics for all the above mentioned scenarios, demonstrates that underwater earthquakes with magnitude M > 7 in the Eastern Mediterranean Sea basin, can generate waves with coastal runup up to 9 m.

  18. ARMA models for earthquake ground motions. Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Chang, Mark K.; Kwiatkowski, Jan W.; Nau, Robert F.; Oliver, Robert M.; Pister, Karl S.

    1981-02-01

    This report contains an analysis of four major California earthquake records using a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It has been possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters and test the residuals generated by these models. It has also been possible to show the connections, similarities and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed in this report is suitable for simulating earthquake ground motions in the time domain and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. (author)

  19. Return to work for severely injured survivors of the Christchurch earthquake: influences in the first 2 years.

    Science.gov (United States)

    Nunnerley, Joanne; Dunn, Jennifer; McPherson, Kathryn; Hooper, Gary; Woodfield, Tim

    2016-01-01

    This study looked at the influences on the return to work (RTW) in the first 2 years for people severely injured in the 22 February 2011 Christchurch earthquake. We used a constructivist grounded theory approach using semi-structured interviews to collect data from 14 people injured in the earthquake. Analysis elicited three themes that appeared to influence the process of RTW following the Christchurch earthquake. Living the earthquake experience, the individual's experiences of the earthquake and how their injury framed their expectations; rebuilding normality, the desire of the participants to return to life as it was; while dealing with the secondary effects of the earthquake includes the earthquake specific effects which were both barriers and facilitators to returning to work. The consequences of the earthquake impacted on experience, process and outcome of RTW for those injured in the Christchurch Earthquake. Work and RTW appeared key tools to enhance recovery after serious injury following the earthquake. The altered physical, social and economic environment must be considered when working on the return to work (RTW) of individuals with earthquake injuries. Providing tangible emotional and social support so injured earthquake survivors feel safe in their workplace may facilitate RTW. Engaging early with employers may assist the RTW of injured earthquake survivors.

  20. Seismic Observations Indicating That the 2015 Ogasawara (Bonin) Earthquake Ruptured Beneath the 660 km Discontinuity

    Science.gov (United States)

    Kuge, Keiko

    2017-11-01

    The termination of deep earthquakes at a depth of 700 km is a key feature for understanding the physical mechanism of deep earthquakes. The 680 km deep 30 May 2015, Ogasawara (Bonin) earthquake (Mw 7.9) and its aftershocks were recorded by seismic stations at distances from 7° to 19°. Synthetic seismograms indicate that the P waveforms depend on whether the earthquake is located above or below the 660 km discontinuity. In this study, I show that broadband recordings indicate that the 2015 earthquake may have occurred below the 660 km velocity discontinuity. Recordings of the P wave from the strongest aftershock lack evidence for wave triplication expected when a subhorizontal discontinuity underlies the hypocenter. Theoretical waveforms computed with a 660 km discontinuity above the aftershock and mainshock match the observed waveforms more accurately. These observations may indicate earthquake ruptures due to mantle minerals other than olivine or strong deformation of the 660 km phase transition.

  1. Relations between source parameters for large Persian earthquakes

    Directory of Open Access Journals (Sweden)

    Majid Nemati

    2015-11-01

    Full Text Available Empirical relationships for magnitude scales and fault parameters were produced using 436 Iranian intraplate earthquakes of recently regional databases since the continental events represent a large portion of total seismicity of Iran. The relations between different source parameters of the earthquakes were derived using input information which has usefully been provided from the databases after 1900. Suggested equations for magnitude scales relate the body-wave, surface-wave as well as local magnitude scales to scalar moment of the earthquakes. Also, dependence of source parameters as surface and subsurface rupture length and maximum surface displacement on the moment magnitude for some well documented earthquakes was investigated. For meeting this aim, ordinary linear regression procedures were employed for all relations. Our evaluations reveal a fair agreement between obtained relations and equations described in other worldwide and regional works in literature. The M0-mb and M0-MS equations are correlated well to the worldwide relations. Also, both M0-MS and M0-ML relations have a good agreement with regional studies in Taiwan. The equations derived from this study mainly confirm the results of the global investigations about rupture length of historical and instrumental events. However, some relations like MW-MN and MN-ML which are remarkably unlike to available regional works (e.g., American and Canadian were also found.

  2. Goce derived geoid changes before the Pisagua 2014 earthquake

    Directory of Open Access Journals (Sweden)

    Orlando Álvarez

    2018-01-01

    Full Text Available The analysis of space – time surface deformation during earthquakes reveals the variable state of stress that occurs at deep crustal levels, and this information can be used to better understand the seismic cycle. Understanding the possible mechanisms that produce earthquake precursors is a key issue for earthquake prediction. In the last years, modern geodesy can map the degree of seismic coupling during the interseismic period, as well as the coseismic and postseismic slip for great earthquakes along subduction zones. Earthquakes usually occur due to mass transfer and consequent gravity variations, where these changes have been monitored for intraplate earthquakes by means of terrestrial gravity measurements. When stresses and correspondent rupture areas are large, affecting hundreds of thousands of square kilometres (as occurs in some segments along plate interface zones, satellite gravimetry data become relevant. This is due to the higher spatial resolution of this type of data when compared to terrestrial data, and also due to their homogeneous precision and availability across the whole Earth. Satellite gravity missions as GOCE can map the Earth gravity field with unprecedented precision and resolution. We mapped geoid changes from two GOCE satellite models obtained by the direct approach, which combines data from other gravity missions as GRACE and LAGEOS regarding their best characteristics. The results show that the geoid height diminished from a year to five months before the main seismic event in the region where maximum slip occurred after the Pisagua Mw = 8.2 great megathrust earthquake. This diminution is interpreted as accelerated inland-directed interseismic mass transfer before the earthquake, coinciding with the intermediate degree of seismic coupling reported in the region. We highlight the advantage of satellite data for modelling surficial deformation related to pre-seismic displacements. This deformation, combined to

  3. Home seismometer for earthquake early warning

    Science.gov (United States)

    Horiuchi, Shigeki; Horiuchi, Yuko; Yamamoto, Shunroku; Nakamura, Hiromitsu; Wu, Changjiang; Rydelek, Paul A.; Kachi, Masaaki

    2009-02-01

    The Japan Meteorological Agency (JMA) has started the practical service of Earthquake Early Warning (EEW) and a very dense deployment of receiving units is expected in the near future. The receiving/alarm unit of an EEW system is equipped with a CPU and memory and is on-line via the internet. By adding an inexpensive seismometer and A/D converter, this unit is transformed into a real-time seismic observatory, which we are calling a home seismometer. If the home seismometer is incorporated in the standard receiving unit of EEW, then the number of seismic observatories will be drastically increased. Since the background noise inside a house caused by human activity may be very large, we have developed specialized software for on-site warning using the home seismometer. We tested our software and found that our algorithm can correctly distinguish between noise and earthquakes for nearly all the events.

  4. Earthquake Activities Along the Strike-Slip Fault System on the Thailand-Myanmar Border

    Directory of Open Access Journals (Sweden)

    Santi Pailoplee

    2014-01-01

    Full Text Available This study investigates the present-day seismicity along the strike-slip fault system on the Thailand-Myanmar border. Using the earthquake catalogue the earthquake parameters representing seismic activities were evaluated in terms of the possible maximum magnitude, return period and earthquake occurrence probabilities. Three different hazardous areas could be distinguished from the obtained results. The most seismic-prone area was located along the northern segment of the fault system and can generate earthquakes of magnitude 5.0, 5.8, and 6.8 mb in the next 5, 10, and 50 years, respectively. The second most-prone area was the southern segment where earthquakes of magnitude 5.0, 6.0, and 7.0 mb might be generated every 18, 60, and 300 years, respectively. For the central segment, there was less than 30 and 10% probability that 6.0- and 7.0-mb earthquakes will be generated in the next 50 years. With regards to the significant infrastructures (dams in the vicinity, the operational Wachiralongkorn dam is situated in a low seismic hazard area with a return period of around 30 - 3000 years for a 5.0 - 7.0 mb earthquake. In contrast, the Hut Gyi, Srinakarin and Tha Thung Na dams are seismically at risk for earthquakes of mb 6.4 - 6.5 being generated in the next 50 years. Plans for a seismic-retrofit should therefore be completed and implemented while seismic monitoring in this region is indispensable.

  5. The 8 September 2017 Tsunami Triggered by the M w 8.2 Intraplate Earthquake, Chiapas, Mexico

    Science.gov (United States)

    Ramírez-Herrera, María Teresa; Corona, Néstor; Ruiz-Angulo, Angel; Melgar, Diego; Zavala-Hidalgo, Jorge

    2018-01-01

    The 8 September 2017, M w 8.2 earthquake offshore Chiapas, Mexico, is the largest earthquake in recorded history in Chiapas since 1902. It caused damage in the states of Oaxaca, Chiapas and Tabasco, including more than 100 fatalities, over 1.5 million people were affected, and 41,000 homes were damaged in the state of Chiapas alone. This earthquake, an intraplate event on a normal fault on the oceanic subducting plate, generated a tsunami recorded at several tide gauge stations in Mexico and on the Pacific Ocean. Here, we report the physical effects of the tsunami on the Chiapas coast and analyze the societal implications of this tsunami on the basis of our post-tsunami field survey. The associated tsunami waves were recorded first at Huatulco tide gauge station at 5:04 (GMT) 12 min after the earthquake. We covered ground observations along 41 km of the coast of Chiapas, encompassing the sites with the highest projected wave heights based on our preliminary tsunami model (maximum tsunami amplitudes between 94.5° and 93.0°W). Runup and inundation distances were measured along eight sites. The tsunami occurred at low tide. The maximum runup was 3 m at Boca del Cielo, and maximum inundation distance was 190 m in Puerto Arista, corresponding to the coast in front of the epicenter and in the central sector of the Gulf of Tehuantepec. Tsunami scour and erosion was evident along the Chiapas coast. Tsunami deposits, mainly sand, reached up to 32 cm thickness thinning landward up to 172 m distance.

  6. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar

    2018-04-17

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  7. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar; Halldorsson, Benedikt; Hrafnkelsson, Birgir; Jonsson, Sigurjon

    2018-01-01

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  8. Prevention of strong earthquakes: Goal or utopia?

    Science.gov (United States)

    Mukhamediev, Sh. A.

    2010-11-01

    In the present paper, we consider ideas suggesting various kinds of industrial impact on the close-to-failure block of the Earth’s crust in order to break a pending strong earthquake (PSE) into a number of smaller quakes or aseismic slips. Among the published proposals on the prevention of a forthcoming strong earthquake, methods based on water injection and vibro influence merit greater attention as they are based on field observations and the results of laboratory tests. In spite of this, the cited proofs are, for various reasons, insufficient to acknowledge the proposed techniques as highly substantiated; in addition, the physical essence of these methods has still not been fully understood. First, the key concept of the methods, namely, the release of the accumulated stresses (or excessive elastic energy) in the source region of a forthcoming strong earthquake, is open to objection. If we treat an earthquake as a phenomenon of a loss in stability, then, the heterogeneities of the physicomechanical properties and stresses along the existing fault or its future trajectory, rather than the absolute values of stresses, play the most important role. In the present paper, this statement is illustrated by the classical examples of stable and unstable fractures and by the examples of the calculated stress fields, which were realized in the source regions of the tsunamigenic earthquakes of December 26, 2004 near the Sumatra Island and of September 29, 2009 near the Samoa Island. Here, just before the earthquakes, there were no excessive stresses in the source regions. Quite the opposite, the maximum shear stresses τmax were close to their minimum value, compared to τmax in the adjacent territory. In the present paper, we provide quantitative examples that falsify the theory of the prevention of PSE in its current form. It is shown that the measures for the prevention of PSE, even when successful for an already existing fault, can trigger or accelerate a catastrophic

  9. ON POTENTIAL REPRESENTATIONS OF THE DISTRIBUTION LAW OF RARE STRONGEST EARTHQUAKES

    Directory of Open Access Journals (Sweden)

    M. V. Rodkin

    2014-01-01

    Full Text Available Assessment of long-term seismic hazard is critically dependent on the behavior of tail of the distribution function of rare strongest earthquakes. Analyses of empirical data cannot however yield the credible solution of this problem because the instrumental catalogs of earthquake are available only for a rather short time intervals, and the uncertainty in estimations of magnitude of paleoearthquakes is high. From the available data, it was possible only to propose a number of alternative models characterizing the distribution of rare strongest earthquakes. There are the following models: the model based on theGuttenberg – Richter law suggested to be valid until a maximum possible seismic event (Мmах, models of 'bend down' of earthquake recurrence curve, and the characteristic earthquakes model. We discuss these models from the general physical concepts supported by the theory of extreme values (with reference to the generalized extreme value (GEV distribution and the generalized Pareto distribution (GPD and the multiplicative cascade model of seismic regime. In terms of the multiplicative cascade model, seismic regime is treated as a large number of episodes of avalanche-type relaxation of metastable states which take place in a set of metastable sub-systems.The model of magnitude-unlimited continuation of the Guttenberg – Richter law is invalid from the physical point of view because it corresponds to an infinite mean value of seismic energy and infinite capacity of the process generating seismicity. A model of an abrupt cut of this law by a maximum possible event, Мmах is not fully logical either.A model with the 'bend-down' of earthquake recurrence curve can ensure both continuity of the distribution law and finiteness of seismic energy value. Results of studies with the use of the theory of extreme values provide a convincing support to the model of 'bend-down' of earthquakes’ recurrence curve. Moreover they testify also that the

  10. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  11. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.

    Science.gov (United States)

    McGuire, Jeffrey J; Boettcher, Margaret S; Jordan, Thomas H

    2005-03-24

    East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.

  12. Engineering geological aspect of Gorkha Earthquake 2015, Nepal

    Science.gov (United States)

    Adhikari, Basanta Raj; Andermann, Christoff; Cook, Kristen

    2016-04-01

    Strong shaking by earthquake causes massif landsliding with severe effects on infrastructure and human lives. The distribution of landslides and other hazards are depending on the combination of earthquake and local characteristics which influence the dynamic response of hillslopes. The Himalayas are one of the most active mountain belts with several kilometers of relief and is very prone to catastrophic mass failure. Strong and shallow earthquakes are very common and cause wide spread collapse of hillslopes, increasing the background landslide rate by several magnitude. The Himalaya is facing many small and large earthquakes in the past i.e. earthquakes i.e. Bihar-Nepal earthquake 1934 (Ms 8.2); Large Kangra earthquake of 1905 (Ms 7.8); Gorkha earthquake 2015 (Mw 7.8). The Mw 7.9 Gorkha earthquake has occurred on and around the main Himalayan Thrust with a hypocentral depth of 15 km (GEER 2015) followed by Mw 7.3 aftershock in Kodari causing 8700+ deaths and leaving hundreds of thousands of homeless. Most of the 3000 aftershocks located by National Seismological Center (NSC) within the first 45 days following the Gorkha Earthquake are concentrated in a narrow 40 km-wide band at midcrustal to shallow depth along the strike of the southern slope of the high Himalaya (Adhikari et al. 2015) and the ground shaking was substantially lower in the short-period range than would be expected for and earthquake of this magnitude (Moss et al. 2015). The effect of this earthquake is very unique in affected areas by showing topographic effect, liquefaction and land subsidence. More than 5000 landslides were triggered by this earthquake (Earthquake without Frontiers, 2015). Most of the landslides are shallow and occurred in weathered bedrock and appear to have mobilized primarily as raveling failures, rock slides and rock falls. Majority of landslides are limited to a zone which runs east-west, approximately parallel the lesser and higher Himalaya. There are numerous cracks in

  13. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  14. The Quanzhou large earthquake: environment impact and deep process

    Science.gov (United States)

    WANG, Y.; Gao*, R.; Ye, Z.; Wang, C.

    2017-12-01

    The Quanzhou earthquake is the largest earthquake in China's southeast coast in history. The ancient city of Quanzhou and its adjacent areas suffered serious damage. Analysis of the impact of Quanzhou earthquake on human activities, ecological environment and social development will provide an example for the research on environment and human interaction.According to historical records, on the night of December 29, 1604, a Ms 8.0 earthquake occurred in the sea area at the east of Quanzhou (25.0°N, 119.5°E) with a focal depth of 25 kilometers. It affected to a maximum distance of 220 kilometers from the epicenter and caused serious damage. Quanzhou, which has been known as one of the world's largest trade ports during Song and Yuan periods was heavily destroyed by this earthquake. The destruction of the ancient city was very serious and widespread. The city wall collapsed in Putian, Nanan, Tongan and other places. The East and West Towers of Kaiyuan Temple, which are famous with magnificent architecture in history, were seriously destroyed.Therefore, an enormous earthquake can exert devastating effects on human activities and social development in the history. It is estimated that a more than Ms. 5.0 earthquake in the economically developed coastal areas in China can directly cause economic losses for more than one hundred million yuan. This devastating large earthquake that severely destroyed the Quanzhou city was triggered under a tectonic-extensional circumstance. In this coastal area of the Fujian Province, the crust gradually thins eastward from inland to coast (less than 29 km thick crust beneath the coast), the lithosphere is also rather thin (60 70 km), and the Poisson's ratio of the crust here appears relatively high. The historical Quanzhou Earthquake was probably correlated with the NE-striking Littoral Fault Zone, which is characterized by right-lateral slip and exhibiting the most active seismicity in the coastal area of Fujian. Meanwhile, tectonic

  15. Error evaluation of inelastic response spectrum method for earthquake design

    International Nuclear Information System (INIS)

    Paz, M.; Wong, J.

    1981-01-01

    Two-story, four-story and ten-story shear building-type frames subjected to earthquake excitaion, were analyzed at several levels of their yield resistance. These frames were subjected at their base to the motion recorded for north-south component of the 1940 El Centro earthquake, and to an artificial earthquake which would produce the response spectral charts recommended for design. The frames were first subjected to 25% or 50% of the intensity level of these earthquakes. The resulting maximum relative displacement for each story of the frames was assumed to be yield resistance for the subsequent analyses at 100% of intensity for the excitation. The frames analyzed were uniform along their height with the stiffness adjusted as to result in 0.20 seconds of the fundamental period for the two-story frame, 0.40 seconds for the four-story frame and 1.0 seconds for the ten-story frame. Results of the study provided the following conclusions: (1) The percentage error in floor displacement for linear behavior was less than 10%; (2) The percentage error in floor displacement for inelastic behavior (elastoplastic) could be as high as 100%; (3) In most of the cases analyzed, the error increased with damping in the system; (4) As a general rule, the error increased as the modal yield resistance decreased; (5) The error was lower for the structures subjected to the 1940 E1 Centro earthquake than for the same structures subjected to an artificial earthquake which was generated from the response spectra for design. (orig./HP)

  16. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  17. Probabilistic earthquake risk assessment as a tool to improve safety and explanatory adequacy

    International Nuclear Information System (INIS)

    Itoi, Tatsuya

    2015-01-01

    This paper explains the concept of probabilistic earthquake risk assessment, mainly from the viewpoint as a tool to improve safety and explanatory adequacy. The definition of risk is the expected value of undesirable effect in an engineering meaning that is likely to occur in the future, and it is defined in risk management as the triplet of scenario (what can happen), frequency, and impact. As for the earthquake risk assessment of a nuclear power plant, the fragility of structure / system / component (SSC) against earthquake (so-called earthquake fragility) is assessed, and by combining with the earthquake hazard that has been separately obtained, the occurrence frequency and impact of the accident are obtained. From the view of the authors, earthquake risk assessment is for the purpose of decision-making, and is not intended to calculate the probability in a scientifically rigorous manner. For ensuring the quality of risk assessment, the table of 'Expert utilization standards for the evaluation of epistemological uncertainty' is used. Sole quantitative risk assessment is not necessarily sufficient for risk management. It would be important to find how to build the 'framework for comprehensive decision-making.' (A.O.)

  18. Sensitivity of Earthquake Loss Estimates to Source Modeling Assumptions and Uncertainty

    Science.gov (United States)

    Reasenberg, Paul A.; Shostak, Nan; Terwilliger, Sharon

    2006-01-01

    Introduction: This report explores how uncertainty in an earthquake source model may affect estimates of earthquake economic loss. Specifically, it focuses on the earthquake source model for the San Francisco Bay region (SFBR) created by the Working Group on California Earthquake Probabilities. The loss calculations are made using HAZUS-MH, a publicly available computer program developed by the Federal Emergency Management Agency (FEMA) for calculating future losses from earthquakes, floods and hurricanes within the United States. The database built into HAZUS-MH includes a detailed building inventory, population data, data on transportation corridors, bridges, utility lifelines, etc. Earthquake hazard in the loss calculations is based upon expected (median value) ground motion maps called ShakeMaps calculated for the scenario earthquake sources defined in WGCEP. The study considers the effect of relaxing certain assumptions in the WG02 model, and explores the effect of hypothetical reductions in epistemic uncertainty in parts of the model. For example, it addresses questions such as what would happen to the calculated loss distribution if the uncertainty in slip rate in the WG02 model were reduced (say, by obtaining additional geologic data)? What would happen if the geometry or amount of aseismic slip (creep) on the region's faults were better known? And what would be the effect on the calculated loss distribution if the time-dependent earthquake probability were better constrained, either by eliminating certain probability models or by better constraining the inherent randomness in earthquake recurrence? The study does not consider the effect of reducing uncertainty in the hazard introduced through models of attenuation and local site characteristics, although these may have a comparable or greater effect than does source-related uncertainty. Nor does it consider sources of uncertainty in the building inventory, building fragility curves, and other assumptions

  19. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  20. Characterising large scenario earthquakes and their influence on NDSHA maps

    Science.gov (United States)

    Magrin, Andrea; Peresan, Antonella; Panza, Giuliano F.

    2016-04-01

    The neo-deterministic approach to seismic zoning, NDSHA, relies on physically sound modelling of ground shaking from a large set of credible scenario earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g. morphostructural features and present day deformation processes identified by Earth observations). NDSHA is based on the calculation of complete synthetic seismograms; hence it does not make use of empirical attenuation models (i.e. ground motion prediction equations). From the set of synthetic seismograms, maps of seismic hazard that describe the maximum of different ground shaking parameters at the bedrock can be produced. As a rule, the NDSHA, defines the hazard as the envelope ground shaking at the site, computed from all of the defined seismic sources; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In this way, the standard NDSHA maps permit to account for the largest observed or credible earthquake sources identified in the region in a quite straightforward manner. This study aims to assess the influence of unavoidable uncertainties in the characterisation of large scenario earthquakes on the NDSHA estimates. The treatment of uncertainties is performed by sensitivity analyses for key modelling parameters and accounts for the uncertainty in the prediction of fault radiation and in the use of Green's function for a given medium. Results from sensitivity analyses with respect to the definition of possible seismic sources are discussed. A key parameter is the magnitude of seismic sources used in the simulation, which is based on information from earthquake catalogue, seismogenic zones and seismogenic nodes. The largest part of the existing Italian catalogues is based on macroseismic intensities, a rough estimate of the error in peak values of ground motion can

  1. Frictional heating processes during laboratory earthquakes

    Science.gov (United States)

    Aubry, J.; Passelegue, F. X.; Deldicque, D.; Lahfid, A.; Girault, F.; Pinquier, Y.; Escartin, J.; Schubnel, A.

    2017-12-01

    Frictional heating during seismic slip plays a crucial role in the dynamic of earthquakes because it controls fault weakening. This study proposes (i) to image frictional heating combining an in-situ carbon thermometer and Raman microspectrometric mapping, (ii) to combine these observations with fault surface roughness and heat production, (iii) to estimate the mechanical energy dissipated during laboratory earthquakes. Laboratory earthquakes were performed in a triaxial oil loading press, at 45, 90 and 180 MPa of confining pressure by using saw-cut samples of Westerly granite. Initial topography of the fault surface was +/- 30 microns. We use a carbon layer as a local temperature tracer on the fault plane and a type K thermocouple to measure temperature approximately 6mm away from the fault surface. The thermocouple measures the bulk temperature of the fault plane while the in-situ carbon thermometer images the temperature production heterogeneity at the micro-scale. Raman microspectrometry on amorphous carbon patch allowed mapping the temperature heterogeneities on the fault surface after sliding overlaid over a few micrometers to the final fault roughness. The maximum temperature achieved during laboratory earthquakes remains high for all experiments but generally increases with the confining pressure. In addition, the melted surface of fault during seismic slip increases drastically with confining pressure. While melting is systematically observed, the strength drop increases with confining pressure. These results suggest that the dynamic friction coefficient is a function of the area of the fault melted during stick-slip. Using the thermocouple, we inverted the heat dissipated during each event. We show that for rough faults under low confining pressure, less than 20% of the total mechanical work is dissipated into heat. The ratio of frictional heating vs. total mechanical work decreases with cumulated slip (i.e. number of events), and decreases with

  2. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  3. Correlation between hypocenter depth, antecedent precipitation and earthquake-induced landslide spatial distribution

    Science.gov (United States)

    Fukuoka, Hiroshi; Watanabe, Eisuke

    2017-04-01

    Since Keefer published the paper on earthquake magnitude and affected area, maximum epicentral/fault distance of induced landslide distribution in 1984, showing the envelope of plots, a lot of studies on this topic have been conducted. It has been generally supposed that landslides have been triggered by shallow quakes and more landslides are likely to occur with heavy rainfalls immediately before the quake. In order to confirm this, we have collected 22 case records of earthquake-induced landslide distribution in Japan and examined the effect of hypocenter depth and antecedent precipitation. Earthquake magnitude by JMA (Japan Meteorological Agency) of the cases are from 4.5 to 9.0. Analysis on hycpocenter depth showed the deeper quake cause wider distribution. Antecedent precipitation was evaluated using the Soil Water Index (SWI), which was developed by JMA for issuing landslide alert. We could not find meaningful correlation between SWI and the earthquake-induced landslide distribution. Additionally, we found that smaller minimum size of collected landslides results in wider distribution especially between 1,000 to 100,000 m2.

  4. Risk assessment study of fire following an earthquake: a case study of petrochemical enterprises in China

    Science.gov (United States)

    Li, J.; Wang, Y.; Chen, H.; Lin, L.

    2014-04-01

    After an earthquake, the fire risk of petrochemical enterprises is higher than that of other enterprises as it involves production processes with inflammable and explosive characteristics. Using Chinese petrochemical enterprises as the research object, this paper uses a literature review and case summaries to study, amongst others, the classification of petrochemical enterprises, the proportion of daily fires, and fire loss ratio. This paper builds a fire following an earthquake risk assessment model of petrochemical enterprises based on a previous earthquake fire hazard model, and the earthquake loss prediction assessment method, calculates the expected loss of the fire following an earthquake in various counties and draws a risk map. Moreover, this research identifies high-risk areas, concentrating on the Beijing-Tianjin-Tangshan region, and Shandong, Jiangsu, and Zhejiang provinces. Differences in enterprise type produce different levels and distribution of petrochemical enterprise earthquake fire risk. Furthermore, areas at high risk of post-earthquake fires and with low levels of seismic fortification require extra attention to ensure appropriate mechanisms are in place.

  5. Aftershock Characteristics as a Means of Discriminating Explosions from Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2009-05-20

    The behavior of aftershock sequences around the Nevada Test Site in the southern Great Basin is characterized as a potential discriminant between explosions and earthquakes. The aftershock model designed by Reasenberg and Jones (1989, 1994) allows for a probabilistic statement of earthquake-like aftershock behavior at any time after the mainshock. We use this model to define two types of aftershock discriminants. The first defines M{sub X}, or the minimum magnitude of an aftershock expected within a given duration after the mainshock with probability X. Of the 67 earthquakes with M > 4 in the study region, 63 of them produce an aftershock greater than M{sub 99} within the first seven days after a mainshock. This is contrasted with only six of 93 explosions with M > 4 that produce an aftershock greater than M{sub 99} for the same period. If the aftershock magnitude threshold is lowered and the M{sub 90} criteria is used, then no explosions produce an aftershock greater than M{sub 90} for durations that end more than 17 days after the mainshock. The other discriminant defines N{sub X}, or the minimum cumulative number of aftershocks expected for given time after the mainshock with probability X. Similar to the aftershock magnitude discriminant, five earthquakes do not produce more aftershocks than N{sub 99} within 7 days after the mainshock. However, within the same period all but one explosion produce less aftershocks then N{sub 99}. One explosion is added if the duration is shortened to two days after than mainshock. The cumulative number aftershock discriminant is more reliable, especially at short durations, but requires a low magnitude of completeness for the given earthquake catalog. These results at NTS are quite promising and should be evaluated at other nuclear test sites to understand the effects of differences in the geologic setting and nuclear testing practices on its performance.

  6. Awareness and understanding of earthquake hazards at school

    Science.gov (United States)

    Saraò, Angela; Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi

    2014-05-01

    selected students as communicators so that they can transfer simple educational messages on the seismic risk reduction to other students and/or to the whole community. The experiment is taking place in North East Italy, an area on which OGS detect earthquakes for seismological study and seismic alarm purposes. Teachers and students participating in the project are expected to present their achieved experience during a public event, at University of Udine (Italy).

