Modeling helicity dissipation-rate equation
Yokoi, Nobumitsu
2016-01-01
Transport equation of the dissipation rate of turbulent helicity is derived with the aid of a statistical analytical closure theory of inhomogeneous turbulence. It is shown that an assumption on the helicity scaling with an algebraic relationship between the helicity and its dissipation rate leads to the transport equation of the turbulent helicity dissipation rate without resorting to a heuristic modeling.
Efficiency at Maximum Power of Low-Dissipation Carnot Engines
Esposito, Massimiliano; Kawai, Ryoichi; Lindenberg, Katja; van den Broeck, Christian
2010-10-01
We study the efficiency at maximum power, η*, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For engines reaching Carnot efficiency ηC=1-Tc/Th in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that η* is bounded from above by ηC/(2-ηC) and from below by ηC/2. These bounds are reached when the ratio of the dissipation during the cold and hot isothermal phases tend, respectively, to zero or infinity. For symmetric dissipation (ratio one) the Curzon-Ahlborn efficiency ηCA=1-Tc/Th is recovered.
Efficiency at maximum power of low-dissipation Carnot engines.
Esposito, Massimiliano; Kawai, Ryoichi; Lindenberg, Katja; Van den Broeck, Christian
2010-10-01
We study the efficiency at maximum power, η*, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For engines reaching Carnot efficiency ηC=1-Tc/Th in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that η* is bounded from above by ηC/(2-ηC) and from below by ηC/2. These bounds are reached when the ratio of the dissipation during the cold and hot isothermal phases tend, respectively, to zero or infinity. For symmetric dissipation (ratio one) the Curzon-Ahlborn efficiency ηCA=1-√Tc/Th] is recovered.
Scalar dissipation rate statistics in turbulent swirling jets
Stetsyuk, V.; Soulopoulos, N.; Hardalupas, Y.; Taylor, A. M. K. P.
2016-07-01
The scalar dissipation rate statistics were measured in an isothermal flow formed by discharging a central jet in an annular stream of swirling air flow. This is a typical geometry used in swirl-stabilised burners, where the central jet is the fuel. The flow Reynolds number was 29 000, based on the area-averaged velocity of 8.46 m/s at the exit and the diameter of 50.8 mm. The scalar dissipation rate and its statistics were computed from two-dimensional imaging of the mixture fraction fields obtained with planar laser induced fluorescence of acetone. Three swirl numbers, S, of 0.3, 0.58, and 1.07 of the annular swirling stream were considered. The influence of the swirl number on scalar mixing, unconditional, and conditional scalar dissipation rate statistics were quantified. A procedure, based on a Wiener filter approach, was used to de-noise the raw mixture fraction images. The filtering errors on the scalar dissipation rate measurements were up to 15%, depending on downstream positions from the burner exit. The maximum of instantaneous scalar dissipation rate was found to be up to 35 s-1, while the mean dissipation rate was 10 times smaller. The probability density functions of the logarithm of the scalar dissipation rate fluctuations were found to be slightly negatively skewed at low swirl numbers and almost symmetrical when the swirl number increased. The assumption of statistical independence between the scalar and its dissipation rate was valid for higher swirl numbers at locations with low scalar fluctuations and less valid for low swirl numbers. The deviations from the assumption of statistical independence were quantified. The conditional mean of the scalar dissipation rate, the standard deviation of the scalar dissipation rate fluctuations, the weighted probability of occurrence of the mean conditional scalar dissipation rate, and the conditional probability are reported.
GA-BASED MAXIMUM POWER DISSIPATION ESTIMATION OF VLSI SEQUENTIAL CIRCUITS OF ARBITRARY DELAY MODELS
Lu Junming; Lin Zhenghui
2002-01-01
In this paper, the glitching activity and process variations in the maximum power dissipation estimation of CMOS circuits are introduced. Given a circuit and the gate library,a new Genetic Algorithm (GA)-based technique is developed to determine the maximum power dissipation from a statistical point of view. The simulation on ISCAS-89 benchmarks shows that the ratio of the maximum power dissipation with glitching activity over the maximum power under zero-delay model ranges from 1.18 to 4.02. Compared with the traditional Monte Carlo-based technique, the new approach presented in this paper is more effective.
GA—BASED MAXIMUM POWER DISSIPATION ESTIMATION OF VLSI SEQUENTIAL CIRCUITS OF ARBITRARY DELAY MODELS
LuJunming; LinZhenghui
2002-01-01
In this paper,the glitching activity and process variations in the maximum power dissipation estimation of CMOS circulits are introduced.Given a circuit and the gate library,a new Genetic Algorithm (GA)-based technique is developed to determine the maximum power dissipation from a statistical point of view.The simulation on ISCAS-89 benchmarks shows that the ratio of the maximum power dissipation with glitching activity over the maximum power under zero-delay model ranges from 1.18 to 4.02.Compared with the traditional Monte Carlo-based technique,the new approach presented in this paper is more effective.
Maximum efficiency of low-dissipation heat engines at arbitrary power
Holubec, Viktor; Ryabov, Artem
2016-07-01
We investigate maximum efficiency at a given power for low-dissipation heat engines. Close to maximum power, the maximum gain in efficiency scales as a square root of relative loss in power and this scaling is universal for a broad class of systems. For low-dissipation engines, we calculate the maximum gain in efficiency for an arbitrary fixed power. We show that engines working close to maximum power can operate at considerably larger efficiency compared to the efficiency at maximum power. Furthermore, we introduce universal bounds on maximum efficiency at a given power for low-dissipation heat engines. These bounds represent direct generalization of the bounds on efficiency at maximum power obtained by Esposito et al (2010 Phys. Rev. Lett. 105 150603). We derive the bounds analytically in the regime close to maximum power and for small power values. For the intermediate regime we present strong numerical evidence for the validity of the bounds.
Moroz, Adam
2009-06-11
The maximum energy dissipation principle is employed to nonlinear chemical thermodynamics in terms of distance variable (generalized displacement) from the global equilibrium, applying the optimal control interpretation to develop a variational formulation. The cost-like functional was chosen to support the suggestion that such a formulation corresponds to the maximum energy dissipation principle. Using this approach, the variational framework was proposed for a nonlinear chemical thermodynamics, including a general cooperative kinetics model. The formulation is in good agreement with standard linear nonequilibrium chemical thermodynamics.
Wang, Jianhui; He, Jizhou
2012-11-01
We investigate the efficiency at the maximum power output (EMP) of an irreversible Carnot engine performing finite-time cycles between two reservoirs at constant temperatures T(h) and T(c) (Carnot efficiency, whether the internally dissipative friction is considered or not. When dissipations of two "isothermal" and two "adiabatic" processes are symmetric, respectively, and the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation, the Curzon-Ahlborn (CA) efficiency η(CA) = 1-sqrt[T(c)/T(h)] is derived.
Moroz, Adam
2008-05-01
In this work we revise the applicability of the optimal control and variational approach to the maximum energy dissipation (MED) principle in non-equilibrium thermodynamics. The optimal control analogies for the kinetical and potential parts of thermodynamic Lagrangian (in the form of a sum of the positively defined thermodynamic potential and positively defined dissipative function) have been considered. An interpretation of thermodynamic momenta is discussed with respect to standard optimal control applications, which employ dynamic constraints. Also included is interpretation in terms of the least action principle.
Constraining Tidal Dissipation in Stars and Destruction Rates of Exoplanets
Jackson, Brian; Penev, K.; Barnes, R.
2011-01-01
Several recent studies have shown that the orbits of most transiting extra-solar planets, with periods of order a few days, are not stable against tidal decay. If the host star rotates slowly enough, tidal dissipation within the star causes the planet to spiral in over many millions or billions of years. Because the rate of tidal decay increases rapidly as orbital semi-major axis drops, planets that start out very close to their host stars are quickly destroyed, while planets farther out require more time. We calculate the times left for known transiting exoplanets as a function of the rate of tidal dissipation within the host star. For a population of such planets, we expect to observe a minority of planets near the end of their lives since those planets will only survive for a short time more. For an assumed tidal dissipation rate, if we find instead that a majority of transiting planets have only a small fraction of the lifetimes left before destruction, we can conclude the assumed tidal dissipation rate is too large. Thus, we can estimate the rate of tidal dissipation within planet-hosting stars by considering the distributions of times left of transiting planets for a range of assumed dissipation rates. We must also account for important selection and observational biases. Our results based on such an analysis suggest stellar dissipation rates corresponding to tidal Q-values of 106 and larger are consistent with observations, while values of 105 and smaller are not. Given these constraints, we estimate the rates of tidal destruction of transiting exoplanets.
Protein crystallization in stirred systems--scale-up via the maximum local energy dissipation.
Smejkal, Benjamin; Helk, Bernhard; Rondeau, Jean-Michel; Anton, Sabine; Wilke, Angelika; Scheyerer, Peter; Fries, Jacqueline; Hekmat, Dariusch; Weuster-Botz, Dirk
2013-07-01
Macromolecular bioproducts like therapeutic proteins have usually been crystallized with µL-scale vapor diffusion experiments for structure determination by X-ray diffraction. Little systematic know-how exists for technical-scale protein crystallization in stirred vessels. In this study, the Fab-fragment of the therapeutic antibody Canakinumab was successfully crystallized in a stirred-tank reactor on a 6 mL-scale. A four times faster onset of crystallization of the Fab-fragment was observed compared to the non-agitated 10 µL-scale. Further studies on a liter-scale with lysozyme confirmed this effect. A 10 times faster onset of crystallization was observed in this case at an optimum stirrer speed. Commonly suggested scale-up criteria (i.e., minimum stirrer speed to keep the protein crystals in suspension or constant impeller tip speed) were shown not to be successful. Therefore, the criterion of constant maximum local energy dissipation was applied for scale-up of the stirred crystallization process for the first time. The maximum local energy dissipation was estimated by measuring the drop size distribution of an oil/surfactant/water emulsion in stirred-tank reactors on a 6 mL-, 100 mL-, and 1 L-scale. A comparable crystallization behavior was achieved in all stirred-tank reactors when the maximum local energy dissipation was kept constant for scale-up. A maximum local energy dissipation of 2.2 W kg(-1) was identified to be the optimum for lysozyme crystallization at all scales under study.
Efficiency at and near maximum power of low-dissipation heat engines.
Holubec, Viktor; Ryabov, Artem
2015-11-01
A universality in optimization of trade-off between power and efficiency for low-dissipation Carnot cycles is presented. It is shown that any trade-off measure expressible in terms of efficiency and the ratio of power to its maximum value can be optimized independently of most details of the dynamics and of the coupling to thermal reservoirs. The result is demonstrated on two specific trade-off measures. The first one is designed for finding optimal efficiency for a given output power and clearly reveals diseconomy of engines working at maximum power. As the second example we derive universal lower and upper bounds on the efficiency at maximum trade-off given by the product of power and efficiency. The results are illustrated on a model of a diffusion-based heat engine. Such engines operate in the low-dissipation regime given that the used driving minimizes the work dissipated during the isothermal branches. The peculiarities of the corresponding optimization procedure are reviewed and thoroughly discussed.
Efficiency at and near maximum power of low-dissipation heat engines
Holubec, Viktor; Ryabov, Artem
2015-11-01
A universality in optimization of trade-off between power and efficiency for low-dissipation Carnot cycles is presented. It is shown that any trade-off measure expressible in terms of efficiency and the ratio of power to its maximum value can be optimized independently of most details of the dynamics and of the coupling to thermal reservoirs. The result is demonstrated on two specific trade-off measures. The first one is designed for finding optimal efficiency for a given output power and clearly reveals diseconomy of engines working at maximum power. As the second example we derive universal lower and upper bounds on the efficiency at maximum trade-off given by the product of power and efficiency. The results are illustrated on a model of a diffusion-based heat engine. Such engines operate in the low-dissipation regime given that the used driving minimizes the work dissipated during the isothermal branches. The peculiarities of the corresponding optimization procedure are reviewed and thoroughly discussed.
Evaluation of turbulent dissipation rate retrievals from Doppler cloud radar
M. D. Shupe
2012-01-01
Full Text Available Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4–6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tethered-balloon and 15-m tower sonic measurements made at spatial distances of a few hundred meters. Moreover, radar retrievals are able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds.
Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar
M. D. Shupe
2012-06-01
Full Text Available Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4–6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tethered-balloon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2–3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds.
The maximum rate of mammal evolution
Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.
2012-03-01
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
The maximum rate of mammal evolution
Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.
2012-01-01
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous–Paleogene (K–Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. PMID:22308461
The maximum rate of mammal evolution.
Evans, Alistair R; Jones, David; Boyer, Alison G; Brown, James H; Costa, Daniel P; Ernest, S K Morgan; Fitzgerald, Erich M G; Fortelius, Mikael; Gittleman, John L; Hamilton, Marcus J; Harding, Larisa E; Lintulaakso, Kari; Lyons, S Kathleen; Okie, Jordan G; Saarinen, Juha J; Sibly, Richard M; Smith, Felisa A; Stephens, Patrick R; Theodor, Jessica M; Uhen, Mark D
2012-03-13
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
Scaling laws for the upper ocean temperature dissipation rate
Bogucki, D.J.; Huguenard, K.; Haus, B.K.; Özgökmen, T.M.; Reniers, A.J.H.M.; Laxague, N.J.M.
2015-01-01
Our understanding of temperature dissipation rate χ within the upper ocean boundary layer, which is critical for climate forecasts, is very limited. Near-surface turbulence also affects dispersion of contaminants and biogeochemical tracers. Using high-resolution optical turbulence measurements, scal
Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation
Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave
Ozawa, Hisashi; Shimokawa, Shinya; Sakuma, Hirofumi
Turbulence is ubiquitous in nature, yet remains an enigma in many respects. Here we investigate dissipative properties of turbulence so as to find out a statistical "law" of turbulence. Two general expressions are derived for a rate of entropy increase due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is found with these equations that phenomenological properties of turbulence such as Malkus's suggestion on maximum heat transport in thermal convection as well as Busse's sug- gestion on maximum momentum transport in shear turbulence can rigorously be ex- plained by a unique state in which the rate of entropy increase due to the turbulent dissipation is at a maximum (dS/dt = Max.). It is also shown that the same state cor- responds to the maximum entropy climate suggested by Paltridge. The tendency to increase the rate of entropy increase has also been confirmed by our recent GCM ex- periments. These results suggest the existence of a universal law that manifests itself in the long-term statistics of turbulent fluid systems from laboratory-scale turbulence to planetary-scale circulations. Ref.) Ozawa, H., Shimokawa, S., and Sakuma, H., Phys. Rev. E 64, 026303, 2001.
Thin layer structure of dissipation rate of scalar turbulence
ZHOU; Haibing; (周海兵); CUI; Guixiang; (崔桂香); XU; Chunxiao; (许春晓); ZHANG; Zhaoshun; (张兆顺)
2003-01-01
The structure of scalar turbulence dissipation is studied by means of direct numerical simulation. It has been discovered that the scalar turbulence dissipation exhibits thin layer structure. Based on the analysis of transportation equation of scalar turbulence dissipation, we have investigated the effect of turbulent strains on the generation of scalar turbulence dissipation and found that fluctuating scalar gradients trend to the third principal direction of turbulent strains. Therefore the generation of the thin layer structure of scalar turbulence dissipation is well interpreted.
Energy diffusion controlled reaction rate in dissipative Hamiltonian systems
Deng Mao-Lin; Zhu Wei-Qiu
2007-01-01
In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean first-passage time (MFPT) of averaged system is formulated and the energy diffusion controlled reaction rate is obtained as the inverse of MFPT. The energy diffusion controlled reaction rate in the classical Kramers bistable potential and in a two-dimensional bistable potential with a heat bath are obtained by using the proposed approach respectively. The obtained results are then compared with those from Monte Carlo simulation of original systems and from the classical Kramers theory. It is shown that the reaction rate obtained by using the proposed approach agrees well with that from Monte Carlo simulation and is more accurate than the classical Kramers rate.
Mean shear regulates the intermittency of energy dissipation rate
Morshed, Khandakar; Dasi, Lakshmi
2012-11-01
We studied the multi-fractal properties of the instantaneous fluctuations of the turbulent kinetic energy dissipation rate, ɛ in the strongly anisotropic flow past a backward facing step. Measurements correspond to time-resolved PIV at Reynolds number, Re= 13600, 9000, and 5500 based on the free stream velocity and step height. Results indicate a significant dependence of the intermittent dissipation rate signal with respect to Re and local mean shear, S. Probability analysis showed that the fluctuations in ɛ are less skewed around its mean in regions of intense shear. The frequency of relatively intense bursts of intermittent fluctuations in ɛ appear to be dependent on the magnitude of these events. Lacunarity, a measure that characterizes such magnitude and temporal scale dependent intermittency of fluctuating signals, revealed that intermittency in ɛ reduces with S across all temporal scales. However, the intermittency of ɛ appears to increase with burst magnitudes. We discuss the implications of these results on the established multi-fractal picture of small-scale turbulence and the effects of large scale anisotropy.
Effect of mean velocity shear on the dissipation rate of turbulent kinetic energy
Yoshizawa, Akira; Liou, Meng-Sing
1992-01-01
The dissipation rate of turbulent kinetic energy in incompressible turbulence is investigated using a two-scale DIA. The dissipation rate is shown to consist of two parts; one corresponds to the dissipation rate used in the current turbulence models of eddy-viscosity type, and another comes from the viscous effect that is closely connected with mean velocity shear. This result can elucidate the physical meaning of the dissipation rate used in the current turbulence models and explain part of the discrepancy in the near-wall dissipation rates between the current turbulence models and direct numerical simulation of the Navier-Stokes equation.
Unit stream power, minimum energy dissipation rate, and river engineering
Chih Ted Yang
2010-01-01
Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel, and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory, or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.
Turbulent collision statistics of cloud droplets at low dissipation rates
Banerjee, Sandipan
Collisions of sedimenting droplets in a turbulent flow is of great importance in cloud physics. Collision efficiency and collision enhancement over gravitational collision by air turbulence govern the growth of the cloud droplets leading to warm rain initiation and precipitation dynamics. In this thesis we present direct numerical simulation (DNS) results for collision statistics of droplets in turbulent flows of low dissipation rates (in the range of 3 cm2/s3-100 cm2/s3) relevant to strato-cumulus clouds. First, we revisit the case of gravitational collision in still fluid to validate the details of the collision detection algorithm used in our code. We compare the collision statistics with either new analytical predictions regarding the percentages of different collision types, or results from published papers. The effect of initial conditions on the collision statistics and statistical uncertainties are analyzed both analytically and through the simulation data. Second, we consider the case of weak turbulence (as in strato-cumulus clouds). In this case the particle motion is mainly driven by gravity. The standard deviation (or the uncertainty) of the average collision statistics is examined analytically in terms of time correlation function of the data. We then report new DNS results of collision statistics in a turbulent flow, showing how air turbulence increases the geometric colli- sion statistics and the collision efficiency. We find that the collision-rate enhancement due to turbulence depends nonlinearly on the flow dissipation rate. This result calls for a more careful parameterization of the collision statistics in strato-cumulus clouds. Due to the low flow dissipation rate in stratocumulus clouds, a related challenge is low droplet Stokes number. Here the Stokes number is the ratio of droplet inertial response time to the flow Kolmogorov time. A very low Stokes number implies that the numerical integration time step is now governed by the droplet
WANG Yang; TU Zhan-Chun
2013-01-01
The Carnot-like heat engines are classified into three types (normal-,sub-and,super-dissipative) according to relations between the minimum irreversible entropy production in the "isothermal" processes and the time for completing those processes.The efficiencies at maximum power of normal-,sub-and super-dissipative Carnot-like heat engines are proved to be bounded between ηc/2 and ηc/ (2-ηc),ηc/2 and ηc,0 and ηc/ (2-ηc),respectively.These bounds are also shared by linear,sub-and super-linear irreversible Carnot-like engines [Tu and Wang,Europhys.Lett.98 (2012) 40001] although the dissipative engines and the irreversible ones are inequivalent to each other.
Wave attractors and the asymptotic dissipation rate of tidal disturbances
Ogilvie, G I
2005-01-01
Linear waves in bounded inviscid fluids do not generally form normal modes with regular eigenfunctions. Examples are provided by inertial waves in a rotating fluid contained in a spherical annulus, and internal gravity waves in a stratified fluid contained in a tank with a non-rectangular cross-section. For wave frequencies in the ranges of interest, the inviscid linearized equations are spatially hyperbolic and their characteristic rays are typically focused on to wave attractors. When these systems experience periodic forcing, for example of tidal origin, the response of the fluid can become localized in the neighbourhood of a wave attractor. In this paper I define a prototypical problem of this form and construct analytically the long-term response to a periodic body force in the asymptotic limit of small viscosity. The vorticity of the fluid is localized in a detached shear layer close to the wave attractor in such a way that the total rate of dissipation of energy is asymptotically independent of the vis...
Karanasios, Evangelos; Papadi-Psyllou, Asimina; Karpouzas, Dimitrios G; Tsiropoulos, Nikolaos G
2012-01-01
Biomixture composition and water management are key factors controlling biobeds performance. Although compost-biomixtures (BXs) possess high degradation efficiency, their low water-holding capacity compared with peat-biomixtures (OBX) limits their use. Thus, appropriate water management is required to optimize their performance. The dissipation capacity of selected BXs compared with OBXs was assessed in a column study under two water managements not differing in their total water load but in the intensity and frequency of water addition. Results showed that the less frequent application of large water volumes (water management scenario I) facilitated pesticide leaching (0.001-10.4% of initially applied), compared with the frequent application of low water volumes (water management scenario II) where leaching losses were always management affected differently the dissipation performance of substrates: OBX outperformed BXs under water management scenario I, whereas the grape marc compost-biomixture (BX1) was superior at water management scenario II. Substitution of grape marc compost (C1) with olive leaves compost (C2) or of straw with corn cobs or grape stalks reduced the dissipation capacity of BX1. Mass balance analysis revealed that the high dissipation capacity of OBX was mostly attributable to its high ability to retain rather than degrade pesticides, whereas the exact opposite was seen for BX1. Overall, our findings suggest that BXs-biobeds could treat large wastewater volumes under appropriate water management that extends the contact period between pesticides and BXs, thus exploiting their high biodegradation capacity. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Simulation of shape memory alloys : material modeling using the principle of maximum dissipation
2011-01-01
In dieser Arbeit werden Materialmodelle für Formgedächtnislegierungen (FGL) mittels des Konzepts der maximalen Dissipation entwickelt. Dabei werden die Hauptsätze der Thermodynamik identisch erfüllt. Weiterhin wird das Einfügen von Nebenbedingungen stark vereinfacht. Ideale Plastizität dient als Referenz. Es werden drei Materialmodelle hergeleitet, die im Rahmen der Finite-Elemente Methode ausgewertet und mit experimentellen Daten verglichen werden. Das letzte Model ist in der Lag...
Incorporating Turbulence into Dimensionless Measures of Magnetohydrodynamic Dissipation Rates
Blackman, Eric G
2008-01-01
The magnetic Reynolds number R_M, is defined as the product of a characteristic scale and associated flow speed divided by the microphysical magnetic diffusivity. For laminar flows, R_M also approximates the ratio of advective to dissipative terms in the total magnetic energy equation. However, for turbulent flows this latter ratio depends on the energy spectra and approaches unity in a steady state. The physical implication of R_M>>1 for laminar flows (i.e. negligible magnetic dissipation of magnetic energy on dynamical times) is therefore incorrect for turbulent flows. To correctly capture the importance of dissipation for flows of arbitrary spectra we define an effective magnetic dissipation number, R_{M,e}, as the ratio of the advection to microphysical dissipation terms in the total magnetic energy equation, incorporating the full spectrum of scales, arbitrary magnetic Prandtl numbers, and distinct pairs of inner and outer scales for magnetic and kinetic spectra. For a substantial parameter range, R_{M,e...
On rate-dependent dissipation effects in electro-elasticity
Saxena, Prashant; Steinmann, Paul
2015-01-01
This paper deals with the mathematical modelling of large strain electro-viscoelastic deformations in electro-active polymers. Energy dissipation is assumed to occur due to mechanical viscoelasticity of the polymer as well as due to time-dependent effective polarisation of the material. Additive decomposition of the electric field $\\mathbb{E} = \\mathbb{E}_e + \\mathbb{E}_v$ and multiplicative decomposition of the deformation gradient $\\mathbf{F} = \\mathbf{F}_e \\mathbf{F}_v$ are proposed to model the internal dissipation mechanisms. The theory is illustrated with some numerical examples in the end.
On the Upper Ocean Turbulent Dissipation Rate due to Very Short Breaking Wind-Waves
Banner, Michael L
2016-01-01
Sutherland and Melville (2015a) investigated the relative contributions to the total dissipation rate in the ocean surface wave boundary layer of different breaking wave scales, from large-scale whitecaps to micro-breakers. Based on their measurements of geometric/kinematic properties of breaking waves for a wide range of wave ages, they inferred the dissipation rates from breaking as a function of scale. These results were compared with their complementary measurements of the total dissipation rate in the underlying wave boundary layer. They reported that the total depth-integrated dissipation rate in the water column agreed well with dissipation rate from breaking waves for young to very old wind seas. They also reported high observed levels of dissipation rate very near the sea surface. They concluded that this showed a large fraction of the total dissipation rate was due to non-air entraining micro-breakers and very small whitecaps. Because of its fundamental importance, both physically and for accurate a...
A model for turbulent dissipation rate in a constant pressure boundary layer
J DEY; P PHANI KUMAR
2016-04-01
Estimation of the turbulent dissipation rate in a boundary layer is a very involved process.Experimental determination of either the dissipation rate or the Taylor microscale, even in isotropic turbulence,which may occur in a portion of the turbulent boundary layer, is known to be a difficult task. For constant pressure boundary layers, a model for the turbulent dissipation rate is proposed here in terms of the local mean flow quantities. Comparable agreement between the estimated Taylor microscale and Kolmogorov length scale with other data in the logarithmic region suggests usefulness of this model in obtaining these quantitiesexperimentally
ENHANCED DISSIPATION RATE OF MAGNETIC FIELD IN STRIPED PULSAR WINDS BY THE EFFECT OF TURBULENCE
Takamoto, Makoto [Department of Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Inoue, Tsuyoshi [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Chuou-ku, Sagamihara 252-5258 (Japan); Inutsuka, Shu-ichiro, E-mail: takamoto@tap.scphys.kyoto-u.ac.jp, E-mail: inouety@phys.aoyama.ac.jp, E-mail: inutsuka@nagoya-u.jp [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)
2012-08-10
In this paper, we report on turbulent acceleration of the dissipation of the magnetic field in the post-shock region of a Poynting flux-dominated flow, such as the Crab pulsar wind nebula. We have performed two-dimensional resistive relativistic magnetohydrodynamics simulations of subsonic turbulence driven by the Richtmyer-Meshkov instability at the shock fronts of the Poynting flux-dominated flows in pulsar winds. We find that turbulence stretches current sheets which substantially enhances the dissipation of the magnetic field, and that most of the initial magnetic field energy is dissipated within a few eddy-turnover times. We also develop a simple analytical model for turbulent dissipation of the magnetic field that agrees well with our simulations. The analytical model indicates that the dissipation rate does not depend on resistivity even in the small resistivity limit. Our findings can possibly alleviate the {sigma}-problem in the Crab pulsar wind nebulae.
The effect of capturing the correct turbulence dissipation rate in BHR
Schwarzkopf, John Dennis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ristorcelli, Raymond [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-16
In this manuscript, we discuss the shortcoming of a quasi-equilibrium assumption made in the BHR closure model. Turbulence closure models generally assume fully developed turbulence, which is not applicable to 1) non-equilibrium turbulence (e.g. change in mean pressure gradient) or 2) laminar-turbulence transition flows. Based on DNS data, we show that the current BHR dissipation equation [modeled based on the fully developed turbulence phenomenology] does not capture important features of nonequilibrium flows. To demonstrate our thesis, we use the BHR equations to predict a non-equilibrium flow both with the BHR dissipation and the dissipation from DNS. We find that the prediction can be substantially improved, both qualitatively and quantitatively, with the correct dissipation rate. We conclude that a new set of nonequilibrium phenomenological assumptions must be used to develop a new model equation for the dissipation to accurately predict the turbulence time scale used by other models.
Does the Rate of Collisionless Magnetic Reconnection Depend on the Dissipation Mechanism?
Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria
2012-01-01
The importance of the electron dissipation effect on the reconnection rate is investigated in the general case of asymmetric collisionless magnetic reconnection. Contrary to the standard collisionless reconnection model, it is found that the reconnection rate, and the macroscopic evolution of the reconnecting system, crucially depend on the nature of the dissipation mechanism and that the Hall effect alone is not able to sustain fast reconnection.
Field observations of turbulent dissipation rate profiles immediately below the air-water interface
Wang, Binbin; Liao, Qian
2016-06-01
Near surface profiles of turbulence immediately below the air-water interface were measured with a free-floating Particle Image Velocimetry (PIV) system on Lake Michigan. The surface-following configuration allowed the system to measure the statistics of the aqueous-side turbulence in the topmost layer immediately below the water surface (z≈0˜15 cm, z points downward with 0 at the interface). Profiles of turbulent dissipation rate (ɛ) were investigated under a variety of wind and wave conditions. Various methods were applied to estimate the dissipation rate. Results suggest that these methods yield consistent dissipation rate profiles with reasonable scattering. In general, the dissipation rate decreases from the water surface following a power law relation in the top layer, ɛ˜z-0.7, i.e., the slope of the decrease was lower than that predicted by the wall turbulence theory, and the dissipation was considerably higher in the top layer for cases with higher wave ages. The measured dissipation rate profiles collapse when they were normalized with the wave speed, wave height, water-side friction velocity, and the wave age. This scaling suggests that the enhanced turbulence may be attributed to the additional source of turbulent kinetic energy (TKE) at the "skin layer" (likely due to micro-breaking), and its downward transport in the water column.
Mean square convergence rates for maximum quasi-likelihood estimator
Arnoud V. den Boer
2015-03-01
Full Text Available In this note we study the behavior of maximum quasilikelihood estimators (MQLEs for a class of statistical models, in which only knowledge about the first two moments of the response variable is assumed. This class includes, but is not restricted to, generalized linear models with general link function. Our main results are related to guarantees on existence, strong consistency and mean square convergence rates of MQLEs. The rates are obtained from first principles and are stronger than known a.s. rates. Our results find important application in sequential decision problems with parametric uncertainty arising in dynamic pricing.
Why does steady-state magnetic reconnection have a maximum local rate of order 0.1?
Liu, Yi-Hsin; Guo, F; Daughton, W; Li, H; Cassak, P A; Shay, M A
2016-01-01
Simulations suggest collisionless steady-state magnetic reconnection of Harris-type current sheets proceeds with a rate of order 0.1, independent of dissipation mechanism. We argue this long-standing puzzle is a result of constraints at the magnetohydrodynamic (MHD) scale. We perform a scaling analysis of the reconnection rate as a function of the opening angle made by the upstream magnetic fields, finding a maximum reconnection rate close to 0.2. The predictions compare favorably to particle-in-cell simulations of relativistic electron-positron and non-relativistic electron-proton reconnection. The fact that simulated reconnection rates are close to the predicted maximum suggests reconnection proceeds near the most efficient state allowed at the MHD-scale. The rate near the maximum is relatively insensitive to the opening angle, potentially explaining why reconnection has a similar fast rate in differing models.
Gupta, Saurabh; Pal, Pinaki; Im, Hong G
2014-01-01
The flamelet approach offers a viable framework for combustion modeling of homogeneous charge compression ignition (HCCI) engines under stratified mixture conditions. Scalar dissipation rate acts as a key parameter in flamelet-based combustion models which connects the physical mixing space to the reactive space. The aim of this paper is to gain fundamental insights into turbulent mixing in low temperature combustion (LTC) engines and investigate the modeling of scalar dissipation rate. Three direct numerical simulation (DNS) test cases of two-dimensional turbulent auto-ignition of a hydrogen-air mixture with different correlations of temperature and mixture fraction are considered, which are representative of different ignition regimes. The existing models of mean and conditional scalar dissipation rates, and probability density functions (PDFs) of mixture fraction and total enthalpy are a priori validated against the DNS data.
The tropical lapse rate steepened during the Last Glacial Maximum.
Loomis, Shannon E; Russell, James M; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F Alayne; Kelly, Meredith A
2017-01-01
The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted.
The tropical lapse rate steepened during the Last Glacial Maximum
Loomis, Shannon E.; Russell, James M.; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S.; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F. Alayne; Kelly, Meredith A.
2017-01-01
The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted. PMID:28138544
Maximum orbit plane change with heat-transfer-rate considerations
Lee, J. Y.; Hull, D. G.
1990-01-01
Two aerodynamic maneuvers are considered for maximizing the plane change of a circular orbit: gliding flight with a maximum thrust segment to regain lost energy (aeroglide) and constant altitude cruise with the thrust being used to cancel the drag and maintain a high energy level (aerocruise). In both cases, the stagnation heating rate is limited. For aeroglide, the controls are the angle of attack, the bank angle, the time at which the burn begins, and the length of the burn. For aerocruise, the maneuver is divided into three segments: descent, cruise, and ascent. During descent the thrust is zero, and the controls are the angle of attack and the bank angle. During cruise, the only control is the assumed-constant angle of attack. During ascent, a maximum thrust segment is used to restore lost energy, and the controls are the angle of attack and bank angle. The optimization problems are solved with a nonlinear programming code known as GRG2. Numerical results for the Maneuverable Re-entry Research Vehicle with a heating-rate limit of 100 Btu/ft(2)-s show that aerocruise gives a maximum plane change of 2 deg, which is only 1 deg larger than that of aeroglide. On the other hand, even though aerocruise requires two thrust levels, the cruise characteristics of constant altitude, velocity, thrust, and angle of attack are easy to control.
Jungemann, C.; Pham, A. T.; Meinerzhagen, B.; Ringhofer, C.; Bollhöfer, M.
2006-07-01
The Boltzmann equation for transport in semiconductors is projected onto spherical harmonics in such a way that the resultant balance equations for the coefficients of the distribution function times the generalized density of states can be discretized over energy and real spaces by box integration. This ensures exact current continuity for the discrete equations. Spurious oscillations of the distribution function are suppressed by stabilization based on a maximum entropy dissipation principle avoiding the H transformation. The derived formulation can be used on arbitrary grids as long as box integration is possible. The approach works not only with analytical bands but also with full band structures in the case of holes. Results are presented for holes in bulk silicon based on a full band structure and electrons in a Si NPN bipolar junction transistor. The convergence of the spherical harmonics expansion is shown for a device, and it is found that the quasiballistic transport in nanoscale devices requires an expansion of considerably higher order than the usual first one. The stability of the discretization is demonstrated for a range of grid spacings in the real space and bias points which produce huge gradients in the electron density and electric field. It is shown that the resultant large linear system of equations can be solved in a memory efficient way by the numerically robust package ILUPACK.
Maximum, minimum, and optimal mutation rates in dynamic environments
Ancliff, Mark; Park, Jeong-Man
2009-12-01
We analyze the dynamics of the parallel mutation-selection quasispecies model with a changing environment. For an environment with the sharp-peak fitness function in which the most fit sequence changes by k spin flips every period T , we find analytical expressions for the minimum and maximum mutation rates for which a quasispecies can survive, valid in the limit of large sequence size. We find an asymptotic solution in which the quasispecies population changes periodically according to the periodic environmental change. In this state we compute the mutation rate that gives the optimal mean fitness over a period. We find that the optimal mutation rate per genome, k/T , is independent of genome size, a relationship which is observed across broad groups of real organisms.
Estimation of turbulence dissipation rate by Large eddy PIV method in an agitated vessel
Kysela Bohuš
2015-01-01
Full Text Available The distribution of turbulent kinetic energy dissipation rate is important for design of mixing apparatuses in chemical industry. Generally used experimental methods of velocity measurements for measurement in complex geometries of an agitated vessel disallow measurement in resolution of small scales close to turbulence dissipation ones. Therefore, Particle image velocity (PIV measurement method improved by large eddy Ply approach was used. Large eddy PIV method is based on modeling of smallest eddies by a sub grid scale (SGS model. This method is similar to numerical calculations using Large Eddy Simulation (LES and the same SGS models are used. In this work the basic Smagorinsky model was employed and compared with power law approximation. Time resolved PIV data were processed by Large Eddy PIV approach and the obtained results of turbulent kinetic dissipation rate were compared in selected points for several operating conditions (impeller speed, operating liquid viscosity.
Predicting the solar maximum with the rising rate
Du, Z L
2011-01-01
The growth rate of solar activity in the early phase of a solar cycle has been known to be well correlated with the subsequent amplitude (solar maximum). It provides very useful information for a new solar cycle as its variation reflects the temporal evolution of the dynamic process of solar magnetic activities from the initial phase to the peak phase of the cycle. The correlation coefficient between the solar maximum (Rmax) and the rising rate ({\\beta}a) at {\\Delta}m months after the solar minimum (Rmin) is studied and shown to increase as the cycle progresses with an inflection point (r = 0.83) at about {\\Delta}m = 20 months. The prediction error of Rmax based on {\\beta}a is found within estimation at the 90% level of confidence and the relative prediction error will be less than 20% when {\\Delta}m \\geq 20. From the above relationship, the current cycle (24) is preliminarily predicted to peak around October 2013 with a size of Rmax =84 \\pm 33 at the 90% level of confidence.
Measurement and relevance of maximum metabolic rate in fishes.
Norin, T; Clark, T D
2016-01-01
Maximum (aerobic) metabolic rate (MMR) is defined here as the maximum rate of oxygen consumption (M˙O2max ) that a fish can achieve at a given temperature under any ecologically relevant circumstance. Different techniques exist for eliciting MMR of fishes, of which swim-flume respirometry (critical swimming speed tests and burst-swimming protocols) and exhaustive chases are the most common. Available data suggest that the most suitable method for eliciting MMR varies with species and ecotype, and depends on the propensity of the fish to sustain swimming for extended durations as well as its capacity to simultaneously exercise and digest food. MMR varies substantially (>10 fold) between species with different lifestyles (i.e. interspecific variation), and to a lesser extent (aerobic scope, interest in measuring this trait has spread across disciplines in attempts to predict effects of climate change on fish populations. Here, various techniques used to elicit and measure MMR in different fish species with contrasting lifestyles are outlined and the relevance of MMR to the ecology, fitness and climate change resilience of fishes is discussed.
EXPERIMENTAL STUDY OF MEASUREMENT FOR DISSIPATION RATE SCALING EXPONENT IN HEATED WALL TURBULENCE
姜楠; 王玉春; 舒玮; 王振东
2002-01-01
Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the nonistropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region. Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region. The scaling law of coarse-grained dissipation rate structure function is found to be independent of the mean velocity shear strain and the heating wall boundary condition. The scaling law of the dissipation rate structure function is verified to be in agreement with the hierarchical structure model that has been verified valid for isotropic and homogeneous turbulence.
Assessment of accuracy of CFD simulations through quantification of a numerical dissipation rate
Domaradzki, J. A.; Sun, G.; Xiang, X.; Chen, K. K.
2016-11-01
The accuracy of CFD simulations is typically assessed through a time consuming process of multiple runs and comparisons with available benchmark data. We propose that the accuracy can be assessed in the course of actual runs using a simpler method based on a numerical dissipation rate which is computed at each time step for arbitrary sub-domains using only information provided by the code in question (Schranner et al., 2015; Castiglioni and Domaradzki, 2015). Here, the method has been applied to analyze numerical simulation results obtained using OpenFOAM software for a flow around a sphere at Reynolds number of 1000. Different mesh resolutions were used in the simulations. For the coarsest mesh the ratio of the numerical dissipation to the viscous dissipation downstream of the sphere varies from 4.5% immediately behind the sphere to 22% further away. For the finest mesh this ratio varies from 0.4% behind the sphere to 6% further away. The large numerical dissipation in the former case is a direct indicator that the simulation results are inaccurate, e.g., the predicted Strouhal number is 16% lower than the benchmark. Low numerical dissipation in the latter case is an indicator of an acceptable accuracy, with the Strouhal number in the simulations matching the benchmark. Supported by NSF.
Moroz, Adam
2011-01-01
This book is the first unified systemic description of dissipative phenomena, taking place in biology, and non-dissipative (conservative) phenomena, which is more relevant to physics. Fully updated and revised, this new edition extends our understanding of nonlinear phenomena in biology and physics from the extreme / optimal perspective. The first book to provide understanding of physical phenomena from a biological perspective and biological phenomena from a physical perspectiveDiscusses emerging fields and analysisProvides examples
Response of mean turbulent energy dissipation rate and spectra to concentrated wall suction
Oyewola, O.; Djenidi, L.; Antonia, R. A.
2008-01-01
The response of mean turbulent energy dissipation rate and spectra to concentrated suction applied through a porous wall strip has been quantified. Both suction and no suction data of the spectra collapsed reasonably well for Kolmogorov normalised wavenumber k {1/*} > 0.2. Similar results were also observed for second-order structure functions (not shown) for Kolmogorov normalised radius r* suction results shows a significant departure from the no suction case of the Kolmogorov normalised spectra and second-order structure functions for k {1/*} 20, respectively. The departure at the larger scales with collapse at the small scales suggests that suction induce a change in the small-scale motion. This is also reflected in the alteration of mean turbulent energy dissipation rate and Taylor microscale Reynolds number. This change is a result of the weakening of the large-scale structures. The effect is increased as the suction rate is increased.
Turbulence spectral structures and dissipation rates above and within the forest canopy
刘树华; 刘和平; 朱廷曜; 金昌杰; 洪钟祥; 李军; 刘辉志
1999-01-01
Three-dimensional velocity components and temperature were measured using the new three-dimensional sonic anemometers/thermometers at two levels, above and within the forest canopy, in the Changbai Mountains of Northeast China. Turbulence spectral structure, local isotropy property and dissipation rates above and within the forest canopy were calculated using the eddy correlation method. Results show that the normalized turbulent spectral curves have-2/3 slopes in the inertial subrange. While the shapes of the spectra are in good agreement with the Kansas flat terrain results, the atmospheric turbulence is anisotropic above the forest canopy. Within the forest canopy, the turbulence is approximately isotropic. Compared with measurements from previous studies over flat terrain, the velocity and temperature spectra rates above and inside the forest canopy appear to shift toward higher frequencies. The turbulent kinetic energy and heat energy dissipation rates above and inside the forest canopy are much la
Li Ming; Mao Xianbiao; Lu Aihong; Tao Jing; Zhang Guanghui; Zhang Lianying; Li Chong
2014-01-01
In this experiment, red sandstone specimens, having slenderness ratios of 0.5, 0.7, 0.9 and 1.1 respec-tively, were subjected to blow tests using a Split Hopkinson Pressure Bar (SHPB) system at a pressure of 0.4 atmospheres. In this paper, we have analyzed the effect of slenderness ratio on the mechanical properties and energy dissipation characteristics of red sandstone under high strain rates. The processes of compaction, elastic deformation and stress softening deformation of specimens contract with an increase in slenderness ratio, whilst the nonlinear deformation process extends correspondingly. In addi-tion, degrees of damage of specimens reduced gradually and the type of destruction showed a transfor-mation trend from stretching failure towards shear failure when the slenderness ratio increased. A model of dynamic damage evolution in red sandstone was established and the parameters of the constitutive model at different ratios of length to diameter were determined. By comparison with the experimental curve, the accuracy of the model, which could reflect the stress-strain dynamic characteristics of red sandstone, was verified. From the view of energy dissipation, an increase in slenderness ratio of a specimen decreased the proportion of energy dissipation and caused a gradual fall in the capability of energy dissipation during the specimen failure process. To some extent, the study indicated the effects of slenderness ratios on the mechanical properties and energy dissipation characteristics of red sandstone under the high strain rate, which provides valuable references to related engineering designs and academic researches.
Wang, Yang; Li, Mingxing; Tu, Z. C.; Hernández, A. Calvo; Roco, J. M. M.
2012-07-01
The figure of merit for refrigerators performing finite-time Carnot-like cycles between two reservoirs at temperature Th and Tc (Carnot coefficient of performance for reversible refrigerators. These bounds can be reached for extremely asymmetric low-dissipation cases when the ratio between the dissipation constants of the processes in contact with the cold and hot reservoirs approaches to zero or infinity, respectively. The observed coefficients of performance for real refrigerators are located in the region between the lower and upper bounds, which is in good agreement with our theoretical estimation.
Wang, Yang; Li, Mingxing; Tu, Z C; Hernández, A Calvo; Roco, J M M
2012-07-01
The figure of merit for refrigerators performing finite-time Carnot-like cycles between two reservoirs at temperature T(h) and T(c) (Carnot coefficient of performance for reversible refrigerators. These bounds can be reached for extremely asymmetric low-dissipation cases when the ratio between the dissipation constants of the processes in contact with the cold and hot reservoirs approaches to zero or infinity, respectively. The observed coefficients of performance for real refrigerators are located in the region between the lower and upper bounds, which is in good agreement with our theoretical estimation.
Large-scale length that could determine the mean rate of energy dissipation in turbulence
Mouri, H; Kawashima, Y; Hashimoto, K
2012-01-01
The mean rate of energy dissipation in turbulence is traditionally assumed to scale with parameters of the energy-containing large scales, i.e., the root-mean-square fluctuation of the longitudinal velocity u and its correlation length L(u). However, the resultant scaling coefficient C(u) is known to depend on the large-scale configuration of the flow. We define the correlation length L(u2) of the local energy u2, study the scaling coefficient C(u2) with experimental data of several flows, and find a possibility that C(u2) does not depend on the flow configuration. Not L(u) but rather L(u2) could scale with the typical size of the energy-containing eddies, so that L(u2) determines the mean rate at which the energy is transferred from those eddies to the smaller eddies and is eventually dissipated into heat.
McCaffrey, K.; Bianco, L.; Wilczak, J. M.; Johnston, P. E.
2015-12-01
When forecasting winds at a wind plant for energy production, the turbulence parameterizations are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. We use data from a 915-MHz wind profiling radar at the Boulder Atmospheric Observatory, collected during the XPIA campaign in spring 2015, to identify the critical parameters for measuring eddy dissipation rates using the spectral width method. Radar set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging, are optimized to capture the most accurate power spectrum for measuring spectral widths for use in the computation of the eddy dissipation rates. These estimates are compared to six heights of turbulence-measuring sonic anemometers from 50 - 300 m on a co-located 300 m tower as verification, showing encouraging results. These methods are then applied to the wind profiling radar data being collected in the Wind Forecasting Improvement Project 2 (WFIP2), a DOE funded campaign that aims to improve the ability to forecast hub-height winds from WRF-based models. This campaign uses of a suite of field observations, including many wind profiling radars, in the Columbia River Gorge, a location with complex terrain where turbulence parameterizations are critical for wind energy prediction.
On the energy dissipation rate at the inner edge of circumbinary discs
Terquem, Caroline; Papaloizou, John C. B.
2016-10-01
We study, by means of numerical simulations and analysis, the details of the accretion process from a disc onto a binary system. We show that energy is dissipated at the edge of a circumbinary disc and this is associated with the tidal torque that maintains the cavity: angular momentum is transferred from the binary to the disc through the action of compressional shocks and viscous friction. These shocks can be viewed as being produced by fluid elements which drift into the cavity and, before being accreted, are accelerated onto trajectories that send them back to impact the disc. The rate of energy dissipation is approximately equal to the product of potential energy per unit mass at the disc's inner edge and the accretion rate, estimated from the disc parameters just beyond the cavity edge, that would occur without the binary. For very thin discs, the actual accretion rate onto the binary may be significantly less. We calculate the energy emitted by a circumbinary disc taking into account energy dissipation at the inner edge and also irradiation arising there from reprocessing of light from the stars. We find that, for tight PMS binaries, the SED is dominated by emission from the inner edge at wavelengths between 1-4 and 10 μm. This may apply to systems like CoRoT 223992193 and V1481 Ori.
On the energy dissipation rate at the inner edge of circumbinary discs
Terquem, Caroline
2016-01-01
We study, by means of numerical simulations and analysis, the details of the accretion process from a disc onto a binary system. We show that energy is dissipated at the edge of a circumbinary disc and this is associated with the tidal torque that maintains the cavity: angular momentum is transferred from the binary to the disc through the action of compressional shocks and viscous friction. These shocks can be viewed as being produced by fluid elements which drift into the cavity and, before being accreted, are accelerated onto trajectories that send them back to impact the disc. The rate of energy dissipation is approximately equal to the product of potential energy per unit mass at the disc's inner edge and the accretion rate, estimated from the disc parameters just beyond the cavity edge, that would occur without the binary. For very thin discs, the actual accretion rate onto the binary may be significantly less. We calculate the energy emitted by a circumbinary disc taking into account energy dissipation...
The mechanics of granitoid systems and maximum entropy production rates.
Hobbs, Bruce E; Ord, Alison
2010-01-13
A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate.
Xavier, J C; Strunz, W T; Beims, M W
2015-08-01
We consider the energy flow between a classical one-dimensional harmonic oscillator and a set of N two-dimensional chaotic oscillators, which represents the finite environment. Using linear response theory we obtain an analytical effective equation for the system harmonic oscillator, which includes a frequency dependent dissipation, a shift, and memory effects. The damping rate is expressed in terms of the environment mean Lyapunov exponent. A good agreement is shown by comparing theoretical and numerical results, even for environments with mixed (regular and chaotic) motion. Resonance between system and environment frequencies is shown to be more efficient to generate dissipation than larger mean Lyapunov exponents or a larger number of bath chaotic oscillators.
Dissipative Double-Well Potential for Cold Atoms: Kramers Rate and Stochastic Resonance
Stroescu, Ion; Hume, David B.; Oberthaler, Markus K.
2016-12-01
We experimentally study particle exchange in a dissipative double-well potential using laser-cooled atoms in a hybrid trap. We measure the particle hopping rate as a function of barrier height, temperature, and atom number. Single-particle resolution allows us to measure rates over more than 4 orders of magnitude and distinguish the effects of loss and hopping. Deviations from the Arrhenius-law scaling at high barrier heights occur due to cold collisions between atoms within a well. By driving the system periodically, we characterize the phenomenon of stochastic resonance in the system response.
47 CFR 65.700 - Determining the maximum allowable rate of return.
2010-10-01
... CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Maximum Allowable Rates of Return § 65.700 Determining the maximum allowable rate of return. (a) The maximum allowable rate of return for any exchange carrier's earnings on any access service category shall...
Assessment of fine-scale parameterizations of turbulent dissipation rates in the Southern Ocean
Takahashi, A.; Hibiya, T.
2016-12-01
To sustain the global overturning circulation, more mixing is required in the ocean than has been observed. The most likely candidates for this missing mixing are breaking of wind-induced near-inertial waves and bottom-generated internal lee waves in the sparsely observed Southern Ocean. Nevertheless, there is a paucity of direct microstructure measurements in the Southern Ocean where energy dissipation rates have been estimated mostly using fine-scale parameterizations. In this study, we assess the validity of the existing fine-scale parameterizations in the Antarctic Circumpolar Current (ACC) region using the data obtained from simultaneous full-depth measurements of micro-scale turbulence and fine-scale shear/strain carried out south of Australia during January 17 to February 2, 2016. Although the fine-scale shear/strain ratio (Rω) is close to the Garrett-Munk (GM) value at the station north of Subtropical Front, the values of Rω at the stations south of Subantarctic Front well exceed the GM value, suggesting that the local internal wave spectra are significantly biased to lower frequencies. We find that not all of the observed energy dissipation rates at these locations are well predicted using Gregg-Henyey-Polzin (GHP; Gregg et al., 2003) and Ijichi-Hibiya (IH; Ijichi and Hibiya, 2015) parameterizations, both of which take into account the spectral distortion in terms of Rω; energy dissipation rates at some locations are obviously overestimated by GHP and IH, although only the strain-based Wijesekera (Wijesekera et al., 1993) parameterization yields fairly good predictions. One possible explanation for this result is that a significant portion of the observed shear variance at these locations might be attributed to kinetic-energy-dominant small-scale eddies associated with the ACC, so that fine-scale strain rather than Rω becomes a more appropriate parameter to characterize the actual internal wave field.
Rate of Dissipation of the Energy of Low-Frequency Mechanical Disturbances in a Tire
Grinchuk, P. S.; Fisenko, S. P.
2016-11-01
An expression for the rate of dissipation of the energy of low-frequency mechanical disturbances in a tire, accounting for the tired wheel radius, velocity of motion, and loading, has been derived. After processing experimental data on heating the tread rubber of an oversize tire by the proposed method, it has been revealed that about 30% of the energy of deformations appearing in motion of a loaded tire is converted into heat, and the coefficient of heat transfer between the tire and air has been derived.
Kuracina Richard
2015-06-01
Full Text Available The article deals with the measurement of maximum explosion pressure and the maximum rate of exposure pressure rise of wood dust cloud. The measurements were carried out according to STN EN 14034-1+A1:2011 Determination of explosion characteristics of dust clouds. Part 1: Determination of the maximum explosion pressure pmax of dust clouds and the maximum rate of explosion pressure rise according to STN EN 14034-2+A1:2012 Determination of explosion characteristics of dust clouds - Part 2: Determination of the maximum rate of explosion pressure rise (dp/dtmax of dust clouds. The wood dust cloud in the chamber is achieved mechanically. The testing of explosions of wood dust clouds showed that the maximum value of the pressure was reached at the concentrations of 450 g / m3 and its value is 7.95 bar. The fastest increase of pressure was observed at the concentrations of 450 g / m3 and its value was 68 bar / s.
The tropical lapse rate steepened during the Last Glacial Maximum
Loomis, S.E.; Russell, J.M.; Verschuren, D.; Morrill, C.; De Cort, G.; Sinninghe Damsté, J.S.; Olago, D.; Eggermont, H.; Street-Perrott, F.A.; Kelly, M.A.
2017-01-01
The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become lesssteep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountainenvironments. However, the sensitivity of the lapse rate to climate
The tropical lapse rate steepened during the Last Glacial Maximum
Loomis, Shannon E; Russell, James M; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S|info:eu-repo/dai/nl/07401370X; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F Alayne; Kelly, Meredith A
The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate
Quantified Energy Dissipation Rates: Electromagnetic Wave Observations in the Terrestrial Bow Shock
Wilson, L B; Breneman, A W; Contel, O Le; Cully, C; Turner, D L; Angelopoulos, V
2013-01-01
We present the first quantified measure of the rate of energy dissipated per unit volume by high frequency electromagnetic waves in the transition region of the Earth's collisionless bow shock using data from the THEMIS spacecraft. Every THEMIS shock crossing examined with available wave burst data showed both low frequency ( 10 Hz) electromagnetic and electrostatic waves throughout the entire transition region and into the magnetosheath. The waves in both frequency ranges had large amplitudes, but the higher frequency waves, which are the focus of this study, showed larger contributions to both the Poynting flux and the energy dissipation rates. The higher frequency waves were identified as combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. These waves were found to have: (1) amplitudes capable of exceeding dB ~ 10 nT and dE ~ 300 mV/m, though more typical values were dB ~ 0.1-1.0 nT and dE ~ 10-50 mV/m; (2) energy flu...
Wang, Xiuguo; Xiang, Zhenbo; Yan, Xiaoyang; Sun, Huiqing; Li, Yiqiang; Pan, Canping
2013-08-01
A two-year field experiment was conducted in two different locations to investigate the dissipation rate and residual fate of thiamethoxam in tobacco leaves and soil by high performance liquid chromatography with UV detection. The average recoveries for green, cured tobacco leaves and soil ranged from 89.7 %-94.8 %, 90.6 %-94.4 % and 89.0%-92.8 %, respectively, with relative standard deviations between 2.7 % and 9.2 %. The dissipation rates of thiamethoxam were described by first-order kinetics and its half-life values were in the range of 3.9-4.4 days in green tobacco leaves and 12.0-19.1 days in soil, respectively. The residue levels of thiamethoxam at harvest time ranged from 0.020-0.541 mg/kg in cured tobacco leaves, and 0.005-0.019 mg/kg in soil, respectively.
Energy dissipation rate limits for flow through rough channels and tidal flow across topography
Kerswell, R R
2016-01-01
An upper bound on the energy dissipation rate per unit mass, $\\epsilon$, for pressure-driven flow through a channel with rough walls is derived for the first time. For large Reynolds numbers, $Re$, the bound - $\\epsilon \\,\\leq \\, c\\, U^3/h$ where $U$ is the mean flow through the channel, $h$ the channel height and $c$ a numerical prefactor - is independent of $Re$ (i.e. the viscosity) as in the smooth channel case but the numerical prefactor $c$, which is only a function of the surface heights and surface gradients (i.e. not higher derivatives), is increased. Crucially, this new bound captures the correct scaling law of what is observed in rough pipes and demonstrates that while a smooth pipe is a singular limit of the Navier-Stokes equations (data suggests $\\epsilon \\, \\sim \\, 1/(\\log Re)^2\\, U^3/h$ as $Re \\rightarrow \\infty$), it is a regular limit for current bounding techniques. As an application, the bound is extended to oscillatory flow to estimate the energy dissipation rate for tidal flow across botto...
Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris
2014-01-01
Suspension mammalian cell cultures in aerated stirred tank bioreactors are widely used in the production of monoclonal antibodies. Given that production scale cell culture operations are typically performed in very large bioreactors (≥ 10,000 L), bioreactor scale-down and scale-up become crucial in the development of robust cell-culture processes. For successful scale-up and scale-down of cell culture operations, it is important to understand the scale-dependence of the distribution of the energy dissipation rates in a bioreactor. Computational fluid dynamics (CFD) simulations can provide an additional layer of depth to bioreactor scalability analysis. In this communication, we use CFD analyses of five bioreactor configurations to evaluate energy dissipation rates and Kolmogorov length scale distributions at various scales. The results show that hydrodynamic scalability is achievable as long as major design features (# of baffles, impellers) remain consistent across the scales. Finally, in all configurations, the mean Kolmogorov length scale is substantially higher than the average cell size, indicating that catastrophic cell damage due to mechanical agitation is highly unlikely at all scales.
Linkmann, Moritz; Berera, Arjun; Goldstraw, Erin E.
2017-01-01
This paper examines the behavior of the dimensionless dissipation rate Cɛ for stationary and nonstationary magnetohydrodynamic (MHD) turbulence in the presence of external forces. By combining with previous studies for freely decaying MHD turbulence, we obtain here both the most general model equation for Cɛ applicable to homogeneous MHD turbulence and a comprehensive numerical study of the Reynolds number dependence of the dimensionless total energy dissipation rate at unity magnetic Prandtl number. We carry out a series of medium to high resolution direct numerical simulations of mechanically forced stationary MHD turbulence in order to verify the predictions of the model equation for the stationary case. Furthermore, questions of nonuniversality are discussed in terms of the effect of external forces as well as the level of cross- and magnetic helicity. The measured values of the asymptote Cɛ ,∞ lie between 0.193 ≤Cɛ ,∞≤0.268 for free decay, where the value depends on the initial level of cross- and magnetic helicities. In the stationary case we measure Cɛ ,∞=0.223 .
The spectral relaxation model of the scalar dissipation rate in homogeneous turbulence
Fox, R. O.
1995-05-01
A model for the effect of scalar spectral relaxation on the scalar dissipation rate of an inert, passive scalar (Sc≥1) in fully developed homogeneous turbulence is presented. In the model, wave-number space is divided into a finite number [the total number depending on the turbulence Reynolds number Reλ and the Schmidt number (Sc)] of intermediate stages whose time constants are determined from the velocity spectrum. The model accounts for the evolution of the scalar spectrum from an arbitrary initial shape to its fully developed form and its effect on the scalar dissipation rate for finite Reλ and Sc≥1. Corrsin's result [AIChE J. 10, 870 (1964)] for the scalar mixing time is attained for large Reλ in the presence of a constant mean scalar gradient and a stationary, isotropic turbulence field. Comparisons with DNS results for stationary, isotropic turbulence and experimental data for decaying, homogeneous grid turbulence demonstrate the satisfactory performance of the model.
Jan Werner; Eva Maria Griebeler
2014-01-01
We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which...
Mérida, Fernando [Deparment of Chemical Engineering, University of Puerto Rico, Mayagüez, P.O. Box 9046, Mayagüez, PR 00680 (United States); Chiu-Lam, Andreina [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); Bohórquez, Ana C. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611-6131 (United States); Maldonado-Camargo, Lorena [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); Pérez, María-Eglée; Pericchi, Luis [Department of Mathematics, University of Puerto Rico, Río Piedras, P.O. Box 70377, San Juan, PR 00936-8377 (United States); Torres-Lugo, Madeline [Deparment of Chemical Engineering, University of Puerto Rico, Mayagüez, P.O. Box 9046, Mayagüez, PR 00680 (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611-6131 (United States)
2015-11-15
Magnetic Fluid Hyperthermia (MFH) uses heat generated by magnetic nanoparticles exposed to alternating magnetic fields to cause a temperature increase in tumors to the hyperthermia range (43–47 °C), inducing apoptotic cancer cell death. As with all cancer nanomedicines, one of the most significant challenges with MFH is achieving high nanoparticle accumulation at the tumor site. This motivates development of synthesis strategies that maximize the rate of energy dissipation of iron oxide magnetic nanoparticles, preferable due to their intrinsic biocompatibility. This has led to development of synthesis strategies that, although attractive from the point of view of chemical elegance, may not be suitable for scale-up to quantities necessary for clinical use. On the other hand, to date the aqueous co-precipitation synthesis, which readily yields gram quantities of nanoparticles, has only been reported to yield sufficiently high specific absorption rates after laborious size selective fractionation. This work focuses on improvements to the aqueous co-precipitation of iron oxide nanoparticles to increase the specific absorption rate (SAR), by optimizing synthesis conditions and the subsequent peptization step. Heating efficiencies up to 1048 W/g{sub Fe} (36.5 kA/m, 341 kHz; ILP=2.3 nH m{sup 2} kg{sup −1}) were obtained, which represent one of the highest values reported for iron oxide particles synthesized by co-precipitation without size-selective fractionation. Furthermore, particles reached SAR values of up to 719 W/g{sub Fe} (36.5 kA/m, 341 kHz; ILP=1.6 nH m{sup 2} kg{sup −1}) when in a solid matrix, demonstrating they were capable of significant rates of energy dissipation even when restricted from physical rotation. Reduction in energy dissipation rate due to immobilization has been identified as an obstacle to clinical translation of MFH. Hence, particles obtained with the conditions reported here have great potential for application in nanoscale thermal
A Maximum Information Rate Quaternion Filter for Spacecraft Attitude Estimation
Reijneveld, J.; Maas, A.; Choukroun, D.; Kuiper, J.M.
2011-01-01
Building on previous works, this paper introduces a novel continuous-time stochastic optimal linear quaternion estimator under the assumptions of rate gyro measurements and of vector observations of the attitude. A quaternion observation model, which observation matrix is rank degenerate, is reduced
78 FR 13999 - Maximum Interest Rates on Guaranteed Farm Loans
2013-03-04
... have removed the term. Comment: Don't remove the ``average agricultural loan customer'' definition. The... the following methods: Federal eRulemaking Portal: Go to http://www.regulations.gov . Follow the.... Comment: FSA should let the market dictate what interest rate lenders charge guaranteed borrowers, rather...
Group velocity locked vector dissipative solitons in a high repetition rate fiber laser
Luo, Yiyang; Li, Lei; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Fu, Songnian; Zhao, Luming
2016-01-01
Vectorial nature of dissipative solitons (DSs) with high repetition rates is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectra, which can be considered as an auxiliary indicator of the group velocity locked vector DSs.
A New Eddy Dissipation Rate Formulation for the Terminal Area PBL Prediction System(TAPPS)
Charney, Joseph J.; Kaplan, Michael L.; Lin, Yuh-Lang; Pfeiffer, Karl D.
2000-01-01
The TAPPS employs the MASS model to produce mesoscale atmospheric simulations in support of the Wake Vortex project at Dallas Fort-Worth International Airport (DFW). A post-processing scheme uses the simulated three-dimensional atmospheric characteristics in the planetary boundary layer (PBL) to calculate the turbulence quantities most important to the dissipation of vortices: turbulent kinetic energy and eddy dissipation rate. TAPPS will ultimately be employed to enhance terminal area productivity by providing weather forecasts for the Aircraft Vortex Spacing System (AVOSS). The post-processing scheme utilizes experimental data and similarity theory to determine the turbulence quantities from the simulated horizontal wind field and stability characteristics of the atmosphere. Characteristic PBL quantities important to these calculations are determined based on formulations from the Blackadar PBL parameterization, which is regularly employed in the MASS model to account for PBL processes in mesoscale simulations. The TAPPS forecasts are verified against high-resolution observations of the horizontal winds at DFW. Statistical assessments of the error in the wind forecasts suggest that TAPPS captures the essential features of the horizontal winds with considerable skill. Additionally, the turbulence quantities produced by the post-processor are shown to compare favorably with corresponding tower observations.
Turbulent energy dissipation rate in a tilting flume with a highly rough bed
Coscarella, F.; Servidio, S.; Ferraro, D.; Carbone, V.; Gaudio, R.
2017-08-01
Turbulent flows on highly rough beds, such as those occurring in natural watercourses, represent a longstanding and fascinating problem of hydraulics, motivating in the past few decades huge research on new models of turbulence. In this work, laboratory experiments are presented on a stream flowing on a heterogeneous pebble bed with varying slope. The analysis of the flow speed puts in evidence a clear inertial range, where the Kolmogorov 4/5-law for the streamwise velocity spatial increments holds. The law is used for a systematic estimation of the turbulent kinetic energy dissipation rate 𝜖 , here measured for three different bed slopes and hence for three different shear Reynolds numbers. The experiments presented here suggest that small scale turbulence has properties similar to the classical picture of homogeneous universal turbulence invoked by the Kolmogorov theory.
MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.
2005-01-01
Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.
Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator
Belinger, A; Cambronne, J P [Universite de Toulouse, UPS, INPT, LAPLACE - Laboratoire Plasma et Conversion d' Energie, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Hardy, P; Barricau, P; Caruana, D, E-mail: daniel.caruana@onera.fr [ONERA Centre Midi-Pyrenees, Departement Modeles pour l' Aerodynamique et l' Energetique, BP74025, 2 avenue Edouard Belin, 31055 TOULOUSE CEDEX 4 (France)
2011-09-14
A promising actuator for high-speed flow control, referred to as a plasma synthetic jet (PSJ), is being studied by the DMAE department of the ONERA, and the Laplace laboratory of the CNRS, in France. This actuator was inspired by the 'sparkjet' device developed by the Johns Hopkins University Applied Physics Laboratory. The PSJ, which produces a synthetic jet with high exhaust velocities, no active mechanical components and no mass flow admission, holds the promise of enabling high-speed flows to be manipulated. With this high-velocity jet it is possible to reduce fluid phenomena such as transition and turbulence, thus making it possible to increase an aircraft's performance whilst at the same time reducing its environmental impact. A thermal plasma discharge was created in a micro-cavity, causing the gas to be expelled. It is relevant that the velocity and momentum depend on the energy dispersed by the electric discharge. To control the frequency and energy dispersed in the plasma, the Laplace laboratory has developed two high-voltage power supply systems. These allow two different types of discharge to be produced, with energy being supplied to the discharge in two different manners. In this paper, we focus on the impact of the power supply on the plasma synthetic jet, and in particular on the role of the rate of energy dissipation in the discharge. In order to estimate the influence of the power supply on the machinery of the actuator, specific experimental techniques were used to investigate the electrical (voltage, current), thermal (Infra-red camera) and aerodynamic (jet duration, isentropic pressure, jet velocity) characteristics. These data sets were used to determine which of the two power supplies was more effective, thus allowing us to reach several conclusions concerning the importance of the energy dissipation rate on the PSJ actuator.
Maximum Rate of Growth of Enstrophy in Solutions of the Fractional Burgers Equation
Yun, Dongfang
2016-01-01
This investigation is a part of a research program aiming to characterize the extreme behavior possible in hydrodynamic models by probing the sharpness of estimates on the growth of certain fundamental quantities. We consider here the rate of growth of the classical and fractional enstrophy in the fractional Burgers equation in the subcritical, critical and supercritical regime. First, we obtain estimates on these rates of growth and then show that these estimates are sharp up to numerical prefactors. In particular, we conclude that the power-law dependence of the enstrophy rate of growth on the fractional dissipation exponent has the same global form in the subcritical, critical and parts of the supercritical regime. This is done by numerically solving suitably defined constrained maximization problems and then demonstrating that for different values of the fractional dissipation exponent the obtained maximizers saturate the upper bounds in the estimates as the enstrophy increases. In addition, nontrivial be...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Maximum inspection rates-New turkey inspection system. 381.68 Section 381.68 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection...
Jan Werner
Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule
Werner, Jan; Griebeler, Eva Maria
2014-01-01
We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of
Kalapureddy, MCR
2007-04-01
Full Text Available This paper presents the diurnal and seasonal variation of Turbulence Kinetic Energy (TKE) dissipation rate (ε) in the Atmospheric Boundary-Layer (ABL) over a tropical station, Gadanki (13.5° N, 79.2° E) in India. Doppler spectral width measurements...
Xuan Guo; Chenggang Zhao; Dajun Yuan; Mengshu Wang
2008-01-01
This paper builds the for mulations of hyperplastic damage theory for rate-independent geomaterials to describe the bulk and the likely damage behavior of granular materials.Using 2 kinematic internal variables and the conjugates,dissipative and yield function can be reasonably intlloduoed.A systematic constitutive presentation of 32 possible ways within the thermodynam-ical damage framework is presented,which entirely formulates the constitutive behavior through two scalar thermodynamic potentials.Combining the four common thermodynamical energyfunc-tions.two independent kinematic internal variables and the accordingly generalized stress are introduced to describe the damage behavior and structural rearrangement of the granules for any bulk deformation.A few Legendre transformations are used to establish the links between energy functions so that the complex incremental response of geomaterials can be entirely established from these four energy functions.The constitutive relations are built with the thermodynamics laws,which account for the important structural aspects of geomateriais.Some examples are pro-vided in the appendix to validate the applicability and implementation of the framework.This theory is based on previous work by Houlsby et a1.,and extends to the multi-mechanisms de-scription.This framework paves a way in developing models for specific geomateriais with an examinable basis.
Kim, Daewook; Kim, Dojin; Hong, Keum-Shik; Jung, Il Hyo
2014-01-01
The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku'' + M(|A (1/2) u|(2))Au + g(u') = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the energy under some growth conditions on the nonlinear dissipation g. Lastly, numerical simulations in order to verify the analytical results are given.
Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)
2000-01-01
Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.
Daniel L. Rabosky
2006-01-01
Full Text Available Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximum likelihood methods based on the birth-death process to test whether diversification rates have changed over time. LASER contrasts the likelihood of phylogenetic data under models where diversification rates have changed over time to alternative models where rates have remained constant over time. Major strengths of the package include the ability to detect temporal increases in diversification rates and the inference of diversification parameters under multiple rate-variable models of diversification. The program and associated documentation are freely available from the R package archive at http://cran.r-project.org.
13 CFR 107.845 - Maximum rate of amortization on Loans and Debt Securities.
2010-01-01
... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maximum rate of amortization on... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Financing of Small Businesses by Licensees Structuring... rate of amortization on Loans and Debt Securities. The principal of any Loan (or the loan portion...
CONSTRAINING TIDAL DISSIPATION IN STARS FROM THE DESTRUCTION RATES OF EXOPLANETS
Penev, Kaloyan [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Jackson, Brian [Carnegie DTM, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Spada, Federico [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Thom, Nicole [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
2012-06-01
We use the distribution of extrasolar planets in circular orbits around stars with surface convective zones detected by ground-based transit searches to constrain how efficiently tides raised by the planet are dissipated on the parent star. We parameterize this efficiency as a tidal quality factor (Q{sub *}). We conclude that the population of currently known planets is inconsistent with Q{sub *} < 10{sup 7} at the 99% level. Previous studies show that values of Q{sub *} between 10{sup 5} and 10{sup 7} are required in order to explain the orbital circularization of main-sequence low-mass binary stars in clusters, suggesting that different dissipation mechanisms might be acting in the two cases, most likely due to the very different tidal forcing frequencies relative to the stellar rotation frequency occurring for star-star versus planet-star systems.
The Scaling of Maximum and Basal Metabolic Rates of Mammals and Birds
Barbosa, L A; Silva, J K L; Barbosa, Lauro A.; Garcia, Guilherme J. M.; Silva, Jafferson K. L. da
2004-01-01
Allometric scaling is one of the most pervasive laws in biology. Its origin, however, is still a matter of dispute. Recent studies have established that maximum metabolic rate scales with an exponent larger than that found for basal metabolism. This unpredicted result sets a challenge that can decide which of the concurrent hypotheses is the correct theory. Here we show that both scaling laws can be deduced from a single network model. Besides the 3/4-law for basal metabolism, the model predicts that maximum metabolic rate scales as $M^{6/7}$, maximum heart rate as $M^{-1/7}$, and muscular capillary density as $M^{-1/7}$, in agreement with data.
Morrison, Glenn; Shaughnessy, Richard; Shu, Shi
2011-02-01
A Monte Carlo analysis of indoor ozone levels in four cities was applied to provide guidance to regulatory agencies on setting maximum ozone emission rates from consumer appliances. Measured distributions of air exchange rates, ozone decay rates and outdoor ozone levels at monitoring stations were combined with a steady-state indoor air quality model resulting in emission rate distributions (mg h -1) as a function of % of building hours protected from exceeding a target maximum indoor concentration of 20 ppb. Whole-year, summer and winter results for Elizabeth, NJ, Houston, TX, Windsor, ON, and Los Angeles, CA exhibited strong regional differences, primarily due to differences in air exchange rates. Infiltration of ambient ozone at higher average air exchange rates significantly reduces allowable emission rates, even though air exchange also dilutes emissions from appliances. For Houston, TX and Windsor, ON, which have lower average residential air exchange rates, emission rates ranged from -1.1 to 2.3 mg h -1 for scenarios that protect 80% or more of building hours from experiencing ozone concentrations greater than 20 ppb in summer. For Los Angeles, CA and Elizabeth, NJ, with higher air exchange rates, only negative emission rates were allowable to provide the same level of protection. For the 80th percentile residence, we estimate that an 8-h average limit concentration of 20 ppb would be exceeded, even in the absence of an indoor ozone source, 40 or more days per year in any of the cities analyzed. The negative emission rates emerging from the analysis suggest that only a zero-emission rate standard is prudent for Los Angeles, Elizabeth, NJ and other regions with higher summertime air exchange rates. For regions such as Houston with lower summertime air exchange rates, the higher emission rates would likely increase occupant exposure to the undesirable products of ozone reactions, thus reinforcing the need for zero-emission rate standard.
17 CFR 148.7 - Rulemaking on maximum rates for attorney fees.
2010-04-01
... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Rulemaking on maximum rates for attorney fees. 148.7 Section 148.7 Commodity and Securities Exchanges COMMODITY FUTURES TRADING... increase in the cost of living or by special circumstances (such as limited availability of...
The 220-age equation does not predict maximum heart rate in children and adolescents
Verschuren, Olaf; Maltais, Desiree B.; Takken, Tim
Our primary purpose was to provide maximum heart rate (HR(max)) values for ambulatory children with cerebral palsy (CP). The secondary purpose was to determine the effects of age, sex, ambulatory ability, height, and weight on HR(max). In 362 ambulatory children and adolescents with CP (213 males
The 220-age equation does not predict maximum heart rate in children and adolescents
Verschuren, Olaf; Maltais, Desiree B.; Takken, Tim
2011-01-01
Our primary purpose was to provide maximum heart rate (HR(max)) values for ambulatory children with cerebral palsy (CP). The secondary purpose was to determine the effects of age, sex, ambulatory ability, height, and weight on HR(max). In 362 ambulatory children and adolescents with CP (213 males an
A theoretical model for Reynolds-stress and dissipation-rate budgets in near-wall region
陆利蓬; 陈矛章
2000-01-01
A 3-D wave model for the turbulent coherent structures in near-wall region is proposed. The transport nature of the Reynolds stresses and dissipation rate of the turbulence kinetic energy are shown via computation based on the theoretical model. The mean velocity profile is also computed by using the same theoretical model. The theoretical results are in good agreement with those found from DNS, indicating that the theoretical model proposed can correctly describe the physical mechanism of turbulence in near wail region and it thus possibly opens a new way for turbulence modeling in this region.
A theoretical model for Reynolds-stress and dissipation-rate budgets in near-wall region
无
2000-01-01
A 3-D wave model for the turbulent coherent structures in near-wall region is proposed. The transport nature of the Reynolds stresses and dissipation rate of the turbulence kinetic energy are shown via computation based on the theoretical model. The mean velocity profile is also computed by using the same theoretical model. The theoretical results are in good agreement with those found from DNS, indicating that the theoretical model proposed can correctly describe the physical mechanism of turbulence in near wall region and it thus possibly opens a new way for turbulence modeling in this region.
Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability
Dell, Z. R.; Pandian, A.; Bhowmick, A. K.; Swisher, N. C.; Stanic, M.; Stellingwerf, R. F.; Abarzhi, S. I.
2017-09-01
We focus on the classical problem of the dependence on the initial conditions of the initial growth-rate of strong shock driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics simulations to describe the simulation data with statistical confidence in a broad parameter regime. For the given values of the shock strength, fluid density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of the RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data.
Gian Paolo Beretta
2008-08-01
Full Text Available A rate equation for a discrete probability distribution is discussed as a route to describe smooth relaxation towards the maximum entropy distribution compatible at all times with one or more linear constraints. The resulting dynamics follows the path of steepest entropy ascent compatible with the constraints. The rate equation is consistent with the Onsager theorem of reciprocity and the fluctuation-dissipation theorem. The mathematical formalism was originally developed to obtain a quantum theoretical unification of mechanics and thermodinamics. It is presented here in a general, non-quantal formulation as a part of an effort to develop tools for the phenomenological treatment of non-equilibrium problems with applications in engineering, biology, sociology, and economics. The rate equation is also extended to include the case of assigned time-dependences of the constraints and the entropy, such as for modeling non-equilibrium energy and entropy exchanges.
Beretta, Gian P.
2008-09-01
A rate equation for a discrete probability distribution is discussed as a route to describe smooth relaxation towards the maximum entropy distribution compatible at all times with one or more linear constraints. The resulting dynamics follows the path of steepest entropy ascent compatible with the constraints. The rate equation is consistent with the Onsager theorem of reciprocity and the fluctuation-dissipation theorem. The mathematical formalism was originally developed to obtain a quantum theoretical unification of mechanics and thermodinamics. It is presented here in a general, non-quantal formulation as a part of an effort to develop tools for the phenomenological treatment of non-equilibrium problems with applications in engineering, biology, sociology, and economics. The rate equation is also extended to include the case of assigned time-dependences of the constraints and the entropy, such as for modeling non-equilibrium energy and entropy exchanges.
Luo, Yiyang; Zhao, Luming; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Fu, Songnian; Liu, Deming
2016-01-01
The dynamics of dissipative solitons (DSs) are explored in a high repetition rate normal-dispersion erbium-doped fiber laser for the first time. Despite of the high fundamental repetition rate of 129 MHz and thus the low pulse energy, a DS train with a dechirped pulse width of 418 fs, period-doubling of single and dual DSs, as well as 258 MHz 2nd-order harmonic mode-locking of DSs can be observed in the fiber laser with increasing pump power and appropriate settings. A transmitted semiconductor saturable absorber and a wavelength division multiplexer/isolator/tap hybrid module are employed to simplify the laser configuration, thus not only increasing the repetition rate, but also enhancing the stability and robustness of the fiber laser due to the commercial availability of all the components.
无
2010-01-01
Using constructal entransy dissipation rate minimization method based on discrete variable cross-section conducting path,constructal optimizations of elemental area with variable cross-section conducting path are performed,and the results are compared with the optimization results of elemental area with the constant cross-section conducting path.The comparison shows that the minimum mean temperature difference based on elemental area with variable cross-section conducting path increases and approaches a constant as the assembly’s order increases,but the minimum mean temperature difference based on elemental area with constant cross-section conducting path decreases and approaches a constant as the assembly’s order increases.The difference between them is caused by the different dimensionless mean temperature difference of the first order assembly.A universal constructal optimization method by self similar organization to improve heat transfer ability and its corresponding rule are proposed.With the constructal optimization method by self similar organization based on entransy dissipation rate minimization objective,the mean temperature difference approaches a constant as the assembly’s order increases.
Effects of electric field on the maximum electro-spinning rate of silk fibroin solutions.
Park, Bo Kyung; Um, In Chul
2017-02-01
Owing to the excellent cyto-compatibility of silk fibroin (SF) and the simple fabrication of nano-fibrous webs, electro-spun SF webs have attracted much research attention in numerous biomedical fields. Because the production rate of electro-spun webs is strongly dependent on the electro-spinning rate used, the electro-spinning rate becomes more important. In the present study, to improve the electro-spinning rate of SF solutions, various electric fields were applied during electro-spinning of SF, and its effects on the maximum electro-spinning rate of SF solution as well as diameters and molecular conformations of the electro-spun SF fibers were examined. As the electric field was increased, the maximum electro-spinning rate of the SF solution also increased. The maximum electro-spinning rate of a 13% SF solution could be increased 12×by increasing the electric field from 0.5kV/cm (0.25mL/h) to 2.5kV/cm (3.0mL/h). The dependence of the fiber diameter on the present electric field was not significant when using less-concentrated SF solutions (7-9% SF). On the other hand, at higher SF concentrations the electric field had a greater effect on the resulting fiber diameter. The electric field had a minimal effect of the molecular conformation and crystallinity index of the electro-spun SF webs. Copyright © 2016 Elsevier B.V. All rights reserved.
Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei
2016-07-30
In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network's performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks.
On the rate of convergence of the maximum likelihood estimator of a k-monotone density
WELLNER; Jon; A
2009-01-01
Bounds for the bracketing entropy of the classes of bounded k-monotone functions on [0,A] are obtained under both the Hellinger distance and the Lp(Q) distance,where 1 p < ∞ and Q is a probability measure on [0,A].The result is then applied to obtain the rate of convergence of the maximum likelihood estimator of a k-monotone density.
On the rate of convergence of the maximum likelihood estimator of a K-monotone density
GAO FuChang; WELLNER Jon A
2009-01-01
Bounds for the bracketing entropy of the classes of bounded K-monotone functions on [0, A] are obtained under both the Hellinger distance and the LP(Q) distance, where 1 ≤ p < ∞ and Q is a probability measure on [0, A]. The result is then applied to obtain the rate of convergence of the maximum likelihood estimator of a K-monotone density.
Ytzhak, Shany; Wuskell, Joseph P.; Loew, Leslie M.; Ehrenberg, Benjamin
2010-01-01
Hydrophobic or amphiphilic tetrapyrrole sensitizers are taken up by cells and are usually located in cellular lipid membranes. Singlet oxygen is photogenerated by the sensitizer and it diffuses in the membrane and causes oxidative damage to membrane components. This damage can occur to membrane lipids and to membrane-localized proteins. Depolarization of the Nernst electric potential on cells’ membranes has been observed in cellular photosensitization, but it was not established whether lipid oxidation is a relevant factor leading to abolishing the resting potential of cells’ membranes and to their death. In this work we studied the effect of liposomes’ lipid composition on the kinetics of hematoporphyrin-photosensitized dissipation of K+-diffusion electric potential that was generated across the membranes. We employed an electrochromic voltage-sensitive spectroscopic probe that possesses a high fluorescence signal response to the potential. We found a correlation between the structure and unsaturation of lipids and the leakage of the membrane, following photosensitization. As the extent of non-conjugated unsaturation of the lipids is increased from 1 to 6 double bonds, the kinetics of depolarization become faster. We also found that the kinetics of depolarization is affected by the percentage of the unsaturated lipids in the liposome: as the fraction of the unsaturated lipids increases the leakage trough the membrane is enhanced. When liposomes are composed of a lipid mixture similar to that of natural membranes and photosensitization is being carried out under usual photodynamic therapy (PDT) conditions, photodamage to the lipids is not likely to cause enhanced permeability of ions through the membrane, which would have been a mechanism that leads to cell death. PMID:20536150
A real-time maximum-likelihood heart-rate estimator for wearable textile sensors.
Cheng, Mu-Huo; Chen, Li-Chung; Hung, Ying-Che; Yang, Chang Ming
2008-01-01
This paper presents a real-time maximum-likelihood heart-rate estimator for ECG data measured via wearable textile sensors. The ECG signals measured from wearable dry electrodes are notorious for its susceptibility to interference from the respiration or the motion of wearing person such that the signal quality may degrade dramatically. To overcome these obstacles, in the proposed heart-rate estimator we first employ the subspace approach to remove the wandering baseline, then use a simple nonlinear absolute operation to reduce the high-frequency noise contamination, and finally apply the maximum likelihood estimation technique for estimating the interval of R-R peaks. A parameter derived from the byproduct of maximum likelihood estimation is also proposed as an indicator for signal quality. To achieve the goal of real-time, we develop a simple adaptive algorithm from the numerical power method to realize the subspace filter and apply the fast-Fourier transform (FFT) technique for realization of the correlation technique such that the whole estimator can be implemented in an FPGA system. Experiments are performed to demonstrate the viability of the proposed system.
Seymour, Roger S
2010-09-01
Effect of size of inflorescences, flowers and cones on maximum rate of heat production is analysed allometrically in 23 species of thermogenic plants having diverse structures and ranging between 1.8 and 600 g. Total respiration rate (, micromol s(-1)) varies with spadix mass (M, g) according to in 15 species of Araceae. Thermal conductance (C, mW degrees C(-1)) for spadices scales according to C = 18.5M(0.73). Mass does not significantly affect the difference between floral and air temperature. Aroids with exposed appendices with high surface area have high thermal conductance, consistent with the need to vaporize attractive scents. True flowers have significantly lower heat production and thermal conductance, because closed petals retain heat that benefits resident insects. The florets on aroid spadices, either within a floral chamber or spathe, have intermediate thermal conductance, consistent with mixed roles. Mass-specific rates of respiration are variable between species, but reach 900 nmol s(-1) g(-1) in aroid male florets, exceeding rates of all other plants and even most animals. Maximum mass-specific respiration appears to be limited by oxygen delivery through individual cells. Reducing mass-specific respiration may be one selective influence on the evolution of large size of thermogenic flowers.
Anuschewski, P.; Brocks, W.; Hellmann, D. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung
2002-07-01
The J-integral, which is widely used in elastic-plastic fracture mechanics, is not the true driving force any more if the crack is propagating. This leads to some inconsistencies when ductile tearing resistance is characterised in terms of J, especially for large crack extensions. Instead, TURNER has proposed the energy dissipation rate as a physically more meaningful quantity. His concept is discussed and more evidence is given, which will provide a better understanding of ductile tearing. It is shown how this quantity can be re-evaluated from experimental J{sub R}-cuvves of bend and tensile specimens. The energy dissipation rate is decreasing with crack extension in gross plasticity and approaches a stationary state. The analysis of numerous experimental data revealed, that the R({delta}a)-curves can be described by an exponential function with three parameters, namely the initial value, R{sub 0} = R({delta}a=0), the final stationary value, R{infinity}, and a ''length of decay'', 1/{lambda}, from the initial to the stationary value. The shapes of the cumulative J{sub R}-curves can be derived for different specimen geometries by integration. The three parameters, R{sub 0}, R{infinity}, {lambda}, together with an integration constant, the initiation value, J{sub 4}, characterise ductile fracture resistance both quantitatively and physically interpretable, and hence constraint effects on R-curves can be quantified in terms of these parameters. Geometry functions derived from plastic limit load expressions are defined for normalisation of R({delta}a)-curves, which cover some of the geometry effects. The concept of the dissipation rate does not give a final answer to the problem of geometry dependence of R-curves, but it provides some approaches to a better physical understanding, what J{sub R}-curves actually are, how they can be characterised and parametrised, which are the reasons for ''geometry effects'' and how the latter
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Mandsberg, Lotte Frigaard
2008-01-01
that best describes data is a model taking into account the full covariance structure. An inference study is made in order to determine whether the growth rate of the five bacteria strains is the same. After applying a likelihood-ratio test to models with a full covariance structure, it is concluded...... that the specific growth rate is the same for all bacteria strains. This study highlights the importance of carrying out an explorative examination of residuals in order to make a correct parametrization of a model including the covariance structure. The ML method is shown to be a strong tool as it enables......The specific growth rate for P. aeruginosa and four mutator strains mutT, mutY, mutM and mutY–mutM is estimated by a suggested Maximum Likelihood, ML, method which takes the autocorrelation of the observation into account. For each bacteria strain, six wells of optical density, OD, measurements...
Liu, Chuang; Ren, Fei; Zhou, Wei-Xing
2008-01-01
We study the statistical properties of return intervals $r$ between successive energy dissipation rates above a certain threshold $Q$ in three-dimensional fully developed turbulence. We find that the distribution function $P_Q(r)$ scales with the mean return interval $R_Q$ as $P_Q(r)=R_Q^{-1}f(r/R_Q)$ except for $r=1$, where the scaling function $f(x)$ has two power-law regimes. The return intervals are short-term and long-term correlated and possess multifractal nature. The Hurst index of the return intervals decays exponentially against $R_Q$, predicting that rare extreme events with $R_Q\\to\\infty$ are also long-term correlated with the Hurst index $H_\\infty=0.639$.
Determination of zero-coupon and spot rates from treasury data by maximum entropy methods
Gzyl, Henryk; Mayoral, Silvia
2016-08-01
An interesting and important inverse problem in finance consists of the determination of spot rates or prices of the zero coupon bonds, when the only information available consists of the prices of a few coupon bonds. A variety of methods have been proposed to deal with this problem. Here we present variants of a non-parametric method to treat with such problems, which neither imposes an analytic form on the rates or bond prices, nor imposes a model for the (random) evolution of the yields. The procedure consists of transforming the problem of the determination of the prices of the zero coupon bonds into a linear inverse problem with convex constraints, and then applying the method of maximum entropy in the mean. This method is flexible enough to provide a possible solution to a mispricing problem.