  7. Post-earthquake denudation and its impacts on ancient civilizations in the Chengdu Longmenshan region, China

    Science.gov (United States)

    Chen, Ningsheng; Li, Jun; Liu, Lihong; Yang, Chenglin; Liu, Mei

    2018-05-01

    This study characterizes significant changes in denudation and disasters in mountainous areas induced in the humid Chengdu Longmenshan region by the Wenchuan Earthquake in 2008. A study focusing on the Longxi-Baisha River Basin was conducted to investigate the amount of denudation triggered by specific flash flood and debris flow events in 2009-2014. The following results were obtained through a comparison of pre-seismic regional denudation rates and denudation characteristics of other seismically active mountain regions. (1) Regional denudation processes occurred in a wave-like process of initial increase then decline, with a peak exhibiting a hyperbolic attenuation trend. This trend indicates that the denudation rate in the Chengdu Longmenshan region is expected to return to the pre-seismic rate of 0.3 mm a-1 after 81 years. In 22 years after the earthquake (Year 2030), debris flow disasters are expected to be rare. (2) Disasters increased significantly in the Chengdu Longmenshan region after the Wenchuan earthquake, with an average of 29.5 people missing or dead per year (22 times greater than the pre-earthquake rate) and average economic losses of 192 million Yuan per year (1.6 times greater than the pre-earthquake rate). (3) The denudation process was jointly controlled by the quantities of loose solid material and precipitation after the Wenchuan earthquake. The amount of loose solid material influenced the extent of denudation, while vegetation coverage rates and soil consolidation determined the overall denudation trend in the region, and changes in precipitation led to denudation fluctuations. (4) The results can be used to analyze the relationship between the potential flash flood-debris flow disasters after earthquakes in the ancient Shu kingdom and changes in historical social settlements. The results can also be used to predict denudation processes and disaster risks from earthquakes in humid mountainous regions around the world, such as the southern

  8. Gravity Variations Related to Earthquakes in the BTTZ Region in China

    Science.gov (United States)

    Zheng, J.; Liu, K.; Lu, H.; Liu, D.; Chen, Y.; Kuo, J. T.

    2006-05-01

    Temporal variations of gravity before and after earthquakes have been observed since 1960s, but a definitive conclusion has not been reached concerning the relationship between the gravity variation and earthquake occurrence. Since 1980, the first US/China joint scientific research project has been monitoring micro-gravity variations related to earthquakes in the Beijing-Tianjin-Tangshan-Zhangjiekou (BTTZ) region in China through the establishment of a network of spatially and temporally continuous and discrete gravity stations. With the data of both temporally continuous and discrete data of gravity variations accumulated and analyzed, a general picture of gravity variation associated with the seismogenesis and occurrence of earthquakes in the BTTZ region has been emerged clearly. Some of the major findings are 1. Gravity variations before and after earthquakes exist spatially and temporally; 2. Gravity variation data of temporally continuous measurements are essential to monitor the variations of gravity related to earthquakes unless temporally discrete gravity data are made in very close time intervals. 3. Concept of epicentroid and hypocentroid with respect to the maximum values of gravity variation is valid and has been experimentally verified; 4. The gravity variations related to the occurrence of earthquakes in the BTTZ region for the magnitudes of 4-5 earthquakes support the proposed "combined dilatation model", i.e., a dual-dilatancy of diffusion dilatancy (D/D) and the fault zone dilatancy (FZD) models; 5. Although the temporally discrete gravity variation data were collected in a larger time interval of about six months in the BTTZ region, these gravity variation data, in some cases, indicate that these variations are related to the occurrence of earthquakes; 7. Subsurface fluids do play a very important role in the gravity variations that have not been recognized and emphasized previously; 7. With the temporally continuous gravity variation data, the

  9. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    Science.gov (United States)

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  10. Management of limb fractures in a teaching hospital: comparison between Wenchuan and Yushu earthquakes.

    Science.gov (United States)

    Min, Li; Tu, Chong-qi; Liu, Lei; Zhang, Wen-li; Yi, Min; Song, Yue-ming; Huang, Fu-guo; Yang, Tian-fu; Pei, Fu-xing

    2013-01-01

    To comparatively analyze the medical records of patients with limb fractures as well as rescue strategy in Wenchuan and Yushu earthquakes so as to provide references for post-earthquake rescue. We retrospectively investigated 944 patients sustaining limb fractures, including 891 in Wenchuan earthquake and 53 in Yushu earthquake, who were admitted to West China Hospital (WCH) of Sichuan University. In Wenchuan earthquake, WCH met its three peaks of limb fracture patients influx, on post-earthquake day (PED) 2, 8 and 14 respectively. Between PED 3-14, 585 patients were transferred from WCH to other hospitals outside the Sichuan Province. In Yushu earthquake, the maximum influx of limb fracture patients happened on PED 3, and no one was shifted to other hospitals. Both in Wenchuan and Yushu earthquakes, most limb fractures were caused by blunt strike and crush/burying. In Wenchuan earthquake, there were 396 (396/942, 42.0%) open limb fractures, including 28 Gustilo I, 201 Gustilo II and 167 Gustilo III injuries. But in Yushu earthquake, the incidence of open limb fracture was much lower (6/61, 9.8%). The percent of patients with acute complications in Wenchuan earthquake (167/891, 18.7%) was much higher than that in Yushu earthquake (5/53, 3.8%). In Wenchuan earthquake rescue, 1 018 surgeries were done, composed of debridement in 376, internal fixation in 283, external fixation in 119, and vacuum sealing drainage in 117, etc. While among the 64 surgeries in Yushu earthquake rescue, the internal fixation for limb fracture was mostly adopted. All patients received proper treatment and survived except one who died due to multiple organs failure in Wenchuan earthquake. Provision of suitable and sufficient medical care in a catastrophe can only be achieved by construction of sophisticated national disaster medical system, prediction of the injury types and number of injuries, and confirmation of participating hospitals?exact role. Based on the valuable rescue experiences

  11. Coseismic slip in the 2010 Yushu earthquake (China, constrained by wide-swath and strip-map InSAR

    Directory of Open Access Journals (Sweden)

    Y. Wen

    2013-01-01

    Full Text Available On 14 April 2010, an Mw = 6.9 earthquake occurred in the Yushu county of China, which caused ~3000 people to lose their lives. Integrated with the information from the observed surface ruptures and aftershock locations, the faulting pattern of this earthquake is derived from the descending wide-swath and ascending strip mode PALSAR data collected by ALOS satellite. We used a layered crustal model and stress drop smoothing constraint to infer the coseismic slip distribution. Our model suggests that the earthquake fault can be divided into four segments and the slip mainly occurs within the upper 12 km with a maximum slip of 2.0 m at depth of 3 km on the Jiegu segment. The rupture of the upper 12 km is dominated by left-lateral strike-slip motion. The relatively small slip along the SE region of Yushu segment suggests a slip deficit there. The inverted geodetic moment is approximately Mw = 6.9, consistent with the seismological results. The average stress drop caused by the earthquake is about 2 MPa with a maximum stress drop of 8.3 MPa. Furthermore, the calculated static Coulomb stress changes in surrounding regions show increased Coulomb stress occurred in the SE region along the Yushu segment but with less aftershock, indicating an increased seismic hazard in this region after the earthquake.

  12. Earthquake forecasting and warning

    Energy Technology Data Exchange (ETDEWEB)

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  13. Earthquake activity in Sweden. Study in connection with a proposed nuclear waste repository in Forsmark or Oskarshamn

    International Nuclear Information System (INIS)

    Boedvarsson, Reynir; Lund, Bjoern; Roberts, Roland; Slunga, Ragnar

    2006-02-01

    earthquake, we use the Kaliningrad magnitude 5.0 event of September 2004 as a modeling example. The event occurred at 20 km depth but we vary the depth in order to see how the effects vary. At a reasonable depth of 12 km, as the 1976 Gulf of Finland earthquake, the static displacements at the Earth's surface do not exceed 0.2 mm and we would expect 0.05 g of acceleration, on crystalline bedrock. Earthquake focal mechanisms reflect the state of stress which caused the earthquake. From the focal mechanisms we can therefore infer the stress state. Analysis of Swedish earthquakes show that in central and southern Sweden the crust below a few kilometers depth is in a state of strike-slip faulting, with the maximum horizontal stress directed WNW-ESE. This is confirmed by measurements in the two deep boreholes in Siljan. The stress state reflects the plate tectonic deformation caused by the opening of the Atlantic, which dominates the stress field in Sweden. Stresses due to postglacial rebound are much less significant today compared to the tectonic stresses. Direct observations of large-scale surface deformation has been carried out in Sweden since 199 in the BIFROST project, using permanent, continuous GPS-receivers. The project has produced high quality estimates of deformation rates which correlate very well with those obtained from glacial rebound modeling. In the residuals between model and observations there are indications of relative displacement between the stations. If these are fault movements, they indicate, although the relative displacements are less than 1 mm/year, deformation that is orders of magnitude larger than that observed in the seismic data, i.e. aseismic deformation. Earthquake data from the 1980s have earlier been interpreted as indicating aseismic movement of the order 1 mm/year/100 km in southern Sweden. In order to determine whether or not aseismic deformation is present at this scale, a dense network of permanent GPS-stations would be required

  14. The numerical simulation study of the dynamic evolutionary processes in an earthquake cycle on the Longmen Shan Fault

    Science.gov (United States)

    Tao, Wei; Shen, Zheng-Kang; Zhang, Yong

    2016-04-01

    The Longmen Shan, located in the conjunction of the eastern margin the Tibet plateau and Sichuan basin, is a typical area for studying the deformation pattern of the Tibet plateau. Following the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), a great deal of observations and studies on geology, geophysics, and geodesy have been carried out for this region, with results published successively in recent years. Using the 2D viscoelastic finite element model, introducing the rate-state friction law to the fault, this thesis makes modeling of the earthquake recurrence process and the dynamic evolutionary processes in an earthquake cycle of 10 thousand years. By analyzing the displacement, velocity, stresses, strain energy and strain energy increment fields, this work obtains the following conclusions: (1) The maximum coseismic displacement on the fault is on the surface, and the damage on the hanging wall is much more serious than that on the foot wall of the fault. If the detachment layer is absent, the coseismic displacement would be smaller and the relative displacement between the hanging wall and foot wall would also be smaller. (2) In every stage of the earthquake cycle, the velocities (especially the vertical velocities) on the hanging wall of the fault are larger than that on the food wall, and the values and the distribution patterns of the velocity fields are similar. While in the locking stage prior to the earthquake, the velocities in crust and the relative velocities between hanging wall and foot wall decrease. For the model without the detachment layer, the velocities in crust in the post-seismic stage is much larger than those in other stages. (3) The maximum principle stress and the maximum shear stress concentrate around the joint of the fault and detachment layer, therefore the earthquake would nucleate and start here. (4) The strain density distribution patterns in stages of the earthquake cycle are similar. There are two

  15. Tectonic styles of future earthquakes in Italy as input data for seismic hazard

    Science.gov (United States)

    Pondrelli, S.; Meletti, C.; Rovida, A.; Visini, F.; D'Amico, V.; Pace, B.

    2017-12-01

    In a recent elaboration of a new seismogenic zonation and hazard model for Italy, we tried to understand how many indications we have on the tectonic style of future earthquake/rupture. Using all available or recomputed seismic moment tensors for relevant seismic events (Mw starting from 4.5) of the last 100 yrs, first arrival focal mechanisms for less recent earthquakes and also geological data on past activated faults, we collected a database gathering a thousands of data all over the Italian peninsula and regions around it. After several summations of seismic moment tensors, over regular grids of different dimensions and different thicknesses of the seismogenic layer, we applied the same procedure to each of the 50 area sources that were designed in the seismogenic zonation. The results for several seismic zones are very stable, e.g. along the southern Apennines we expect future earthquakes to be mostly extensional, although in the outer part of the chain strike-slip events are possible. In the Northern part of the Apennines we also expect different, opposite tectonic styles for different hypocentral depths. In several zones, characterized by a low seismic moment release, defined for the study region using 1000 yrs of catalog, the next possible tectonic style of future earthquakes is less clear. It is worth to note that for some zones the possible greatest earthquake could be not represented in the available observations. We also add to our analysis the computation of the seismic release rate, computed using a distributed completeness, identified for single great events of the historical seismic catalog for Italy. All these information layers, overlapped and compared, may be used to characterize each new seismogenic zone.

  16. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas

    Science.gov (United States)

    Frohlich, Cliff

    2012-01-01

    Between November 2009 and September 2011, temporary seismographs deployed under the EarthScope USArray program were situated on a 70-km grid covering the Barnett Shale in Texas, recording data that allowed sensing and locating regional earthquakes with magnitudes 1.5 and larger. I analyzed these data and located 67 earthquakes, more than eight times as many as reported by the National Earthquake Information Center. All 24 of the most reliably located epicenters occurred in eight groups within 3.2 km of one or more injection wells. These included wells near Dallas–Fort Worth and Cleburne, Texas, where earthquakes near injection wells were reported by the media in 2008 and 2009, as well as wells in six other locations, including several where no earthquakes have been reported previously. This suggests injection-triggered earthquakes are more common than is generally recognized. All the wells nearest to the earthquake groups reported maximum monthly injection rates exceeding 150,000 barrels of water per month (24,000 m3/mo) since October 2006. However, while 9 of 27 such wells in Johnson County were near earthquakes, elsewhere no earthquakes occurred near wells with similar injection rates. A plausible hypothesis to explain these observations is that injection only triggers earthquakes if injected fluids reach and relieve friction on a suitably oriented, nearby fault that is experiencing regional tectonic stress. Testing this hypothesis would require identifying geographic regions where there is interpreted subsurface structure information available to determine whether there are faults near seismically active and seismically quiescent injection wells. PMID:22869701

  17. Earthquake-induced static stress change on magma pathway in promoting the 2012 Copahue eruption

    Science.gov (United States)

    Bonali, F. L.

    2013-11-01

    It was studied how tectonic earthquake-induced static stress changes could have contributed to favouring the 22 December 2012 major eruption at Copahue volcano, Chile. Numerical modelling indicates that the vertical N60°E-striking magma pathway below Copahue was affected by a normal stress reduction induced by the Mw 8.8 Chile earthquake of 27 February 2010. A sensitivity analysis suggests that N-, NE- and E-striking vertical planes are affected by normal stress decrease (maximum at the NE-striking plane), and that also a possible inclined N60°E plane is affected by this reduction. Copahue did not have any magmatic event since 2000. Seismic signals of awakening started in April 2012 and the first volcanic event occurred on July 2012. Thus, it is here suggested a possible earthquake-induced feedback effect on the crust below the volcanic arc up to at least 3 years after a large subduction earthquake, favouring new eruptions.

  18. Seismicity and earthquake risk in western Sicily

    Directory of Open Access Journals (Sweden)

    P. COSENTINO

    1978-06-01

    Full Text Available The seismicity and the earthquake risk in Western Sicily are here
    evaluated on the basis of the experimental data referring to the historical
    and instrumentally recorded earthquakes in this area (from 1248
    up to 1968, which have been thoroughly collected, analyzed, tested and
    normalized in order to assure the quasi-stationarity of the series of
    events.
    The approximated magnitude values — obtained by means of a compared
    analysis of the magnitude and epicentral intensity values of the
    latest events — have allowed to study the parameters of the frequency-
    magnitude relation with both the classical exponential model and
    the truncated exponential one previously proposed by the author.
    So, the basic parameters, including the maximum possible regional
    magnitude, have been estimated by means of different procedures, and
    their behaviours have been studied as functions of the threshold magnitude.

  19. Daytime dependence of disturbances of ionospheric Es-layers connected to earthquakes

    Science.gov (United States)

    Liperovskaya, E. V.; Liperovsky, A. V.; Meister, C.-V.; Silina, A. S.

    2012-04-01

    In the present work variations of the semi-transparency of the sporadic E-layer of the ionosphere due to seismic activities are studied. The semi-transparency Q is determined by the blanketing frequency fbEs and the characteristic frequency foEs, Q = (foEs - fbEs)/fbEs. At low values of the blanketing frequency fbEs, the critical frequency foEs does not describe the maximum ionisation density of the Es-layer, as the critical frequencies of regular ionospheric layers (e.g. foF2) do, but it describes the occurrence of small-scall (tenths of meters) inhomogeneities of the ionisation density along the vertical in the layer. The maximum ionisation density of the sporadic layer is proportional to the square of fbEs. In the case of vertical ionospheric sounding, the sporadic layer becomes transparent for signals with frequencies larger than fbEs. Investigations showed that about three days before an earthquake an increase of the semi-transparency interval is observed during sunset and sunrise. In the present work, analogous results are found for data of the vertical sounding stations "Tokyo" and "Petropavlovsk-Kamchatsky". Using the method of superposition of epoches, more than 50 earthquakes with magnitudes M > 5, depths h < 40 km, and distances between the station and the epicenter R < 300 km are considered in case of the vertical sounding station "Tokyo". More than 20 earthquakes with such parameters were analysed in case of the station "Petropavlovsk-Kamchatsky". Days with strong geomagnetic activity were excluded from the analysis. According to the station "Petropavlovsk-Kamchatsky" about 1-3 days before earthquakes, an increase of Es-spread is observed a few hours before midnight. This increase is a sign of large-scale inhomogeneities in the sporadic layers.

  20. The Earthquake Source Inversion Validation (SIV) - Project: Summary, Status, Outlook

    Science.gov (United States)

    Mai, P. M.

    2017-12-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, this kinematic source inversion is ill-posed and returns non-unique solutions, as seen for instance in multiple source models for the same earthquake, obtained by different research teams, that often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversions and to understand strengths and weaknesses of various methods, the Source Inversion Validation (SIV) project developed a set of forward-modeling exercises and inversion benchmarks. Several research teams then use these validation exercises to test their codes and methods, but also to develop and benchmark new approaches. In this presentation I will summarize the SIV strategy, the existing benchmark exercises and corresponding results. Using various waveform-misfit criteria and newly developed statistical comparison tools to quantify source-model (dis)similarities, the SIV platforms is able to rank solutions and identify particularly promising source inversion approaches. Existing SIV exercises (with related data and descriptions) and all computational tools remain available via the open online collaboration platform; additional exercises and benchmark tests will be uploaded once they are fully developed. I encourage source modelers to use the SIV benchmarks for developing and testing new methods. The SIV efforts have already led to several promising new techniques for tackling the earthquake-source imaging problem. I expect that future SIV benchmarks will provide further innovations and insights into earthquake source kinematics that will ultimately help to better understand the dynamics of the rupture process.

  1. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  2. Evaluation of earthquake vibration on aseismic design of nuclear power plant judging from recent earthquakes

    International Nuclear Information System (INIS)

    Dan, Kazuo

    2006-01-01

    The Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities was revised on 19 th September, 2006. Six factors for evaluation of earthquake vibration are considered on the basis of the recent earthquakes. They are 1) evaluation of earthquake vibration by method using fault model, 2) investigation and approval of active fault, 3) direct hit earthquake, 4) assumption of the short active fault as the hypocentral fault, 5) locality of the earthquake and the earthquake vibration and 6) remaining risk. A guiding principle of revision required new evaluation method of earthquake vibration using fault model, and evaluation of probability of earthquake vibration. The remaining risk means the facilities and people get into danger when stronger earthquake than the design occurred, accordingly, the scattering has to be considered at evaluation of earthquake vibration. The earthquake belt of Hyogo-Nanbu earthquake and strong vibration pulse in 1995, relation between length of surface earthquake fault and hypocentral fault, and distribution of seismic intensity of off Kushiro in 1993 are shown. (S.Y.)

  3. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  4. Joint inversion of GNSS and teleseismic data for the rupture process of the 2017 M w6.5 Jiuzhaigou, China, earthquake

    Science.gov (United States)

    Li, Qi; Tan, Kai; Wang, Dong Zhen; Zhao, Bin; Zhang, Rui; Li, Yu; Qi, Yu Jie

    2018-05-01

    The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is 8.0 × 1018 N·m ( M w ≈ 6.5), and the centroid depth is 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5-15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes > 6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 M w7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.

  5. Tohoku's earthquake of Friday March 11, 2011 (5:46 UT), magnitude 9.0, off Honshu island (Japan)

    International Nuclear Information System (INIS)

    2011-01-01

    On Friday March 11, 2011, at 5:46 UT (2:46 PM local time), a magnitude 9.0 earthquake took place at 80 km east of Honshu island (Japan). The earthquake generated a tsunami which led to the loss of the cooling systems of the Fukushima Dai-ichi and Fukushima Daini power plants. This paper describes the seismo-tectonic and historical seismic context of the Japan archipelago and the first analyses of the Tohoku earthquake impact: magnitudes of first shock and of aftershocks, impact on nuclear facilities (maximum acceleration values detected with respect to design basis values, subsidence of coastal areas and submersion of power plant platforms). (J.S.)

  6. Geotechnical aspects of the 2016 MW 6.2, MW 6.0, and MW 7.0 Kumamoto earthquakes

    Science.gov (United States)

    Kayen, Robert E.; Dashti, Shideh; Kokusho, T.; Hazarika, H.; Franke, Kevin; Oettle, N. K.; Wham, Brad; Ramirez Calderon, Jenny; Briggs, Dallin; Guillies, Samantha; Cheng, Katherine; Tanoue, Yutaka; Takematsu, Katsuji; Matsumoto, Daisuke; Morinaga, Takayuki; Furuichi, Hideo; Kitano, Yuuta; Tajiri, Masanori; Chaudhary, Babloo; Nishimura, Kengo; Chu, Chu

    2017-01-01

    The 2016 Kumamoto earthquakes are a series of events that began with an earthquake of moment magnitude 6.2 on the Hinagu Fault on April 14, 2016, followed by another foreshock of moment magnitude 6.0 on the Hinagu Fault on April 15, 2016, and a larger moment magnitude 7.0 event on the Futagawa Fault on April 16, 2016 beneath Kumamoto City, Kumamoto Prefecture on Kyushu, Japan. These events are the strongest earthquakes recorded in Kyushu during the modern instrumental era. The earthquakes resulted in substantial damage to infrastructure, buildings, cultural heritage of Kumamoto Castle, roads and highways, slopes, and river embankments due to earthquake-induced landsliding and debris flows. Surface fault rupture produced offset and damage to roads, buildings, river levees, and an agricultural dam. Surprisingly, given the extremely intense earthquake motions, liquefaction occurred only in a few districts of Kumamoto City and in the port areas indicating that the volcanic soils were less susceptible to liquefying than expected given the intensity of earthquake shaking, a significant finding from this event.

  7. The guideline and practical procedures for earthquake-resistant design of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Watabe, M.

    1985-01-01

    The Guideline for the aseismic design of nuclear reactor facilities, revised in 1981, is introduced. The basic philosophy entails structural integrity against a major earthquake, rigid structure for less deformation and foundation on rock. The classification of facilities is then explained. Some practical examples are tabulated. In the light of the above classifications, evaluation procedures for aseismic design are defined. Design basis earthquake ground motions, S1 and S2, are defined. S1 is the maximum possible earthquake ground motion, while S2 is the maximum credible one. The relation between active faults and S1, S2 motions is explained, seismic forces induced by S1 and S2 are expressed in terms of response spectra. Static seismic coefficient procedures are also applied to evaluate seismic forces, as a minimum guide-line based on dynamic analysis. Combinations of seismic forces and allowable limits are then explained. In the second part of the paper, seismic analysis for reactor buildings as a part of design practice is outlined. There are three major key points in practical aseismic design. The first one is input design earthquake motions, in which soil/foundation interaction problems are also included. In practice, ground motions at the free field rock surface have to be convoluted or deconvoluted to obtain base rock motions, which are applied to estimate input design earthquake motions by way of finite element analysis or a lumped mass lattice model. Also introduced is dynamic modelling of the reactor building with its non-linear behaviour represented by plastic deformation of reinforced concrete members as well as by uplift characteristics of foundations. Then an evaluation of aseismic safety is introduced. (author)

  8. The typical seismic behavior in the vicinity of a large earthquake

    Science.gov (United States)

    Rodkin, M. V.; Tikhonov, I. N.

    2016-10-01

    The Global Centroid Moment Tensor catalog (GCMT) was used to construct the spatio-temporal generalized vicinity of a large earthquake (GVLE) and to investigate the behavior of seismicity in GVLE. The vicinity is made of earthquakes falling into the zone of influence of a large number (100, 300, or 1000) of largest earthquakes. The GVLE construction aims at enlarging the available statistics, diminishing a strong random component, and revealing typical features of pre- and post-shock seismic activity in more detail. As a result of the GVLE construction, the character of fore- and aftershock cascades was examined in more detail than was possible without of the use of the GVLE approach. As well, several anomalies in the behavior exhibited by a variety of earthquake parameters were identified. The amplitudes of all these anomalies increase with the approaching time of the generalized large earthquake (GLE) as the logarithm of the time interval from the GLE occurrence. Most of the discussed anomalies agree with common features well expected in the evolution of instability. In addition to these common type precursors, one earthquake-specific precursor was found. The decrease in mean earthquake depth presumably occurring in a smaller GVLE probably provides evidence of a deep fluid being involved in the process. The typical features in the evolution of shear instability as revealed in GVLE agree with results obtained in laboratory studies of acoustic emission (AE). The majority of the anomalies in earthquake parameters appear to have a secondary character, largely connected with an increase in mean magnitude and decreasing fraction of moderate size events (mw5.0-6.0) in the immediate GLE vicinity. This deficit of moderate size events could hardly be caused entirely by their incomplete reporting and can presumably reflect some features in the evolution of seismic instability.

  9. Earthquake prediction using extinct monogenetic volcanoes: A possible new research strategy

    Science.gov (United States)

    Szakács, Alexandru

    2011-04-01

    Volcanoes are extremely effective transmitters of matter, energy and information from the deep Earth towards its surface. Their capacities as information carriers are far to be fully exploited so far. Volcanic conduits can be viewed in general as rod-like or sheet-like vertical features with relatively homogenous composition and structure crosscutting geological structures of far more complexity and compositional heterogeneity. Information-carrying signals such as earthquake precursor signals originating deep below the Earth surface are transmitted with much less loss of information through homogenous vertically extended structures than through the horizontally segmented heterogeneous lithosphere or crust. Volcanic conduits can thus be viewed as upside-down "antennas" or waveguides which can be used as privileged pathways of any possible earthquake precursor signal. In particular, conduits of monogenetic volcanoes are promising transmitters of deep Earth information to be received and decoded at surface monitoring stations because the expected more homogenous nature of their rock-fill as compared to polygenetic volcanoes. Among monogenetic volcanoes those with dominantly effusive activity appear as the best candidates for privileged earthquake monitoring sites. In more details, effusive monogenetic volcanic conduits filled with rocks of primitive parental magma composition indicating direct ascent from sub-lithospheric magma-generating areas are the most suitable. Further selection criteria may include age of the volcanism considered and the presence of mantle xenoliths in surface volcanic products indicating direct and straightforward link between the deep lithospheric mantle and surface through the conduit. Innovative earthquake prediction research strategies can be based and developed on these grounds by considering conduits of selected extinct monogenetic volcanoes and deep trans-crustal fractures as privileged emplacement sites of seismic monitoring stations

  10. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  11. Earthquakes, September-October 1986

    Science.gov (United States)

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  12. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  13. The Loma Prieta, California, Earthquake of October 17, 1989: Societal Response

    Science.gov (United States)

    Coordinated by Mileti, Dennis S.

    1993-01-01

    Professional Paper 1553 describes how people and organizations responded to the earthquake and how the earthquake impacted people and society. The investigations evaluate the tools available to the research community to measure the nature, extent, and causes of damage and losses. They describe human behavior during and immediately after the earthquake and how citizens participated in emergency response. They review the challenges confronted by police and fire departments and disruptions to transbay transportations systems. And they survey the challenges of post-earthquake recovery. Some significant findings were: * Loma Prieta provided the first test of ATC-20, the red, yellow, and green tagging of buildings. It successful application has led to widespread use in other disasters including the September 11, 2001, New York City terrorist incident. * Most people responded calmly and without panic to the earthquake and acted to get themselves to a safe location. * Actions by people to help alleviate emergency conditions were proportional to the level of need at the community level. * Some solutions caused problems of their own. The police perimeter around the Cypress Viaduct isolated businesses from their customers leading to a loss of business and the evacuation of employees from those businesses hindered the movement of supplies to the disaster scene. * Emergency transbay ferry service was established 6 days after the earthquake, but required constant revision of service contracts and schedules. * The Loma Prieta earthquake produced minimal disruption to the regional economy. The total economic disruption resulted in maximum losses to the Gross Regional Product of $725 million in 1 month and $2.9 billion in 2 months, but 80% of the loss was recovered during the first 6 months of 1990. Approximately 7,100 workers were laid off.