Perkell, J S; Hillman, R E; Holmberg, E B
1994-08-01
In previous reports, aerodynamic and acoustic measures of voice production were presented for groups of normal male and female speakers [Holmberg et al., J. Acoust. Soc. Am. 84, 511-529 (1988); J. Voice 3, 294-305 (1989)] that were used as norms in studies of voice disorders [Hillman et al., J. Speech Hear. Res. 32, 373-392 (1989); J. Voice 4, 52-63 (1990)]. Several of the measures were extracted from glottal airflow waveforms that were derived by inverse filtering a high-time-resolution oral airflow signal. Recently, the methods have been updated and a new study of additional subjects has been conducted. This report presents previous (1988) and current (1993) group mean values of sound pressure level, fundamental frequency, maximum airflow declination rate, ac flow, peak flow, minimum flow, ac-dc ratio, inferred subglottal air pressure, average flow, and glottal resistance. Statistical tests indicate overall group differences and differences for values of several individual parameters between the 1988 and 1993 studies. Some inter-study differences in parameter values may be due to sampling effects and minor methodological differences; however, a comparative test of 1988 and 1993 inverse filtering algorithms shows that some lower 1988 values of maximum flow declination rate were due at least in part to excessive low-pass filtering in the 1988 algorithm. The observed differences should have had a negligible influence on the conclusions of our studies of voice disorders.
Study on maximum distance testing with low power dissipation%降低最大距离测试码输入功耗研究
张鼎; 徐拾义
2014-01-01
Random testing has been long employed for testing of faults in digital systems. However, there are some fatal defects of it due to its low efficiency in testing. Aiming at this problem, a new concept of distance between test patterns is proposed. It is known that the larger distance between two test patterns the more different faults can be detected by these two patterns. Therefore, a new pseudo-random testing is proposed earlier called distance based random testing which can be more efficient in testing than that of traditional one. On the other hand, since the distance between two patterns in this method is large enough so that the power dissipation of applying test sequence is greatly increased when testing. This paper is just to present a novel way of changing the order of test patterns in the sequence when applying the tests so as to reduce the power dissipation as much as possible to reach the objective of lowering the power dissipation in testing.%伪随机测试在数字系统的故障测试中已经得到了多年的应用，但传统的伪随机测试存在着效率比较低的缺陷。针对该缺陷提出了在伪随机测试方法中引入测试码之间距离的概念。根据测试码之间距离越大，能检测到不同故障的数目概率也越大的假设，基于测试码之间距离的随机测试法（简称基于距离测试法）可以生成一组测试码序列。但是由于基于距离测试法所生成的测试码相邻间距离的变大，将造成相邻输入码之间的跳变次数增多，使得输入测试码时所需要的功耗急剧增大。针对该情况，提出对伪随机测试法生成的测试码输入顺序进行重新排序和调整的概念，从而达到降低测试功耗的最终目标。
Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.
2016-12-01
When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.
Michael D. Hare
2014-09-01
Full Text Available A field trial in northeast Thailand during 2011–2013 compared the establishment and growth of 2 Panicum maximum cultivars, Mombasa and Tanzania, sown at seeding rates of 2, 4, 6, 8, 10 and 12 kg/ha. In the first 3 months of establishment, higher sowing rates produced significantly more DM than sowing at 2 kg/ha, but thereafter there were no significant differences in total DM production between sowing rates of 2–12 kg/ha. Lower sowing rates produced fewer tillers/m2 than higher sowing rates but these fewer tillers were significantly heavier than the more numerous smaller tillers produced by higher sowing rates. Mombasa produced 23% more DM than Tanzania in successive wet seasons (7,060 vs. 5,712 kg DM/ha from 16 June to 1 November 2011; and 16,433 vs. 13,350 kg DM/ha from 25 April to 24 October 2012. Both cultivars produced similar DM yields in the dry seasons (November–April, averaging 2,000 kg DM/ha in the first dry season and 1,750 kg DM/ha in the second dry season. Mombasa produced taller tillers (104 vs. 82 cm, longer leaves (60 vs. 47 cm, wider leaves (2 vs. 1.8 cm and heavier tillers (1 vs. 0.7 g than Tanzania but fewer tillers/m2 (260 vs. 304. If farmers improve soil preparation and place more emphasis on sowing techniques, there is potential to dramatically reduce seed costs.Keywords: Guinea grass, tillering, forage production, seeding rates, Thailand.DOI: 10.17138/TGFT(2246-253
Evangelia Karagianni
2016-04-01
Full Text Available By utilizing meteorological data such as relative humidity, temperature, pressure, rain rate and precipitation duration at eight (8 stations in Aegean Archipelagos from six recent years (2007 – 2012, the effect of the weather on Electromagnetic wave propagation is studied. The EM wave propagation characteristics depend on atmospheric refractivity and consequently on Rain-Rate which vary in time and space randomly. Therefore the statistics of radio refractivity, Rain-Rate and related propagation effects are of main interest. This work investigates the maximum value of rain rate in monthly rainfall records, for a 5 min interval comparing it with different values of integration time as well as different percentages of time. The main goal is to determine the attenuation level for microwave links based on local rainfall data for various sites in Greece (L-zone, namely Aegean Archipelagos, with a view on improved accuracy as compared with more generic zone data available. A measurement of rain attenuation for a link in the S-band has been carried out and the data compared with prediction based on the standard ITU-R method.
Kalafut, Bennett; Visscher, Koen
2008-10-01
Optical tweezers experiments allow us to probe the role of force and mechanical work in a variety of biochemical processes. However, observable states do not usually correspond in a one-to-one fashion with the internal state of an enzyme or enzyme-substrate complex. Different kinetic pathways yield different distributions for the dwells in the observable states. Furthermore, the dwell-time distribution will be dependent upon force, and upon where in the biochemical pathway force acts. I will present a maximum-likelihood method for identifying rate constants and the locations of force-dependent transitions in transcription initiation by T7 RNA Polymerase. This method is generalizable to systems with more complicated kinetic pathways in which there are two observable states (e.g. bound and unbound) and an irreversible final transition.
Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable bit error rates
Ranade, K S; Ranade, Kedar S.; Alber, Gernot
2005-01-01
The general conditions are discussed which quantum state purification protocols have to fulfill in order to be capable of purifying Bell-diagonal qubit-pair states, provided they consist of steps that map Bell-diagonal states to Bell-diagonal states and they finally apply a suitably chosen Calderbank-Shor-Steane code to the outcome of such steps. As a main result a necessary and a sufficient condition on asymptotic correctability are presented, which relate this problem to the magnitude of a characteristic exponent governing the relation between bit and phase errors under the purification steps. These conditions allow a straightforward determination of maximum tolerable bit error rates of quantum key distribution protocols whose security analysis can be reduced to the purification of Bell-diagonal states.
Phylogenetic prediction of the maximum per capita rate of population growth.
Fagan, William F; Pearson, Yanthe E; Larsen, Elise A; Lynch, Heather J; Turner, Jessica B; Staver, Hilary; Noble, Andrew E; Bewick, Sharon; Goldberg, Emma E
2013-07-22
The maximum per capita rate of population growth, r, is a central measure of population biology. However, researchers can only directly calculate r when adequate time series, life tables and similar datasets are available. We instead view r as an evolvable, synthetic life-history trait and use comparative phylogenetic approaches to predict r for poorly known species. Combining molecular phylogenies, life-history trait data and stochastic macroevolutionary models, we predicted r for mammals of the Caniformia and Cervidae. Cross-validation analyses demonstrated that, even with sparse life-history data, comparative methods estimated r well and outperformed models based on body mass. Values of r predicted via comparative methods were in strong rank agreement with observed values and reduced mean prediction errors by approximately 68 per cent compared with two null models. We demonstrate the utility of our method by estimating r for 102 extant species in these mammal groups with unknown life-history traits.
Statistical properties of the maximum Lyapunov exponent calculated via the divergence rate method.
Franchi, Matteo; Ricci, Leonardo
2014-12-01
The embedding of a time series provides a basic tool to analyze dynamical properties of the underlying chaotic system. To this purpose, the choice of the embedding dimension and lag is crucial. Although several methods have been devised to tackle the issue of the optimal setting of these parameters, a conclusive criterion to make the most appropriate choice is still lacking. An accepted procedure to rank different embedding methods relies on the evaluation of the maximum Lyapunov exponent (MLE) out of embedded time series that are generated by chaotic systems with explicit analytic representation. The MLE is evaluated as the local divergence rate of nearby trajectories. Given a system, embedding methods are ranked according to how close such MLE values are to the true MLE. This is provided by the so-called standard method in a way that exploits the mathematical description of the system and does not require embedding. In this paper we study the dependence of the finite-time MLE evaluated via the divergence rate method on the embedding dimension and lag in the case of time series generated by four systems that are widely used as references in the scientific literature. We develop a completely automatic algorithm that provides the divergence rate and its statistical uncertainty. We show that the uncertainty can provide useful information about the optimal choice of the embedding parameters. In addition, our approach allows us to find which systems provide suitable benchmarks for the comparison and ranking of different embedding methods.
Hartogensis, O.K.; Debruin, H.A.R.
2005-01-01
The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover
Alvah C. Stahlnecker IV
2008-12-01
Full Text Available A percentage of either measured or predicted maximum heart rate is commonly used to prescribe and measure exercise intensity. However, maximum heart rate in athletes may be greater during competition or training than during laboratory exercise testing. Thus, the aim of the present investigation was to determine if endurance-trained runners train and compete at or above laboratory measures of 'maximum' heart rate. Maximum heart rates were measured utilising a treadmill graded exercise test (GXT in a laboratory setting using 10 female and 10 male National Collegiate Athletic Association (NCAA division 2 cross-country and distance event track athletes. Maximum training and competition heart rates were measured during a high-intensity interval training day (TR HR and during competition (COMP HR at an NCAA meet. TR HR (207 ± 5.0 b·min-1; means ± SEM and COMP HR (206 ± 4 b·min-1 were significantly (p < 0.05 higher than maximum heart rates obtained during the GXT (194 ± 2 b·min-1. The heart rate at the ventilatory threshold measured in the laboratory occurred at 83.3 ± 2.5% of the heart rate at VO2 max with no differences between the men and women. However, the heart rate at the ventilatory threshold measured in the laboratory was only 77% of the maximal COMP HR or TR HR. In order to optimize training-induced adaptation, training intensity for NCAA division 2 distance event runners should not be based on laboratory assessment of maximum heart rate, but instead on maximum heart rate obtained either during training or during competition
Kooijmans, Linda M. J.; Hartogensis, Oscar K.
2016-09-01
In the literature, no consensus can be found on the exact form of the universal funtions of Monin-Obukhov similarity theory (MOST) for the structure parameters of temperature, {C_T}^2, and humidity, {C_q}^2, and the dissipation rate of turbulent kinetic energy, ɛ. By combining 11 datasets and applying data treatment with spectral data filtering and error-weighted curve-fitting we first derived robust MOST functions of {C_T}^2, {C_q}^2 and ɛ that cover a large stability range for both unstable and stable conditions. Second, as all data were gathered with the same instrumentation and were processed in the same way—in contrast to earlier studies—we were able to investigate the similarity of MOST functions across different datasets by defining MOST functions for all datasets individually. For {C_T}^2 and ɛ we found no substantial differences in MOST functions for datasets over different surface types or moisture regimes. MOST functions of {C_q}^2 differ from that of {C_T}^2, but we could not relate these differences to turbulence parameters often associated with non-local effects. Furthermore, we showed that limited stability ranges and a limited number of data points are plausible reasons for variations of MOST functions in the literature. Last, we investigated the sensitivity of fluxes to the uncertainty of MOST functions. We provide an overview of the uncertainty range for MOST functions of {C_T}^2, {C_q}^2 and ɛ, and suggest their use in determining the uncertainty in surface fluxes.
Benício, Kadja; Dias, Fernando A. L.; Gualdi, Lucien P.; Aliverti, Andrea; Resqueti, Vanessa R.; Fregonezi, Guilherme A. F.
2015-01-01
OBJECTIVE: To assess the influence of diaphragmatic activation control (diaphC) on Sniff Nasal-Inspiratory Pressure (SNIP) and Maximum Relaxation Rate of inspiratory muscles (MRR) in healthy subjects. METHOD: Twenty subjects (9 male; age: 23 (SD=2.9) years; BMI: 23.8 (SD=3) kg/m2; FEV1/FVC: 0.9 (SD=0.1)] performed 5 sniff maneuvers in two different moments: with or without instruction on diaphC. Before the first maneuver, a brief explanation was given to the subjects on how to perform the sniff test. For sniff test with diaphC, subjects were instructed to perform intense diaphragm activation. The best SNIP and MRR values were used for analysis. MRR was calculated as the ratio of first derivative of pressure over time (dP/dtmax) and were normalized by dividing it by peak pressure (SNIP) from the same maneuver. RESULTS: SNIP values were significantly different in maneuvers with and without diaphC [without diaphC: -100 (SD=27.1) cmH2O/ with diaphC: -72.8 (SD=22.3) cmH2O; p<0.0001], normalized MRR values were not statistically different [without diaphC: -9.7 (SD=2.6); with diaphC: -8.9 (SD=1.5); p=0.19]. Without diaphC, 40% of the sample did not reach the appropriate sniff criteria found in the literature. CONCLUSION: Diaphragmatic control performed during SNIP test influences obtained inspiratory pressure, being lower when diaphC is performed. However, there was no influence on normalized MRR. PMID:26578254
Optimum poultry litter rates for maximum profit vs. yield in cotton production
Cotton lint yield responds well to increasing rates of poultry litter fertilization, but little is known of how optimum rates for yield compare with optimum rates for profit. The objectives of this study were to analyze cotton lint yield response to poultry litter application rates, determine and co...
无
2008-01-01
Quasi-likelihood nonlinear models (QLNM) include generalized linear models as a special case.Under some regularity conditions,the rate of the strong consistency of the maximum quasi-likelihood estimation (MQLE) is obtained in QLNM.In an important case,this rate is O(n-1/2(loglogn)1/2),which is just the rate of LIL of partial sums for I.I.d variables,and thus cannot be improved anymore.
On the maximum rate of change in sunspot number growth and the size of the sunspot cycle
Wilson, Robert M.
1990-01-01
Statistically significant correlations exist between the size (maximum amplitude) of the sunspot cycle and, especially, the maximum value of the rate of rise during the ascending portion of the sunspot cycle, where the rate of rise is computed either as the difference in the month-to-month smoothed sunspot number values or as the 'average rate of growth' in smoothed sunspot number from sunspot minimum. Based on the observed values of these quantities (equal to 10.6 and 4.63, respectively) as of early 1989, it is inferred that cycle 22's maximum amplitude will be about 175 + or - 30 or 185 + or - 10, respectively, where the error bars represent approximately twice the average error found during cycles 10-21 from the two fits.
The Energy Dissipation Rate Per Unit Mass of Jet Pump Mixture%射流泵混合的单位质量能量耗散率
李廷浩; 陆宏圻
2000-01-01
The formula of jet pump energy dissipation rate per unit mass is derived in this paper related to jet pump axis dimension with energy dissipation rote. Thereby replenishes the lack of basic capability equation only referred to section dimension. By comparing and analyzing the formula of jet pump energy dissipation rate per unit mass with beater and static, it comes to the conclusion that jet pump has great capability of liquid-liquid mixing. Although the efficiency of jet pump is lower, but it can get high intensity when it used for mixing%推导出射流泵单位质量能量耗散率公式，涉及到射流泵轴向尺寸与能耗率，弥补了基本性能方程只涉及截面尺寸的不足。将射流泵的单位质量能量耗散率公式与搅拌器和静态混合器比较，进而分析得出射流泵有较强液一液混合性能的本质。虽然射流泵效率低，但将其用作混合时却强度高。
Ambarita, Himsar; Kishinami, Koki; Daimaruya, Mashashi; Tokura, Ikuo; Kawai, Hideki; Suzuki, Jun; Kobiyama, Mashayosi; Ginting, Armansyah
The present paper is a study on the optimum plate to plate spacing for maximum heat transfer rate from a flat plate type heat exchanger. The heat exchanger consists of a number of parallel flat plates. The working fluids are flowed at the same operational conditions, either fixed pressure head or fixed fan power input. Parallel and counter flow directions of the working fluids were considered. While the volume of the heat exchanger is kept constant, plate number was varied. Hence, the spacing between plates as well as heat transfer rate will vary and there exists a maximum heat transfer rate. The objective of this paper is to seek the optimum plate to plate spacing for maximum heat transfer rate. In order to solve the problem, analytical and numerical solutions have been carried out. In the analytical solution, the correlations of the optimum plate to plate spacing as a function of the non-dimensional parameters were developed. Furthermore, the numerical simulation is carried out to evaluate the correlations. The results show that the optimum plate to plate spacing for a counter flow heat exchanger is smaller than parallel flow ones. On the other hand, the maximum heat transfer rate for a counter flow heat exchanger is bigger than parallel flow ones.
Maximum Acceptable Vibrato Excursion as a Function of Vibrato Rate in Musicians and Non-musicians
Vatti, Marianna; Santurette, Sébastien; Pontoppidan, Niels H.
and, in most listeners, exhibited a peak at medium vibrato rates (5–7 Hz). Large across-subject variability was observed, and no significant effect of musical experience was found. Overall, most listeners were not solely sensitive to the vibrato excursion and there was a listener-dependent rate...
Maximum Acceptable Vibrato Excursion as a Function of Vibrato Rate in Musicians and Non-musicians
Vatti, Marianna; Santurette, Sébastien; Pontoppidan, Niels H.
2014-01-01
and, in most listeners, exhibited a peak at medium vibrato rates (5–7 Hz). Large across-subject variability was observed, and no significant effect of musical experience was found. Overall, most listeners were not solely sensitive to the vibrato excursion and there was a listener-dependent rate...
7 CFR 1.187 - Rulemaking on maximum rates for attorney fees.
2010-01-01
... the types of proceedings in which the rate should be used. It also should explain fully the reasons... certain types of proceedings), the Department may adopt regulations providing that attorney fees may be awarded at a rate higher than $125 per hour in some or all of the types of proceedings covered by...
Maximum likelihood methods for investigating reporting rates of rings on hunter-shot birds
Conroy, M.J.; Morgan, B.J.T.; North, P.M.
1985-01-01
It is well known that hunters do not report 100% of the rings that they find on shot birds. Reward studies can be used to estimate what this reporting rate is, by comparison of recoveries of rings offering a monetary reward, to ordinary rings. A reward study of American Black Ducks (Anas rubripes) is used to illustrate the design, and to motivate the development of statistical models for estimation and for testing hypotheses of temporal and geographic variation in reporting rates. The method involves indexing the data (recoveries) and parameters (reporting, harvest, and solicitation rates) by geographic and temporal strata. Estimates are obtained under unconstrained (e.g., allowing temporal variability in reporting rates) and constrained (e.g., constant reporting rates) models, and hypotheses are tested by likelihood ratio. A FORTRAN program, available from the author, is used to perform the computations.
Rate of strong consistency of quasi maximum likelihood estimate in generalized linear models
无
2004-01-01
［1］McCullagh, P., Nelder, J. A., Generalized Linear Models, New York: Chapman and Hall, 1989.［2］Wedderbum, R. W. M., Quasi-likelihood functions, generalized linear models and Gauss-Newton method,Biometrika, 1974, 61:439-447.［3］Fahrmeir, L., Maximum likelihood estimation in misspecified generalized linear models, Statistics, 1990, 21:487-502.［4］Fahrmeir, L., Kaufmann, H., Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann. Statist., 1985, 13: 342-368.［5］Melder, J. A., Pregibon, D., An extended quasi-likelihood function, Biometrika, 1987, 74: 221-232.［6］Bennet, G., Probability inequalities for the sum of independent random variables, JASA, 1962, 57: 33-45.［7］Stout, W. F., Almost Sure Convergence, New York:Academic Press, 1974.［8］Petrov, V, V., Sums of Independent Random Variables, Berlin, New York: Springer-Verlag, 1975.
McCarthy, C M; Taylor, M A; Dennis, M W
1987-01-01
Mycobacterium avium is a human pathogen which may cause either chronic or disseminated disease and the organism exhibits a slow rate of growth. This study provides information on the growth rate of the organism in chronically infected mice and its maximal growth rate in vitro. M. avium was grown in continuous culture, limited for nitrogen with 0.5 mM ammonium chloride and dilution rates that ranged from 0.054 to 0.153 h-1. The steady-state concentration of ammonia nitrogen and M. avium cells for each dilution rate were determined. The bacterial saturation constant for growth-limiting ammonia was 0.29 mM (4 micrograms nitrogen/ml) and, from this, the maximal growth rate for M. avium was estimated to be 0.206 h-1 or a doubling time of 3.4 h. BALB/c mice were infected intravenously with 3 x 10(6) colony-forming units and a chronic infection resulted, typical of virulent M. avium strains. During a period of 3 months, the number of mycobacteria remained constant in the lungs, but increased 30-fold and 8,900-fold, respectively, in the spleen and mesenteric lymph nodes. The latter increase appeared to be due to proliferation in situ. The generation time of M. avium in the mesenteric lymph nodes was estimated to be 7 days.
Quinn, T Alexander; Kohl, Peter
2016-12-01
Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
Rate of strong consistency of quasi maximum likelihood estimate in generalized linear models
YUE Li; CHEN Xiru
2004-01-01
Under the assumption that in the generalized linear model (GLM) the expectation of the response variable has a correct specification and some other smooth conditions,it is shown that with probability one the quasi-likelihood equation for the GLM has a solution when the sample size n is sufficiently large. The rate of this solution tending to the true value is determined. In an important special case, this rate is the same as specified in the LIL for iid partial sums and thus cannot be improved anymore.
Riisgård, Hans Ulrik; Larsen, Poul Scheel; Pleissner, Daniel
2014-01-01
rate (F, l h-1), W (g), and L (mm) as described by the equations: FW = aWb and FL = cLd, respectively. This is done by using available and new experimental laboratory data on M. edulis obtained by members of the same research team using different methods and controlled diets of cultivated algal cells...
Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste.
Nagao, Norio; Tajima, Nobuyuki; Kawai, Minako; Niwa, Chiaki; Kurosawa, Norio; Matsuyama, Tatsushi; Yusoff, Fatimah Md; Toda, Tatsuki
2012-08-01
Anaerobic digestion of food waste was conducted at high OLR from 3.7 to 12.9 kg-VS m(-3) day(-1) for 225 days. Periods without organic loading were arranged between the each loading period. Stable operation at an OLR of 9.2 kg-VS (15.0 kg-COD) m(-3) day(-1) was achieved with a high VS reduction (91.8%) and high methane yield (455 mL g-VS-1). The cell density increased in the periods without organic loading, and reached to 10.9×10(10) cells mL(-1) on day 187, which was around 15 times higher than that of the seed sludge. There was a significant correlation between OLR and saturated TSS in the sludge (y=17.3e(0.1679×), r(2)=0.996, P<0.05). A theoretical maximum OLR of 10.5 kg-VS (17.0 kg-COD) m(-3) day(-1) was obtained for mesophilic single-stage wet anaerobic digestion that is able to maintain a stable operation with high methane yield and VS reduction.
Hellouin de Menibus, Arthur; Auzoux, Quentin; Besson, Jacques; Crépin, Jérôme
2014-11-01
This study is focused on the impact of rapid Reactivity Initiated Accident (RIA) representative strain rates (about 1 s-1 NEA, 2010) on the behavior and fracture of unirradiated cold work stress relieved Zircaloy-4 cladding tubes. Uniaxial ring tests (HT) and plane strain ring tensile tests (PST) were performed in the 0.1-10 s-1 strain rate range, at 25 °C. The local temperature increase due to plastic dissipation was measured with a high-speed infrared camera. Limited temperature increases were measured at 0.1 s-1 strain rate. Limited but not strongly localized temperature increases were measured at 1 s-1. Large temperature increase were measured at 5 and 10 s-1 (142 °C at 5 s-1 strain rate in HT tests). The local temperature increase induced heterogeneous temperature fields, which enhanced strain localization and resulted in a reduction of the plastic elongation at fracture.
Validity of heart rate based nomogram fors estimation of maximum oxygen uptake in Indian population.
Kumar, S Krishna; Khare, P; Jaryal, A K; Talwar, A
2012-01-01
Maximal oxygen uptake (VO2max) during a graded maximal exercise test is the objective method to assess cardiorespiratory fitness. Maximal oxygen uptake testing is limited to only a few laboratories as it requires trained personnel and strenuous effort by the subject. At the population level, submaximal tests have been developed to derive VO2max indirectly based on heart rate based nomograms or it can be calculated using anthropometric measures. These heart rate based predicted standards have been developed for western population and are used routinely to predict VO2max in Indian population. In the present study VO2max was directly measured by maximal exercise test using a bicycle ergometer and was compared with VO2max derived by recovery heart rate in Queen's College step test (QCST) (PVO2max I) and with VO2max derived from Wasserman equation based on anthropometric parameters and age (PVO2max II) in a well defined age group of healthy male adults from New Delhi. The values of directly measured VO2max showed no significant correlation either with the estimated VO2max with QCST or with VO2max predicted by Wasserman equation. Bland and Altman method of approach for limit of agreement between VO2max and PVO2max I or PVO2max II revealed that the limits of agreement between directly measured VO2max and PVO2max I or PVO2max II was large indicating inapplicability of prediction equations of western population in the population under study. Thus it is evident that there is an urgent need to develop nomogram for Indian population, may be even for different ethnic sub-population in the country.
Longitudinal Examination of Age-Predicted Symptom-Limited Exercise Maximum Heart Rate
Zhu, Na; Suarez, Jose; Sidney, Steve; Sternfeld, Barbara; Schreiner, Pamela J.; Carnethon, Mercedes R.; Lewis, Cora E.; Crow, Richard S.; Bouchard, Claude; Haskell, William; Jacobs, David R.
2010-01-01
Purpose To estimate the association of age with maximal heart rate (MHR). Methods Data were obtained in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Participants were black and white men and women aged 18-30 in 1985-86 (year 0). A symptom-limited maximal graded exercise test was completed at years 0, 7, and 20 by 4969, 2583, and 2870 participants, respectively. After exclusion 9622 eligible tests remained. Results In all 9622 tests, estimated MHR (eMHR, beats/minute) had a quadratic relation to age in the age range 18 to 50 years, eMHR=179+0.29*age-0.011*age2. The age-MHR association was approximately linear in the restricted age ranges of consecutive tests. In 2215 people who completed both year 0 and 7 tests (age range 18 to 37), eMHR=189–0.35*age; and in 1574 people who completed both year 7 and 20 tests (age range 25 to 50), eMHR=199–0.63*age. In the lowest baseline BMI quartile, the rate of decline was 0.20 beats/minute/year between years 0-7 and 0.51 beats/minute/year between years 7-20; while in the highest baseline BMI quartile there was a linear rate of decline of approximately 0.7 beats/minute/year over the full age of 18 to 50 years. Conclusion Clinicians making exercise prescriptions should be aware that the loss of symptom-limited MHR is much slower at young adulthood and more pronounced in later adulthood. In particular, MHR loss is very slow in those with lowest BMI below age 40. PMID:20639723
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Mandsberg, Lotte Frigaard
2008-01-01
with an exponentially decaying function of the time between observations is suggested. A model with a full covariance structure containing OD-dependent variance and an autocorrelation structure is compared to a model with variance only and with no variance or correlation implemented. It is shown that the model...... are used for parameter estimation. The data is log-transformed such that a linear model can be applied. The transformation changes the variance structure, and hence an OD-dependent variance is implemented in the model. The autocorrelation in the data is demonstrated, and a correlation model...... that best describes data is a model taking into account the full covariance structure. An inference study is made in order to determine whether the growth rate of the five bacteria strains is the same. After applying a likelihood-ratio test to models with a full covariance structure, it is concluded...
Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic
2016-05-30
Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Mehmet Camurdan
1998-01-01
are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.
Snelling, Edward P; Seymour, Roger S; Matthews, Philip G D; Runciman, Sue; White, Craig R
2011-10-01
The hemimetabolous migratory locust Locusta migratoria progresses through five instars to the adult, increasing in size from 0.02 to 0.95 g, a 45-fold change. Hopping locomotion occurs at all life stages and is supported by aerobic metabolism and provision of oxygen through the tracheal system. This allometric study investigates the effect of body mass (Mb) on oxygen consumption rate (MO2, μmol h(-1)) to establish resting metabolic rate (MRO2), maximum metabolic rate during hopping (MMO2) and maximum metabolic rate of the hopping muscles (MMO2,hop) in first instar, third instar, fifth instar and adult locusts. Oxygen consumption rates increased throughout development according to the allometric equations MRO2=30.1Mb(0.83±0.02), MMO2=155Mb(1.01±0.02), MMO2,hop=120Mb(1.07±0.02) and, if adults are excluded, MMO2,juv=136Mb(0.97±0.02) and MMO2,juv,hop=103Mb(1.02±0.02). Increasing body mass by 20-45% with attached weights did not increase mass-specific MMO2 significantly at any life stage, although mean mass-specific hopping MO2 was slightly higher (ca. 8%) when juvenile data were pooled. The allometric exponents for all measures of metabolic rate are much greater than 0.75, and therefore do not support West, Brown and Enquist’s optimised fractal network model, which predicts that metabolism scales with a 3⁄4-power exponent owing to limitations in the rate at which resources can be transported within the body.
Dissipation of chlorpyrifos on pakchoi inside and outside greenhouse
YU Yun-long; FANG Hua; WANG Xiao; YU Jing-quan; FAN De-fang
2005-01-01
The dissipation of chlorpyrifos on pakchoi inside and outside greenhouse was studied. The decline curve of chlorpyrifos on pakchoi could be described as first-order kinetic. The experimental data showed that both the hermetic environment of greenhouse and season affected dissipation rates of chlorpyrifos on pakchoi. Chlorpyrifos declined faster outside greenhouse than inside greenhouse.Chlorpyrifos residues at pre-harvest time were below the maximum residue limits (MRLs) fixed in China, whereas the values inside greenhouse were higher than those outside greenhouse by almost 50%. The recommended pre-harvest time established under conditions of open field might not always fit to greenhouse production.
Dissipation and residue of spinosad in zucchini under field conditions.
Liu, Yanping; Sun, Haibin; Wang, Siwei
2013-08-01
The dissipation and residue of the insecticide spinosad in zucchini were investigated. An ultra-performance liquid chromatography-tandem mass spectrometry analytical method was developed for spinosad analysis. The half-lives of spinosad were 3.5-3.9 days in zucchini and 3.6-4.1 days in soil. The results showed that the dissipation rate of spinosad was fast, and it is suggested that a combination of rapid growth of zucchini, photodecomposition and the activity of soil microorganisms affected the dissipation rate of spinosad. The terminal residues of spinosad in zucchini were all below the quantification limit. No residue limit currently exists for spinosad in zucchini in China and other countries. Thus, the results can be useful in establishing a maximum residue limit.
Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier
2011-10-01
Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/
Kruse, Marcelo Lapa; Kruse, José Cláudio Lupi; Leiria, Tiago Luiz Luz; Pires, Leonardo Martins; Gensas, Caroline Saltz; Gomes, Daniel Garcia; Boris, Douglas; Mantovani, Augusto; Lima, Gustavo Glotz de
2014-12-01
Occurrences of asymptomatic atrial fibrillation (AF) are common. It is important to identify AF because it increases morbidity and mortality. 24-hour Holter has been used to detect paroxysmal AF (PAF). The objective of this study was to investigate the relationship between occurrence of PAF in 24-hour Holter and the symptoms of the population studied. Cross-sectional study conducted at a cardiology hospital. 11,321 consecutive 24-hour Holter tests performed at a referral service were analyzed. Patients with pacemakers or with AF throughout the recording were excluded. There were 75 tests (0.67%) with PAF. The mean age was 67 ± 13 years and 45% were female. The heart rate (HR) over the 24 hours was a minimum of 45 ± 8 bpm, mean of 74 ± 17 bpm and maximum of 151 ± 32 bpm. Among the tests showing PAF, only 26% had symptoms. The only factor tested that showed a correlation with symptomatic AF was maximum HR (165 ± 34 versus 147 ± 30 bpm) (P = 0.03). Use of beta blockers had a protective effect against occurrence of PAF symptoms (odds ratio: 0.24, P = 0.031). PAF is a rare event in 24-hour Holter. The maximum HR during the 24 hours was the only factor correlated with symptomatic AF, and use of beta blockers had a protective effect against AF symptom occurrence.
On the dissipativity of uncontrollable systems
Camlibel, Mehmet; Willems, Jan C.; Belur, Madhu N.
2003-01-01
This paper deals with dissipativity of uncontrollable linear time-invariant systems with quadratic supply rates and storage functions. A definition of dissipativity appropriate for this class of systems is given. We present a necessary and sufficient condition for dissipativeness in the single input
Karia Ritesh M
2012-04-01
Full Text Available Objective: Objectives of this study is to study effect of smoking on Peak Expiratory Flow Rate and Maximum Voluntary Ventilation in apparently healthy tobacco smokers and non-smokers and to compare the result of both the studies to assess the effects of smoking Method: The present study was carried out by computerized software of Pulmonary Function Test named ‘Spiro Excel’ on 50 non-smokers and 50 smokers. Smokers are divided in three gropus. Full series of test take 4 to 5 minutes. Tests were compared in the both smokers and non-smokers group by the ‘unpaired t test’. Statistical significance was indicated by ‘p’ value < 0.05. Results: From the result it is found that actual value of Peak Expiratory Flow Rate and Maximum Voluntary Ventilation are significantly lower in all smokers group than non-smokers. The difference of actual mean value is increases as the degree of smoking increases. [National J of Med Res 2012; 2(2.000: 191-193
Siegler, Jason C; Marshall, Paul W M; Raftry, Sean; Brooks, Cristy; Dowswell, Ben; Romero, Rick; Green, Simon
2013-12-01
The purpose of this investigation was to assess the influence of sodium bicarbonate supplementation on maximal force production, rate of force development (RFD), and muscle recruitment during repeated bouts of high-intensity cycling. Ten male and female (n = 10) subjects completed two fixed-cadence, high-intensity cycling trials. Each trial consisted of a series of 30-s efforts at 120% peak power output (maximum graded test) that were interspersed with 30-s recovery periods until task failure. Prior to each trial, subjects consumed 0.3 g/kg sodium bicarbonate (ALK) or placebo (PLA). Maximal voluntary contractions were performed immediately after each 30-s effort. Maximal force (F max) was calculated as the greatest force recorded over a 25-ms period throughout the entire contraction duration while maximal RFD (RFD max) was calculated as the greatest 10-ms average slope throughout that same contraction. F max declined similarly in both the ALK and PLA conditions, with baseline values (ALK: 1,226 ± 393 N; PLA: 1,222 ± 369 N) declining nearly 295 ± 54 N [95% confidence interval (CI) = 84-508 N; P force vs. maximum rate of force development during a whole body fatiguing task.
Larson, Eric D.; St. Clair, Joshua R.; Sumner, Whitney A.; Bannister, Roger A.; Proenza, Cathy
2013-01-01
An inexorable decline in maximum heart rate (mHR) progressively limits human aerobic capacity with advancing age. This decrease in mHR results from an age-dependent reduction in “intrinsic heart rate” (iHR), which is measured during autonomic blockade. The reduced iHR indicates, by definition, that pacemaker function of the sinoatrial node is compromised during aging. However, little is known about the properties of pacemaker myocytes in the aged sinoatrial node. Here, we show that depressed excitability of individual sinoatrial node myocytes (SAMs) contributes to reductions in heart rate with advancing age. We found that age-dependent declines in mHR and iHR in ECG recordings from mice were paralleled by declines in spontaneous action potential (AP) firing rates (FRs) in patch-clamp recordings from acutely isolated SAMs. The slower FR of aged SAMs resulted from changes in the AP waveform that were limited to hyperpolarization of the maximum diastolic potential and slowing of the early part of the diastolic depolarization. These AP waveform changes were associated with cellular hypertrophy, reduced current densities for L- and T-type Ca2+ currents and the “funny current” (If), and a hyperpolarizing shift in the voltage dependence of If. The age-dependent reduction in sinoatrial node function was not associated with changes in β-adrenergic responsiveness, which was preserved during aging for heart rate, SAM FR, L- and T-type Ca2+ currents, and If. Our results indicate that depressed excitability of individual SAMs due to altered ion channel activity contributes to the decline in mHR, and thus aerobic capacity, during normal aging. PMID:24128759
Loyka, Sergey; Gagnon, Francois
2009-01-01
Motivated by a recent surge of interest in convex optimization techniques, convexity/concavity properties of error rates of the maximum likelihood detector operating in the AWGN channel are studied and extended to frequency-flat slow-fading channels. Generic conditions are identified under which the symbol error rate (SER) is convex/concave for arbitrary multi-dimensional constellations. In particular, the SER is convex in SNR for any one- and two-dimensional constellation, and also in higher dimensions at high SNR. Pairwise error probability and bit error rate are shown to be convex at high SNR, for arbitrary constellations and bit mapping. Universal bounds for the SER 1st and 2nd derivatives are obtained, which hold for arbitrary constellations and are tight for some of them. Applications of the results are discussed, which include optimum power allocation in spatial multiplexing systems, optimum power/time sharing to decrease or increase (jamming problem) error rate, an implication for fading channels ("fa...
Lingen Chen, Shuhuan Wei, Zhihui Xie, Fengrui Sun
2015-01-01
Full Text Available An electromagnet requests high magnetic induction and low temperature. Based on constructal theory and entransy theory, a new complex-objective function of magnetic induction and mean temperature difference to describe performance of electromagnet is provided, and the electromagnet has been optimized using the new complex-objective function. When the performance of electromagnet achieves its best, the solenoid becomes longer and thinner as the number of the high thermal conductivity cooling discs increases. Simultaneously, the magnetic induction becomes higher and the mean temperature difference becomes lower. The optimized performance of electromagnet is also improved as the volume of solenoid increases. Simultaneously, as the volume of the electromagnet increases, the magnetic induction increases to its maximum and then decreases, but the mean temperature decreases all along.
Rezaeian Mahdi
2015-01-01
Full Text Available Containment of a transport cask during both normal and accident conditions is important to the health and safety of the public and of the operators. Based on IAEA regulations, releasable activity and maximum permissible volumetric leakage rate within the cask containing fuel samples of Tehran Research Reactor enclosed in an irradiated capsule are calculated. The contributions to the total activity from the four sources of gas, volatile, fines, and corrosion products are treated separately. These calculations are necessary to identify an appropriate leak test that must be performed on the cask and the results can be utilized as the source term for dose evaluation in the safety assessment of the cask.
Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N
2014-06-01
Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Jorge Cuadrado Reyes
2011-05-01
Full Text Available Abstract This research developed a logarithms for calculating the maximum heart rate (max. HR for players in team sports in game situations. The sample was made of thirteen players (aged 24 ± 3 to a Division Two Handball team. HR was initially measured by Course Navette test. Later, twenty one training sessions were conducted in which HR and Rate of Perceived Exertion (RPE, were continuously monitored, in each task. A lineal regression analysis was done to help find a max. HR prediction equation from the max. HR of the three highest intensity sessions. Results from this equation correlate significantly with data obtained in the Course Navette test and with those obtained by other indirect methods. The conclusion of this research is that this equation provides a very useful and easy way to measure the max. HR in real game situations, avoiding non-specific analytical tests and, therefore laboratory testing.. Key words: workout control, functional evaluation, prediction equation.
Li, Qiang; Rapp, Markus; Schrön, Anne; Schneider, Andreas; Stober, Gunter
2016-12-01
We present the derivation of turbulent energy dissipation rate ɛ from a total of 522 days of observations with the Middle Atmosphere Alomar Radar SYstem (MAARSY) mesosphere-stratosphere-troposphere (MST) radar running tropospheric experiments during the period of 2010-2013 as well as with balloon-borne radiosondes based on a campaign in the summer 2013. Spectral widths are converted to ɛ after the removal of the broadening effects due to the finite beam width of the radar. With the simultaneous in situ measurements of ɛ with balloon-borne radiosondes at the MAARSY radar site, we compare the ɛ values derived from both techniques and reach an encouraging agreement between them. Using all the radar data available, we present a preliminary climatology of atmospheric turbulence in the UTLS (upper troposphere and lower stratosphere) region above the MAARSY site showing a variability of more than 5 orders of magnitude inherent in turbulent energy dissipation rates. The derived ɛ values reveal a log-normal distribution with a negative skewness, and the ɛ profiles show an increase with height which is also the case for each individual month. Atmospheric turbulence based on our radar measurements reveals a seasonal variation but no clear diurnal variation in the UTLS region. Comparison of ɛ with the gradient Richardson number Ri shows that only 1.7 % of all the data with turbulence occur under the condition of Ri 1. Further, there is a roughly negative correlation between ɛ and Ri that is independent of the scale dependence of Ri. Turbulence under active dynamical conditions (velocity of horizontal wind U > 10 m s-1) is significantly stronger than under quiet conditions (U < 10 m s-1). Last but not least, the derived ɛ values are compared with the corresponding vertical shears of background wind velocity showing a linear relation with a corresponding correlation coefficient r = 58 % well above the 99.9 % significance level. This implies that wind shears play an
Zhang, Hongxia; Ma, Zheng Feei; Yang, Haiyan; Kong, Lingming
2017-09-08
This study described the development and validation of a simple, rapid, specific and sensitive method for detecting chlormequat chloride (CQ) and mepiquat chloride (MQ) residues in tomato cultivation matrices covering soil, water, seedling samples. The dissipation rates of CQ and MQ in tomato cultivation matrices were also determined in this study. A Hydrophilic Interaction Liquid Chromatography (HILIC) column was used for chromatographic separation. A triple quadrupole mass spectrometer equipped with an electrospray ionisation source in positive ion mode by multiple reaction monitoring was used for detection. Soil samples were extracted with accelerated solvent extraction (ASE) and cleaned up with WCX phase extraction column; water samples were extracted with WCX phase extraction column; seedling samples were extracted with methanol-ammonium acetate solution. LODs and LOQs of CQ and MQ were 0.02μg/kg and 0.1μg/kg in soil samples, 0.005ng/mL and 0.02ng/mL in water samples, and 0.05μg/kg and 1.0μg/kg in seedling samples, respectively. The mean recovery rate of CQ in soil, water and seedling samples ranged from 76.98% to 111.60%. While the mean recovery rate of MQ in soil, water and seedling samples ranged from 96.90% to 105.40%. The fastest to the slowest metabolising rates of CQ and MQ were as follows: soil samples>seedling samples>water samples. In conclusion, this study provided a new potential method for detecting CQ and MQ in tomato cultivation matrices using ultra-performance liquid chromatography-tandem mass spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantum dissipative Higgs model
Amooghorban, Ehsan, E-mail: Ehsan.amooghorban@sci.sku.ac.ir; Mahdifar, Ali, E-mail: mahdifar_a@sci.sku.ac.ir
2015-09-15
By using a continuum of oscillators as a reservoir, we present a classical and a quantum-mechanical treatment for the Higgs model in the presence of dissipation. In this base, a fully canonical approach is used to quantize the damped particle on a spherical surface under the action of a conservative central force, the conjugate momentum is defined and the Hamiltonian is derived. The equations of motion for the canonical variables and in turn the Langevin equation are obtained. It is shown that the dynamics of the dissipative Higgs model is not only determined by a projected susceptibility tensor that obeys the Kramers–Kronig relations and a noise operator but also the curvature of the spherical space. Due to the gnomonic projection from the spherical space to the tangent plane, the projected susceptibility displays anisotropic character in the tangent plane. To illuminate the effect of dissipation on the Higgs model, the transition rate between energy levels of the particle on the sphere is calculated. It is seen that appreciable probabilities for transition are possible only if the transition and reservoir’s oscillators frequencies to be nearly on resonance.
2010-07-01
... PREPARING TOMORROW'S TEACHERS TO USE TECHNOLOGY § 614.6 What is the maximum indirect cost rate for all... requirements; or (3) Charged by the grantee to another Federal award. (Authority: 20 U.S.C. 6832)...
Li, Qian; Wang, Yan; Zou, Yong-De; Liao, Xin-Di; Liang, Juan-Boo; Xin, Wen; Wu, Yin-Bao
2015-09-15
The behavior of veterinary antibiotics in the soil is commonly studied using the following methods to add antibiotics to the soil: (A) adding manure collected from animals fed a diet that includes antibiotics; (B) adding antibiotic-free animal manure spiked with antibiotics; and (C) the direct addition of antibiotics. However, most studies have only used methods (B) and (C) in their research, and few studies have simultaneously compared the different antibiotic addition methods. This study used tylosin A (TYLA) as a model antibiotic to compare the effects of these three commonly used antibiotic addition methods on the dissipation rates of TYLA and the numbers of resistance genes in laboratory incubation experiments. The results showed that the three treatment methods produced similar TYLA degradation trends; however, there were significant differences (Ptylosin B (TYLB) and tylosin D (TYLD). The main route for veterinary antibiotics to enter the soil is via the manure of animals that have been administered antibiotics. Therefore, the more appropriate method to study the degradation and ecotoxicity of antibiotic residues in the soil is by using manure from animals fed/administered the particular antibiotic rather than by adding the antibiotic directly to the soil.
N. Engler
2005-06-01
Full Text Available During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100mW kg^{-1} in the altitude range of 80-92km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.
Kalashnikov, Vladimir L
2010-01-01
The analytical theory of chirped dissipative soliton solutions of nonlinear complex Ginzburg-Landau equation is exposed. Obtained approximate solutions are easily traceable within an extremely broad range of the equation parameters and allow a clear physical interpretation as a representation of the strongly chirped pulses in mode-locked both solid-state and fiber oscillators. Scaling properties of such pulses demonstrate a feasibility of sub-mJ pulse generation in the continuous-wave mode-locking regime directly from an oscillator operating at the MHz repetition rate.
Sada, H
1978-10-01
Effects of phentolamine (13.3, 26.5 and 53.0 micron), alprenolol (3.5, 7.0 and 17.5 micron) and prenylamine (2.4, 4.8 and 11.9 micron) on the transmembrane potential were studied in isolated guinea-pig papillary muscles, superfused with Tyrode's solution. 1. Phentolamine, alprenolol and prenylamine reduced the maximum rate of rise of action potential (.Vmax) dose-dependently. Higher concentrations of phentolamine and prenylamine caused a loss of plateau in a majority of the preparations. Resting potential was not altered by any of the drugs. Readmittance of drug-free Tyrode's solution reversed these changes induced by 13.3 micron of phentolamine and all conconcentrations of alprenolol almost completely but those induced by higher concentrations of phentolamine and all concentrations of prenylamine only slightly. 2. .Vmax at steady state was increased with decreasing driving frequencies (0.5 and 0.25 Hz) and was decreased with increasing ones (2--5 Hz) in comparison with that at 1 Hz. Such changes were all exaggerated by the above drugs, particularly by prenylamine. 3. Prenylamine and, to a lesser degree, phentolamine and alprenolol delayed dose-dependently the recovery process of .Vmax in premature responses. 4. .Vmax in the first response after interruption of stimulation recovered toward the predrug value in the presence of the above three drugs. The time constants of recovery process ranged between 10.5 and 15.0s for phentolamine, between 4.5 and 15.5s for alprenolol. The time constant of the main component was estimated to be approximately 2s for the recovery process with prenylamine. 5. On the basis of the model recently proposed by Hondeghem and Katzung (1977), it is suggested that the drug molecules associate with the open sodium channels and dissociated slowly from the closed channels and that the inactivation parameter in the drug-associated channels is shifted in the hyperpolarizing direction.
Mazhar A. Memon
2016-04-01
Full Text Available ABSTRACT Objective: To evaluate correlation between visual prostate score (VPSS and maximum flow rate (Qmax in men with lower urinary tract symptoms. Material and Methods: This is a cross sectional study conducted at a university Hospital. Sixty-seven adult male patients>50 years of age were enrolled in the study after signing an informed consent. Qmax and voided volume recorded at uroflowmetry graph and at the same time VPSS were assessed. The education level was assessed in various defined groups. Pearson correlation coefficient was computed for VPSS and Qmax. Results: Mean age was 66.1±10.1 years (median 68. The mean voided volume on uroflowmetry was 268±160mL (median 208 and the mean Qmax was 9.6±4.96mLs/sec (median 9.0. The mean VPSS score was 11.4±2.72 (11.0. In the univariate linear regression analysis there was strong negative (Pearson's correlation between VPSS and Qmax (r=848, p<0.001. In the multiple linear regression analyses there was a significant correlation between VPSS and Qmax (β-http://www.blogapaixonadosporviagens.com.br/p/caribe.html after adjusting the effect of age, voided volume (V.V and level of education. Multiple linear regression analysis done for independent variables and results showed that there was no significant correlation between the VPSS and independent factors including age (p=0.27, LOE (p=0.941 and V.V (p=0.082. Conclusion: There is a significant negative correlation between VPSS and Qmax. The VPSS can be used in lieu of IPSS score. Men even with limited educational background can complete VPSS without assistance.
Gokoglu, S. A.; Rosner, D. E.
1984-01-01
A cooled object (heat exchanger tube or turbine blade) is considered to be immersed in a hot fluid stream containing trace amounts of suspended vapors and/or small particles. Numerical prediction calculations were done for self-similar laminar boundary layers and law-of-the-wall turbulent boundary layers. Correlations are presented for the effect of thermophoresis in the absence of transpiration cooling and viscous dissipation; the effect of real suction and blowing in the absence of thermophoresis; the effect of viscous dissipation on thermophoresis in the absence of transpiration cooling; and the combined effect of viscous dissipation and transpiration cooling on thermophoresis. The final correlation, St/St-sub-zero, is insensitive to particle properties, Euler number, and local mainstream temperature.
Quantum bouncer with dissipation
Lopez, G.; Gonzalez, G. [Departamento de Fisica de la Universidad de Guadalajara, AP 4-137, 44410 Guadalajara, Jalisco (Mexico)
2006-07-01
Effects on the spectra of the quantum bouncer due to dissipation are given when a linear o quadratic dissipation in the velocity of the particle is taken into account. Classical constants of motion and Hamiltonians are deduced for these systems and their quantized eigenvalues are estimated through perturbation theory. Differences were found comparing the eigenvalues of the constants of motion and the eigenvalues of the Hamiltonians. The cases when the dissipation parameters go to zero are compared with the non dissipative cases. (Author)
Weakly dissipative dust-ion acoustic wave modulation
Alinejad, H.; Mahdavi, M.; Shahmansouri, M.
2016-02-01
The modulational instability of dust-ion acoustic (DIA) waves in an unmagnetized dusty plasma is investigated in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization recombination and ion loss. Based on the multiple space and time scales perturbation, a new modified nonlinear Schrödinger equation governing the evolution of modulated DIA waves is derived with a linear damping term. It is shown that the combined action of all dissipative mechanisms due to collisions between particles reveals the permitted maximum time for the occurrence of the modulational instability. The influence on the modulational instability regions of relevant physical parameters such as ion temperature, dust concentration, ionization, recombination and ion loss is numerically examined. It is also found that the recombination frequency controls the instability growth rate, whereas recombination and ion loss make the instability regions wider.
1990-09-13
San Fran- with standard electrochemical theory. But, at the same time, cisco 1980. it is the almost linear dependence of A’c1 on the mole frac- [6] I...with our finding that the lowest order non-linear Presented at the Discussion Meeting of the E 7513 dissipation mechanism under consideration leads to a
Robust dissipativity for uncertain impulsive dynamical systems
Liu Bin
2003-01-01
Full Text Available We discuss the robust dissipativity with respect to the quadratic supply rate for uncertain impulsive dynamical systems. By employing the Hamilton-Jacobi inequality approach, some sufficient conditions of robust dissipativity for this kind of system are established. Finally, we specialize the obtained results to the case of uncertain linear impulsive dynamical systems.
张艳超; 何济洲
2014-01-01
在低耗散卡诺热机模型的基础上，进一步研究热漏对低耗散卡诺热机最大功率下效率及其边界的影响。在类卡诺热机循环条件下，考虑等温膨胀与等温压缩过程中高低温热源之间存在热漏，推导出存在热漏时低耗散卡诺热机最大功率下效率的表达式，并且在对称情况下与经典CA(Curzon-Ahlborn)效率进行比较。发现当不存在热漏时，低耗散卡诺热机最大功率下的效率等于CA效率。当存在热漏时，低耗散卡诺热机最大功率下的效率低于CA效率，并随着热漏的增加而降低。在非对称下得到存在热漏时低耗散卡诺热机最大功率下效率的上下限和可观测范围，并与不同种类实际的热机效率进行比较，结果表明考虑热漏时低耗散卡诺热机的效率及其边界更加符合实际热机的观测值。%Based on the low-dissipation Carnot heat engine model, the influence of heat leak on the efficiency at maximum power and its bounds of low-dissipation Carnot heat engine are further discussed. Under the condition of Carnot-like heat engine cycle, the expressions for the efficiency at maximum power of the quantum dot engine are derived in the presence of heat leak between hot reservoir and cold reservoir of the isothermal expansion and the isothermal compression process, and compared with the classical CA efficiency in the symmetric case. It is found that, when there is no heat leak, the efficiency at maximum power of the low-dissipation Carnot heat engine is equal to the CA efficiency. In the presence of heat leak, the efficiency at maximum power of the low-dissipation Carnot heat engine is lower than the CA efficiency, and decreases with the increases of heat leak. In the case of asymmetric, the upper bound and lower bound of efficiency at maximum power are obtained, and compared with different kinds of actual engine efficiency. The results show that the efficiency at maximum power and its
34 CFR 694.9 - What is the maximum indirect cost rate for an agency of a State or local government?
2010-07-01
... for an agency of a State or local government? Notwithstanding 34 CFR 75.560-75.562 and 34 CFR 80.22, the maximum indirect cost rate that an agency of a State or local government receiving funds under... a State or local government? 694.9 Section 694.9 Education Regulations of the Offices of...
Multiple scales of shock waves in dissipative laminate materials
Franco Navarro, Pedro; Benson, David J.; Nesterenko, Vitali F.
2016-09-01
The shock waves generated by a plate impact are numerically investigated in Al-W laminates with different mesostructures. The main characteristic time scales (and the corresponding spatial scales) related to the formation of the stationary shock are identified: the duration (width) of the leading front, the time (distance) from the impact required to establish a stationary profile, and the shock front width, identified as a time span (distance) from the initial state to the final quasiequilibrium state. It is demonstrated that the width of the leading front and the maximum strain rates are determined by the dispersive and the nonlinear parameters of the laminate and not by the dissipation, as is the case for uniform solids. The characteristic spatial scale of the leading front is related to the spatial scale observed on solitarylike waves, which are satisfactorily described by the Korteweg-de Vries (KdV) approximation, as well as the speed of the wave and the ratio of maximum to final strain. The dissipation affects the width of the transition distance (shock front width) where multiple loading-unloading cycles bring the laminate into the final quasiequilibrium state. This spatial scale is of the same order of magnitude as the distance to form stationary shock wave. The period of fast decaying oscillations is well described by the KdV approach and scales linearly with the cell size. The rate of the decay of the oscillations in the numerical calculations does not scale with the square of the cell size as expected from the dissipative KdV approach that assumes a constant viscosity. This is due to the different mechanisms of dissipation in high-amplitude compression pulses.
Lee, Sang-Yong; Ortega, Antonio
2000-04-01
We address the problem of online rate control in digital cameras, where the goal is to achieve near-constant distortion for each image. Digital cameras usually have a pre-determined number of images that can be stored for the given memory size and require limited time delay and constant quality for each image. Due to time delay restrictions, each image should be stored before the next image is received. Therefore, we need to define an online rate control that is based on the amount of memory used by previously stored images, the current image, and the estimated rate of future images. In this paper, we propose an algorithm for online rate control, in which an adaptive reference, a 'buffer-like' constraint, and a minimax criterion (as a distortion metric to achieve near-constant quality) are used. The adaptive reference is used to estimate future images and the 'buffer-like' constraint is required to keep enough memory for future images. We show that using our algorithm to select online bit allocation for each image in a randomly given set of images provides near constant quality. Also, we show that our result is near optimal when a minimax criterion is used, i.e., it achieves a performance close to that obtained by applying an off-line rate control that assumes exact knowledge of the images. Suboptimal behavior is only observed in situations where the distribution of images is not truly random (e.g., if most of the 'complex' images are captured at the end of the sequence.) Finally, we propose a T- step delay rate control algorithm and using the result of 1- step delay rate control algorithm, we show that this algorithm removes the suboptimal behavior.
Storage functions for dissipative linear systems are quadratic state functions
Trentelman, Harry L.; Willems, Jan C.
1997-01-01
This paper deals with dissipative dynamical systems. Dissipative dynamical systems can be used as models for physical phenomena in which energy exchange with their environment plays a role. In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and a storage functi
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Young chicken and squab slaughter... INSPECTION REGULATIONS Operating Procedures § 381.67 Young chicken and squab slaughter inspection rate... inspector per minute under the traditional inspection procedure for the different young chicken and...
Kolmogorov Dissipation scales in Weakly Ionized Plasmas
Krishan, V
2009-01-01
In a weakly ionized plasma, the evolution of the magnetic field is described by a "generalized Ohm's law" that includes the Hall effect and the ambipolar diffusion terms. These terms introduce additional spatial and time scales which play a decisive role in the cascading and the dissipation mechanisms in magnetohydrodynamic turbulence. We determine the Kolmogorov dissipation scales for the viscous, the resistive and the ambipolar dissipation mechanisms. The plasma, depending on its properties and the energy injection rate, may preferentially select one of the these dissipation scales. thus determining the shortest spatial scale of the supposedly self-similar spectral distribution of the magnetic field. The results are illustrated taking the partially ionized part of the solar atmosphere as an example. Thus the shortest spatial scale of the supposedly self-similar spectral distribution of the solar magnetic field is determined by any of the four dissipation scales given by the viscosity, the Spizer resistivity...
Dissipative systems: uncontrollability, observability and RLC realizability
Karikalan, Selvaraj; Abdulrazak, Rihab
2011-01-01
The theory of dissipativity has been primarily developed for controllable systems/behaviors. For various reasons, in the context of uncontrollable systems/behaviors, a more appropriate definition of dissipativity is in terms of the dissipation inequality, namely the {\\em existence} of a storage function. A storage function is a function such that along every system trajectory, the rate of increase of the storage function is at most the power supplied. While the power supplied is always expressed in terms of only the external variables, whether or not the storage function should be allowed to depend on unobservable/hidden variables also has various consequences on the notion of dissipativity: this paper thoroughly investigates the key aspects of both cases, and also proposes another intuitive definition of dissipativity. We first assume that the storage function can be expressed in terms of the external variables and their derivatives only and prove our first main result that, assuming the uncontrollable poles...
Dissipation function in a magnetic field (Review)
Gurevich, V. L.
2015-07-01
The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.
Dissipative Boussinesq equations
Dutykh, D; Dias, Fr\\'{e}d\\'{e}ric; Dutykh, Denys
2007-01-01
The classical theory of water waves is based on the theory of inviscid flows. However it is important to include viscous effects in some applications. Two models are proposed to add dissipative effects in the context of the Boussinesq equations, which include the effects of weak dispersion and nonlinearity in a shallow water framework. The dissipative Boussinesq equations are then integrated numerically.
Dissipation by a crystallization process
Dorosz, Sven; Voigtmann, Thomas; Schilling, Tanja
2016-01-01
We discuss crystallization as a non-equilibrium process. In a system of hard spheres under compression at a constant rate, we quantify the amount of heat that is dissipated during the crystallization process. We interpret the dissipation as arising from the resistance of the system against phase transformation. An intrinsic compression rate is identified that separates a quasi-static regime from one of rapidly driven crystallization. In the latter regime the system crystallizes more easily, because new relaxation channels are opened, at the cost of forming a higher fraction of non-equilibrium crystal structures. We rationalize the change in the crystallization mechanism by analogy with shear thinning, in terms of a kinetic competition between near-equilibrium relaxation and external driving.
Dang, Cuong Cao; Le, Vinh Sy; Gascuel, Olivier; Hazes, Bart; Le, Quang Si
2014-10-24
Amino acid replacement rate matrices are a crucial component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Ideally, the rate matrix reflects the mutational behavior of the actual data under study; however, estimating amino acid replacement rate matrices requires large protein alignments and is computationally expensive and complex. As a compromise, sub-optimal pre-calculated generic matrices are typically used for protein-based phylogeny. Sequence availability has now grown to a point where problem-specific rate matrices can often be calculated if the computational cost can be controlled. The most time consuming step in estimating rate matrices by maximum likelihood is building maximum likelihood phylogenetic trees from protein alignments. We propose a new procedure, called FastMG, to overcome this obstacle. The key innovation is the alignment-splitting algorithm that splits alignments with many sequences into non-overlapping sub-alignments prior to estimating amino acid replacement rates. Experiments with different large data sets showed that the FastMG procedure was an order of magnitude faster than without splitting. Importantly, there was no apparent loss in matrix quality if an appropriate splitting procedure is used. FastMG is a simple, fast and accurate procedure to estimate amino acid replacement rate matrices from large data sets. It enables researchers to study the evolutionary relationships for specific groups of proteins or taxa with optimized, data-specific amino acid replacement rate matrices. The programs, data sets, and the new mammalian mitochondrial protein rate matrix are available at http://fastmg.codeplex.com.
Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection
Hotta, H.
2017-08-01
We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflow is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.
Gonzalez-Lopezlira, Rosa A; Kroupa, Pavel
2012-01-01
We analyze the relationship between maximum cluster mass, M_max, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H2) and star formation rate (Sigma_SFR) in the flocculent galaxy M33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M_max is proportional to Sigma_gas^4.7, M_max is proportional Sigma_H2^1.3, and M_max is proportional to Sigma_SFR^1.0. We rule out that these correlations result from the size of sample; hence, the change of the maximum cluster mass must be due to physical causes.
Podivilov, Evgeniy V; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Babin, Sergey A
2016-01-01
Dissipative solitons are stable localized coherent structures with linear frequency chirp generated in normal-dispersion mode-locked lasers. The soliton energy in fiber lasers is limited by the Raman effect, but implementation of intracavity feedback for the Stokes wave enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming a "dissipative soliton comb" in the frequency domain. We observed up to eight equidistant components in a 400-nm interval demonstrating compressibility from ~10 ps to ~300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications.
Entanglement generated by dissipation
Krauter, Hanna; Jensen, Kasper; Wasilewski, Wojciech; Petersen, Jonas M; Cirac, J Ignacio; Polzik, Eugene S
2010-01-01
Entanglement is not only one of the most striking features of Quantum Mechanics but also an essential ingredient in most applications in the field of Quantum Information. Unfortunately, this property is very fragile. In experiments conducted so far, coupling of the system to a quantum mechanical environment, commonly referred to as dissipation, either inhibits entanglement or prevents its generation. In this Letter, we report on an experiment in which dissipation induces entanglement between two atomic objects rather than impairing it. This counter-intuitive effect is achieved by engineering the dissipation by means of laser- and magnetic fields, and leads to entanglement which is very robust and therefore long-lived. Our system consists of two distant macroscopic ensembles containing about 10^{12} atoms coupled to the environment composed of the vacuum modes of the electromagnetic field. The two atomic objects are kept entangled by dissipation at room temperature for about 0.015s. The prospects of using this...
Lovell, Dale I; Cuneo, Ross; Gass, Greg C
2010-06-01
This study examined the effect of strength training (ST) and short-term detraining on maximum force and rate of force development (RFD) in previously sedentary, healthy older men. Twenty-four older men (70-80 years) were randomly assigned to a ST group (n = 12) and C group (control, n = 12). Training consisted of three sets of six to ten repetitions on an incline squat at 70-90% of one repetition maximum three times per week for 16 weeks followed by 4 weeks of detraining. Regional muscle mass was assessed before and after training by dual-energy X-ray absorptiometry. Training increased RFD, maximum bilateral isometric force, and force in 500 ms, upper leg muscle mass and strength above pre-training values (14, 25, 22, 7, 90%, respectively; P force and RFD of older men. However, older individuals may lose some neuromuscular performance after a period of short-term detraining and that resistance exercise should be performed on a regular basis to maintain training adaptations.
Malekifarsani, A; Skachek, M A
2009-10-01
shown that the concentrations of the following radionuclides are limited by solubility and precipitate around the waste and buffer: U, Np, Ra, Sm, Zr, Se, Tc, and Pd. The Sensitivity of maximum release rates in case precipitation shows that some nuclides such as Cs-135, Nb-94, Nb-93 m, Zr-93, Sn-126, Th-230, Pu-240, Pu-242, Pu-239, Cm-245, Am-243, Cm-245, U-233, Ac-227, Pb-210, Pa-231 and Th-229 are very little changed in case the maximum release rate from EBS corresponding to eliminate precipitation in buffer material. Some nuclides such as Se-79, Tc-99, Pd-107, Th-232, U-236, U-233, Ra-226, Np-237 U-235, U-234, and U-238 are virtually changed in the maximum release rate compared to case that taking account precipitation. In Sensitivity of maximum release rates in case to taking account stable isotopes (according to the table of inventory) there are only some nuclides with their stable isotopes in the vitrified waste. And calculation shows that Pd-107 and Se-79 are very increase in case eliminate stable isotope. The Sensitivity of maximum release rates in case retardation with sorption shows that some nuclides such as Pu-240, Pu-241, Pu-239, Cm-245, Am-241, Cm-246, and Am-243 are increased in some time in case maximum release rate from EBS corresponding to eliminate retardation in buffer material. Some nuclides such as U-235, U-233 and U-236 have a little decrease in case maximum release because their parents have short live and before decay to their daughter will released from the EBS. If the characteristic time taken for a nuclide to diffuse across the buffer exceeds its half-life, then the release rate of that nuclide from the EBS will be attenuated by radioactive decay. Thus, the retardation of the diffusion process due to sorption tends to reduce the release rates of short-lived nuclides more effectively than for the long-lived ones. For example, release rates of Pu-240, Cm-246 and Am-241, which are relatively short-lived and strongly sorbing, are very small
Dynamics of fracture in dissipative systems
Rautiainen, T.T.; Kaski, K. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Computational Engineering; Alava, M.J. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physics
1997-12-31
Dynamics of fracture in two-dimensional systems is studied with a dissipative network model by including the local relaxation of the force field via Maxwellian viscoelasticity. In addition to disorder the fundamentals of crack formation and propagation depend on the strength of dissipation compared to the loading rate. We investigate the dynamics of a single crack and the role of stress reduction at the crack tip when dissipation is increased. As a consequence, the crack starts to propagate slowly and it reaches terminal velocity later. If the relaxation of local forces is strong enough compared with crack velocity, crack arrest takes place. For a disordered system, the presence of strong dissipation in local dynamics is reflected as ductility and as an increase in the damage, accumulated during the fracture process. (orig.) 25 refs.
Luis Eduardo Cruz-Martínez
2014-10-01
Full Text Available Background. The formulas to predict maximum heart rate have been used for many years in different populations. Objective. To verify the significance and the association of formulas of Tanaka and 220-age when compared to real maximum heart rate. Materials and methods. 30 subjects -22 men, 8 women- between 18 and 30 years of age were evaluated on a cycle ergometer and their real MHR values were statistically compared with the values of formulas currently used to predict MHR. Results. The results demonstrate that both Tanaka p=0.0026 and 220-age p=0.000003 do not predict real MHR, nor does a linear association exist between them. Conclusions. Due to the overestimation with respect to real MHR value that these formulas make, we suggest a correction of 6 bpm to the final result. This value represents the median of the difference between the Tanaka value and the real MHR. Both Tanaka (r=0.272 and 220-age (r=0.276 are not adequate predictors of MHR during exercise at the elevation of Bogotá in subjects of 18 to 30 years of age, although more study with a larger sample size is suggested.
Shaw, A; Takács, I; Pagilla, K R; Murthy, S
2013-10-15
The Monod equation is often used to describe biological treatment processes and is the foundation for many activated sludge models. The Monod equation includes a "half-saturation coefficient" to describe the effect of substrate limitations on the process rate and it is customary to consider this parameter to be a constant for a given system. The purpose of this study was to develop a methodology, and its use to show that the half-saturation coefficient for denitrification is not constant but is in fact a function of the maximum denitrification rate. A 4-step procedure is developed to investigate the dependency of half-saturation coefficients on the maximum rate and two different models are used to describe this dependency: (a) an empirical linear model and (b) a deterministic model based on Fick's law of diffusion. Both models are proved better for describing denitrification kinetics than assuming a fixed K(NO3) at low nitrate concentrations. The empirical model is more utilitarian whereas the model based on Fick's law has a fundamental basis that enables the intrinsic K(NO3) to be estimated. In this study data was analyzed from 56 denitrification rate tests and it was found that the extant K(NO3) varied between 0.07 mgN/L and 1.47 mgN/L (5th and 95th percentile respectively) with an average of 0.47 mgN/L. In contrast to this, the intrinsic K(NO3) estimated for the diffusion model was 0.01 mgN/L which indicates that the extant K(NO3) is greatly influenced by, and mostly describes, diffusion limitations.
Novel dissipative properties of the master equation
Hong, Liu; Jia, Chen; Zhu, Yi; Yong, Wen-An
2016-10-01
Recent studies have shown that the entropy production rate for the master equation consists of two non-negative terms: the adiabatic and non-adiabatic parts, where the non-adiabatic part is also known as the free energy dissipation rate. In this paper, we present some nonzero lower bounds for the free energy, the entropy production rate, and its adiabatic and non-adiabatic parts. These nonzero lower bounds not only reveal some novel dissipative properties for nonequilibrium dynamics which are much stronger than the second law of thermodynamics, but also impose some new constraints on thermodynamic constitutive relations. Moreover, we also give a mathematical application of the nonzero lower bounds by studying the long-time behavior of the master equation. Extensions to the Tsallis statistics are also discussed, including the nonzero lower bounds for the Tsallis-type free energy and its dissipation rate.
Kinkhabwala, Ali
2013-01-01
The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...
Estimating wave energy dissipation in the surf zone using thermal infrared imagery
Carini, Roxanne J; Chickadel, C. Chris; Jessup, Andrew T; Thomson, Jim
2015-01-01
...‐resolving model by Duncan (1981). The wave energy dissipation rate estimates show a pattern of increased breaking during low tide over a sand bar, consistent with in situ turbulent kinetic energy dissipation rate estimates from fixed...
Graphene heat dissipating structure
Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.
2017-08-01
Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.
Rosewarne, P J; Wilson, J M; Svendsen, J C
2016-01-01
Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology.
Weiss, Ulrich
2008-01-01
Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi
Dissipative structures and chaos
Mori, Hazime
1998-01-01
This monograph consists of two parts and gives an approach to the physics of open nonequilibrium systems. Part I derives the phenomena of dissipative structures on the basis of reduced evolution equations and includes Bénard convection and Belousov-Zhabotinskii chemical reactions. Part II discusses the physics and structures of chaos. While presenting a construction of the statistical physics of chaos, the authors unify the geometrical and statistical descriptions of dynamical systems. The shape of chaotic attractors is characterized, as are the mixing and diffusion of chaotic orbits and the fluctuation of energy dissipation exhibited by chaotic systems.
Ma, Jingxing; Mungoni, Lucy Jubeki; Verstraete, Willy; Carballa, Marta
2009-07-01
The maximum propionic acid (HPr) removal rate (R(HPr)) was investigated in two lab-scale Upflow Anaerobic Sludge Bed (UASB) reactors. Two feeding strategies were applied by modifying the hydraulic retention time (HRT) in the UASB(HRT) and the influent HPr concentration in the UASB(HPr), respectively. The experiment was divided into three main phases: phase 1, influent with only HPr; phase 2, HPr with macro-nutrients supplementation and phase 3, HPr with macro- and micro-nutrients supplementation. During phase 1, the maximum R(HPr) achieved was less than 3 g HPr-CODL(-1)d(-1) in both reactors. However, the subsequent supplementation of macro- and micro-nutrients during phases 2 and 3 allowed to increase the R(HPr) up to 18.1 and 32.8 g HPr-CODL(-1)d(-1), respectively, corresponding with an HRT of 0.5h in the UASB(HRT) and an influent HPr concentration of 10.5 g HPr-CODL(-1) in the UASB(HPr). Therefore, the high operational capacity of these reactor systems, specifically converting HPr with high throughput and high influent HPr level, was demonstrated. Moreover, the presence of macro- and micro-nutrients is clearly essential for stable and high HPr removal in anaerobic digestion.
Gonzalez-Lopezlira, Rosa A; Kroupa, Pavel
2013-01-01
We analyze the relationship between maximum cluster mass, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H_2), neutral gas (Sigma_HI) and star formation rate (Sigma_SFR) in the grand design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. We find for clusters older than 25 Myr that M_3rd, the median of the 5 most massive clusters, is proportional to Sigma_HI^0.4. There is no correlation with Sigma_gas, Sigma_H2, or Sigma_SFR. For clusters younger than 10 Myr, M_3rd is proportional to Sigma_HI^0.6, M_3rd is proportional to Sigma_gas^0.5; there is no correlation with either Sigma_H_2 or Sigma_SFR. The results could hardly be more different than those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but M_3rd is proportional to Sigma_g...
Zaylaa, Amira; Oudjemia, Souad; Charara, Jamal; Girault, Jean-Marc
2015-09-01
This paper presents two new concepts for discrimination of signals of different complexity. The first focused initially on solving the problem of setting entropy descriptors by varying the pattern size instead of the tolerance. This led to the search for the optimal pattern size that maximized the similarity entropy. The second paradigm was based on the n-order similarity entropy that encompasses the 1-order similarity entropy. To improve the statistical stability, n-order fuzzy similarity entropy was proposed. Fractional Brownian motion was simulated to validate the different methods proposed, and fetal heart rate signals were used to discriminate normal from abnormal fetuses. In all cases, it was found that it was possible to discriminate time series of different complexity such as fractional Brownian motion and fetal heart rate signals. The best levels of performance in terms of sensitivity (90%) and specificity (90%) were obtained with the n-order fuzzy similarity entropy. However, it was shown that the optimal pattern size and the maximum similarity measurement were related to intrinsic features of the time series.
1993-07-01
This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).
Abadi, Ali Salehi Sahl; Mazlomi, Adel; Saraji, Gebraeil Nasl; Zeraati, Hojjat; Hadian, Mohammad Reza; Jafari, Amir Homayoun
2015-10-01
In spite of the widespread use of automation in industry, manual material handling (MMH) is still performed in many occupational settings. The emphasis on ergonomics in MMH tasks is due to the potential risks of workplace accidents and injuries. This study aimed to assess the effect of box size, frequency of lift, and height of lift on maximum acceptable weight of lift (MAWL) on the heart rates of male university students in Iran. This experimental study was conducted in 2015 with 15 male students recruited from Tehran University of Medical Sciences. Each participant performed 18 different lifting tasks that involved three lifting frequencies (1lift/min, 4.3 lifts/min and 6.67 lifts/min), three lifting heights (floor to knuckle, knuckle to shoulder, and shoulder to arm reach), and two box sizes. Each set of experiments was conducted during the 20 min work period using the free-style lifting technique. The working heart rates (WHR) were recorded for the entire duration. In this study, we used SPSS version 18 software and descriptive statistical methods, analysis of variance (ANOVA), and the t-test for data analysis. The results of the ANOVA showed that there was a significant difference between the mean of MAWL in terms of frequencies of lifts (p = 0.02). Tukey's post hoc test indicated that there was a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0. 01). There was a significant difference between the mean heart rates in terms of frequencies of lifts (p = 0.006), and Tukey's post hoc test indicated a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0.004). But, there was no significant difference between the mean of MAWL and the mean heart rate in terms of lifting heights (p > 0.05). The results of the t-test showed that there was a significant difference between the mean of MAWL and the mean heart rate in terms of the sizes of the two boxes (p = 0.000). Based on the results of
Fluctuation-dissipation theorem and quantum tunneling with dissipation
Fujikawa, K
1998-01-01
We suggest to take the fluctuation-dissipation theorem of Callen and Welton as a basis to study quantum dissipative phenomena (such as macroscopic quantum tunneling) in a manner analogous to the Nambu-Goldstone theorem for spontaneous symmetry breakdown. It is shown that the essential physical contents of the Caldeira-Leggett model such as the suppression of quantum coherence by Ohmic dissipation are derived from general principles only, namely, the fluctuation-dissipation theorem and unitarity and causality (i.e., dispersion relations), without referring to an explicit form of the Lagrangian. An interesting connection between quantum tunneling with Ohmic dissipation and the Anderson's orthogonality theorem is also noted.
Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M
2017-01-01
Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent
Debus, J -D; Succi, S; Herrmann, H J
2015-01-01
By inspecting the effect of curvature on a moving fluid, we find that local sources of curvature not only exert inertial forces on the flow, but also generate viscous stresses as a result of the departure of streamlines from the idealized geodesic motion. The curvature-induced viscous forces are shown to cause an indirect and yet appreciable energy dissipation. As a consequence, the flow converges to a stationary equilibrium state solely by virtue of curvature-induced dissipation. In addition, we show that flow through randomly-curved media satisfies a non-linear transport law, resembling Darcy-Forchheimer's law, due to the viscous forces generated by the spatial curvature. It is further shown that the permeability can be characterized in terms of the average metric perturbation.
Dissipative Boussinesq equations
2007-01-01
40 pages, 15 figures, published in C. R. Mecanique 335 (2007) Other author's papers can be downloaded at http://www.cmla.ens-cachan.fr/~dutykh; International audience; The classical theory of water waves is based on the theory of inviscid flows. However it is important to include viscous effects in some applications. Two models are proposed to add dissipative effects in the context of the Boussinesq equations, which include the effects of weak dispersion and nonlinearity in a shallow water fr...
Wave Dissipation by Vegetation
2011-09-01
Coastal and Hydraulics Engineering Technical Note (CHETN) provides a literature review of wave dissipation by vegetation. INTRODUCTION: Flooding...coastal mangrove forests of Vietnam (Quartel et al. 2007, Mazda et al. 2006, Mazda et al. 1997), salt marshes of the United States (Bradley and...et al. 2007, Mazda et al. 2006, Cooper 2005, Möller and Spencer 2002, Möller et al. 1999). A year-long study by Cooper (2005) found that wave
Dissipation Bound for Thermodynamic Control
Machta, Benjamin B.
2015-12-01
Biological and engineered systems operate by coupling function to the transfer of heat and/or particles down a thermal or chemical gradient. In idealized deterministically driven systems, thermodynamic control can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow compared to the equilibration time of the system. Here we consider fully realizable, entropically driven systems where the control parameters themselves obey rules that are reversible and that acquire directionality in time solely through dissipation. We show that when such a system moves in a directed way through thermodynamic space, it must produce entropy that is on average larger than its generalized displacement as measured by the Fisher information metric. This distance measure is subextensive but cannot be made small by slowing the rate of the protocol.
On multi-dissipative dynamic systems
Thygesen, Uffe Høgsbro
1999-01-01
We consider deterministic dynamic systems with state space representations which are dissipative in the sense of Willems (1972) with respect to several supply rates. This property is of interest in robustness analysis and in multi-objective control. We give conditions under which the convex cone...
Complex Fluids in Energy Dissipating Systems
Francisco J. Galindo-Rosales
2016-07-01
Full Text Available The development of engineered systems for energy dissipation (or absorption during impacts or vibrations is an increasing need in our society, mainly for human protection applications, but also for ensuring the right performance of different sort of devices, facilities or installations. In the last decade, new energy dissipating composites based on the use of certain complex fluids have flourished, due to their non-linear relationship between stress and strain rate depending on the flow/field configuration. This manuscript intends to review the different approaches reported in the literature, analyses the fundamental physics behind them and assess their pros and cons from the perspective of their practical applications.
Walker, Anthony P.; Quaife, Tristan; Van Bodegom, Peter M.; De Kauwe, Martin G.; Keenan, Trevor F.; Joiner, Joanna; Lomas, Mark R.; MacBean, Natasha; Xu, Chongang; Yang, Xiaojuan;
2017-01-01
The maximum photosynthetic carboxylation rate (V (sub cmax)) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V(sub cmax) distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 petagrams of Carbon (PgC) per year, 65 percent of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27percent coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r equals 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V(sub cmax) variation in the field, particularly in northern latitudes.
Modal dispersion, pulse broadening and maximum transmission rate in GRIN optical fibers encompass a central dip in the core index profile
El-Diasty, Fouad; El-Hennawi, H. A.; El-Ghandoor, H.; Soliman, Mona A.
2013-12-01
Intermodal and intramodal dispersions signify one of the problems in graded-index multi-mode optical fibers (GRIN) used for LAN communication systems and for sensing applications. A central index dip (depression) in the profile of core refractive-index may occur due to the CVD fabrication processes. The index dip may also be intentionally designed to broaden the fundamental mode field profile toward a plateau-like distribution, which have advantages for fiber-source connections, fiber amplifiers and self-imaging applications. Effect of core central index dip on the propagation parameters of GRIN fiber, such as intermodal dispersion, intramodal dispersion and root-mean-square broadening, is investigated. The conventional methods usually study optical signal propagation in optical fiber in terms of mode characteristics and the number of modes, but in this work multiple-beam Fizeau interferometry is proposed as an inductive but alternative methodology to afford a radial approach to determine dispersion, pulse broadening and maximum transmission rate in GRIN optical fiber having a central index dip.
Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R
2008-04-01
The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.
Circulation and Dissipation on Hot Jupiters
Li, J.; Goodman, J.
2010-12-01
Many global circulation models predict supersonic zonal winds and large vertical shears in the atmospheres of short-period Jovian exoplanets. Using linear analysis and nonlinear local simulations, we investigate hydrodynamic dissipation mechanisms to balance the thermal acceleration of these winds. The adiabatic Richardson criterion remains a good guide to linear stability, although thermal diffusion allows some modes to violate it at very long wavelengths and very low growth rates. Nonlinearly, wind speeds saturate at Mach numbers ≈2 and Richardson numbers lsim1/4 for a broad range of plausible diffusivities and forcing strengths. Turbulence and vertical mixing, though accompanied by weak shocks, dominate the dissipation, which appears to be the outcome of a recurrent Kelvin-Helmholtz instability. An explicit shear viscosity, as well as thermal diffusivity, is added to ZEUS to capture dissipation outside of shocks. The wind speed is neither monotonic nor single valued for a range of shear viscosities larger than about 10-3 of the sound speed times the pressure scale height. Coarsening the numerical resolution can also increase the speed. Hence global simulations that are incapable of representing vertical turbulence and shocks, either because of reduced physics or because of limited resolution, may overestimate wind speeds. We recommend that such simulations include artificial dissipation terms to control the Mach and Richardson numbers and to capture mechanical dissipation as heat.
Circulation and Dissipation on Hot Jupiters
Li, Jason
2010-01-01
Many global circulation models predict supersonic zonal winds and large vertical shears in the atmospheres of short-period jovian exoplanets. Using linear analysis and nonlinear local simulations, we investigate hydrodynamic dissipation mechanisms to balance the thermal acceleration of these winds. The adiabatic Richardson criterion remains a good guide to linear stability, although thermal diffusion allows some modes to violate it at very long wavelengths and very low growth rates. Nonlinearly, wind speeds saturate at Mach numbers $\\approx 2$ and Richardson numbers $\\lesssim 1/4$ for a broad range of plausible diffusivities and forcing strengths. Turbulence and vertical mixing, though accompanied by weak shocks, dominate the dissipation, which appears to be the outcome of a recurrent Kelvin-Helmholtz instability. An explicit shear viscosity, as well as thermal diffusivity, is added to ZEUS to capture dissipation outside of shocks. The wind speed is not monotonic nor single valued for shear viscosities larger...
Chen, Xiao-Jun; Ren, Ya-jun; Meng, Zhi-yuan; Lu, Chun-liang; Gu, Hao-tian; Zhuang, Yi-qing
2016-05-01
Nowadays, there is an urgent need for the investigation of the field dissipation and assessment of the preharvest interval for trichlorfon residues on rice. To protect consumers from potential health risks, this study can provide references for the safe application of trichlorfon in the rice fields. Results of the field dissipation study showed that the dissipation dynamic equations of trichlorfon were based on the first-order reaction dynamic equations and that the dissipation rates vary among rice plant, brown rice, rice bran, soil, and water. The 2-year field trials conducted in Yangzhou and Xiaogan suggested the interval of each application for trichlorfon on rice to be at least 7 days when 80 % trichlorfon SP was sprayed with a dose ranges between 80 and 160 a.i g/667 m(2). Additionally, the preharvest interval of the last application should be at least 15 days to ensure the amounts of residues below the maximum residue limits of trichlorfon on brown rice (0.1 mg/kg).
Yang, Lu; Wu, Longhua; Liu, Wuxing; Huang, Yujuan; Luo, Yongming; Christie, Peter
2016-11-21
Application of biosolids to agricultural soils is one of the pathways by which antibiotics can be introduced into agricultural ecosystems. A pot experiment was conducted with repeated soil amendment with biosolids to examine the concentrations of four classes of antibiotics (tetracyclines, sulfonamides, fluoroquinolones, and macrolides) and their dissipation in three different soil types in wheat-rice rotations. Antibiotics accumulate in the soils after repeated application of biosolids. Fluoroquinolones showed stronger accumulation and persistence in the test soils than the other three classes of antibiotics. The maximum residual antibiotic concentration was that of norfloxacin at 155 ± 16 μg kg(-1) in the Typic Hapli-Stagnic Anthrosols (paddy soil). Predicted half-lives were up to 3.69 years, a much longer period than that between biosolid applications (twice each year on average). Antibiotic accumulation followed the rough order fluoroquinolones > tetracyclines > macrolides > sulfonamides, and the sulfonamides were seldom encountered. When biosolid application was suspended, the dissipation rate accelerated. Antibiotic dissipation was slightly slower when biosolids with high heavy metal concentrations were applied and microbial degradation may have been the main mechanism of dissipation. Norfloxacin persistence was positively correlated with its soil adsorption capacity. Cation exchange capacity and soil organic matter content may have vital roles in the soil adsorption of fluoroquinolones. Because of their persistence, the fluoroquinolones must be taken into account in the planning of biosolid applications in agricultural practice.
Dissipation and residue of forchlorfenuron in citrus fruits.
Chen, Weijun; Jiao, Bining; Su, Xuesu; Zhao, Qiyang; Qin, Dongmei; Wang, Chengqiu
2013-06-01
Field trials were carried out in three provinces of China to study the dissipation and residue of forchlorfenuron in citrus fruits. The results had shown that the degradation rate of forchlorfenuron in citrus fruits followed the first-order kinetics equation C = A∙eBt. The half-lives of forchlorfenuron were 15.8-23.0 days, the final residues of forchlorfenuron in pulp were all ≤0.002 mg/kg, and most of the residues were concentrated in the peel. The risk assessment revealed that no significant potential health risk would be induced by forchlorfenuron in citrus fruits. Therefore, it could be safe to apply forchlorfenuron in citrus fruits, and the results of this study could also be regarded as a reference to the setting of maximum residue limit for forchlorfenuron in citrus fruits in China.
INFLUENCING FACTORS FOR THE ENERGY DISSIPATION RATIO OF STEPPED SPILLWAYS
CHEN Qun; DAI Guang-qing; ZHU Fen-qing
2005-01-01
In order to search for the measure to increase the energy dissipation ratio of stepped spillways, some main influencing factors for the energy dissipation ratio of stepped spillways, such as unit discharge, dam slope, height of step and so on, were studied. The results show that the energy dissipation ratio decreases with the increase in the unit discharge and increases as the slope becomes gentle. The effects of step height on the energy dissipation ratio are closely related to unit discharge. If the unit discharge is smaller, the change of energy dissipation ratio with step height becomes greater. While, if the unit discharge is greater, the influence of step height on energy dissipation ratio is very little. According to the distributions of the turbulence kinetic energy and turbulence dissipation rate obtained by numerical simulation, the basic reason of the decrease of energy dissipation ratio with the increase in the unit discharge was discussed and some specific measures to increase the energy dissipation ratio were suggested.
Viscous Dissipation and Criticality of Subducting Slabs
Riedel, Mike; Karato, Shun; Yuen, Dave
2016-04-01
Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota
Dissipation gradients of phenanthrene and pyrene in the Rice rhizosphere
Gao, Y.; Wu, S.C.; Yu, X.Z. [Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China)
2010-08-15
An experiment was conducted to reveal the effects of rice cultivation as well as polycyclic aromatic carbohydrates (PAHs) degrading bacterium (Acinetobacter sp.) on the dissipation gradients of two PAHs (PHE and PYR) in the rhizosphere. The results showed that the presence of rice root and bacteria significantly accelerated the dissipation rate of PHE and PYR. The root exudates contributed to the formation of dissipation gradients of PHE and PYR along the vertical direction of roots, with a higher dissipation rate in the rhizosphere and near rhizosphere zone than the soil far away the rhizosphere. - The formation of dissipation gradients of PAHs were attributed to the presence of rice root and the degrading bacteria in paddy soil.
Energy Dissipation in the Smagorinsky Model of Turbulence
Layton, William
2016-01-01
The Smagorinsky model, unmodified, is often reported to severely overdiffuse flows. Previous estimates of the energy dissipation rate of the Smagorinsky model for shear flows reflect a blow up of model energy dissipation as Re increases. This blow up is consistent with the numerical evidence and leads to the question: Is the over dissipation due to the influence of the turbulent viscosity in boundary layers alone or is its action on small scales generated by the nonlinearity through the cascade also a contributor? This report develops model dissipation estimates for body force driven flow under periodic boundary conditions (and thus only with nonlinearity generated small scales). It is proven that the model's time averaged energy dissipation rate satisfies the same upper bound as for the NSE plus one additional term that vanishes uniformly in the Reynolds number as the Smagorinsky length scale decreases. Since this estimate is consistent with that observed for the NSE, it establishes that, without boundary la...
Gonzalez-Lopezlira, Rosa A. [On sabbatical leave from the Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089, Mexico. (Mexico); Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: r.gonzalez@crya.unam.mx [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)
2013-06-20
We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet
Brun, T A
1993-01-01
Using the decoherence formalism of Gell-Mann and Hartle, a quantum system is found which is the equivalent of the classical chaotic Duffing oscillator. The similarities and the differences from the classical oscillator are examined; in particular, a new concept of quantum maps is introduced, and alterations in the classical strange attractor due to the presence of scale- dependent quantum effects are studied. Classical quantities such as the Lyapunov exponents and fractal dimension are examined, and quantum analogs are suggested. These results are generalized into a framework for quantum dissipative chaos, and there is a brief discussion of other work in this area.
Liu, Wei; Nannarelli, Alberto
2008-01-01
A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms...... of performance and precision is sometimes hard to make. In this work, we use power dissipation and energy consumption as metrics to compare among those different classes of algorithms. There are no previous works in the literature presenting such a comparison....