  14. Management of limb fractures in a teaching hospital: comparison between Wenchuan and Yushu earthquakes

    Directory of Open Access Journals (Sweden)

    MIN Li

    2013-02-01

    Full Text Available 【Abstract】Objective: To comparatively analyze the medical records of patients with limb fractures as well as rescue strategy in Wenchuan and Yushu earthquakes so as to provide references for post-earthquake rescue. Methods: We retrospectively investigated 944 patients sustaining limb fractures, including 891 in Wenchuan earth-quake and 53 in Yushu earthquake, who were admitted to West China Hospital (WCH of Sichuan University. Results: In Wenchuan earthquake, WCH met its three peaks of limb fracture patients influx, on post-earthquake day (PED 2, 8 and 14 respectively. Between PED 3-14, 585 patients were transferred from WCH to other hospitals out-side the Sichuan Province. In Yushu earthquake, the maxi-mum influx of limb fracture patients happened on PED 3, and no one was shifted to other hospitals. Both in Wenchuan and Yushu earthquakes, most limb fractures were caused by blunt strike and crush/burying. In Wenchuan earthquake, there were 396 (396/942, 42.0% open limb fractures, includ-ing 28 Gustilo I, 201 Gustilo II and 167 Gustilo III injuries. But in Yushu earthquake, the incidence of open limb frac-ture was much lower (6/61, 9.8%. The percent of patients with acute complications in Wenchuan earthquake (167/891, 18.7% was much higher than that in Yushu earthquake (5/53, 3.8%. In Wenchuan earthquake rescue, 1 018 surgeries were done, composed of debridement in 376, internal fixation in 283, external fixation in 119, and vacuum sealing drainage in 117, etc. While among the 64 surgeries in Yushu earthquake rescue, the internal fixation for limb fracture was mostly adopted. All patients received proper treatment and sur-vived except one who died due to multiple organs failure in Wenchuan earthquake. Conclusion: Provision of suitable and sufficient medi-cal care in a catastrophe can only be achieved by construc-tion of sophisticated national disaster medical system, pre-diction of the injury types and number of injuries, and con-firmation of

  15. GIS learning tool for world's largest earthquakes and their causes

    Science.gov (United States)

    Chatterjee, Moumita

    The objective of this thesis is to increase awareness about earthquakes among people, especially young students by showing the five largest and two most predictable earthquake locations in the world and their plate tectonic settings. This is a geographic based interactive tool which could be used for learning about the cause of great earthquakes in the past and the safest places on the earth in order to avoid direct effect of earthquakes. This approach provides an effective way of learning for the students as it is very user friendly and more aligned to the interests of the younger generation. In this tool the user can click on the various points located on the world map which will open a picture and link to the webpage for that point, showing detailed information of the earthquake history of that place including magnitude of quake, year of past quakes and the plate tectonic settings that made this place earthquake prone. Apart from knowing the earthquake related information students will also be able to customize the tool to suit their needs or interests. Students will be able to add/remove layers, measure distance between any two points on the map, select any place on the map and know more information for that place, create a layer from this set to do a detail analysis, run a query, change display settings, etc. At the end of this tool the user has to go through the earthquake safely guidelines in order to be safe during an earthquake. This tool uses Java as programming language and uses Map Objects Java Edition (MOJO) provided by ESRI. This tool is developed for educational purpose and hence its interface has been kept simple and easy to use so that students can gain maximum knowledge through it instead of having a hard time to install it. There are lots of details to explore which can help more about what a GIS based tool is capable of. Only thing needed to run this tool is latest JAVA edition installed in their machine. This approach makes study more fun and

  16. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    Science.gov (United States)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  17. Evaluation of stability of foundation ground during earthquake, (1)

    International Nuclear Information System (INIS)

    Nishi, Koichi; Kanatani, Mamoru; Matsui, Ietaka; Touma, Jun-ichi

    1986-01-01

    The Central Research Institute of Electric Power Industry has advanced the research on the new location technology for nuclear power stations in order to cope with the lack of sites expected in near future. The sites on rock mass are usually used for nuclear power stations, but the location on quaternary ground, particularly on gravel ground, is one of such new technology, to which attention has been paid. It has been pointed out that this location has the advantage in the earthquake response of reactor buildings and equipment, and the prospect to ensure the stability by lowering underground water level and pile penetration has been obtained, therefore, the possibility of its realization is high. At present, the research aiming at the establishment of the method of evaluating foundation ground stability is in progress, and it is expected that the quantitative evaluation means for the aseismatic stability of quaternary ground is obtained. In this paper, the analysis techniques for forecasting the amount of subsidence at the time of earthquakes occurring accompanying the generation of excessive pore water pressure and its disappearance are reported. Also the applicability of the forecasting techniques was experimentally verified. (Kako, I.)

  18. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  19. Earthquakes, November-December 1977

    Science.gov (United States)

    Person, W.J.

    1978-01-01

    Two major earthquakes occurred in the last 2 months of the year. A magnitude 7.0 earthquake struck San Juan Province, Argentina, on November 23, causing fatalities and damage. The second major earthquake was a magnitude 7.0 in the Bonin Islands region, an unpopulated area. On December 19, Iran experienced a destructive earthquake, which killed over 500.

  20. 2014 Mainshock-Aftershock Activity Versus Earthquake Swarms in West Bohemia, Czech Republic

    Science.gov (United States)

    Jakoubková, Hana; Horálek, Josef; Fischer, Tomáš

    2018-01-01

    A singular sequence of three episodes of ML3.5, 4.4 and 3.6 mainshock-aftershock occurred in the West Bohemia/Vogtland earthquake-swarm region during 2014. We analysed this activity using the WEBNET data and compared it with the swarms of 1997, 2000, 2008 and 2011 from the perspective of cumulative seismic moment, statistical characteristics, space-time distribution of events, and prevailing focal mechanisms. For this purpose, we improved the scaling relation between seismic moment M0 and local magnitude ML by WEBNET. The total seismic moment released during 2014 episodes (M_{0tot}≈ 1.58× 10^{15} Nm) corresponded to a single ML4.6+ event and was comparable to M_{0tot} of the swarms of 2000, 2008 and 2011. We inferred that the ML4.8 earthquake is the maximum expected event in Nový Kostel (NK), the main focal zone. Despite the different character of the 2014 sequence and the earthquake swarms, the magnitude-frequency distributions (MFDs) show the b-values ≈ 1 and probability density functions (PDFs) of the interevent times indicate the similar event rate of the individual swarms and 2014 activity. Only the a-value (event-productivity) in the MFD of the 2014 sequence is significantly lower than those of the swarms. A notable finding is a significant acceleration of the seismic moment release in each subsequent activity starting from the 2000 swarm to the 2014 sequence, which may indicate an alteration from the swarm-like to the mainshocks-aftershock character of the seismicity. The three mainshocks are located on a newly activated fault segment/asperity (D in out notation) of the NK zone situated in the transition area among fault segments A, B, C, which hosted the 2000, 2008 and 2011 swarms. The segment D appears to be predisposed to an oblique-thrust faulting while strike-slip faulting is typical of segments A, B and C. In conclusion, we propose a basic segment scheme of the NK zone which should be improved gradually.

  1. Protecting your family from earthquakes: The seven steps to earthquake safety

    Science.gov (United States)

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  2. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks.

    Science.gov (United States)

    Chen, Xiaowei; Nakata, Nori; Pennington, Colin; Haffener, Jackson; Chang, Jefferson C; He, Xiaohui; Zhan, Zhongwen; Ni, Sidao; Walter, Jacob I

    2017-07-10

    The Pawnee M5.8 earthquake is the largest event in Oklahoma instrument recorded history. It occurred near the edge of active seismic zones, similar to other M5+ earthquakes since 2011. It ruptured a previously unmapped fault and triggered aftershocks along a complex conjugate fault system. With a high-resolution earthquake catalog, we observe propagating foreshocks leading to the mainshock within 0.5 km distance, suggesting existence of precursory aseismic slip. At approximately 100 days before the mainshock, two M ≥ 3.5 earthquakes occurred along a mapped fault that is conjugate to the mainshock fault. At about 40 days before, two earthquakes clusters started, with one M3 earthquake occurred two days before the mainshock. The three M ≥ 3 foreshocks all produced positive Coulomb stress at the mainshock hypocenter. These foreshock activities within the conjugate fault system are near-instantaneously responding to variations in injection rates at 95% confidence. The short time delay between injection and seismicity differs from both the hypothetical expected time scale of diffusion process and the long time delay observed in this region prior to 2016, suggesting a possible role of elastic stress transfer and critical stress state of the fault. Our results suggest that the Pawnee earthquake is a result of interplay among injection, tectonic faults, and foreshocks.

  3. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  4. A Study of the Historical Earthquake Catalog and Gutenberg-richter Parameter Values of the Korean Peninsula

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choi, In Kil; Rhee, Hyun Me

    2010-01-01

    The KIER's Korean historical earthquake catalog was revised for MMI≥VI events recorded from the years 27 A.D. to 1904. The magnitude of each event was directly determined from the criteria suggested by Seo. The criteria incorporated the damage phenomena of the Japanese historical earthquake catalog, recent seismological studies, and the results of tests performed on ancient structures in Korea. Thus, the uncertainty of the magnitudes of the Korean historical earthquakes can be reduced. Also, the Gutenberg-Richter parameter values were estimated based on the revised catalog of this study. It was determined that the magnitudes of a maximum inland and minimum offshore event were approximately 6.3 and 6.5, respectively. The Gutenberg-Richter parameter pairs of the historical earthquake catalog were estimated to be a=5.32±0.21, b=0.95±0.19, which were somewhat lower than those obtained from recent complete instrumental earthquakes. No apparent change in the Gutenberg-Richter parameter is observed for the 16 th -17 th centuries of the seismically active period

  5. Evidence for strong Holocene earthquake(s) in the Wabash Valley seismic zone

    International Nuclear Information System (INIS)

    Obermeier, S.

    1991-01-01

    Many small and slightly damaging earthquakes have taken place in the region of the lower Wabash River Valley of Indiana and Illinois during the 200 years of historic record. Seismologists have long suspected the Wabash Valley seismic zone to be capable of producing earthquakes much stronger than the largest of record (m b 5.8). The seismic zone contains the poorly defined Wabash Valley fault zone and also appears to contain other vaguely defined faults at depths from which the strongest earthquakes presently originate. Faults near the surface are generally covered with thick alluvium in lowlands and a veneer of loess in uplands, which make direct observations of faults difficult. Partly because of this difficulty, a search for paleoliquefaction features was begun in 1990. Conclusions of the study are as follows: (1) an earthquake much stronger than any historic earthquake struck the lower Wabash Valley between 1,500 and 7,500 years ago; (2) the epicentral region of the prehistoric strong earthquake was the Wabash Valley seismic zone; (3) apparent sites have been located where 1811-12 earthquake accelerations can be bracketed

  6. Development of damage probability matrices based on Greek earthquake damage data

    Science.gov (United States)

    Eleftheriadou, Anastasia K.; Karabinis, Athanasios I.

    2011-03-01

    A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio α g/ a o, where α g is the maximum peak ground acceleration (PGA) of the earthquake event and a o is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.

  7. Characteristics and damage investigation of the 1998 Papua New Guinea earthquake tsunami

    International Nuclear Information System (INIS)

    Matsuyama, Masashi

    1998-01-01

    On 17 July, 1998, an earthquake with moment magnitude Mw 7.1 (estimated by Harvard Univ.) occurred at 18:49 (local time) on the north west part of Papua New Guinea. Several minutes after the main shock, huge tsunami attacked the north coast of Sissano and Malol, where the coast is composed of straight beach with white sand, and about 7,000 people had lived in high floor wooden houses. Due to the tsunami, more than 2,000 people were killed. To investigate damage by the tsunami, a survey team of seven members was organized in Japan. The author took part in the survey team, which was headed by Prof. Kawata, of Kyoto University. We stayed in the Papua New Guinea from 30th July through 10th August 1998 to investigate the maximum water level, to interview the people about the phenomena caused by the earthquake and the tsunami, and to set three seismographs. These results imply that: (1) By main shock, an earthquake intensity of 6 on the Richter scale was felt in Sissano and Malol. In the coast area near Sissano and Malol, liquefaction took place. (2) More than 2,000 people were killed mainly due to the tsunami. (3) The maximum water level of the tsunami was about 15 m. (4) It seems that the tsunami caused not only by crustal movement, but also by other factors. This is suggested by the fact that the measured maximum water level was beyond 10 times larger than the estimated one, which was calculated by numerical simulation based on known fault parameters. It is highly probable that a submarine landslide was one of main factors which amplified the tsunami. (author)

  8. Tectonic stability and expected ground motion at Yucca Mountain

    International Nuclear Information System (INIS)

    1984-01-01

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs

  9. Tectonic stability and expected ground motion at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-10-02

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs.

  10. Earthquake hazard analysis for the different regions in and around Ağrı

    Energy Technology Data Exchange (ETDEWEB)

    Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr [Karadeniz Technical University, Trabzon (Turkey); Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr [Ağrı İbrahim Çeçen University, Ağrı (Turkey)

    2016-04-18

    We investigated earthquake hazard parameters for Eastern part of Turkey by determining the a and b parameters in a Gutenberg–Richter magnitude–frequency relationship. For this purpose, study area is divided into seven different source zones based on their tectonic and seismotectonic regimes. The database used in this work was taken from different sources and catalogues such as TURKNET, International Seismological Centre (ISC), Incorporated Research Institutions for Seismology (IRIS) and The Scientific and Technological Research Council of Turkey (TUBITAK) for instrumental period. We calculated the a value, b value, which is the slope of the frequency–magnitude Gutenberg–Richter relationship, from the maximum likelihood method (ML). Also, we estimated the mean return periods, the most probable maximum magnitude in the time period of t-years and the probability for an earthquake occurrence for an earthquake magnitude ≥ M during a time span of t-years. We used Zmap software to calculate these parameters. The lowest b value was calculated in Region 1 covered Cobandede Fault Zone. We obtain the highest a value in Region 2 covered Kagizman Fault Zone. This conclusion is strongly supported from the probability value, which shows the largest value (87%) for an earthquake with magnitude greater than or equal to 6.0. The mean return period for such a magnitude is the lowest in this region (49-years). The most probable magnitude in the next 100 years was calculated and we determined the highest value around Cobandede Fault Zone. According to these parameters, Region 1 covered the Cobandede Fault Zone and is the most dangerous area around the Eastern part of Turkey.

  11. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  12. Regional dependence in earthquake early warning and real time seismology

    International Nuclear Information System (INIS)

    Caprio, M.

    2013-01-01

    An effective earthquake prediction method is still a Chimera. What we can do at the moment, after the occurrence of a seismic event, is to provide the maximum available information as soon as possible. This can help in reducing the impact of the quake on population or and better organize the rescue operations in case of post-event actions. This study strives to improve the evaluation of earthquake parameters shortly after the occurrence of a major earthquake, and the characterization of regional dependencies in Real-Time Seismology. The recent earthquake experience from Tohoku (M 9.0, 11.03.2011) showed how an efficient EEW systems can inform numerous people and thus potentially reduce the economic and human losses by distributing warning messages several seconds before the arrival of seismic waves. In the case of devastating earthquakes, usually, in the first minutes to days after the main shock, the common communications channels can be overloaded or broken. In such cases, a precise knowledge of the macroseismic intensity distribution will represent a decisive contribution in help management and in the valuation of losses. In this work, I focused on improving the adaptability of EEW systems (chapters 1 and 2) and in deriving a global relationship for converting peak ground motion into macroseismic intensity and vice versa (chapter 3). For EEW applications, in chapter 1 we present an evolutionary approach for magnitude estimation for earthquake early warning based on real-time inversion of displacement spectra. The Spectrum Inversion (SI) method estimates magnitude and its uncertainty by inferring the shape of the entire displacement spectral curve based on the part of the spectra constrained by available data. Our method can be applied in any region without the need for calibration. SI magnitude and uncertainty estimates are updated each second following the initial P detection and potentially stabilize within 10 seconds from the initial earthquake detection

  13. Regional dependence in earthquake early warning and real time seismology

    Energy Technology Data Exchange (ETDEWEB)

    Caprio, M.

    2013-07-01

    An effective earthquake prediction method is still a Chimera. What we can do at the moment, after the occurrence of a seismic event, is to provide the maximum available information as soon as possible. This can help in reducing the impact of the quake on population or and better organize the rescue operations in case of post-event actions. This study strives to improve the evaluation of earthquake parameters shortly after the occurrence of a major earthquake, and the characterization of regional dependencies in Real-Time Seismology. The recent earthquake experience from Tohoku (M 9.0, 11.03.2011) showed how an efficient EEW systems can inform numerous people and thus potentially reduce the economic and human losses by distributing warning messages several seconds before the arrival of seismic waves. In the case of devastating earthquakes, usually, in the first minutes to days after the main shock, the common communications channels can be overloaded or broken. In such cases, a precise knowledge of the macroseismic intensity distribution will represent a decisive contribution in help management and in the valuation of losses. In this work, I focused on improving the adaptability of EEW systems (chapters 1 and 2) and in deriving a global relationship for converting peak ground motion into macroseismic intensity and vice versa (chapter 3). For EEW applications, in chapter 1 we present an evolutionary approach for magnitude estimation for earthquake early warning based on real-time inversion of displacement spectra. The Spectrum Inversion (SI) method estimates magnitude and its uncertainty by inferring the shape of the entire displacement spectral curve based on the part of the spectra constrained by available data. Our method can be applied in any region without the need for calibration. SI magnitude and uncertainty estimates are updated each second following the initial P detection and potentially stabilize within 10 seconds from the initial earthquake detection

  14. Preliminary earthquake locations in the Kenai Peninsula recorded by the MOOS Array and their relationship to structure in the 1964 great earthquake zone

    Science.gov (United States)

    Li, J.; Abers, G. A.; Christensen, D. H.; Kim, Y.; Calkins, J. A.

    2011-12-01

    Earthquakes in subduction zones are mostly generated at the interface between the subducting and overlying plates. In 2006-2009, the MOOS (Multidisciplinary Observations Of Subduction) seismic array was deployed around the Kenai Peninsula, Alaska, consisting of 34 broadband seismometers recording for 1-3 years. This region spans the eastern end of the Aleutian megathrust that ruptured in the 1964 Mw 9.2 great earthquake, the second largest recorded earthquake, and ongoing seismicity is abundant. Here, we report an initial analysis of seismicity recorded by MOOS, in the context of preliminary imaging. There were 16,462 events detected in one year from initial STA/LTA signal detections and subsequent event associations from the MOOS Array. We manually reviewed them to eliminate distant earthquakes and noise, leaving 11,879 local earthquakes. To refine this catalog, an adaptive auto-regressive onset estimation algorithm was applied, doubling the original dataset and producing 20,659 P picks and 22,999 S picks for one month (September 2007). Inspection shows that this approach lead to almost negligible false alarms and many more events than hand picking. Within the well-sampled part of the array, roughly 200 km by 300 km, we locate 250% more earthquakes for one month than the permanent network catalog, or 10 earthquakes per day on this patch of the megathrust. Although the preliminary locations of earthquakes still show some scatter, we can see a concentration of events in a ~20-km-wide belt, part of which can be interpreted as seismogenic thrust zone. In conjunction with the seismicity study, we are imaging the plate interface with receiver functions. The main seismicity zone corresponds to the top of a low-velocity layer imaged in receiver functions, nominally attributed to the top of the downgoing plate. As we refine velocity models and apply relative relocation algorithms, we expect to improve the precision of the locations substantially. When combined with image

  15. Great Earthquakes, Gigantic Landslides, and the Continuing Enigma of the April Fool's Tsunami of 1946

    Science.gov (United States)

    Fryer, G. J.; Tryon, M. D.

    2005-12-01

    Paleotsunami studies can extend the record of great earthquakes back into prehistory, but what if the historical record itself is ambiguous? There is growing controversy about whether great earthquakes really occur along the Shumagin and Unimak segments of the Alaska-Aleutian system. The last great tsunami there was April 1, 1946, initiated by an earthquake whose magnitude has variously been reported from 7.1 to 8.5. Okal et al (BSSA, 2003) surveyed the near-field runup and concluded there were two sources: a magnitude 8.5 earthquake, which generated a Pacific-wide tsunami but which produced near-field runups no more than 18 m, and an earthquake-triggered slump whose tsunami reached 42 m at Scotch Cap Light near the western end of Unimak Island, but with runup rapidly decaying eastwards. An M8.5 earthquake, however, is incompatible with GPS strain measurements, which indicate that the maximum earthquake size off Unimak is M7.5. We have long contended that near- and far-field tsunamis were the result of a single earthquake-triggered debris avalanche down the Aleutian slope. In 2004 we were part of an expedition to map and explore the landslide, whose location seemed to be very tightly constrained by the known tsunami travel time to Scotch Cap Light. We found that neither our giant landslide nor Okal et al's smaller slump exist within 100 km of the presumed location. The explanation is obvious in retrospect: the tsunami was so large that it crossed the shallow Aleutian shelf as a bore travelling faster than the theoretical long-wave speed (which we had used to fix the location). Any landslide could only have occurred in an unsurveyed area farther east, off Unimak Bight, the central coast of Unimak Island. That location, however, conflicts with Okal et al's measurements of smaller runup along the Bight. We are now convinced that Okal et al confused the 1946 debris line with the lower line left by the 1957 tsunami. They were apparently unaware that the 1946 tsunami

  16. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    Science.gov (United States)

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  17. PROPOSAL FOR IMPROVEMENT OF BUINESS CONTINUITY PLAN (BCP) BASED ON THE LESSONS OF THE GREAT EAST JAPAN EARTHQUAKE

    Science.gov (United States)

    Maruya, Hiroaki

    For most Japanese companies and organizations, the enormous damage of the Great East Japan Earthquake was more than expected. In addition to great tsunami and earthquake motion, the lack of electricity and fuel disturbed to business activities seriously, and they should be considered important constraint factors in future earthquakes. Furthermore, disruption of supply chains also led considerable decline of production in many industries across Japan and foreign countries. Therefore it becomes urgent need for Japanese government and industries to utilize the lessons of the Great Earthquake and execute effective countermeasures, considering great earthquakes such as Tonankai & Nankai earthquakes and Tokyo Inland Earthquakes. Obviously most basic step is improving earthquake-resistant ability of buildings and facilities. In addition the spread of BCP and BCM to enterprises and organizations is indispensable. Based on the lessons, the BCM should include the point of view of the supply chain management more clearly, and emphasize "substitute strategy" more explicitly because a company should survive even if it completely loses its present production base. The central and local governments are requested, in addition to develop their own BCP, to improve related systematic conditions for BCM of the private sectors.

  18. Geological and Seismological Analysis of the 13 February 2001 Mw 6.6 El Salvador Earthquake: Evidence for Surface Rupture and Implications for Seismic Hazard

    OpenAIRE

    Canora Catalán, Carolina; Martínez Díaz, José J.; Villamor Pérez, María Pilar; Berryman, K.R.; Álvarez Gómez, José Antonio; Pullinger, Carlos; Capote del Villar, Ramón

    2010-01-01

    The El Salvador earthquake of 13 February 2001 (Mw 6.6) caused tectonic rupture on the El Salvador fault zone (ESFZ). Right-lateral strike-slip surface rupture of the east–west trending fault zone had a maximum surface displacement of 0.60 m. No vertical component was observed. The earthquake resulted in widespread landslides in the epicentral area, where bedrock is composed of volcanic sediments, tephra, and weak ignimbrites. In the aftermath of the earthquake, widespread dama...

  19. The Key Role of Eyewitnesses in Rapid Impact Assessment of Global Earthquake

    Science.gov (United States)

    Bossu, R.; Steed, R.; Mazet-Roux, G.; Roussel, F.; Etivant, C.; Frobert, L.; Godey, S.

    2014-12-01

    Uncertainties in rapid impact assessments of global earthquakes are intrinsically large because they rely on 3 main elements (ground motion prediction models, building stock inventory and related vulnerability) which values and/or spatial variations are poorly constrained. Furthermore, variations of hypocentral location and magnitude within their respective uncertainty domain can lead to significantly different shaking level for centers of population and change the scope of the disaster. We present the strategy and methods implemented at the Euro-Med Seismological Centre (EMSC) to rapidly collect in-situ observations on earthquake effects from eyewitnesses for reducing uncertainties of rapid earthquake impact assessment. It comprises crowdsourced information (online questionnaires, pics) as well as information derived from real time analysis of web traffic (flashourcing technique), and more recently deployment of QCN (Quake Catcher Network) low cost sensors. We underline the importance of merging results of different methods to improve performances and reliability of collected data.We try to better understand and respond to public demands and expectations after earthquakes through improved information services and diversification of information tools (social networks, smartphone app., browsers adds-on…), which, in turn, drive more eyewitnesses to our services and improve data collection. We will notably present our LastQuake Twitter feed (Quakebot) and smartphone applications (IOs and android) which only report earthquakes that matter for the public and authorities, i.e. felt and damaging earthquakes identified thanks to citizen generated information.

  20. Initiation process of earthquakes and its implications for seismic hazard reduction strategy.

    Science.gov (United States)

    Kanamori, H

    1996-04-30

    For the average citizen and the public, "earthquake prediction" means "short-term prediction," a prediction of a specific earthquake on a relatively short time scale. Such prediction must specify the time, place, and magnitude of the earthquake in question with sufficiently high reliability. For this type of prediction, one must rely on some short-term precursors. Examinations of strain changes just before large earthquakes suggest that consistent detection of such precursory strain changes cannot be expected. Other precursory phenomena such as foreshocks and nonseismological anomalies do not occur consistently either. Thus, reliable short-term prediction would be very difficult. Although short-term predictions with large uncertainties could be useful for some areas if their social and economic environments can tolerate false alarms, such predictions would be impractical for most modern industrialized cities. A strategy for effective seismic hazard reduction is to take full advantage of the recent technical advancements in seismology, computers, and communication. In highly industrialized communities, rapid earthquake information is critically important for emergency services agencies, utilities, communications, financial companies, and media to make quick reports and damage estimates and to determine where emergency response is most needed. Long-term forecast, or prognosis, of earthquakes is important for development of realistic building codes, retrofitting existing structures, and land-use planning, but the distinction between short-term and long-term predictions needs to be clearly communicated to the public to avoid misunderstanding.

  1. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    Science.gov (United States)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  2. Operational Earthquake Forecasting: Proposed Guidelines for Implementation (Invited)

    Science.gov (United States)

    Jordan, T. H.

    2010-12-01

    The goal of operational earthquake forecasting (OEF) is to provide the public with authoritative information about how seismic hazards are changing with time. During periods of high seismic activity, short-term earthquake forecasts based on empirical statistical models can attain nominal probability gains in excess of 100 relative to the long-term forecasts used in probabilistic seismic hazard analysis (PSHA). Prospective experiments are underway by the Collaboratory for the Study of Earthquake Predictability (CSEP) to evaluate the reliability and skill of these seismicity-based forecasts in a variety of tectonic environments. How such information should be used for civil protection is by no means clear, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing formal procedures for OEF in this sort of “low-probability environment.” Nevertheless, the need to move more quickly towards OEF has been underscored by recent experiences, such as the 2009 L’Aquila earthquake sequence and other seismic crises in which an anxious public has been confused by informal, inconsistent earthquake forecasts. Whether scientists like it or not, rising public expectations for real-time information, accelerated by the use of social media, will require civil protection agencies to develop sources of authoritative information about the short-term earthquake probabilities. In this presentation, I will discuss guidelines for the implementation of OEF informed by my experience on the California Earthquake Prediction Evaluation Council, convened by CalEMA, and the International Commission on Earthquake Forecasting, convened by the Italian government following the L’Aquila disaster. (a) Public sources of information on short-term probabilities should be authoritative, scientific, open, and

  3. Crowdsourced earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  4. Tsunamigenic Ratio of the Pacific Ocean earthquakes and a proposal for a Tsunami Index

    Directory of Open Access Journals (Sweden)

    A. Suppasri

    2012-01-01

    Full Text Available The Pacific Ocean is the location where two-thirds of tsunamis have occurred, resulting in a great number of casualties. Once information on an earthquake has been issued, it is important to understand if there is a tsunami generation risk in relation with a specific earthquake magnitude or focal depth. This study proposes a Tsunamigenic Ratio (TR that is defined as the ratio between the number of earthquake-generated tsunamis and the total number of earthquakes. Earthquake and tsunami data used in this study were selected from a database containing tsunamigenic earthquakes from prior 1900 to 2011. The TR is calculated from earthquake events with a magnitude greater than 5.0, a focal depth shallower than 200 km and a sea depth less than 7 km. The results suggest that a great earthquake magnitude and a shallow focal depth have a high potential to generate tsunamis with a large tsunami height. The average TR in the Pacific Ocean is 0.4, whereas the TR for specific regions of the Pacific Ocean varies from 0.3 to 0.7. The TR calculated for each region shows the relationship between three influential parameters: earthquake magnitude, focal depth and sea depth. The three parameters were combined and proposed as a dimensionless parameter called the Tsunami Index (TI. TI can express better relationship with the TR and with maximum tsunami height, while the three parameters mentioned above cannot. The results show that recent submarine earthquakes had a higher potential to generate a tsunami with a larger tsunami height than during the last century. A tsunami is definitely generated if the TI is larger than 7.0. The proposed TR and TI will help ascertain the tsunami generation risk of each earthquake event based on a statistical analysis of the historical data and could be an important decision support tool during the early tsunami warning stage.

  5. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  6. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  7. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    Science.gov (United States)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  8. QuakeUp: An advanced tool for a network-based Earthquake Early Warning system

    Science.gov (United States)

    Zollo, Aldo; Colombelli, Simona; Caruso, Alessandro; Elia, Luca; Brondi, Piero; Emolo, Antonio; Festa, Gaetano; Martino, Claudio; Picozzi, Matteo

    2017-04-01

    The currently developed and operational Earthquake Early warning, regional systems ground on the assumption of a point-like earthquake source model and 1-D ground motion prediction equations to estimate the earthquake impact. Here we propose a new network-based method which allows for issuing an alert based upon the real-time mapping of the Potential Damage Zone (PDZ), e.g. the epicentral area where the peak ground velocity is expected to exceed the damaging or strong shaking levels with no assumption about the earthquake rupture extent and spatial variability of ground motion. The platform includes the most advanced techniques for a refined estimation of the main source parameters (earthquake location and magnitude) and for an accurate prediction of the expected ground shaking level. The new software platform (QuakeUp) is under development at the Seismological Laboratory (RISSC-Lab) of the Department of Physics at the University of Naples Federico II, in collaboration with the academic spin-off company RISS s.r.l., recently gemmated by the research group. The system processes the 3-component, real-time ground acceleration and velocity data streams at each station. The signal quality is preliminary assessed by checking the signal-to-noise ratio both in acceleration, velocity and displacement and through dedicated filtering algorithms. For stations providing high quality data, the characteristic P-wave period (τ_c) and the P-wave displacement, velocity and acceleration amplitudes (P_d, Pv and P_a) are jointly measured on a progressively expanded P-wave time window. The evolutionary measurements of the early P-wave amplitude and characteristic period at stations around the source allow to predict the geometry and extent of PDZ, but also of the lower shaking intensity regions at larger epicentral distances. This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity (PGV) and Instrumental Intensity (I_MM) and by mapping the measured and

  9. Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves

    Science.gov (United States)

    Monsalve-Jaramillo, Hugo; Valencia-Mina, William; Cano-Saldaña, Leonardo; Vargas, Carlos A.