Weiss, Ulrich
1993-01-01
This book deals with the statistical mechanics and dynamics of open quantum systems moving irreversibly under the influence of a dissipative environment. The basic concepts and methods are described on the basis of a microscopic description with emphasis on the functional integral approach. The general theory for the time evolution of the density matrix of the damped system is developed. Many of the sophisticated ideas in the field are explained with simple models. The discussion includes, among others, the interplay between thermal and quantum fluctuations, quantum statistical decay, macrosco
Dynamical structure of magnetized dissipative accretion flow around black holes
Sarkar, Biplob; Das, Santabrata
2016-09-01
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.
Aquatic dissipation of triclopyr in Lake Seminole, Georgia
Woodburn, K.B.; Green, W.R.; Westerdahl, H.E.
1993-01-01
A field study was conducted to evaluate the environmental dissipation of triclopyr herbicide under aquatic-use conditions. Three 4-h plots in Lake Seminole, Georgia, were selected for use: one control, one aerial plot, and one subsurface plot; both applications were at the maximum aquatic-use rate of 2.5 mg/L. Water, sediment, plants, fish, clams, and crayfish were all analyzed for residues, and water temperature, oxygen levels, pH, and conductivity were monitored. The half-life for aqueous-phase triclopyr ranged from 0.5 to 3.6 days, and the dissipation in surface and bottom waters was equivalent. The intermediate decay product of triclopyr, 3,5,6-trichloro-2-pyridinol (TCP), had an observed aquatic half-life of less than 1 day. No accumulation of triclopyr or TCP on sediment was observed. The half-life of triclopyr metabolized by aquatic plants averaged 4 days. Fish species did not exhibit any bioconcentration of triclopyr or TCP, with only trace amounts of either compound found in fish tissue. Both clams and crayfish contained detectable residues of triclopyr. The elimination of triclopyr from clam tissue was more rapid, with an observed half-life of 1.5 days, vs 12 days for crayfish; retention of triclopyr in the crayfish carcass (carapace, chelopeds, and gills) may have been an important mechanism. There was no detectable decline in water quality in either treatment plot. ?? 1993 American Chemical Society.
Chiba Shigeru
2007-09-01
Full Text Available Abstract Background Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. Methods An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index ρmax, which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. Results The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in ρmax with time. Conclusion The physiological index, ρmax, will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.
Hubbard, S. M.; Coutts, D. S.; Matthews, W.; Guest, B.; Bain, H.
2015-12-01
In basins adjacent to continually active arcs, detrital zircon geochronology can be used to establish a high-resolution chronostratigraphic framework for deep-time strata. Large-nU-Pb geochronological datasets can yield a statistically significant signature from the youngest sub-population of detrital zircons, which we deduce from maximum depositional age (MDA) calculations. MDA is determined through numerous methods such as the mean age of three or more overlapping grain ages at 2σ error, favored in this analysis. Positive identification of the youngest detrital zircon population in a rock is the limiting factor on precision and resolution. The Campanian-Paleogene Nanaimo Group of B.C., Canada, was deposited in a forearc basin, outboard of the Coast Mountain Batholith. The record of a deep-water sediment-routing system is exhumed at Denman and Hornby islands; sandstone- and conglomerate- dominated strata compose a composite sedimentary unit 20 km across and 1.5 km thick, in strike section. Volcanic ashes are absent from the succession, which has been constrained biostratigraphically. Eleven detrital zircon samples are analyzed to define stratigraphic architecture and provide insight into sedimentation rates. Our dataset (n=3081) constrains the overall duration of channelization to ~18 Ma. A series of at least five distinct composite channel fills 3-6 km wide and 400-600 m thick are identified. The MDA of these units are statistically distinct and constrained to better than 3% precision. Sedimentation rates amongst the channel fills increase upward, from 60-100 m/Ma to >500 m/Ma. This is likely linked to the tendency of a slope channel system to be dominated by sediment bypass early in its evolution, and later dominated by aggradation as large-scale levees develop. Channel processes were not continuous, with the longest hiatus ~6 Ma. The large-n detrital zircon dataset provides unprecedented insight into long-term sediment routing, evidence for which is
van der Vinne, Vincent; Simons, Mirre J.P.; Reimert, Inonge; Gerkema, Menno P.
2014-01-01
According to the heat dissipation limit theory, maximum metabolic turnover is limited by the capacity of the body to dissipate excess heat. Small mammals, including common voles (Microtus arvalis), face a heat dissipation limitation during lactation. Pup growth and milk production are reduced under
Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
Wang, Yang; Tu, Z C
2012-01-01
The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form η(mP)=η(C)/(2-γη(C)), where η(C) is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of η(mP) is bounded between η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys. 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett. 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of η(mP)=η(C)/(2-γη(C)) as well as the existence of two bounds, η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)).
无
2000-01-01
利用1983～1994年(共11年)期间，全球人卫激光测距(SLR)观测网对Lageos-1卫星的观测资料，估算二阶重力场系数和潮汐参数。SLR和卫星测高的潮汐解被用来计算月球轨道根数相对黄道坐标系的长期变化和地球自转速率的长期变化。SLR确定的总的潮汐耗散引起的月球平均运动的长期变化为-24.78″/世纪2,与激光测月结果（(-24.9±1.0)″/世纪2) 非常一致。日月潮汐引起的地球自转速率的长期变化为 -5.25×10-22rad /s2,顾及地球扁率变化（2）的非潮汐效应，对应的日长变化为1.49 ms/世纪,与1620年以来的天文月掩星结果（1.4 ms/世纪）十分相符。本文还联合卫星测高和人卫激光测距确定的潮汐解，在月球平均运动和地球自转速率的长期变化中，分离出固体地球和海洋的耗散效应。%Using 11 years (1983～1994) observation data of Satellite Laser Ranging (SLR) to the Lageos-1 satellite in the global tracking network，we estimate the second degree gravity field coefficient and tidal parameters.The tidal solutions obtained from SLR and satellite altimetry are used to compute the secular changes in the Moon's orbit elements and the Earth rotation rate in the ecliptic reference system.The SLR-derived secular change in the Moon's mean motion caused by the total tidal dissipation is -24.78 arc sec/century2，agreeing very well with the result ((-24.9±1.0) arc sec/century2) from the analysis of the lunar laser ranging data.The secular change in the Earth rotation rate caused by the solar and lunar tides is -5.25×10-22 rad/s2.Taking into account the non-tidal effect of the changes in the Earth rotation rate,the corresponding change in length of day is 1.49 ms/century.This value is consistent with recent astronomical result (1.4 ms/century) of eclipse records since 1620.We also combine the tidal solutions determined by altimetry and SLR to distinguish the dissipation effects of the solid
Enceladus' tidal dissipation revisited
Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej
2016-10-01
A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal
Energy dissipation through wind-generated breaking waves
ZHANG Shuwen; CAO Ruixue; XIE Lingling
2012-01-01
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.
A Note on Kinetic Energy, Dissipation and Enstrophy
Wu, Jie-Zhi; Zhou, Ye; Fan, Meng
1998-01-01
The dissipation rate of a Newtonian fluid with constant shear viscosity can be shown to include three constituents: dilatation, vorticity, and surface strain. The last one is found to make no contributions to the change of kinetic energy. These dissipation constituents arc used to identify typical compact turbulent flow structures at high Reynolds numbers. The incompressible version of the simplified kinetic-energy equation is then cast to a novel form, which is free from the work rate done by surface stresses but in which the full dissipation re-enters.
Dissipation-driven quantum phase transitions in collective spin systems
Morrison, S [Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Parkins, A S [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand)], E-mail: smor161@aucklanduni.ac.nz
2008-10-14
We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)
Electromagnetic energy storage and power dissipation in nanostructures
Zhao, J M
2014-01-01
The processes of storage and dissipation of electromagnetic energy in nanostructures depend on both the material properties and the geometry. In this paper, the distributions of local energy density and power dissipation in nanogratings are investigated using the rigorous coupled-wave analysis. It is demonstrated that the enhancement of absorption is accompanied by the enhancement of energy storage both for material at the resonance of its dielectric function described by the classical Lorentz oscillator and for nanostructures at the resonance induced by its geometric arrangement. The appearance of strong local electric field in nanogratings at the geometry-induced resonance is directly related to the maximum electric energy storage. Analysis of the local energy storage and dissipation can also help gain a better understanding of the global energy storage and dissipation in nanostructures for photovoltaic and heat transfer applications.
Training Concept, Evolution Time, and the Maximum Entropy Production Principle
Alexey Bezryadin
2016-04-01
Full Text Available The maximum entropy production principle (MEPP is a type of entropy optimization which demands that complex non-equilibrium systems should organize such that the rate of the entropy production is maximized. Our take on this principle is that to prove or disprove the validity of the MEPP and to test the scope of its applicability, it is necessary to conduct experiments in which the entropy produced per unit time is measured with a high precision. Thus we study electric-field-induced self-assembly in suspensions of carbon nanotubes and realize precise measurements of the entropy production rate (EPR. As a strong voltage is applied the suspended nanotubes merge together into a conducting cloud which produces Joule heat and, correspondingly, produces entropy. We introduce two types of EPR, which have qualitatively different significance: global EPR (g-EPR and the entropy production rate of the dissipative cloud itself (DC-EPR. The following results are obtained: (1 As the system reaches the maximum of the DC-EPR, it becomes stable because the applied voltage acts as a stabilizing thermodynamic potential; (2 We discover metastable states characterized by high, near-maximum values of the DC-EPR. Under certain conditions, such efficient entropy-producing regimes can only be achieved if the system is allowed to initially evolve under mildly non-equilibrium conditions, namely at a reduced voltage; (3 Without such a “training” period the system typically is not able to reach the allowed maximum of the DC-EPR if the bias is high; (4 We observe that the DC-EPR maximum is achieved within a time, Te, the evolution time, which scales as a power-law function of the applied voltage; (5 Finally, we present a clear example in which the g-EPR theoretical maximum can never be achieved. Yet, under a wide range of conditions, the system can self-organize and achieve a dissipative regime in which the DC-EPR equals its theoretical maximum.
Shoreline dissipation of infragravity waves
de Bakker, A. T. M.; Tissier, M. F. S.; Ruessink, B. G.
2014-01-01
Infragravity waves (0.005-0.05 Hz) have recently been observed to dissipate a large part of their energy in the short-wave (0.05-1 Hz) surf zone, however, the underlying mechanism is not well understood. Here, we analyse two new field data sets of near-bed pressure and velocity at up to 13 cross-shore locations in ≲2.5 m depth on a ≈1:80 and a ≈1:30 sloping beach to quantify infragravity-wave dissipation close to the shoreline and to identify the underlying dissipation mechanism. A frequency-domain Complex Eigenfunction analysis demonstrated that infragravity-wave dissipation was frequency dependent. Infragravity waves with a frequency larger than ≈0.0167-0.0245 Hz were predominantly onshore progressive, indicative of strong dissipation of the incoming infragravity waves. Instead, waves with a lower frequency showed the classic picture of cross-shore standing waves with minimal dissipation. Bulk infragravity reflection coefficients at the shallowest position (water depth ≈0.7 m) were well below 1 (≈0.20), implying that considerable dissipation took place close to the shoreline. We hypothesise that for our data sets infragravity-wave breaking is the dominant dissipation mechanism close to the shoreline, because the reflection coefficient depends on a normalised bed slope, with the higher infragravity frequencies in the mild-sloping regime where breaking is known to dominate dissipation. Additional numerical modelling indicates that, close to the shoreline of a 1:80 beach, bottom friction contributes to infragravity-wave dissipation to a limited extent, but that non-linear transfer of infragravity energy back to sea-swell frequencies is unimportant.
A Variational Formulation of Dissipative Quasicontinuum Methods
Rokoš, Ondřej; Zeman, Jan; Peerlings, Ron H J
2016-01-01
Lattice systems and discrete networks with dissipative interactions are successfully employed as meso-scale models of heterogeneous solids. As the application scale generally is much larger than that of the discrete links, physically relevant simulations are computationally expensive. The QuasiContinuum (QC) method is a multiscale approach that reduces the computational cost of direct numerical simulations by fully resolving complex phenomena only in regions of interest while coarsening elsewhere. In previous work (Beex et al., J. Mech. Phys. Solids 64, 154-169, 2014), the originally conservative QC methodology was generalized to a virtual-power-based QC approach that includes local dissipative mechanisms. In this contribution, the virtual-power-based QC method is reformulated from a variational point of view, by employing the energy-based variational framework for rate-independent processes (Mielke and Roub\\'{i}\\v{c}ek, Rate-Independent Systems: Theory and Application, Springer-Verlag, 2015). By construction...
Quayle, Wendy C; Oliver, Danielle P; Zrna, Sharyn
2006-09-20
The fates of clomazone [2-(2-chlorophenyl)methyl-4,4-dimethyl-3-isoxazolidinone], molinate (S-ethyl hexahydro-1-H-azepine-1-carbothioate), and thiobencarb {S-[(4-chlorophenyl)methyl]diethylcarbamothioate} applied to rice were studied at two locations in New South Wales (Australia). Rates of dissipation (DT50) from floodwaters and soils were measured. Dissipation of the three herbicides from water and soil can be best explained by a first-order decay process. DT(50) values for clomazone, molinate, and thiobencarb were 7.2, 5.1, and 3.5 days, respectively, in water and 14.6, 23.9, and >46 days, respectively, in surface soil. Maximum measured concentrations of clomazone, molinate, and thiobencarb in floodwaters were 202, 1042, and 148 microg/L, respectively, taking 18.4, 26.4, and 21.4 days to dissipate to concentrations set to protect aquatic ecosystems. A hazard assessment identified clomazone as presenting a low environmental hazard while molinate and thiobencarb presented a medium environmental hazard when used at registered field rates.
Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T
2013-09-01
The dissipation of pyraclostrobin, a strobilurin fungicide, in soil was found to be influenced by soil moisture, organic matter content and microbial population. Among the different moisture regimes, dissipation was faster under submerged condition (T1/2 10 days) followed by field capacity (T1/2 28.7 days) and in dry soil (T1/2 41.8 days). Use of sludge at 5 % level to Inceptisol favoured a faster dissipation of pyraclostrobin, whereas a slower rate of dissipation was observed in partial organic matter removed soil as compared to normal soil. Slower rate of dissipation was also observed in sterile soil (T1/2 47 days) compared to normal soil. Pyraclostrobin dissipated faster in Vertisol (T1/2 21.8 days) than in Inceptisol (T1/2 28.7 days). No significant difference in the dissipation rate was observed at 1 and 10 μg g(-1) fortification levels.
N. Alavizadeh
2017-01-01
Full Text Available ims: Apelin is an adipokine, which secreted from adipose tissue and has positive effects against the insulin resistance. The aim of this study was to investigate the effect of 8-week aerobic exercise on levels of apelin and insulin resistance index in sedentary men. Materials & Methods: In this semi-experimental study with controlled group pre/post-test design in 2015, 27 healthy sedentary men living in Mashhad City, Iran, were selected by convenience sampling method. They were divided into two groups; experimental group (n=14 and control group (n=13. In the trained group, the volunteers participated in 8 weeks aerobic exercise, 3 days/week (equivalent to 75-85% of maximum oxygen consumption for 60 minutes per session. The research variables were assessed before and after the intervention in both groups. The collected data were analyzed using SPSS 20 software using paired and independent sample T tests. Findings: 8-week aerobic exercise significantly decreased the weight, BMI and apelin, insulin and insulin resistance index levels and increased the maximum oxygen consumption in experimental group sedentary men (p<0.05. Moreover, there were significant differences in levels of FBS, insulin, apelin, insulin resistance index and maximum oxygen consumption between experimental and control groups (p<0.05. Conclusion: 8-week aerobic exercise reduces apelin levels and insulin resistance index in sedentary men.
Allometry and Dissipation of Ecological Flow Networks
Zhang, Jiang; Wu, Lingfei
2013-01-01
Background An ecological flow network is a weighted directed graph in which the nodes are species, the edges are “who eats whom” relationships and the weights are rates of energy or nutrient transferred between species. Allometric scaling is a ubiquitous feature for flow systems such as river basins, vascular networks and food webs. Methodology The “ecological network analysis” can serve to reveal hidden allometries, the power law relationship between the throughflux and the indirect impact of node , directly from the original flow networks without any need to cut edges in the network. The dissipation law, which is another significant scaling relationship between the energy dissipation (respiration) and the throughflow of any species, is also obtained from an analysis of the empirical flow networks. Interestingly, the exponents of the allometric law () and the dissipation law () show a strong relationship for both empirical and simulated flow networks. The dissipation law exponent , rather than the topology of the network, is the most important factors that affect the allometric exponent . Conclusions The exponent can be interpreted as the degree of centralization of the network, i.e., the concentration of impacts (direct and indirect influences on the entire network along all energy flow pathways) on hubs (the nodes with large throughflows). As a result, we find that as increases, the relative energy loss of large nodes increases, decreases, i.e., the relative importance of large species decreases. Moreover, the entire flow network is more decentralized. Therefore, network flow structure (allometry) and thermodynamic constraints (dissipation) are linked. PMID:24019871
Estimation of turbulent kinetic energy dissipation
Chen, Huey-Long; Hondzo, Miki; Rao, A. Ramachandra
2001-06-01
The kinetic energy dissipation rate is one of the key intrinsic fluid flow parameters in environmental fluid dynamics. In an indirect method the kinetic energy dissipation rate is estimated from the Batchelor spectrum. Because the Batchelor spectrum has a significant difference between the highest and lowest spectral values, the spectral bias in the periodogram causes the lower spectral values at higher frequencies to increase. Consequently, the accuracy in fitting the Batchelor spectrum is affected. In this study, the multitaper spectral estimation method is compared to conventional methods in estimating the synthetic temperature gradient spectra. It is shown in the results that the multitaper spectra have less bias than the Hamming window smoothed spectra and the periodogram in estimating the synthetic temperature gradient spectra. The results of fitting the Batchelor spectrum based on four error functions are compared. When the theoretical noise spectrum is available and delineated at the intersection of the estimated spectrum, the fitting results of the kinetic energy dissipation rate corresponding to the four error functions do not have significant differences. However, when the noise spectrum is unknown and part of the Batchelor spectrum overlaps the region where the noise spectrum dominates, the weighted chi-square distributed error function has the best fitting results.
Notari, Alessio
2016-01-01
We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...
无
2009-01-01
Based on entransy dissipation, the mean temperature difference of solenoid (electromagnet) with high thermal conductivity material inserted is deduced, which can be taken as the fundament for heat transfer optimization using the extremum principle of entransy dissipation. Then, the electromagnet working at steady state (constant magnetic field, constant heat generating rate per unit volume) is optimized for entransy dissipation minimization (i.e. mean temperature difference minimization) with and without volume constraint. Besides, the effect of high thermal conductivity material on the magnetic field is analyzed, and the minimum mean temperature versus volume and magnetic induction characteristic are also studied.
Magnetic energy dissipation in force-free jets
Choudhuri, Arnab Rai; Konigl, Arieh
1986-01-01
It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.
Dissipation of turbulence in the wake of a wind turbine
Lundquist, J. K.; Bariteau, L.
2013-12-01
The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behavior of an individual wake as it merges with other wakes and propagates downwind is of great importance in assessing wind farm power production as well as impacts of wind energy deployment on local and regional environments. The rate of turbulence dissipation in the wake quantifies the wake behavior as it propagates. In situ field measurements of turbulence dissipation rate in the wake of wind turbines have not been previously collected although correct modeling of dissipation rate is required for accurate simulations of wake evolution. In Fall 2012, we collected in situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine, using the University of Colorado at Boulder's Tethered Lifting System (TLS). The TLS is a unique state-of-the-art tethersonde, proven in numerous boundary-layer field experiments to be able to measure turbulence kinetic energy dissipation rates. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located upwind of the turbine, from a profiling lidar upwind, and from a scanning lidar measuring both inflow to and wake from the turbine. Measurements collected within the wake indicate that dissipation rates are higher in the turbine wake than in the ambient flow. Profiles of dissipation and turbulence throughout the rotor disk suggest that dissipation peaks near the hub height of the turbine. Suggestions for incorporating this information into wind turbine modeling approaches will be provided.
Hughes, R. Scott; Gary, S. Peter; Wang, Joseph
2017-01-01
Two ensembles of three-dimensional particle-in-cell (PIC) simulations of the forward cascade of decaying whistler turbulence have been carried out on a model of collisionless, homogeneous, magnetized plasma with parameters similar to those of the solar wind near Earth. Initial, relatively isotropic, narrowband spectra of relatively long wavelength modes cascade to anisotropic, broadband spectra of magnetic fluctuations at shorter wavelengths. Electron and ion dissipation rates are computed as functions of the initial electron beta, βe, over the range 0.1 ≤ βe ≤ 5.0, where this quantity is varied by changes in the background magnetic field magnitude Bo. Ensemble One holds the value of the dimensionless initial magnetic fluctuation energy density ɛo ≡ Σk | δ {B}{{k}}{| }2/{B}{{o}}2 constant; Ensemble Two follows solar wind observations, imposing the initial condition ɛo = 0.20 βe. In both ensembles, the maximum dissipation rate of the electrons, Qe, and the maximum dissipation rate of the ions, Qi, satisfy Qe ≫ Qi. In Ensemble One, both dissipation rates scale approximately as {β }{{e}}-1, whereas over 0.1 ≤ βe ≤ 1.0 in Ensemble Two, Qe is approximately constant while Qi scales approximately as {β }{{e}}1/2. These results, when combined with conclusions from earlier PIC simulations, suggest that sufficiently long wavelength and sufficiently large-amplitude magnetosonic-whistler turbulence at sufficiently large βe may heat ions more rapidly than electrons.
Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; Visser, De Pieter H.B.; Marcelis, Leo F.M.
2017-01-01
Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of
A thermoelectric generator using loop heat pipe and design match for maximum-power generation
Huang, Bin-Juine
2015-09-05
The present study focuses on the thermoelectric generator (TEG) using loop heat pipe (LHP) and design match for maximum-power generation. The TEG uses loop heat pipe, a passive cooling device, to dissipate heat without consuming power and free of noise. The experiments for a TEG with 4W rated power show that the LHP performs very well with overall thermal resistance 0.35 K W-1, from the cold side of TEG module to the ambient. The LHP is able to dissipate heat up to 110W and is maintenance free. The TEG design match for maximum-power generation, called “near maximum-power point operation (nMPPO)”, is studied to eliminate the MPPT (maximum-power point tracking controller). nMPPO is simply a system design which properly matches the output voltage of TEG with the battery. It is experimentally shown that TEG using design match for maximum-power generation (nMPPO) performs better than TEG with MPPT.
Dissipative Optomechanics in a Michelson--Sagnac Interferometer
Xuereb, A.; Schnabel, R.; Hammerer, K.
2011-01-01
Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson--Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-th...
Effective dynamics of strongly dissipative Rydberg gases
Marcuzzi, M; Olmos, B; Lesanovsky, I
2014-01-01
We investigate the evolution of interacting Rydberg gases in the limit of strong noise and dissipation. Starting from a description in terms of a Markovian quantum master equation we derive effective equations of motion that govern the dynamics on a "coarse-grained" timescale where fast dissipative degrees of freedom have been adiabatically eliminated. Specifically, we consider two scenarios which are of relevance for current theoretical and experimental studies --- Rydberg atoms in a two-level (spin) approximation subject to strong dephasing noise as well as Rydberg atoms under so-called electromagnetically induced transparency (EIT) conditions and fast radiative decay. In the former case we find that the effective dynamics is described by classical rate equations up to second order in an appropriate perturbative expansion. This drastically reduces the computational complexity of numerical simulations in comparison to the full quantum master equation. When accounting for the fourth order correction in this e...
Astrophysical Constraints on Planck Scale Dissipative Phenomena
Liberati, Stefano; Maccione, Luca
2014-04-01
The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.
Rank of Stably Dissipative Graphs
Duarte, Pedro
2011-01-01
For the class of stably dissipative Lotka-Volterra systems we prove that the rank of its defining matrix, which is the dimension of the associated invariant foliation, is completely determined by the system's graph.
Dissipative Effect and Tunneling Time
Samyadeb Bhattacharya
2011-01-01
Full Text Available The quantum Langevin equation has been studied for dissipative system using the approach of Ford et al. Here, we have considered the inverted harmonic oscillator potential and calculated the effect of dissipation on tunneling time, group delay, and the self-interference term. A critical value of the friction coefficient has been determined for which the self-interference term vanishes. This approach sheds new light on understanding the ion transport at nanoscale.
Sander, Pia; Mouritsen, L; Andersen, J Thorup
2002-01-01
OBJECTIVE: The aim of this study was to evaluate the value of routine measurements of urinary flow rate and residual urine volume as a part of a "minimal care" assessment programme for women with urinary incontinence in detecting clinical significant bladder emptying problems. MATERIAL AND METHOD...... female urinary incontinence. Thus, primary health care providers can assess women based on simple guidelines without expensive equipment for assessment of urine flow rate and residual urine....
Schiefelbein, Sarah; Fröhlich, Alexander; John, Gernot T; Beutler, Falco; Wittmann, Christoph; Becker, Judith
2013-08-01
Dissolved oxygen plays an essential role in aerobic cultivation especially due to its low solubility. Under unfavorable conditions of mixing and vessel geometry it can become limiting. This, however, is difficult to predict and thus the right choice for an optimal experimental set-up is challenging. To overcome this, we developed a method which allows a robust prediction of the dissolved oxygen concentration during aerobic growth. This integrates newly established mathematical correlations for the determination of the volumetric gas-liquid mass transfer coefficient (kLa) in disposable shake-flasks from the filling volume, the vessel size and the agitation speed. Tested for the industrial production organism Corynebacterium glutamicum, this enabled a reliable design of culture conditions and allowed to predict the maximum possible cell concentration without oxygen limitation.
Strasser, Barbara; Schwarz, Joachim; Haber, Paul; Schobersberger, Wolfgang
2011-12-01
Aim of this study was to evaluate reliable guide values for heart rate (HF) and blood pressure (RR) with reference to defined sub maximum exertion considering age, gender and body mass. One hundred and eighteen healthy but non-trained subjects (38 women, 80 men) were included in the study. For interpretation, finally facts of 28 women and 59 men were used. We found gender differences for HF and RR. Further, we noted significant correlations between HF and age as well as between RR and body mass at all exercise levels. We established formulas for gender-specific calculation of reliable guide values for HF and RR on sub maximum exercise levels.
Notari, Alessio; Tywoniuk, Konrad
2016-12-01
We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term phi/fγ F ~F, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density ρR, which can lead to inflation without the need of a flat potential. We analyze the system, for momenta k smaller than the cutoff fγ, including the backreaction numerically. We consider the evolution from a given static initial condition and explicitly show that, if fγ is smaller than the field excursion phi0 by about a factor of at least Script O (20), there is a friction effect which turns on before the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of perturbations, scalars and tensors. Such oscillations have a period of 4-5 efolds and an amplitude which is typically less than a few percent and decreases linearly with fγ. We also stress that the curvature perturbation on uniform density slices should be sensitive to slow-roll parameters related to ρR rather than dot phi2/2 and we discuss the existence of friction terms acting on the perturbations, although we postpone a calculation of the power spectrum and of non-gaussianity to future work and we simply define and compute suitable slow roll parameters. Finally we stress that this scenario may be realized in the axion case, if the coupling 1/fγ to U(1) (photons) is much larger than the coupling 1/fG to non-abelian gauge fields (gluons), since the latter sets the range of the potential and therefore the maximal allowed phi0~ fG.
Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields
Soto-Aquino, D.; Rinaldi, C.
2015-11-01
The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.
Extrema principles of entropy production and energy dissipation in fluid mechanics
Horne, W. Clifton; Karamcheti, Krishnamurty
1988-01-01
A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appear to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.
Extrema principles of entrophy production and energy dissipation in fluid mechanics
Horne, W. Clifton; Karamcheti, Krishnamurty
1988-01-01
A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.
Maximum Likelihood Associative Memories
Gripon, Vincent; Rabbat, Michael
2013-01-01
Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Blazevich, Anthony J; Horne, Sara; Cannavan, Dale
2008-01-01
knee extension training was performed 3 x week(-1) for 10 weeks. Maximal isometric strength (+11.2%) and RFD (measured from 0-30/50/100/200 ms, respectively; +10.5%-20.5%) increased after 10 weeks (P training mode. Peak EMG amplitude and rate of EMG rise......This study examined the effects of slow-speed resistance training involving concentric (CON, n = 10) versus eccentric (ECC, n = 11) single-joint muscle contractions on contractile rate of force development (RFD) and neuromuscular activity (EMG), and its maintenance through detraining. Isokinetic...... were not significantly altered with training or detraining. Subjects with below-median normalized RFD (RFD/MVC) at 0 weeks significantly increased RFD after 5- and 10-weeks training, which was associated with increased neuromuscular activity. Subjects who maintained their higher RFD after detraining...
Thornley, John H M; Parsons, Anthony J
2014-02-07
Treating resource allocation within plants, and between plants and associated organisms, is essential for plant, crop and ecosystem modelling. However, it is still an unresolved issue. It is also important to consider quantitatively when it is efficient and to what extent a plant can invest profitably in a mycorrhizal association. A teleonomic model is used to address these issues. A six state-variable model giving exponential growth is constructed. This represents carbon (C), nitrogen (N) and phosphorus (P) substrates with structure in shoot, root and mycorrhiza. The shoot is responsible for uptake of substrate C, the root for substrates N and P, and the mycorrhiza also for substrates N and P. A teleonomic goal, maximizing proportional growth rate, is solved analytically for the allocation fractions. Expressions allocating new dry matter to shoot, root and mycorrhiza are derived which maximize growth rate. These demonstrate several key intuitive phenomena concerning resource sharing between plant components and associated mycorrhizae. For instance, if root uptake rate for phosphorus is equal to that achievable by mycorrhiza and without detriment to root uptake rate for nitrogen, then this gives a faster growing mycorrhizal-free plant. However, if root phosphorus uptake is below that achievable by mycorrhiza, then a mycorrhizal association may be a preferred strategy. The approach offers a methodology for introducing resource sharing between species into ecosystem models. Applying teleonomy may provide a valuable short-term means of modelling allocation, avoiding the circularity of empirical models, and circumventing the complexities and uncertainties inherent in mechanistic approaches. However it is subjective and brings certain irreducible difficulties with it.
Xingtuan Yang
2015-01-01
Full Text Available This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.
Principle of equipartition of entransy dissipation for heat exchanger design
无
2010-01-01
In the present work,a principle of equipartition of entransy dissipation(EoED) for heat exchanger design is established,which says that for a heat exchanger design with given heat duty and heat transfer area,the total entransy dissipation rate reaches the minimum when the local entransy dissipation rate is uniformly distributed along the heat exchanger.When the heat transfer coefficient is unfixed,the total entransy dissipation obtained by the EoED principle is less than that obtained by the principle of equipartition of temperature difference(EoTD).Furthermore,the exchanger effectiveness obtained by the EoED principle is larger than that obtained by the EoTD principle.When the heat transfer coefficient is fixed,the EoED principle is equivalent to the EoTD principle.We show that the equipartition of entropy production(EoEP) and EoED principles give rise to difference in entropy generation and entransy dissipation for a heat exchanger optimization design.The discrepancies are caused by distinct features of entropy production minimization and entransy dissipation minimization principles,the former is to optimize the design of heat exchanger by making the lost available work minimum,while the latter is not involved with heat-work conversion.It is found that the entropy generation number is not suitable for evaluating heat exchanger performance,since it directly depends on the inlet and outlet temperatures of working fluids.On the contrary,the entransy dissipation number is not directly related to the inlet and outlet temperatures of working fluids.Therefore,the entransy dissipation number is more suitable for serving as a criterion to evaluate heat exchanger performance.
Michaelian, Karo
2014-01-01
The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate. In the upper atmosphere of today, oxygen and ozone derived from life processes are performing the short wavelength UVC and UVB dissipation. On Earth's surface, water and organic pigments in water facilitate the near UV and visible photon dissipation. The first organic pigments probably formed, absorbed, and dissipated at those photochemically active wavelengths in the UVC that could have reached Earth's surface during the Archean. Proliferation of these pigments can be understood as an autocatalytic photochemical process obeying non-equilibrium thermodynamic directives related to increasing solar photon dissipation rate. Under these directives, organic pigments would have evolved over time to increase the global photon dissipation rate by; 1) increasing the ratio of their effective photon cross section...
Explicitly modelled deep-time tidal dissipation and its implication for Lunar history
Green, J. A. M.; Huber, M.; Waltham, D.; Buzan, J.; Wells, M.
2017-03-01
Dissipation of tidal energy causes the Moon to recede from the Earth. The currently measured rate of recession implies that the age of the Lunar orbit is 1500 My old, but the Moon is known to be 4500 My old. Consequently, it has been proposed that tidal energy dissipation was weaker in the Earth's past, but explicit numerical calculations are missing for such long time intervals. Here, for the first time, numerical tidal model simulations linked to climate model output are conducted for a range of paleogeographic configurations over the last 252 My. We find that the present is a poor guide to the past in terms of tidal dissipation: the total dissipation rates for most of the past 252 My were far below present levels. This allows us to quantify the reduced tidal dissipation rates over the most resent fraction of lunar history, and the lower dissipation allows refinement of orbitally-derived age models by inserting a complete additional precession cycle.
Chakravarthy, Sunada; Gonthier, Keith A.
2016-07-01
Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.
L. Ocola
2008-01-01
Full Text Available Post-disaster reconstruction management of urban areas requires timely information on the ground response microzonation to strong levels of ground shaking to minimize the rebuilt-environment vulnerability to future earthquakes. In this paper, a procedure is proposed to quantitatively estimate the severity of ground response in terms of peak ground acceleration, that is computed from macroseismic rating data, soil properties (acoustic impedance and predominant frequency of shear waves at a site. The basic mathematical relationships are derived from properties of wave propagation in a homogeneous and isotropic media. We define a Macroseismic Intensity Scale I_{MS} as the logarithm of the quantity of seismic energy that flows through a unit area normal to the direction of wave propagation in unit time. The derived constants that relate the I_{MS} scale and peak acceleration agree well with coefficients derived from a linear regression between MSK macroseismic rating and peak ground acceleration for historical earthquakes recorded at a strong motion station, at IGP's former headquarters, since 1954. The procedure was applied to 3-October-1974 Lima macroseismic intensity data at places where there was geotechnical data and predominant ground frequency information. The observed and computed peak acceleration values, at nearby sites, agree well.
Hisashi Ozawa
2015-01-01
Full Text Available The formation process of circulatory motion of a tropical cyclone is investigated from a thermodynamic viewpoint. The generation rate of mechanical energy by a fluid motion under diabatic heating and cooling, and the dissipation rate of this energy due to irreversible processes are formulated from the first and second laws of thermodynamics. This formulation is applied to a tropical cyclone, and the formation process of the circulatory motion is examined from a balance between the generation and dissipation rates of mechanical energy in the fluid system. We find from this formulation and data analysis that the thermodynamic efficiency of tropical cyclones is about 40% lower than the Carnot maximum efficiency because of the presence of thermal dissipation due to irreversible transport of sensible and latent heat in the atmosphere. We show that a tropical cyclone tends to develop within a few days through a feedback supply of mechanical energy when the sea surface temperature is higher than 300 K, and when the horizontal scale of circulation becomes larger than the vertical height of the troposphere. This result is consistent with the critical radius of 50 km and the corresponding central pressure of about 995 hPa found in statistical properties of typhoons observed in the western North Pacific.
Dissipative Divergence of Resonant Orbits
Batygin, Konstantin
2012-01-01
A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g. 2:1, 3:2, 4:3) has been interpreted as evidence for lack of resonant interactions. Here we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.
DISSIPATIVE DIVERGENCE OF RESONANT ORBITS
Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Morbidelli, Alessandro, E-mail: kbatygin@gps.caltech.edu [Departement Cassiopee, Universite de Nice-Sophia Antipolis, Observatoire de la Cote d' Azur, F-06304 Nice (France)
2013-01-01
A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean-motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g., 2:1, 3:2, and 4:3) has been interpreted as evidence for lack of resonant interactions. Here, we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.
赵鹏伟; 卢晓平; 孙玉明
2014-01-01
Superior stealthiness makes submarines have strong penetration capability,so it is significant to control wake singatures for improving the stealthiness of submarines. Submarine wake singatures include the turbulence intensity, turbulent kinetic energy, and turbulence dissipation rate. Meanwhile,a satisfacto-ry hull form can also restrain the wake singatures of submarines and can greatly improve its speed ability and stealthiness capability. In this paper,the viscous flow fields around SUBOFF and six improved subma-rine hull forms are calculated by using CFD technic RANS methods, based on which the effects of hull radi-us, bow hull length, and stern hull length on the submarine wake signatures are analyzed. The results show that in the wake of the original SUBOFF hull form and that of the modified hull forms, the increasing hull radius reduces the turbulence singatures far field astern, but augments the turbulence singatures close to the hull stern; meanwhile, the increasing bow hull length reduces the wake turbulence singatures close to the hull stern, but has little effect on the turbulence singatures far field astern; plus,the increasing stern hull length can alleviate the wake turbulence singatures significantly.%优良的隐身性能使得潜艇具有强大的突防能力，因此，控制潜艇尾流信号特征对于提高潜艇隐身性能意义重大，这些信号特征主要包括尾部湍流强度、湍动能、湍流耗散率等。同时，优良的艇型对于抑制尾流信号特征、提高潜艇快速性和隐身性也具有重要意义。基于此，采用RANS方法计算SUBOFF潜艇主艇体艇型及6种改良艇型的艇体粘性绕流，将CFD方法用于分析艇体半径、艇艏长度、艇艉长度等参数对潜艇尾流信号特征的影响。计算结果显示：在SUBOFF潜艇主艇体艇型及其6种改良艇型的尾流场中，增加艇体半径有利于抑制远尾流场湍流信号特征，在近场则不利；增加艇艏长度
Dissipative Nonlinear Dynamics in Holography
Basu, Pallab
2013-01-01
We look at the response of a nonlinearly coupled scalar field in an asymptotically AdS black brane geometry and find a behaviour very similar to that of known dissipative nonlinear systems like the chaotic pendulum. Transition to chaos proceeds through a series of period-doubling bifurcations. The presence of dissipation, crucial to this behaviour, arises naturally in a black hole background from the ingoing conditions imposed at the horizon. AdS/CFT translates our solution to a chaotic response of the operator dual to the scalar field. Our setup can also be used to study quench-like behaviour in strongly coupled nonlinear systems.
Stabilizing entanglement against local dissipation
Sauer, Simeon; Gneiting, Clemens; Buchleitner, Andreas [Albert-Ludwigs-Universitaet, Freiburg (Germany)
2013-07-01
Natural dissipative processes in multipartite quantum systems are mostly of local nature and therefore affect entanglement adversely. In their presence, initially highly entangled states generically evolve into at most weakly entangled states. We investigate by what means this detrimental process can be counteracted. It is shown that a suitable, dissipator-adapted static system Hamiltonian can preserve entanglement in the stationary state to a significant but limited extend. We then extend our analysis to the general class of periodically driven Hamiltonians and show that they are subject to similar limitations. Finally, we develop incoherent but local control strategies which overcome these limits.
Kemmler, Wolfgang; Schliffka, Rebecca; Mayhew, Jerry L; von Stengel, Simon
2010-07-01
We evaluated the effect of whole-body electromyostimulation (WB-EMS) during dynamic exercises over 14 weeks on anthropometric, physiological, and muscular parameters in postmenopausal women. Thirty women (64.5 +/- 5.5 years) with experience in physical training (>3 years) were randomly assigned either to a control group (CON, n = 15) that maintained their general training program (2 x 60 min.wk of endurance and dynamic strength exercise) or to an electromyostimulation group (WB-EMS, n = 15) that additionally performed a 20-minute WB-EMS training (2 x 20 min.10 d). Resting metabolic rate (RMR) determined from spirometry was selected to indicate muscle mass. In addition, body circumferences, subcutaneous skinfolds, strength, power, and dropout and adherence values. Resting metabolic rate was maintained in WB-EMS (-0.1 +/- 4.8 kcal.h) and decreased in CON (-3.2+/-5.2 kcal.h, p = 0.038); although group differences were not significant (p = 0.095), there was a moderately strong effect size (ES = 0.62). Sum of skinfolds (28.6%) and waist circumference (22.3%) significantly decreased in WB-EMS whereas both parameters (1.4 and 0.1%, respectively) increased in CON (p = 0.001, ES = 1.37 and 1.64, respectively), whereas both parameters increased in CON (1.4 and 0.1%, respectively). Isometric strength changes of the trunk extensors and leg extensors differed significantly (p < or = 0.006) between WB-EMS and CON (9.9% vs. -6.4%, ES = 1.53; 9.6% vs. -4.5%, ES = 1.43, respectively). In summary, adjunct WB-EMS training significantly exceeds the effect of isolated endurance and resistance type exercise on fitness and fatness parameters. Further, we conclude that for elderly subjects unable or unwilling to perform dynamic strength exercises, electromyostimulation may be a smooth alternative to maintain lean body mass, strength, and power.
Eduardo Marcel Fernandes Nascimento
2011-08-01
Full Text Available The objective of this study was to analyze the heart rate (HR profile plotted against incremental workloads (IWL during a treadmill test using three mathematical models [linear, linear with 2 segments (Lin2, and sigmoidal], and to determine the best model for the identification of the HR threshold that could be used as a predictor of ventilatory thresholds (VT1 and VT2. Twenty-two men underwent a treadmill incremental test (retest group: n=12 at an initial speed of 5.5 km.h-1, with increments of 0.5 km.h-1 at 1-min intervals until exhaustion. HR and gas exchange were continuously measured and subsequently converted to 5-s and 20-s averages, respectively. The best model was chosen based on residual sum of squares and mean square error. The HR/IWL ratio was better fitted with the Lin2 model in the test and retest groups (p0.05. During a treadmill incremental test, the HR/IWL ratio seems to be better fitted with a Lin2 model, which permits to determine the HR threshold that coincides with VT1.
Shoaling and shoreline dissipation of low‐frequency waves
Van Dongeren, A.; Battjes, J.A.; Janssen, T.; Van Noorloos, J.; Steenhauer, K.; Steenbergen, G.; Reniers, A.
2007-01-01
The growth rate, shoreline reflection, and dissipation of low‐frequency waves are investigated using data obtained from physical experiments in the Delft University of Technology research flume and by parameter variation using the numerical model Delft3D‐SurfBeat. The growth rate of the shoaling inc
ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE
Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)
2015-12-15
Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.
Gomez-Paccard, Miriam; Osete, Maria Luisa; Chauvin, Annick; Pérez-Asensio, Manuel; Jimenez-Castillo, Pedro
2014-05-01
Available European data indicate that during the past 2500 years there have been periods of rapid intensity geomagnetic fluctuations interspersed with periods of little change. The challenge now is to precisely describe these rapid changes. Due to the difficulty to obtain precisely dated heated materials to obtain a high-resolution description of past geomagnetic field intensity changes, new high-quality archeomagnetic data from archeological heated materials founded in well-defined superposed stratigraphic units are particularly valuable. In this work we report the archeomagnetic study of several groups of ceramic fragments from southeastern Spain that belong to 14 superposed stratigraphic levels corresponding to a surface no bigger than 3 m by 7 m. Between four and eight ceramic fragments were selected per stratigraphic unit. The age of the pottery fragments range from the second half of the 7th to the11th centuries. The dates were established by three radiocarbon dates and by archeological/historical constraints including typological comparisons and well-controlled stratigraphic constrains.Between two and four specimens per pottery fragment were studied. The classical Thellier and Thellier method including pTRM checks and TRM anisotropy and cooling rate corrections was used to estimate paleointensities at specimen level. All accepted results correspond to well-defined single components of magnetization going toward the origin and to high-quality paleointensity determinations. From these experiments nine new high-quality mean intensities have been obtained. The new data provide an improved description of the sharp abrupt intensity changes that took place in this region between the 7th and the 11th centuries. The results confirm that several rapid intensity changes (of about ~15-20 µT/century) took place in Western Europe during the recent history of the Earth.
Entransy dissipation number and its application to heat exchanger performance evaluation
GUO JiangFeng; CHENG Lin; XU MingTian
2009-01-01
Based on the concept of the entransy which characterizes heat transfer ability,a new heat exchanger performance evaluation criterion termed the entransy dissipation number is established.Our analysis shows that the decrease of the entransy dissipation number always increases the heat exchanger effectiveness for fixed heat capacity rate ratio.Therefore,the smaller the entransy dissipation number,the better the heat exchanger performance is.The entransy dissipation number in terms of the number of exchanger heat transfer units or heat capacity rate ratio correctly exhibits the global performance of the counter-,cross-and parallel-flow heat exchangers.In comparison with the heat exchanger performance evaluation criteria based on entropy generation,the entransy dissipation number demonstrates some distinct advantages.Furthermore,the entransy dissipation number reflects the degree of irreversibility caused by flow imbalance.
Autoresonance in a Dissipative System
Glebov, Sergei; Tarkhanov, Nikolai
2009-01-01
We study the autoresonant solution of Duffing's equation in the presence of dissipation. This solution is proved to be an attracting set. We evaluate the maximal amplitude of the autoresonant solution and the time of transition from autoresonant growth of the amplitude to the mode of fast oscillations. Analytical results are illustrated by numerical simulations.
On Dissipation in Stochastic Systems
Thygesen, Uffe Høgsbro
1999-01-01
We define the property of dissipativity for controlled Ito diffusions. We investigate elementary properties, and we demonstrate that the framework is useful for control problems in which both probabilistic and worst-case representations of dynamic uncertainty are present. As an example we discuss...
Lossless and dissipative distributed systems
Pillai, HK; Willems, JC
2002-01-01
This paper deals with linear shift-invariant distributed systems. By this we mean systems described by constant coefficient linear partial differential equations. e de ne dissipativity with respect to a quadratic differential form, i.e., a quadratic functional in the system variables and their
Dissipative effects in Multilevel Systems
Solomon, A I [Department of Physics and Astronomy, Open University, Milton Keynes MK7 6AA (United Kingdom); Schirmer, S G [Department of Applied Maths and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)
2007-11-15
Dissipation is sometimes regarded as an inevitable and regrettable presence in the real evolution of a quantum system. However, the effects may not always be malign, although often non-intuitive and may even be beneficial. In this note we we display some of these effects for N-level systems, where N = 2,3,4. We start with an elementary introduction to dissipative effects on the Bloch Sphere, and its interior, the Bloch Ball, for a two-level system. We describe explicitly the hamiltonian evolution as well as the purely dissipative dynamics, in the latter case giving the t {yields} {infinity} limits of the motion. This discussion enables us to provide an intuitive feeling for the measures of control-reachable states. For the three-level case we discuss the impossibility of isolating a two-level (qubit) subsystem; this is a Bohm-Aharonov type consequence of dissipation. We finally exemplify the four-level case by giving constraints on the decay of two-qubit entanglement.
Turbulent Dissipation Challenge -- Problem Description
Parashar, Tulasi N; Wicks, Robert; Karimabadi, Homa; Chandran, S Peter Gary Benjamin; Matthaeus, William H
2014-01-01
The goal of this document is to present a detailed description of the goals, simulation setup and diagnostics for the Turbulent Dissipation Challenge $($http://arxiv.org/abs/1303.0204$)$ as discussed in the Solar Heliospheric and INterplanetary Environment $($SHINE$)$ 2013 workshop, American Geophysical Union Fall Meeting 2013 and the accompanying antenna meeting in Berkeley.
Preventing Blow up by Convective Terms in Dissipative PDE's
Bilgin, Bilgesu; Kalantarov, Varga; Zelik, Sergey
2016-09-01
We study the impact of the convective terms on the global solvability or finite time blow up of solutions of dissipative PDEs. We consider the model examples of 1D Burger's type equations, convective Cahn-Hilliard equation, generalized Kuramoto-Sivashinsky equation and KdV type equations. The following common scenario is established: adding sufficiently strong (in comparison with the destabilizing nonlinearity) convective terms to equation prevents the solutions from blowing up in a finite time and makes the considered system globally well-posed and dissipative and for weak enough convective terms the finite time blow up may occur similar to the case, when the equation does not involve convective term. This kind of result has been previously known for the case of Burger's type equations and has been strongly based on maximum principle. In contrast to this, our results are based on the weighted energy estimates which do not require the maximum principle for the considered problem.
Dynamics of particle--turbulence interaction at the dissipative scales
Bocanegra Evans, Humberto; Dam, Nico; van de Water, Willem; JM Burgerscentrum Collaboration; COST Action, Particles in Turbulence Collaboration
2013-11-01
We present results of a novel phosphorescent tagging technique that is particularly suited to study particle-laden flows. Using phosphorescent droplets we probe the dynamics of particle-turbulence interaction at the dissipative length scales. We create a cloud of droplets within a chamber capable of generating homogeneous, isotropic turbulence with zero-mean flow. The droplets have Stokes number St ~ 1 , and the flow is intensely turbulent, with Reynolds number Reλ ~ 500 . Using a frequency-tripled Nd:YAG laser, we can tag a variety of volumes, such as thin slabs or thin, pencil-like cylinders. The droplets in these volumes glow during a few Kolmogorov times. By tracking the fate of pencil-shaped clouds using a fast (5 kHz) camera, we come to the surprising conclusion that they disperse faster than fluid elements, with a spreading rate reaching a maximum at St ~ 2 . Sheets of tagged droplets display preferential concentration at work; we discuss statistical quantities that can capture these events. This project is funded by Fundamenteel Onderzoek der Materie (FOM).
Robust Performance And Dissipation of Stochastic Control Systems
Thygesen, Uffe Høgsbro
The topic of the present dissertation is robustness and performance issues in nonlinear control systems. The control systems in our study are described by nominal models consisting of nonlinear deterministic or stochastic differential equations in a Euclidean state space. The nominal models...... and topology on the space of supply rates. For instance, we give conditions under which the available storage is a continuous convex function of the supply rate. Dissipation theory in the existing literature applies only to deterministic systems. This is unfortunate since robust control applications typically...... are subject to perturbations which are completely unknown dynamic systems, except that they are known to possess certain properties of dissipation. A dissipation property restricts the dynamic behaviour of the perturbation to conform with a bounded resource; for instance energy. The main contribution...
Energy dissipation processes in solar wind turbulence
Wang, Y; Feng, X S; Xu, X J; Zhang, J; Sun, T R; Zuo, P B
2015-01-01
Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation cannot be ultimately achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind magnetic reconnection region. We find that the magnetic reconnection region shows a unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for the intermittent multifractal dissipation region scaling around a magnetic reconnection site, and they also have significant implications for the fundamental energy...
Dissipative Trapped Electron Modes in a Heliac
Nasim, M.H.; Persson, M. [Chalmers University of Technology, Goeteborg (Sweden). Dept. of Signals and Systems
2005-11-01
The objective of the present paper is to study the dissipative trapped electron modes (DTEM) in a stellarator configuration. A perturbative-iterative process is used to study the non-adiabatic response of the electrons in the dissipative regimes on the drift wave instability. A ballooning mode formalism is used to drive the drift eigenvalue equation for adiabatic electron which is solved numerically. The eigenmodes are marginally stable. The non-adiabatic response of the electrons is calculated perturbatively which is used to resolve the eigenvalue equation. The process is iterated until electrons response converges. The effects of different parameters such as {eta}{sub e}, the ballooning angle {theta}{sub k}, normalised density scale length {epsilon}{sub n}, radial label s, and {chi} are studied. The mode localisation is correlated with the geometrical properties of the magnetic field. It is found that the wave functions of the most unstable modes are highly localised in a single helical ripple with the possibility of a variety of both helical and toroidal trapping. It is further fond that a perturbative calculations of the growth rate generally is not reliable and can give substantially lower or higher growth rate than the iterative method.
[Thermal dissipation pathway in cucumber seedling leaves under hypoxia stress].
Jia, Yong-xi; Sun, Jin; Wang, Li-ping; Shu, Sheng; Guo, Shi-rong
2011-03-01
A water culture experiment was conducted to study the relationship between photosynthetic thermal dissipation and xanthophyll cycle in cucumber seedling leaves under hypoxia stress (the dissolved oxygen concentration in nutrient solution was 0.9-1.1 mg x L(-1)). Under the hypoxia stress, there was a significant decrease in the quantum yield of PS II photochemistry rate (phi(PS II)), net photosynthetic rate (Pn) under saturation light intensity, quanta yield (AQY), and maximal photochemical efficiency (Fv/Fm), suggesting that the photoinhibition of the seedling leaves was induced. Meanwhile, the thermal dissipation (NPQ) and the allocation of dissipation energy (D) by antenna increased, but the photochemical quenching apparent (q(p)) decreased, suggesting the enhancement of thermal dissipation in cucumber leaves under hypoxia stress. A positive correlation was observed between NPQ and xanthophyll de-epoxidation state (DEPS), and both of them were promoted by ascorbic acid (AsA) and inhibited by 1,4-dithiothreitol (DTT), suggesting that xanthophyll cycle was the major pathway of photosynthetic thermal dissipation in cucumber seedling leaves under hypoxia stress.
Maximum Autocorrelation Factorial Kriging
Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.
2000-01-01
This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...
Integral Dissipative Set-valued Maps
M. O. Ogundiran
2008-01-01
Full Text Available Integral dissipativity arises over a period of time. This dissipativity for multivalued maps has some intrinsic properties together with their convexification. The space of Aumann integrable maps endowed with Hausdorff topology having this dissipativity condition is a complete metric space.
Optimizing the microstructure of dissipative materials
Andreassen, Erik; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard
The aim of this work is to present a method to design material microstructures with high dissipation using topology optimization. In order to compute the macroscopic energy dissipation in periodic structures, we focus both on capturing the physical dissipation mechanism and to find the effective...
Kinetic Simulations of the Self-Focusing and Dissipation of Finite-Width Electron Plasma Waves
Winjum, B. J. [Univ. of California, Los Angeles, CA (United States); Berger, R. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapman, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Banks, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunner, S. [Federal Inst. of Technology, Lausanne (Switzerland)
2013-09-01
Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γ_{TPMI} divided by the loss rate of field energy ν_{E} to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γ_{TPMI}/ν_{E}~1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].
NUMERICAL SIMULATION OF TURBULENT FLOW THROUGH THROAT-TYPE ENERGY-DISSIPATORS
无
2002-01-01
The flow through the throat-type energy-dissi-pators is calculated by using an axis-symmetrical K-ε turbu-lence model. The velocity field, the pressure field and the dis-tributions of turbulent energy and its dissipation rate are ac-quired. The energy dissipation through the throat-type ener-gy-dissipators can be seen in detail. The calculated pressuredistribution is compared with the measured and in good agree-ment. The results are useful to understand deeply the flowcharacteristics of the throat-type energy-dissipators.
Fidelity of Interference Between Two Bose-Einstein Condensates with Collision and Dissipation
YU Zhao-Xian; JIAO Zhi-Yong
2002-01-01
Interference between the two Bose-Einstein condensates with collision and dissipation is investigated. Itis found that when the two condensates are initially in the coherent state, the interference intensity is affected by thecollision and dissipation, but for the initial Fock state, it is only related to the dissipation. Whether the initial stateis in the coherent state or in a Fock state, the fidelity time has nothing to do with collision. For the initial coherentstate, the fidelity loss rate is zero, but for the initial Fock state, it is determined by the initial particle number of thetwo condensates and dissipation.
Energy Dissipation in Molecular Systems
Tramer, André; Lahmani, Fran oise
2005-01-01
Energy Dissipation in Molecular Systems analyzes experimental data on the redistribution and dissipation of energy injected into molecular systems by radiation or charged particles. These processes, competing with such practically important relaxation channels as chemical reaction or stimulated emission (laser action), are the primary focus in this monograph. Among other topics, the book treats vibrational redistribution and electronic relaxation in isolated molecules and the effects of inter-molecular interactions (collisions, complex formation, solvent effects) on the relaxation paths. Primary photo-chemical processes (such as isomerization, proton or hydrogen-atom transfer, electron transfer and ionization) are also treated as particular cases of vibrational or electronic relaxation. Only a basic knowledge of quantum mechanics and spectroscopy is assumed and calculations are kept to a strict minimum, making the book more accessible to students.
Quantum bouncer with quadratic dissipation
Gonzalez, G. [NanoScience Technology Center, University of Central Florida, Orlando, FL 32826 (United States)]. e-mail: ggonzalez@physics.ucf.edu
2008-07-01
The energy loss due to a quadratic velocity-dependent force on a quantum particle bouncing off a perfectly reflecting surface is obtained for a full cycle of motion. We approach this problem by means of a new, effective, phenomenological Hamiltonian which corresponds to the actual energy of the system and obtain the correction to the eigenvalues of the energy in first-order quantum perturbation theory for the case of weak dissipation. (Author)
Quantum bouncer with quadratic dissipation
González, G.
2008-02-01
The energy loss due to a quadratic velocity dependent force on a quantum particle bouncing on a perfectly reflecting surface is obtained for a full cycle of motion. We approach this problem by means of a new effective phenomenological Hamiltonian which corresponds to the actual energy of the system and obtained the correction to the eigenvalues of the energy in first order quantum perturbation theory for the case of weak dissipation.
Shoreline dissipation of infragravity waves
de Bakker, A.T.M.; Tissier, M.F.S.; Ruessink, B.G.
2014-01-01
Infragravity waves (0.005–0.05 Hz) have recently been observed to dissipate a large part of their energy in the short-wave (0.05–1 Hz) surf zone, however, the underlying mechanism is not well understood. Here, we analyse two new field data sets of near-bed pressure and velocity at up to 13 cross-sho
Shoreline dissipation of infragravity waves
de Bakker, A.T.M.|info:eu-repo/dai/nl/371573734; Tissier, M.F.S.|info:eu-repo/dai/nl/36447887X; Ruessink, B.G.|info:eu-repo/dai/nl/169093360
2014-01-01
Infragravity waves (0.005–0.05 Hz) have recently been observed to dissipate a large part of their energy in the short-wave (0.05–1 Hz) surf zone, however, the underlying mechanism is not well understood. Here, we analyse two new field data sets of near-bed pressure and velocity at up to 13 cross-sho
Dissipative dynamics in particle physics
Romano, R
2003-01-01
The subject of this thesis is the study of dissipative dynamics and their properties in particle physics, dealing with neutral B-mesons, neutron interferometry and neutrino physics. Modified expressions for the relevant phenomenological quantities characterizing these systems are obtained. Moreover, the models presented in this work offer the possibility of direct tests of some basic properties of reduced dynamics (in particular the notion of complete positivity) since they represent concrete systems amenable to actual experiments.
Anisotropic dissipation in lattice metamaterials
Dimitri Krattiger
2016-12-01
Full Text Available Plane wave propagation in an elastic lattice material follows regular patterns as dictated by the nature of the lattice symmetry and the mechanical configuration of the unit cell. A unique feature pertains to the loss of elastodynamic isotropy at frequencies where the wavelength is on the order of the lattice spacing or shorter. Anisotropy may also be realized at lower frequencies with the inclusion of local resonators, especially when designed to exhibit directionally non-uniform connectivity and/or cross-sectional geometry. In this paper, we consider free and driven waves within a plate-like lattice−with and without local resonators−and examine the effects of damping on the isofrequency dispersion curves. We also examine, for free waves, the effects of damping on the frequency-dependent anisotropy of dissipation. Furthermore, we investigate the possibility of engineering the dissipation anisotropy by tuning the directional properties of the prescribed damping. The results demonstrate that uniformly applied damping tends to reduce the intensity of anisotropy in the isofrequency dispersion curves. On the other hand, lattice crystals and metamaterials are shown to provide an excellent platform for direction-dependent dissipation engineering which may be realized by simple changes in the spatial distribution of the damping elements.
Quantum Dissipation and CP Violation in MINOS
de Oliveira, R L N; de Holanda, P C
2014-01-01
We use the open quantum systems framework to analyze the MINOS data and perform this analysis considering two different dissipative models. In the first model, the dissipative parameter describes decoherence effect and in the second, the dissipative parameter describes other dissipative effects including decoherence. With the second model it is possible to study CP violation since we consider Majorana neutrinos. The analysis from the muon neutrino and antineutrino beam assigns different values to all the parameters of the models, but consistent with each other. Assuming that neutrinos are equivalent to antineutrinos, the global analysis presents nonvanishing Majorana CP phase depending on the energetic parameterization of the dissipative parameter.
The strict dissipativity synthesis problem and the rank of the coupling QDF
Belur, M.N.; Trentelman, H.L.
2004-01-01
The problem of existence of a controlled behavior that is strictly dissipative with respect to a quadratic supply rate is studied. The relation between strictness and the rank of a suitable coupling condition that combines the dissipativity properties of the hidden behavior and the orthogonal comple
Evaluation of Carbon Dioxide Dissipation within a Euthanasia Chamber
Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P
2014-01-01
CO2 euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO2 to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO2 levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO2 dropped to below 10% CO2 within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO2 dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO2 dissipation. We recommend that users allow 2 min for CO2 to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate. PMID:25199098
Mixing and dissipation in a geostrophic buoyancy-driven circulation
Vreugdenhil, Catherine A.; Gayen, Bishakhdatta; Griffiths, Ross W.
2016-08-01
Turbulent mixing and energy dissipation have important roles in the global circulation but are not resolved by ocean models. We use direct numerical simulations of a geostrophic circulation, resolving turbulence and convection, to examine the rates of dissipation and mixing. As a starting point, we focus on circulation in a rotating rectangular basin forced by a surface temperature difference but no wind stress. Emphasis is on the geostrophic regime for the horizontal circulation, but also on the case of strong buoyancy forcing (large Rayleigh number), which implies a turbulent convective boundary layer. The computed results are consistent with existing scaling theory that predicts dynamics and heat transport dependent on the relative thicknesses of thermal and Ekman boundary layers, hence on the relative roles of buoyancy and rotation. Scaling theory is extended to describe the volume-integrated rate of mixing, which is proportional to heat transport and decreases with increasing rotation rate or decreasing temperature difference. In contrast, viscous dissipation depends crucially on whether the thermal boundary layer is laminar or turbulent, with no direct Coriolis effect on the turbulence unless rotation is extremely strong. For strong forcing, in the geostrophic regime, the mechanical energy input from buoyancy goes primarily into mixing rather than dissipation. For a buoyancy-driven circulation in a basin comparable to the North Atlantic we estimate that the total rate of mixing accounts for over 95% of the mechanical energy supply, implying that buoyancy is an efficient driver of mixing in the oceans.
Robustness of Linear Systems towards Multi-Dissipative Pertubations
Thygesen, Uffe Høgsbro; Poulsen, Niels Kjølstad
1997-01-01
We consider the question of robust stability of a linear time invariant plant subject to dynamic perturbations, which are dissipative in the sense of Willems with respect to several quadratic supply rates. For instance, parasitic dynamics are often both small gain and passive. We reduce several r...
Evaluation of carbon dioxide dissipation within a euthanasia chamber.
Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P-
2014-07-01
CO₂ euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO₂ to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO₂ levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO₂ dropped to below 10% COv within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO₂ dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO₂ dissipation. We recommend that users allow 2 min for CO₂ to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate.
Dissipative Optomechanics in a Michelson--Sagnac Interferometer
Xuereb, André; Hammerer, Klemens
2011-01-01
Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a quasi-resonant cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson--Sagnac interferometer, which enables a strong and tunable dissipative coupling in an optical setup. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible.
Damping Functions correct over-dissipation of the Smagorinsky Model
Pakzad, Ali
2016-01-01
This paper studies the time-averaged energy dissipation rate $\\langle \\varepsilon_{SMD} (u)\\rangle$ for the combination of the Smagorinsky model and damping function. The Smagorinsky model is well known to over-damp. One common correction is to include damping functions that reduce the effects of model viscosity near walls. Mathematical analysis is given here that allows evaluation of $\\langle \\varepsilon_{SMD} (u)\\rangle $ for any damping function. Moreover, the analysis motivates a modified van Driest damping. It is proven that the combination of the Smagorinsky with this modified damping function does not over dissipate and is also consistent with Kolmogorov phenomenology.
Nonequilibrium steady-state circulation and heat dissipation functional.
Qian, H
2001-08-01
A nonequilibrium steady-state (NESS), different from an equilibrium, is sustained by circular balance rather than detailed balance. The circular fluxes are driven by energy input and heat dissipation, accompanied by a positive entropy production. Based on a Master equation formalism for NESS, we show the circulation is intimately related to the recently studied Gallavotti-Cohen symmetry of heat dissipation functional, which in turn suggests a Boltzmann's formulalike relation between rate constants and energy in NESS. Expanding this unifying view on NESS to diffusion is discussed.
Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields
Soto-Aquino, D. [ERC Incorporated, Air Force Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, CA 93524 (United States); Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, PO Box 116131, Gainesville, FL 32611-6131 (United States)
2015-11-01
The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given. - Highlights: • Rosensweig's model for SAR was extended to high fields. • The MRSh relaxation equation was used to predict SAR at high fields. • Rotational Brownian dynamics simulations were used to predict SAR. • The results of these models were compared. • Predictions of effect of size and field conditions on SAR are presented.
Quantum-dot Carnot engine at maximum power.
Esposito, Massimiliano; Kawai, Ryoichi; Lindenberg, Katja; Van den Broeck, Christian
2010-04-01
We evaluate the efficiency at maximum power of a quantum-dot Carnot heat engine. The universal values of the coefficients at the linear and quadratic order in the temperature gradient are reproduced. Curzon-Ahlborn efficiency is recovered in the limit of weak dissipation.
Compaction shock dissipation in low density granular explosive
Rao, Pratap T.; Gonthier, Keith A.; Chakravarthy, Sunada
2016-06-01
The microstructure of granular explosives can affect dissipative heating within compaction shocks that can trigger combustion and initiate detonation. Because initiation occurs over distances that are much larger than the mean particle size, homogenized (macroscale) theories are often used to describe local thermodynamic states within and behind shocks that are regarded as the average manifestation of thermodynamic fields at the particle scale. In this paper, mesoscale modeling and simulation are used to examine how the initial packing density of granular HMX (C4H8N8O8) C4H8N8O8 having a narrow particle size distribution influences dissipation within resolved, planar compaction shocks. The model tracks the evolution of thermomechanical fields within large ensembles of particles due to pore collapse. Effective shock profiles, obtained by averaging mesoscale fields over space and time, are compared with those given by an independent macroscale compaction theory that predicts the variation in effective thermomechanical fields within shocks due to an imbalance between the solid pressure and a configurational stress. Reducing packing density is shown to reduce the dissipation rate within shocks but increase the integrated dissipated work over shock rise times, which is indicative of enhanced sensitivity. In all cases, dissipated work is related to shock pressure by a density-dependent power law, and shock rise time is related to pressure by a power law having an exponent of negative one.
Compaction shock dissipation in low density granular explosive
Rao, Pratap T.; Gonthier, Keith A., E-mail: gonthier@me.lsu.edu; Chakravarthy, Sunada [Mechanical and Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)
2016-06-14
The microstructure of granular explosives can affect dissipative heating within compaction shocks that can trigger combustion and initiate detonation. Because initiation occurs over distances that are much larger than the mean particle size, homogenized (macroscale) theories are often used to describe local thermodynamic states within and behind shocks that are regarded as the average manifestation of thermodynamic fields at the particle scale. In this paper, mesoscale modeling and simulation are used to examine how the initial packing density of granular HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}) C{sub 4}H{sub 8}N{sub 8}O{sub 8} having a narrow particle size distribution influences dissipation within resolved, planar compaction shocks. The model tracks the evolution of thermomechanical fields within large ensembles of particles due to pore collapse. Effective shock profiles, obtained by averaging mesoscale fields over space and time, are compared with those given by an independent macroscale compaction theory that predicts the variation in effective thermomechanical fields within shocks due to an imbalance between the solid pressure and a configurational stress. Reducing packing density is shown to reduce the dissipation rate within shocks but increase the integrated dissipated work over shock rise times, which is indicative of enhanced sensitivity. In all cases, dissipated work is related to shock pressure by a density-dependent power law, and shock rise time is related to pressure by a power law having an exponent of negative one.
Self-organization in a driven dissipative plasma system
Shaikh, Dastgeer; Dasgupta, B.; Hu, Q.; Zank, G. P.
2010-02-01
We perform a fully self-consistent three-dimensional numerical simulation for a compressible, dissipative magnetoplasma driven by large-scale perturbations, that contain a fairly broad spectrum of characteristic modes, ranging from largest scales to intermediate scales and down to the smallest scales, where the energy of the system is dissipated by collisional (ohmic) and viscous dissipations. Additionally, our simulation includes nonlinear interactions amongst a wide range of fluctuations that are initialized with random spectral amplitudes, leading to the cascade of spectral energy in the inertial range spectrum, and takes into account large-scale as well as small-scale perturbations that may have been induced by the background plasma fluctuations, as well as the non-adiabatic exchange of energy leading to the migration of energy from the energy-containing modes or randomly injected energy driven by perturbations and further dissipated by the smaller scales. Besides demonstrating the comparative decays of the total energy and the dissipation rate of the energy, our results show the existence of a perpendicular component of the current, thus clearly confirming that the self-organized state is non-force free.
Strong tidal dissipation in Io and Jupiter from astrometric observations.
Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim
2009-06-18
Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.
Dissipation kinetics and risk assessment of thiamethoxam and dimethoate in mango.
Bhattacherjee, A K; Dikshit, Abhay
2016-03-01
Thiamethoxam and dimethoate are two insecticides used to control hoppers and inflorescence midges in mango. Thiamethoxam (0.008 and 0.016%) and dimethoate (0.06 and 0.12%) were sprayed on Dashehari mango trees during the pre-mature stage of fruit (first week of May) to study their dissipation kinetics and risk assessment in mango fruit. Thiamethoxam dissipated in fruit from 1.93 and 3.71 mg kg(-1) after 2 h of spraying to 0.08 and 0.13 mg kg(-1) after 20 days of spraying at single and double doses, respectively. Its residue did not persist beyond 20 days in fruit. Dimethoate dissipated in fruit from 2.81 and 5.34 mg kg(-1) after 2 h of application to 0.12 and 0.19 mg kg(-1) after 10 days of application at single and double doses, respectively. No residue was detected in fruit beyond 10 days after its application. Both ready-to-harvest mature mango fruit and pulp (after 40 days of spraying) were free from any residues of these insecticides at both the concentration levels. The rate of dissipation of these insecticides followed first-order kinetics in fruit with residual half-lives of 4.0 to 4.5 days for thiamethoxam and 2 days for dimethoate. Based on their MRL values of 0.5 and 2.0 mg kg(-1) in mango, pre-harvest intervals of 7 and 11 days, and 6 and 7 days were suggested for thiamethoxam and dimethoate, respectively, after spraying at single and double doses. The theoretical maximum residue contribution (TMRC) values for both the insecticides, calculated for residues corresponding to each sampling date, were found to be below the maximum permissible intake (MPI) values on mango fruit (except for dimethoate double dose up to 3 days); hence, both thiamethoxam and dimethoate could be considered non-hazardous to consumers at the above doses and time intervals.
Waves in vertically inhomogeneous dissipative atmosphere
Dmitrienko, I S
2015-01-01
A method of construction of solution for acoustic-gravity waves (AGW) above a wave source, taking dissipation throughout the atmosphere into account (Dissipative Solution above Source, DSAS), is proposed. The method is to combine three solutions for three parts of the atmosphere: an analytical solution for the upper isothermal part and numerical solutions for the real non-isothermal dissipative atmosphere in the middle part and for the real non-isothermal small dissipation atmosphere in the lower one. In this paper the method has been carried out for the atmosphere with thermal conductivity but without viscosity. The heights of strong dissipation and the total absorption index in the regions of weak and average dissipation are found. For internal gravity waves the results of test calculations for an isothermal atmosphere and calculations for a real non-isothermal atmosphere are shown in graphical form. An algorithm and appropriate code to calculate DSAS, taking dissipation due to finite thermal conductivity i...
Dissipative optomechanics in a Michelson-Sagnac interferometer.
Xuereb, André; Schnabel, Roman; Hammerer, Klemens
2011-11-18
Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.
Momentum dissipation and effective theories of coherent and incoherent transport
Davison, Richard A
2014-01-01
We study heat transport in two systems without momentum conservation: a hydrodynamic system, and a holographic system with spatially dependent, massless scalar fields. When momentum dissipates slowly, there is a well-defined, coherent collective excitation in the AC heat conductivity, and a crossover between sound-like and diffusive transport at small and large distance scales. When momentum dissipates quickly, there is no such excitation in the incoherent AC heat conductivity, and diffusion dominates at all distance scales. For a critical value of the momentum dissipation rate, we compute exact expressions for the Green's functions of our holographic system due to an emergent gravitational self-duality, similar to electric/magnetic duality, and SL(2,R) symmetries. We extend the coherent/incoherent classification to examples of charge transport in other holographic systems: probe brane theories and neutral theories with non-Maxwell actions.
Dissipation in noisy chemical networks: The role of deficiency
Polettini, M., E-mail: matteo.polettini@uni.lu; Wachtel, A., E-mail: artur.wachtel@uni.lu; Esposito, M., E-mail: massimilano.esposito@uni.lu [Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, 162a Avenue de la Faïencerie, Luxembourg L-1511 (Luxembourg)
2015-11-14
We study the effect of intrinsic noise on the thermodynamic balance of complex chemical networks subtending cellular metabolism and gene regulation. A topological network property called deficiency, known to determine the possibility of complex behavior such as multistability and oscillations, is shown to also characterize the entropic balance. In particular, when deficiency is zero the average stochastic dissipation rate equals that of the corresponding deterministic model, where correlations are disregarded. In fact, dissipation can be reduced by the effect of noise, as occurs in a toy model of metabolism that we employ to illustrate our findings. This phenomenon highlights that there is a close interplay between deficiency and the activation of new dissipative pathways at low molecule numbers.
Maximum entropy production in environmental and ecological systems.
Kleidon, Axel; Malhi, Yadvinder; Cox, Peter M
2010-05-12
The coupled biosphere-atmosphere system entails a vast range of processes at different scales, from ecosystem exchange fluxes of energy, water and carbon to the processes that drive global biogeochemical cycles, atmospheric composition and, ultimately, the planetary energy balance. These processes are generally complex with numerous interactions and feedbacks, and they are irreversible in their nature, thereby producing entropy. The proposed principle of maximum entropy production (MEP), based on statistical mechanics and information theory, states that thermodynamic processes far from thermodynamic equilibrium will adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate. This issue focuses on the latest development of applications of MEP to the biosphere-atmosphere system including aspects of the atmospheric circulation, the role of clouds, hydrology, vegetation effects, ecosystem exchange of energy and mass, biogeochemical interactions and the Gaia hypothesis. The examples shown in this special issue demonstrate the potential of MEP to contribute to improved understanding and modelling of the biosphere and the wider Earth system, and also explore limitations and constraints to the application of the MEP principle.
Designing Biomimetic, Dissipative Material Systems
Balazs, Anna C. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Whitesides, George M. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology; Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering. Dept. of Chemistry. Dept. of Molecular Genetics and Microbiology. Center for Micro-Engineered Materials; Aranson, Igor S. [UChicago, LLC., Argonne, IL (United States); Chaikin, Paul [New York Univ. (NYU), NY (United States). Dept. of Physics; Dogic, Zvonimir [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Glotzer, Sharon [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering. Dept. of Materials Science and Engineering. Dept. of Macromolecular Science and Engineering Physics; Hammer, Daniel [Univ. of Pennsylvania, Philadelphia, PA (United States). School of Engineering and Applied Science; Irvine, Darrell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering and Biological Engineering; Little, Steven R. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Olvera de la Cruz, Monica [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Parikh, Atul N. [Univ. of California, Davis, CA (United States). Dept. of Biomedical Engineering. Dept. of Chemical Engineering and Materials Science; Stupp, Samuel [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry. Dept. of Medicine. Dept. of Biomedical Engineering; Szostak, Jack [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology
2016-01-21
Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.
Asymptotics for dissipative nonlinear equations
Hayashi, Nakao; Kaikina, Elena I; Shishmarev, Ilya A
2006-01-01
Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.
邓春亮; 胡南辉
2012-01-01
在非自然联系情形下讨论了广义线性模型拟似然方程的解βn在λn→∞和其他一些正则性条件下证明了解的弱相合性，并得到其收敛于真值βo的速度为Op（λn^-1/2），其中λn（λ^-n）为方阵Sn=n∑i=1XiX^11的最小（最大）特征值．%In this paper,we study the solution βn of quasi - maximum likelihood equation for generalized linear mod- els （GLMs）. Under the assumption of an unnatural link function and other some mild conditions , we prove the weak consistency of the solution to βnquasi - - maximum likelihood equation and present its convergence rate isOp（λn^-1/2）,λn（^λn） which denotes the smallest （Maximum）eigervalue of the matrixSn =n∑i=1XiX^11,
An extended dissipative particle dynamics model
Cotter, C J
2003-01-01
The method of dissipative particle dynamics (DPD) was introduced by Hoogerbrugge & Koelman to study meso-scale material processes. The theoretical investigation of the DPD method was initiated by Espanol who used a Fokker-Planck formulation of the DPD method and applied the Mori-Zwanzig projection operator calculus to obtain the equations of hydrodynamics for DPD. A current limitation of DPD is that it requires a clear separation of scales between the resolved and unresolved processes. In this note, we suggest a simple extension of DPD that allows for inclusion of unresolved processes with exponentially decaying variance for any value of the decay rate. The main point of the extension is that it is as easy to implement as DPD in a numerical algorithm.
房祥忠; 陈家鼎
2011-01-01
强度随时间变化的非齐次Possion过程在很多领域应用广泛.对一类非常广泛的非齐次Poisson过程—指数多项式模型,得到了当观测时间趋于无穷大时,参数的最大似然估计的“最优”收敛速度.%The model of nonhomogeneous Poisson processes with varying intensity function is applied in many fields. The best convergence rate for the maximum likelihood estimate ( MLE ) of exponential polynomial model, which is a kind of wide used nonhomogeneous Poisson processes, is given when time going to infinity.
Modular quantum-information processing by dissipation
Marshall, Jeffrey; Campos Venuti, Lorenzo; Zanardi, Paolo
2016-11-01
Dissipation can be used as a resource to control and simulate quantum systems. We discuss a modular model based on fast dissipation capable of performing universal quantum computation, and simulating arbitrary Lindbladian dynamics. The model consists of a network of elementary dissipation-generated modules and it is in principle scalable. In particular, we demonstrate the ability to dissipatively prepare all single-qubit gates, and the controlled-not gate; prerequisites for universal quantum computing. We also show a way to implement a type of quantum memory in a dissipative environment, whereby we can arbitrarily control the loss in both coherence, and concurrence, over the evolution. Moreover, our dissipation-assisted modular construction exhibits a degree of inbuilt robustness to Hamiltonian and, indeed, Lindbladian errors, and as such is of potential practical relevance.
Maximum-entropy description of animal movement.
Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M
2015-03-01
We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.
Dissipation of the fungicide hexaconazole in oil palm plantation.
Maznah, Zainol; Halimah, Muhamad; Ismail, Sahid; Idris, Abu Seman
2015-12-01
Hexaconazole is a potential fungicide to be used in the oil palm plantation for controlling the basal stem root (BSR) disease caused by Ganoderma boninense. Therefore, the dissipation rate of hexaconazole in an oil palm agroecosystem under field conditions was studied. Two experimental plots were treated with hexaconazole at the recommended dosage of 4.5 g a.i. palm(-1) (active ingredient) and at double the recommended dosage (9.0 g a.i. palm(-1)), whilst one plot was untreated as control. The residue of hexaconazole was detected in soil samples in the range of 2.74 to 0.78 and 7.13 to 1.66 mg kg(-1) at the recommended and double recommended dosage plots, respectively. An initial relatively rapid dissipation rate of hexaconazole residues occurred but reduced with time. The dissipation of hexaconazole in soil was described using first-order kinetics with the value of coefficient regression (r (2) > 0.8). The results indicated that hexaconazole has moderate persistence in the soil and the half-life was found to be 69.3 and 86.6 days in the recommended and double recommended dosage plot, respectively. The results obtained highlight that downward movement of hexaconazole was led by preferential flow as shown in image analysis. It can be concluded that varying soil conditions, environmental factors, and pesticide chemical properties of hexaconazole has a significant impact on dissipation of hexaconazole in soil under humid conditions.
Enantioselective dissipation of pyriproxyfen in soils and sand.
Liu, Hui; Wang, Peng; Zhou, Zhiqiang; Liu, Donghui
2017-07-01
Under normal conditions, the environmental behaviors of pesticides are affected by complex environmental factors and the manner of administration together with constraints. In order to meet the actual needs, we imitated the experiment and found that the degradation rate of pyriproxyfen in soils rendered complex changes. Rac-pyriproxyfen was successfully chiral separated on an AZ-H column and the residue analysis method was in accord with the demand of pesticide analysis. The results indicated that pyriproxyfen dissipated at a faster rate in Heilongjiang soil and Hainan soil, while at a much slower speed in another three soils and sand. Obvious enantioselective degradation was observed in Hainan soil and Qingdao sand. The results suggested that pyriproxyfen alone had low persistence in soil, but the moisture, soil type, the use of mixture formulation, and second spraying treatment could play important roles in dissipation of pyriproxyfen. Too large and too small moisture content could both make pyriproxyfen persist for a longer period in soil than in soil with 25% moisture content. Residues dissipated much slower after using Ai Qiu, while Shi Dingkang did not have a big effect on degradation, with only a small acceleration effect. Pyriproxyfen also dissipated in Hainan soil with difficulty after the second treatment. © 2017 Wiley Periodicals, Inc.
Dissipation enhanced vibrational sensing in an olfactory molecular switch
Chęcińska, Agata; Heaney, Libby [Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Singapore); Pollock, Felix A. [Atomic and Laser Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Nazir, Ahsan [Photon Science Institute and School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Centre for Quantum Dynamics, Imperial College London, London SW7 2AZ (United Kingdom)
2015-01-14
Motivated by a proposed olfactory mechanism based on a vibrationally activated molecular switch, we study electron transport within a donor-acceptor pair that is coupled to a vibrational mode and embedded in a surrounding environment. We derive a polaron master equation with which we study the dynamics of both the electronic and vibrational degrees of freedom beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We show (i) that in the absence of explicit dissipation of the vibrational mode, the semiclassical approach is generally unable to capture the dynamics predicted by our master equation due to both its assumption of one-way (exponential) electron transfer from donor to acceptor and its neglect of the spectral details of the environment; (ii) that by additionally allowing strong dissipation to act on the odorant vibrational mode, we can recover exponential electron transfer, though typically at a rate that differs from that given by the Marcus-Jortner expression; (iii) that the ability of the molecular switch to discriminate between the presence and absence of the odorant, and its sensitivity to the odorant vibrational frequency, is enhanced significantly in this strong dissipation regime, when compared to the case without mode dissipation; and (iv) that details of the environment absent from previous Marcus-Jortner analyses can also dramatically alter the sensitivity of the molecular switch, in particular, allowing its frequency resolution to be improved. Our results thus demonstrate the constructive role dissipation can play in facilitating sensitive and selective operation in molecular switch devices, as well as the inadequacy of semiclassical rate equations in analysing such behaviour over a wide range of parameters.
Correlated electrons in a dissipative environment
Bulla, R.
2009-12-01
When a system of correlated electrons is embedded in a dissipative environment, new emergent phenomena might occur due to the interplay of correlation and dissipation. Here we focus on quantum impurity systems with coupling to a bosonic bath. For the theoretical investigation we introduce the bosonic numerical renormalization group method which has been initially set up for the spin-boson model. The role of both correlations and dissipation is described in the context of two-electron transfer systems. We also discuss prospects for the investigation of lattice models of correlated electrons with coupling to a dissipative bath.
Dissipation-induced instabilities and symmetry
Oleg N. Kirillov; Ferdinand Verhulst
2011-01-01
The paradox of destabilization of a conservative or non-conservative system by small dissipation, or Ziegler's paradox (1952), has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations. Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary, associated with Whitney's umbrella. The first explanation of Ziegler's paradox was given (much earlier) by Oene Bottema in 1956. The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.
Dissipation in thin superconducting current biased films due to vortex motion
Bulaevskii, Lev N [Los Alamos National Laboratory
2009-01-01
Recently, the problem of dissipation in thin superconducting films with thickness d on the order of the coherence length {zeta}, and width {omega} much narrower than the Pearl length, {Lambda} >> {omega} >> {zeta}, was discussed as the main cause for the behavior of I-V characteristics observed in thin high-temperature superconducting films. In thin and narrow films or strips with width w >> {zeta} the barrier for phase slips by creation of temporary normal regions across the entire film width is too big, thus phase slips become highly improbable. Instead, we consider a vortex crossing the strip from one edge to the other, perpendicular to the bias current, as the dominant mechanism for generalized phase slips resulting in detectable voltage pulses. We derive the rate of vortex crossings using the general theory of transition rates between metastable states. In mean field theory, the saddle point solution of the rate equation gives the vortex position inside the strip, where the kinetic energy of supercurrents is maximum. However, the free energy barrier derived in such an approach is strongly renormalized by superconducting fluctuations and this effect was not accounted for previously. They drastically reduce the rate of vortex crossings and, consequently, dissipation. We present results for the amplitude and duration of voltage pulses induced by vortex motion and their consequences on I-V characteristics, when heating due to vortex crossings is negligible. We found ohmic behavior at low bias currents, power law behavior at intermediate currents and exponential I-V characteristics at currents close to the critical one. The impact of vortex motion in superconducting strips on the observation of so-called dark counts (voltage pulses) in superconducting nanowire single-photon detectors is discussed.
Maximum Entropy in Drug Discovery
Chih-Yuan Tseng
2014-07-01
Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.
Maximum Autocorrelation Factorial Kriging
Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete
2000-01-01
This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...
Micro- and macro-scale self-organization in a dissipative plasma
Skoric, M.M.; Sato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Maluckov, A.; Jovanovic, M.S.
1998-10-01
We study a nonlinear three-wave interaction in an open dissipative model of stimulated Raman backscattering in a plasma. A hybrid kinetic-fluid scheme is proposed to include anomalous kinetic dissipation due to electron trapping and plasma wave breaking. We simulate a finite plasma with open boundaries and vary a transport parameter to examine a route to spatio-temporal complexity. An interplay between self-organization at micro (kinetic) and macro (wave/fluid) scales is revealed through quasi-periodic and intermittent evolution of dynamical variables, dissipative structures and related entropy rates. An evidence that entropy rate extrema correspond to structural transitions is found. (author)
Dissipative Shocks behind Bacteria Gliding
Virga, Epifanio G
2014-01-01
Gliding is a means of locomotion on rigid substrates utilized by a number of bacteria includingmyxobacteria and cyanobacteria. One of the hypotheses advanced to explain this motility mechanism hinges on the role played by the slime filaments continuously extruded from gliding bacteria. This paper solves in full a non-linear mechanical theory that treats as dissipative shocks both the point where the extruded slime filament comes in contact with the substrate, called the filament's foot, and the pore on the bacterium outer surface from where the filament is ejected. We prove that kinematic compatibility for shock propagation requires that the bacterium uniform gliding velocity (relative to the substrate) and the slime ejecting velocity (relative to the bacterium) must be equal, a coincidence that seems to have already been observed.
Variational principles for dissipative waves
Dodin, I. Y.; Ruiz, D. E.
2016-10-01
Variational methods are a powerful tool in plasma theory. However, their applications are typically restricted to conservative systems or require doubling of variables, which often contradicts the purpose of the variational approach altogether. We show that these restrictions can be relaxed for some classes of dynamical systems that are of practical interest in plasma physics, particularly including dissipative plasma waves. Applications will be discussed to calculating dispersion relations and modulational dynamics of individual plasma waves and wave ensembles. The work was supported by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, by the U.S. DOE through Contract No. DE-AC02-09CH11466, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.
Dissipative Dynamics of Quantum Fluctuations
Benatti, F; Floreanini, R
2015-01-01
One way to look for complex behaviours in many-body quantum systems is to let the number $N$ of degrees of freedom become large and focus upon collective observables. Mean-field quantities scaling as $1/N$ tend to commute, whence complexity at the quantum level can only be inherited from complexity at the classical level. Instead, fluctuations of microscopic observables scale as $1/\\sqrt{N}$ and exhibit collective Bosonic features, typical of a mesoscopic regime half-way between the quantum one at the microscopic level and the classical one at the level of macroscopic averages. Here, we consider the mesoscopic behaviour emerging from an infinite quantum spin chain undergoing a microscopic dissipative, irreversible dynamics and from global states without long-range correlations and invariant under lattice translations and dynamics. We show that, from the fluctuations of one site spin observables whose linear span is mapped into itself by the dynamics, there emerge bosonic operators obeying a mesoscopic dissipa...
Heat dissipation and information flow for delayed bistable Langevin systems near coherence resonance
Xiao, Tiejun
2016-11-01
In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic properties.
Gomaa Ramadan
2016-03-01
Full Text Available Insecticides play an important role in increasing agricultural production, but their extensive use has led to environmental problems including health hazards to humans. The present study was carried out to investigate the residual levels and dissipation behavior of four insecticides, namely abamectin, thiamethoxam, spinosad, and chlorpyrifos, in tomato (Solanum lycopersicum L. fruits under Egyptian field condition. The insecticide residues were determined after application of insecticides for three times at recommended rates. The extraction of insecticide residues was carried out by using QuEChERS method. The determination of residual levels was performed by high performance liquid chromatography coupled with diode array detector (HPLC-DAD. Recoveries were between 85% and 130%, with relative standard deviations from 1.8% to 17.0% at two fortified levels. The dissipation rates of insecticides followed first-order kinetics (Ct = 0.2627 e-0.17t, Ct = 3.7183 e-0.275t, Ct = 0.1778 e-0.407t, Ct = 0.6074 e-0.11t for abamectin, chlorpyrifos, spinosad and thiamethoxam, respectively. The values of half-life of insecticides were 4.1, 2.5, 1.7, and 6.3 d for abamectin, chlorpyrifos, spinosad and thiamethoxam, respectively. The results indicated that tomato fruits could be safely consumed after 7, 15, < 1 and 10 d of application at recommended rates for abamectin, chlorpyrifos, spinosad and thiamethoxam, respectively, according to the recommended EU maximum residue limits (MRLs.
Dissipative N-point-vortex Models in the Plane
Shashikanth, Banavara N.