    2018-05-01

    Source parameters of four earthquakes located within the Wadati-Benioff zone of the Nazca plate subducting beneath the South American plate in Colombia were determined. The seismic moments for these events were recalculated and their approximate equivalent rupture area, slip distribution and stress drop were estimated. The source parameters for these earthquakes were obtained by deconvolving multiple events through teleseismic analysis of body waves recorded in long period stations and with simultaneous inversion of P and SH waves. The calculated source time functions for these events showed different stages that suggest that these earthquakes can reasonably be thought of being composed of two subevents. Even though two of the overall focal mechanisms obtained yielded similar results to those reported by the CMT catalogue, the two other mechanisms showed a clear difference compared to those officially reported. Despite this, it appropriate to mention that the mechanisms inverted in this work agree well with the expected orientation of faulting at that depth as well as with the wave forms they are expected to produce. In some of the solutions achieved, one of the two subevents exhibited a focal mechanism considerably different from the total earthquake mechanism; this could be interpreted as the result of a slight deviation from the overall motion due the complex stress field as well as the possibility of a combination of different sources of energy release analogous to the ones that may occur in deeper earthquakes. In those cases, the subevents with very different focal mechanism compared to the total earthquake mechanism had little contribution to the final solution and thus little contribution to the total amount of energy released.

  10. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    Science.gov (United States)

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  11. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal

    Science.gov (United States)

    Roback, Kevin; Clark, Marin K.; West, A. Joshua; Zekkos, Dimitrios; Li, Gen; Gallen, Sean F.; Chamlagain, Deepak; Godt, Jonathan W.

    2018-01-01

    Coseismic landslides pose immediate and prolonged hazards to mountainous communities, and provide a rare opportunity to study the effect of large earthquakes on erosion and sediment budgets. By mapping landslides using high-resolution satellite imagery, we find that the 25 April 2015 Mw7.8 Gorkha earthquake and aftershock sequence produced at least 25,000 landslides throughout the steep Himalayan Mountains in central Nepal. Despite early reports claiming lower than expected landslide activity, our results show that the total number, area, and volume of landslides associated with the Gorkha event are consistent with expectations, when compared to prior landslide-triggering earthquakes around the world. The extent of landsliding mimics the extent of fault rupture along the east-west trace of the Main Himalayan Thrust and increases eastward following the progression of rupture. In this event, maximum modeled Peak Ground Acceleration (PGA) and the steepest topographic slopes of the High Himalaya are not spatially coincident, so it is not surprising that landslide density correlates neither with PGA nor steepest slopes on their own. Instead, we find that the highest landslide density is located at the confluence of steep slopes, high mean annual precipitation, and proximity to the deepest part of the fault rupture from which 0.5-2 Hz seismic energy originated. We suggest that landslide density was determined by a combination of earthquake source characteristics, slope distributions, and the influence of precipitation on rock strength via weathering and changes in vegetation cover. Determining the relative contribution of each factor will require further modeling and better constrained seismic parameters, both of which are likely to be developed in the coming few years as post-event studies evolve. Landslide mobility, in terms of the ratio of runout distance to fall height, is comparable to small volume landslides in other settings, and landslide volume-runout scaling is

  12. On operator diagnosis aid in severe earthquakes

    International Nuclear Information System (INIS)

    Lee, S.H.; Okrent, D.

    1988-01-01

    During a severe earthquake, any component, system, or structure may fail; the plant may be driven into a very complex situation in which instrumentaion and control systems may also fail and provide operators with unreliable information about the processing parameters crucial to plant safety. What can operators do when faced with such complexity. Even though the likelihood of such a severe earthquake may be very low, its consequence may be more serious if mitigative measures are not thought out and implemented in advance. The objectives of the present study is related to the measures to protect the plant from severe damage due to large earthquakes, namely, the improvement of operator capability to respond to seismic damage through the use of Emergency Procedure Guidelines (EPGs). The fact that the symptoms presented to operators may be unreliable in severe earthquakes endangers the validity of actions in EPGs. It is the purpose of this study to design a tool through which study may be done so that the weakness of EPGs may be identified in advance then, if possible, according to the practice results some learning may be obtained so that EPGs may be improved to accomodate the complexity to a maximum. In other words, the present study intends to provide a tool which may simulate available signals, including false ones, such that EPGs may be examined and operator actions may be studied. It is hoped to develop some knowledge needed to complement the currently available knowledge. The final product of this study shall be a program which may provide users the rationale on how it reachs conclusions such that users may improve their knowledge, as well as a program whose knowledge may be updated via user interfacing

  13. Effects of Huge Earthquakes on Earth Rotation and the length of Day

    Directory of Open Access Journals (Sweden)

    Changyi Xu

    2013-01-01

    Full Text Available We calculated the co-seismic Earth rotation changes for several typical great earthquakes since 1960 based on Dahlen¡¦s analytical expression of Earth inertia moment change, the excitation functions of polar motion and, variation in the length of a day (ΔLOD. Then, we derived a mathematical relation between polar motion and earthquake parameters, to prove that the amplitude of polar motion is independent of longitude. Because the analytical expression of Dahlen¡¦s theory is useful to theoretically estimate rotation changes by earthquakes having different seismic parameters, we show results for polar motion and ΔLOD for various types of earthquakes in a comprehensive manner. The modeled results show that the seismic effect on the Earth¡¦s rotation decreases gradually with increased latitude if other parameters are unchanged. The Earth¡¦s rotational change is symmetrical for a 45° dip angle and the maximum changes appear at the equator and poles. Earthquakes at a medium dip angle and low latitudes produce large rotation changes. As an example, we calculate the polar motion and ΔLOD caused by the 2011 Tohoku-Oki Earthquake using two different fault models. Results show that a fine slip fault model is useful to compute co-seismic Earth rotation change. The obtained results indicate Dahlen¡¦s method gives good approximations for computation of co-seismic rotation changes, but there are some differences if one considers detailed fault slip distributions. Finally we analyze and discuss the co-seismic Earth rotation change signal using GRACE data, showing that such a signal is hard to be detected at present, but it might be detected under some conditions. Numerical results of this study will serve as a good indicator to check if satellite observations such as GRACE can detect a seismic rotation change when a great earthquake occur.

  14. Spatiotemporal Variation of Stress Drop During the 2008 Mogul, Nevada, Earthquake Swarm

    Science.gov (United States)

    Ruhl, C. J.; Abercrombie, R. E.; Smith, K. D.

    2017-10-01

    We estimate stress drops for 148 shallow (function-derived spectral ratios. Near-source, temporary broadband seismometers deployed before the Mw4.9 main shock provide high-quality records of many foreshocks and aftershocks, and an ideal opportunity to investigate uncertainties in corner frequency measurement as well as stress drop (Δσ) variation related to space, time, depth, mechanism, and magnitude. We explore uncertainties related to source model, measurement approach, cross-correlation limit, and frequency bandwidth. P (S) wave Δσ results range from 0.2 ± 0.15 (0.3 ± 0.15) to 36±20 (58±7) MPa, a variation greater than the error range of each individual estimate. Although this variation is not explained simply by any one parameter, spatiotemporal variation along the main shock fault plane is distinct: coherent clusters of high and low Δσ earthquakes are seen, and high-Δσ foreshocks correlate with an area of reduced aftershock productivity. These observations are best explained by a difference in rheology along the fault plane. Average Δσs of 3.9±1.1 (4.0±1.1) MPa using P (S) are similar to those found for earthquakes in a variety of settings, implying that these shallow, potentially fluid-driven earthquakes do not have systematically lower Δσ than average tectonic earthquakes ( 4 MPa) and, therefore, have similar (or higher, due to proximity to the surface) expected ground motions compared to typical earthquakes. The unprecedented detail achieved for these shallow, small-magnitude earthquakes confirms that Δσ, when measured precisely, is a valuable observation of physically meaningful fault zone properties and earthquake behavior.

  15. The earthquake problem in engineering design: generating earthquake design basis information

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1987-01-01

    Designing earthquake resistant structures requires certain design inputs specific to the seismotectonic status of the region, in which a critical facility is to be located. Generating these inputs requires collection of earthquake related information using present day techniques in seismology and geology, and processing the collected information to integrate it to arrive at a consolidated picture of the seismotectonics of the region. The earthquake problem in engineering design has been outlined in the context of a seismic design of nuclear power plants vis a vis current state of the art techniques. The extent to which the accepted procedures of assessing seismic risk in the region and generating the design inputs have been adherred to determine to a great extent the safety of the structures against future earthquakes. The document is a step towards developing an aproach for generating these inputs, which form the earthquake design basis. (author)

  16. Ductile gap between the Wenchuan and Lushan earthquakes revealed from the two-dimensional Pg seismic tomography.

    Science.gov (United States)

    Pei, Shunping; Zhang, Haijiang; Su, Jinrong; Cui, Zhongxiong

    2014-09-30

    A high-resolution two-dimensional Pg-wave velocity model is obtained for the upper crust around the epicenters of the April 20, 2013 Ms7.0 Lushan earthquake and the May 12, 2008 Ms8.0 Wenchuan earthquake, China. The tomographic inversion uses 47235 Pg arrival times from 6812 aftershocks recorded by 61 stations around the Lushan and Wenchuan earthquakes. Across the front Longmenshan fault near the Lushan earthquake, there exists a strong velocity contrast with higher velocities to the west and lower velocities to the east. Along the Longmenshan fault system, there exist two high velocity patches showing an "X" shape with an obtuse angle along the near northwest-southeast (NW-SE) direction. They correspond to the Precambrian Pengguan and Baoxing complexes on the surface but with a ~20 km shift, respectively. The aftershock gap of the 2008 Wenchuan and the 2013 Lushan earthquakes is associated with lower velocities. Based on the theory of maximum effective moment criterion, this suggests that the aftershock gap is weak and the ductile deformation is more likely to occur in the upper crust within the gap under the near NW-SE compression. Therefore our results suggest that the large earthquake may be hard to happen within the gap.

  17. Far-Field and Middle-Field Vertical Velocities Associated with Megathrust Earthquakes

    Science.gov (United States)

    Fleitout, L.; Trubienko, O.; Klein, E.; Vigny, C.; Garaud, J.; Shestakov, N.; Satirapod, C.; Simons, W. J.

    2013-12-01

    models predicting deformations through the whole seismic cycle. In the far-field, the uplift compensating the postseismic subsidence occurs at a rather moderate rate. In the middle field, a slight subsidence or a velocity close to zero is expected on the subduction side of the volcanic arc while uplift is expected on the continent side of the arc. This is in good agreement with the pattern of vertical velocities observed in Northern Honshu previous to Tohoku earthquake.

  18. Ground Motion Characteristics of Induced Earthquakes in Central North America

    Science.gov (United States)

    Atkinson, G. M.; Assatourians, K.; Novakovic, M.

    2017-12-01

    The ground motion characteristics of induced earthquakes in central North America are investigated based on empirical analysis of a compiled database of 4,000,000 digital ground-motion records from events in induced-seismicity regions (especially Oklahoma). Ground-motion amplitudes are characterized non-parametrically by computing median amplitudes and their variability in magnitude-distance bins. We also use inversion techniques to solve for regional source, attenuation and site response effects. Ground motion models are used to interpret the observations and compare the source and attenuation attributes of induced earthquakes to those of their natural counterparts. Significant conclusions are that the stress parameter that controls the strength of high-frequency radiation is similar for induced earthquakes (depth of h 5 km) and shallow (h 5 km) natural earthquakes. By contrast, deeper natural earthquakes (h 10 km) have stronger high-frequency ground motions. At distances close to the epicenter, a greater focal depth (which increases distance from the hypocenter) counterbalances the effects of a larger stress parameter, resulting in motions of similar strength close to the epicenter, regardless of event depth. The felt effects of induced versus natural earthquakes are also investigated using USGS "Did You Feel It?" reports; 400,000 reports from natural events and 100,000 reports from induced events are considered. The felt reports confirm the trends that we expect based on ground-motion modeling, considering the offsetting effects of the stress parameter versus focal depth in controlling the strength of motions near the epicenter. Specifically, felt intensity for a given magnitude is similar near the epicenter, on average, for all event types and depths. At distances more than 10 km from the epicenter, deeper events are felt more strongly than shallow events. These ground-motion attributes imply that the induced-seismicity hazard is most critical for facilities in

  19. Deterministic earthquake scenarios for the city of Sofia

    International Nuclear Information System (INIS)

    Slavov, S.; Paskaleva, I.; Kouteva, M.; Vaccari, P.; Panza, G.F.

    2002-08-01

    The city of Sofia is exposed to a high seismic risk. Macroseismic intensities in the range of VIII-X (MSK) can be expected in the city. The earthquakes, that can influence the hazard at Sofia, originate either beneath the city or are caused by seismic sources located within a radius of 40km. The city of Sofia is also prone to the remote Vrancea seismic zone in Romania, and particularly vulnerable are the long - period elements of the built environment. The high seismic risk and the lack of instrumental recordings of the regional seismicity makes the use of appropriate credible earthquake scenarios and ground motion modelling approaches for defining the seismic input for the city of Sofia necessary. Complete synthetic seismic signals, due to several earthquake scenarios, were computed along chosen geological profiles crossing the city, applying a hybrid technique, based on the modal summation technique and finite differences. The modelling takes into account simultaneously the geotechnical properties of the site, the position and geometry of the seismic source and the mechanical properties of the propagation medium. Acceleration, velocity and displacement time histories and related quantities of earthquake engineering interest (e.g. response spectra, ground motion amplification along the profiles) have been supplied. The approach applied in this study allows us to obtain the definition of the seismic input at low cost exploiting large quantities of existing data (e.g. geotechnical, geological, seismological). It may be efficiently used to estimate the ground motion for the purposes of microzonation, urban planning, retrofitting or insurance of the built environment, etc. (author)

  20. Effect of heterogeneities on evaluating earthquake triggering of volcanic eruptions

    Directory of Open Access Journals (Sweden)

    J. Takekawa

    2013-02-01

    Full Text Available Recent researches have indicated coupling between volcanic eruptions and earthquakes. Some of them calculated static stress transfer in subsurface induced by the occurrences of earthquakes. Most of their analyses ignored the spatial heterogeneity in subsurface, or only took into account the rigidity layering in the crust. On the other hand, a smaller scale heterogeneity of around hundreds of meters has been suggested by geophysical investigations. It is difficult to reflect that kind of heterogeneity in analysis models because accurate distributions of fluctuation are not well understood in many cases. Thus, the effect of the ignorance of the smaller scale heterogeneity on evaluating the earthquake triggering of volcanic eruptions is also not well understood. In the present study, we investigate the influence of the assumption of homogeneity on evaluating earthquake triggering of volcanic eruptions using finite element simulations. The crust is treated as a stochastic media with different heterogeneous parameters (correlation length and magnitude of velocity perturbation in our simulations. We adopt exponential and von Karman functions as spatial auto-correlation functions (ACF. In all our simulation results, the ignorance of the smaller scale heterogeneity leads to underestimation of the failure pressure around a chamber wall, which relates to dyke initiation. The magnitude of the velocity perturbation has a larger effect on the tensile failure at the chamber wall than the difference of the ACF and the correlation length. The maximum effect on the failure pressure in all our simulations is about twice larger than that in the homogeneous case. This indicates that the estimation of the earthquake triggering due to static stress transfer should take account of the heterogeneity of around hundreds of meters.

  1. Selection of earthquake resistant design criteria for nuclear power plants: Methodology and technical cases: Dislocation models of near-source earthquake ground motion: A review

    International Nuclear Information System (INIS)

    Luco, J.E.

    1987-05-01

    The solutions available for a number of dynamic dislocation fault models are examined in an attempt at establishing some of the expected characteristics of earthquake ground motion in the near-source region. In particular, solutions for two-dimensional anti-plane shear and plane-strain models as well as for three-dimensional fault models in full space, uniform half-space and layered half-space media are reviewed

  2. On the Regional Dependence of Earthquake Response Spectra

    OpenAIRE

    Douglas , John

    2007-01-01

    International audience; It is common practice to use ground-motion models, often developed by regression on recorded accelerograms, to predict the expected earthquake response spectra at sites of interest. An important consideration when selecting these models is the possible dependence of ground motions on geographical region, i.e., are median ground motions in the (target) region of interest for a given magnitude and distance the same as those in the (host) region where a ground-motion mode...

  3. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  4. Great earthquakes and slow slip events along the Sagami trough and outline of the Kanto Asperity Project

    Science.gov (United States)

    Kobayashi, R.; Yamamoto, Y.; Sato, T.; Shishikura, M.; Ito, H.; Shinohara, M.; Kawamura, K.; Shibazaki, B.

    2010-12-01

    The Kanto region is one of the most densely populated urban areas in the world. Complicated plate configurations are due to T-T-T type triple junction, island arc-island arc collision zone, and very shallow angle between axis of the Sagami trough and subducting direction. Great earthquakes along the Sagami trough have repeatedly occurred. The 1703 Genroku and 1923 (Taisho) Kanto earthquakes caused severe damages in the Tokyo metropolitan area. Intriguingly slow slip events have also repeatedly occurred in an area adjacent to the asperities of the great earthquakes, off Boso peninsula (e.g., Ozawa et al 2007). In the cases of the Nankai and Cascadia subduction zones, slow slip events occur at deeper levels than the asperity, in a transition zone between the asperity and a region of steady slip. In contrast, slow slip events in the Kanto region have occurred at relatively shallow depths, at the same level as the asperity, raising the possibility of friction controlled by different conditions to those (temperature and pressure) encountered at Nankai and Cascadia. We focus on three different types of seismic events occurring repeatedly at the almost same depth of the seismogenic zone along the Sagami trough (5-20 km) (1) The 1923 M~7.9 Taisho earthquake, located in Sagami Bay. Maximum slip is about 6 m, the recurrence interval is 200-400 yr, and the coupling rate is 80-100% (“coupling rates” = “slip amounts during earthquakes or slow-slip events” / [“rate of motion of the Philippine Sea Plate” - “recurrence interval”]) . (2) The 1703 M~8.2 Genroku earthquake, located in Sagami Bay, but also extending to the southern part of Boso Peninsula. Maximum slip is 15-20 m, the recurrence interval is ~2000 yr, and the coupling rate at the southern part of the Boso Peninsula is 10-30%. (3) Boso slow-slip events, located southeast of Boso Peninsula. Maximum slip is 15-20 cm over ~10 days, the recurrence interval is 5-6 yr, and the coupling rate is 70

  5. Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes

    Science.gov (United States)

    Klein, Fred W.

    2016-01-01

    Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.

  6. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  7. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake

    Science.gov (United States)

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi

    2016-01-01

    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138

  8. Experiments expectations

    OpenAIRE

    Gorini, B; Meschi, E

    2014-01-01

    This paper presents the expectations and the constraints of the experiments relatively to the commissioning procedure and the running conditions for the 2015 data taking period. The views about the various beam parameters for the p-p period, like beam energy, maximum pileup, bunch spacing and luminosity limitation in IP2 and IP8, are discussed. The goals and the constraints of the 2015 physics program are also presented, including the heavy ions period as well as the special...

  9. Kinematics, mechanics, and potential earthquake hazards for faults in Pottawatomie County, Kansas, USA

    Science.gov (United States)

    Ohlmacher, G.C.; Berendsen, P.

    2005-01-01

    Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north-northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east-northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85??W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (maximum

  10. Crisis management of tohoku; Japan earthquake and tsunami, 11 march 2011.

    Science.gov (United States)

    Zaré, M; Afrouz, S Ghaychi

    2012-01-01

    The huge earthquake in 11 March 2012 which followed by a destructive tsunami in Japan was largest recorded earthquake in the history. Japan is pioneer in disaster management, especially earthquakes. How this developed country faced this disaster, which had significant worldwide effects? The humanitarian behavior of the Japanese people amazingly wondered the word's media, meanwhile the management of government and authorities showed some deficiencies. The impact of the disaster is followed up after the event and the different impacts are tried to be analyzed in different sectors. The situation one year after Japan 2011 earthquake and Tsunami is overviewed. The reason of Japanese plans failure was the scale of tsunami, having higher waves than what was assumed, especially in the design of the Nuclear Power Plant. Japanese authorities considered economic benefits more than safety and moral factors exacerbate the situation. Major lessons to be learnt are 1) the effectiveness of disaster management should be restudied in all hazardous countries; 2) the importance of the high-Tech early-warning systems in reducing risk; 3) Reconsidering of extreme values expected/possible hazard and risk levels is necessary; 4) Morality and might be taken as an important factor in disaster management; 5) Sustainable development should be taken as the basis for reconstruction after disaster.

  11. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  12. ELER software - a new tool for urban earthquake loss assessment

    Science.gov (United States)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Erdik, M.

    2010-12-01

    ATC-55 (Yang, 2005). An urban loss assessment exercise for a scenario earthquake for the city of Istanbul is conducted and physical and social losses are presented. Damage to the urban environment is compared to the results obtained from similar software, i.e. KOERILoss (KOERI, 2002) and DBELA (Crowley et al., 2004). The European rapid loss estimation tool is expected to help enable effective emergency response, on both local and global level, as well as public information.

  13. Best Practice Life Expectancy:An Extreme value Approach

    OpenAIRE

    Medford, Anthony

    2017-01-01

    Background: Whereas the rise in human life expectancy has been extensively studied, the evolution of maximum life expectancies, i.e., the rise in best-practice life expectancy in a group of populations, has not been examined to the same extent. The linear rise in best-practice life expectancy has been reported previously by various authors. Though remarkable, this is simply an empirical observation. Objective: We examine best-practice life expectancy more formally by using extreme value th...

  14. Lessons of L'Aquila for Operational Earthquake Forecasting

    Science.gov (United States)

    Jordan, T. H.

    2012-12-01

    and failures-to-predict. The best way to achieve this separation is to use probabilistic rather than deterministic statements in characterizing short-term changes in seismic hazards. The ICEF recommended establishing OEF systems that can provide the public with open, authoritative, and timely information about the short-term probabilities of future earthquakes. Because the public needs to be educated into the scientific conversation through repeated communication of probabilistic forecasts, this information should be made available at regular intervals, during periods of normal seismicity as well as during seismic crises. In an age of nearly instant information and high-bandwidth communication, public expectations regarding the availability of authoritative short-term forecasts are rapidly evolving, and there is a greater danger that information vacuums will spawn informal predictions and misinformation. L'Aquila demonstrates why the development of OEF capabilities is a requirement, not an option.

  15. Earthquake engineering development before and after the March 4, 1977, Vrancea, Romania earthquake

    International Nuclear Information System (INIS)

    Georgescu, E.-S.

    2002-01-01

    At 25 years since the of the Vrancea earthquake of March, 4th 1977, we can analyze in an open and critical way its impact on the evolution of earthquake engineering codes and protection policies in Romania. The earthquake (M G-R = 7.2; M w = 7.5), produced 1,570 casualties and more than 11,300 injured persons (90% of the victims in Bucharest), seismic losses were estimated at more then USD 2 billions. The 1977 earthquake represented a significant episode of XXth century in seismic zones of Romania and neighboring countries. The INCERC seismic record of March 4, 1977 put, for the first time, in evidence the spectral content of long period seismic motions of Vrancea earthquakes, the duration, the number of cycles and values of actual accelerations, with important effects of overloading upon flexible structures. The seismic coefficients k s , the spectral curve (the dynamic coefficient β r ) and the seismic zonation map, the requirements in the antiseismic design norms were drastically, changed while the microzonation maps of the time ceased to be used, and the specific Vrancea earthquake recurrence was reconsidered based on hazard studies Thus, the paper emphasises: - the existing engineering knowledge, earthquake code and zoning maps requirements until 1977 as well as seismology and structural lessons since 1977; - recent aspects of implementing of the Earthquake Code P.100/1992 and harmonization with Eurocodes, in conjunction with the specific of urban and rural seismic risk and enforcing policies on strengthening of existing buildings; - a strategic view of disaster prevention, using earthquake scenarios and loss assessments, insurance, earthquake education and training; - the need of a closer transfer of knowledge between seismologists, engineers and officials in charge with disaster prevention public policies. (author)

  16. Knowledge base about earthquakes as a tool to minimize strong events consequences

    Science.gov (United States)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Alexander; Kijko, Andrzej

    2017-04-01

    The paper describes the structure and content of the knowledge base on physical and socio-economical consequences of damaging earthquakes, which may be used for calibration of near real-time loss assessment systems based on simulation models for shaking intensity, damage to buildings and casualties estimates. Such calibration allows to compensate some factors which influence on reliability of expected damage and loss assessment in "emergency" mode. The knowledge base contains the description of past earthquakes' consequences for the area under study. It also includes the current distribution of built environment and population at the time of event occurrence. Computer simulation of the recorded in knowledge base events allow to determine the sets of regional calibration coefficients, including rating of seismological surveys, peculiarities of shaking intensity attenuation and changes in building stock and population distribution, in order to provide minimum error of damaging earthquakes loss estimations in "emergency" mode. References 1. Larionov, V., Frolova, N: Peculiarities of seismic vulnerability estimations. In: Natural Hazards in Russia, volume 6: Natural Risks Assessment and Management, Publishing House "Kruk", Moscow, 120-131, 2003. 2. Frolova, N., Larionov, V., Bonnin, J.: Data Bases Used In Worlwide Systems For Earthquake Loss Estimation In Emergency Mode: Wenchuan Earthquake. In Proc. TIEMS2010 Conference, Beijing, China, 2010. 3. Frolova N. I., Larionov V. I., Bonnin J., Sushchev S. P., Ugarov A. N., Kozlov M. A. Loss Caused by Earthquakes: Rapid Estimates. Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards, vol.84, ISSN 0921-030, Nat Hazards DOI 10.1007/s11069-016-2653

  17. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  18. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  19. Geophysical Anomalies and Earthquake Prediction

    Science.gov (United States)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  20. An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling

    Science.gov (United States)

    Allen, T.I.; Wald, D.J.; Earle, P.S.; Marano, K.D.; Hotovec, A.J.; Lin, K.; Hearne, M.G.

    2009-01-01

    We present an Atlas of ShakeMaps and a catalog of human population exposures to moderate-to-strong ground shaking (EXPO-CAT) for recent historical earthquakes (1973-2007). The common purpose of the Atlas and exposure catalog is to calibrate earthquake loss models to be used in the US Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER). The full ShakeMap Atlas currently comprises over 5,600 earthquakes from January 1973 through December 2007, with almost 500 of these maps constrained-to varying degrees-by instrumental ground motions, macroseismic intensity data, community internet intensity observations, and published earthquake rupture models. The catalog of human exposures is derived using current PAGER methodologies. Exposure to discrete levels of shaking intensity is obtained by correlating Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data, such as PAGER-CAT, provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. We illustrate two example uses for EXPO-CAT; (1) simple objective ranking of country vulnerability to earthquakes, and; (2) the influence of time-of-day on earthquake mortality. In general, we observe that countries in similar geographic regions with similar construction practices tend to cluster spatially in terms of relative vulnerability. We also find little quantitative evidence to suggest that time-of-day is a significant factor in earthquake mortality. Moreover, earthquake mortality appears to be more systematically linked to the population exposed to severe ground shaking (Modified Mercalli Intensity VIII+). Finally, equipped with the full Atlas of ShakeMaps, we merge each of these maps and find the maximum estimated peak ground acceleration at any grid point in the world for the past 35 years. We subsequently compare this "composite ShakeMap" with existing global

  1. Cosmic shear measurement with maximum likelihood and maximum a posteriori inference

    Science.gov (United States)

    Hall, Alex; Taylor, Andy

    2017-06-01

    We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.

  2. Estimating shaking-induced casualties and building damage for global earthquake events: a proposed modelling approach

    Science.gov (United States)

    So, Emily; Spence, Robin

    2013-01-01

    Recent earthquakes such as the Haiti earthquake of 12 January 2010 and the Qinghai earthquake on 14 April 2010 have highlighted the importance of rapid estimation of casualties after the event for humanitarian response. Both of these events resulted in surprisingly high death tolls, casualties and survivors made homeless. In the Mw = 7.0 Haiti earthquake, over 200,000 people perished with more than 300,000 reported injuries and 2 million made homeless. The Mw = 6.9 earthquake in Qinghai resulted in over 2,000 deaths with a further 11,000 people with serious or moderate injuries and 100,000 people have been left homeless in this mountainous region of China. In such events relief efforts can be significantly benefitted by the availability of rapid estimation and mapping of expected casualties. This paper contributes to ongoing global efforts to estimate probable earthquake casualties very rapidly after an earthquake has taken place. The analysis uses the assembled empirical damage and casualty data in the Cambridge Earthquake Impacts Database (CEQID) and explores data by event and across events to test the relationships of building and fatality distributions to the main explanatory variables of building type, building damage level and earthquake intensity. The prototype global casualty estimation model described here uses a semi-empirical approach that estimates damage rates for different classes of buildings present in the local building stock, and then relates fatality rates to the damage rates of each class of buildings. This approach accounts for the effect of the very different types of buildings (by climatic zone, urban or rural location, culture, income level etc), on casualties. The resulting casualty parameters were tested against the overall casualty data from several historical earthquakes in CEQID; a reasonable fit was found.

  3. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  4. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    International Nuclear Information System (INIS)

    Wong, I.G.; Green, R.K.; Sun, J.I.; Pezzopane, S.K.; Abrahamson, N.A.; Quittmeyer, R.C.

    1996-01-01

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M w ) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M w 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M w 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper

  5. Earthquakes, May-June 1991

    Science.gov (United States)

    Person, W.J.

    1992-01-01

    One major earthquake occurred during this reporting period. This was a magntidue 7.1 in Indonesia (Minahassa Peninsula) on June 20. Earthquake-related deaths were reported in the Western Caucasus (Georgia, USSR) on May 3 and June 15. One earthquake-related death was also reported El Salvador on June 21. 

  6. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  7. Numerical relationship between surface deformation and a change of groundwater table before and after an earthquake

    International Nuclear Information System (INIS)

    Akao, Yoshihiko

    1995-01-01

    The purpose of this study is to estimate the effect of earthquakes upon a groundwater flow around a repositories for high-level radioactive wastes. Estimation of a groundwater flow change before and after an earthquake or a volcanic eruption is one of the issues for a long-term safety assessment of the repositories. However, almost any systematic investigation about the causality between a groundwater flow change and an earthquake or an eruption was not found, and as well no estimation formula has been published. The authors succeeded in obtaining a primitive relationship between a groundwater change and an earthquake in this study. The study consists of three stages. First, several survey reports which describe field observation results of groundwater anomalies caused by earthquakes or eruptions have been collected. The necessary data have been read from the literature and systematically arranged. Second, source mechanisms of the corresponding earthquakes were inspected and static displacements at the well positions were calculated by the dislocation theory in the seismology. Third, parametric studies among the parameters of groundwater anomalies and earthquakes were carried out to find a numerical relationship between a couple of them. Then, a preliminary relationship between water table change in a well and static displacement at the well position was found. The authors can conclude that temporary change of water table seems to depend on the norm of displacement vector. In this relationship, the maximum value of water table change would be approximately one hundred times of the displacement

  8. Earthquake Catalogue of the Caucasus

    Science.gov (United States)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  9. Computing the Maximum Detour of a Plane Graph in Subquadratic Time

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    Let G be a plane graph where each edge is a line segment. We consider the problem of computing the maximum detour of G, defined as the maximum over all pairs of distinct points p and q of G of the ratio between the distance between p and q in G and the distance |pq|. The fastest known algorithm f...... for this problem has O(n^2) running time. We show how to obtain O(n^{3/2}*(log n)^3) expected running time. We also show that if G has bounded treewidth, its maximum detour can be computed in O(n*(log n)^3) expected time....

  10. Seismic Regionalization of Michoacan, Mexico and Recurrence Periods for Earthquakes

    Science.gov (United States)

    Magaña García, N.; Figueroa-Soto, Á.; Garduño-Monroy, V. H.; Zúñiga, R.

    2017-12-01

    Michoacán is one of the states with the highest occurrence of earthquakes in Mexico and it is a limit of convergence triggered by the subduction of Cocos plate over the North American plate, located in the zone of the Pacific Ocean of our country, in addition to the existence of active faults inside of the state like the Morelia-Acambay Fault System (MAFS).It is important to make a combination of seismic, paleosismological and geological studies to have good planning and development of urban complexes to mitigate disasters if destructive earthquakes appear. With statistical seismology it is possible to characterize the degree of seismic activity as well as to estimate the recurrence periods for earthquakes. For this work, seismicity catalog of Michoacán was compiled and homogenized in time and magnitude. This information was obtained from world and national agencies (SSN, CMT, etc), some data published by Mendoza and Martínez-López (2016) and starting from the seismic catalog homogenized by F. R. Zúñiga (Personal communication). From the analysis of the different focal mechanisms reported in the literature and geological studies, the seismic regionalization of the state of Michoacán complemented the one presented by Vázquez-Rosas (2012) and the recurrence periods for earthquakes within the four different seismotectonic regions. In addition, stable periods were determined for the b value of the Gutenberg-Richter (1944) using the Maximum Curvature and EMR (Entire Magnitude Range Method, 2005) techniques, which allowed us to determine recurrence periods: years for earthquakes upper to 7.5 for the subduction zone (A zone) with EMR technique and years with MAXC technique for the same years for earthquakes upper to 5 for B1 zone with EMR technique and years with MAXC technique; years for earthquakes upper to 7.0 for B2 zone with EMR technique and years with MAXC technique; and the last one, the Morelia-Acambay Fault Sistem zone (C zone) years for earthquakes

  11. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    Science.gov (United States)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  12. One Basin, One Stress Regime, One Orientation of Seismogenic Basement Faults, Variable Spatio-Temporal Slip Histories: Lessons from Fort Worth Basin Induced Earthquake Sequences

    Science.gov (United States)

    DeShon, H. R.; Brudzinski, M.; Frohlich, C.; Hayward, C.; Jeong, S.; Hornbach, M. J.; Magnani, M. B.; Ogwari, P.; Quinones, L.; Scales, M. M.; Stump, B. W.; Sufri, O.; Walter, J. I.

    2017-12-01

    Since October 2008, the Fort Worth basin in north Texas has experienced over 30 magnitude (M) 3.0+ earthquakes, including one M4.0. Five named earthquake sequences have been recorded by local seismic networks: DFW Airport, Cleburne-Johnson County, Azle, Irving-Dallas, and Venus-Johnson County. Earthquakes have occurred on northeast (NE)-southwest (SW) trending Precambrian basement faults and within the overlying Ellenburger limestone unit used for wastewater disposal. Focal mechanisms indicate primarily normal faulting, and stress inversions indicate maximum regional horizontal stress strikes 20-30° NE. The seismogenic sections of the faults in either the basement or within the Ellenburger appear optimally oriented for failure within the modern stress regime. Stress drop estimates range from 10 to 75 bars, with little variability between and within the named sequences, and the values are consistent with intraplate earthquake stress drops in natural tectonic settings. However, the spatio-temporal history of each sequence relative to wastewater injection data varies. The May 2015 M4.0 Venus earthquake, for example, is only the largest of what is nearly 10 years of earthquake activity on a single fault structure. Here, maximum earthquake size has increased with time and exhibits a log-linear relationship to cumulative injected volume from 5 nearby wells. At the DFW airport, where the causative well was shut-in within a few months of the initial earthquakes and soon after the well began operation, we document migration away from the injector on the same fault for nearly 6 km sporadically over 5 years. The Irving-Dallas and Azle sequences, like DFW airport, appear to have started rather abruptly with just a few small magnitude earthquakes in the weeks or months preceding the significant set of magnitude 3.5+ earthquakes associated with each sequence. There are no nearby (<10 km) injection operations to the Irving-Dallas sequence and the Azle linked wells operated for

  13. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  14. Why and Where do Large Shallow Slab Earthquakes Occur?

    Science.gov (United States)

    Seno, T.; Yoshida, M.

    2001-12-01

    Within a shallow portion (20-60 km depth) of subducting slabs, it has been believed that large earthquakes seldom occur because the differential stress is generally expected to be low between bending at the trench-outer rise and unbending at the intermediate-depth. However, there are several regions in which large ( M>=7.0 ) earthquakes, including three events early in this year, have occurred in this portion. Searching such events from published individual studies and Harvard University centroid moment tensor catalogue, we find nineteen events in eastern Hokkaido, Kyushu-SW Japan, Mariana, Manila, Sumatra, Vanuatu, Chile, Peru, El Salvador, Mexico, and Cascadia. Slab stresses revealed from the mechanism solutions of those large events and smaller events are tensional in a slab dip direction. However, ages of the subducting oceanic plates are generally young, which denies a possibility that the slab pull works as a cause. Except for Manila and Sumatra, the stresses in the overriding plates are characterized by the change in {σ }Hmax direction from arc-parallel in the back-arc to arc-perpendicular in the fore-arc, which implies that a horizontal stress gradient exists in the across-arc direction. Peru and Chile, where the back-arc is compressional, can be categorized into this type, because a horizontal stress gradient exists over the continent from tension in east to compression in the west. In these regions, it is expected that mantle drag forces are operating beneath the upper plates, which drive the upper plates to the trenchward overriding the subducting oceanic plates. Assuming that the mantle drag forces beneath the upper plates originate from the mantle convection currents or upwelling plumes, we infer that the upper plates driven by the convection suck the oceanic plates, making the shallow portion of the slabs in extra-tension, thus resulting in the large shallow slab earthquakes in this tectonic regime.

  15. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  16. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  17. Excel, Earthquakes, and Moneyball: exploring Cascadia earthquake probabilities using spreadsheets and baseball analogies

    Science.gov (United States)

    Campbell, M. R.; Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2017-12-01

    Much recent media attention focuses on Cascadia's earthquake hazard. A widely cited magazine article starts "An earthquake will destroy a sizable portion of the coastal Northwest. The question is when." Stories include statements like "a massive earthquake is overdue", "in the next 50 years, there is a 1-in-10 chance a "really big one" will erupt," or "the odds of the big Cascadia earthquake happening in the next fifty years are roughly one in three." These lead students to ask where the quoted probabilities come from and what they mean. These probability estimates involve two primary choices: what data are used to describe when past earthquakes happened and what models are used to forecast when future earthquakes will happen. The data come from a 10,000-year record of large paleoearthquakes compiled from subsidence data on land and turbidites, offshore deposits recording submarine slope failure. Earthquakes seem to have happened in clusters of four or five events, separated by gaps. Earthquakes within a cluster occur more frequently and regularly than in the full record. Hence the next earthquake is more likely if we assume that we are in the recent cluster that started about 1700 years ago, than if we assume the cluster is over. Students can explore how changing assumptions drastically changes probability estimates using easy-to-write and display spreadsheets, like those shown below. Insight can also come from baseball analogies. The cluster issue is like deciding whether to assume that a hitter's performance in the next game is better described by his lifetime record, or by the past few games, since he may be hitting unusually well or in a slump. The other big choice is whether to assume that the probability of an earthquake is constant with time, or is small immediately after one occurs and then grows with time. This is like whether to assume that a player's performance is the same from year to year, or changes over their career. Thus saying "the chance of

  18. Strong motion modeling at the Paducah Diffusion Facility for a large New Madrid earthquake

    International Nuclear Information System (INIS)

    Herrmann, R.B.

    1991-01-01

    The Paducah Diffusion Facility is within 80 kilometers of the location of the very large New Madrid earthquakes which occurred during the winter of 1811-1812. Because of their size, seismic moment of 2.0 x 10 27 dyne-cm or moment magnitude M w = 7.5, the possible recurrence of these earthquakes is a major element in the assessment of seismic hazard at the facility. Probabilistic hazard analysis can provide uniform hazard response spectra estimates for structure evaluation, but a deterministic modeling of a such a large earthquake can provide strong constraints on the expected duration of motion. The large earthquake is modeled by specifying the earthquake fault and its orientation with respect to the site, and by specifying the rupture process. Synthetic time histories, based on forward modeling of the wavefield, from each subelement are combined to yield a three component time history at the site. Various simulations are performed to sufficiently exercise possible spatial and temporal distributions of energy release on the fault. Preliminary results demonstrate the sensitivity of the method to various assumptions, and also indicate strongly that the total duration of ground motion at the site is controlled primarily by the length of the rupture process on the fault

  19. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  20. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  1. Earthquake scaling laws for rupture geometry and slip heterogeneity

    Science.gov (United States)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip

  2. Sedimentary Signatures of Submarine Earthquakes: Deciphering the Extent of Sediment Remobilization from the 2011 Tohoku Earthquake and Tsunami and 2010 Haiti Earthquake

    Science.gov (United States)

    McHugh, C. M.; Seeber, L.; Moernaut, J.; Strasser, M.; Kanamatsu, T.; Ikehara, K.; Bopp, R.; Mustaque, S.; Usami, K.; Schwestermann, T.; Kioka, A.; Moore, L. M.

    2017-12-01

    The 2004 Sumatra-Andaman Mw9.3 and the 2011 Tohoku (Japan) Mw9.0 earthquakes and tsunamis were huge geological events with major societal consequences. Both were along subduction boundaries and ruptured portions of these boundaries that had been deemed incapable of such events. Submarine strike-slip earthquakes, such as the 2010 Mw7.0 in Haiti, are smaller but may be closer to population centers and can be similarly catastrophic. Both classes of earthquakes remobilize sediment and leave distinct signatures in the geologic record by a wide range of processes that depends on both environment and earthquake characteristics. Understanding them has the potential of greatly expanding the record of past earthquakes, which is critical for geohazard analysis. Recent events offer precious ground truth about the earthquakes and short-lived radioisotopes offer invaluable tools to identify sediments they remobilized. In the 2011 Mw9 Japan earthquake they document the spatial extent of remobilized sediment from water depths of 626m in the forearc slope to trench depths of 8000m. Subbottom profiles, multibeam bathymetry and 40 piston cores collected by the R/V Natsushima and R/V Sonne expeditions to the Japan Trench document multiple turbidites and high-density flows. Core tops enriched in xs210Pb,137Cs and 134Cs reveal sediment deposited by the 2011 Tohoku earthquake and tsunami. The thickest deposits (2m) were documented on a mid-slope terrace and trench (4000-8000m). Sediment was deposited on some terraces (600-3000m), but shed from the steep forearc slope (3000-4000m). The 2010 Haiti mainshock ruptured along the southern flank of Canal du Sud and triggered multiple nearshore sediment failures, generated turbidity currents and stirred fine sediment into suspension throughout this basin. A tsunami was modeled to stem from both sediment failures and tectonics. Remobilized sediment was tracked with short-lived radioisotopes from the nearshore, slope, in fault basins including the

  3. Disaster mitigation science for Earthquakes and Tsunamis -For resilience society against natural disasters-

    Science.gov (United States)

    Kaneda, Y.; Takahashi, N.; Hori, T.; Kawaguchi, K.; Isouchi, C.; Fujisawa, K.

    2017-12-01

    Destructive natural disasters such as earthquakes and tsunamis have occurred frequently in the world. For instance, 2004 Sumatra Earthquake in Indonesia, 2008 Wenchuan Earthquake in China, 2010 Chile Earthquake and 2011 Tohoku Earthquake in Japan etc., these earthquakes generated very severe damages. For the reduction and mitigation of damages by destructive natural disasters, early detection of natural disasters and speedy and proper evacuations are indispensable. And hardware and software developments/preparations for reduction and mitigation of natural disasters are quite important. In Japan, DONET as the real time monitoring system on the ocean floor is developed and deployed around the Nankai trough seismogenic zone southwestern Japan. So, the early detection of earthquakes and tsunamis around the Nankai trough seismogenic zone will be expected by DONET. The integration of the real time data and advanced simulation researches will lead to reduce damages, however, in the resilience society, the resilience methods will be required after disasters. Actually, methods on restorations and revivals are necessary after natural disasters. We would like to propose natural disaster mitigation science for early detections, evacuations and restorations against destructive natural disasters. This means the resilience society. In natural disaster mitigation science, there are lots of research fields such as natural science, engineering, medical treatment, social science and literature/art etc. Especially, natural science, engineering and medical treatment are fundamental research fields for natural disaster mitigation, but social sciences such as sociology, geography and psychology etc. are very important research fields for restorations after natural disasters. Finally, to realize and progress disaster mitigation science, human resource cultivation is indispensable. We already carried out disaster mitigation science under `new disaster mitigation research project on Mega

  4. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico

    Directory of Open Access Journals (Sweden)

    Carrillo Julián

    2014-01-01

    Full Text Available The development of new codes for earthquake-resistant structures has made possible to guarantee a better performance of buildings, when they are subjected to seismic actions. Therefore, it is convenient that current codes for design of building become conceptually transparent when defining the strength modification factors and assessing maximum lateral displacements, so that the design process can be clearly understood by structural engineers. The aim of this study is to analyze the transparency of earthquake-resistant design approach for buildings in Mexico by means of a critical review of the factors for strength modification and displacement amplification. The approach of building design codes in US is also analyzed. It is concluded that earthquake-resistant design in Mexico have evolved in refinement and complexity. It is also demonstrated that the procedure prescribed by such design codes allows the assessment of the design strengths and displacements in a more rational way, in accordance not only with the present stage of knowledge but also with the contemporary tendencies in building codes. In contrast, the procedures used in US codes may not provide a clear view for seismic response assessment of buildings.

  5. Delphi survey of issues after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Maeda, Yasunobu; Seo, Kami; Motoyoshi, Tadahiro; Okada, Shinya

    2011-01-01

    The Great East Japan Earthquake on March 11, 2011 has catastrophic impacts on Japan. Japan is currently on the way to recovery. However, as the damage on the country as well as society is so serious, Japanese society is urged to change some systems including hazard management, energy policy, information systems and city planning. These changes are accompanied with social group realignments, thus necessarily followed by various risks. To cope with these risk issues, SRA-Japan established the special research committee for the Great East Japan Earthquake. The aim of the committee is, from viewpoints of risk analysts, to create and relate messages about risk issues in 2-3 years, in ten years and in thirty years from the earthquake. To do this, the committee garners SRA-Japan member's opinions about possible risks in Japan by using Delphi method. In SRA-Japan, there are over 600 members in interdisciplinary fields from various backgrounds, thus the messages are expected to be helpful for Japanese society to lower its risks and to optimize the resource allocation. The research is now underway. An interim report will be presented. (author)

  6. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    Science.gov (United States)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude

  7. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    Science.gov (United States)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  8. Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Parrot, M.; Liu, J. Y.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    .9) in Taiwan and Japan. We have found anomalous behavior before all of these events with no false negatives. Calculated false alarm ratio for the for the same month over the entire period of analysis (2003-2009) is less than 10% and was d as the earthquakes. The commonalities in detecting atmospheric/ionospheric anomalies show that they may exist over both land and sea in regions of maximum stress (i.e., along plate boundaries) Our results indicate that the ISTF model could provide a capability to observe pre-earthquake atmospheric/ionospheric signals by combining this information into a common framework.

  9. Stress regimes in the northwest of Iran from stress inversion of earthquake focal mechanisms

    Science.gov (United States)

    Afra, Mahsa; Moradi, Ali; Pakzad, Mehrdad

    2017-11-01

    Northwestern Iran is one of the seismically active regions with a high seismic risk in the world. This area is a part of the complex tectonic system due to the interaction between Arabia, Anatolia and Eurasia. The purpose of this study is to deduce the stress regimes in the northwestern Iran and surrounding regions from stress inversion of earthquake focal mechanisms. We compile 92 focal mechanisms data from the Global CMT catalogue and other sources and also determine the focal mechanisms of 14 earthquakes applying the moment tensor inversion. We divide the studied region into 9 zones using similarity of the horizontal GPS velocities and existing focal mechanisms. We implement two stress inversion methods, Multiple Inverse Method and Iterative Joint Inversion Method, which provide comparable results in terms of orientations of maximum horizontal stress axes SHmax. The similar results of the two methods should make us more confident about the interpretations. We consider zones of exclusion surrounding all the earthquakes according to independent focal mechanisms hypothesis. The hypothesis says that the inversion should involve events that are far enough from each other in order that any previous event doesn't affect the stress field near the earthquake under consideration. Accordingly we deal with the matter by considering zones of exclusion around all the events. The result of exclusion is only significant for eastern Anatolia. The stress regime in this region changes from oblique to strike slip faulting because of the exclusion. In eastern Anatolia, the direction of maximum horizontal stress is nearly north-south. The direction alters to east-west in Talesh region. Errors of σ1 are lower in all zones comparing with errors of σ2 and σ3 and there is a trade-off between data resolution and covariance of the model. The results substantiate the strike-slip and thrust faulting stress regimes in the northwest of Iran.

  10. Post-earthquake building safety inspection: Lessons from the Canterbury, New Zealand, earthquakes

    Science.gov (United States)

    Marshall, J.; Jaiswal, Kishor; Gould, N.; Turner, F.; Lizundia, B.; Barnes, J.

    2013-01-01

    The authors discuss some of the unique aspects and lessons of the New Zealand post-earthquake building safety inspection program that was implemented following the Canterbury earthquake sequence of 2010–2011. The post-event safety assessment program was one of the largest and longest programs undertaken in recent times anywhere in the world. The effort engaged hundreds of engineering professionals throughout the country, and also sought expertise from outside, to perform post-earthquake structural safety inspections of more than 100,000 buildings in the city of Christchurch and the surrounding suburbs. While the building safety inspection procedure implemented was analogous to the ATC 20 program in the United States, many modifications were proposed and implemented in order to assess the large number of buildings that were subjected to strong and variable shaking during a period of two years. This note discusses some of the key aspects of the post-earthquake building safety inspection program and summarizes important lessons that can improve future earthquake response.

  11. Large scale earthquake simulator of 3-D (simultaneous X-Y-Z direction)

    International Nuclear Information System (INIS)

    Shiraki, Kazuhiro; Inoue, Masao

    1983-01-01

    Japan is the country where earthquakes are frequent, accordingly it is necessary to examine sufficiently the safety against earthquakes of important machinery and equipment such as nuclear and thermal power plants and chemical plants. For this purpose, aseismatic safety is evaluated by mounting an actual thing or a model on a vibration table and vibrating it by the magnitude several times as large as actual earthquakes. The vibration tables used so far can vibrate only in one direction or in two directions simultaneously, but this time, a three-dimensional vibration table was completed, which can vibrate in three directions simultaneously with arbitrary wave forms, respectively. By the advent of this vibration table, aseismatic test can be carried out, using the earthquake waves close to actual ones. It is expected that this vibration table achieves large role for the improvement of aseismatic reliability of nuclear power machinery and equipment. When a large test body is vibrated on the vibration table, the center of gravity of the test body and the point of action of vibrating force are different, therefore the rotating motion around three axes is added to the motion in three axial directions, and these motions must be controlled so as to realize three-dimensional earthquake motion. The main particulars and the construction of the vibration table, the mechanism of three-direction vibration, the control of the table and the results of test of the table are reported. (Kako, I.)

  12. The 1911 M ~6.6 Calaveras earthquake: Source parameters and the role of static, viscoelastic, and dynamic coulomb stress changes imparted by the 1906 San Francisco earthquake

    Science.gov (United States)

    Doser, D.I.; Olsen, K.B.; Pollitz, F.F.; Stein, R.S.; Toda, S.

    2009-01-01

    The occurrence of a right-lateral strike-slip earthquake in 1911 is inconsistent with the calculated 0.2-2.5 bar static stress decrease imparted by the 1906 rupture at that location on the Calaveras fault, and 5 yr of calculated post-1906 viscoelastic rebound does little to reload the fault. We have used all available first-motion, body-wave, and surface-wave data to explore possible focal mechanisms for the 1911 earthquake. We find that the event was most likely a right-lateral strikeslip event on the Calaveras fault, larger than, but otherwise resembling, the 1984 Mw 6.1 Morgan Hill earthquake in roughly the same location. Unfortunately, we could recover no unambiguous surface fault offset or geodetic strain data to corroborate the seismic analysis despite an exhaustive archival search. We calculated the static and dynamic Coulomb stress changes for three 1906 source models to understand stress transfer to the 1911 site. In contrast to the static stress shadow, the peak dynamic Coulomb stress imparted by the 1906 rupture promoted failure at the site of the 1911 earthquake by 1.4-5.8 bar. Perhaps because the sample is small and the aftershocks are poorly located, we find no correlation of 1906 aftershock frequency or magnitude with the peak dynamic stress, although all aftershocks sustained a calculated dynamic stress of ???3 bar. Just 20 km to the south of the 1911 epicenter, we find that surface creep of the Calaveras fault at Hollister paused for ~17 yr after 1906, about the expected delay for the calculated static stress drop imparted by the 1906 earthquake when San Andreas fault postseismic creep and viscoelastic relaxation are included. Thus, the 1911 earthquake may have been promoted by the transient dynamic stresses, while Calaveras fault creep 20 km to the south appears to have been inhibited by the static stress changes.

  13. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  14. What caused a large number of fatalities in the Tohoku earthquake?

    Science.gov (United States)

    Ando, M.; Ishida, M.; Nishikawa, Y.; Mizuki, C.; Hayashi, Y.

    2012-04-01

    The Mw9.0 earthquake caused 20,000 deaths and missing persons in northeastern Japan. 115 years prior to this event, there were three historical tsunamis that struck the region, one of which is a "tsunami earthquake" resulted with a death toll of 22,000. Since then, numerous breakwaters were constructed along the entire northeastern coasts and tsunami evacuation drills were carried out and hazard maps were distributed to local residents on numerous communities. However, despite the constructions and preparedness efforts, the March 11 Tohoku earthquake caused numerous fatalities. The strong shaking lasted three minutes or longer, thus all residents recognized that this is the strongest and longest earthquake that they had been ever experienced in their lives. The tsunami inundated an enormous area at about 560km2 over 35 cities along the coast of northeast Japan. To find out the reasons behind the high number of fatalities due to the March 11 tsunami, we interviewed 150 tsunami survivors at public evacuation shelters in 7 cities mainly in Iwate prefecture in mid-April and early June 2011. Interviews were done for about 30min or longer focused on their evacuation behaviors and those that they had observed. On the basis of the interviews, we found that residents' decisions not to evacuate immediately were partly due to or influenced by earthquake science results. Below are some of the factors that affected residents' decisions. 1. Earthquake hazard assessments turned out to be incorrect. Expected earthquake magnitudes and resultant hazards in northeastern Japan assessed and publicized by the government were significantly smaller than the actual Tohoku earthquake. 2. Many residents did not receive accurate tsunami warnings. The first tsunami warning were too small compared with the actual tsunami heights. 3. The previous frequent warnings with overestimated tsunami height influenced the behavior of the residents. 4. Many local residents above 55 years old experienced

  15. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    Yang Xiaosong; Ma Jin; Du Shuming

    2004-01-01

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability P M (T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  16. The 1987 Whittier Narrows, California, earthquake: A Metropolitan shock

    OpenAIRE

    Hauksson, Egill; Stein, Ross S.

    1989-01-01

    Just 3 hours after the Whittier Narrows earthquake struck, it became clear that a heretofore unseen geological structure was seismically active beneath metropolitan Los Angeles. Contrary to initial expectations of strike-slip or oblique-slip motion on the Whittier fault, whose north end abuts the aftershock zone, the focal mechanism of the mainshock showed pure thrust faulting on a deep gently inclined surface [Hauksson et al., 1988]. This collection of nine research reports spans the spectru...

  17. Rapid estimation of the economic consequences of global earthquakes

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2011-01-01

    The U.S. Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, operational since mid 2007, rapidly estimates the most affected locations and the population exposure at different levels of shaking intensities. The PAGER system has significantly improved the way aid agencies determine the scale of response needed in the aftermath of an earthquake. For example, the PAGER exposure estimates provided reasonably accurate assessments of the scale and spatial extent of the damage and losses following the 2008 Wenchuan earthquake (Mw 7.9) in China, the 2009 L'Aquila earthquake (Mw 6.3) in Italy, the 2010 Haiti earthquake (Mw 7.0), and the 2010 Chile earthquake (Mw 8.8). Nevertheless, some engineering and seismological expertise is often required to digest PAGER's exposure estimate and turn it into estimated fatalities and economic losses. This has been the focus of PAGER's most recent development. With the new loss-estimation component of the PAGER system it is now possible to produce rapid estimation of expected fatalities for global earthquakes (Jaiswal and others, 2009). While an estimate of earthquake fatalities is a fundamental indicator of potential human consequences in developing countries (for example, Iran, Pakistan, Haiti, Peru, and many others), economic consequences often drive the responses in much of the developed world (for example, New Zealand, the United States, and Chile), where the improved structural behavior of seismically resistant buildings significantly reduces earthquake casualties. Rapid availability of estimates of both fatalities and economic losses can be a valuable resource. The total time needed to determine the actual scope of an earthquake disaster and to respond effectively varies from country to country. It can take days or sometimes weeks before the damage and consequences of a disaster can be understood both socially and economically. The objective of the U.S. Geological Survey's PAGER system is

  18. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    Science.gov (United States)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring

  19. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal

    Science.gov (United States)

    Roback, Kevin; Clark, Marin K.; West, A. Joshua; Zekkos, Dimitrios; Li, Gen; Gallen, Sean F.; Chamlagain, Deepak; Godt, Jonathan W.

    2018-01-01

    Coseismic landslides pose immediate and prolonged hazards to mountainous communities, and provide a rare opportunity to study the effect of large earthquakes on erosion and sediment budgets. By mapping landslides using high-resolution satellite imagery, we find that the 25 April 2015 Mw7.8 Gorkha earthquake and aftershock sequence produced at least 25,000 landslides throughout the steep Himalayan Mountains in central Nepal. Despite early reports claiming lower than expected landslide activity, our results show that the total number, area, and volume of landslides associated with the Gorkha event are consistent with expectations, when compared to prior landslide-triggering earthquakes around the world. The extent of landsliding mimics the extent of fault rupture along the east-west trace of the Main Himalayan Thrust and increases eastward following the progression of rupture. In this event, maximum modeled Peak Ground Acceleration (PGA) and the steepest topographic slopes of the High Himalaya are not spatially coincident, so it is not surprising that landslide density correlates neither with PGA nor steepest slopes on their own. Instead, we find that the highest landslide density is located at the confluence of steep slopes, high mean annual precipitation, and proximity to the deepest part of the fault rupture from which 0.5–2 Hz seismic energy originated. We suggest that landslide density was determined by a combination of earthquake source characteristics, slope distributions, and the influence of precipitation on rock strength via weathering and changes in vegetation cover. Determining the relative contribution of each factor will require further modeling and better constrained seismic parameters, both of which are likely to be developed in the coming few years as post-event studies evolve. Landslide mobility, in terms of the ratio of runout distance to fall height, is comparable to small volume landslides in other settings, and landslide volume-runout scaling

  20. Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies

    Science.gov (United States)

    Arora, Shreya; Malik, Javed N.

    2017-12-01

    The Himalaya is one of the most seismically active regions of the world. The occurrence of several large magnitude earthquakes viz. 1905 Kangra earthquake (Mw 7.8), 1934 Bihar-Nepal earthquake (Mw 8.2), 1950 Assam earthquake (Mw 8.4), 2005 Kashmir (Mw 7.6), and 2015 Gorkha (Mw 7.8) are the testimony to ongoing tectonic activity. In the last few decades, tremendous efforts have been made along the Himalayan arc to understand the patterns of earthquake occurrences, size, extent, and return periods. Some of the large magnitude earthquakes produced surface rupture, while some remained blind. Furthermore, due to the incompleteness of the earthquake catalogue, a very few events can be correlated with medieval earthquakes. Based on the existing paleoseismic data certainly, there exists a complexity to precisely determine the extent of surface rupture of these earthquakes and also for those events, which occurred during historic times. In this paper, we have compiled the paleo-seismological data and recalibrated the radiocarbon ages from the trenches excavated by previous workers along the entire Himalaya and compared earthquake scenario with the past. Our studies suggest that there were multiple earthquake events with overlapping surface ruptures in small patches with an average rupture length of 300 km limiting Mw 7.8-8.0 for the Himalayan arc, rather than two or three giant earthquakes rupturing the whole front. It has been identified that the large magnitude Himalayan earthquakes, such as 1905 Kangra, 1934 Bihar-Nepal, and 1950 Assam, that have occurred within a time frame of 45 years. Now, if these events are dated, there is a high possibility that within the range of ±50 years, they may be considered as the remnant of one giant earthquake rupturing the entire Himalayan arc. Therefore, leading to an overestimation of seismic hazard scenario in Himalaya.