2010-02-01
A method is presented for constructing point vortex models in the plane that dissipate the Hamiltonian function at any prescribed rate and yet conserve the level sets of the invariants of the Hamiltonian model arising from the SE (2) symmetries. The method is purely geometric in that it uses the level sets of the Hamiltonian and the invariants to construct the dissipative field and is based on elementary classical geometry in ℝ3. Extension to higher-dimensional spaces, such as the point vortex phase space, is done using exterior algebra. The method is in fact general enough to apply to any smooth finite-dimensional system with conserved quantities, and, for certain special cases, the dissipative vector field constructed can be associated with an appropriately defined double Nambu-Poisson bracket. The most interesting feature of this method is that it allows for an infinite sequence of such dissipative vector fields to be constructed by repeated application of a symmetric linear operator (matrix) at each point of the intersection of the level sets.
Vector dissipativity theory for large-scale impulsive dynamical systems
Haddad Wassim M.
2004-01-01
Full Text Available Modern complex large-scale impulsive systems involve multiple modes of operation placing stringent demands on controller analysis of increasing complexity. In analyzing these large-scale systems, it is often desirable to treat the overall impulsive system as a collection of interconnected impulsive subsystems. Solution properties of the large-scale impulsive system are then deduced from the solution properties of the individual impulsive subsystems and the nature of the impulsive system interconnections. In this paper, we develop vector dissipativity theory for large-scale impulsive dynamical systems. Specifically, using vector storage functions and vector hybrid supply rates, dissipativity properties of the composite large-scale impulsive systems are shown to be determined from the dissipativity properties of the impulsive subsystems and their interconnections. Furthermore, extended Kalman-Yakubovich-Popov conditions, in terms of the impulsive subsystem dynamics and interconnection constraints, characterizing vector dissipativeness via vector system storage functions, are derived. Finally, these results are used to develop feedback interconnection stability results for large-scale impulsive dynamical systems using vector Lyapunov functions.
Symmetries of the dissipative Hofstadter model
Freed, D E
1993-01-01
The dissipative Hofstadter model, which describes a particle in 2-D subject to a periodic potential, uniform magnetic field, and dissipation, is also related to open string boundary states. This model exhibits an SL(2,Z) duality symmetry and hidden reparametrization invariance symmetries. These symmetries are useful for finding exact solutions for correlation functions.
Few-optical-cycle dissipative solitons
Leblond, H [Laboratoire de Photonique d' Angers EA 4464, Universite d' Angers, 2 Bd. Lavoisier, 49045 Angers Cedex 01 (France); Mihalache, D, E-mail: herve.leblond@univ-angers.f [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, Magurele-Bucharest, 077125 (Romania)
2010-09-17
By using a powerful reductive perturbation technique, or multiscale analysis, a generalized modified Korteweg-de Vries partial differential equation is derived, which describes the physics of few-optical-cycle dissipative solitons beyond the slowly varying envelope approximation. Numerical simulations of the formation of stable dissipative solitons from arbitrary breather-like few-cycle pulses are also given.
Nahri, Davoud G.; Mathkoor, Faisal H. A.; Ooi, C. H. Raymond
2017-02-01
A dissipative quantum dot (QD)-cavity system, where the QD is initially prepared in the excited state with no photon in the cavity, coupled to a longitudinal acoustic (LA) phonon reservoir is studied using a numerically exact real-time path-integral approach. Three distinct dynamical regimes of weak (WC), strong (SC), and coherent coupling (CC) are discussed and more accurate conditions identifying them are presented. Our results show that to have the CC regime, which is characterized by clear vacuum Rabi oscillation (VRO), vacuum Rabi splitting (VRS) should be larger than the sum of the widths of the corresponding peaks. In order to distinguish between contributions of population decay and impure dephasing, induced by LA phonon bath and the dissipations, we propose a two-part phenomenological expression, corresponding to the population decay and impure dephasing, which fits the QD-cavity decay curves perfectly and is used to calculate the corresponding spectra. We demonstrate that the effective population decay rate (the emission rate) increases from the carrier recombination rate to a maximum value, which is the mean of the QD and cavity dissipation rates, with QD-cavity coupling strength. To study the role of the effective impure dephasing rate on the width of the central peak of the spectra we introduce a quantity that can also be applied in determining the distinct coupling regimes. This quantity enables us to identify the onset of the SC regime as the point where the impure dephasing term begins to contribute to the central band of the spectrum significantly, as a result of the existence of VRO with a very small frequency (unclear VRO) at the corresponding decay curve. Its contribution to the width of the central peak increases with the coupling strength up to the onset of the CC regime, then reduces as a result of the appearance of sidebands in the spectra, which originates from clear VRO. The effective population decay and impure dephasing rate contribute
Material Systems for Blast-Energy Dissipation
James Schondel; Henry S. Chu
2010-10-01
Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.
Breathing dissipative solitons in optical microresonators
Lucas, Erwan; Guo, Hairun; Gorodetsky, Michael; Kippenberg, Tobias
2016-01-01
Dissipative solitons are self-localized structures resulting from a double balance between dispersion and nonlinearity as well as dissipation and a driving force. They occur in a wide variety of fields ranging from optics, hydrodynamics to chemistry and biology. Recently, significant interest has focused on their temporal realization in driven optical microresonators, known as dissipative Kerr solitons. They provide access to coherent, chip-scale optical frequency combs, which have already been employed in optical metrology, data communication and spectroscopy. Such Kerr resonator systems can exhibit numerous localized intracavity patterns and provide rich insights into nonlinear dynamics. A particular class of solutions consists of breathing dissipative solitons, representing pulses with oscillating amplitude and duration, for which no comprehensive understanding has been presented to date. Here, we observe and study single and multiple breathing dissipative solitons in two different microresonator platforms...
Theory of harmonic dissipation in disordered solids
Damart, T.; Tanguy, A.; Rodney, D.
2017-02-01
Mechanical spectroscopy, i.e., cyclic deformations at varying frequencies, is used theoretically and numerically to compute dissipation in model glasses. From a normal mode analysis, we show that in the high-frequency terahertz regime where dissipation is harmonic, the quality factor (or loss angle) can be expressed analytically. This expression is validated through nonequilibrium molecular dynamics simulations applied to a model of amorphous silica (SiO2). Dissipation is shown to arise from nonaffine relaxations triggered by the applied strain through the excitation of vibrational eigenmodes that act as damped harmonic oscillators. We discuss an asymmetry vector field, which encodes the information about the structural origin of dissipation computed by mechanical spectroscopy. In the particular case of silica, we find that the motion of oxygen atoms, which induce a deformation of the Si-O-Si bonds, is the main contributor to harmonic energy dissipation.
Influence of dissipation on two-atom dispersion interactions
Barcellona, Pablo; Buhmann, Stefan Yoshi
2015-03-01
We consider the dispersion interaction between two neutral, ground-state atoms at zero and finite temperature by means of a dynamical approach. Our result differs from the previous ones obtained with time-independent perturbation theory because it correctly accounts for the influence of dissipation via the atomic decay rates. Modern measurements of Casimir force seem to suggest a suppressed influence of dissipation. Our new result shows similar features and can hence help resolve the Drude-plasma debate. We also consider the interaction between a ground-state atom and an excited atom. There are discordant results in the literature for the retarded potential: one oscillating and one monotonous. Our dynamical result uniquely leads to the oscillating result when taking into account the decay rates. This work was supported by the DFG (Grant BU 1803/3-1).
Maximum likely scale estimation
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...
Heat dissipation during hovering and forward flight in hummingbirds.
Powers, Donald R; Tobalske, Bret W; Wilson, J Keaton; Woods, H Arthur; Corder, Keely R
2015-12-01
Flying animals generate large amounts of heat, which must be dissipated to avoid overheating. In birds, heat dissipation is complicated by feathers, which cover most body surfaces and retard heat loss. To understand how birds manage heat budgets during flight, it is critical to know how heat moves from the skin to the external environment. Hummingbirds are instructive because they fly at speeds from 0 to more than 12 m s(-1), during which they transit from radiative to convective heat loss. We used infrared thermography and particle image velocimetry to test the effects of flight speed on heat loss from specific body regions in flying calliope hummingbirds (Selasphorus calliope). We measured heat flux in a carcass with and without plumage to test the effectiveness of the insulation layer. In flying hummingbirds, the highest thermal gradients occurred in key heat dissipation areas (HDAs) around the eyes, axial region and feet. Eye and axial surface temperatures were 8°C or more above air temperature, and remained relatively constant across speeds suggesting physiological regulation of skin surface temperature. During hovering, birds dangled their feet, which enhanced radiative heat loss. In addition, during hovering, near-body induced airflows from the wings were low except around the feet (approx. 2.5 m s(-1)), which probably enhanced convective heat loss. Axial HDA and maximum surface temperature exhibited a shallow U-shaped pattern across speeds, revealing a localized relationship with power production in flight in the HDA closest to the primary flight muscles. We conclude that hummingbirds actively alter routes of heat dissipation as a function of flight speed.
Clomazone dissipation, adsorption and translocation in four paddy topsoils.
Li, Lian-fang; Li, Guo-xue; Yang, Ren-bin; Guo, Zheng-yuan; Liao, Xiao-yong
2004-01-01
Laboratory experiments about the dissipation, adsorption and translocation in four paddy topsoils were conducted in this paper. From the results it can be concluded as follows: the dissipation rate of clomazone differed greatly in different paddy soil derived from different parent materials. The half-lives for clomazone degradation in paddy soils ranged from 5.7 to 22.0 d. The order of clomazone dissipation rate was reddish yellow paddy soil > alluvial sandy paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Clomazone sorption quantity was significantly correlated with organic carbon (R2 = 0.62) and clay content(R2 = 0.67) in the tested paddy soils. Positive correlation was found between apparent Kd value and cation exchange content(CEC). The consequences for the adsorption of different soils were purple sandy paddy soil > yellow clayey paddy soil > reddish yellow paddy soil > alluvial sandy paddy soil. Under the simulated rainfall of 200 mm through four different unsaturated soil lysimeters over 24 h, clomazone was readily to be leached into lower surface soil and there was about 2.6%--4.2% of applied clomazone leached out of 20 cm cultivated soil layer. Translocation experiments showed that the order of clomazone leaching ability was: alluvial sandy paddy soil > reddish yellow paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Simple regression results manifested that factors like CEC, organic carbon, clay, and adsorption rate constant had been negatively correlated with the percentage of clomazone loss from soil lysimeters.
Quantum dissipation in unbounded systems.
Maddox, Jeremy B; Bittner, Eric R
2002-02-01
In recent years trajectory based methodologies have become increasingly popular for evaluating the time evolution of quantum systems. A revival of the de Broglie--Bohm interpretation of quantum mechanics has spawned several such techniques for examining quantum dynamics from a hydrodynamic perspective. Using techniques similar to those found in computational fluid dynamics one can construct the wave function of a quantum system at any time from the trajectories of a discrete ensemble of hydrodynamic fluid elements (Bohm particles) which evolve according to nonclassical equations of motion. Until very recently these schemes have been limited to conservative systems. In this paper, we present our methodology for including the effects of a thermal environment into the hydrodynamic formulation of quantum dynamics. We derive hydrodynamic equations of motion from the Caldeira-Leggett master equation for the reduced density matrix and give a brief overview of our computational scheme that incorporates an adaptive Lagrangian mesh. Our applications focus upon the dissipative dynamics of open unbounded quantum systems. Using both the Wigner phase space representation and the linear entropy, we probe the breakdown of the Markov approximation of the bath dynamics at low temperatures. We suggest a criteria for rationalizing the validity of the Markov approximation in open unbound systems and discuss decoherence, energy relaxation, and quantum/classical correspondence in the context of the Bohmian paths.
Dissipative properties of quantum systems.
Grecos, A P; Prigogine, I
1972-06-01
We consider the dissipative properties of large quantum systems from the point of view of kinetic theory. The existence of a nontrivial collision operator imposes restrictions on the possible collisional invariants of the system. We consider a model in which a discrete level is coupled to a set of quantum states and which, in the limit of a large "volume," becomes the Friedrichs model. Because of its simplicity this model allows a direct calculation of the collision operator as well as of related operators and the constants of the motion. For a degenerate spectrum the calculations become more involved but the conclusions remain simple. The special role played by the invariants that are functions of the Hamiltonion is shown to be a direct consequence of the existence of a nonvanishing collision operator. For a class of observables we obtain ergodic behavior, and this reformulation of the ergodic problem may be used in statistical mechanics to study the ergodicity of large quantum systems containing a small physical parameter such as the coupling constant or the concentration.
Magnetic Dissipation in Relativistic Jets
Yosuke Mizuno
2016-10-01
Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.
Dilepton emission in high-energy heavy-ion collisions with dissipative hydrodynamics
Vujanovic, Gojko; Shen, Chun; Luzum, Matthew; Schenke, Bjoern; Jeon, Sangyoung; Gale, Charles
2015-01-01
In this contribution we study the effects of three transport coefficients of dissipative hydrodynamics on thermal dilepton anisotropic flow observables. The first two transport coefficients investigated influence the overall size and growth rate of shear viscous pressure, while the last transport coefficient governs the magnitude of net baryon number diffusion in relativistic dissipative fluid dynamics. All calculations are done using state-of-the-art 3+1D hydrodynamical simulations. We show that thermal dileptons are sensitive probes of the transport coefficients of dissipative hydrodynamics.
Maximum information photoelectron metrology
Hockett, P; Wollenhaupt, M; Baumert, T
2015-01-01
Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...
Dissipative processes in superfluid quark matter
Mannarelli, M; Manuel, C
2010-01-01
We present some results about dissipative processes in fermionic superfluids that are relevant for compact stars. At sufficiently low temperatures the transport properties of a superfluid are dominated by phonons. We report the values of the bulk viscosity, shear viscosity and thermal conductivity of phonons in quark matter at extremely high density and low temperature. Then, we present a new dissipative mechanism that can operate in compact stars and that is named "rocket term". The effect of this dissipative mechanism on superfluid r-mode oscillations is sketched.
ATOMIZATION CAUSED BY BOTTOM FLOW ENERGY DISSIPATION
无
2001-01-01
Bottom flow energy dissipation is one of the common energydissipation methods for flood-releasing structures with high water head. Measures of this energy dissipation depend mainly on the turbulent action of hydraulic jump.In this paper, the physical process and the calculating methods of the atomization caused by bottom flow energy dissipation were studied, the computation models of atomization quantity for the self-aerated flow in overflow and hydraulic jump regions are presented, and the main results are of theoretical and practical significance for the hydraulic and electric engineering.
Quons in a Quantum Dissipative System
Lee, Taejin
2015-01-01
String theory proves to be an imperative tool to explore the critical behavior of the quantum dissipative system. We discuss the quantum particles moving in two dimensions, in the presence of a uniform magnetic field, subject to a periodic potential and a dissipative force, which are described by the dissipative Wannier-Azbel-Hofstadter (DWAH) model. Using string theory formulation of the model, we find that the elementary excitations of the system at the generic points of the off-critical regions, in the zero temperature limit are quons, which satisfy q-deformed statistics.
Multicritical behavior in dissipative Ising models
Overbeck, Vincent R; Gorshkov, Alexey V; Weimer, Hendrik
2016-01-01
We analyze theoretically the many-body dynamics of a dissipative Ising model in a transverse field using a variational approach. We find that the steady state phase diagram is substantially modified compared to its equilibrium counterpart, including the appearance of a multicritical point belonging to a different universality class. Building on our variational analysis, we establish a field-theoretical treatment corresponding to a dissipative variant of a Ginzburg-Landau theory, which allows us to compute the upper critical dimension of the system. Finally, we present a possible experimental realization of the dissipative Ising model using ultracold Rydberg gases.
20 CFR 229.48 - Family maximum.
2010-04-01
... month on one person's earnings record is limited. This limited amount is called the family maximum. The family maximum used to adjust the social security overall minimum rate is based on the employee's Overall..., when any of the persons entitled to benefits on the insured individual's compensation would, except...
Valter Abrantes Pereira da Silva
2007-03-01
Full Text Available OBJETIVO: O presente estudo objetivou comparar os valores de freqüência cardíaca máxima (FCmáx medidos durante um teste de esforço progressivo (TEP, com os obtidos através de equações de predição, em idosas brasileiras. MÉTODOS: Um TEP máximo sob o protocolo modificado de Bruce, realizado em esteira, foi utilizado para obtenção dos valores de referência da freqüência cardíaca máxima (FCmáx, em 93 mulheres idosas (67,1±5,16 anos. Os valores obtidos foram comparados aos estimados pelas equações "220 - idade" e a de Tanaka e cols., através da ANOVA, para amostras repetidas. A correlação e a concordância entre os valores medidos e os estimados foram testadas. Adicionalmente, a correlação entre os valores de FCmáx medidos e a idade das voluntárias foi examinada. RESULTADOS: Os resultados foram os seguintes: 1 a média da FCmáx atingida no TEP foi de 145,5±12,5 batimentos por minuto (bpm; 2 as equações "220 - idade" e a de Tanaka e cols. (2001 superestimaram significativamente (p OBJECTIVE: This study sought to compare maximum heart rate (HRmax values measured during a graded exercise test (GXT with those calculated from prediction equations in Brazilian elderly women. METHODS: A treadmill maximal graded exercise test in accordance with the modified Bruce protocol was used to obtain reference values for maximum heart rate (HRmax in 93 elderly women (mean age 67.1 ± 5.16. Measured values were compared with those estimated from the "220 - age" and Tanaka et al formulas using repeated-measures ANOVA. Correlation and agreement between measured and estimated values were tested. Also evaluated was the correlation between measured HRmax and volunteers’ age. RESULTS: Results were as follows: 1 mean HRmax reached during GXT was 145.5 ± 12,5 beats per minute (bpm; 2 both the "220 - age" and Tanaka et al (2001 equations significantly overestimated (p < 0.001 HRmax by a mean difference of 7.4 and 15.5 bpm, respectively; 3
Yuan-Hong Jiang
Full Text Available OBJECTIVES: The aim of this study was to investigate the predictive values of the total International Prostate Symptom Score (IPSS-T and voiding to storage subscore ratio (IPSS-V/S in association with total prostate volume (TPV and maximum urinary flow rate (Qmax in the diagnosis of bladder outlet-related lower urinary tract dysfunction (LUTD in men with lower urinary tract symptoms (LUTS. METHODS: A total of 298 men with LUTS were enrolled. Video-urodynamic studies were used to determine the causes of LUTS. Differences in IPSS-T, IPSS-V/S ratio, TPV and Qmax between patients with bladder outlet-related LUTD and bladder-related LUTD were analyzed. The positive and negative predictive values (PPV and NPV for bladder outlet-related LUTD were calculated using these parameters. RESULTS: Of the 298 men, bladder outlet-related LUTD was diagnosed in 167 (56%. We found that IPSS-V/S ratio was significantly higher among those patients with bladder outlet-related LUTD than patients with bladder-related LUTD (2.28±2.25 vs. 0.90±0.88, p1 or >2 was factored into the equation instead of IPSS-T, PPV were 91.4% and 97.3%, respectively, and NPV were 54.8% and 49.8%, respectively. CONCLUSIONS: Combination of IPSS-T with TPV and Qmax increases the PPV of bladder outlet-related LUTD. Furthermore, including IPSS-V/S>1 or >2 into the equation results in a higher PPV than IPSS-T. IPSS-V/S>1 is a stronger predictor of bladder outlet-related LUTD than IPSS-T.
Entropy production and the geometry of dissipative evolution equations
Reina, Celia; Zimmer, Johannes
2015-11-01
Purely dissipative evolution equations are often cast as gradient flow structures, z ˙=K (z ) D S (z ) , where the variable z of interest evolves towards the maximum of a functional S according to a metric defined by an operator K . While the functional often follows immediately from physical considerations (e.g., the thermodynamic entropy), the operator K and the associated geometry does not necessarily do so (e.g., Wasserstein geometry for diffusion). In this paper, we present a variational statement in the sense of maximum entropy production that directly delivers a relationship between the operator K and the constraints of the system. In particular, the Wasserstein metric naturally arises here from the conservation of mass or energy, and depends on the Onsager resistivity tensor, which, itself, may be understood as another metric, as in the steepest entropy ascent formalism. This variational principle is exemplified here for the simultaneous evolution of conserved and nonconserved quantities in open systems. It thus extends the classical Onsager flux-force relationships and the associated variational statement to variables that do not have a flux associated to them. We further show that the metric structure K is intimately linked to the celebrated Freidlin-Wentzell theory of stochastically perturbed gradient flows, and that the proposed variational principle encloses an infinite-dimensional fluctuation-dissipation statement.
LIU Hai-ying
2008-01-01
By introducing the concepts of stably dissipative matrix and graph, some criteria conditions for stably dissipative matrix were given. On this basis, the method of graph theory was used to classify all stably dissipative 3D Lotka-Volterra systems and five classes of maximal stably dissipative graphs were obtained for these systems. Finally, the necessary and sufficient condition of being stably dissipative for every class was studied, under which the matrix associated with the graph is stably dissipative.
Energy dissipation in biomolecular machines
Lervik, Anders
2012-07-01
thermodynamic efficiency is found to be low (< 13 %) in all cases for the experimental conditions considered, which means that a large amount of the energy released from the ATP-hydrolysis is dissipated as heat. A complementary molecular dynamics study targeted on a bilayer for which the protein shows a relatively large efficiency (compared to other bilayers) shows that membrane deformation and large efficiency are not mutually exclusive. Overall, this thesis highlights the usefulness of the mesoscopic non-equilibrium thermodynamic framework applied to molecular machines and energy transduction and dissipation in these. The main result is that the mesoscopic nonequilibrium thermodynamic framework is applicable to molecular pumps and can be extended to include heat effects. This framework is general and can be applied to other molecular machines as well. Further, the results also support the notion that the calcium pump may contribute to non-shivering thermogenesis in certain tissues.(Author)
Dissipative structures and biological rhythms
Goldbeter, Albert
2017-10-01
Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.
Extended fluctuation-dissipation theorem for soft matter in stationary flow.
Speck, Thomas; Seifert, Udo
2009-04-01
For soft matter systems strongly driven by stationary flow, we discuss an extended fluctuation-dissipation theorem (FDT). Beyond the linear-response regime, the FDT for the stress acquires an additional contribution involving the observable that is conjugate to the strain rate with respect to the dissipation function. This extended FDT is evaluated both analytically for Rouse polymers and in numerical simulations for colloidal suspensions. More generally, our results suggest an extension of Onsager's regression principle to nonequilibrium steady states.
Multiscale approach to modeling intrinsic dissipation in solids
Kunal, K.; Aluru, N. R.
2016-08-01
In this paper, we develop a multiscale approach to model intrinsic dissipation under high frequency of vibrations in solids. For vibrations with a timescale comparable to the phonon relaxation time, the local phonon distribution deviates from the equilibrium distribution. We extend the quasiharmonic (QHM) method to describe the dynamics under such a condition. The local deviation from the equilibrium state is characterized using a nonequilibrium stress tensor. A constitutive relation for the time evolution of the stress component is obtained. We then parametrize the evolution equation using the QHM method and a stochastic sampling approach. The stress relaxation dynamics is obtained using mode Langevin dynamics. Methods to obtain the input variables for the Langevin dynamics are discussed. The proposed methodology is used to obtain the dissipation rate Edissip for different cases. Frequency and size effect on Edissip are studied. The results are compared with those obtained using nonequilibrium molecular dynamics (MD).
Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence
Lemaster, M Nicole
2008-01-01
We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these...
Towards a Measurement of the Spacetime Dissipation
Yang, Huan; Smith, Nicolas D; Adhikari, Rana X; Miao, Haixing; Chen, Yanbei
2015-01-01
It has been speculated that gravity could be an emergent phenomenon, with classical general relativity as an effective, macroscopic theory, valid only for classical systems at large temporal and spatial scales. As in classical continuum dynamics, the existence of underlying microscopic degrees of freedom may lead to macroscopic dissipative behaviors. With the hope that such dissipative behaviors of gravity could be revealed by carefully designed experiments in the laboratory, we consider a family of phenomenological models that add dissipations to the gravitational field, much similar to frictions in solids and fluids. Constraints to such dissipative behavior can already be imposed by astrophysical observations and existing experiments, but mostly in lower frequencies. We propose a series of experiments working in higher frequency regimes, which may potentially put more stringent bounds on these models.
Open Boundary Conditions for Dissipative MHD
Meier, E T
2011-11-10
In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.
Low moduli elastomers with low viscous dissipation
Bejenariu, Anca Gabriela; Yu, Liyun; Skov, Anne Ladegaard
2012-01-01
A controlled reaction schema for addition curing silicones leads to both significantly lower elastic modulus and lower viscous dissipation than for the chemically identical network prepared by the traditional reaction schema....
Dissipation effects in mechanics and thermodynamics
Guemez, Julio
2016-01-01
With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to a heat transfer to the surrounding. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned the effects of the dissipative forces are include in the Newton's equations as impulses and pseudo-works.
Dissipation effects in mechanics and thermodynamics
Güémez, J.; Fiolhais, M.
2016-07-01
With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.
Positive multiplication preserves dissipativity in commutative -algebras
Sommariva Alvise
2001-01-01
Full Text Available We prove that multiplication by a positive element preserves dissipativity (accretivity in the framework of commutative -algebras. A simple counterexample shows that the result is not valid, in general, in commutative involutory Banach algebras.
Dissipative tunneling of deuterons in Palladium Deuterides
Sinha, K. P.; Hagelstein, Peter
2001-03-01
Decisive experimental evidence exists(B.N.Ganguly,Phys.Rev. B14), 3848(1976). for optical phonons being involved in charged particle-phonon interaction in PdD. We consider the tunneling of charged defects (D^+ or D^-) in a two-state system(K.P.Sinha,Mod.Phys.Lett. B1), 805 (1998)^, (P.L.Hagelstein,To be published.)^,(U.Weiss, \\underline Quantum) \\underline Dissipative \\underline Systems (World Scientific, Singapore, 1999).. The two minima of the potential energy are taken to be asymetrical to reflect the real situation occurring in the solid matrix with defects. A pseudospin formalism is used in which the charged particle interacts with conduction electrons as well as optical phonons. The renormalization effects of the tunneling matrix elements due to interaction with electrons and optical phonons are taken into account. The tunneling rate is derived for both coherent and incoherent situations at finite temperatures. The expressions contain factors which show the emission(absorption) of phonons depending on the direction of the tunneling process. Thus the moving deuteron flux stimulates the generation of optical phonons.
Dissipative dynamics of superconducting hybrid qubit systems
Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)
2009-05-01
We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.
Fluctuation-dissipation theorem and quantum tunneling with dissipation at finite temperature
Fujikawa, K; Fujikawa, Kazuo; Terashima, Hiroaki
1998-01-01
A reformulation of the fluctuation-dissipation theorem of Callen and Welton is presented in such a manner that the basic idea of Feynman-Vernon and Caldeira -Leggett of using an infinite number of oscillators to simulate the dissipative medium is realized manifestly without actually introducing oscillators. If one assumes the existence of a well defined dissipative coefficient $R(\\omega)$ which little depends on the temperature in the energy region we are interested in, the spontanous and induced emissions as well as induced absorption of these effective oscillators with correct Bose distribution automatically appears. Combined with a dispersion relation, we reproduce the tunneling formula in the presence of dissipation at finite temperature without referring to an explicit model Lagrangian. The fluctuation-dissipation theorem of Callen-Welton is also generalized to the fermionic dissipation (or fluctuation) which allows a transparent physical interpretation in terms of second quantized fermionic oscillators....
Maximum likely scale estimation
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....
Entangling Atoms and Ions in Dissipative Environments
Beige, A; Braun, D; Huelga, S F; Knight, P L; Plenio, M B; Vedral, V
2000-01-01
Quantum information processing rests on our ability to manipulate quantum superpositions through coherent unitary transformations, and to establish entanglement between constituent quantum components of the processor. The quantum information processor (a linear ion trap, or a cavity confining the radiation field for example) exists in a dissipative environment. We discuss ways in which entanglement can be established within such dissipative environments. We can even make use of a strong interaction of the system with its environment to produce entanglement in a controlled way.
Dissipation, correlation and lags in heat engines
Campisi, Michele; Fazio, Rosario
2016-08-01
By modelling heat engines as driven multi-partite system we show that their dissipation can be expressed in terms of the lag (relative entropy) between the perturbed state of each partition and their equilibrium state, and the correlations that build up among the partitions. We show that the non-negativity of the overall dissipation implies Carnot formulation of the second law. We illustrate the rich interplay between correlations and lags with a two-qubit device driven by a quantum gate.
Quantum Markov Chain Mixing and Dissipative Engineering
Kastoryano, Michael James
2012-01-01
This thesis is the fruit of investigations on the extension of ideas of Markov chain mixing to the quantum setting, and its application to problems of dissipative engineering. A Markov chain describes a statistical process where the probability of future events depends only on the state of the sy......This thesis is the fruit of investigations on the extension of ideas of Markov chain mixing to the quantum setting, and its application to problems of dissipative engineering. A Markov chain describes a statistical process where the probability of future events depends only on the state...... of the system at the present point in time, but not on the history of events. Very many important processes in nature are of this type, therefore a good understanding of their behaviour has turned out to be very fruitful for science. Markov chains always have a non-empty set of limiting distributions....... Finally, we consider three independent tasks of dissipative engineering: dissipatively preparing a maximally entangled state of two atoms trapped in an optical cavity, dissipative preparation of graph states, and dissipative quantum computing construction....
Unravelling tidal dissipation in gaseous giant planets
Guenel, Mathieu; Remus, Françoise
2014-01-01
Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. New constraints are now obtained both in the Solar and exoplanetary systems. Tidal dissipation in planets is intrinsically related to their internal structure. In particular, fluid and solid layers behave differently under tidal forcing. Therefore, their respective dissipation reservoirs have to be compared. In this letter, we compute separately the contributions of the potential dense rocky/icy core and the convective fluid envelope of gaseous giant planets, as a function of core size and mass. We then compare the associated dissipation reservoirs, by evaluating the frequency-average of the imaginary part of the Love numbers $k^2_2$ in each region. In the case of Jupiter and Saturn-like planets, we show that the viscoelastic dissipation in the core could dominate the turbulent friction acting on tidal inertial waves in the envelope. However, the fluid dissipation wou...
Energy Dissipation of Axionic Boson Stars in Magnetized Conducting Media
Iwazaki, A
1999-01-01
Axions are possible candidates of dark matter in the present Universe. They have been argued to form axionic boson stars. Since they are shown to possess oscillating electric fields in a magnetic field, they loose their energies in magnetized conducting media. We show that colliding with a white dwarf, the axionic boson stars dissipate their energies with the rate being roughly $\\sim 10^{35}$ erg/s. According to recent evaluation of the population of the white dwarfs as candidates of MACHOs, we estimate that the event rate of the collisions is roughly 4 per year in a solid angle $5^{\\circ}\\times 5^{\\circ}$.
Dissipation and reconnection in boundary-driven reduced magnetohydrodynamics
Wan, Minping; Rappazzo, Antonio Franco; Matthaeus, William H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Servidio, Sergio [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Oughton, Sean [Department of Mathematics, University of Waikato, Hamilton 3240 (New Zealand)
2014-12-10
We study the statistics of coherent current sheets, the population of X-type critical points, and reconnection rates in a coronal loop geometry, via numerical simulations of reduced magnetohydrodynamic turbulence. Current sheets and sites of reconnection (magnetic X-points) are identified in two-dimensional planes of the three-dimensional simulation domain. The geometry of the identified current sheets—including area, length, and width—and the magnetic dissipation occurring in the current sheets are statistically characterized. We also examine the role of magnetic reconnection, by computing the reconnection rates at the identified X-points and investigating their association with current sheets.
Dissipation Effect in the Hunting Motion Stability of Wheel Set with Elastic Joints
Daniel Baldovin
2010-01-01
Full Text Available The axle hunting is a coupled lateral and yaw self oscillatory motion which is largely determined by wheel–rail contact geometry. The stability of this motion is an important dynamic problem that determines the maximum operating speed of railway vehicle. To improve the stability performances, without increasing the rail-wheel interaction forces above safety limits, elastic joints and dissipative devices are used to connect the wheelset to the bogy frame. In this paper is studied the influence of passive linear and non-linear dissipative horizontal forces on the hunting motion stability of a wheelset with elastic joints.
Fundamental molecules of life are pigments which arose and evolved to dissipate the solar spectrum
Michaelian, K.; Simeonov, A.
2015-02-01
The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate. In the upper atmosphere of today, oxygen and ozone derived from life processes are performing the short wavelength UVC and UVB dissipation. On Earth's surface, water and organic pigments in water facilitate the near UV and visible photon dissipation. The first organic pigments probably formed, absorbed, and dissipated at those photochemically active wavelengths in the UVC that could have reached Earth's surface during the Archean. Proliferation of these pigments can be understood as an autocatalytic photochemical process obeying non-equilibrium thermodynamic directives related to increasing solar photon dissipation rate. Under these directives, organic pigments would have evolved over time to increase the global photon dissipation rate by; (1) increasing the ratio of their effective photon cross sections to their physical size, (2) decreasing their electronic excited state life times, (3) quenching radiative de-excitation channels (e.g. fluorescence), (4) covering ever more completely the prevailing solar spectrum, and (5) proliferating and dispersing to cover an ever greater surface area of Earth. From knowledge of the evolution of the spectrum of G-type stars, and considering the most probable history of the transparency of Earth's atmosphere, we construct the most probable Earth surface solar spectrum as a function of time and compare this with the history of molecular absorption maxima obtained from the available data in the literature. This comparison supports the conjecture that many fundamental molecules of life are pigments which arose and evolved to dissipate the solar spectrum, supports the thermodynamic dissipation theory for the origin of life, constrains models for Earth's early atmosphere, and sheds some new light on the origin of
Fundamental molecules of life are pigments which arose and evolved to dissipate the solar spectrum
K. Michaelian
2015-02-01
Full Text Available The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate. In the upper atmosphere of today, oxygen and ozone derived from life processes are performing the short wavelength UVC and UVB dissipation. On Earth's surface, water and organic pigments in water facilitate the near UV and visible photon dissipation. The first organic pigments probably formed, absorbed, and dissipated at those photochemically active wavelengths in the UVC that could have reached Earth's surface during the Archean. Proliferation of these pigments can be understood as an autocatalytic photochemical process obeying non-equilibrium thermodynamic directives related to increasing solar photon dissipation rate. Under these directives, organic pigments would have evolved over time to increase the global photon dissipation rate by; (1 increasing the ratio of their effective photon cross sections to their physical size, (2 decreasing their electronic excited state life times, (3 quenching radiative de-excitation channels (e.g. fluorescence, (4 covering ever more completely the prevailing solar spectrum, and (5 proliferating and dispersing to cover an ever greater surface area of Earth. From knowledge of the evolution of the spectrum of G-type stars, and considering the most probable history of the transparency of Earth's atmosphere, we construct the most probable Earth surface solar spectrum as a function of time and compare this with the history of molecular absorption maxima obtained from the available data in the literature. This comparison supports the conjecture that many fundamental molecules of life are pigments which arose and evolved to dissipate the solar spectrum, supports the thermodynamic dissipation theory for the origin of life, constrains models for Earth's early atmosphere, and sheds some new light on the origin of
F. TopsÃƒÂ¸e
2001-09-01
Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Maximum Throughput in Multiple-Antenna Systems
Zamani, Mahdi
2012-01-01
The point-to-point multiple-antenna channel is investigated in uncorrelated block fading environment with Rayleigh distribution. The maximum throughput and maximum expected-rate of this channel are derived under the assumption that the transmitter is oblivious to the channel state information (CSI), however, the receiver has perfect CSI. First, we prove that in multiple-input single-output (MISO) channels, the optimum transmission strategy maximizing the throughput is to use all available antennas and perform equal power allocation with uncorrelated signals. Furthermore, to increase the expected-rate, multi-layer coding is applied. Analogously, we establish that sending uncorrelated signals and performing equal power allocation across all available antennas at each layer is optimum. A closed form expression for the maximum continuous-layer expected-rate of MISO channels is also obtained. Moreover, we investigate multiple-input multiple-output (MIMO) channels, and formulate the maximum throughput in the asympt...
徐革锋; 尹家胜; 韩英; 刘洋; 牟振波
2014-01-01
This study examined the effects of water temperature on the metabolic characteristics and aerobic exer-cise capacity of juvenile manchurian trout , Brachymystax lenok ( Pallas) .The resting metabolic rate ( RMR) ,maxi-mum metabolic rate (MMR), metabolic scope(MS)and critical swimming speed (UCrit) of juveniles were measured at different temperature (4, 8, 12, 16, 20℃).The results showed that both the RMR and the MMR increased sig-nificantly with the increasing of water temperature ( P<0 .05 ) .Compared with test group at 4℃, the RMR for 8℃, 12℃, 16℃ and 20℃increased by 62%, 165%, 390%, 411%,respectively, and the MMR increased by 3%, 34%, 111%, 115%, respectively .However , the MS decreased with the increasing of water temperature with the highest MS occurring at 4℃.UCrit was significantly affected by water temperature (P<0.05), but the varia-tions of UCrit didn′t follow certain pattern with temperature .In the test of aerobic exercise , the MMR for each tem-perature level occurred at the swimming speed of 70% UCrit , probably due to the start of anaerobic metabolism , which caused excessive creatine in body , consequently hindered the aerobic metabolism .%为了探究温度对细鳞鲑（ Brachymystax lenok）幼鱼的代谢特征和有氧运动能力的影响，在不同温度（4℃、8℃、12℃、16℃、20℃）下测定了实验鱼的静止代谢率（ RMR）、有氧运动过程中的最大代谢率（ MMR）以及能量代谢范围（MS）和临界游泳速度（UCrit）。结果表明，随着温度的上升，RMR和MMR均显著提高（P＜0．05），各温度下的RMR和MMR分别较4℃条件的提高了62％（8℃）、165％（12℃）、390％（16℃）、411％（20℃）和3％（8℃）、34％（12℃）、111％（16℃）、115％（20℃）；MS随水温的升高呈现下降的趋势，且4℃条件具有最大的代谢范围。不同温度条件下UCrit存在显著性差异，但随着温度升高未表现出明显的变
The Eulerian- and Lagrangian-mean flows induced by stationary, dissipating planetary waves
Takahashi, M.; Uryu, M.
1981-01-01
The Eulerian- and the Lagrangian-mean flows induced by stationary, dissipating planetary waves are discussed by employing a simple channel model on a beta-plane. It is assumed that the wave is excited by the bottom undulation and dissipated by Newtonian cooling with relaxation time alpha and by Rayleigh friction with (lambda)(alpha), lambda being constant. Three cases where lambda is equal to one are discussed: (1) the basic zonal wind U sub 0 and the dissipation rate alpha are both constant; (2) U sub 0 varies with height while alpha is constant; and (3) U sub 0 and alpha both vary with height. In case (1), the Eulerian- and the Lagrangian-mean fields are shown to depend on the difference between the dissipation scale-height and the density scale-height. In case (2) and case (3), it is shown that the results for case (1) are modified under slightly more realistic situations.
Dissipation through localized loss in bosonic systems with long-range interactions
Vidanović, Ivana; Cocks, Daniel; Hofstetter, Walter
2014-05-01
In recent years, controlled dissipation has proven to be a useful tool for the probing of a quantum system in an ultracold setup. In this paper we consider the dynamics of bosons induced by a dissipative local defect. We address superfluid and supersolid phases close to half filling that are ground states of an extended Bose-Hubbard Hamiltonian. To this end, we solve the master equation using the Gutzwiller approximation and find that in the superfluid phase repulsive nearest-neighbor interactions can lead to enhanced dissipation processes. On the other hand, our mean-field approach indicates that the effective loss rates are significantly suppressed deep in the supersolid phase where repulsive nearest-neighbor interactions play a dominant role. Our numerical results are explained by analytical arguments and, in particular, in the limit of strong dissipation we recover the quantum Zeno effect.
无
2003-01-01
In the viewpoint of heat transfer, heat transport potential capacity and its dissipation are defined based on the essence of heat transport phenomenon. Respectively, their physical meanings are the overall heat transfer capabilityand the dissipation rate of the heat transfer capacity. Then the least dissipation principle of heat transport potential capacity is presented to enhance the heat conduction efficiency in the heat conduction optimization. The principle is,for a conduction process with the constant integral of the thermal conductivityover the region, the optimal distribution of thermal conductivity, which corresponds to the highest heat conduction efficiency, is characterized by the least dissipation of heat transport potential capacity. Finally the principle is applied to some cases in heat conduction optimization.
Hao, Guang-You; Wang, Ai-Ying; Liu, Zhi-Hui; Franco, Augusto C; Goldstein, Guillermo; Cao, Kun-Fang
2011-06-01
Hemiepiphytic Ficus species (Hs) possess traits of more conservative water use compared with non-hemiepiphytic Ficus species (NHs) even during their terrestrial growth phase, which may result in significant differences in photosynthetic light use between these two growth forms. Stem hydraulic conductivity, leaf gas exchange and chlorophyll fluorescence were compared in adult trees of five Hs and five NHs grown in a common garden. Hs had significantly lower stem hydraulic conductivity, lower stomatal conductance and higher water use efficiency than NHs. Photorespiration played an important role in avoiding photoinhibition at high irradiance in both Hs and NHs. Under saturating irradiance levels, Hs tended to dissipate a higher proportion of excessive light energy through thermal processes than NHs, while NHs dissipated a larger proportion of electron flow than Hs through the alternative electron sinks. No significant difference in maximum net CO2 assimilation rate was found between Hs and NHs. Stem xylem hydraulic conductivity was positively correlated with maximum electron transport rate and negatively correlated with the quantum yield of non-photochemical quenching across the 10 studied Ficus species. These findings indicate that a canopy growth habit during early life stages in Hs of Ficus resulted in substantial adaptive differences from congeneric NHs not only in water relations but also in photosynthetic light use and carbon economy. The evolution of epiphytic growth habit, even for only part of their life cycle, involved profound changes in a suite of inter-correlated ecophysiological traits that persist to a large extent even during the later terrestrial growth phase.
Studies of dissipative standing shock waves around black holes
Das, Santabrata; Mondal, Soumen
2009-01-01
We investigate the dynamical structure of advective accretion flow around stationary as well as rotating black holes. For a suitable choice of input parameters, such as, accretion rate ($\\dot {\\cal M}$) and angular momentum ($\\lambda$), global accretion solution may include a shock wave. The post shock flow is located at few tens of Schwarzchild radius and it is generally very hot and dense. This successfully mimics the so called Compton cloud which is believed to be responsible for emitting hard radiations. Due to the radiative loss, a significant energy from the accreting matter is removed and the shock moves forward towards the black hole in order to maintain the pressure balance across it. We identify the effective area of the parameter space ($\\dot {\\cal M} - \\lambda$) which allows accretion flows to have some energy dissipation at the shock $(\\Delta {\\cal E})$. As the dissipation is increased, the parameter space is reduced and finally disappears when the dissipation is reached its critical value. The d...
Determination of the dissipation in superconducting Josephson junctions
Mugnai, D., E-mail: d.mugnai@ifac.cnr.it; Ranfagni, A.; Cacciari, I. [“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)
2015-02-07
The results relative to macroscopic quantum tunneling rate, out of the metastable state of Josephson junctions, are examined in view of determining the effect of dissipation. We adopt a simple criterion in accordance to which the effect of dissipation can be evaluated by analyzing the shortening of the semiclassical traversal time of the barrier. In almost all the considered cases, especially those with relatively large capacitance values, the relative time shortening turns out to be about 20% and with a corresponding quality factor Q ≃ 5.5. However, beyond the specific cases here considered, still in the regime of moderate dissipation, the method is applicable also to different situations with different values of the quality factor. The method allows, within the error limits, for a reliable determination of the load resistance R{sub L}, the less accessible quantity in the framework of the resistively and capacitively shunted junction model, provided that the characteristics of the junction (intrinsic capacitance, critical current, and the ratio of the bias current to the critical one) are known with sufficient accuracy.
Crustal control of dissipative ocean tides in Enceladus and other icy moons
Beuthe, Mikael
2016-01-01
Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 m deep. The model is general: it applies to all icy satellites with a thin crust and a shallow ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation...
Dissipativity preserving model reduction by retention of trajectories of minimal dissipation
Trentelman, Harry L.; Ha Binh Minh, [No Value; Rapisarda, Paolo
2009-01-01
We present a method for model reduction based on ideas from the behavioral theory of dissipative systems, in which the reduced order model is required to reproduce a subset of the set of trajectories of minimal dissipation of the original system. The passivity-preserving model reduction method of An
Equalized near maximum likelihood detector
2012-01-01
This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.
Cheeseman, Peter; Stutz, John
2005-01-01
A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].
Ohmic Dissipation in Mini-Neptunes
Pu, Bonan; Valencia, Diana
2017-09-01
In the presence of a magnetic field and weakly ionizing winds, ohmic dissipation is expected to take place in the envelopes of Jovian and lower-mass planets alike. While the process has been investigated on the former, there have been no studies done on mini-Neptunes so far. From structure and thermal evolution models, we determine that the required energy deposition for halting the contraction of mini-Neptunes increases with planetary mass and envelope fraction. Scaled to the insolation power, the ohmic heating needed is small: ∼ {10}-5 orders of magnitude lower than for exo-Jupiters ∼ {10}-2. Conversely, from solving the magnetic induction equation, we find that ohmic energy is dissipated more readily for lower-mass planets and those with larger envelope fractions. Combining these two trends, we find that ohmic dissipation in hot mini-Neptunes is strong enough to inflate their radii (∼ {10}15 W for {T}{eq}=1400 {{K}}). The implication is that the radii of hot mini-Neptunes may be attributed in part to ohmic heating. Thus, there is a trade-off between ohmic dissipation and H/He content for hot mini-Neptunes, adding a new degeneracy for the interpretation of the composition of such planets. In addition, ohmic dissipation would make mini-Neptunes more vulnerable to atmospheric evaporation.