  1. Numerical simulation of co-seismic deformation of 2011 Japan Mw9. 0 earthquake

    Directory of Open Access Journals (Sweden)

    Zhang Keliang

    2011-08-01

    Full Text Available Co-seismic displacements associated with the Mw9. 0 earthquake on March 11, 2011 in Japan are numerically simulated on the basis of a finite-fault dislocation model with PSGRN/PSCMP software. Compared with the inland GPS observation, 90% of the computed eastward, northward and vertical displacements have residuals less than 0.10 m, suggesting that the simulated results can be, to certain extent, used to demonstrate the co-seismic deformation in the near field. In this model, the maximum eastward displacement increases from 6 m along the coast to 30 m near the epicenter, where the maximum southward displacement is 13 m. The three-dimensional display shows that the vertical displacement reaches a maximum uplift of 14.3 m, which is comparable to the tsunami height in the near-trench region. The maximum subsidence is 5.3 m.

  2. Effects in Morocco of the Lisboa earthquake 1 November 1755

    International Nuclear Information System (INIS)

    Levret, A.

    1988-05-01

    Within the framework of a cooperative agreement Sofratome/Office National d'Electricite of Morocco and Sofratome/Electricidade de Portugal, a study has been conducted as to the effects of the November 1, 1755 Lisbon earthquake in Morocco. This event, the effects of which have been described at length in Portugal, was likewise strongly felt in Morocco, especially on the Atlantic coast, which was laid waste not only through the direct agency of seismic waves, but also through that of a formidable tsunami. In old texts, the descriptions of these conjugate effects has been rendered with varying degrees of overstatement. The procedure adopted in order to arrive at a precise identification of the effects and their origin and an evaluation of intensity involves three stages: a) an assessment of the reliability of the documents used; b) a thoroughgoing analysis of the descriptions with the object of discriminating between the direct effects of the earthquake and those ascribable to the action of the tidal wave: c) a readjustment of the intensities by analysis of the global effects of the earthquake not only in Morocco but also in Portugal and Spain. Then a comparison of these with the well- documented effects of the recent, February 28, 1969 earthquake, originating at the same source. Extrapolated isoseismals for the effects in Morocco of the 1755 event derived from this study are then assigned. In the light of current knowledge concerning the historical seismicity of the Iberian African collision zone, an outline of the maximum observed intensities is proposed [fr

  3. How citizen seismology is transforming rapid public earthquake information and interactions between seismologists and society

    Science.gov (United States)

    Bossu, Rémy; Steed, Robert; Mazet-Roux, Gilles; Roussel, Fréderic; Caroline, Etivant

    2015-04-01

    Historical earthquakes are only known to us through written recollections and so seismologists have a long experience of interpreting the reports of eyewitnesses, explaining probably why seismology has been a pioneer in crowdsourcing and citizen science. Today, Internet has been transforming this situation; It can be considered as the digital nervous system comprising of digital veins and intertwined sensors that capture the pulse of our planet in near real-time. How can both seismology and public could benefit from this new monitoring system? This paper will present the strategy implemented at Euro-Mediterranean Seismological Centre (EMSC) to leverage this new nervous system to detect and diagnose the impact of earthquakes within minutes rather than hours and how it transformed information systems and interactions with the public. We will show how social network monitoring and flashcrowds (massive website traffic increases on EMSC website) are used to automatically detect felt earthquakes before seismic detections, how damaged areas can me mapped through concomitant loss of Internet sessions (visitors being disconnected) and the benefit of collecting felt reports and geolocated pictures to further constrain rapid impact assessment of global earthquakes. We will also describe how public expectations within tens of seconds of ground shaking are at the basis of improved diversified information tools which integrate this user generated contents. A special attention will be given to LastQuake, the most complex and sophisticated Twitter QuakeBot, smartphone application and browser add-on, which deals with the only earthquakes that matter for the public: the felt and damaging earthquakes. In conclusion we will demonstrate that eyewitnesses are today real time earthquake sensors and active actors of rapid earthquake information.

  4. Dislocation motion and the microphysics of flash heating and weakening of faults during earthquakes

    NARCIS (Netherlands)

    Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio

    2016-01-01

    Earthquakes are the result of slip along faults and are due to the decrease of rock frictional strength (dynamic weakening) with increasing slip and slip rate. Friction experiments simulating the abrupt accelerations (>>10 m/s2), slip rates (~1 m/s), and normal stresses (>>10 MPa) expected at the

  5. Stress triggering of the Lushan M7. 0 earthquake by the Wenchuan Ms8. 0 earthquake

    Directory of Open Access Journals (Sweden)

    Wu Jianchao

    2013-08-01

    Full Text Available The Wenchuan Ms8. 0 earthquake and the Lushan M7. 0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8. 0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan M7. 0 earthquake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 – 0. 152 bar in the source of the Lushan M7. 0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7. 0 earthquake was most likely triggered by the coulomb failure stress change.

  6. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  7. Insights into earthquake hazard map performance from shaking history simulations

    Science.gov (United States)

    Stein, S.; Vanneste, K.; Camelbeeck, T.; Vleminckx, B.

    2017-12-01

    Why recent large earthquakes caused shaking stronger than predicted by earthquake hazard maps is under debate. This issue has two parts. Verification involves how well maps implement probabilistic seismic hazard analysis (PSHA) ("have we built the map right?"). Validation asks how well maps forecast shaking ("have we built the right map?"). We explore how well a map can ideally perform by simulating an area's shaking history and comparing "observed" shaking to that predicted by a map generated for the same parameters. The simulations yield shaking distributions whose mean is consistent with the map, but individual shaking histories show large scatter. Infrequent large earthquakes cause shaking much stronger than mapped, as observed. Hence, PSHA seems internally consistent and can be regarded as verified. Validation is harder because an earthquake history can yield shaking higher or lower than that predicted while being consistent with the hazard map. The scatter decreases for longer observation times because the largest earthquakes and resulting shaking are increasingly likely to have occurred. For the same reason, scatter is much less for the more active plate boundary than for a continental interior. For a continental interior, where the mapped hazard is low, even an M4 event produces exceedances at some sites. Larger earthquakes produce exceedances at more sites. Thus many exceedances result from small earthquakes, but infrequent large ones may cause very large exceedances. However, for a plate boundary, an M6 event produces exceedance at only a few sites, and an M7 produces them in a larger, but still relatively small, portion of the study area. As reality gives only one history, and a real map involves assumptions about more complicated source geometries and occurrence rates, which are unlikely to be exactly correct and thus will contribute additional scatter, it is hard to assess whether misfit between actual shaking and a map — notably higher

  8. Comparison of four moderate-size earthquakes in southern California using seismology and InSAR

    Science.gov (United States)

    Mellors, R.J.; Magistrale, H.; Earle, P.; Cogbill, A.H.

    2004-01-01

    Source parameters determined from interferometric synthetic aperture radar (InSAR) measurements and from seismic data are compared from four moderate-size (less than M 6) earthquakes in southern California. The goal is to verify approximate detection capabilities of InSAR, assess differences in the results, and test how the two results can be reconciled. First, we calculated the expected surface deformation from all earthquakes greater than magnitude 4 in areas with available InSAR data (347 events). A search for deformation from the events in the interferograms yielded four possible events with magnitudes less than 6. The search for deformation was based on a visual inspection as well as cross-correlation in two dimensions between the measured signal and the expected signal. A grid-search algorithm was then used to estimate focal mechanism and depth from the InSAR data. The results were compared with locations and focal mechanisms from published catalogs. An independent relocation using seismic data was also performed. The seismic locations fell within the area of the expected rupture zone for the three events that show clear surface deformation. Therefore, the technique shows the capability to resolve locations with high accuracy and is applicable worldwide. The depths determined by InSAR agree with well-constrained seismic locations determined in a 3D velocity model. Depth control for well-imaged shallow events using InSAR data is good, and better than the seismic constraints in some cases. A major difficulty for InSAR analysis is the poor temporal coverage of InSAR data, which may make it impossible to distinguish deformation due to different earthquakes at the same location.

  9. New Geological Evidence of Past Earthquakes and Tsunami Along the Nankai Trough, Japan

    Science.gov (United States)

    De Batist, M. A. O.; Heyvaert, V.; Hubert-Ferrari, A.; Fujiwara, O.; Shishikura, M.; Yokoyama, Y.; Brückner, H.; Garrett, E.; Boes, E.; Lamair, L.; Nakamura, A.; Miyairi, Y.; Yamamoto, S.

    2015-12-01

    The east coast of Japan is prone to tsunamigenic megathrust earthquakes, as tragically demonstrated in 2011 by the Tōhoku earthquake (Mw 9.0) and tsunami. The Nankai Trough subduction zone, to the southwest of the area affected by the Tōhoku disaster and facing the densely populated and heavily industrialized southern coastline of central and west Japan, is expected to generate another megathrust earthquake and tsunami in the near future. This subduction zone is, however, segmented and appears to be characterized by a variable rupture mode, involving single- as well as multi-segment ruptures, which has immediate implications for their tsunamigenic potential, and also renders the collection of sufficiently long time records of past earthquakes and tsunami in this region fundamental for an adequate hazard and risk assessment. Over the past three decades, Japanese researchers have acquired a large amount of geological evidence of past earthquakes and tsunami, in many cases extending back in time for several thousands of years. This evidence includes uplifted marine terraces, turbidites, liquefaction features, subsided marshes and tsunami deposits in coastal lakes and lowlands. Despite these efforts, current understanding of the behaviour of the subduction zone still remains limited, due to site-specific evidence creation and preservation thresholds and issues over alternative hypotheses for proposed palaeoseismic evidence and insufficiently precise chronological control. Within the QuakeRecNankai project we are generating a long and coherent time series of megathrust earthquake and tsunami recurrences along the Nankai Trough subduction zone by integrating all existing evidence with new geological records of paleo-tsunami in the Lake Hamana region and of paleo-earthquakes from selected lakes in the Mount Fuji area. We combine extensive fieldwork in coastal plain areas and lakes, with advanced sedimentological and geochemical analyses and innovative dating techniques.

  10. Sensing the earthquake

    Science.gov (United States)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  11. Source Parameters from Full Moment Tensor Inversions of Potentially Induced Earthquakes in Western Canada

    Science.gov (United States)

    Wang, R.; Gu, Y. J.; Schultz, R.; Kim, A.; Chen, Y.

    2015-12-01

    During the past four years, the number of earthquakes with magnitudes greater than three has substantially increased in the southern section of Western Canada Sedimentary Basin (WCSB). While some of these events are likely associated with tectonic forces, especially along the foothills of the Canadian Rockies, a significant fraction occurred in previously quiescent regions and has been linked to waste water disposal or hydraulic fracturing. A proper assessment of the origin and source properties of these 'induced earthquakes' requires careful analyses and modeling of regional broadband data, which steadily improved during the past 8 years due to recent establishments of regional broadband seismic networks such as CRANE, RAVEN and TD. Several earthquakes, especially those close to fracking activities (e.g. Fox creek town, Alberta) are analyzed. Our preliminary full moment tensor inversion results show maximum horizontal compressional orientations (P-axis) along the northeast-southwest orientation, which agree with the regional stress directions from borehole breakout data and the P-axis of historical events. The decomposition of those moment tensors shows evidence of strike-slip mechanism with near vertical fault plane solutions, which are comparable to the focal mechanisms of injection induced earthquakes in Oklahoma. Minimal isotropic components have been observed, while a modest percentage of compensated-linear-vector-dipole (CLVD) components, which have been linked to fluid migraition, may be required to match the waveforms. To further evaluate the non-double-couple components, we compare the outcomes of full, deviatoric and pure double couple (DC) inversions using multiple frequency ranges and phases. Improved location and depth information from a novel grid search greatly assists the identification and classification of earthquakes in potential connection with fluid injection or extraction. Overall, a systematic comparison of the source attributes of

  12. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Science.gov (United States)

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; pchest (45/143 vs. 11/66 patients, RR = 1.9; ptraumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  13. Auto Correlation Analysis of Coda Waves from Local Earthquakes for Detecting Temporal Changes in Shallow Subsurface Structures: the 2011 Tohoku-Oki, Japan Earthquake

    Science.gov (United States)

    Nakahara, Hisashi

    2015-02-01

    For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can

  14. Earthquake Emergency Education in Dushanbe, Tajikistan

    Science.gov (United States)

    Mohadjer, Solmaz; Bendick, Rebecca; Halvorson, Sarah J.; Saydullaev, Umed; Hojiboev, Orifjon; Stickler, Christine; Adam, Zachary R.

    2010-01-01

    We developed a middle school earthquake science and hazards curriculum to promote earthquake awareness to students in the Central Asian country of Tajikistan. These materials include pre- and post-assessment activities, six science activities describing physical processes related to earthquakes, five activities on earthquake hazards and mitigation…

  15. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    Science.gov (United States)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  16. Earthquake recurrence models fail when earthquakes fail to reset the stress field

    Science.gov (United States)

    Tormann, Thessa; Wiemer, Stefan; Hardebeck, Jeanne L.

    2012-01-01

    Parkfield's regularly occurring M6 mainshocks, about every 25 years, have over two decades stoked seismologists' hopes to successfully predict an earthquake of significant size. However, with the longest known inter-event time of 38 years, the latest M6 in the series (28 Sep 2004) did not conform to any of the applied forecast models, questioning once more the predictability of earthquakes in general. Our study investigates the spatial pattern of b-values along the Parkfield segment through the seismic cycle and documents a stably stressed structure. The forecasted rate of M6 earthquakes based on Parkfield's microseismicity b-values corresponds well to observed rates. We interpret the observed b-value stability in terms of the evolution of the stress field in that area: the M6 Parkfield earthquakes do not fully unload the stress on the fault, explaining why time recurrent models fail. We present the 1989 M6.9 Loma Prieta earthquake as counter example, which did release a significant portion of the stress along its fault segment and yields a substantial change in b-values.

  17. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    Science.gov (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  18. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  19. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    Science.gov (United States)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  20. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  1. Calibration of Crustal Historical Earthquakes from Intra-Carpathian Region of Romania

    Science.gov (United States)

    Oros, Eugen; Popa, Mihaela; Rogozea, Maria

    2017-12-01

    The main task of the presented study is to elaborate a set of relations of mutual conversion macroseismic intensity - magnitude, necessary for the calibration of the historical crustal earthquakes produced in the Intra - Carpathian region of Romania, as a prerequisite for homogenization of the parametric catalogue of Romanian earthquakes. To achieve the goal, we selected a set of earthquakes for which we have quality macroseismic data and the Mw moment magnitude obtained instrumentally. These seismic events were used to determine the relations between the Mw and the peak/epicentral intensity, the isoseist surface area for I=3, I=4 and I=5: Mw = f (Imax / Io), Mw = f (Imax / Io, h), Mw = f (A3, A4; A5). We investigated several variants of such relationships and combinations, taking into account that the macroseismic data necessary for the re-evaluation of historical earthquakes in the investigated region are available in several forms. Thus, a number of investigations provided various information resulted after revising initial historical data: 1) Intensity data point (IDP) assimilated or not with the epicentre intensity after analysis of the correlation level with recent seismicity data and / or active tectonics / seismotectonics, 2) Sets of intensities obtained in several localities (IDPs) with variable values having maxims that can be considered equal to epicentral intensity (Io), 3) Sets of intensities obtained in several localities (IDPs) but without obvious maximum values, assimilable with the epicentral intensity, 4) maps with isoseismals, 5) Information on the areas in which the investigated earthquake was felt or the area of perceptiveness (e.g. I = 3 EMS during the day and I = 4 EMS at night) or the surfaces corresponding to a certain degree of well-defined intensity. The obtained relationships were validated using a set of earthquakes with instrumental source parameters (localization, depth, Mw). These relationships lead to redundant results meaningful in

  2. Tradable Earthquake Certificates

    NARCIS (Netherlands)

    Woerdman, Edwin; Dulleman, Minne

    2018-01-01

    This article presents a market-based idea to compensate for earthquake damage caused by the extraction of natural gas and applies it to the case of Groningen in the Netherlands. Earthquake certificates give homeowners a right to yearly compensation for both property damage and degradation of living

  3. What Can Sounds Tell Us About Earthquake Interactions?

    Science.gov (United States)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these

  4. Comparison of the November 2002 Denali and November 2001 Kunlun Earthquakes

    Science.gov (United States)

    Bufe, C. G.

    2002-12-01

    Major earthquakes occurred in Tibet on the central Kunlun fault (M 7.8) on November 14, 2001 (Lin and others, 2002) and in Alaska on the central Denali fault (M 7.9) on November 3, 2002. Both earthquakes generated large surface waves (Kunlun Ms 8.0 (USGS) and Denali Ms 8.5). Each event occurred on east-west-trending strike-slip faults and exhibited nearly unilateral rupture propagating several hundred kilometers from west to east. Surface rupture length estimates were about 400 km for Kunlun, 300 km for Denali. Maximum surface faulting and moment release were observed far to the east of the points of rupture initiation. Harvard moment centroids were located east of USGS epicenters by 182 km (Kunlun) and by 126 km (Denali). Maximum surface faulting was observed near 240 km (Kunlun, 16 m left lateral) and near 175 km (Denali, 9 m right lateral) east of the USGS epicenters. Significant thrust components were observed in the initiation of the Denali event (ERI analysis and mapped thrust) and in the termination of the Kunlun rupture, as evidenced by thrust mechanisms of the largest aftershocks which occurred near the eastern part of the Kunlun rupture. In each sequence the largest aftershock was about 2 orders of magnitude smaller than the mainshock. Moment release along the ruptured segments was examined for the 25-year periods preceding the main shocks. The Denali zone shows precursory accelerating moment release with the dominant events occurring on October 22, 1996 (M 5.8) and October 23, 2002 (M 6.7). The Kunlun zone shows nearly constant moment release over time with the last significant event before the main shock occurring on November 26, 2000 (M 5.4). Moment release data are consistent with previous observations of annual periodicity preceding major earthquakes, possibly due to the evolution of a critical state with seasonal and tidal triggering (Varnes and Bufe, 2001). Annual periodicity is also evident for the larger events in the greater San Francisco Bay

  5. Operational Earthquake Forecasting and Decision-Making in a Low-Probability Environment

    Science.gov (United States)

    Jordan, T. H.; the International Commission on Earthquake ForecastingCivil Protection

    2011-12-01

    Operational earthquake forecasting (OEF) is the dissemination of authoritative information about the time dependence of seismic hazards to help communities prepare for potentially destructive earthquakes. Most previous work on the public utility of OEF has anticipated that forecasts would deliver high probabilities of large earthquakes; i.e., deterministic predictions with low error rates (false alarms and failures-to-predict) would be possible. This expectation has not been realized. An alternative to deterministic prediction is probabilistic forecasting based on empirical statistical models of aftershock triggering and seismic clustering. During periods of high seismic activity, short-term earthquake forecasts can attain prospective probability gains in excess of 100 relative to long-term forecasts. The utility of such information is by no means clear, however, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing OEF in this sort of "low-probability environment." The need to move more quickly has been underscored by recent seismic crises, such as the 2009 L'Aquila earthquake sequence, in which an anxious public was confused by informal and inaccurate earthquake predictions. After the L'Aquila earthquake, the Italian Department of Civil Protection appointed an International Commission on Earthquake Forecasting (ICEF), which I chaired, to recommend guidelines for OEF utilization. Our report (Ann. Geophys., 54, 4, 2011; doi: 10.4401/ag-5350) concludes: (a) Public sources of information on short-term probabilities should be authoritative, scientific, open, and timely, and need to convey epistemic uncertainties. (b) Earthquake probabilities should be based on operationally qualified, regularly updated forecasting systems. (c) All operational models should be evaluated

  6. Nowcasting Earthquakes and Tsunamis

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    The term "nowcasting" refers to the estimation of the current uncertain state of a dynamical system, whereas "forecasting" is a calculation of probabilities of future state(s). Nowcasting is a term that originated in economics and finance, referring to the process of determining the uncertain state of the economy or market indicators such as GDP at the current time by indirect means. We have applied this idea to seismically active regions, where the goal is to determine the current state of a system of faults, and its current level of progress through the earthquake cycle (http://onlinelibrary.wiley.com/doi/10.1002/2016EA000185/full). Advantages of our nowcasting method over forecasting models include: 1) Nowcasting is simply data analysis and does not involve a model having parameters that must be fit to data; 2) We use only earthquake catalog data which generally has known errors and characteristics; and 3) We use area-based analysis rather than fault-based analysis, meaning that the methods work equally well on land and in subduction zones. To use the nowcast method to estimate how far the fault system has progressed through the "cycle" of large recurring earthquakes, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. We select a "small" region in which the nowcast is to be made, and compute the statistics of a much larger region around the small region. The statistics of the large region are then applied to the small region. For an application, we can define a small region around major global cities, for example a "small" circle of radius 150 km and a depth of 100 km, as well as a "large" earthquake magnitude, for example M6.0. The region of influence of such earthquakes is roughly 150 km radius x 100 km depth, which is the reason these values were selected. We can then compute and rank the seismic risk of the world's major cities in terms of their relative seismic risk

  7. Reflections from the interface between seismological research and earthquake risk reduction

    Science.gov (United States)

    Sargeant, S.

    2012-04-01

    Scientific understanding of earthquakes and their attendant hazards is vital for the development of effective earthquake risk reduction strategies. Within the global disaster reduction policy framework (the Hyogo Framework for Action, overseen by the UN International Strategy for Disaster Reduction), the anticipated role of science and scientists is clear, with respect to risk assessment, loss estimation, space-based observation, early warning and forecasting. The importance of information sharing and cooperation, cross-disciplinary networks and developing technical and institutional capacity for effective disaster management is also highlighted. In practice, the degree to which seismological information is successfully delivered to and applied by individuals, groups or organisations working to manage or reduce the risk from earthquakes is variable. The challenge for scientists is to provide fit-for-purpose information that can be integrated simply into decision-making and risk reduction activities at all levels of governance and at different geographic scales, often by a non-technical audience (i.e. people without any seismological/earthquake engineering training). The interface between seismological research and earthquake risk reduction (defined here in terms of both the relationship between the science and its application, and the scientist and other risk stakeholders) is complex. This complexity is a function of a range issues that arise relating to communication, multidisciplinary working, politics, organisational practices, inter-organisational collaboration, working practices, sectoral cultures, individual and organisational values, worldviews and expectations. These factors can present significant obstacles to scientific information being incorporated into the decision-making process. The purpose of this paper is to present some personal reflections on the nature of the interface between the worlds of seismological research and risk reduction, and the

  8. The Alaska earthquake, March 27, 1964: lessons and conclusions

    Science.gov (United States)

    Eckel, Edwin B.

    1970-01-01

    subsidence was superimposed on regional tectonic subsidence to heighten the flooding damage. Ground and surface waters were measurably affected by the earthquake, not only in Alaska but throughout the world. Expectably, local geologic conditions largely controlled the extent of structural damage, whether caused directly by seismic vibrations or by secondary effects such as those just described. Intensity was greatest in areas underlain by thick saturated unconsolidated deposits, least on indurated bedrock or permanently frozen ground, and intermediate on coarse well-drained gravel, on morainal deposits, or on moderately indurated sedimentary rocks. Local and even regional geology also controlled the distribution and extent of the earthquake's effects on hydrologic systems. In the conterminous United States, for example, seiches in wells and bodies of surface water were controlled by geologic structures of regional dimension. Devastating as the earthquake was, it had many long-term beneficial effects. Many of these were socioeconomic or engineering in nature; others were of scientific value. Much new and corroborative basic geologic and hydrologic information was accumulated in the course of the earthquake studies, and many new or improved investigative techniques were developed. Chief among these, perhaps, were the recognition that lakes can be used as giant tiltmeters, the refinement of methods for measuring land-level changes by observing displacements of barnacles and other sessile organisms, and the relating of hydrology to seismology by worldwide study of hydroseisms in surface-water bodies and in wells. The geologic and hydrologic lessons learned from studies of the Alaska earthquake also lead directly to better definition of the research needed to further our understanding of earthquakes and of how to avoid or lessen the effects of future ones. Research is needed on the origins and mechanisms of earthquakes, on crustal structure, and on the generation of tsunamis and

  9. Seismicity map tools for earthquake studies

    Science.gov (United States)

    Boucouvalas, Anthony; Kaskebes, Athanasios; Tselikas, Nikos

    2014-05-01

    We report on the development of new and online set of tools for use within Google Maps, for earthquake research. We demonstrate this server based and online platform (developped with PHP, Javascript, MySQL) with the new tools using a database system with earthquake data. The platform allows us to carry out statistical and deterministic analysis on earthquake data use of Google Maps and plot various seismicity graphs. The tool box has been extended to draw on the map line segments, multiple straight lines horizontally and vertically as well as multiple circles, including geodesic lines. The application is demonstrated using localized seismic data from the geographic region of Greece as well as other global earthquake data. The application also offers regional segmentation (NxN) which allows the studying earthquake clustering, and earthquake cluster shift within the segments in space. The platform offers many filters such for plotting selected magnitude ranges or time periods. The plotting facility allows statistically based plots such as cumulative earthquake magnitude plots and earthquake magnitude histograms, calculation of 'b' etc. What is novel for the platform is the additional deterministic tools. Using the newly developed horizontal and vertical line and circle tools we have studied the spatial distribution trends of many earthquakes and we here show for the first time the link between Fibonacci Numbers and spatiotemporal location of some earthquakes. The new tools are valuable for examining visualizing trends in earthquake research as it allows calculation of statistics as well as deterministic precursors. We plan to show many new results based on our newly developed platform.

  10. Earthquake at 40 feet

    Science.gov (United States)

    Miller, G. J.

    1976-01-01

    The earthquake that struck the island of Guam on November 1, 1975, at 11:17 a.m had many unique aspects-not the least of which was the experience of an earthquake of 6.25 Richter magnitude while at 40 feet. My wife Bonnie, a fellow diver, Greg Guzman, and I were diving at Gabgab Beach in teh outer harbor of Apra Harbor, engaged in underwater phoyography when the earthquake struck. 

  11. Earthquakes and economic growth

    OpenAIRE

    Fisker, Peter Simonsen

    2012-01-01

    This study explores the economic consequences of earthquakes. In particular, it is investigated how exposure to earthquakes affects economic growth both across and within countries. The key result of the empirical analysis is that while there are no observable effects at the country level, earthquake exposure significantly decreases 5-year economic growth at the local level. Areas at lower stages of economic development suffer harder in terms of economic growth than richer areas. In addition,...

  12. Radon anomalies prior to earthquakes (2). Atmospheric radon anomaly observed before the Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Yasuoka, Yumi; Shinogi, Masaki; Nagahama, Hiroyuki; Omori, Yasutaka; Kawada, Yusuke

    2008-01-01

    Before the 1995 Hyogoken-Nanbu earthquake, various geochemical precursors were observed in the aftershock area: chloride ion concentration, groundwater discharge rate, groundwater radon concentration and so on. Kobe Pharmaceutical University (KPU) is located about 25 km northeast from the epicenter and within the aftershock area. Atmospheric radon concentration had been continuously measured from 1984 at KPU, using a flow-type ionization chamber. The radon concentration data were analyzed using the smoothed residual values which represent the daily minimum of radon concentration with the exclusion of normalized seasonal variation. The radon concentration (smoothed residual values) demonstrated an upward trend about two months before the Hyogoken-Nanbu earthquake. The trend can be well fitted to a log-periodic model related to earthquake fault dynamics. As a result of model fitting, a critical point was calculated to be between 13 and 27 January 1995, which was in good agreement with the occurrence date of earthquake (17 January 1995). The mechanism of radon anomaly before earthquakes is not fully understood. However, it might be possible to detect atmospheric radon anomaly as a precursor before a large earthquake, if (1) the measurement is conducted near the earthquake fault, (2) the monitoring station is located on granite (radon-rich) areas, and (3) the measurement is conducted for more than several years before the earthquake to obtain background data. (author)

  13. Retrospective stress-forecasting of earthquakes

    Science.gov (United States)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  14. Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  15. CyberShake-derived ground-motion prediction models for the Los Angeles region with application to earthquake early warning

    Science.gov (United States)

    Bose, Maren; Graves, Robert; Gill, David; Callaghan, Scott; Maechling, Phillip J.

    2014-01-01

    Real-time applications such as earthquake early warning (EEW) typically use empirical ground-motion prediction equations (GMPEs) along with event magnitude and source-to-site distances to estimate expected shaking levels. In this simplified approach, effects due to finite-fault geometry, directivity and site and basin response are often generalized, which may lead to a significant under- or overestimation of shaking from large earthquakes (M > 6.5) in some locations. For enhanced site-specific ground-motion predictions considering 3-D wave-propagation effects, we develop support vector regression (SVR) models from the SCEC CyberShake low-frequency (415 000 finite-fault rupture scenarios (6.5 ≤ M ≤ 8.5) for southern California defined in UCERF 2.0. We use CyberShake to demonstrate the application of synthetic waveform data to EEW as a ‘proof of concept’, being aware that these simulations are not yet fully validated and might not appropriately sample the range of rupture uncertainty. Our regression models predict the maximum and the temporal evolution of instrumental intensity (MMI) at 71 selected test sites using only the hypocentre, magnitude and rupture ratio, which characterizes uni- and bilateral rupture propagation. Our regression approach is completely data-driven (where here the CyberShake simulations are considered data) and does not enforce pre-defined functional forms or dependencies among input parameters. The models were established from a subset (∼20 per cent) of CyberShake simulations, but can explain MMI values of all >400 k rupture scenarios with a standard deviation of about 0.4 intensity units. We apply our models to determine threshold magnitudes (and warning times) for various active faults in southern California that earthquakes need to exceed to cause at least ‘moderate’, ‘strong’ or ‘very strong’ shaking in the Los Angeles (LA) basin. These thresholds are used to construct a simple and robust EEW algorithm: to

  16. Characteristics of coseismic water level changes at Tangshan well for the Wenchuan M S8.0 earthquake and its larger aftershocks

    Science.gov (United States)

    Yin, Baojun; Ma, Li; Chen, Huizhong; Huang, Jianping; Zhang, Chaojun; Wang, Wuxing

    2009-04-01

    Coseismic water level changes which may have been induced by the Wenchuan M S8.0 earthquake and its 15 larger aftershocks ( M S≥5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. M S magnitude has the strongest correlation with the coseismic water level changes comparing to M W and M L magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.

  17. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  18. Earthquake effect on the geological environment

    International Nuclear Information System (INIS)

    Kawamura, Makoto

    1999-01-01

    Acceleration caused by the earthquake, changes in the water pressure, and the rock-mass strain were monitored for a series of 344 earthquakes from 1990 to 1998 at Kamaishi In Situ Test Site. The largest acceleration was registered to be 57.14 gal with the earthquake named 'North coast of Iwate Earthquake' (M4.4) occurred in June, 1996. Changes of the water pressure were recorded with 27 earthquakes; the largest change was -0.35 Kgt/cm 2 . The water-pressure change by earthquake was, however, usually smaller than that caused by rainfall in this area. No change in the electric conductivity or pH of ground water was detected before and after the earthquake throughout the entire period of monitoring. The rock-mass strain was measured with a extensometer whose detection limit was of the order of 10 -8 to 10 -9 degrees and the remaining strain of about 2.5x10 -9 degrees was detected following the 'Offshore Miyagi Earthquake' (M5.1) in October, 1997. (H. Baba)

  19. Consequence based safety evaluation of an earth dam for floods and earthquakes

    International Nuclear Information System (INIS)

    Hartford, D.N.D.; Lou, J.K.

    1994-01-01

    Probabilistic risk assessment is a sophisticated technique for assessing the potential for failure of complex, hazardous facilities and thereby to identify ways to reduce risks. B.C. Hydro is introducing probabilistic risk assessment to supplement conventional dam safety assessments. A test is described of a dam safety evaluation procedure, whereby the procedure is applied to the Alouette Dam, a 21 m earthfill structure constructed in 1926. Risks derived from extreme loadings due to floods and earthquakes are evaluated, while other potential failure modes are not considered. Event tree construction and the subjective probability assessment to evaluate failure probability are outlined. The assessment: examined application of procedures for estimating potential loss of life and economic losses resulting from failure of the dam; tested the feasibility of applying developing B.C. Hydro procedures for estimating dam failure probability; established a framework that can be used to carry out high level probabilistic risk assessment of a dam; and tested the procedures to evaluate the risks associated with hydrologic and seismic events, as well as combined risks. Significant reductions in risk can be achieved by addressing conditions more likely but less severe than the those associated with the probable maximum flood or maximum design earthquake. 9 refs., 5 figs., 5 tabs

  20. The International Platform on Earthquake Early Warning Systems (IP-EEWS)

    Science.gov (United States)

    Torres, Jair; Fanchiotti, Margherita

    2017-04-01

    understanding, there is a strong need to enhance the technical and operational capacities required for these systems and to further understand the implications for policy. In an effort to address this gap, in December 2015, UNESCO launched the International Platform on Earthquake Early Warning Systems (IP-EEWS). The main objective of the Platform is to assess the current state of the art in the development and operationalisation of EEWS globally, foster dialogue and international cooperation for capacity building around these systems, and therefore promote and strengthen EEWS in earthquake-prone countries worldwide. This paper will discuss the opportunities and challenges for the development and operationalisation of these systems, as well as the specific aim, objectives and expected contributions of this newly established Platform. The following ten countries are already represented in IP-EEWS through leading scientific experts in top institutions: USA (University of California Berkeley), Japan (Meteorological Research Institute), Mexico (Centro de Instrumentacion y Registro Sismico), Italy (University of Naples Federico II), Switzerland (ETH - Swiss Federal Institute of Technology Zurich), Spain (Universidad Complutense de Madrid), Turkey (Kandili Observatory and Earthquake Research Institute, Boǧaziçi University), Germany (GFZ - German Research Centre for Geosciences), China (University of Beijing), and Romania (National Institute for Earth Physics). More countries are expected to join the initiative.

  1. Earthquake predictions using seismic velocity ratios

    Science.gov (United States)

    Sherburne, R. W.

    1979-01-01

    Since the beginning of modern seismology, seismologists have contemplated predicting earthquakes. The usefulness of earthquake predictions to the reduction of human and economic losses and the value of long-range earthquake prediction to planning is obvious. Not as clear are the long-range economic and social impacts of earthquake prediction to a speicifc area. The general consensus of opinion among scientists and government officials, however, is that the quest of earthquake prediction is a worthwhile goal and should be prusued with a sense of urgency. 

  2. Earthquakes and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  3. Smoking prevalence increases following Canterbury earthquakes.

    Science.gov (United States)

    Erskine, Nick; Daley, Vivien; Stevenson, Sue; Rhodes, Bronwen; Beckert, Lutz

    2013-01-01

    A magnitude 7.1 earthquake hit Canterbury in September 2010. This earthquake and associated aftershocks took the lives of 185 people and drastically changed residents' living, working, and social conditions. To explore the impact of the earthquakes on smoking status and levels of tobacco consumption in the residents of Christchurch. Semistructured interviews were carried out in two city malls and the central bus exchange 15 months after the first earthquake. A total of 1001 people were interviewed. In August 2010, prior to any earthquake, 409 (41%) participants had never smoked, 273 (27%) were currently smoking, and 316 (32%) were ex-smokers. Since the September 2010 earthquake, 76 (24%) of the 316 ex-smokers had smoked at least one cigarette and 29 (38.2%) had smoked more than 100 cigarettes. Of the 273 participants who were current smokers in August 2010, 93 (34.1%) had increased consumption following the earthquake, 94 (34.4%) had not changed, and 86 (31.5%) had decreased their consumption. 53 (57%) of the 93 people whose consumption increased reported that the earthquake and subsequent lifestyle changes as a reason to increase smoking. 24% of ex-smokers resumed smoking following the earthquake, resulting in increased smoking prevalence. Tobacco consumption levels increased in around one-third of current smokers.

  4. Cyclic migration of weak earthquakes between Lunigiana earthquake of October 10, 1995 and Reggio Emilia earthquake of October 15, 1996 (Northern Italy)

    Science.gov (United States)

    di Giovambattista, R.; Tyupkin, Yu

    The cyclic migration of weak earthquakes (M 2.2) which occurred during the yearprior to the October 15, 1996 (M = 4.9) Reggio Emilia earthquake isdiscussed in this paper. The onset of this migration was associated with theoccurrence of the October 10, 1995 (M = 4.8) Lunigiana earthquakeabout 90 km southwest from the epicenter of the Reggio Emiliaearthquake. At least three series of earthquakes migrating from theepicentral area of the Lunigiana earthquake in the northeast direction wereobserved. The migration of earthquakes of the first series terminated at adistance of about 30 km from the epicenter of the Reggio Emiliaearthquake. The earthquake migration of the other two series halted atabout 10 km from the Reggio Emilia epicenter. The average rate ofearthquake migration was about 200-300 km/year, while the time ofrecurrence of the observed cycles varied from 68 to 178 days. Weakearthquakes migrated along the transversal fault zones and sometimesjumped from one fault to another. A correlation between the migratingearthquakes and tidal variations is analysed. We discuss the hypothesis thatthe analyzed area is in a state of stress approaching the limit of thelong-term durability of crustal rocks and that the observed cyclic migrationis a result of a combination of a more or less regular evolution of tectonicand tidal variations.

  5. The role of the 2008 Mw 7.9 Wenchuan earthquake in topographic evolution: seismically induced landslides and the associated isostatic response

    Science.gov (United States)

    Ren, Z.; Zhang, Z.; Zhang, H.; Zheng, W.; Zhang, P. Z.

    2017-12-01

    The widely held understanding that reverse-faulting earthquakes play an important role in building mountains has been challenged by recent studies suggesting that co-seismic landslides of the 2008 Mw 7.9 Wenchuan earthquake led to a net co-seismic lowering of surface height. We use precise estimates of co-seismic landslide volumes to calculate the long-term isostatic response to landsliding during the 2008 Wenchuan earthquake. The total isostatic respond volume is 2.0 km3 which did not change much associated with thickness of Te, however, the distribution of the rebound changes associated with thickness of Te. The total co-seismic mass change could be 1.8 km3. The maximum isostatic response due to Wenchuan earthquake may have been as high as 0.9 meters in the highest Pengguan massif of the central Longmen Shan. We also find that the average net uplift is 0.16 meters within the total landslide region due to the Wenchuan earthquake. Our findings suggest that the local topographic evolution of the middle Longmen Shan region is closely related to repeated tectonic events such as the 2008 Wenchuan Earthquake.

  6. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    International Nuclear Information System (INIS)

    Supardiyono; Santosa, Bagus Jaya

    2012-01-01

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299° were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

  7. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    Energy Technology Data Exchange (ETDEWEB)

    Supardiyono; Santosa, Bagus Jaya [Physics Department, Faculty of Mathematics and Natural Sciences, State University of Surabaya, Surabaya (Indonesia) and Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia); Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia)

    2012-06-20

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

  8. A new reference global instrumental earthquake catalogue (1900-2009)

    Science.gov (United States)

    Di Giacomo, D.; Engdahl, B.; Bondar, I.; Storchak, D. A.; Villasenor, A.; Bormann, P.; Lee, W.; Dando, B.; Harris, J.

    2011-12-01

    For seismic hazard studies on a global and/or regional scale, accurate knowledge of the spatial distribution of seismicity, the magnitude-frequency relation and the maximum magnitudes is of fundamental importance. However, such information is normally not homogeneous (or not available) for the various seismically active regions of the Earth. To achieve the GEM objectives (www.globalquakemodel.org) of calculating and communicating earthquake risk worldwide, an improved reference global instrumental catalogue for large earthquakes spanning the entire 100+ years period of instrumental seismology is an absolute necessity. To accomplish this task, we apply the most up-to-date techniques and standard observatory practices for computing the earthquake location and magnitude. In particular, the re-location procedure benefits both from the depth determination according to Engdahl and Villaseñor (2002), and the advanced technique recently implemented at the ISC (Bondár and Storchak, 2011) to account for correlated error structure. With regard to magnitude, starting from the re-located hypocenters, the classical surface and body-wave magnitudes are determined following the new IASPEI standards and by using amplitude-period data of phases collected from historical station bulletins (up to 1970), which were not available in digital format before the beginning of this work. Finally, the catalogue will provide moment magnitude values (including uncertainty) for each seismic event via seismic moment, via surface wave magnitude or via other magnitude types using empirical relationships. References Engdahl, E.R., and A. Villaseñor (2002). Global seismicity: 1900-1999. In: International Handbook of Earthquake and Engineering Seismology, eds. W.H.K. Lee, H. Kanamori, J.C. Jennings, and C. Kisslinger, Part A, 665-690, Academic Press, San Diego. Bondár, I., and D. Storchak (2011). Improved location procedures at the International Seismological Centre, Geophys. J. Int., doi:10.1111/j

  9. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    Energy Technology Data Exchange (ETDEWEB)

    Wong, I.G.; Green, R.K.; Sun, J.I. [Woodward-Clyde Federal Services, Oakland, CA (United States); Pezzopane, S.K. [Geological Survey, Denver, CO (United States); Abrahamson, N.A. [Abrahamson (Norm A.), Piedmont, CA (United States); Quittmeyer, R.C. [Woodward-Clyde Federal Services, Las Vegas, NV (United States)

    1996-12-31

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M{sub w}) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M{sub w} 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M{sub w} 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper.

  10. The Salmas (Iran earthquake of May 6th, 1930

    Directory of Open Access Journals (Sweden)

    J. S. TCHALENKO

    1974-06-01

    Full Text Available Field investigations and bibliographical research into the little-known but important Salmas earthquake in Northwest Azarbaijan (Iran provided the following results. The morning before the earthquake, a foreshock (Mb — 5.4 centered, as the main shock, in the Salmas Plain, killed about 25 people and incited a great part of the population to spend the following night out of doors. The main shock (Mb = 7.3 occurred the following night, on 6 May 1930 at 22h34m27s GMT and destroyed about 60 villages and 40 churches, killing about 2514 people, both in the Salmas Plain and in the surrounding mountains. Its macroseismic epicentre was at approximately 3S.15N 44.70E. The main shock was associated with 2 surface faults, with a maximum horizontal displacement of 4 m and vertical displacement of over 5 m; the combined action of these faults was a relative lowering, and a displacement to the east, of the Salmas Plain. Two days later, the strongest aftershock destroyed one village at the northern edge of the Salmas Plain.

  11. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    International Nuclear Information System (INIS)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-01-01

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26 th , 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4 th , 2011 and still continuously erupted until August 28 th , 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region

  12. The severity of an earthquake

    Science.gov (United States)

    ,

    1997-01-01

    The severity of an earthquake can be expressed in terms of both intensity and magnitude. However, the two terms are quite different, and they are often confused. Intensity is based on the observed effects of ground shaking on people, buildings, and natural features. It varies from place to place within the disturbed region depending on the location of the observer with respect to the earthquake epicenter. Magnitude is related to the amount of seismic energy released at the hypocenter of the earthquake. It is based on the amplitude of the earthquake waves recorded on instruments

  13. Response spectra for differential motion of structures supports during earthquakes in Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed I.S. Elmasry

    2012-12-01

    Full Text Available Differential motions of ground supports of stiff structures with large plan dimensions and separate foundations under earthquakes were studied by researchers during the last few decades. Such a type of structural response was previously underestimated. The importance of studying such a response comes up from the fact that usually the structures affected are of strategic importance such as bridges. During their expected life, structures may experience vibrations excited by ground waves of short wavelengths during near-source earthquakes, or during amplified earthquake signals, during explosions, or during vibrations induced from nearby strong vibration sources. This is the case when the differential motion of supports becomes considerable. This paper aims to review the effects of seismic signal variations along the structures dimensions with emphasis on Egypt as a case study. The paper shows some patterns of the damage imposed by such differential motion. A replication of the differential motion in the longitudinal direction is applied on a frame bridge model. The resulting straining actions show the necessity for considering the differential motion of supports in the design of special structures in Egypt. Finally, response spectra for the differential motion of supports, based on the available data from previous earthquakes in Egypt, is derived and proposed for designers to include in the design procedure when accounting for such type of structural response, and especially in long-span bridges.

  14. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Directory of Open Access Journals (Sweden)

    Zhi-hui Dong

    2011-01-01

    Full Text Available PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT. METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR = 2.2; p<0.001. Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR=1.2; p<0.05 or flail chest (45/143 vs. 11/66 patients, RR=1.9; p<0.05 were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR= 1.7; p<0.01. Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR= 1.4; p<0.01. Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR=1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001. Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. CONCLUSIONS: Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries.

  15. Earthquake prediction by Kina Method

    International Nuclear Information System (INIS)

    Kianoosh, H.; Keypour, H.; Naderzadeh, A.; Motlagh, H.F.

    2005-01-01

    Earthquake prediction has been one of the earliest desires of the man. Scientists have worked hard to predict earthquakes for a long time. The results of these efforts can generally be divided into two methods of prediction: 1) Statistical Method, and 2) Empirical Method. In the first method, earthquakes are predicted using statistics and probabilities, while the second method utilizes variety of precursors for earthquake prediction. The latter method is time consuming and more costly. However, the result of neither method has fully satisfied the man up to now. In this paper a new method entitled 'Kiana Method' is introduced for earthquake prediction. This method offers more accurate results yet lower cost comparing to other conventional methods. In Kiana method the electrical and magnetic precursors are measured in an area. Then, the time and the magnitude of an earthquake in the future is calculated using electrical, and in particular, electrical capacitors formulas. In this method, by daily measurement of electrical resistance in an area we make clear that the area is capable of earthquake occurrence in the future or not. If the result shows a positive sign, then the occurrence time and the magnitude can be estimated by the measured quantities. This paper explains the procedure and details of this prediction method. (authors)

  16. The HayWired earthquake scenario—Engineering implications

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2018-04-18

    The HayWired Earthquake Scenario—Engineering Implications is the second volume of U.S. Geological Survey (USGS) Scientific Investigations Report 2017–5013, which describes the HayWired scenario, developed by USGS and its partners. The scenario is a hypothetical yet scientifically realistic earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after a magnitude-7 earthquake (mainshock) on the Hayward Fault and its aftershocks.Analyses in this volume suggest that (1) 800 deaths and 16,000 nonfatal injuries result from shaking alone, plus property and direct business interruption losses of more than $82 billion from shaking, liquefaction, and landslides; (2) the building code is designed to protect lives, but even if all buildings in the region complied with current building codes, 0.4 percent could collapse, 5 percent could be unsafe to occupy, and 19 percent could have restricted use; (3) people expect, prefer, and would be willing to pay for greater resilience of buildings; (4) more than 22,000 people could require extrication from stalled elevators, and more than 2,400 people could require rescue from collapsed buildings; (5) the average east-bay resident could lose water service for 6 weeks, some for as long as 6 months; (6) older steel-frame high-rise office buildings and new reinforced-concrete residential buildings in downtown San Francisco and Oakland could be unusable for as long as 10 months; (7) about 450 large fires could result in a loss of residential and commercial building floor area equivalent to more than 52,000 single-family homes and cause property (building and content) losses approaching $30 billion; and (8) combining earthquake early warning (ShakeAlert) with “drop, cover, and hold on” actions could prevent as many as 1,500 nonfatal injuries out of 18,000 total estimated nonfatal injuries from shaking and liquefaction hazards.

  17. From Seismic Scenarios to Earthquake Risk Assessment: A Case Study for Iquique, Chile.

    Science.gov (United States)

    Aguirre, P.; Fortuno, C.; Martin, J. C. D. L. L.; Vasquez, J.

    2015-12-01

    Iquique is a strategic city and economic center in northern Chile, and is located in a large seismic gap where a megathrust earthquake and tsunami is expected. Although it was hit by a Mw 8.2 earthquake on April 1st 2014, which caused moderate damage, geophysical evidence still suggests that there is potential for a larger event, so a thorough risk assessment is key to understand the physical, social, and economic effects of such potential event, and devise appropriate mitigation plans. Hence, Iquique has been selected as a prime study case for the implementation of a risk assessment platform in Chile. Our study integrates research on three main elements of risk calculations: hazard evaluation, exposure model, and physical vulnerabilities. To characterize the hazard field, a set of synthetic seismic scenarios have been developed based on plate interlocking and the residual slip potential that results from subtracting the slip occurred during the April 1st 2014 rupture fault mechanism, obtained using InSAR+GPS inversion. Additional scenarios were developed based of the fault rupture model of the Maule 2010 Mw 8.8 earthquake and on the local plate locking models in northern Chile. These rupture models define a collection of possible realizations of earthquake geometries parameterized in terms of critical variables like slip magnitude, rise time, mean propagation velocity, directivity, and other, which are propagated to obtain a hazard map for Iquique (e.g. PGA, PGV, PDG). Furthermore, a large body of public and local data was used to construct a detailed exposure model for Iquique, including aggregated building count, demographics, essential facilities, and lifelines. This model together with the PGA maps for the April 1st 2014 earthquake are used to calibrate HAZUS outputs against observed damage, and adjust the fragility curves of physical systems according to more detailed analyses of typical Chilean building types and their structural properties, plus historical

  18. Sense of Community and Depressive Symptoms among Older Earthquake Survivors Following the 2008 Earthquake in Chengdu China

    Science.gov (United States)

    Li, Yawen; Sun, Fei; He, Xusong; Chan, Kin Sun

    2011-01-01

    This study examined the impact of an earthquake as well as the role of sense of community as a protective factor against depressive symptoms among older Chinese adults who survived an 8.0 magnitude earthquake in 2008. A household survey of a random sample was conducted 3 months after the earthquake and 298 older earthquake survivors participated…

  19. Precisely locating the Klamath Falls, Oregon, earthquakes

    Science.gov (United States)

    Qamar, A.; Meagher, K.L.

    1993-01-01

    The Klamath Falls earthquakes on September 20, 1993, were the largest earthquakes centered in Oregon in more than 50 yrs. Only the magnitude 5.75 Milton-Freewater earthquake in 1936, which was centered near the Oregon-Washington border and felt in an area of about 190,000 sq km, compares in size with the recent Klamath Falls earthquakes. Although the 1993 earthquakes surprised many local residents, geologists have long recognized that strong earthquakes may occur along potentially active faults that pass through the Klamath Falls area. These faults are geologically related to similar faults in Oregon, Idaho, and Nevada that occasionally spawn strong earthquakes

  20. The 2008 Wells, Nevada earthquake sequence: Source constraints using calibrated multiple event relocation and InSAR

    Science.gov (United States)

    Nealy, Jennifer; Benz, Harley M.; Hayes, Gavin; Berman, Eric; Barnhart, William

    2017-01-01

    The 2008 Wells, NV earthquake represents the largest domestic event in the conterminous U.S. outside of California since the October 1983 Borah Peak earthquake in southern Idaho. We present an improved catalog, magnitude complete to 1.6, of the foreshock-aftershock sequence, supplementing the current U.S. Geological Survey (USGS) Preliminary Determination of Epicenters (PDE) catalog with 1,928 well-located events. In order to create this catalog, both subspace and kurtosis detectors are used to obtain an initial set of earthquakes and associated locations. The latter are then calibrated through the implementation of the hypocentroidal decomposition method and relocated using the BayesLoc relocation technique. We additionally perform a finite fault slip analysis of the mainshock using InSAR observations. By combining the relocated sequence with the finite fault analysis, we show that the aftershocks occur primarily updip and along the southwestern edge of the zone of maximum slip. The aftershock locations illuminate areas of post-mainshock strain increase; aftershock depths, ranging from 5 to 16 km, are consistent with InSAR imaging, which shows that the Wells earthquake was a buried source with no observable near-surface offset.

  1. Earthquake loss estimation for a gas lifeline transportation system in Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Yamin, L.E.; Arambula, S.; Reyes, J.C. [Universidad de los Andes, Bogota (Colombia). Centro de Innovacion y Desarrollo Tecnologico; Belage, S.; Vega, A.; Gil, W. [TransGas de Occidente S.A., Bogota (Colombia)

    2004-07-01

    Methodologies are needed to estimate the seismic risk facing natural gas distribution systems in Colombia in order to establish insurance strategies, risk assessments and emergency plans. This study estimated the maximum probable losses associated with Colombia's 770 km long gas transportation system which stretches from Mariquita to Cali. The pipeline is vulnerable to seismic events, volcanic eruptions, extreme hydrological conditions, and their associated effects such as landslides, liquefaction and avalanches. A geographic information system (GIS) which includes seismic, volcanic, landslide and liquefaction hazards was used to estimate earthquake loss estimates for the natural gas distribution system. Elastic and inelastic finite element methods were used to evaluate the vulnerability of pipelines, bridges, underground crossings and valves. The results were incorporated into the GIS and were used to quantify the probable maximum losses for the system, the most critical associated event, the system's critical zones and the probable damage scenarios. The information was used to define insurance strategies, emergency and contingency plans. It was concluded that due to natural hazards, the natural gas distribution system is at moderate risk despite the low vulnerability of its components. Volcanic eruptions and large earthquakes could produce indirect phenomena such as landslides and liquefaction which could greatly influence the system and which would require adequate risk management. 14 refs., 1 tab., 8 figs.

  2. Turkish Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  3. Probabilistic approach to earthquake prediction.

    Directory of Open Access Journals (Sweden)

    G. D'Addezio

    2002-06-01

    Full Text Available The evaluation of any earthquake forecast hypothesis requires the application of rigorous statistical methods. It implies a univocal definition of the model characterising the concerned anomaly or precursor, so as it can be objectively recognised in any circumstance and by any observer.A valid forecast hypothesis is expected to maximise successes and minimise false alarms. The probability gain associated to a precursor is also a popular way to estimate the quality of the predictions based on such precursor. Some scientists make use of a statistical approach based on the computation of the likelihood of an observed realisation of seismic events, and on the comparison of the likelihood obtained under different hypotheses. This method can be extended to algorithms that allow the computation of the density distribution of the conditional probability of earthquake occurrence in space, time and magnitude. Whatever method is chosen for building up a new hypothesis, the final assessment of its validity should be carried out by a test on a new and independent set of observations. The implementation of this test could, however, be problematic for seismicity characterised by long-term recurrence intervals. Even using the historical record, that may span time windows extremely variable between a few centuries to a few millennia, we have a low probability to catch more than one or two events on the same fault. Extending the record of earthquakes of the past back in time up to several millennia, paleoseismology represents a great opportunity to study how earthquakes recur through time and thus provide innovative contributions to time-dependent seismic hazard assessment. Sets of paleoseimologically dated earthquakes have been established for some faults in the Mediterranean area: the Irpinia fault in Southern Italy, the Fucino fault in Central Italy, the El Asnam fault in Algeria and the Skinos fault in Central Greece. By using the age of the

  4. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  5. Global earthquake fatalities and population

    Science.gov (United States)

    Holzer, Thomas L.; Savage, James C.

    2013-01-01

    Modern global earthquake fatalities can be separated into two components: (1) fatalities from an approximately constant annual background rate that is independent of world population growth and (2) fatalities caused by earthquakes with large human death tolls, the frequency of which is dependent on world population. Earthquakes with death tolls greater than 100,000 (and 50,000) have increased with world population and obey a nonstationary Poisson distribution with rate proportional to population. We predict that the number of earthquakes with death tolls greater than 100,000 (50,000) will increase in the 21st century to 8.7±3.3 (20.5±4.3) from 4 (7) observed in the 20th century if world population reaches 10.1 billion in 2100. Combining fatalities caused by the background rate with fatalities caused by catastrophic earthquakes (>100,000 fatalities) indicates global fatalities in the 21st century will be 2.57±0.64 million if the average post-1900 death toll for catastrophic earthquakes (193,000) is assumed.

  6. How fault geometry controls earthquake magnitude

    Science.gov (United States)

    Bletery, Q.; Thomas, A.; Karlstrom, L.; Rempel, A. W.; Sladen, A.; De Barros, L.

    2016-12-01

    Recent large megathrust earthquakes, such as the Mw9.3 Sumatra-Andaman earthquake in 2004 and the Mw9.0 Tohoku-Oki earthquake in 2011, astonished the scientific community. The first event occurred in a relatively low-convergence-rate subduction zone where events of its size were unexpected. The second event involved 60 m of shallow slip in a region thought to be aseismicaly creeping and hence incapable of hosting very large magnitude earthquakes. These earthquakes highlight gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution. Here we show that gradients in dip angle exert a primary control on mega-earthquake occurrence. We calculate the curvature along the major subduction zones of the world and show that past mega-earthquakes occurred on flat (low-curvature) interfaces. A simplified analytic model demonstrates that shear strength heterogeneity increases with curvature. Stress loading on flat megathrusts is more homogeneous and hence more likely to be released simultaneously over large areas than on highly-curved faults. Therefore, the absence of asperities on large faults might counter-intuitively be a source of higher hazard.

  7. Field survey and damage assessment of the Mineral, Virginia, earthquake of August 23, 2011

    Science.gov (United States)

    Thomas, Helen R.; Turkle, Katharine

    2013-01-01

    The town of Mineral, Virginia (Va.), underwent an M=5.8 earthquake on August 23, 2011. A U.S. Geological Survey team was sent to visually inspect and document the damage in the cities of Richmond, Charlottesville, Louisa, and Mineral, Va. Our inspection concluded that the Modified Mercalli Intensity rating of moderate (V) to very strong (VII) is consistent with the expected and observed damage at these locations. Louisa County, Va., sustained the most extensive damage. We photographed fallen chimneys, collapsed walls, and cracked foundations. From visual inspection of the above-listed locations, this report catalogs the range and extent of damage from the August 23, 2011, earthquake for future reference and analysis.

  8. Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike

    2011-01-01

    Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.

  9. GEM - The Global Earthquake Model

    Science.gov (United States)

    Smolka, A.

    2009-04-01

    Over 500,000 people died in the last decade due to earthquakes and tsunamis, mostly in the developing world, where the risk is increasing due to rapid population growth. In many seismic regions, no hazard and risk models exist, and even where models do exist, they are intelligible only by experts, or available only for commercial purposes. The Global Earthquake Model (GEM) answers the need for an openly accessible risk management tool. GEM is an internationally sanctioned public private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) which will establish an authoritative standard for calculating and communicating earthquake hazard and risk, and will be designed to serve as the critical instrument to support decisions and actions that reduce earthquake losses worldwide. GEM will integrate developments on the forefront of scientific and engineering knowledge of earthquakes, at global, regional and local scale. The work is organized in three modules: hazard, risk, and socio-economic impact. The hazard module calculates probabilities of earthquake occurrence and resulting shaking at any given location. The risk module calculates fatalities, injuries, and damage based on expected shaking, building vulnerability, and the distribution of population and of exposed values and facilities. The socio-economic impact module delivers tools for making educated decisions to mitigate and manage risk. GEM will be a versatile online tool, with open source code and a map-based graphical interface. The underlying data will be open wherever possible, and its modular input and output will be adapted to multiple user groups: scientists and engineers, risk managers and decision makers in the public and private sectors, and the public-at- large. GEM will be the first global model for seismic risk assessment at a national and regional scale, and aims to achieve broad scientific participation and independence. Its development will occur in a

  10. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake, Alberta

    Science.gov (United States)

    Wang, Ruijia; Gu, Yu Jeffrey; Schultz, Ryan; Zhang, Miao; Kim, Ahyi

    2017-08-01

    On 2016 January 12, an intraplate earthquake with an initial reported local magnitude (ML) of 4.8 shook the town of Fox Creek, Alberta. While there were no reported damages, this earthquake was widely felt by the local residents and suspected to be induced by the nearby hydraulic-fracturing (HF) operations. In this study, we determine the earthquake source parameters using moment tensor inversions, and then detect and locate the associated swarm using a waveform cross-correlation based method. The broad-band seismic recordings from regional arrays suggest a moment magnitude (M) 4.1 for this event, which is the largest in Alberta in the past decade. Similar to other recent M ∼ 3 earthquakes near Fox Creek, the 2016 January 12 earthquake exhibits a dominant strike-slip (strike = 184°) mechanism with limited non-double-couple components (∼22 per cent). This resolved focal mechanism, which is also supported by forward modelling and P-wave first motion analysis, indicates an NE-SW oriented compressional axis consistent with the maximum compressive horizontal stress orientations delineated from borehole breakouts. Further detection analysis on industry-contributed recordings unveils 1108 smaller events within 3 km radius of the epicentre of the main event, showing a close spatial-temporal relation to a nearby HF well. The majority of the detected events are located above the basement, comparable to the injection depth (3.5 km) on the Duvernay shale Formation. The spatial distribution of this earthquake cluster further suggests that (1) the source of the sequence is an N-S-striking fault system and (2) these earthquakes were induced by an HF well close to but different from the well that triggered a previous (January 2015) earthquake swarm. Reactivation of pre-existing, N-S oriented faults analogous to the Pine Creek fault zone, which was reported by earlier studies of active source seismic and aeromagnetic data, are likely responsible for the occurrence of the

  11. Variation of radon flux along active fault zones in association with earthquake occurrence

    International Nuclear Information System (INIS)

    Papastefanou, C.