Characterizing pesticide dissipation in food crops
Fantke, Peter; Juraske, R.; Jolliet, O.
2013-01-01
Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Neverth......Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...... assessment. We collected 4,482 unique dissipation half-lives for 341 substances applied to 182 different crop species and fully characterize these data by describing their variance, distribution and uncertainty as well as by identifying the influence of substance, crop and environmental characteristics. We...
Transient chaotic transport in dissipative drift motion
Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)
2016-04-22
Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.
Minimising the heat dissipation of quantum information erasure
Hamed Mohammady, M.; Mohseni, Masoud; Omar, Yasser
2016-01-01
Quantum state engineering and quantum computation rely on information erasure procedures that, up to some fidelity, prepare a quantum object in a pure state. Such processes occur within Landauer's framework if they rely on an interaction between the object and a thermal reservoir. Landauer's principle dictates that this must dissipate a minimum quantity of heat, proportional to the entropy reduction that is incurred by the object, to the thermal reservoir. However, this lower bound is only reachable for some specific physical situations, and it is not necessarily achievable for any given reservoir. The main task of our work can be stated as the minimisation of heat dissipation given probabilistic information erasure, i.e., minimising the amount of energy transferred to the thermal reservoir as heat if we require that the probability of preparing the object in a specific pure state ≤ft|{\\varphi }1\\right.> be no smaller than {p}{\\varphi 1}{max}-δ . Here {p}{\\varphi 1}{max} is the maximum probability of information erasure that is permissible by the physical context, and δ ≥slant 0 the error. To determine the achievable minimal heat dissipation of quantum information erasure within a given physical context, we explicitly optimise over all possible unitary operators that act on the composite system of object and reservoir. Specifically, we characterise the equivalence class of such optimal unitary operators, using tools from majorisation theory, when we are restricted to finite-dimensional Hilbert spaces. Furthermore, we discuss how pure state preparation processes could be achieved with a smaller heat cost than Landauer's limit, by operating outside of Landauer's framework.
Degradation and dissipation of the veterinary ionophore lasalocid in manure and soil.
Žižek, Suzana; Dobeic, Martin; Pintarič, Štefan; Zidar, Primož; Kobal, Silvestra; Vidrih, Matej
2015-11-01
Lasalocid is a veterinary ionophore antibiotic used for prevention and treatment of coccidiosis in poultry. It is excreted from the treated animals mostly in its active form and enters the environment with the use of contaminated manure on agricultural land. To properly assess the risk that lasalocid poses to the environment, it is necessary to know its environmental concentrations as well as the rates of its degradation in manure and dissipation in soil. These values are still largely unknown. A research was undertaken to ascertain the rate of lasalocid degradation in manure under different storage conditions (aging in a pile or composting) and on agricultural soil after using lasalocid-contaminated manure. The results have shown that there is considerable difference in lasalocid degradation between aging manure with no treatment (t1/2=61.8±1.7 d) and composting (t1/2=17.5±0.8 d). Half-lives in soil are much shorter (on average 3.1±0.4 d). On the basis of the measured concentrations of lasalocid in soil after manure application, we can conclude that it can potentially be harmful to soil organisms (PEC/PNEC ratio of 1.18), but only in a worst-case scenario of using the maximum permissible amount of manure and immediately after application. To make certain that no harmful effects occur, composting is recommended.
Energy input and dissipation in a temperate lake during the spring transition
Woolway, R. Iestyn; Simpson, John H.
2017-08-01
ADCP and temperature chain measurements have been used to estimate the rate of energy input by wind stress to the water surface in the south basin of Windermere. The energy input from the atmosphere was found to increase markedly as the lake stratified in spring. The efficiency of energy transfer ( Eff), defined as the ratio of the rate of working in near-surface waters ( RW) to that above the lake surface ( P 10), increased from ˜0.0013 in vertically homogenous conditions to ˜0.0064 in the first 40 days of the stratified regime. A maximum value of Eff˜0.01 was observed when, with increasing stratification, the first mode internal seiche period decreased to match the diurnal wind period of 24 h. The increase in energy input, following the onset of stratification was reflected in enhancement of the mean depth-varying kinetic energy without a corresponding increase in wind forcing. Parallel estimates of energy dissipation in the bottom boundary layer, based on determination of the structure function show that it accounts for ˜15% of RW in stratified conditions. The evolution of stratification in the lake conforms to a heating stirring model which indicates that mixing accounts for ˜21% of RW. Taken together, these estimates of key energetic parameters point the way to the development of full energy budgets for lakes and shallow seas.
Investigation of the transfer and dissipation of energy in isotropic turbulence
Yoffe, Samuel R
2013-01-01
A parallel pseudospectral code for the direct numerical simulation (DNS) of isotropic turbulence has been developed. The code has been extensively benchmarked using established results from literature. The code has been used to conduct a series of runs for freely-decaying turbulence. We explore the use of power-law decay of the total energy to determine an evolved time and compare with the use of dynamic quantities such as the peak dissipation rate, maximum transport power and velocity derivative skewness. Stationary turbulence has also been investigated, where we ensure that the energy input rate remains constant for all runs. We present results for Reynolds numbers up to R{\\lambda} = 335 on a 1024^3 lattice. An exploitation of the pseudospectral technique is used to calculate second and third-order structure functions from the energy and transfer spectra, with a comparison presented to the real-space calculation. An alternative to ESS is discussed, with the second-order exponent found to approach 2/3. The d...
Alixon David Reyes Rodríguez
2011-06-01
theoretical points of reference that responded to scientific needs before, but which are insufficient now. It has been observed in national and international conferences, seminaries, research encounters, in our universities and in different kinds of scientific meetings that some obsolete assumptions are still being taught, which slows down progress in Education Sciences and Sports Science. We recognize that some predictive formulas used to calculate the estimated maximum heart rate (EMHR represented progress for Exercise Science and Exercise Physiology, at some point; however, there are important aspects that should be considered. It is not that we despise them, but we intend to demonstrate and demystify the use of the traditional formula almost as the only calculation and measurement pattern for EMHR and, to offer, from the perspective of other researchers, better possibilities of exercise dosage for certain populations with particular characteristics.
Particle Acceleration in Dissipative Pulsar Magnetospheres
Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.
2012-01-01
Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.
Fundamental plane: dark matter and dissipation contributions
Ribeiro, Andre L B
2010-01-01
Stellar and galactic systems are objects in dynamical equilibrium that are composed of ordinary baryonic matter hypothetically embedded in extended dominant dark matter halos. Our aim is to investigate the scaling relations and dissipational features of these objects over a wide range of their properties, taking the dynamical influence of the dark matter component into account. We study the physical properties of these self-gravitating systems using the two-component virial theorem in conjunction with data that embrace a wide range of astrophysical systems. We find that the scaling relations defined by the properties of these objects admit a dark-to-luminous density ratio parameter as a natural requirement in this framework. We also probe dissipational effects on the fundamental surface defined by the two-component virial theorem and discuss their relations with respect to the region devoid of objects in the data distribution. Our results indicate complementary contributions of dissipation and dark matter to ...
Dynamics of quasi-stable dissipative systems
Chueshov, Igor
2015-01-01
This book is devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here is to offer general methods and abstract results pertaining to fundamental dynamical systems properties related to dissipative long-time behavior. The book systematically presents, develops and uses the quasi-stability method while substantially extending it by including for consideration new classes of models and PDE systems arising in Continuum Mechanics. The book can be used as a textbook in dissipative dynamics at the graduate level. Igor Chueshov is a Professor of Mathematics at Karazin Kharkov National University in Kharkov, Ukraine.
Dissipative Kerr solitons in optical microresonators
Herr, Tobias; Kippenberg, Tobias J
2015-01-01
This chapter describes the discovery and stable generation of temporal dissipative Kerr solitons in continuous-wave (CW) laser driven optical microresonators. The experimental signatures as well as the temporal and spectral characteristics of this class of bright solitons are discussed. Moreover, analytical and numerical descriptions are presented that do not only reproduce qualitative features but can also be used to accurately model and predict the characteristics of experimental systems. Particular emphasis lies on temporal dissipative Kerr solitons with regard to optical frequency comb generation where they are of particular importance. Here, one example is spectral broadening and self-referencing enabled by the ultra-short pulsed nature of the solitons. Another example is dissipative Kerr soliton formation in integrated on-chip microresonators where the emission of a dispersive wave allows for the direct generation of unprecedentedly broadband and coherent soliton spectra with smooth spectral envelope.
Observed eddy dissipation in the Agulhas Current
Braby, Laura; Backeberg, Björn C.; Ansorge, Isabelle; Roberts, Michael J.; Krug, Marjolaine; Reason, Chris J. C.
2016-08-01
Analyzing eddy characteristics from a global data set of automatically tracked eddies for the Agulhas Current in combination with surface drifters as well as geostrophic currents from satellite altimeters, it is shown that eddies from the Mozambique Channel and south of Madagascar dissipate as they approach the Agulhas Current. By tracking the offshore position of the current core and its velocity at 30°S in relation to eddies, it is demonstrated that eddy dissipation occurs through a transfer of momentum, where anticyclones consistently induce positive velocity anomalies, and cyclones reduce the velocities and cause offshore meanders. Composite analyses of the anticyclonic (cyclonic) eddy-current interaction events demonstrate that the positive (negative) velocity anomalies propagate downstream in the Agulhas Current at 44 km/d (23 km/d). Many models are unable to represent these eddy dissipation processes, affecting our understanding of the Agulhas Current.
About some Entropy Aspects of Dissipative Systems
Emil Dinga
2006-10-01
Full Text Available This paper is aspiring to get a logical explanation on the entropy velocity (i.e. on the entropy acceleration in a Universe “endowed” with a dissipative system. To this end, some concepts of dissipative structures emergence are analyzed, in a new paradigm of the logically vivid systems. In connection with the increasing global entropy, some crucial concepts as: the time arrow, the complexity degree, the specific time (that is, own time, or assigned to process time are treated and correlated. The main objective of the paper is to find out a logical explanation for accelerating of the entropy by the entropic heterogeneity accompanying the dissipative structures arising. A few answers are proposed while many other questions are stimulated in the matter.
About some Entropy Aspects of Dissipative Systems
Emil Dinga
2006-12-01
Full Text Available This paper is aspiring to get a logical explanation on the entropy velocity (i.e. on the entropy acceleration in a Universe “endowed” with a dissipative system. To this end, some concepts of dissipative structures emergence are analyzed, in a new paradigm of the logically vivid systems. In connection with the increasing global entropy, some crucial concepts as: the time arrow, the complexity degree, the specific time (that is, own time, or assigned to process time are treated and correlated. The main objective of the paper is to find out a logical explanation for accelerating of the entropy by the entropic heterogeneity accompanying the dissipative structures arising. A few answers are proposed while many other questions are stimulated in the matter.
Dissipative Effect in Long Baseline Neutrino Experiments
Oliveira, Roberto L N
2016-01-01
The propagation of neutrinos in long baselines experiments may be influenced by dissipation effects. Using Lindblad Master Equation we evolve neutrinos taking into account these dissipative effects. The MSW and the dissipative effects may change the probabilities behavior. In this work, we show and explain how the behavior of the probabilities can change due to the decoherence and relaxation effects acting individually with the MSW effect. A new exotic peak appears in this case and we show the difference between the decoherence and relaxation effects in the appearance of this peak. We also adapt the usual approximate expression for survival and appearance probabilities with all possible decoherence effects. We suppose the baseline of DUNE and show how each decoherence parameters change the probabilities analyzing the possible modification using numeric and analytic approach.
Bistability in a Driven-Dissipative Superfluid
Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig
2016-06-01
We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ , the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.
An estimate of energy dissipation due to soil-moisture hysteresis
McNamara, H.
2014-01-01
Processes of infiltration, transport, and outflow in unsaturated soil necessarily involve the dissipation of energy through various processes. Accounting for these energetic processes can contribute to modeling hydrological and ecological systems. The well-documented hysteretic relationship between matric potential and moisture content in soil suggests that one such mechanism of energy dissipation is associated with the cycling between wetting and drying processes, but it is challenging to estimate the magnitude of the effect in situ. The Preisach model, a generalization of the Independent Domain model, allows hysteresis effects to be incorporated into dynamical systems of differential equations. Building on earlier work using such systems with field data from the south-west of Ireland, this work estimates the average rate of hysteretic energy dissipation. Through some straightforward assumptions, the magnitude of this rate is found to be of O(10-5) W m-3. Key Points Hysteresis in soil-water dissipates energy The rate of dissipation can be estimated directly from saturation data The rate of heating caused is significant ©2013. American Geophysical Union. All Rights Reserved.
Dissipation of glyphosate from grapevine soils in Sonora, Mexico
Norma J. Salazar López
2016-10-01
Full Text Available Grapevine is one of the important crops in Sonora, due to revenue generation from its export to foreign countries. Among the most widely used herbicides for this crop is glyphosate, which is considered moderately toxic and persistent. The present research evaluates the dissipation of glyphosate in grapevine planted soil at three depths (5, 30 and 60 cm. Sampling was carried out before glyphosate application, and 5, 10, 18, 27, and 65 days after. Glyphosate was extracted from soil samples using ammonium hydroxide. The derivate extracts were partitioned with dichloromethane and analyzed using gas chromatography with pulsed flame photometric detector (PFPD. The results showed that average glyphosate residues are significantly greater at 5 cm (0.09 mg kg-1 than the other depths (30 and 60 cm, having a difference of 0.078 mg kg-1 between them (P < 0.03. Glyphosate concentration time profiles were similar; it reached maximum soil concentration in a range of 10 to 18 days after application. The half-life of glyphosate in soil has an average of 39 days at all depths. Our data suggests that the release in soil of glyphosate applied to weeds delays its transference to soil by 14 days, and extends residue half life to 55 days after application. These results could be the basis for further research, including more environmental parameters that could affect the dissipation or degradation process in soil.
Clomazone dissipation,adsorption and translocation in four paddy topsoils
LI Lian-fang; LI Guo-xue; YANG Ren-bin; GUO Zheng-yuan; LIAO Xiao-yong
2004-01-01
Laboratory experiments about the dissipation, adsorption and translocation in four paddy topsoils were conducted in this paper. From the results it can be concluded as follows: the dissipation rate of clomazone differed greatly in different paddy soil derived from different parent materials. The half-lives for clomazone degradation in paddy soils ranged from 5.7 to 22.0 d. The order of clomazone dissipation rate was reddish yellow paddy soil ＞alluvial sandy paddy soil ＞ yellow clayey paddy soil ＞ purple sandy paddy soil. Clomazone sorption quantity was significantly correlated with organic carbon ( R2 = 0.62) and clay content ( R2 = 0.67) in the tested paddy soils.Positive correlation was found between apparent Kd value and cation exchange content(CEC). The consequences for the adsorption of different soils were purple sandy paddy soil ＞ yellow clayey paddy soil ＞ reddish yellow paddy soil ＞ alluvial sandy paddy soil. Under the simulated rainfall of 200 mm through four different unsaturated soil lysimeters over 24 h, clomazone was readily to be leached into lower surface soil and there was about 2.6%-4.2%of applied clomazone leached out of 20 cm cultivated soil layer. Translocation experiments showed that the order of clomazone leaching ability was: alluvial sandy paddy soil ＞ reddish yellow paddy soil ＞ yellow clayey paddy soil ＞purple sandy paddy soil. Simple regression results manifested that factors like CEC, organic carbon, clay, and adsorption rate constant had been negatively correlated with the percentage of clomazone loss from soil lysimeters.
On the Tidal Dissipation of Obliquity
Rogers, T M
2013-01-01
We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde or 90^{o} orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.
Periodic solutions of dissipative systems revisited
Górniewicz Lech
2006-01-01
Full Text Available We reprove in an extremely simple way the classical theorem that time periodic dissipative systems imply the existence of harmonic periodic solutions, in the case of uniqueness. We will also show that, in the lack of uniqueness, the existence of harmonics is implied by uniform dissipativity. The localization of starting points and multiplicity of periodic solutions will be established, under suitable additional assumptions, as well. The arguments are based on the application of various asymptotic fixed point theorems of the Lefschetz and Nielsen type.
Periodic solutions of dissipative systems revisited
Lech Górniewicz
2006-05-01
Full Text Available We reprove in an extremely simple way the classical theorem that time periodic dissipative systems imply the existence of harmonic periodic solutions, in the case of uniqueness. We will also show that, in the lack of uniqueness, the existence of harmonics is implied by uniform dissipativity. The localization of starting points and multiplicity of periodic solutions will be established, under suitable additional assumptions, as well. The arguments are based on the application of various asymptotic fixed point theorems of the Lefschetz and Nielsen type.
Effective dissipation: breaking time-reversal symmetry
Brown, Aidan I
2016-01-01
At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. Such insight into symmetry-breaking factors that produce particularly high time asymmetry suggests generalizations to a broader class of systems.
Dissipative homoclinic loops and rank one chaos
Wang, Qiudong; Ott, William
2008-01-01
We prove that when subjected to periodic forcing of the form $p_{\\mu, \\rh, \\om} (t) = \\mu (\\rh h(x,y) + \\sin (\\om t))$, certain second order systems of differential equations with dissipative homoclinic loops admit strange attractors with SRB measures for a set of forcing parameters $(\\mu, \\rh, \\om)$ of positive measure. Our proof applies the recent theory of rank one maps, developed by Wang and Young based on the analysis of strongly dissipative H\\'enon maps by Benedicks and Carleson.
Dissipative phenomena in condensed matter some applications
Dattagupta, Sushanta
2004-01-01
From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.
Appendix to Power Dissipation in Division
Liu, Wei; Nannarelli, Alberto
This document is an appendix to the paper: Wei Liu and Alberto Nannarelli, ”Power Dissipation in Division”, Proc. of 42nd Asilomar Conference on Signals, Systems, and Computers, October 2008. The purpose of the document is to provide the necessary information for the implementation of the archite......This document is an appendix to the paper: Wei Liu and Alberto Nannarelli, ”Power Dissipation in Division”, Proc. of 42nd Asilomar Conference on Signals, Systems, and Computers, October 2008. The purpose of the document is to provide the necessary information for the implementation...
Phase transitions in dissipative Josephson chains
Bobbert, P.A.; Fazio, R.; Schoen, G. (Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands (NL)); Zimanyi, G.T. (Department of Physics, University of California, Davis, Davis, California 95616 (USA))
1990-03-01
We study the zero-temperature phase transitions of a chain of Josephson junctions, taking into account the quantum fluctuations due to the charging energy and the effects of an Ohmic dissipation. We map the problem onto a generalized Coulomb gas model, which then is transformed into a sine-Gordon field theory. Apart from the expected dipole unbinding transition, which describes a transition between globally superconducting and resistive behavior, we find a quadrupole unbinding transition at a critical strength of the dissipation. This transition separates two superconducting states characterized by different local properties.
Quartz Crystal Microbalance with Dissipation Monitoring
2014-11-06
immobilized onto the gold sensor in citric buffer (pH = 4), rinsed and washed subsequently in cycles of citric buffer (pH = 4) and PBS buffer (pH...dissipation (tougher) at acidic pH, with excellent reversibility up to five cycles . At pH = 7.4, a higher dissipation was observed in the triblock...CcE20Cc (Figure 2) was engineered with a long glutamic acid (Glu)-abundant E20 block (red, containing 40 mol % of Glu) in the middle and joined at
Quantum ratchets in dissipative chaotic systems.
Carlo, Gabriel G; Benenti, Giuliano; Casati, Giulio; Shepelyansky, Dima L
2005-04-29
Using the method of quantum trajectories, we study a quantum chaotic dissipative ratchet appearing for particles in a pulsed asymmetric potential in the presence of a dissipative environment. The system is characterized by directed transport emerging from a quantum strange attractor. This model exhibits, in the limit of small effective Planck constant, a transition from quantum to classical behavior, in agreement with the correspondence principle. We also discuss parameter values suitable for the implementation of the quantum ratchet effect with cold atoms in optical lattices.
Dissipative fragmentation in a phase space approach
Adorno, A.; Di Toro, M.; Bonasera, A.; Gregoire, C.; Gulminelli, F.
Semi-classical approaches have evidenced the role of one and two-body dissipation in nucleus-nucleus collisions. On the other hand, a substantial energy dissipation and some angular momentum transfer have been observed at moderate energy where a fragmentation process is the dominant reaction mechanism. In order to analyse main features of these reactions, we developed a phenomenological model taking into account phase space constraints. The transition between deep inelastic collisions and abrasion-like fragmentation is described and a general agreement with available data is found.
Pair Production of Open Strings Relativistic versus Dissipative Dynamics
Acatrinei, C S
1999-01-01
We study the pair production of open strings in constant electric fields, using a general framework which encodes both relativistic string theory and generic linearly extended systems as well. In the relativistically invariant case we recover previous results, both for pair production and for the effective Born-Infeld action. We then derive a non-relativistic limit - where the propagation velocity along the string is much smaller than the velocity of light - obtaining quantum dissipation. We calculate the pair nucleation rate for this case, which could be relevant for applications.
Massive Black Holes from Dissipative Dark Matter arXiv
D'Amico, Guido; Lupi, Alessandro; Bovino, Stefano; Silk, Joseph
We show that a subdominant component of dissipative dark matter resembling the Standard Model can form many intermediate-mass black hole seeds during the first structure formation epoch. We also observe that, in the presence of this matter sector, the black holes will grow at a much faster rate with respect to the ordinary case. These facts can explain the observed abundance of supermassive black holes feeding high-redshift quasars. The scenario will have interesting observational consequences for dark substructures and gravitational wave production.
NEI Modelling of the ISM - Turbulent Dissipation & Hausdorff Dimension
de Avillez, Miguel A
2009-01-01
High-resolution non-ideal magnetohydrodynamical simulations of the turbulent magnetized ISM, powered by supernovae types Ia and II at Galactic rate, including self-gravity and non-equilibriuim ionization (NEI), taking into account the time evolution of the ionization structure of H, He, C, N, O, Ne, Mg, Si, S and Fe, were carried out. These runs cover a wide range (from kpc to sub-parsec) of scales, providing resolution independent information on the injection scale, extended self-similarity and the fractal dmension of the most dissipative structures.
Viscosity parameter in dissipative accretion flows with mass outflow around black holes
Nagarkoti, Shreeram; Chakrabarti, Sandip K.
2016-10-01
Numerical hydrodynamic simulation of inviscid and viscous flows have shown that significant outflows could be produced from the CENtrifugal pressure-supported BOundary Layer or CENBOL of an advective disc. However, this barrier is weakened in presence of viscosity, more so, if there are explicit energy dissipations at the boundary layer itself. We study effects of viscosity and energy dissipation theoretically on the outflow rate and show that, as the viscosity or energy dissipation (or both) rises, the prospect of formation of outflows is greatly reduced, thereby verifying results obtained through observations and numerical simulations. Indeed, we find that in a dissipative viscous flow, shocks in presence of outflows can be produced only if the Shakura-Sunyaev viscosity parameter α is less than 0.2. This is a direct consequence of modification of the Rankine-Hugoniot relation across the shock in a viscous flow, when the energy dissipation and mass-loss in the form of outflows from the post-shock region are included. If we ignore the effects of mass-loss altogether, the standing dissipative shocks in viscous flows may occur only if α black hole candidates such as GX399-4, MAXI J1659-152 and MAXI J1836-194 and find that required α are indeed well within our prescribed limit.
Internal dissipation and heat leaks in quantum thermodynamic cycles
Correa, Luis A.; Palao, José P.; Alonso, Daniel
2015-09-01
The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices.
Dynamics of dissipative multifluid neutron star cores
Haskell, B.; Andersson, N.; Comer, G.L.
2012-01-01
We present a Newtonian multifluid formalism for superfluid neutron star cores, focusing on the additional dissipative terms which arise when one takes into account the individual dynamical degrees of freedom associated with the coupled "fluids." The problem is of direct astrophysical interest as the
Dissipative preparation of entanglement in optical cavities
Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg
2011-01-01
We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...... as compared to preparation protocols based on coherent unitary dynamics...
Magnetization dissipation in ferromagnets from scattering theory
Brataas, A.; Tserkovnyak, Y.; Bauer, G.E.W.
2011-01-01
The magnetization dynamics of ferromagnets is often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parametrized by the Gilbert damping tens
Dissipative systems synthesis : A linear algebraic approach
Belur, Madhu N.; Pillai, Harish K.; Trentelman, H.L.
2007-01-01
In this paper we consider the problem of synthesis of dissipative systems for the case that first and higher order derivatives of the concerned variables also appear in the weighting function. The problem is formulated and solved using the behavioral approach to systems and control. We relate the pr
Dissipative systems synthesis : A linear algebraic approach
Belur, Madhu N.; Pillai, Harish K.; Trentelman, H.L.
2007-01-01
In this paper we consider the problem of synthesis of dissipative systems for the case that first and higher order derivatives of the concerned variables also appear in the weighting function. The problem is formulated and solved using the behavioral approach to systems and control. We relate the pr
Dissipative Systems Synthesis : a Linear Algebraic Approach
Belur, Madhu N.; Pillai, Harish K.; Trentelman, H.L.
2005-01-01
In this paper we consider the problem of synthesis of dissipative systems for the case that first and higher order derivatives of the concerned variables also appear in the weighting function. The problem is formulated and solved using the behavioral approach to systems and control. It turns out tha
Fluctuation and dissipation in liquid crystal electroconvection
Goldburg, Walter I.; Goldschmidt, Yadin Y.; Kellay, Hamid
2002-11-01
The power dissipation P( t) was measured in a liquid crystal (MBBA) driven by an ac voltage into the chaotic electroconvective state. In that state, the power fluctuates about its mean value . The quantity measured, and compared with the fluctuation theorem of Gallavotti and Cohen, is the dimensionless standard deviation of the fluctuations, σP/.
Log-stable law of energy dissipation as a framework of turbulence intermittency
Mouri, H
2015-01-01
To describe the small-scale intermittency of turbulence, a self-similarity is assumed for the probability density function of a logarithm of the rate of energy dissipation smoothed over a length scale among those in the inertial range. The result is an extension of Kolmogorov's classical theory in 1941, i.e., a one-parameter framework where the logarithm obeys some stable distribution. Scaling laws are obtained for the dissipation rate and for the two-point velocity difference. They are consistent with theoretical constraints and with the observed scaling laws. Also discussed is the physics that determines the value of the parameter.
Large Deviations and Gallavotti-Cohen Principle for Dissipative PDEs with Rough Noise
Jakšić, V.; Nersesyan, V.; Pillet, C.-A.; Shirikyan, A.
2015-05-01
We study a class of dissipative PDEs perturbed by an unbounded kick force. Under some natural assumptions, the restrictions of solutions to integer times form a homogeneous Markov process. Assuming that the noise is rough with respect to the space variables and has a non-degenerate law, we prove that the system in question satisfies a large deviation principle (LDP) in τ-topology. Under some additional hypotheses, we establish a Gallavotti-Cohen type symmetry for the rate function of an entropy production functional and the strict positivity and finiteness of the mean entropy production rate in the stationary regime. The latter result is applicable to PDEs with strong nonlinear dissipation.
Efficiency at maximum power output of quantum heat engines under finite-time operation
Wang, Jianhui; He, Jizhou; Wu, Zhaoqi
2012-03-01
We study the efficiency at maximum power, ηm, of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), ηm becomes identical to the Carnot efficiency ηC=1-Tc/Th. For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency ηm at maximum power output is bounded from above by ηC/(2-ηC) and from below by ηC/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency ηCA=1-Tc/Th is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.
Efficiency at maximum power output of quantum heat engines under finite-time operation.
Wang, Jianhui; He, Jizhou; Wu, Zhaoqi
2012-03-01
We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency η(CA)=1-√(T(c)/T(h)) is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.
Grifoni, Milena; Paladino, Elisabetta
2008-11-01
Quantum dissipation has been the object of study within the physics and chemistry communities for many years. Despite this, the field is in constant evolution, largely due to the fact that novel systems where the understanding of dissipation and dephasing processes is of crucial importance have become experimentally accessible in recent years. Among the ongoing research themes, we mention the defeat of decoherence in solid state-based quantum bits (qubits) (e.g. superconducting qubits or quantum dot based qubits), or dissipation due to non-equilibrium Fermi reservoirs, as is the case for quantum transport through meso- and nanoscale structures. A close inspection of dissipation in such systems reveals that one has to deal with 'unconventional' environments, where common assumptions of, for example, linearity of the bath and/or equilibrium reservoir have to be abandoned. Even for linear baths at equilibrium it might occur that the bath presents some internal structure, due, for example, to the presence of localized bath modes. A large part of this focus issue is devoted to topics related to the rapidly developing fields of quantum computation and information with solid state nanodevices. In these implementations, single and two-qubit gates as well as quantum information transmission takes place in the presence of broadband noise that is typically non-Markovian and nonlinear. On both the experimental and theory side, understanding and defeating such noise sources has become a crucial step towards the implementation of efficient nanodevices. On a more fundamental level, electron and spin transport through quantum dot nanostructures may suffer from 'unconventional' dissipation mechanisms such as the simultaneous presence of spin relaxation and fermionic dissipation, or may represent themselves out of equilibrium baths for nearby mesoscopic systems. Finally, although not expected from the outset, the present collection of articles has revealed that different
Derivation and application of the energy dissipation factor in the design of fishways
Towler, Brett; Mulligan, Kevin; Haro, Alexander J.
2015-01-01
Reducing turbulence and associated air entrainment is generally considered advantageous in the engineering design of fish passage facilities. The well-known energy dissipation factor, or EDF, correlates with observations of the phenomena. However, inconsistencies in EDF forms exist and the bases for volumetric energy dissipation rate criteria are often misunderstood. A comprehensive survey of EDF criteria is presented. Clarity in the application of the EDF and resolutions to these inconsistencies are provided through formal derivations; it is demonstrated that kinetic energy represents only 1/3 of the total energy input for the special case of a broad-crested weir. Specific errors in published design manuals are identified and resolved. New, fundamentally sound, design equations for culvert outlet pools and standard Denil Fishway resting pools are developed. The findings underscore the utility of EDF equations, demonstrate the transferability of volumetric energy dissipation rates, and provide a foundation for future refinement of component-, species-, and life-stage-specific EDF criteria.
Dissipative two-electron transfer: A numerical renormalization group study
Tornow, Sabine; Bulla, Ralf; Anders, Frithjof B.; Nitzan, Abraham
2008-07-01
We investigate nonequilibrium two-electron transfer in a model redox system represented by a two-site extended Hubbard model and embedded in a dissipative environment. The influence of the electron-electron interactions and the coupling to a dissipative bosonic bath on the electron transfer is studied in different temperature regimes. At high temperatures, Marcus transfer rates are evaluated, and at low temperatures, we calculate equilibrium and nonequilibrium population probabilities of the donor and acceptor with the nonperturbative numerical renormalization group approach. We obtain the nonequilibrium dynamics of the system prepared in an initial state of two electrons at the donor site and identify conditions under which the electron transfer involves one concerted two-electron step or two sequential single-electron steps. The rates of the sequential transfer depend nonmonotonically on the difference between the intersite and on-site Coulomb interaction, which become renormalized in the presence of the bosonic bath. If this difference is much larger than the hopping matrix element, the temperature as well as the reorganization energy, simultaneous transfer of both electrons between donor and acceptor can be observed.
Energy flow and energy dissipation in a free surface.
Goldburg, Walter; Cressman, John
2005-11-01
Turbulent flows on a free surface are strongly compressible [1] and do not conserve energy in the absence of viscosity as bulk fluids do. Despite violation of assumptions essential to Kolmogorov's theory of 1941 (K41) [2, 3], surface flows show strong agreement with Kolmogorov scaling, though intermittency is larger there. Steady state turbulence is generated in a tank of water, and the spatially averaged energy flux is measured from the four-fifth's law at each instant of time. Likewise, the energy dissipation rate as measured from velocity gradients is also a random variable in this experiment. The energy flux - dissipation rate cross-correlation is measured to be correlated in incompressible bulk flows, but strongly anti-correlated on the surface. We argue that the reason for this discrepancy between surface and bulk flows is due to compressible effects present on the surface. [1] J. R. Cressman, J. Davoudi, W. I. Goldburg, and J. Schumacher, New Journal of Physics, 6, 53, 2004. [2] U. Frisch. Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. [3] A. N. Kolmogorov, Doklady Akad. Nauk SSSR, 32, 16, 1941.
Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data.
Li, Chi-Pei; Lo, Chi-Wen; Lu, Po-Chien
2010-03-01
Among the clinical complications of mechanical heart valves (MHVs), hemolysis was previously thought to result from Reynolds stresses in turbulent flows. A more recent hypothesis suggests viscous dissipative stresses at spatial scales similar in size to red blood cells may be related to hemolysis in MHVs, but the resolution of current instrumentation is insufficient to measure the smallest eddy sizes. We studied the St. Jude Medical (SJM) 27 mm valve in the aortic position of a pulsatile circulatory mock loop under physiologic conditions with particle image velocimetry (PIV). Assuming a dynamic equilibrium assumption between the resolved and sub-grid-scale (SGS) energy flux, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields and the SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then the viscous dissipative stresses were estimated. Our results showed Reynolds stresses up to 80 N/m2 throughout the cardiac cycle, and viscous dissipative stresses below 12 N/m2. The viscous dissipative stresses remain far below the threshold of red blood cell hemolysis, but could potentially damage platelets, implying the need for further study in the phenomenon of MHV hemolytic complications.
Influence of substrate water saturation on pesticide dissipation in constructed wetlands.
Vallée, Romain; Dousset, Sylvie; Billet, David
2016-01-01
Constructed wetlands are an effective and practical option for removing pesticide pollution from runoff or subsurface drainage water. The objective of this study was to assess the efficiencies of a ditch with a bundle of straw placed in its centre and a vegetated pond installed in grass cover bands at downstream of a drained plot. The dissipation rates of three herbicides and three fungicides were monitored on four substrates commonly found in constructed wetlands (two soils, sediment and straw). The influence of water content was determined in a sequence of three steps (flooded-unsaturated-flooded) over 120 days. The pesticide dissipation rates observed during the 120 days of incubation ranged from 1.4 to 100%. Isoproturon and 2,4-MCPA (MCPA) showed the highest dissipation rates, which ranged from 61.0 to 100% of the applied quantities during the 120 days of incubation. In contrast, boscalid and tebuconazole showed the lowest dissipation rates, which ranged from 1.4 to 43.9% of the applied quantities during the 120 days of incubation. The estimated DT50 values ranged from 20.5 days to more than 1 year and were influenced by the substrate water content. The soil and straw substrates had the lowest DT50 values during the unsaturated conditions, whereas the sediments had the lowest DT50 values during the flooded conditions. These results could be explained by an adaptation of microbial communities to their environmental conditions. Thus, the most favourable conditions of dissipation for soils and straw are observable when the drainage ceases (spring and summer). However, favourable conditions occur all year for the sediments, except when the constructed wetlands are dry. The results suggest that the dissipation of pesticides in constructed wetlands contributes to the long-term effectiveness of these buffer zones for reducing water pollution.
Shaking Table Tests on R.C. Frame with Dissipative Bracings
Castellano, Maria Gabriella; Balducci, Francesco; Antonucci, Rodolfo
2008-07-01
The use of dissipative bracings in R. C. frames is of particular interest in seismic-prone European and Mediterranean countries for retrofit of existing buildings designed according to non-seismic specifications or old seismic codes, without a capacity design approach and therefore lacking ductility. The supplemental damping offered by the dissipative bracings allows the reduction of the ductility demands in R. C. structural members and thus can significantly reduce their damage. However, most of the experimental research carried out in recent years concerns the use of dissipative bracings in steel structures. This paper describes shaking table tests carried out on a one-bay, two-storey, full-scale spatial R. C. frame equipped with two different types of dissipative braces: fluid viscous dampers atop chevron braces, or buckling restrained braces along the diagonal. Tests were also conducted on the same frame without supplemental damping devices. Scope of these tests was the experimental verification of the effectiveness of dissipative braces in the retrofit of existing R. C.-framed buildings. Shaking table tests were conducted at increasing PGA levels. Various measurements were taken to monitor both overall as well as localized structure behaviour. Results demonstrate that the introduction of these devices could lead to the dissipation of up to 95% of input energy, thereby considerably reducing the ductility requirement of R. C. elements. A reduction of inter-storey drift of at least 50% was observed with all the dampers, in comparison with the bare frame. For example, in one case, the maximum interstorey drift in the test at PGA = 0.23 g was 0.29%, well below the limit of 0.5% usually given by the standards as the SLS limit to avoid damage to masonry infills.
Wind Turbine Control with Active Damage Reduction through Energy Dissipation
Barradas Berglind, Jose de Jesus; Jayawardhana, Bayu; Wisniewski, Rafał
2016-01-01
In this paper we propose an active damage reduction control strategy for wind turbines based on dissipated energy. To this end we rely on the equivalences relating both damage in the rainflow counting sense and dissipated energy to the variations of Preisach hysteresis operators. Since dissipation
A heat dissipating model for water cooling garments
Yang Kai
2013-01-01
Full Text Available A water cooling garment is a functional clothing used to dissipate human body’s redundant energy in extravehicular environment or other hot environment. Its heat dissipating property greatly affects body’s heat balance. In this paper, a heat dissipating model for the water cooling garment is established and verified experimentally using the experimental thermal-manikin.
Adiabatic hydrodynamics: The eightfold way to dissipation
Haehl, Felix M; Rangamani, Mukund
2015-01-01
We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...
Mode-locking via dissipative Faraday instability
Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.
2016-08-01
Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system--spectrally dependent losses--achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.
Generalized global symmetries and dissipative magnetohydrodynamics
Grozdanov, Sašo; Iqbal, Nabil
2016-01-01
The conserved magnetic flux of U(1) electrodynamics coupled to matter in four dimensions is associated with a generalized global symmetry. We study the realization of such a symmetry at finite temperature and develop the hydrodynamic theory describing fluctuations of a conserved 2-form current around thermal equilibrium. This can be thought of as a systematic derivation of relativistic magnetohydrodynamics, constrained only by symmetries and effective field theory. We construct the entropy current and show that at first order in derivatives, there are six dissipative transport coefficients. We present a universal definition of resistivity in a theory of dynamical electromagnetism and derive a direct Kubo formula for the resistivity in terms of correlation functions of the electric field operator. We also study fluctuations and collective modes, deriving novel expressions for the dissipative widths of magnetosonic and Alfven modes. Finally, we demonstrate that a non-trivial truncation of the theory can be perf...
Observing Dissipative Topological Defects with Coupled Lasers
Pal, Vishwa; Tradonsky, Chene; Chriki, Ronen; Friesem, Asher A.; Davidson, Nir
2017-07-01
Topological defects have been observed and studied in a wide range of systems, such as cosmology, spin systems, cold atoms, and optics, as they are quenched across a phase transition into an ordered state. These defects limit the coherence of the system and its ability to approach a fully ordered state, so revealing their origin and control is becoming an increasingly important field of research. We observe dissipative topological defects in a one-dimensional ring of phased-locked lasers, and show how their formation is related to the Kibble-Zurek mechanism and is governed in a universal manner by two competing time scales. The ratio between these two time scales depends on the system parameters, and thus offers the possibility of enabling the system to dissipate to a fully ordered, defect-free state that can be exploited for solving hard computational problems in various fields.
Dissipative cryogenic filters with zero dc resistance.
Bluhm, Hendrik; Moler, Kathryn A
2008-01-01
The authors designed, implemented, and tested cryogenic rf filters with zero dc resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in omega, as typical for skin depth based rf filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.
Patterns and Interfaces in Dissipative Dynamics
Pismen, L.M
2006-01-01
Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium is a paradigmatic case of emergent behaviour associated with complex systems. It is encountered in a great variety of settings, both in nature and technology, and has numerous applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. Nature creates its variety of forms through spontaneous pattern formation and self-assembly, and this strategy is likely to be imitated by future biomorphic technologies. This book is a first-hand account by one of the leading players in this field, which gives in-depth descriptions of analytical methods elucidating the complex evolution of nonlinear dissipative systems, and brings the reader to the forefront of current research. The introductory chapter on the theory of dynamical systems is written with a view to applications of its powerful methods to spatial and spatio-temporal patterns. It is followed by two chapters t...
Dissipative Cryogenic Filters with Zero DC Resistance
Bluhm, Hendrik; Moler, Kathryn A.; /Stanford U., Appl. Phys. Dept
2008-04-22
The authors designed, implemented and tested cryogenic RF filters with zero DC resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in {radical}{omega}, as typical for skin depth based RF filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.
Non-dissipative effects in nonequilibrium systems
Maes, Christian
2018-01-01
This book introduces and discusses both the fundamental aspects and the measurability of applications of time-symmetric kinetic quantities, outlining the features that constitute the non-dissipative branch of non-equilibrium physics. These specific features of non-equilibrium dynamics have largely been ignored in standard statistical mechanics texts. This introductory-level book offers novel material that does not take the traditional line of extending standard thermodynamics to the irreversible domain. It shows that although stationary dissipation is essentially equivalent with steady non-equilibrium and ubiquitous in complex phenomena, non-equilibrium is not determined solely by the time-antisymmetric sector of energy-entropy considerations. While this should not be very surprising, this book provides timely, simple reminders of the role of time-symmetric and kinetic aspects in the construction of non-equilibrium statistical mechanics.
Dissipative surface solitons in periodic structures
Kartashov, Yaroslav V; Vysloukh, Victor A
2010-01-01
We report dissipative surface solitons forming at the interface between a semi-infinite lattice and a homogeneous Kerr medium. The solitons exist due to balance between amplification in the near-surface lattice channel and two-photon absorption. The stable dissipative surface solitons exist in both focusing and defocusing media, when propagation constants of corresponding states fall into a total semi-infinite and or into one of total finite gaps of the spectrum (i.e. in a domain where propagation of linear waves is inhibited for the both media). In a general situation, the surface solitons form when amplification coefficient exceeds threshold value. When a soliton is formed in a total finite gap there exists also the upper limit for the linear gain.
On the dissipation of the dark matter
Velten, Hermano
2012-01-01
Fluids often display dissipative properties. We explore dissipation in the form of bulk viscosity in the cold dark matter fluid. We constrain this model using current data from supernovae, baryon acoustic oscillations and the cosmic microwave background. Considering the isotropic and homogeneous background only, viscous dark matter is allowed to have a bulk viscosity $\\lesssim 10^7$ Pa$\\cdot$s, also consistent with the expected integrated Sachs-Wolfe effect (which plagues some models with bulk viscosity). We also investigate the small-scale formation of viscous dark matter halos. This analysis places significantly stronger constraints on the dark matter viscosity. The existence of dwarf galaxies is guaranteed only for very small values of the dark matter viscosity, $\\lesssim 10^{-3}$ Pa$\\cdot$s.
Introduction: Dissipative localized structures in extended systems
Tlidi, Mustapha; Taki, Majid; Kolokolnikov, Theodore
2007-09-01
Localized structures belong to the class of dissipative structures found far from equilibrium. Contributions from the most representative groups working on a various fields of natural science such as biology, chemistry, plant ecology, mathematics, optics, and laser physics are presented. The aim of this issue is to gather specialists from these fields towards a cross-fertilization among these active areas of research and thereby to present an overview of the state of art in the formation and the characterization of dissipative localized structures. Nonlinear optics and laser physics have an important part in this issue because of potential applications in information technology. In particular, localized structures could be used as "bits" for parallel information storage and processing.
Assessing relative volatility/intermittency/energy dissipation
Barndorff-Nielsen, Ole E.; Pakkanen, Mikko S.; Schmiegel, Jürgen
2014-01-01
We introduce the notion of relative volatility/intermittency and demonstrate how relative volatility statistics can be used to estimate consistently the temporal variation of volatility/intermittency when the data of interest are generated by a non-semimartingale, or a Brownian semistationary...... process in particular. This estimation method is motivated by the assessment of relative energy dissipation in empirical data of turbulence, but it is also applicable in other areas. We develop a probabilistic asymptotic theory for realised relative power variations of Brownian semistationary processes......, and introduce inference methods based on the theory. We also discuss how to extend the asymptotic theory to other classes of processes exhibiting stochastic volatility/intermittency. As an empirical application, we study relative energy dissipation in data of atmospheric turbulence....
Spectral properties of dissipative chaotic quantum maps.
Braun, Daniel
1999-09-01
I examine spectral properties of a dissipative chaotic quantum map with the help of a recently discovered semiclassical trace formula. I show that in the presence of a small amount of dissipation the traces of any finite power of the propagator of the reduced density matrix, and traces of its classical counterpart, the Frobenius-Perron operator, are identical in the limit of variant Planck's over 2pi -->0. Numerically I find that even for finite variant Planck's over 2pi the agreement can be very good. This holds in particular if the classical phase space contains a strange attractor, as long as one stays clear of bifurcations. Traces of the quantum propagator for iterations of the map agree well with the corresponding traces of the Frobenius-Perron operator if the classical dynamics is dominated by a strong point attractor. (c) 1999 American Institute of Physics.