    2010-01-01

    Radon flux measurements were carried out at three radon stations along an active fault zone in the Langadas basin, Northern Greece by various techniques for earthquake prediction studies. Specially made devices with alpha track-etch detectors (ATDs) were installed by using LR-115, type II, non-strippable cellulose nitrate films (integrating method of measurements). Continuous monitoring of radon gas exhaling from the ground was also performed by using silicon diode detectors, Barasol and Clipperton type, in association with various probes and sensors including simultaneously registration of the meteorological parameters, such as precipitation height (rainfall events), temperature and barometric pressure. The obtained radon data were studied in parallel with the data of seismic events, such as the magnitude, M L of earthquakes, the epicentral distance, the hypocentral distance and the energy released during the earthquake event occurred at the fault zone during the period of measurements to find out any association between the rad on flux and the meteorological and seismological parameters. Seismic events with magnitude M L ≥ 4.0 appeared to be preceded by large precursory signals produced a well-defined 'anomaly' (peak) of radon flux prior to the event. In the results, the radon peaks in the obtained spectra appeared to be sharp and narrow. The rise time of a radon peak, that is the time period from the onset of a radon peak until the time of radon flux maximum is about a week, while the after time, that is the time interval between the time of radon flux maximum and the time of a seismic event ranges from about 3 weeks or more.

  12. Measuring the size of an earthquake

    Science.gov (United States)

    Spence, W.; Sipkin, S.A.; Choy, G.L.

    1989-01-01

    Earthquakes range broadly in size. A rock-burst in an Idaho silver mine may involve the fracture of 1 meter of rock; the 1965 Rat Island earthquake in the Aleutian arc involved a 650-kilometer length of the Earth's crust. Earthquakes can be even smaller and even larger. If an earthquake is felt or causes perceptible surface damage, then its intensity of shaking can be subjectively estimated. But many large earthquakes occur in oceanic areas or at great focal depths and are either simply not felt or their felt pattern does not really indicate their true size.

  13. Earthquakes-Rattling the Earth's Plumbing System

    Science.gov (United States)

    Sneed, Michelle; Galloway, Devin L.; Cunningham, William L.

    2003-01-01

    Hydrogeologic responses to earthquakes have been known for decades, and have occurred both close to, and thousands of miles from earthquake epicenters. Water wells have become turbid, dry or begun flowing, discharge of springs and ground water to streams has increased and new springs have formed, and well and surface-water quality have become degraded as a result of earthquakes. Earthquakes affect our Earth’s intricate plumbing system—whether you live near the notoriously active San Andreas Fault in California, or far from active faults in Florida, an earthquake near or far can affect you and the water resources you depend on.

  14. Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake

    Science.gov (United States)

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.; Di Alessandro, Carola; Boatwright, John; Tinsley, John C.; Sell, Russell W.; Rosenberg, Lewis I.

    2004-01-01

    the 2003 damage was caused by lateral spreading in two separate areas, one near Norswing Drive and the other near Juanita Avenue. The areas coincided with areas with the highest liquefaction potential found in Oceano. Areas with site amplification conditions similar to those in Oceano are particularly vulnerable to earthquakes. Site amplification may cause shaking from distant earthquakes, which normally would not cause damage, to increase locally to damaging levels. The vulnerability in Oceano is compounded by the widespread distribution of highly liquefiable soils that will reliquefy when ground shaking is amplified as it was during the San Simeon earthquake. The experience in Oceano can be expected to repeat because the region has many active faults capable of generating large earthquakes. In addition, liquefaction and lateral spreading will be more extensive for moderate-size earthquakes that are closer to Oceano than was the 2003 San Simeon earthquake. Site amplification and liquefaction can be mitigated. Shaking is typically mitigated in California by adopting and enforcing up-to-date building codes. Although not a guarantee of safety, application of these codes ensures that the best practice is used in construction. Building codes, however, do not always require the upgrading of older structures to new code requirements. Consequently, many older structures may not be as resistant to earthquake shaking as new ones. For older structures, retrofitting is required to bring them up to code. Seismic provisions in codes also generally do not apply to nonstructural elements such as drywall, heating systems, and shelving. Frequently, nonstructural damage dominates the earthquake loss. Mitigation of potential liquefaction in Oceano presently is voluntary for existing buildings, but required by San Luis Obispo County for new construction. Multiple mitigation procedures are available to individual property owners. These procedures typically involve either

  15. Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake

    Science.gov (United States)

    Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten

    2014-05-01

    In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.

  16. Sequence of deep-focus earthquakes beneath the Bonin Islands identified by the NIED nationwide dense seismic networks Hi-net and F-net

    Science.gov (United States)

    Takemura, Shunsuke; Saito, Tatsuhiko; Shiomi, Katsuhiko

    2017-03-01

    An M 6.8 ( Mw 6.5) deep-focus earthquake occurred beneath the Bonin Islands at 21:18 (JST) on June 23, 2015. Observed high-frequency (>1 Hz) seismograms across Japan, which contain several sets of P- and S-wave arrivals for the 10 min after the origin time, indicate that moderate-to-large earthquakes occurred sequentially around Japan. Snapshots of the seismic energy propagation illustrate that after one deep-focus earthquake occurred beneath the Sea of Japan, two deep-focus earthquakes occurred sequentially after the first ( Mw 6.5) event beneath the Bonin Islands in the next 4 min. The United States Geological Survey catalog includes three Bonin deep-focus earthquakes with similar hypocenter locations, but their estimated magnitudes are inconsistent with seismograms from across Japan. The maximum-amplitude patterns of the latter two earthquakes were similar to that of the first Bonin earthquake, which indicates similar locations and mechanisms. Furthermore, based on the ratios of the S-wave amplitudes to that of the first event, the magnitudes of the latter events are estimated as M 6.5 ± 0.02 and M 5.8 ± 0.02, respectively. Three magnitude-6-class earthquakes occurred sequentially within 4 min in the Pacific slab at 480 km depth, where complex heterogeneities exist within the slab.[Figure not available: see fulltext.

  17. Earthquake forewarning in the Cascadia region

    Science.gov (United States)

    Gomberg, Joan S.; Atwater, Brian F.; Beeler, Nicholas M.; Bodin, Paul; Davis, Earl; Frankel, Arthur; Hayes, Gavin P.; McConnell, Laura; Melbourne, Tim; Oppenheimer, David H.; Parrish, John G.; Roeloffs, Evelyn A.; Rogers, Gary D.; Sherrod, Brian; Vidale, John; Walsh, Timothy J.; Weaver, Craig S.; Whitmore, Paul M.

    2015-08-10

    This report, prepared for the National Earthquake Prediction Evaluation Council (NEPEC), is intended as a step toward improving communications about earthquake hazards between information providers and users who coordinate emergency-response activities in the Cascadia region of the Pacific Northwest. NEPEC charged a subcommittee of scientists with writing this report about forewarnings of increased probabilities of a damaging earthquake. We begin by clarifying some terminology; a “prediction” refers to a deterministic statement that a particular future earthquake will or will not occur. In contrast to the 0- or 100-percent likelihood of a deterministic prediction, a “forecast” describes the probability of an earthquake occurring, which may range from >0 to processes or conditions, which may include Increased rates of M>4 earthquakes on the plate interface north of the Mendocino region 

  18. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  19. Seismomagnetic effects from the long-awaited 28 September 2004 M 6.0 parkfield earthquake

    Science.gov (United States)

    Johnston, M.J.S.; Sasai, Y.; Egbert, G.D.; Mueller, R.J.

    2006-01-01

    Precise measurements of local magnetic fields have been obtained with a differentially connected array of seven synchronized proton magnetometers located along 60 km of the locked-to-creeping transition region of the San Andreas fault at Parkfield, California, since 1976. The M 6.0 Parkfield earthquake on 28 September 2004, occurred within this array and generated coseismic magnetic field changes of between 0.2 and 0.5 nT at five sites in the network. No preseismic magnetic field changes exceeding background noise levels are apparent in the magnetic data during the month, week, and days before the earthquake (or expected in light of the absence of measurable precursive deformation, seismicity, or pore pressure changes). Observations of electric and magnetic fields from 0.01 to 20 Hz are also made at one site near the end of the earthquake rupture and corrected for common-mode signals from the ionosphere/magnetosphere using a second site some 115 km to the northwest along the fault. These magnetic data show no indications of unusual noise before the earthquake in the ULF band (0.01-20 Hz) as suggested may have preceded the 1989 ML 7.1 Loma Prieta earthquake. Nor do we see electric field changes similar to those suggested to occur before earthquakes of this magnitude from data in Greece. Uniform and variable slip piezomagnetic models of the earthquake, derived from strain, displacement, and seismic data, generate magnetic field perturbations that are consistent with those observed by the magnetometer array. A higher rate of longer-term magnetic field change, consistent with increased loading in the region, is apparent since 1993. This accompanied an increased rate of secular shear strain observed on a two-color EDM network and a small network of borehole tensor strainmeters and increased seismicity dominated by three M 4.5-5 earthquakes roughly a year apart in 1992, 1993, and 1994. Models incorporating all of these data indicate increased slip at depth in the region

  20. Earthquakes; May-June 1982

    Science.gov (United States)

    Person, W.J.

    1982-01-01

    There were four major earthquakes (7.0-7.9) during this reporting period: two struck in Mexico, one in El Salvador, and one in teh Kuril Islands. Mexico, El Salvador, and China experienced fatalities from earthquakes.

  1. Optical flare of HDE 245770-A0535+26 during the expected X-ray maximum

    International Nuclear Information System (INIS)

    Maslennikov, K.L.

    1986-01-01

    UBV-photometry of the optical component of the X-ray binary HD 245770-A0535+26 was carried out in April 12-18, 1985. The brightness increase (by 0sup(m).25 in the U band) was observed four days before an X-ray maximum of A0535+26 predicted from the 111-day period

  2. Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey Part3

    Science.gov (United States)

    Kaneda, Yoshiyuki; Ozener, Haluk; Meral Ozel, Nurcan; Kalafat, Dogan; Ozgur Citak, Seckin; Takahashi, Narumi; Hori, Takane; Hori, Muneo; Sakamoto, Mayumi; Pinar, Ali; Oguz Ozel, Asim; Cevdet Yalciner, Ahmet; Tanircan, Gulum; Demirtas, Ahmet

    2017-04-01

    There have been many destructive earthquakes and tsunamis in the world.The recent events are, 2011 East Japan Earthquake/Tsunami in Japan, 2015 Nepal Earthquake and 2016 Kumamoto Earthquake in Japan, and so on. And very recently a destructive earthquake occurred in Central Italy. In Turkey, the 1999 Izmit Earthquake as the destructive earthquake occurred along the North Anatolian Fault (NAF). The NAF crosses the Sea of Marmara and the only "seismic gap" remains beneath the Sea of Marmara. Istanbul with high population similar to Tokyo in Japan, is located around the Sea of Marmara where fatal damages expected to be generated as compound damages including Tsunami and liquefaction, when the next destructive Marmara Earthquake occurs. The seismic risk of Istanbul seems to be under the similar risk condition as Tokyo in case of Nankai Trough earthquake and metropolitan earthquake. It was considered that Japanese and Turkish researchers can share their own experiences during past damaging earthquakes and can prepare for the future large earthquakes in cooperation with each other. Therefore, in 2013 the two countries, Japan and Turkey made an agreement to start a multidisciplinary research project, MarDiM SATREPS. The Project runs researches to aim to raise the preparedness for possible large-scale earthquake and Tsunami disasters in Marmara Region and it has four research groups with the following goals. 1) The first one is Marmara Earthquake Source region observational research group. This group has 4 sub-groups such as Seismicity, Geodesy, Electromagnetics and Trench analyses. Preliminary results such as seismicity and crustal deformation on the sea floor in Sea of Marmara have already achieved. 2) The second group focuses on scenario researches of earthquake occurrence along the North Anatolia Fault and precise tsunami simulation in the Marmara region. Research results from this group are to be the model of earthquake occurrence scenario in Sea of Marmara and the

  3. Radon observation for earthquake prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wakita, Hiroshi [Tokyo Univ. (Japan)

    1998-12-31

    Systematic observation of groundwater radon for the purpose of earthquake prediction began in Japan in late 1973. Continuous observations are conducted at fixed stations using deep wells and springs. During the observation period, significant precursory changes including the 1978 Izu-Oshima-kinkai (M7.0) earthquake as well as numerous coseismic changes were observed. At the time of the 1995 Kobe (M7.2) earthquake, significant changes in chemical components, including radon dissolved in groundwater, were observed near the epicentral region. Precursory changes are presumably caused by permeability changes due to micro-fracturing in basement rock or migration of water from different sources during the preparation stage of earthquakes. Coseismic changes may be caused by seismic shaking and by changes in regional stress. Significant drops of radon concentration in groundwater have been observed after earthquakes at the KSM site. The occurrence of such drops appears to be time-dependent, and possibly reflects changes in the regional stress state of the observation area. The absence of radon drops seems to be correlated with periods of reduced regional seismic activity. Experience accumulated over the two past decades allows us to reach some conclusions: 1) changes in groundwater radon do occur prior to large earthquakes; 2) some sites are particularly sensitive to earthquake occurrence; and 3) the sensitivity changes over time. (author)

  4. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  5. Earthquake source scaling and self-similarity estimation from stacking P and S spectra

    Science.gov (United States)

    Prieto, GermáN. A.; Shearer, Peter M.; Vernon, Frank L.; Kilb, Debi

    2004-08-01

    We study the scaling relationships of source parameters and the self-similarity of earthquake spectra by analyzing a cluster of over 400 small earthquakes (ML = 0.5 to 3.4) recorded by the Anza seismic network in southern California. We compute P, S, and preevent noise spectra from each seismogram using a multitaper technique and approximate source and receiver terms by iteratively stacking the spectra. To estimate scaling relationships, we average the spectra in size bins based on their relative moment. We correct for attenuation by using the smallest moment bin as an empirical Green's function (EGF) for the stacked spectra in the larger moment bins. The shapes of the log spectra agree within their estimated uncertainties after shifting along the ω-3 line expected for self-similarity of the source spectra. We also estimate corner frequencies and radiated energy from the relative source spectra using a simple source model. The ratio between radiated seismic energy and seismic moment (proportional to apparent stress) is nearly constant with increasing moment over the magnitude range of our EGF-corrected data (ML = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of moment, as expected from the observed self-similarity in the spectra. The ratio between P and S corner frequencies is observed to be 1.6 ± 0.2. We obtain values for absolute moment and energy by calibrating our results to local magnitudes for these earthquakes. This yields a S to P energy ratio of 9 ± 1.5 and a value of apparent stress of about 1 MPa.

  6. Numerical simulation of multiple-physical fields coupling for thermal anomalies before earthquakes: A case study of the 2008 Wenchuan Ms8.0 earthquake in southwest China

    Science.gov (United States)

    Deng, Z.

    2017-12-01

    It has become a highly focused issue that thermal anomalies appear before major earthquakes. There are various hypotheses about the mechanism of thermal anomalies. Because of lacking of enough evidences, the mechanism is still require to be further researched. Gestation and occurrence of a major earthquake is related with the interaction of multi-physical fields. The underground fluid surging out the surface is very likely to be the reason for the thermal anomaly. This study tries to answer some question, such as how the geothermal energy transfer to the surface, and how the multiple-physical fields interacted. The 2008 Wenchuan Ms8.0 earthquake, is one of the largest evens in the last decade in China mainland. Remote sensing studies indicate that distinguishable thermal anomalies occurred several days before the earthquake. The heat anomaly value is more than 3 times the average in normal time and distributes along the Longmen Shan fault zone. Based on geological and geophysical data, 2D dynamic model of coupled stress, seepage and thermal fields (HTM model) is constructed. Then using the COMSOL multi-physics filed software, this work tries to reveal the generation process and distribution patterns of thermal anomalies prior to thrust-type major earthquakes. The simulation get the results: (1)Before the micro rupture, with the increase of compression, the heat current flows to the fault in the footwall on the whole, while in the hanging wall of the fault, particularly near the ground surface, the heat flow upward. In the fault zone, heat flow upward along the fracture surface, heat flux in the fracture zone is slightly larger than the wall rock;, but the value is all very small. (2)After the occurrence of the micro fracture, the heat flow rapidly collects to the faults. In the fault zones, the heat flow accelerates up along the fracture surfaces, the heat flux increases suddenly, and the vertical heat flux reaches to the maximum. The heat flux in the 3 fracture

  7. InSAR and GPS derived coseismic deformation and fault model of the 2017 Ms7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block

    Science.gov (United States)

    Zhao, Dezheng; Qu, Chunyan; Shan, Xinjian; Gong, Wenyu; Zhang, Yingfeng; Zhang, Guohong

    2018-02-01

    On 8 August 2017, a Ms7.0 earthquake stroke the city of Jiuzhaigou, Sichuan, China. The Jiuzhaigou earthquake occurred on a buried fault in the vicinity of three well-known active faults and this event offers a unique opportunity to study tectonic structures in the epicentral region and stress transferring. Here we present coseismic displacement field maps for this earthquake using descending and ascending Sentinel-1A Interferometric Synthetic Aperture Radar (InSAR) data. Deformation covered an area of approximately 50 × 50 km, with a maximum line-of-sight (LOS) displacement of 22 cm in ascending and 14 cm in descending observations on the west side of the source fault. Based on InSAR and Global Positioning System (GPS) measurements, both separately and jointly, we constructed a one-segment model to invert the coseismic slip distribution and dip angle of this event. Our final fault slip model suggests that slip was concentrated at an upper depth of 15 km; there was a maximum slip of 1.3 m and the rupture was dominated by a left-lateral strike-slip motion. The inverted geodetic moment was approximately 6.75 × 1018 Nm, corresponding to a moment magnitude of Mw6.5, consistent with seismological results. The calculated static Coulomb stress changes indicate that most aftershocks occurred in stress increasing zones caused by the mainshock rupture; the Jiuzhaigou earthquake has brought the western part of the Tazang fault 0.1-0.4 MPa closer to failure, indicating an increasing seismic hazard in this region. The Coulomb stress changes caused by the 2008 Mw7.8 Wenchuan earthquake suggest that stress loading from this event acted as a trigger for the Jiuzhaigou earthquake.

  8. 33 CFR 222.4 - Reporting earthquake effects.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reporting earthquake effects. 222..., DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.4 Reporting earthquake effects. (a) Purpose. This... significant earthquakes. It primarily concerns damage surveys following the occurrences of earthquakes. (b...

  9. Earthquakes - a danger to deep-lying repositories?

    International Nuclear Information System (INIS)

    2012-03-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed

  10. Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

    Science.gov (United States)

    Williams, Jack G.; Rosser, Nick J.; Kincey, Mark E.; Benjamin, Jessica; Oven, Katie J.; Densmore, Alexander L.; Milledge, David G.; Robinson, Tom R.; Jordan, Colm A.; Dijkstra, Tom A.

    2018-01-01

    Landslides triggered by large earthquakes in mountainous regions contribute significantly to overall earthquake losses and pose a major secondary hazard that can persist for months or years. While scientific investigations of coseismic landsliding are increasingly common, there is no protocol for rapid (hours-to-days) humanitarian-facing landslide assessment and no published recognition of what is possible and what is useful to compile immediately after the event. Drawing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated. We find that, at present, many forms of landslide assessment are too slow to generate relative to the speed of a humanitarian response, despite increasingly rapid access to high-quality imagery. Importantly, the value of information on landslides evolves rapidly as a disaster response develops, so identifying the purpose, timescales, and end users of a post-earthquake landslide assessment is essential to inform the approach taken. It is clear that discussions are needed on the form and timing of landslide assessments, and how best to present and share this information, before rather than after an earthquake strikes. In this paper, we share the lessons learned from the Gorkha earthquake, with the aim of informing the approach taken by scientists to understand the evolving landslide hazard in future events and the expectations of the humanitarian community involved in disaster response.

  11. Evidence for Ancient Mesoamerican Earthquakes

    Science.gov (United States)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  12. Earthquake Early Warning ShakeAlert System: Testing and certification platform

    Science.gov (United States)

    Cochran, Elizabeth S.; Kohler, Monica D.; Given, Douglas; Guiwits, Stephen; Andrews, Jennifer; Meier, Men-Andrin; Ahmad, Mohammad; Henson, Ivan; Hartog, Renate; Smith, Deborah

    2017-01-01

    been designed with flexibility to accommodate significant changes in development of new or modified system code. It is expected that the TCP will continue to evolve along with the ShakeAlert system, and the framework we describe here provides one example of how earthquake early warning systems can be evaluated.

  13. Comparison of hypocentre parameters of earthquakes in the Aegean region

    Science.gov (United States)

    Özel, Nurcan M.; Shapira, Avi; Harris, James

    2007-06-01

    The Aegean Sea is one of the more seismically active areas in the Euro-Mediterranean region. The seismic activity in the Aegean Sea is monitored by a number of local agencies that contribute their data to the International Seismological Centre (ISC). Consequently, the ISC Bulletin may serve as a reliable reference for assessing the capabilities of local agencies to monitor moderate and low magnitude earthquakes. We have compared bulletins of the Kandilli Observatory and Earthquake Research Institute (KOERI) and the ISC, for the period 1976-2003 that comprises the most complete data sets for both KOERI and ISC. The selected study area is the East Aegean Sea and West Turkey, bounded by latitude 35-41°N and by longitude 24-29°E. The total number of events known to occur in this area, during 1976-2003 is about 41,638. Seventy-two percent of those earthquakes were located by ISC and 75% were located by KOERI. As expected, epicentre location discrepancy between ISC and KOERI solutions are larger as we move away from the KOERI seismic network. Out of the 22,066 earthquakes located by both ISC and KOERI, only 4% show a difference of 50 km or more. About 140 earthquakes show a discrepancy of more than 100 km. Focal Depth determinations differ mainly in the subduction zone along the Hellenic arc. Less than 2% of the events differ in their focal depth by more than 25 km. Yet, the location solutions of about 30 events differ by more than 100 km. Almost a quarter of the events listed in the ISC Bulletin are missed by KOERI, most of them occurring off the coast of Turkey, in the East Aegean. Based on the frequency-magnitude distributions, the KOERI Bulletin is complete for earthquakes with duration magnitudes Md > 2.7 (both located and assigned magnitudes) where as the threshold magnitude for events with location and magnitude determinations by ISC is mb > 4.0. KOERI magnitudes seem to be poorly correlated with ISC magnitudes suggesting relatively high uncertainty in the

  14. Earthquake data base for Romania

    International Nuclear Information System (INIS)

    Rizescu, M.; Ghica, D.; Grecu, B.; Popa, M.; Borcia, I. S.

    2002-01-01

    A new earthquake database for Romania is being constructed, comprising complete earthquake information and being up-to-date, user-friendly and rapidly accessible. One main component of the database consists from the catalog of earthquakes occurred in Romania since 984 up to present. The catalog contains information related to locations and other source parameters, when available, and links to waveforms of important earthquakes. The other very important component is the 'strong motion database', developed for strong intermediate-depth Vrancea earthquakes where instrumental data were recorded. Different parameters to characterize strong motion properties as: effective peak acceleration, effective peak velocity, corner periods T c and T d , global response spectrum based intensities were computed and recorded into this database. Also, information on the recording seismic stations as: maps giving their positioning, photographs of the instruments and site conditions ('free-field or on buildings) are included. By the huge volume and quality of gathered data, also by its friendly user interface, the Romania earthquake data base provides a very useful tool for geosciences and civil engineering in their effort towards reducing seismic risk in Romania. (authors)

  15. Mapping Tectonic Stress Using Earthquakes

    International Nuclear Information System (INIS)

    Arnold, Richard; Townend, John; Vignaux, Tony

    2005-01-01

    An earthquakes occurs when the forces acting on a fault overcome its intrinsic strength and cause it to slip abruptly. Understanding more specifically why earthquakes occur at particular locations and times is complicated because in many cases we do not know what these forces actually are, or indeed what processes ultimately trigger slip. The goal of this study is to develop, test, and implement a Bayesian method of reliably determining tectonic stresses using the most abundant stress gauges available - earthquakes themselves.Existing algorithms produce reasonable estimates of the principal stress directions, but yield unreliable error bounds as a consequence of the generally weak constraint on stress imposed by any single earthquake, observational errors, and an unavoidable ambiguity between the fault normal and the slip vector.A statistical treatment of the problem can take into account observational errors, combine data from multiple earthquakes in a consistent manner, and provide realistic error bounds on the estimated principal stress directions.We have developed a realistic physical framework for modelling multiple earthquakes and show how the strong physical and geometrical constraints present in this problem allow inference to be made about the orientation of the principal axes of stress in the earth's crust

  16. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  17. Estimation method for first excursion probability of secondary system with impact and friction using maximum response

    International Nuclear Information System (INIS)

    Shigeru Aoki

    2005-01-01

    The secondary system such as pipings, tanks and other mechanical equipment is installed in the primary system such as building. The important secondary systems should be designed to maintain their function even if they are subjected to destructive earthquake excitations. The secondary system has many nonlinear characteristics. Impact and friction characteristic, which are observed in mechanical supports and joints, are common nonlinear characteristics. As impact damper and friction damper, impact and friction characteristic are used for reduction of seismic response. In this paper, analytical methods of the first excursion probability of the secondary system with impact and friction, subjected to earthquake excitation are proposed. By using the methods, the effects of impact force, gap size and friction force on the first excursion probability are examined. When the tolerance level is normalized by the maximum response of the secondary system without impact or friction characteristics, variation of the first excursion probability is very small for various values of the natural period. In order to examine the effectiveness of the proposed method, the obtained results are compared with those obtained by the simulation method. Some estimation methods for the maximum response of the secondary system with nonlinear characteristics have been developed. (author)

  18. Semi-automated landform classification for hazard mapping of soil liquefaction by earthquake

    Science.gov (United States)

    Nakano, Takayuki

    2018-05-01

    Soil liquefaction damages were caused by huge earthquake in Japan, and the similar damages are concerned in near future huge earthquake. On the other hand, a preparation of soil liquefaction risk map (soil liquefaction hazard map) is impeded by the difficulty of evaluation of soil liquefaction risk. Generally, relative soil liquefaction risk should be able to be evaluated from landform classification data by using experimental rule based on the relationship between extent of soil liquefaction damage and landform classification items associated with past earthquake. Therefore, I rearranged the relationship between landform classification items and soil liquefaction risk intelligibly in order to enable the evaluation of soil liquefaction risk based on landform classification data appropriately and efficiently. And I developed a new method of generating landform classification data of 50-m grid size from existing landform classification data of 250-m grid size by using digital elevation model (DEM) data and multi-band satellite image data in order to evaluate soil liquefaction risk in detail spatially. It is expected that the products of this study contribute to efficient producing of soil liquefaction hazard map by local government.

  19. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    Science.gov (United States)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  20. The Accidental Spokesperson - Science Communication during the 2010-2011 Christchurch, NZ Earthquake Sequence

    Science.gov (United States)

    Furlong, K. P.

    2015-12-01

    Beginning September 4, 2010, with a Mw 7.1 earthquake, a multi-year earthquake sequence changed life in Canterbury NZ. Information communicated by a core group of university-based earthquake scientists provided accessible information to the general public, the press, and policy makers. Although at the start of this prolonged sequence, no one anticipated its longevity nor its impact, this initial (and largest) event did catalyze a demand from the public and policy makers for information and led to some important lessons in how to communicate science to a broad audience as an event unfolds and when it is personally important to the general public. Earthquakes are neither new nor rare to New Zealand, but the Christchurch area was seen as likely suffering only from the far-field effects of a major earthquake on the Alpine Fault or Marlborough fault system. Policy makers had planned and expected that another city such as Wellington would be where they would need to respond. As a visiting faculty at the University of Canterbury, with expertise in earthquake science, I was entrained and engaged in the response - both the scientific and communication aspects. It soon became clear that formal press releases and statements from government ministries and agencies did little to address the questions and uncertainties that the public, the press, and even the policy makers had. Rather, a series of public lectures, broad ranging discussions with the media (both print and radio/television), and OpEd pieces provided by this small group of earthquake focused faculty at the University of Canterbury provided the background information, best estimates of what could occur in the future, and why Earth was acting as it was. This filled a critical gap in science information going to the public, and helped build a level of trust in the public that became critically needed after the situation escalated with subsequent damaging events through early-mid 2011, and onward.